WO2024044878A1 - 顶盖组件、电池单体、电池及用电装置 - Google Patents

顶盖组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024044878A1
WO2024044878A1 PCT/CN2022/115435 CN2022115435W WO2024044878A1 WO 2024044878 A1 WO2024044878 A1 WO 2024044878A1 CN 2022115435 W CN2022115435 W CN 2022115435W WO 2024044878 A1 WO2024044878 A1 WO 2024044878A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
top cover
protruding portion
electrode
cover assembly
Prior art date
Application number
PCT/CN2022/115435
Other languages
English (en)
French (fr)
Inventor
王邦勇
石春美
喻鸿钢
谢勇锋
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/115435 priority Critical patent/WO2024044878A1/zh
Publication of WO2024044878A1 publication Critical patent/WO2024044878A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a top cover assembly, a battery cell, a battery and an electrical device.
  • the overcurrent capability of the tabs will affect the charge and discharge capabilities of the battery, thereby affecting the safety performance and service life of the battery.
  • the width of the tab formed is limited due to the structural limitations of the top cover assembly.
  • the overcurrent area of the tab is smaller, which affects the overcurrent capability of the tab and is not conducive to improving the charging and discharging capabilities of the battery.
  • this application provides a top cover assembly for covering the casing of a battery cell.
  • the top cover assembly includes:
  • the body has a first electrode hole and a second electrode hole along its thickness direction, and the first electrode hole and the second electrode hole are spaced apart along the length direction of the body;
  • the protruding portion protrudes along the thickness direction of the body and is formed on a side surface of the body that is configured to face the inside of the housing.
  • the protruding portion is located between the first electrode hole and the second electrode hole along the length direction of the body;
  • the protruding portion is located on a side close to the first electrode hole along the length direction of the body, and the length direction of the body is perpendicular to the thickness direction of the body.
  • the protruding portion is eccentrically arranged on the body along the length direction of the body, and the protruding portion is biased toward the first electrode hole side, that is, in the length direction of the body, the protruding portion is connected to the first electrode hole.
  • the distance between one electrode hole is smaller than the distance between the protruding part and the second electrode hole. Therefore, the distance between the protrusion and the second electrode hole can be used to accommodate one tab of the electrode assembly that requires increased width.
  • the distance between the protruding portion and the first electrode hole is used to accommodate the other tab in the electrode assembly.
  • the width of the tab corresponding to the second electrode hole can be increased, thereby increasing the overflow area of the tab, thereby increasing the overcurrent capacity of the tab, thereby improving the safety performance and service life of the battery cell. .
  • the length of the protrusion in the length direction of the body is less than or equal to 20 mm.
  • the length of the protruding part is set to less than or equal to 20 mm, which can increase the distance between the protruding part and the first electrode hole or the second electrode hole as much as possible on the basis that the protruding part is easy to form and manufacture.
  • the distance between the electrode holes increases the width of the tab and improves the overcurrent capacity of the tab.
  • the height of the protrusion in the thickness direction of the body is less than or equal to 10 mm.
  • the height of the protruding part is set to less than or equal to 10 mm.
  • the protruding part is easy to be formed and manufactured, a larger accommodation space can be provided for the electrode assembly inside the housing, so as to facilitate Improve the performance of battery cells.
  • the width of the protrusion in the width direction of the body, is less than or equal to the width of the body, and the width direction of the body is perpendicular to the length direction and the thickness direction of the body respectively.
  • the width of the protruding portion is less than or equal to the width of the body, so that the protruding portion can be smoothly accommodated in the casing. , so that the top cover assembly has better sealing performance for the shell.
  • the protruding part includes a first sub-protruding part and a second sub-protruding part
  • the first sub-protruding portion and the second sub-protruding portion are spaced apart along the width direction of the body; or the first sub-protruding portion and the second sub-protruding portion are continuously arranged along the width direction of the body.
  • the first sub-protruding part and the second sub-protruding part when the first sub-protruding part and the second sub-protruding part are continuously arranged along the width direction of the body, that is, the first sub-protruding part and the second sub-protruding part form an integrated structure. Conducive to the production and shaping of protruding parts.
  • the first sub-protruding portion and the second sub-protruding portion are spaced apart along the width direction of the body, a larger avoidance space can be further provided for the tab corresponding to the second electrode hole, thereby further increasing the size of the second electrode hole.
  • the width of the tab corresponding to the electrode hole improves the overcurrent capability.
  • the body is provided with a pressure relief hole along the thickness direction of the body, and the protruding portion is provided with a through hole communicating with the pressure relief hole along the thickness direction of the body.
  • a through hole is opened on the protruding part and is connected to the pressure relief hole.
  • the projection of the protrusion partially overlaps the projection of the pressure relief hole.
  • the overlapping portion of the protruding portion and the pressure relief hole can play a certain stabilizing role in the pressure relief hole, preventing the pressure relief parts in the pressure relief hole from loosening, thereby ensuring the safety of the pressure relief hole structure. Integrity to achieve smooth pressure relief of battery cells.
  • the ontology includes:
  • the insulating sheet is stacked along the thickness direction of the top cover sheet on the side of the top cover sheet that is configured to face the inside of the housing;
  • the protruding portion is protrudingly formed on a side surface of the insulating sheet facing away from the top cover sheet.
  • the top cover sheet is less likely to deform when subjected to extrusion and collision, so that the battery cells can have higher structural strength and the safety performance can also be improved.
  • the insulating member is disposed on the side of the top cover sheet facing the housing, and is used to isolate the electrical connection components in the housing from the top cover sheet to reduce the risk of short circuit.
  • the insulation sheet is made of one or more of polypropylene, polyethylene, and polyethylene terephthalate.
  • the insulating sheet is made of organic polymers such as polypropylene, polyethylene, polyethylene terephthalate, etc.
  • organic polymers such as polypropylene, polyethylene, polyethylene terephthalate, etc.
  • the protruding portion and the insulating sheet are an integrally formed structure.
  • the integrated molding method is simple to operate and is conducive to industrializing the manufacturing process.
  • this application provides a battery cell, wherein the battery cell includes:
  • the shell has an accommodating space inside the shell, and the shell has an opening connected to the accommodating space;
  • the sealing cover is provided on the opening along the direction of the protruding portion toward the opening;
  • the electrode assembly is accommodated in the accommodation space.
  • the electrode assembly includes a first tab corresponding to the first electrode hole and a second tab corresponding to the second electrode hole;
  • the second pole tab is a composite base material tab.
  • the protruding portion is located on a side close to the first pole tab, so as to form a supply port on a side of the protruding portion close to the second electrode hole. The avoidance space for the second pole to pass through.
  • the second tab is a composite substrate tab
  • the overcurrent capacity of the second tab is lower than that of the first tab. Therefore, the first tab is arranged correspondingly to the first electrode hole, and the second tab is arranged correspondingly to the second electrode hole, so that the second tab can have a larger width in the avoidance space, thereby increasing the number of second poles.
  • the overcurrent area of the lug increases the overcurrent capability of the second pole lug.
  • the second tab is a positive tab connected to the positive composite current collector.
  • the positive electrode tab is arranged corresponding to the second electrode hole, and the protruding portion is close to the first electrode hole. Therefore, the positive electrode tab has a larger installation space, thereby increasing the width of the positive electrode tab, increasing the overflow area of the positive electrode tab, and improving the overcurrent capability of the positive electrode tab.
  • the width of the second tab is greater than the width of the first tab along the length direction of the top cover assembly.
  • the second pole tab can have a larger flow-passing area, thereby improving the over-current capability of the second pole tab.
  • the separation distance between the protruding portion and the first tab is 0 mm to 12 mm in the length direction of the top cover assembly.
  • the separation distance between the protruding part and the first pole is set to 0mm-12mm, which can prevent the protruding part and the first pole from overlapping and thus interfering with each other.
  • the present application provides a battery, which includes the battery cell as described above.
  • the present application provides an electrical device, which includes the battery as described above.
