WO2024043403A1 - 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법 - Google Patents

반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법 Download PDF

Info

Publication number
WO2024043403A1
WO2024043403A1 PCT/KR2022/019094 KR2022019094W WO2024043403A1 WO 2024043403 A1 WO2024043403 A1 WO 2024043403A1 KR 2022019094 W KR2022019094 W KR 2022019094W WO 2024043403 A1 WO2024043403 A1 WO 2024043403A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
mode
image
sensor
input
Prior art date
Application number
PCT/KR2022/019094
Other languages
English (en)
French (fr)
Inventor
박정옥
Original Assignee
미르테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미르테크 주식회사 filed Critical 미르테크 주식회사
Publication of WO2024043403A1 publication Critical patent/WO2024043403A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present invention relates to a semiconductor wafer defect inspection device and defect inspection method, and more specifically, to a semiconductor wafer defect inspection device that can be additionally applied to a wafer production line to inspect all wafers without affecting wafer productivity. will be.
  • semiconductor chips are manufactured through eight major processes: wafer manufacturing process, oxidation process, photo process, etching process, deposition and ion implantation process, metal wiring process, EDS (Electrical Die Sorting) process, and packaging process.
  • wafer manufacturing process oxidation process, photo process, etching process, deposition and ion implantation process, metal wiring process, EDS (Electrical Die Sorting) process, and packaging process.
  • EDS Electrode Sorting
  • wafer defects are inspected using a macro inspection device using the inspector's naked eyes or an in-line automatic optical device using an optical lens and a CCD (charged coupled device) camera. did.
  • the conventional wafer defect inspection device consists of a separate and independent device from the wafer processing facility, so it was difficult to install it in addition to the wafer processing facility without changing the existing wafer processing facility. Therefore, the wafer defect inspection device had to be installed independently in a separate location from the mass production line and the defect inspection process had to be performed separately from the processing process, so wafer defect inspection could not be performed in real time before and after the processing process.
  • Patent Document 1 Republic of Korea Patent Publication 10-2009-0033977 (published on April 7, 2009)
  • the purpose of the present invention is to develop a semiconductor device that can be easily installed additionally on a mass production line without changing the existing mass production line, and can perform full inspection in real time when wafers are input and output in the processing process.
  • a semiconductor wafer defect inspection device includes an inspection module provided with a camera for photographing a wafer and installed inside the wafer moving space of a semiconductor processing facility; Sensor A and sensor B are installed spaced apart from each other on a straight path identical to the moving direction of the wafer and detect the wafer; a frame trigger that generates a trigger signal when either sensor A or sensor B detects (on) a wafer; a frame grabber that generates a camera shooting start signal when a trigger signal is generated from the frame trigger, generates a camera shooting end signal if no trigger signal is input, and converts the analog signal captured by the camera into a digital signal; A wafer image is generated using the digital signal converted from the frame grabber, the generated image is displayed on a connected monitor, and the generated wafer image is compared with a pre-prepared normal image or compared with die images in the photographed wafer image to determine the wafer image. Includes a management computer that detects defects.
  • the semiconductor wafer defect inspection method includes an inspection mode setting step (S10) in which the operating mode of the frame trigger is set through the input interface of the management computer;
  • a wafer photographing step (S20) in which a camera photographs a moving wafer according to the inspection mode set in the inspection mode setting step (S10);
  • An image comparison step (S30) of comparing the image taken in the wafer photographing step (S20) with a normal image prepared in advance and stored in a management computer, or comparing die images in the photographed wafer image with each other;
  • a wafer defect determination step (S40) in which, if there is a difference in the images as a result of image comparison for each mode in the image comparison step (S30), it is determined that the wafer is defective;
  • an inspection module can be easily installed inside the processing equipment of a mass production line without changing the processing equipment.
  • full inspection can be performed in real time when wafers are input or discharged from the processing facility, and this inspection process has no effect on the movement of the wafer or the execution of the processing process.
  • wafer yield is increased and process accidents can be quickly responded to, thereby improving productivity and reducing unnecessary consumption costs.
  • FIG. 1 is a schematic configuration diagram of a semiconductor processing facility to which a semiconductor wafer defect inspection device according to the present invention is applied.
  • Figure 2 is a perspective view of an assembled state of an inspection module and a support structure, which are part of the semiconductor wafer defect inspection device according to the present invention.
  • Figure 3 is a side view of the installation state of the first embodiment of the inspection module.
  • Figure 4 is a side view of the installed state of the second embodiment of the inspection module.
  • Figure 5 is a schematic diagram of a lighting module, which is a component of the semiconductor wafer defect inspection device according to the present invention.
  • Figure 6 is an overall configuration diagram of the semiconductor wafer defect inspection device according to the present invention.
  • Figure 7 is a diagram illustrating the installation positions of sensor A and sensor B, which are components of the semiconductor wafer defect inspection device according to the present invention.
  • Figure 8 is an explanatory diagram of the operating modes of sensor A and sensor B.
  • FIG. 9 is a flowchart of a semiconductor wafer defect inspection method according to the present invention.
  • Transfer robot 210 End effector
  • Lighting module 331 LED element
  • Figure 1 is a schematic configuration diagram of a semiconductor processing facility to which the semiconductor wafer defect inspection device according to the present invention is applied
  • Figure 2 is a perspective view of the assembled state of the inspection module and support structure, which are part of the semiconductor wafer defect inspection device according to the present invention
  • Figure 3 is a side view of the installation state of the first embodiment of the inspection module
  • FIG. 4 is a side view of the installation state of the second embodiment of the inspection module
  • FIG. 5 is a schematic diagram of a lighting module, which is a component of the semiconductor wafer defect inspection device according to the present invention.
  • 6 is an overall configuration diagram of the semiconductor wafer defect inspection device according to the present invention
  • FIG. 1 is a schematic configuration diagram of a semiconductor processing facility to which the semiconductor wafer defect inspection device according to the present invention is applied
  • Figure 2 is a perspective view of the assembled state of the inspection module and support structure, which are part of the semiconductor wafer defect inspection device according to the present invention
  • Figure 3 is a side view of the installation state of the first embodiment of
  • FIG. 7 is a diagram illustrating the installation positions of sensor A and sensor B, which are components of the semiconductor wafer defect inspection device according to the present invention
  • FIG. 8 is a diagram showing the installation positions of sensor A and sensor B. This is a diagram explaining the operation mode of sensor B.
  • the semiconductor wafer defect inspection device includes an inspection module 300 equipped with a camera 360, sensor A and sensor B, a frame trigger 500, and a frame grabber 600. It includes a management computer (700) equipped with a lighting controller (800).
  • the semiconductor processing facility includes a wafer loading space 1 where a FOUP (Front Opening Unified Pod) 100 loaded with a plurality of wafers W is placed, and a transporter that moves the wafers W. It is divided into a wafer movement space (2) where the robot 200 is installed, and a wafer processing space (3) where processing devices necessary for wafer processing are installed.
  • Each space is divided by a partition wall (P), and an opening or hole (H) is formed in the partition wall (P) for moving the wafer (W) between spaces, and the opening or hole (H) has an automatic opening and closing means. This can be installed.
  • the wafer processing space 3 where the processing process is performed can be formed as a sealed vacuum space capable of gas injection and plasma formation. there is.
  • the transfer robot 200 typically has one or two articulated arms, and vacuum-sucks and transfers the wafer W to the end effector 210 installed at the end of the arm.
  • the transfer robot 200 takes out the wafer W from the foop 100 and delivers it to the processing device in the wafer processing space 3, or loads the wafer W that has completed the process in the processing device back into the pooper 100.
  • the inspection module 300 is a device that combines a camera 360 and a lighting module 330 for acquiring images of the wafer (W).
  • the inspection module 300 includes a horizontal upper plate 310, a trapezoidal side plate 320 extending vertically downward from one end of the upper plate 310, and the upper plate 310 and the side plate 320. ) includes a rectangular parallelepiped-shaped box 340 installed in close contact between them.
  • the inspection module 300 has a camera 360 installed through the front of the box 340 (the side opposite to the side plate 320) and a connection bracket 325 at the bottom of the side plate 320. It includes an installed lighting module 330 and a prism 350 that refracts and reflects the reflected light irradiated from the lighting module 330 and reflected from the wafer W at a right angle and makes it enter the camera 360.
  • the lighting module 330 has an overall rectangular plate shape, has a plurality of LED elements 331 installed in a row at the bottom, and is located on the same vertical plane as the side plate 320.
  • the light irradiated from the lighting module 330 is reflected on the wafer (W) and then refracted by the prism 350 and enters the lens of the camera 360. Accordingly, the camera 360 is positioned on the surface of the wafer (W). You can shoot video.
  • a straight through hole is formed on the lower surface of the box 340 to allow reflected light from the wafer W to pass through.
  • the light reflected from the wafer W is refracted horizontally using the prism 350 and then made to enter the camera 360, so that the camera 360 can be installed in the horizontal direction.
  • the camera 360 can be an area scan camera, a line scan camera, or a time delay integration scan camera. However, in this specification, the case where a TDI scan camera is used is used. Explain with an example.
  • the inspection module 300 is installed in close contact with or as close as possible to the partition wall P and the ceiling in the wafer movement space 2. By being installed in this way, interference between the inspection module 300 and the transfer robot 200 can be clearly prevented, and the operating space of the transfer robot 200 can be secured as much as possible.
  • the inspection module 300 is installed inside the wafer movement space 2 via the support structure 400 as shown in FIG. 2.
  • the support structure 400 includes a substantially rectangular upper frame 410 and legs 420 installed downwardly at both ends of the upper frame 410.
  • a height adjustment screw 430 is provided at the bottom of the leg 420 to adjust the height of the upper frame 410.
  • the upper frame 410 is fixed by being pressurized and adhered to the ceiling of the wafer moving space 2.
  • the inspection module 300 is installed on the support structure 400 in a structure in which the upper plate 310 is mounted on the lower surface of the upper frame 410. In this way, the inspection module 300 can be firmly installed without drilling equipment fixing holes (bolt holes, screw holes, etc.) on the wall of the wafer movement space 2. That is, the inspection module 300 can be installed without making any changes (damage) to the processing equipment.
  • drilling equipment fixing holes bolt holes, screw holes, etc.
  • a slider that can be moved forward, backward, left, and right and fixed in position is installed on the lower surface of the upper frame 410, and the upper frame 410 is mounted on the slider to establish the inspection module 300 for the support structure 400.
  • the front/back and left/right position can be adjusted.
  • the wafer waiting position before inserting the wafer W into the wafer processing space 3 may be positioned vertically below the prism 350, that is, past the camera capturing position, as shown in FIG. 3 .
  • the shooting starts from the inner part of the end of the wafer (W) at the time of starting the shooting, there is a non-photographing section (R1) (the section from the end of the wafer to the shooting start point), and therefore the entire image of the wafer (W) cannot be obtained.
  • the shooting start position can be changed to the front end of the wafer (W) by changing only the light irradiation direction of the lighting module (330), but in this case, the light reflected on the wafer (W) is blocked by the lighting module (330) and the prism (350) ), another problem arises that prevents you from joining the company.
  • the inspection module 300 can be configured as shown in FIG. 4.
  • the lighting module 330 is arranged to be spaced apart from the side plate 320 toward the rear end when the wafer W is inserted (to prevent light from being blocked by the lighting module 300), and the lighting The light from the module 300 is irradiated to a front point of the front end of the wafer W in the input direction.
  • the lighting module 330 is installed on the side plate 320 with a connection bracket 325 having an appropriate length and installation angle.
  • the connection bracket 325 connects the side plate 320 and both ends of the lighting module 330, so it prevents the light emitted from the lighting module 330 from being reflected on the wafer W and then entering the prism 350. Don't block.
  • the shooting start position can be adjusted to the front of the moving direction of the wafer W, thereby making it possible to obtain an entire captured image of the wafer W.
  • FIG. 5 is a schematic diagram of the lighting module 330, and a plurality of LED elements 331 are installed at the bottom of the lighting module 330 as light sources.
  • the LED elements 331 may be installed with different irradiation directions. In this way, when the irradiation directions of the LED elements 331 are different, light is incident on the wafer W from various angles, making it possible to detect various defects on the wafer W with a higher probability. There are defects with various shapes, depths, and formation directions on the surface of the wafer W. When light is incident only at a certain angle, there may be defects that are not well captured by the camera. However, as in the above embodiment, when light is incident at various angles, there may be defects. When incident, various defects can be captured more clearly by the camera 360 due to diffuse reflection.
  • the sensor A and sensor B are installed on the inner bottom side of the wafer movement space 2.
  • Sensor A and sensor B are installed at a predetermined distance from each other along the linear movement direction of the wafer (W), and are installed at a lower position than the moving wafer (W) so that they are installed on their upper surfaces without interfering with the movement of the wafer (W). Detect the wafer (W) passing through. In other words, sensor A and sensor B turn on when the wafer (W) exists on top of them, and turn off when it does not exist.
  • the sensor A and sensor B have an end when viewed from the top so that they can accurately detect only the wafer W without detecting the end effector 210, which adsorbs and moves the wafer W. It is installed outside the side end of the effector 210. That is, the line (L2) where sensors A and B are installed is located further outside the center line (L0) of the end effector 210 than the side end line (L1) of the end effector 210 (l1 ⁇ l2). . That is, since sensors A and B are installed outside the movement path of the end effector 210, the end effector 210 cannot detect it and can accurately detect only whether the wafer W is present on top of the sensors.
  • the senor A is located (P1) outside the circumference of the wafer W1 in the insertion standby position - in front of the insertion direction - and therefore does not detect the wafer W1 in the insertion standby state.
  • sensor B is also located (P2 to P3) outside the circumference of the wafer W3 in the waiting position for discharge (in front of the direction of discharge), so it does not detect the wafer W3 in the waiting state for discharge.
  • sensor B is located (P2) outside the circumferential line of the wafer W2 at that position - behind the insertion direction - when the rear end of the wafer is in a position where it passes the imaging position line L4 when the wafer is inserted. must do it. Only when sensor B is at the above position (P2) can the rear end of the wafer (W) in the moving direction be completely photographed without being cut off. As shown in FIG. 7 , the problem that the front end of the wafer is not imaged when the imaging position line L4 is inside the front end of the wafer W1 at the input standby position can be solved by applying the embodiment of FIG. 4 described above.
  • sensor B must be installed between the P2 position and the P3 position in order to be able to capture images completely up to the rear end of the wafer W2 upon insertion without detecting the wafer W3 in the waiting position for discharge.