  • the first electrode hole and the second electrode hole on the body can be used to lead out the positive electrode tab and the negative electrode tab, and the protruding portion is arranged along the length direction of the body.
  • the side close to the first electrode hole increases the distance between the protruding part and the second electrode hole, providing a larger installation space for increasing the width of the positive or negative electrode corresponding to the second electrode hole, so that the second The positive electrode lug or the negative electrode lug corresponding to the electrode hole has a larger width, which increases the current flow area of the electrode lug and enables it to have a higher current flow capacity.
  • Figure 1 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of a battery according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of the exploded structure of a battery cell according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of the connection structure between the top cover assembly and the electrode assembly according to an embodiment of the present application
  • Figure 5 is a plan view of the connection structure of the top cover assembly and the electrode assembly shown in Figure 4;
  • Figure 6 is a schematic plan view of a top cover assembly according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of the connection structure between the top cover assembly and the electrode assembly according to another embodiment of the present application.
  • Figure 8 is a plan view of the connection structure of the top cover assembly and the electrode assembly shown in Figure 7;
  • Figure 9 is a schematic plan view of a top cover assembly according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electrode assembly in another embodiment of the present application.
  • Figure 11 is a schematic diagram of the connection structure of the top cover assembly and the electrode assembly in another embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the overcurrent capacity of the tab will affect the charge and discharge capabilities of the battery, and the overcurrent capacity of the tab is determined by its overflow area. Specifically, if the overflow area of the pole lug is large, its overflow capacity will be high. On the contrary, if the overflow area of the pole ear is small, its overflow capacity is low.
  • the flow area of the tab is determined by the thickness and width of the tab, and the flow area is proportional to the thickness and width.
  • some pole pieces choose to use composite current collectors with a multi-layer structure, that is, to form a composite base material tab structure.
  • the current collector includes an insulating layer and conductive layers respectively disposed on two surfaces of the insulating layer, and an active material layer is coated on the surface of the conductive layer.
  • the thickness of the tab can be increased through the above structure, thereby improving the overcurrent capability of the tab to a certain extent.
  • the overall weight of the tab also increases, which is not conducive to lightweighting the battery. Therefore, on the basis of taking into account both lightweight and over-current capability, the solution of increasing the tab thickness to improve the over-current capability of the tab has great limitations in practical applications. That is, the current increase in the thickness of the tab has reached the upper limit. In order to ensure the performance of the battery, it is impossible to continue to increase the thickness of the tab to improve the overcurrent capability of the tab.
  • the applicant has designed a top cover assembly after in-depth research.
  • the protruding portion is eccentrically arranged close to the first electrode hole along the length direction of the body, so that the distance between the second electrode hole and the protruding portion is increased, and the tabs that need to be increased in width are correspondingly arranged at the second electrode hole.
  • the tabs that need to be increased in width are correspondingly arranged at the second electrode hole.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery cells and batteries disclosed in this application. In this way, it is helpful to alleviate and automatically adjust the deterioration of the expansion force of the battery core, supplement the electrolyte consumption, and improve the stability of battery performance and battery life. .
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating, and driving the vehicle 1000 to meet operating power requirements.
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20 , and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • FIG. 3 is an exploded structural diagram of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes the battery.
  • the battery cell 20 includes an end cover, a case 22 , an electrode assembly 23 and other functional components.
  • the end cap refers to a component that covers the opening of the case 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap may be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cover can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cover is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have higher structural strength. , the safety performance can also be improved.
  • Functional components such as electrode terminals can be provided on the end cap. The electrode terminals may be used to electrically connect with the electrode assembly 23 for outputting or inputting electrical energy of the battery cell 20 .
  • the end cap may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
  • the end cap can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • an insulating member may also be provided inside the end cover, and the insulating member may be used to isolate the electrical connection components in the housing 22 from the end cover to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the housing 22 is a component used to cooperate with the end cover to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the electrode assembly 23 , electrolyte, and other components.
  • the housing 22 and the end cover may be independent components, and an opening may be provided on the housing 22, and the end cover covers the opening at the opening to form the internal environment of the battery cell 20.
  • the end cover and the housing 22 can also be integrated. Specifically, the end cover and the housing 22 can form a common connection surface before other components are inserted into the housing. When it is necessary to encapsulate the inside of the housing 22, Then the end cap is closed with the housing 22 .
  • the housing 22 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 22 can be determined according to the specific shape and size of the electrode assembly 23 .
  • the housing 22 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the electrode assembly 23 is a component in the battery cell 100 where electrochemical reactions occur.
  • One or more electrode assemblies 23 may be contained within the housing 22 .
  • the electrode assembly 23 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the portions of the positive electrode sheet and the negative electrode sheet that contain active material constitute the main body of the electrode assembly, and the portions of the positive electrode sheet and the negative electrode sheet that do not contain active material each constitute the tabs.
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body. During the charging and discharging process of the battery, the positive active material and negative active material react with the electrolyte, and the tabs are connected to the electrode terminals to form a current loop.
  • some embodiments of the present application provide a top cover assembly 21 for covering the housing 22 of the battery cell 20 .
  • the top cover The component 21 includes a body 211 and a protruding portion 212 .
  • the main body 211 is provided with first electrode holes 2111 and second electrode holes 2112 along its thickness direction a.
  • the first electrode holes 2111 and the second electrode holes 2112 are spaced apart along the length direction b of the main body 211 .
  • the protruding portion 212 protrudes along the thickness direction a of the body 211 and is formed on a side surface of the body 211 that is configured to face the inside of the housing 22 .
  • the protruding portion 212 is located between the first electrode hole 2111 and the second electrode hole 2111 along the length direction b of the body 211 . between electrode holes 2112. The protruding portion 212 is located on the side close to the first electrode hole 2111 along the length direction b of the body 211 , and the length direction b of the body 211 is perpendicular to the thickness direction a of the body 211 .
  • the battery cell 20 usually includes a case, a top cover assembly 21 and an electrode assembly 23 housed in the case.
  • the electrode assembly 23 is placed inside the case from the opening of the case.
  • the top cover assembly 21 is used to The opening of the casing is sealed to form a closed protective space inside the casing to protect the electrode assembly 23 inside the casing.
  • the tabs in the electrode assembly 23 are connected to the adapter piece in the top cover assembly 21, and the positive and negative electrodes are led out of the top cover assembly 21 through the adapter piece, so as to facilitate Make electrical connections.
  • the body 211 of the top cover assembly 21 refers to a component that is sealed and arranged at the opening of the housing to achieve sealing protection for the electrode assembly 23 inside the housing.
  • the protruding portion 212 refers to a structure protruding from the body 211 along the thickness direction a of the body 211 .
  • the protruding portion 212 is disposed toward the inside of the case. Therefore, the protruding portion 212 can limit the position of the electrode assembly 23 inside the housing along the thickness direction a of the body 211 to prevent the electrode assembly 23 from being positionally displaced inside the housing and causing structural damage to the electrode assembly 23 .
  • the thickness direction a of the body 211 refers to the direction parallel to the height direction of the battery cell 20 when the top cover assembly 21 is closed on the casing of the battery cell 20 .
  • the length direction b of the body 211 refers to the direction parallel to the length direction b of the battery cell 20 when the top cover assembly 21 is closed on the casing of the battery cell 20 .
  • electrode terminals can be provided in the first electrode hole 2111 and the second electrode hole 2112 on the body 211, and the electrode terminals can be connected to the positive and negative electrode tabs to form a current loop.
  • the positive electrode tab and the negative electrode tab are connected to the electrode terminals in the first electrode hole 2111 and the second electrode hole 2112 respectively through the adapter piece, thereby forming a current loop, So that the battery cell 20 can be charged and discharged normally.
  • the second electrode hole 2112 on the body 211 is arranged corresponding to the tab in the electrode assembly 23 that needs to be increased in width
  • the third electrode hole 2112 on the body 211 is One electrode hole 2111 is naturally arranged corresponding to the other tab.
  • the tab that needs to be increased in width may refer to the tab that is made of composite substrate and needs to have sufficient overcurrent capability. Therefore, the tab that needs to be increased in width may be a positive tab or a negative tab.
  • the protruding portion 212 is eccentrically arranged on the body 211 along the length direction b of the body 211, and the protruding portion 212 is biased toward the first electrode hole 2111 side, that is, protruding in the length direction b of the body 211.
  • the distance between the protruding portion 212 and the first electrode hole 2111 is smaller than the distance between the protruding portion 212 and the second electrode hole 2112 . Therefore, the space formed between the protruding portion 212 and the second electrode hole 2112 can be used to accommodate one tab of the electrode assembly 23 that needs to be increased in width.
  • the space formed between the protruding portion 212 and the first electrode hole 2111 is used to accommodate the other tab in the electrode assembly 23 .
  • the width of the tab corresponding to the second electrode hole 2112 can be increased, thereby increasing the overflow area of the tab and improving the overcurrent capacity of the tab to improve the safety of the battery cell 20 performance and service life.
  • the width of the pole tab refers to the length of the pole tab in the length direction b of the body 211 .
  • the length of the protruding portion 212 in the length direction b of the body 211 is less than or equal to 20 mm.
  • the length of the protruding part 212 will affect the installation space of the tab width. That is, the longer the length of the protruding part 212 is, the smaller the distance between the protruding part 212 and the first electrode hole 2111 or the second electrode hole 2112 is. The smaller the space for accommodating the tabs, the smaller the width of the tabs. On the contrary, the shorter the length of the protruding portion 212 and the greater the distance between the protruding portion 212 and the first electrode hole 2111 or the second electrode hole 2112, the larger the space available for accommodating the tab, resulting in the The greater the width.
  • the distance between the protruding part 212 and the first electrode hole 2111 or the second electrode hole 2112 can be increased as much as possible on the basis that the protruding part 212 is easy to shape and manufacture. distance between them, thereby increasing the width of the tabs and improving the overcurrent capability of the tabs.
  • the height of the protruding portion 212 in the thickness direction a of the body 211 is less than or equal to 10 mm.
  • the top cover assembly 21 When the top cover assembly 21 is closed on the casing 22 of the battery unit 20, due to the limited internal space of the casing 22, if the height of the protruding portion 212 is large, the space inside the casing 22 that can be used to accommodate the electrode assembly 23 will be reduced. The smaller it is, the smaller the volume of the electrode assembly 23 will be, which will affect the performance of the battery cell 20 .
  • setting the height of the protruding portion 212 to less than or equal to 10 mm can provide a larger accommodation space for the electrode assembly 23 inside the case on the basis that the protruding portion 212 is easy to form and manufacture, so as to facilitate the improvement of the battery cell. usage performance.
  • the width of the protrusion 212 is less than or equal to the width of the body 211
  • the width direction c of the body 211 is perpendicular to the length direction b and the length direction b of the body 211 respectively.
  • Thickness direction a is
  • the width direction c of the body 211 refers to the direction parallel to the width direction of the battery cell when the top cover assembly 21 is closed on the casing of the battery cell, that is, perpendicular to the large surface of the battery cell. direction.
  • the protruding portion 212 When the top cover assembly 21 is closed on the casing of the battery cell, the protruding portion 212 is disposed toward the inside of the casing. Therefore, the width of the protruding portion 212 is less than or equal to the width of the body 211 , so that the protruding portion 212 can be smoothly accommodated in the housing, and the sealing performance of the top cover assembly 21 to the housing is better.
  • the protruding portion 212 includes a first sub-protruding portion 2121 and a second sub-protruding portion 2122.
  • the first sub-protruding portion 2121 and the second sub-protruding portion 2122 are spaced apart along the width direction c of the body 211, or the first sub-protruding portion 2121 and the second sub-protruding portion 2122 are arranged along the width direction c of the body 211. Continuous setting.
  • the above situation includes two embodiments.
  • the first embodiment when the first sub-protruding part 2121 and the second sub-protruding part 2122 are continuously arranged along the width direction c of the body 211, then the first sub-protruding part 2121 and the second sub-protruding part 2122 are arranged continuously along the width direction c of the body 211.
  • the sub-protruding parts 2122 are provided integrally and together form an integral structure.
  • the first sub-protruding part 2121 and the second sub-protruding part 2122 have an integrated structure, which is beneficial to the production and shaping of the protruding part 212.
  • the first sub-protruding portion 2121 and the second sub-protruding portion 2122 are spaced apart along the width direction c of the body 211 .
  • the first sub-protruding part 2121 and the second sub-protruding part 2122 are arranged separately.
  • a gap is formed between the first sub-protruding part 2121 and the second sub-protruding part 2122. a certain spacing.
  • the protruding portion 212 adopts a two-stage structure, when the protruding portion 212 is eccentrically arranged along the length direction b of the body 211 and is close to the first electrode hole 2111, the second electrode hole 2112 can be further formed.
  • the corresponding tab provides a larger avoidance space, thereby further increasing the width of the tab corresponding to the second electrode hole 2112 and improving the overcurrent capability.
  • first sub-protruding portion 2121 and the second sub-protruding portion 2122 are spaced apart along the width direction c of the body 211
  • first sub-protruding portion 2121 and the second sub-protruding portion 2122 are spaced apart from each other along the width direction c of the body 211.
  • a certain distance is formed between the two protruding parts 2122 . Therefore, the first pole tab 231 and the second pole tab 232 can be arranged as shown in FIGS. 10 and 11 , that is, the second pole tab 232 can pass through the first sub-protruding portion 2121 and the second sub-protruding portion.
  • the gap space between 2122 is further extended to further increase the width of the second tab 232 and improve its current passing capability.
  • the top cover assembly 21 covers the electrode assembly 23, that is, the position between the top cover assembly 21 and the electrode assembly 23 changes from the position shown in Figure 7 to the electrode assembly 23 clockwise. Rotate ninety degrees so that the end surface of the electrode assembly 23 with the tabs and the end surface of the top cover assembly 21 with the first electrode hole 2111 and the second electrode hole 2112 face each other.
  • the extended end of the second tab 232 can be inserted into the gap space between the first sub-protruding part 2121 and the second sub-protruding part 2122 , so that the electrode assembly 23 and the top cover assembly 21 Cooperate smoothly.
  • the body 211 is provided with a pressure relief hole 2113 along the thickness direction a of the body 211
  • the protruding portion 212 is provided with a through hole 2123 connected with the pressure relief hole 2113 along the thickness direction a of the body 211 .
  • the pressure relief hole 2113 is a pressure relief mechanism used to release the internal pressure of the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
  • a through hole 2123 is opened on the protruding portion 212 and communicates with the pressure relief hole 2113.
  • the internal pressure of the battery cell 20 can be discharged from the pressure relief hole 2113 to the through hole 2123 through the through hole 2123.
  • External release prevents the protruding portion 212 from affecting the pressure relief of the battery cell 20, thereby improving the safety performance of the battery cell 20.
  • the projection of the protruding portion 212 partially overlaps the projection of the pressure relief hole 2113.
  • the overlapping portion of the protruding portion 212 and the pressure relief hole 2113 can play a certain stabilizing role in the pressure relief hole 2113, preventing the pressure relief parts in the pressure relief hole 2113 from loosening, thereby ensuring the structural integrity of the pressure relief hole 2113. property to achieve smooth pressure relief of the battery cell 20 .
  • the body 211 includes a top cover sheet 2114 and an insulating sheet 2115.
  • the insulating sheet 2115 is stacked along the thickness direction a of the top cover sheet 2114 and is configured to face the top cover sheet 2114.
  • the protruding portion 212 is protrudingly formed on a side surface of the insulating sheet 2115 facing away from the top cover sheet 2114 .
  • the top cover piece 2114 may also be called an end cover.
  • the top cover sheet 2114 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the top cover sheet 2114 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have better performance. With high structural strength, safety performance can also be improved.
  • the insulating member is provided on the side of the top cover sheet 2114 facing the housing 22 to isolate the electrical connection components in the housing 22 from the top cover sheet 2114 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the material of the insulating sheet 2115 is one or more of polypropylene, polyethylene, and polyethylene terephthalate.