  • the frame trigger 500 receives wafer detection signals from the sensors and generates a trigger signal. At this time, if either sensor A or sensor B is on, a trigger signal is generated and transmitted to the frame grabber 600.
  • the detection signals are generated with a predetermined time difference, as shown in FIG. 8. That is, when inserting a wafer, sensor A is turned on first, then sensor B is turned on, and sensor A is turned off first, followed by sensor B. Conversely, when discharging a wafer, sensor B is turned on first, then sensor A is turned on, and sensor B is turned off first, followed by sensor A.
  • the frame trigger 500 can transmit the on/off signal of the individual sensor to the management computer 700, and the management computer 700 uses the individual sensor on/off signal to input or discharge the wafer W.
  • the status can be displayed on the monitor.
  • the frame grabber 600 is a high-resolution graphics card used for image processing and is installed inside the management computer 700, and digitizes the shooting information (analog video signal) captured by the camera 360. It is an image processing equipment that converts the signal into a signal that the management computer 700 can process.
  • the frame grabber 600 transmits a shooting start signal to the camera 360 when a trigger signal is generated (on) from the frame trigger 500, and transmits a shooting end signal when the trigger signal is turned off.
  • the management computer 700 uses the digital image signal generated by the frame grabber 600 to display a captured image of the wafer W on the monitor.
  • the management computer 700 compares the photographed wafer image with a normal wafer image at the position prepared in advance, or compares die images in the photographed wafer image (Die to Die comparison method) to compare the photographed wafer image. (W) Determine whether there is a defect, and when the defect occurs, determine which process processing device the problem occurred in.
  • management computer 700 notifies the manager of which defect occurred in which process.
  • the management computer 700 determines whether the wafer W can be reprocessed and used again or whether it should be discarded, depending on the degree of defect in the wafer W.
  • the operating mode of the frame trigger 500 can be selected through the input interface of the management computer 700.
  • the frame trigger 500 has three operating modes: mode 1, mode 2, and mode 3.
  • a trigger signal is generated only when the wafer (W) is input.
  • defects are determined by taking pictures when the wafer (W) is input before the process is performed in the relevant processing equipment. Therefore, if a defect is found in this mode, it is known that a problem occurred in the processing equipment of the process performed immediately before. You can.
  • a trigger signal is generated only when the wafer (W) is discharged.
  • defects are determined by taking pictures when the wafer (W) is discharged after the process of the relevant processing device has been performed. Therefore, if a defect is found in this mode, the processing device of the currently performed process (processing facility where the wafer is located) You can see that there is a problem.
  • a trigger signal is generated both when inputting and discharging the wafer (W).
  • the management computer 700 compares the image captured at input and the image captured at discharge, and determines whether a defect has occurred based on the difference.
  • the die-to-die method it is possible to determine defects in the wafer at input or discharge using only wafer images taken at input and output (the dies within each captured wafer image are compared with each other).
  • the image taken at input is compared with the image taken at discharge, and if a defect occurs, it is determined that there is a problem with the processing device where the wafer is currently located.
  • the die-to-die method when it is determined that there is a defect in the image taken at input, it is judged that there is a problem in the immediately performed process (processing device), and when it is determined that there is a defect in the image taken at discharge, it is determined that there is a defect in the image taken at discharge. It is determined that there is a problem with the (processing device).
  • the lighting controller 800 is a device that controls the operation of the lighting module 330.
  • the lighting controller 800 maintains the lighting module 330 in an always-on state while the processing equipment is operating. Additionally, the brightness of the lighting module 330 is adjusted by controlling the amount of current supplied to the lighting module 330.
  • the manager can view the wafer captured image and appropriately adjust the brightness of the lighting module 330 to increase the resolution of the image, that is, to obtain a higher-quality wafer image, and specific adjustment commands are provided through the user interface of the management computer 700. It is entered through
  • the management computer 700 operates the lighting controller ( 800) can be configured to reduce the amount of light of the lighting module 330. Therefore, unnecessary power consumption can be minimized.
  • the semiconductor wafer defect inspection method includes an inspection mode setting step (S10), a wafer photographing step (S20), an image comparison step (S30), a wafer defect determination step (S40), and processing. It includes a process (processing equipment) abnormality determination step (S50) and an abnormality notification step (S60) that notifies the manager.
  • the administrator sets the operating mode of the frame trigger 500 through the input interface of the management computer 700.
  • the operating mode of the frame trigger 500 can be set to mode 1, mode 2, and mode 3.
  • the wafer photographing step (S20) is a step in which the camera 360 photographs the moving wafer (W) according to the set inspection mode. That is, in mode 1, a trigger signal is generated only when the wafer is input, and photography is performed on the input wafer (S21: photographing step upon input). Additionally, in mode 2, a trigger signal is generated only when the wafer is discharged, and photography is performed on the discharged wafer (S22: photographing step upon discharge). Additionally, in mode 3, a trigger signal is generated both during input and discharge, so photography is performed on both the input and output wafers (S23: photographing step during input/discharge).
  • the image comparison step (S30) compares the image captured in the wafer photographing step (S20) with a normal image prepared in advance and stored in the management computer 700.
  • a plurality of normal images may be prepared and stored, such as a normal image of the wafer upon input (normal image 1) and a normal image of the wafer upon discharge (normal image 2).
  • a step (S31) is performed to compare the image captured at input with normal image 1
  • a step is performed to compare the image captured at discharge with normal image 2 (S32).
  • a step (S33) is performed to compare the image captured at input and the image captured at discharge.
  • the wafer defect determination step (S40) is a step where it is determined that the wafer (W) has a defect if there is a difference in the images as a result of image comparison for each mode in the previous image comparison step (S30). If there is a defect (yes), the subsequent processing process (processing device) abnormality determination step (S50) is performed, and if there is no defect (no), the wafer W is moved to the next process.
  • the die in the photographed image is compared with each other.
  • the wafer defect determination step (S40) Die to Die comparison method. Since the die is essentially the essence of one semiconductor chip, all dies in the wafer W have the same structure (pattern), so it is possible to determine defects by comparing the dies.
  • the processing process (processing device) abnormality determination step (S50) is a step of determining which process has the problem when a defect occurs in each inspection mode, that is, which process's processing device has the problem. If the defect occurs in mode 1, If a defect is found, it is determined that there is a problem with the processing device of the previous process (S51). If a defect is found in mode 2, it is determined that there is a problem with the processing device of the current process (S52). Even if a defect is found in mode 3, It is determined that there is a problem with the processing equipment in the current process (S53).
  • abnormality determination step (S50) it is possible to determine whether to reprocess the wafer W and use it further or to discard it.
  • this wafer (W) reprocessing/discard determination can be performed in the previous wafer defect determination step (S40).
  • the management computer 700 performs an abnormality notification step (S60) in which the manager is notified of this.
  • the management computer 700 displays information on the monitor indicating which process (processing device) is determined to have a problem, or notifies the manager through a communication device owned by a wireless communication method.
  • the manager can be notified of the process (processing equipment) in which an abnormality has occurred by activating the alarm means (alarm lamp, alarm speaker, etc.) provided in the processing equipment of the process. Therefore, managers can quickly and accurately recognize which process (processing equipment) has a problem and can respond more quickly and appropriately.