  • the insulating sheet 2115 can be made of one of polypropylene, polyethylene, and polyethylene terephthalate, or can be made of polypropylene, polyethylene, and polyethylene terephthalate. A variety of materials are combined to form an insulating sheet 2115 of composite material.
  • the insulating sheet 2115 is made of organic polymers such as polypropylene, polyethylene, polyethylene terephthalate, etc., it can be beneficial to the molding of the insulating sheet 2115 and the assembly of the battery cells 20 .
  • the protruding portion 212 and the insulating sheet 2115 are an integrally formed structure.
  • the protruding portion 212 and the insulating sheet 2115 are integrally injection molded.
  • the one-piece injection molding method is simple to operate and is conducive to industrializing the production process.
  • the protruding portion 212 and the insulating sheet 2115 are integrally injection molded, the protruding portion 212 can be made of the same material as the insulating sheet 2115 .
  • the battery cell 20 includes a case 22, a top cover assembly 21 and an electrode assembly 23.
  • the housing 22 has an accommodating space (not shown in the figure) inside, and the housing 22 has an opening (not shown in the figure) communicating with the accommodating space.
  • the electrode assembly 23 is accommodated in the accommodating space, and the top cover assembly 21 is sealingly installed on the opening along the direction of the protruding portion 212 toward the opening.
  • the top cover assembly 21 and the casing 22 jointly seal the electrode assembly 23 in the accommodation space, thereby protecting the structure of the electrode assembly 23 from the influence of the external environment and ensuring that the battery cells 20 can operate normally.
  • the electrode assembly 23 includes a first tab 231 corresponding to the first electrode hole 2111 and a second tab 232 corresponding to the second electrode hole 2112.
  • the second tab 232 is a composite substrate tab.
  • the protruding portion 212 is located on the side close to the first tab 231, so that the protruding portion 212 is close to the second electrode.
  • One side of the hole 2112 forms an escape space (not shown in the figure) for the second pole tab 232 to pass.
  • the second tab 232 is a composite substrate tab, the current carrying capacity of the second tab 232 is lower than that of the first tab 231 . Therefore, the first tab 231 is arranged correspondingly to the first electrode hole 2111, and the second tab 232 is arranged correspondingly to the second electrode hole 2112, so that the second tab 232 can have a larger width in the avoidance space, Thereby, the flow-passing area of the second pole tab 232 is increased, and the over-current capability of the second pole tab 232 is improved.
  • the second tab 232 may be a positive tab or a negative tab.
  • the positive tab is a composite substrate tab
  • the second tab 232 is the positive tab
  • the first tab 231 is naturally the negative tab.
  • the negative electrode tab is a composite substrate tab
  • the second electrode tab 232 is the negative electrode tab
  • the first pole tab 231 is naturally the positive electrode tab.
  • the second tab 232 is a positive tab connected to the positive composite current collector.
  • the positive electrode tab is usually made of metallic aluminum, while the negative electrode tab is usually made of nickel or nickel-plated copper. Due to the material characteristics of metal aluminum, the overcurrent capacity of the positive electrode tab is usually lower than that of the negative electrode tab. Therefore, it is necessary to increase the overcurrent capacity of the positive tab accordingly.
  • the positive electrode tab is arranged corresponding to the second electrode hole 2112, and the protruding portion 212 is close to the first electrode hole 2111. Therefore, the positive electrode tab has a larger installation space, thereby increasing the width of the positive electrode tab, increasing the overflow area of the positive electrode tab, and improving the overcurrent capability of the positive electrode tab.
  • the width of the second pole tab 232 is greater than the width of the first pole tab 231 in the length direction b of the top cover assembly 21 .
  • the second pole tab 232 since an avoidance space is formed between the protruding portion 212 and the second electrode hole 2112 for the second pole tab 232 to pass, the second pole tab 232 has a larger accommodation space.
  • the width of the second pole tab 232 is greater than the width of the first pole tab 231 , the second pole tab 232 can have a larger flow-passing area, thereby improving the current-carrying capability of the second pole tab 232 .
  • the separation distance between the protruding portion 212 and the first tab 231 is 0 mm-12 mm in the length direction b of the top cover assembly 21 .
  • the distance between the protruding portion 212 and the first tab 231 refers to the distance between the edge of the protruding portion 212 and the edge of the first tab 231 . Setting the separation distance between the protruding portion 212 and the first pole tab 231 to 0 mm to 12 mm can prevent the protruding portion 212 and the first pole tab 231 from overlapping and thus interfering with each other.
  • the present application also provides a battery 100.
  • the battery 100 includes the battery cell 20 as described above.
  • the present application also provides an electrical device.
  • the electrical device includes the battery 100 as described above.
  • the protruding portion 212 is disposed close to the first electrode hole 2111 in the length direction b of the body 211 in the top cover assembly 21, so that the protruding portion 212 is in contact with the first electrode hole 2111.
  • the distance therebetween is smaller than the distance between the protruding portion 212 and the second electrode hole 2112 .
  • the second electrode hole 2112 is disposed corresponding to the positive electrode tab of the electrode assembly 23, and the first electrode hole 2111 is disposed corresponding to the negative electrode tab of the electrode assembly 23.
  • the lugs are arranged correspondingly so that the positive electrode tab has a larger accommodation space, thereby increasing the width of the positive electrode tab to increase the overflow area of the positive electrode tab and improve the overcurrent capacity of the positive electrode tab. As a result, the safety performance and service life of the battery cell 20 can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请涉及一种顶盖组件、电池单体、电池及用电装置,顶盖组件包括:本体(211),本体(211)上沿自身厚度方向(a)开设第一电极孔(2111)及第二电极孔(2112),第一电极孔(2111)与第二电极孔(2112)沿本体的长度方向(b)间隔设置;及凸出部(212),沿本体(211)的厚度方向(a)凸出形成于本体(211)被构造为朝向壳体内的一侧表面,凸出部(212)沿本体(211)的长度方向(b)位于第一电极孔(2111)与第二电极孔(2112)之间;其中,凸出部(212)沿本体(211)的长度方向(b)位于靠近第一电极孔(2111)的一侧,本体(211)的长度方向(b)垂直于本体(211)的厚度方向(a)。

Description

顶盖组件、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种顶盖组件、电池单体、电池及用电装置。
背景技术
在电池结构中,极耳的过流能力将影响电池的充放电能力,进而影响电池的安全性能及使用寿命。目前,当顶盖组件与壳体及电极组件共同组成电池单体时,由于顶盖组件的结构限制,导致所形成极耳的宽度受限。由此,导致极耳的过流面积较小,影响极耳的过流能力,不利于提高电池的充放电能力。
发明内容
基于此,有必要针对目前由于极耳宽度受限而导致极耳的过流面积小,从而使极耳的过流能力较低的问题,提供一种顶盖组件、电池单体、电池及用电装置。
第一方面,本申请提供了一种顶盖组件,用于盖合于电池单体的壳体上,顶盖组件包括:
本体,本体上沿自身厚度方向开设第一电极孔及第二电极孔,第一电极孔与第二电极孔沿本体的长度方向间隔设置;及
凸出部,沿本体的厚度方向凸出形成于本体被构造为朝向壳体内的一侧表面,凸出部沿本体的长度方向位于第一电极孔与第二电极孔之间;
其中,凸出部沿本体的长度方向位于靠近第一电极孔的一侧,本体的长度方向垂直于本体的厚度方向。
本申请实施例的技术方案中,将凸出部沿本体的长度方向偏心设置于本体上,并且凸出部偏向于第一电极孔一侧,即在本体的长度方向上,凸出部与第一电极孔之间的距离小于凸出部与第二电极孔之间的距离。因此,凸出部与第二电极孔之间的距离可用于容纳电极组件中需要增加宽度的一个极耳。相对应的,凸出部与第一电极孔之间的距离则用于容纳电极组件中另一个极耳。由此,可将与第二电极孔对应设置的极耳的宽度增加,增大该极耳的过流面积,进而提高该极耳的过流能力,以提高电池单体的安全性能及使用寿命。
在一些实施例中,在本体的长度方向上,凸出部的长度小于或者等于20mm。
本申请实施例的技术方案中,将凸出部的长度设置为小于或者等于20mm,能够在凸出部便于成型制作的基础上,尽可能的增大凸出部与第一电极孔或第二电极孔之间的距离,从而增加极耳的宽度,提高极耳的过流能力。
在一些实施例中,在本体的厚度方向上,凸出部的高度小于或者等于10mm。
本申请实施例的技术方案中,将凸出部的高度设置为小于或者等于10mm,在凸出部便于成型制作的基础上,能够为壳体内部的电极组件提供更大的容纳空间,以便于提高电池单体的使用性能。
在一些实施例中,在本体的宽度方向上,凸出部的宽度小于或等于本体的宽度,本体的宽度方向分别垂直于本体的长度方向以及本体的厚度方向。
本申请实施例的技术方案中,当顶盖组件盖合于电池单体的壳体上时,凸出部的宽度小于或等于本体的宽度,能够使凸出部能够顺利容置于壳体中,使顶盖组件对于壳体的密封性能更好。
在一些实施例中,凸出部包括第一子凸出部及第二子凸出部;
其中,第一子凸出部与第二子凸出部沿本体的宽度方向间隔设置;或者,第一子凸出部与第二子凸出部沿本体的宽度方向连续设置。
本申请实施例的技术方案中,当第一子凸出部与第二子凸出部沿本体的宽度方向连续设置时,即第一子凸出部与第二子凸出部为一体结构,有利于凸出部的制作成型。当第一子凸出部与第二子凸出部沿本体的宽度方向间隔设置时,能够进一步地为第二电极孔所对应的极耳提供更大的避让空间,从而进一步地增大第二电极孔所对应的极耳的宽度,提高过流能力。
在一些实施例中,本体上沿自身厚度方向贯穿开设有泄压孔,凸出部上沿本体的厚度方向贯穿开设有与泄压孔连通的通孔。
本申请实施例的技术方案中,在凸出部上开设通孔,并且与泄压孔连通,当电池单体需要泄压时,电池单体的内部压力能够经由通孔从泄压孔向外释放,避免凸出部影响电池单体的泄压,从而能够提高电池单体的安全性能。
在一些实施例中,在垂直于本体的厚度方向的平面上,凸出部的投影与泄压孔的投影部分重叠。
本申请实施例的技术方案中,凸出部与泄压孔重叠的部分能够对泄压孔起到一定的稳固作用,避免泄压孔中的泄压件发生松动,从而确保泄压孔结构的完整性,以实现电池单体的顺利泄压。
在一些实施例中,本体包括:
顶盖片;及
绝缘片,沿顶盖片的厚度方向层叠设置于顶盖片被构造为朝向壳体内的一侧;
其中,凸出部凸出形成于绝缘片背离顶盖片的一侧表面。
本申请实施例的技术方案中,顶盖片在受挤压碰撞时就不易发生形变,使电池单体能够具备更高的结构强度,安全性能也可以有所提高。绝缘件设置在顶盖片朝向壳体的一侧,用于隔离壳体内的电连接部件与顶盖片,以降低短路的风险。
在一些实施例中,绝缘片的材质为聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯中的一种或多种。
本申请实施例的技术方案中,绝缘片采用聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯等有机高分子聚合物制成时,能够有利于绝缘片的成型及电池单体的组装。
在一些实施例中,凸出部与绝缘片为一体成型结构。
本申请实施例的技术方案中,一体成型的方式操作简单,有利于将制作过程工业化。