  • a distortion phenomenon may occur in which the photographed image of the rear end in the moving direction of the wafer (W) is elongated. This is because there was a problem in synchronizing the moving speed of the wafer (W) and the shooting speed of the camera 360. Normally, when the moving speed of the subject is slow compared to the shooting speed during TDI scanning, the shape of the subject in the captured image becomes longer and longer. , If the moving speed of the subject is faster than the shooting speed, distortion occurs in which the shape of the subject in the captured image becomes shorter.
  • the transfer speed of the transfer robot 200 gradually decreases from a certain distance before the wafer stop position and becomes 0 (zero) at the stop position. That is, when photographing the rear end of the wafer (W) in the moving direction, the moving speed of the wafer (W) becomes significantly slower than before, causing synchronization with the shooting speed of the camera 360 to be broken, causing the image of the rear end of the wafer (W) to become elongated. It happens.
  • the camera is operated by a program input to the management computer 700.
  • a further step can be performed to synchronize the shooting speed of the camera 360 with the moving speed of the wafer that is being slowed down to stop (when inputting, turn on/off in the order of sensor A and sensor B).
  • sensor B and sensor A are turned on/off in that order, so in order to generalize and explain the two cases, the sensor signal that occurs first is divided into the first signal, and the sensor signal that occurs later is divided into the second signal. explained).
  • the shooting speed deceleration value of the camera 360 can be set to a value that can avoid the distortion phenomenon that increases the image of the rear end of the wafer through repeated tests in advance.
  • the synchronization of the wafer moving speed and the camera shooting speed is maintained, thereby preventing distortion that increases the image of the rear end of the wafer.
  • the inspection module can be easily installed inside the processing equipment of the mass production line without changing the processing equipment, and the wafer can be input into the processing equipment or Full inspection can be conducted in real time upon discharge, and defects in wafers and processing equipment can be quickly identified without reducing the productivity of the mass production line. Accordingly, wafer yield is increased and process accidents can be responded to quickly, thereby improving productivity and preventing unnecessary cost losses.
  • the present invention relates to a semiconductor wafer defect inspection device and defect inspection method, and can be used in industrial fields related to semiconductor wafer production.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)

Abstract

본 발명은 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법에 관한 것으로, 웨이퍼를 촬영하는 카메라가 구비되고, 웨이퍼 이동공간 내부에 설치되는 검사모듈과; 상기 웨이퍼의 이동 방향과 동일한 직선 경로 상에 설치되어 상기 웨이퍼를 감지하는 센서A 및 센서B와; 상기 센서A와 센서B 중 어느 하나라도 웨이퍼를 감지하면(on) 트리거 신호를 발생시키는 프레임트리거와; 상기 프레임트리거에서 트리거 신호가 입력되면 상기 카메라 촬영 개시신호를 발생시키고 트리거 신호가 입력되지 않으면 카메라 촬영 종료신호를 발생시키는 프레임그래버와; 상기 프레임그래버에서 변환된 디지털신호를 이용하여 웨이퍼 이미지를 생성하고, 생성된 이미지를 연결된 모니터에 표시하며, 생성된 웨이퍼 이미지를 미리 준비된 정상 이미지와 비교하거나 생성된 웨이퍼 이미지를 미리 준비된 정상 이미지와 비교하거나 웨이퍼 이미지 내의 다이 이미지끼리 비교하여 웨이퍼의 결함을 검출하는 관리컴퓨터를 포함한다.

Description

반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법
본 발명은 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법에 관한 것으로, 더욱 상세하게는 웨이퍼 생산 라인에 부가 적용되어 웨이퍼 생산성에는 영향을 미치지 않으면서 웨이퍼를 전수 검사할 수 있도록 된 반도체 웨이퍼 결함 검사 장치에 관한 것이다.
일반적으로 반도체 칩은 8대 공정 즉, 웨이퍼 제조 공정, 산화 공정, 포토 공정, 식각 공정, 증착 및 이온 주입 공정, 금속 배선 공정, EDS(Electrical Die Sorting) 공정, 패키징 공정을 통해 제조되며, 다수의 회로층을 형성하기 위해 포토 공정, 식각 공정, 증착 및 이온 주입 공정 등을 필요한 만큼 반복 실시한다.
상기 각 가공 공정들을 진행하는 과정에서 웨이퍼의 표면에는 유기 오염물, 금속 불순물, 스크래치(scratch), 크랙(crack), 치핑(chipping), 파손(broken) 등과 같은 다양한 결함이 발생하며, 각 공정 수행 후에는 결함 검사를 실시하여 설정 기준을 만족한 경우에는 다음 공정을 진행하고, 그렇지 않은 경우에는 웨이퍼를 재가공하거나 폐기 처분한다.
또한 결함 발생 여부 및 결함의 종류 등을 파악하여 직전에 수행된 공정의 가공 설비들의 문제점을 파악하고 신속하게 대응함으로써 지속적인 결함 발생 및 그로 인한 손실 발생을 방지하고 있다.
종래에는 검사자의 육안을 이용하는 매크로 검사장치(macro inspection) 또는 광학렌즈와 CCD(charged coupled device) 카메라를 이용하는 인라인 자동 광학 검사 장치(In-line automatic optical device) 등을 이용하여 웨이퍼의 결함 검사를 실시하였다.
그런데, 종래의 웨이퍼 결함 검사 장치 및 방법에 의하면, 검사 정확도가 낮을 뿐만 아니라 검사 시간이 오래 걸려 전수 검사가 불가능하였다. 따라서 샘플링 검사(검사율 5%)를 실시할 수 밖에 없었으며, 이에 결함을 가진 웨이퍼에 대해 불필요한 공정이 수행되고, 가공 설비의 문제 발생을 신속하게 파악하지 못하는 문제점이 있었다. 결국 웨이퍼 수율이 저하되고, 공정 사고에 신속하게 대응하지 못함으로써 막대한 비용 손실이 초래되었다.
또한, 종래의 웨이퍼 결함 검사 장치는 웨이퍼 가공 설비와는 별도의 독립된 장치로 이루어져 있어서 기존 웨이퍼 가공 설비의 변경 없이 웨이퍼 가공 설비에 부가하여 설치하기가 곤란하였다. 따라서 양산라인에서 분리된 위치에 웨이퍼 결함 검사 장치를 독립적으로 설치하고, 가공 공정과는 상관없이 결함 검사 공정을 별개로 실시해야만 했으므로 가공 공정 전후에 실시간으로 웨이퍼 결함 검사를 실시할 수 없었다.
<선행기술문헌>
(특허문헌 1) 대한민국 공개특허공보 10-2009-0033977(2009.04.07. 공개)
전술한 문제점을 해소함에 있어, 본 발명의 목적은 기존 양산 라인의 변경없이 양산 라인에 용이하게 부가 설치할 수 있고, 가공 공정에 웨이퍼가 투입 및 배출될 때 실시간으로 전수 검사를 실시할 수 있도록 된 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법을 제공함에 있다.
본 발명의 실시예에 따른 반도체 웨이퍼 결함 검사 장치는, 웨이퍼를 촬영하는 카메라를 구비하고, 반도체 가공 설비의 웨이퍼 이동공간 내부에 설치되는 검사모듈과; 상기 웨이퍼의 이동 방향과 동일한 직선 경로 상에 서로 이격 설치되어 웨이퍼를 감지하는 센서A 및 센서B와; 상기 센서A와 센서B 중 어느 하나라도 웨이퍼를 감지(on)하면 트리거 신호를 발생하는 프레임트리거와; 상기 프레임트리거에서 트리거 신호가 발생하면 카메라 촬영 개시신호를 발생하고 트리거 신호가 입력되지 않으면 카메라 촬영 종료신호를 발생하며, 카메라에서 촬영된 아날로그신호를 디지털신호로 변환하는 프레임그래버와; 상기 프레임그래버에서 변환된 디지털신호를 이용하여 웨이퍼 이미지를 생성하고, 생성된 이미지를 연결된 모니터에 표시하며, 생성된 웨이퍼 이미지를 미리 준비된 정상 이미지와 비교하거나 촬영된 웨이퍼 이미지 내의 다이 이미지끼리 비교하여 웨이퍼의 결함을 검출하는 관리컴퓨터;를 포함한다.
또한, 본 발명의 실시예에 따른 반도체 웨이퍼 결함 검사 방법은, 관리컴퓨터의 입력 인터페이스를 통해 프레임트리거의 작동모드가 설정되는 검사모드 설정단계(S10); 상기 검사모드 설정단계(S10)에서 설정된 검사모드에 따라 카메라가 이동중인 웨이퍼를 촬영하는 웨이퍼 촬영단계(S20); 상기 웨이퍼 촬영단계(S20)에서 촬영된 이미지를 미리 마련되어 관리컴퓨터에 저장되어 있는 정상 이미지와 비교하거나 촬영된 웨이퍼 이미지 내의 다이 이미지끼리 비교하는 이미지 비교단계(S30); 상기 이미지 비교단계(S30)에서 각 모드에 따른 이미지 비교 결과, 이미지에 차이가 있으면 웨이퍼에 결함이 있는 것으로 판단하는 웨이퍼 결함 판단단계(S40); 상기 웨이퍼 결함 판단단계(S40)의 각 검사모드에서 결함이 발생한 경우 어떤 가공 공정(가공 장치)에 이상이 있는지를 판단하는 가공 공정(가공 장치) 이상 판단단계(S50)단계; 및 상기 가공 공정(가공 장치) 이상 판단단계(S50)의 판단 결과를 관리컴퓨터가 관리자에게 통보하는 이상 통보 단계(S60);를 포함한다.
상술한 바와 같이, 본 발명에 의한 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법에 의하면, 양산 라인의 가공 설비 내부에 가공 설비의 변경 없이 검사모듈을 용이하게 설치 할 수 있다.
또한, 웨이퍼를 가공 설비에 투입하거나 배출할 때 실시간으로 전수 검사를 실시할 수 있으며, 이러한 검사 과정은 웨이퍼의 이동이나 가공 공정의 실시에 아무런 영향을 미치지 않는다.
따라서, 양산 라인의 생산성 저하 없이 웨이퍼 및 가공 설비의 결함을 신속하게 파악할 수 있다.
따라서, 웨이퍼 수율이 증가되고 공정 사고에 신속하게 대응할 수 있게 됨으로써 생산성이 향상되고 불필요한 소모 비용을 절감할 수 있게 되는 효과가 있다.
도 1은 본 발명에 따른 반도체 웨이퍼 결함 검사 장치가 적용된 반도체 가공 설비의 개략 구성도이다.
도 2는 본 발명에 따른 반도체 웨이퍼 결함 검사 장치의 일부 구성인 검사모듈과 지지구조물의 조립 상태 사시도이다.
도 3은 상기 검사모듈의 제1실시예의 설치 상태 측면도이다.
도 4는 상기 검사모듈의 제2실시예의 설치 상태 측면도이다.
도 5는 본 발명에 따른 반도체 웨이퍼 결함 검사 장치의 일 구성인 조명모듈의 개략도이다.
도 6은 본 발명에 따른 반도체 웨이퍼 결함 검사 장치의 전체 구성도이다.
도 7은 본 발명에 따른 반도체 웨이퍼 결함 검사 장치의 일 구성인 센서A와 센서B의 설치 위치 설명도이다.
도 8은 상기 센서A와 센서B의 작동모드 설명도이다.
도 9는 본 발명에 따른 반도체 웨이퍼 결함 검사 방법의 순서도이다.
<부호의 설명>
1 : 웨이퍼 로딩공간 2 : 웨이퍼 이동공간
3 : 웨이퍼 가공공간 100 : 풉
200 : 이송로봇 210 : 엔드이펙터
300 : 검사모듈 310 : 상부플레이트
320 : 측부플레이트 325 : 연결브라켓
330 : 조명모듈 331 : LED소자
340 : 박스 350 : 프리즘
360 : 카메라 400 : 지지구조물
410 : 상부프레임 420 : 레그
430 : 높이조절나사 500 : 프레임트리거
600 : 프레임그래버 700 : 관리컴퓨터
800 : 조명제어기 W : 웨이퍼
본 발명 본 발명에 있어 첨부된 도면은 종래 기술과의 차별성 및 명료성, 그리고 기술 파악의 편의를 위해 과장된 표현으로 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어로서, 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있으므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 기술적 내용을 토대로 내려져야 할 것이다. 한편, 실시예는 본 발명의 청구범위에 제시된 구성요소의 예시적 사항에 불과하고, 본 발명의 권리범위를 한정하는 것이 아니며, 권리범위는 본 발명의 명세서 전반에 걸친 기술적 사상을 토대로 해석되어야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대하여 상세히 설명한다.
도 1은 본 발명에 따른 반도체 웨이퍼 결함 검사 장치가 적용된 반도체 가공 설비의 개략 구성도, 도 2는 본 발명에 따른 반도체 웨이퍼 결함 검사 장치의 일부 구성인 검사모듈과 지지구조물의 조립 상태 사시도, 도 3은 상기 검사모듈의 제1실시예의 설치 상태 측면도, 도 4는 상기 검사모듈의 제2실시예의 설치 상태 측면도, 도 5는 본 발명에 따른 반도체 웨이퍼 결함 검사 장치의 일 구성인 조명모듈의 개략도, 도 6은 본 발명에 따른 반도체 웨이퍼 결함 검사 장치의 전체 구성도, 도 7은 본 발명에 따른 반도체 웨이퍼 결함 검사 장치의 일 구성인 센서A와 센서B의 설치 위치 설명도, 도 8은 상기 센서A와 센서B의 작동모드 설명도이다.
도 1 내지 도 8을 참조하면, 본 발명에 따른 반도체 웨이퍼 결함 검사 장치는, 카메라(360)가 구비된 검사모듈(300), 센서A와 센서B, 프레임트리거(500), 프레임그래버(600)가 구비된 관리컴퓨터(700), 조명제어기(800)를 포함한다.
먼저, 반도체 가공 공정을 수행하는 가공 설비의 일반적인 구성을 설명한다. 도 1과 같이, 반도체 가공 설비는 다수의 웨이퍼(W)가 적재된 풉(FOUP: Front Opening Unified Pod)(100)이 안착되는 웨이퍼 로딩공간(1)과, 웨이퍼(W)를 이동시켜주는 이송로봇(200)이 설치된 웨이퍼 이동공간(2)과, 웨이퍼 가공에 필요한 가공 장치들이 설치되어 있는 웨이퍼 가공공간(3)으로 구획되어 있다. 각 공간은 격벽(P)으로 구획되어 있으며, 격벽(P)에는 공간 사이에서 웨이퍼(W)를 이동시키기 위한 개구부 또는 홀(H)이 형성되어 있으며, 상기 개구부 또는 홀(H)에는 자동 개폐 수단이 설치될 수 있다.