第二方面,本申请提供了一种电池单体,其中,电池单体包括:
壳体,壳体内部具有容纳空间,且壳体具有与容纳空间连通的开口;
如上所述的顶盖组件,沿凸出部朝向开口的方向密封盖设于开口上;以及
电极组件,容置于容纳空间内。
在一些实施例中,电极组件包括与第一电极孔对应的第一极耳及与第二电极孔对应的第二极耳;
其中,第二极耳为复合基材极耳,在顶盖组件的长度方向上,凸出部位于靠近第一极耳的一侧,以在凸出部靠近第二电极孔的一侧形成供第二极耳通过的避让空间。
本申请实施例的技术方案中,由于第二极耳为复合基材极耳,则第二极耳的过流能力相比于第一极耳较低。因此,将第一极耳与第一电极孔对应设置,将第二极耳与第二电极孔对应设置,以使第二极耳在避让空间中能够具有更大的宽度,从而增加第二极耳的过流面积,提高第二极耳的过流能力。
在一些实施例中,第二极耳为连接于正极复合集流体的正极极耳。
本申请实施例的技术方案中,将正极极耳与第二电极孔对应设置,并且凸出部靠近第一电极孔。由此,正极极耳具有更大的设置空间,从而能够增加正极极耳的宽度,增加正极极耳的过流面积,提高正极极耳的过流能力。
在一些实施例中,在顶盖组件的长度方向上,第二极耳的宽度大于第一极耳的宽度。
本申请实施例的技术方案中,能够使第二极耳具有更大的过流面积,从而提高第二极耳的过流能力。
在一些实施例中,在顶盖组件的长度方向上,凸出部与第一极耳的间隔距离为0mm-12mm。
本申请实施例的技术方案中,将凸出部与第一极耳的间隔距离设置为0mm-12mm,能够避免凸出部与第一极耳之间产生位置重叠,从而相互干涉。
第三方面,本申请提供了一种电池,电池包括如上所述的电池单体。
第四方面,本申请提供了一种用电装置,用电装置包括如上所述的电池。
上述顶盖组件、电池单体、电池及用电装置,本体上的第一电极孔及第二电极孔可以用于引出正极极耳及负极极耳,将凸出部沿本体的长度方向设置于靠近第一电极孔的一侧, 使得凸出部与第二电极孔之间的距离增大,为第二电极孔所对应的正极耳或者负极耳增加宽度提供更大的设置空间,使得第二电极孔所对应的正极耳或者负极耳具有更大的宽度,提高该极耳的过流面积,使其具有更高的过流能力。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一实施例的车辆的结构示意图;
图2为本申请一实施例的电池的分解结构示意图;
图3为本申请一实施例的电池单体的分解结构示意图;
图4为本申请一实施例的顶盖组件与电极组件的连接结构示意图;
图5为图4所示的顶盖组件与电极组件的连接结构平面图;
图6为本申请一实施例的顶盖组件的平面示意图;
图7为本申请另一实施例的顶盖组件与电极组件的连接结构示意图;
图8为图7所示的顶盖组件与电极组件的连接结构平面图;
图9为本申请另一实施例的顶盖组件的平面示意图;
图10为本申请另一实施例中电极组件的结构示意图;
图11为本申请另一实施例中顶盖组件与电极组件的连接结构示意图。
附图标记说明:1000、车辆;100、电池;200、控制器;300、马达;10、箱体;20、电池单体;11、第一部分;12、第二部分;21、顶盖组件;22、壳体;23、电极组件;211、本体;212、凸出部;231、第一极耳;232、第二极耳;2111、第一电极孔;2112、第二电极孔;2113、泄压孔;2114、顶盖片;2115、绝缘片;2121、第一子凸出部;2122、第二子凸出部;2123、通孔;a、厚度方向;b、长度方向;c、宽度方向。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨 在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源***,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在电池结构中,极耳的过流能力将影响电池的充放电能力,而极耳的过流能力则由其过流面积决定。具体地,极耳的过流面积大,则其过流能力高。相反地,极耳的过流面积小,则其过流能力低。而极耳的过流面积由极耳的厚度及宽度决定,过流面积与厚度及宽度成正比。
目前,为了提高电池的安全性能,一些极片选择采用多层结构的复合集流体,即形成 复合基材极耳结构。例如,集流体包括绝缘层及分别设置于绝缘层两个表面的导电层,并将活性物质层涂覆于导电层的表面。虽然,通过上述结构能够提高极耳的厚度,从而在一定程度上提高极耳的过流能力。但随着极耳厚度的增加,极耳整体重量也随之增加,不利于实现电池的轻量化。因此,在兼顾轻量化及过流能力的基础上,通过增加极耳厚度而提高极耳过流能力的方案在实际应用中的限制较大。即,目前对于极耳厚度的增加已经达到上限,为确保电池的使用性能,无法继续通过增加极耳厚度而实现极耳过流能力的提高。
此外,申请人注意到,采用复合基材的极耳结构时,由于复合基材中包括绝缘层,将会减少极耳整体结构中导电层的占比。而导电层的占比越小,极耳的重量越轻,但极耳的过流能力越低。
因此,对于复合基材的极耳而言,在实现轻量化的基础上,需要通过其他方式增加极耳的过流面积,从而提高极耳的过流能力,以弥补自身结构导致的过流能力较低的问题。
基于以上考虑,为了解决极耳因宽度较小而导致自身过流面积较小,从而导致极耳过流能力较低的问题,申请人经过深入的研究,设计了一种顶盖组件,通过将凸出部沿本体的长度方向靠近第一电极孔进行偏心设置,使得第二电极孔与凸出部之间的距离增大,并将需要增加宽度的极耳对应设置于第二电极孔处,以便于为该极耳宽度增加提供更大的避让空间,从而提高极耳的过流能力。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源***,这样,有利于缓解并自动调节电芯膨胀力恶化,补充电解液消耗,提升电池性能的稳定性和电池寿命。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的***图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖、壳体22、电极组件23以及其他的功能性部件。
端盖是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖上可以设置有如电极端子等的功能性部件。电极端子可以用于与电极组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合端盖以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件23、电解液以及其他部件。壳体22和端盖可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖盖合开口以形成电池单体20的内部环境。不 限地,也可以使端盖和壳体22一体化,具体地,端盖和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电极组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件23是电池单体100中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件23。电极组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子以形成电流回路。
根据本申请的一些实施例,参见图4、图5以及图6,本申请的一些实施例提供了一种用于盖合于电池单体20的壳体22上的顶盖组件21,顶盖组件21包括本体211及凸出部212。本体211上沿自身厚度方向a开设第一电极孔2111及第二电极孔2112,第一电极孔2111与第二电极孔2112沿本体211的长度方向b间隔设置。凸出部212沿本体211的厚度方向a凸出形成于本体211被构造为朝向壳体22内的一侧表面,凸出部212沿本体211的长度方向b位于第一电极孔2111与第二电极孔2112之间。其中,凸出部212沿本体211的长度方向b位于靠近第一电极孔2111的一侧,本体211的长度方向b垂直于本体211的厚度方向a。
需要说明的是,电池单体20通常包括壳体、顶盖组件21以及容置于壳体内的电极组件23,电极组件23从壳体的开口处放入壳体内部,顶盖组件21用于密封壳体开口,以在壳体内部形成封闭的保护空间,对壳体内部的电极组件23起到保护作用。
进一步地,当电极组件23容置于壳体内时,电极组件23中的极耳与顶盖组件21中的转接片连接,并通过转接片将正负极引出顶盖组件21,以便于实现电连接。
具体地,顶盖组件21的本体211是指,密封设置于壳体的开口处,以对壳体内部的电极组件23实现密封保护作用的部件。凸出部212是指沿本体211的厚度方向a凸出设置于本体211的结构,并且当顶盖组件21密封设置于壳体开口处时,凸出部212朝向壳体内部设置。由此,凸出部212能够沿本体211的厚度方向a对壳体内部的电极组件23进行限位,避免电极组件23在壳体内部发生位置偏移而导致电极组件23的结构受到损坏。
本体211的厚度方向a是指,当顶盖组件21盖合于电池单体20的壳体上时,与电池单体20的高度方向平行的方向。本体211的长度方向b是指,当顶盖组件21盖合于电池单体20的壳体上时,与电池单体20的长度方向b平行的方向。
此外,本体211上的第一电极孔2111及第二电极孔2112中可以设置电极端子,电极端子能够与正负极耳连接,从而形成电流回路。具体地,极耳与转接片连接后,通过转接片 与将正极极耳及负极极耳分别与第一电极孔2111及第二电极孔2112中的电极端子进行连接,从而形成电流回路,以使电池单体20能够正常充放电。
可以理解地,当顶盖组件21盖合于电池单体20的壳体上时,本体211上的第二电极孔2112与电极组件23中需要增加宽度的极耳对应设置,本体211上的第一电极孔2111则自然与另一个极耳对应设置。其中,需要增加宽度的极耳可以是指采用复合基材制作的需要具有足够过流能力的极耳,因此,需要增加宽度的极耳可以是正极极耳,也可以是负极极耳。
通过上述结构,将凸出部212沿本体211的长度方向b偏心设置于本体211上,并且凸出部212偏向于第一电极孔2111一侧,即在本体211的长度方向b上,凸出部212与第一电极孔2111之间的距离小于凸出部212与第二电极孔2112之间的距离。因此,凸出部212与第二电极孔2112之间形成的空间可用于容纳电极组件23中需要增加宽度的一个极耳。相对应的,凸出部212与第一电极孔2111之间形成的空间则用于容纳电极组件23中另一个极耳。