상기 공간들은 외부에 대해 차단되어 먼지 등의 이물질에 대해 웨이퍼(W)를 보호하며, 특히 가공 공정을 수행하는 웨이퍼 가공공간(3)은 가스 주입과 플라즈마 형성 등이 가능한 밀폐 진공 공간으로 형성될 수 있다.
상기 이송로봇(200)은 통상 하나 또는 2개의 다관절 아암을 구비하며, 아암 단부에 설치된 엔드이펙터(210)로 웨이퍼(W)를 진공 흡착하여 이송한다. 이송로봇(200)은 풉(100)에서 웨이퍼(W)를 꺼내어 웨이퍼 가공공간(3)의 가공 장치로 전달하거나 가공 장치에서 공정 수행이 완료된 웨이퍼(W)를 다시 풉(100)에 로딩한다.
상기 검사모듈(300)은, 도 1 내지 도 3과 같이, 웨이퍼(W) 영상(이미지)을 획득하기 위한 카메라(360)와 조명모듈(330)을 한 곳에 조합한 기구이다.
검사모듈(300)은 수평의 상부플레이트(310)와, 상부플레이트(310)의 일단부에서 수직 하방으로 연장된 사다리꼴 형상의 측부플레이트(320)와, 상기 상부플레이트(310)와 측부플레이트(320) 사이에 밀착 설치된 직육면체 형상의 박스(340)를 포함한다.
또한 검사모듈(300)은 상기 박스(340)의 전면(측부플레이트(320)의 반대쪽 면)에 관통 설치된 카메라(360)와, 상기 측부플레이트(320)의 하단에 연결브라켓(325)을 매개로 설치된 조명모듈(330) 및 조명모듈(330)에서 조사되어 웨이퍼(W)에서 반사된 반사광을 직각으로 굴절 반사하여 카메라(360)로 입사시키는 프리즘(350)을 포함한다.
상기 조명모듈(330)은 전체적으로 직사각 판재 형상이며, 하단에 일렬로 다수의 LED소자(331)가 설치된 것으로, 상기 측부플레이트(320)와 동일한 수직면 상에 위치된다.
상기 조명모듈(330)에서 조사된 빛은 웨이퍼(W)에 반사된 후, 상기 프리즘(350)에서 굴절되어 카메라(360)의 렌즈로 입사되며, 이에 카메라(360)는 웨이퍼(W)의 표면 영상을 촬영할 수 있다. 박스(340)의 하면에는 웨이퍼(W)의 반사광이 통과할 수 있도록 직선형의 관통홀이 형성되어 있다.
상기와 같이 프리즘(350)을 이용하여 웨이퍼(W)에서 반사되는 빛을 수평으로 굴절시킨 후 카메라(360)로 입사시킴으로써 카메라(360)를 수평 방향으로 설치할 수 있게 된다. 이는 카메라를 수직 하방으로 설치하는 경우에 비하여 공간을 덜 차지하므로 협소한 공간인 웨이퍼 이동공간(2) 내부에 카메라(360)를 포함한 검사모듈(300)을 설치하기 용이하게 해 준다.
상기 카메라(360)로는 영역 스캔 카메라(Area scan camera), 라인 스캔 카메라(Line scan camera), TDI 스캔 카메라(Time delay integration scan camera)를 사용할 수 있으나, 본 명세서에서는 TDI 스캔 카메라를 사용하는 경우를 예로 들어 설명한다.
상기 검사모듈(300)은 웨이퍼 이동공간(2)에서 격벽(P) 및 천정에 밀착 또는 최대한 근접한 위치에 설치된다. 이와 같이 설치됨으로써 검사모듈(300)과 이송로봇(200)의 간섭을 확실히 방지하고, 이송로봇(200)의 작동 공간을 최대한 확보할 수 있다.
상기 검사모듈(300)은 도 2에 도시된 바와 같은 지지구조물(400)을 매개로 웨이퍼 이동공간(2)의 내부에 설치된다.
상기 지지구조물(400)은 대략 직사각형의 상부프레임(410)과, 상부프레임(410)의 양단에 하방으로 설치된 레그(420)를 포함한다. 레그(420)의 하단에는 높이조절나사(430)가 구비되어 상부프레임(410)의 높이를 조절할 수 있다.
따라서 지지구조물(400)을 웨이퍼 이동공간(2)의 격벽(P) 및 천장에 밀착시키고 상기 높이조절나사(430)를 신장시키면(높이조절나사가 레그로부터 빠져나오는 방향) 상부프레임(410)이 웨이퍼 이동공간(2)의 천장에 가압 밀착됨으로써 지지구조물(400)이 고정된다.
상기 검사모듈(300)은 상부플레이트(310)가 상부프레임(410)의 하면에 장착되는 구조로 지지구조물(400)에 설치된다. 이와 같이 웨이퍼 이동공간(2)의 벽면에 장비 고정용 홀(볼트홀, 스크류홀 등)을 뚫지 않고도 검사모듈(300)을 견고하게 설치할 수 있다. 즉, 가공설비에 어떠한 변경(훼손)도 가하지 않고 검사모듈(300)을 설치할 수 있다.
또한, 도시하지 않았으나 상부프레임(410)의 하면에 전후 좌우로 이동 및 위치 고정 가능한 슬라이더를 설치하고, 그 슬라이더에 상부프레임(410)을 장착함으로써 지지구조물(400)에 대해 검사모듈(300)의 전후 및 좌우 위치를 조정할 수 있도록 할 수 있다.
한편, 경우에 따라서는, 웨이퍼 이동공간(2)내 이송로봇(200)의 위치나 이송로봇(200)의 작동 설정에 따라서 웨이퍼 가공공간(3)으로 웨이퍼(W)를 투입하기 전의 웨이퍼 대기위치에서 웨이퍼(W)의 단부가 도 3과 같이 프리즘(350)의 수직 하방 위치 즉, 카메라 촬영 위치를 지나쳐 위치할 수 있다. 이 경우 촬영 개시 시점에 이미 웨이퍼(W)의 단부 내측 부분부터 촬영을 시작하게 되므로 미촬영구간(R1)(웨이퍼 단부부터 촬영 개시 지점까지의 구간)이 존재하며, 따라서 웨이퍼(W)의 전체 영상을 얻을 수 없게 된다. 이때 조명모듈(330)의 빛 조사방향만을 바꾸어 촬영 개시 위치를 웨이퍼(W)의 전방 단부쪽으로 변경할 수 있지만, 이 경우 웨이퍼(W)에 반사된 빛이 조명모듈(330)에 차단되어 프리즘(350)으로 입사될 수 없는 또 다른 문제가 발생한다.
상기와 같은 문제를 해결하기 위하여 상기 검사모듈(300)을 도 4에 도시된 실시예와 같이 구성할 수 있다. 이 실시예는 조명모듈(330)을 측부플레이트(320)에서 웨이퍼(W)의 투입시 후방 단부쪽 방향으로 이격시켜 배치하고(조명모듈(300)에 의한 빛의 차단을 방지하기 위함), 조명모듈(300)의 빛을 웨이퍼(W)의 투입 방향 전방 단부의 앞쪽 지점으로 조사하는 것을 특징으로 한다. 이때 조명모듈(330)은 적절한 길이와 설치 각도를 가지는 연결브라켓(325)으로 측부플레이트(320)에 설치된다. 연결브라켓(325)은 측부플레이트(320)와 조명모듈(330)의 양측 단부를 연결하는 것이므로 조명모듈(330)에서 조사된 빛이 웨이퍼(W)에 반사된 후 프리즘(350)으로 입사되는 것을 차단하지 않는다.
상기와 같이 조명모듈(330)의 위치와 빛의 조사방향 변경을 통해 촬영 개시 위치를 웨이퍼(W)의 진행 방향 전방으로 조정할 수 있음으로써 웨이퍼(W)의 전체 촬영 영상을 얻을 수 있게 된다.
도 5는 상기 조명모듈(330)의 개략도로서, 조명모듈(330)의 하단에는 광원으로서 다수의 LED소자(331)가 설치되어 있다. 이때 상기 LED소자(331)들은 각각의 조사방향이 서로 다르게 설치될 수 있다. 이와 같이 LED소자(331)들의 조사방향이 서로 다르면 웨이퍼(W)에 다양한 각도에서 빛이 입사됨으로써 웨이퍼(W)의 다양한 결함을 보다 높은 확률로 검출해낼 수 있게 된다. 웨이퍼(W)의 표면에는 다양한 형상, 깊이, 형성 방향을 가지는 결함들이 존재하는데 빛이 일정한 각도로만 입사될 때는 카메라에 잘 포착되지 않던 결함들이 있을 수 있으나, 상기 실시예와 같이 빛이 다양한 각도에서 입사되면 난반사 현상에 의해 다양한 결함들이 카메라(360)에 더 선명하게 포착될 수 있다.
상기 센서A와 센서B는 웨이퍼 이동공간(2)의 내부 바닥측에 설치된다. 센서A와 센서B는 웨이퍼(W)의 직선 이동 방향을 따라 서로 소정 간격을 두고 설치되며, 이동하는 웨이퍼(W)보다 낮은 위치에 설치되어 웨이퍼(W)의 이동을 방해하지 않으면서 자신들의 상부를 지나가는 웨이퍼(W)를 감지한다. 즉, 센서A와 센서B는 자신들의 상부에 웨이퍼(W)가 존재할 때 on되고, 존재하지 않을 때 off된다..
또한, 도 7에 도시된 바와 같이, 상기 센서A와 센서B는 웨이퍼(W)를 흡착하여 이동시키는 엔드이펙터(210)를 감지하지 않고 정확하게 웨이퍼(W)만을 감지할 수 있도록 평면상에서 봤을 때 엔드이펙터(210)의 측단부 보다 외측에 설치된다. 즉, 엔드이펙터(210)의 측단부 선(L1)보다 센서A,B가 설치되는 선(L2)이 엔드이펙터(210)의 중심선(L0)을 기준으로 더 외측에 위치된다(ℓ1 < ℓ2). 즉, 센서A,B가 엔드이펙터(210)의 이동경로 외측에 설치됨으로써 엔드이펙터(210)는 감지하지 않고 웨이퍼(W)가 센서들의 상부에 존재하는지의 여부만을 정확하게 검출할 수 있다.
또한, 상기 센서A는 투입 대기 위치에 있는 웨이퍼(W1)의 원주선 외측-투입 진행 방향 앞쪽-에 위치(P1)됨으로써 투입 대기 상태의 웨이퍼(W1)를 감지하지 않는다. 마찬가지로 센서B 역시 배출 대기 위치에 있는 웨이퍼(W3)의 원주선 외측-배출 진행 방향 앞쪽-에 위치(P2~P3)됨으로써 배출 대기 상태의 웨이퍼(W3)를 감지하지 않는다.
또한, 센서B는, 웨이퍼 투입시 웨이퍼의 후방 단부가 촬영위치선(L4)을 지나치는 위치에 있을 때, 그 위치의 웨이퍼(W2)의 원주선 외측-투입 진행 방향 뒤쪽-에 위치(P2)해야만 한다. 센서B가 상기 위치(P2)에 있어야만 웨이퍼(W)의 진행 방향 후단부를 잘리지 않고 완전히 촬영할 수 있게 된다. 도 7과 같이 촬영위치선(L4)가 투입 대기 위치에 있는 웨이퍼(W1)의 전방 단부 내측에 있어서 웨이퍼의 전방 단부가 촬영되지 않는 문제는 위에서 설명한 도 4의 실시예를 적용함으로써 해결할 수 있다.
상기와 같이 센서B는 배출 대기 위치의 웨이퍼(W3)를 감지하지 않으면서 투입시 웨이퍼(W2)의 후단까지 완전히 촬영이 가능하도록 하기 위해서 상기 P2위치에서 P3위치 사이에 설치되어야 한다.
상기 프레임트리거(Frame trigger)(500)는 상기 센서들의 웨이퍼 감지 신호를 전달받아 트리거 신호를 발생시킨다. 이때 센서A와 센서B중 어느 하나라도 on되어 있으면 트리거 신호가 발생되어 프레임그래버(600)로 전달된다.
센서A와 센서B는 웨이퍼(W)의 직선 이동 경로를 따라 설치되어 있기 때문에 그 감지 신호는, 도 8에 도시된 바와 같이, 소정의 시간차를 두고 발생하게 된다. 즉, 웨이퍼 투입시에는 센서A가 먼저 on되고 이어 센서B가 on되며, 센서A가 먼저 off되고 이어 센서B가 off된다. 반대로 웨이퍼 배출시에는 센서B가 먼저 on되고 이어 센서A가 on되며, 센서B가 먼저 off되고 이어 센서A가 off된다.
프레임트리거(500)는 이와 같은 개별 센서의 on/off 신호를 상기 관리컴퓨터(700)에 전달할 수 있으며, 관리컴퓨터(700)는 개별 센서 on/off 신호를 이용하여 웨이퍼(W)의 투입 또는 배출 상태를 모니터에 표시할 수 있다.
즉, 센서A → 센서B 순서로 on신호가 발생하면 웨이퍼 투입 중인 것으로 판단하고 모니터에 웨이퍼 투입을 알리는 'IN' 등의 문자를 표시하고, 반대로 센서B → 센서A의 순서로 on신호가 발생하면 웨이퍼 배출 중인 것으로 판단하고 모니터에 웨이퍼 배출을 알리는 'OUT' 등의 문자를 표시할 수 있다. 따라서 관리자는 모니터의 표시 내용을 보고 가공 설비 내에서 현재 웨이퍼가 어디로 이동하고 있는지를 정확하게 알 수 있으며, 다음 작동을 예측할 수 있다.
상기 프레임그래버(Frame grabber)(600)는 화상 처리에 사용되는 고해상도의 그래픽 카드로서 상기 관리컴퓨터(700)의 내부에 설치되고, 카메라(360)에서 촬영된 촬영정보(아날로그 영상신호)를 디지털화하여 관리컴퓨터(700)가 처리할 수 있는 신호로 바꿔주는 영상 처리 장비이다.
또한 프레임그래버(600)는 프레임트리거(500)에서 트리거 신호가 발생(on)되면 카메라(360)에 촬영 개시 신호를 전달하고, 트리거 신호가 off되면 촬영 종료 신호를 전달한다.
상기 관리컴퓨터(700)는 프래임그래버(600)에서 생성한 디지털 영상 신호를 이용하여 모니터에 웨이퍼(W) 촬영 이미지를 표시한다.