在此基础上,可将与第二电极孔2112对应设置的极耳的宽度增加,进而增大该极耳的过流面积,提高该极耳的过流能力,以提高电池单体20的安全性能及使用寿命。其中,参考图4所示,极耳的宽度是指在本体211的长度方向b上,极耳具有的尺寸长度。
根据本申请的一些实施例,在本体211的长度方向b上,凸出部212的长度小于或者等于20mm。
凸出部212的长度将影响极耳宽度的设置空间,即凸出部212的长度越大,凸出部212与第一电极孔2111或第二电极孔2112之间的距离越小,则可用于容纳极耳的空间越小,导致极耳的宽度越小。相反地,凸出部212的长度越小,凸出部212与第一电极孔2111或第二电极孔2112之间的距离越大,则可用于容纳极耳的空间越大,导致极耳的宽度越大。
基于此,将凸出部212的长度小于或者等于20mm,能够在凸出部212便于成型制作的基础上,尽可能的增大凸出部212与第一电极孔2111或第二电极孔2112之间的距离,从而增加极耳的宽度,提高极耳的过流能力。
根据本申请的一些实施例,在本体211的厚度方向a上,凸出部212的高度为小于或者等于10mm。
当顶盖组件21盖合于电池单体20的壳体22上时,由于壳体22内部空间有限,若凸出部212的高度为大,壳体22内部可用于容纳电极组件23的空间就越小,导致电极组件23的体积越小,则会影响电池单体20的使用性能。
因此,将凸出部212的高度设置为小于或者等于10mm,在凸出部212便于成型制作的基础上,能够为壳体内部的电极组件23提供更大的容纳空间,以便于提高电池单体的使用性能。
根据本申请的一些实施例,在本体211的宽度方向c上,凸出部212的宽度小于或等 于本体211的宽度,本体211的宽度方向c分别垂直于本体211的长度方向b以及本体211的厚度方向a。
需要说明的是,本体211的宽度方向c是指,当顶盖组件21盖合于电池单体的壳体上时,与电池单体的宽度方向平行的方向,即垂直于电池单体大面的方向。
当顶盖组件21盖合于电池单体的壳体上时,凸出部212朝向壳体内部设置。由此,凸出部212的宽度小于或等于本体211的宽度,能够使凸出部212能够顺利容置于壳体中,使顶盖组件21对于壳体的密封性能更好。
请参看图7、图8以及图9,根据本申请的一些实施例,凸出部212包括第一子凸出部2121及第二子凸出部2122。其中,第一子凸出部2121与第二子凸出部2122沿本体211的宽度方向c间隔设置,或者第一子凸出部2121与第二子凸出部2122沿本体211的宽度方向c连续设置。
上述情况包括两种实施例,实施例一,当第一子凸出部2121与第二子凸出部2122沿本体211的宽度方向c连续设置时,则第一子凸出部2121与第二子凸出部2122为一体设置,共同构成一个整体结构。在实施例一中,第一子凸出部2121与第二子凸出部2122为一体结构,有利于凸出部212的制作成型。
实施例二中,如图7和图9所示,第一子凸出部2121与第二子凸出部2122沿本体211的宽度方向c间隔设置。此时,第一子凸出部2121与第二子凸出部2122为分体设置,在本体211的宽度方向c上,第一子凸出部2121与第二子凸出部2122之间形成一定的间距。在实施例二中,由于凸出部212采用两段式结构设置,当凸出部212沿本体211的长度方向b偏心设置并靠近第一电极孔2111时,能够进一步地为第二电极孔2112所对应的极耳提供更大的避让空间,从而进一步地增大第二电极孔2112所对应的极耳的宽度,提高过流能力。
请参考图9、图10以及图11,具体地,当第一子凸出部2121与第二子凸出部2122沿本体211的宽度方向c间隔设置时,第一子凸出部2121与第二子凸出部2122之间形成一定的间距。由此,可以将第一极耳231与第二极耳232设置为如图10及图11中所示,即第二极耳232能够通过第一子凸出部2121与第二子凸出部2122之间的间隙空间进一步地延伸设置,进一步增加第二极耳232的宽度,提高其过流能力。当电极组件23与顶盖组件21配合时,顶盖组件21盖设于电极组件23上,即顶盖组件21与电极组件23之间的位置由图7所示的位置将电极组件23顺时针旋转九十度,使得电极组件23设置有极耳的端面与顶盖组件21开设有第一电极孔2111及第二电极孔2112的端面相互面向设置。此时,如图11中第二极耳232增长的一端能够穿设于第一子凸出部2121与第二子凸出部2122之间的间隙空间中,使得电极组件23与顶盖组件21顺利配合。
根据本申请的一些实施例,本体211上沿自身厚度方向a贯穿开设有泄压孔2113,凸出部212上沿本体211的厚度方向a贯穿开设有与泄压孔2113连通的通孔2123。
需要说明的是,泄压孔2113是一种泄压机构,用于在电池单体20内部压力或温度达到阈值时泄放电池单体20的内部压力。
具体地,在凸出部212上开设通孔2123,并且与泄压孔2113连通,当电池单体20需要泄压时,电池单体20的内部压力能够经由通孔2123从泄压孔2113向外释放,避免凸出部212影响电池单体20的泄压,从而能够提高电池单体20的安全性能。
根据本申请的一些实施例,在垂直于本体211的厚度方向a的平面上,凸出部212的投影与泄压孔2113的投影部分重叠。
具体地,凸出部212与泄压孔2113重叠的部分能够对泄压孔2113起到一定的稳固作用,避免泄压孔2113中的泄压件发生松动,从而确保泄压孔2113结构的完整性,以实现电池单体20的顺利泄压。
根据本申请的一些实施例,参考图4或者图7,本体211包括顶盖片2114及绝缘片2115,绝缘片2115沿顶盖片2114的厚度方向a层叠设置于顶盖片2114被构造为朝向壳体22内的一侧。其中,凸出部212凸出形成于绝缘片2115背离顶盖片2114的一侧表面。
需要说明的是,顶盖片2114也可称为端盖。可选地,顶盖片2114可以由具有一定硬度和强度的材质(如铝合金)制成,这样,顶盖片2114在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。
绝缘件作为绝缘结构,设置在顶盖片2114朝向壳体22的一侧,用于隔离壳体22内的电连接部件与顶盖片2114,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
根据本申请的一些实施例,绝缘片2115的材质为聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯中的一种或多种。
具体地,绝缘片2115可以采用聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯中的一种制成,也可以采用聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯中的多种进行复合,形成复合材料的绝缘片2115。当绝缘片2115采用聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯等有机高分子聚合物制成时,能够有利于绝缘片2115的成型及电池单体20的组装。
根据本申请的一些实施例,凸出部212与绝缘片2115为一体成型结构。
具体地,凸出部212与绝缘片2115为一体注塑成型。一体注塑成型的方式操作简单,有利于将制作过程工业化。
可以理解地,当凸出部212与绝缘片2115一体注塑成型时,凸出部212可采用与绝缘片2115相同的材质制作。
基于与上述顶盖组件21相同的构思,本申请还提供了一种电池单体20,电池单体20包括壳体22、顶盖组件21以及电极组件23。其中,壳体22内部具有容纳空间(图中未示出),且壳体22具有与容纳空间连通的开口(图中未示出)。电极组件23容置于容纳空间内,顶盖组件21沿凸出部212朝向开口的方向密封盖设于开口上。
顶盖组件21与壳体22共同将电极组件23密封设置于容纳空间中,从而能够保护电极组件23的结构不受外界环境的影响,确保电池单体20能够正常工作。
根据本申请的一些实施例,电极组件23包括与第一电极孔2111对应的第一极耳231及与第二电极孔2112对应的第二极耳232。其中,第二极耳232为复合基材极耳,在顶盖组件21的长度方向b上,凸出部212位于靠近第一极耳231的一侧,以在凸出部212靠近第二电极孔2112的一侧形成供第二极耳232通过的避让空间(图中未示出)。
由于第二极耳232为复合基材极耳,则第二极耳232的过流能力相比于第一极耳231较低。因此,将第一极耳231与第一电极孔2111对应设置,将第二极耳232与第二电极孔2112对应设置,以使第二极耳232在避让空间中能够具有更大的宽度,从而增加第二极耳232的过流面积,提高第二极耳232的过流能力。
可以理解地,第二极耳232可以是正极极耳,也可以是负极极耳。当正极极耳为复合基材极耳时,则第二极耳232为正极极耳,此时第一极耳231自然为负极极耳。当负极极耳为复合基材极耳时,则第二极耳232为负极极耳,此时第一极耳231自然为正极极耳。
根据本申请的一些实施例,第二极耳232为连接于正极复合集流体的正极极耳。
需要说明的是,在实际应用中,由于正极极耳通常为金属铝,而负极极耳通常为镍或者铜镀镍。由于金属铝的自身材料特性,导致通常情况下正极极耳的过流能力低于负极极耳。因此,需要相应地增加正极极耳的过流能力。
通过上述结构,将正极极耳与第二电极孔2112对应设置,并且凸出部212靠近第一电极孔2111。由此,正极极耳具有更大的设置空间,从而能够增加正极极耳的宽度,增加正极极耳的过流面积,提高正极极耳的过流能力。
根据本申请的一些实施例,在顶盖组件21的长度方向b上,第二极耳232的宽度大于第一极耳231的宽度。
具体地,由于凸出部212与第二电极孔2112之间形成供第二极耳232通过的避让空间,从而使得第二极耳232具有更大的容纳空间。当第二极耳232的宽度大于第一极耳231的宽度时,能够使第二极耳232具有更大的过流面积,从而提高第二极耳232的过流能力。
根据本申请的一些实施例,在顶盖组件21的长度方向b上,凸出部212与第一极耳231的间隔距离为0mm-12mm。
具体地,在顶盖组件21的长度方向b上,凸出部212与第一极耳231的间隔距离是指,凸出部212的边缘与第一极耳231的边缘之间的距离。将凸出部212与第一极耳231的间隔距离设置为0mm-12mm,能够避免凸出部212与第一极耳231之间产生位置重叠,从而相互干涉。
基于与上述电池单体20相同的构思,本申请还提供了一种电池100,电池100包括如上所述的电池单体20。
基于与上述电池100相同的构思,本申请还提供了一种用电装置,用电装置包括如上所述的电池100。
根据本申请的一些实施例,在顶盖组件21中的本体211的长度方向b上,将凸出部212靠近第一电极孔2111一侧设置,以使凸出部212与第一电极孔2111之间的距离小于凸出部212与第二电极孔2112之间的距离。
由此,当顶盖组件21盖合于电池单体20的壳体22上时,第二电极孔2112与电极组件23的正极极耳对应设置,第一电极孔2111与电极组件23的负极极耳对应设置,使得正极极耳具有更大的容纳空间,从而增加正极极耳的宽度,以增加正极极耳的过流面积,提高正极极耳的过流能力。由此,能够提高电池单体20的安全性能及使用寿命。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种顶盖组件,用于盖合于电池单体的壳体上,所述顶盖组件包括:
    本体,所述本体上沿自身厚度方向开设第一电极孔及第二电极孔,所述第一电极孔与所述第二电极孔沿所述本体的长度方向间隔设置;及
    凸出部,沿所述本体的厚度方向凸出形成于所述本体被构造为朝向所述壳体内的一侧表面,所述凸出部沿所述本体的长度方向位于所述第一电极孔与所述第二电极孔之间;
    其中,所述凸出部沿所述本体的长度方向位于靠近所述第一电极孔的一侧,所述本体的长度方向垂直于所述本体的厚度方向。
  2. 根据权利要求1所述的顶盖组件,其中,在所述本体的长度方向上,所述凸出部的长度小于或者等于20mm。
  3. 根据权利要求1或2所述的顶盖组件,其中,在所述本体的厚度方向上,所述凸出部的高度小于或者等于10mm。
  4. 根据权利要求1-3任意一项所述的顶盖组件,其中,在所述本体的宽度方向上,所述凸出部的宽度小于或等于所述本体的宽度,所述本体的宽度方向分别垂直于所述本体的长度方向以及所述本体的厚度方向。
  5. 根据权利要求1-4任意一项所述的顶盖组件,其中,所述凸出部包括第一子凸出部及第二子凸出部;
    其中,所述第一子凸出部与所述第二子凸出部沿所述本体的宽度方向间隔设置;或者,
    所述第一子凸出部与所述第二子凸出部沿所述本体的宽度方向连续设置。
  6. 根据权利要求1-5任意一项所述的顶盖组件,其中,所述本体上沿自身厚度方向贯穿开设有泄压孔,所述凸出部上贯穿开设有与所述泄压孔连通的通孔。
  7. 根据权利要求6所述的顶盖组件,其中,在垂直于所述本体的厚度方向的平面上,所述凸出部的投影与所述泄压孔的投影部分重叠。
  8. 根据权利要求1-7任意一项所述的顶盖组件,其中,所述本体包括:
    顶盖片;及
    绝缘片,沿所述顶盖片的厚度方向层叠设置于所述顶盖片被构造为朝向所述壳体内的一侧;
    其中,所述凸出部凸出形成于所述绝缘片背离所述顶盖片的一侧表面。
  9. 根据权利要求8所述的顶盖组件,其中,所述绝缘片的材质为聚丙烯、聚乙烯、聚对苯二甲酸乙二醇酯中的一种或多种。
  10. 根据权利要求8或9所述的顶盖组件,其中,所述凸出部与所述绝缘片为一体成型结构。
  11. 一种电池单体,其中,所述电池单体包括:
    壳体,所述壳体内部具有容纳空间,且所述壳体具有与所述容纳空间连通的开口;
    如权利要求1-10任意一项所述的顶盖组件,沿所述凸出部朝向所述开口的方向密封盖设于所述开口上;以及
    电极组件,容置于所述容纳空间内。
  12. 根据权利要求11所述的电池单体,其中,所述电极组件包括与所述第一电极孔对应的第一极耳及与所述第二电极孔对应的第二极耳;
    其中,所述第二极耳为复合基材极耳,在所述顶盖组件的长度方向上,所述凸出部位于靠近所述第一极耳的一侧,以在所述凸出部靠近所述第二电极孔的一侧形成供所述第二极耳通过的避让空间。
  13. 根据权利要求12所述的电池单体,其中,所述第二极耳为连接于正极复合集流体的正极极耳。
  14. 根据权利要求12或13所述的电池单体,其中,在所述顶盖组件的长度方向上,所述第二极耳的宽度大于所述第一极耳的宽度。
  15. 根据权利要求12-14任意一项所述的电池单体,其中,在所述顶盖组件的长度方向上,所述凸出部与所述第一极耳的间隔距离为0mm-12mm。
  16. 一种电池,其中,所述电池包括如权利要求11-15任意一项所述的电池单体。
  17. 一种用电装置,其中,所述用电装置包括如权利要求16所述的电池。
PCT/CN2022/115435 2022-08-29 2022-08-29 顶盖组件、电池单体、电池及用电装置 WO2024044878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115435 WO2024044878A1 (zh) 2022-08-29 2022-08-29 顶盖组件、电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115435 WO2024044878A1 (zh) 2022-08-29 2022-08-29 顶盖组件、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024044878A1 true WO2024044878A1 (zh) 2024-03-07

Family

ID=90100042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115435 WO2024044878A1 (zh) 2022-08-29 2022-08-29 顶盖组件、电池单体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024044878A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206250260U (zh) * 2016-12-02 2017-06-13 宁德时代新能源科技股份有限公司 二次电池
CN208507800U (zh) * 2018-05-29 2019-02-15 宁德时代新能源科技股份有限公司 二次电池及其连接组件
CN208706690U (zh) * 2018-07-26 2019-04-05 东莞百思利新能源科技有限公司 二次电池顶盖及其二次电池
CN212434733U (zh) * 2020-06-16 2021-01-29 桑顿新能源科技有限公司 电芯顶盖结构和锂电池电芯
CN213601922U (zh) * 2020-11-17 2021-07-02 江苏塔菲尔新能源科技股份有限公司 一种动力电池的顶盖结构及动力电池
US11114716B1 (en) * 2020-05-14 2021-09-07 Contemporary Amperex Technology Co., Limited Secondary battery, battery pack and device using battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206250260U (zh) * 2016-12-02 2017-06-13 宁德时代新能源科技股份有限公司 二次电池
CN208507800U (zh) * 2018-05-29 2019-02-15 宁德时代新能源科技股份有限公司 二次电池及其连接组件
CN208706690U (zh) * 2018-07-26 2019-04-05 东莞百思利新能源科技有限公司 二次电池顶盖及其二次电池
US11114716B1 (en) * 2020-05-14 2021-09-07 Contemporary Amperex Technology Co., Limited Secondary battery, battery pack and device using battery
CN212434733U (zh) * 2020-06-16 2021-01-29 桑顿新能源科技有限公司 电芯顶盖结构和锂电池电芯
CN213601922U (zh) * 2020-11-17 2021-07-02 江苏塔菲尔新能源科技股份有限公司 一种动力电池的顶盖结构及动力电池

Similar Documents

Publication Publication Date Title
WO2023137950A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
US11757161B2 (en) Battery cell, battery and electricity consuming device
WO2023221598A1 (zh) 连接组件、电池单体、电池及用电设备
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2023142700A1 (zh) 电池顶盖、顶盖组件、电池单体、电池及用电装置
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
WO2024031859A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
WO2024041234A1 (zh) 分隔件、电池及用电装置
CN115275092A (zh) 电极组件、电池单体、电池及用电设备
WO2024032195A1 (zh) 电池单体、电池和用电装置
WO2023221703A1 (zh) 集流体、极片、电池单体、电池及用电装置
WO2023134480A1 (zh) 电极组件、电池单体、电池及用电设备
CN218867177U (zh) 电池单体、电池及用电装置
WO2023245826A1 (zh) 正极片、电池单体、电池以及用电装置
WO2023245841A1 (zh) 电池壳、电池单体、电池及用电装置
WO2024044878A1 (zh) 顶盖组件、电池单体、电池及用电装置
CN115966816A (zh) 电池单体、电池和用电装置
WO2024031348A1 (zh) 电极组件、电池单体、电池及用电设备
WO2024060194A1 (zh) 电池及用电装置
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2024016458A1 (zh) 电池单体、电池及用电装置
WO2024021082A1 (zh) 电池及用电设备
WO2023245673A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956714

Country of ref document: EP

Kind code of ref document: A1