또한 관리컴퓨터(700)는 촬영된 웨이퍼 이미지와 미리 준비된 해당 위치에서의 정상 웨이퍼 이미지를 비교하거나, 또는 촬영된 웨이퍼 이미지 내의 다이(Die) 이미지를 서로 비교(Die to Die 비교 방법)하여 촬영된 웨이퍼(W)의 결함 여부를 판단하고, 결함이 발생했을 때 어느 공정의 가공 장치에서 문제가 발생했는지를 판정한다.
또한 관리컴퓨터(700)는 어떤 공정에서 어떤 결함이 발생했는지를 관리자에게 통보한다.
또한 관리컴퓨터(700)는 웨이퍼(W)의 결함 정도에 따라 웨이퍼(W)를 재가공하여 다시 사용할 수 있는지 또는 폐기해야 할 것인지를 판단한다.
또한 관리컴퓨터(700)의 입력 인터페이스를 통해 상기 프레임트리거(500)의 작동 모드를 선택할 수 있다. 프레임트리거(500)의 작동모드는 모드1, 모드2, 모드3의 3가지이다.
도 8과 같이, 상기 모드1에서는 웨이퍼(W) 투입시에만 트리거 신호가 발생된다. 즉, 모드1에서는 해당 가공 설비의 공정 수행 전에 웨이퍼(W)가 투입될 때 촬영하여 결함을 판단하게 되므로 이 모드에서 결함이 발견된 경우, 직전에 수행된 공정의 가공 장치에 문제가 발생했음을 알 수 있다.
모드2에서는 웨이퍼(W) 배출시에만 트리거 신호가 발생된다. 즉, 모드2에서는 해당 가공 장치의 공정 수행 후에 웨이퍼(W)가 배출될 때 촬영하여 결함을 판단하게 되므로 이 모드에서 결함이 발견된 경우, 현재 수행된 공정의 가공 장치(웨이퍼가 위치한 가공 설비)에 문제가 있음을 알 수 있다.
모드3에서는 웨이퍼(W) 투입시 및 배출시 모두에서 트리거 신호가 발생된다. 이때 관리컴퓨터(700)는 투입시 촬영 이미지와 배출시 촬영 이미지를 서로 비교하게 되며, 그 차이에 의해 결함 발생 여부를 판단한다. 또한 다이 투 다이 방법을 적용하여 투입시 및 배출시에 각각 촬영된 웨이퍼 이미지만으로(각 촬영 웨이퍼 이미지 내부의 다이끼리 서로 비교함) 투입시 웨이퍼의 결함 또는 배출시 웨이퍼의 결함을 판단할 수 있다.
따라서 모드3에서는 투입시 촬영 이미지와 배출시 촬영 이미지를 서로 비교하여 결함이 발생한 경우에는 현재 웨이퍼가 위치한 가공 장치에 문제가 있는 것으로 판단한다. 또한 다이 투 다이 방법을 적용하여 투입시 촬영 이미지에 결함이 있는 것으로 판단했을 때는 직전 수행 공정(가공 장치)에 이상이 있는 것으로 판단하며, 배출시 촬영 이미지에 결함이 있는 것으로 판단했을 때는 현재 수행 공정(가공 장치)에 이상이 있는 것으로 판단한다.
상기 조명제어기(800)는 상기 조명모듈(330)의 작동을 제어하는 장치이다. 조명제어기(800)는 가공 설비가 작동되고 있는 동안 조명모듈(330)을 상시 on 상태로 유지한다. 또한 조명모듈(330)로 공급되는 전류량을 제어하여 조명모듈(330)의 밝기를 조절한다. 관리자는 웨이퍼 촬영 이미지를 보고 이미지의 해상도를 증가시키기 위해 즉, 보다 고화질의 웨이퍼 이미지를 얻기 위하여 조명모듈(330)의 밝기를 적절히 조절할 수 있으며, 구체적인 조절 명령은 관리컴퓨터(700)의 사용자 인터페이스를 통해 입력된다.
또한, 관리컴퓨터(700)은 가공 설비가 작동을 중지한 휴지기(이송로봇(200)도 작동이 중지된 상태로서 웨이퍼(W) 이송이 이루어지지 않는 상태)에 내장된 프로그램에 의해 상기 조명제어기(800)로 하여금 조명모듈(330)의 광량을 감소시키도록 할 수 있다. 따라서 불필요한 전력 소모를 최소화할 수 있다.
이제 상기와 같은 구성의 반도체 웨이퍼 결함 검사 장치를 이용한 반도체 결함 검사 방법을 설명한다.
도 9에 도시된 바와 같이, 본 발명에 따른 반도체 웨이퍼 결함 검사 방법은, 검사모드 설정단계(S10), 웨이퍼 촬영단계(S20), 이미지 비교단계(S30), 웨이퍼 결함 판단단계(S40), 가공 공정(가공 장치) 이상 판단단계(S50), 관리자에게 통보하는 이상 통보 단계(S60)를 포함한다.
상기 검사모드 설정단계(S10)는 관리자가 관리컴퓨터(700)의 입력 인터페이스를 통해 프레임트리거(500)의 작동모드를 설정하는 것이다. 위에서 설명한 바와 같이, 프레임트리거(500)의 작동모드는 모드1, 모드2, 모드3로 설정할 수 있다.
상기 웨이퍼 촬영단계(S20)는 설정된 검사모드에 따라 카메라(360)가 이동중인 웨이퍼(W)를 촬영하는 단계이다. 즉, 모드1에서는 웨이퍼 투입시에만 트리거 신호가 발생하여 투입되는 웨이퍼에 대한 촬영이 이루어진다(S21: 투입시 촬영단계). 또한 모드2에서는 웨이퍼 배출시에만 트리거 신호가 발생하여 배출되는 웨이퍼에 대한 촬영이 이루어진다(S22: 배출시 촬영단계). 또한 모드3에서는 투입과 배출시 모두 트리거 신호가 발생되므로 투입되는 웨이퍼와 배출되는 웨이퍼 모두에 대해 촬영이 이루어진다(S23: 투입/배출시 촬영단계).
상기 이미지 비교단계(S30)는 상기 웨이퍼 촬영단계(S20)에서 촬영된 이미지를 미리 마련되어 관리컴퓨터(700)에 저장되어 있는 정상 이미지와 비교하는 것이다.
정상 이미지는 투입시 웨이퍼의 정상 이미지(정상 이미지1), 배출시 웨이퍼의 정상 이미지(정상 이미지2) 등, 복수 개가 준비되어 저장될 수 있다.
현재 진행 중인 검사모드가 모드1인 경우에는 투입시 촬영 이미지와 정상이미지1을 비교하는 단계(S31)를 실시하고, 모드2인 경우에는 배출시 촬영 이미지와 정상이미지2를 비교하는 단계(S32)를 실시하며, 모드3인 경우에는 투입시 촬영 이미지와 배출시 촬영 이미지를 비교하는 단계(S33)를 실시한다.
상기 웨이퍼 결함 판단단계(S40)는 이전의 이미지 비교단계(S30)에서 각 모드에 따른 이미지 비교 결과 이미지에 차이가 있으면 웨이퍼(W)에 결함이 있는 것으로 판단하는 단계이다. 결함이 있으면(yes) 이후의 가공 공정(가공 장치) 이상 판단단계(S50)를 실시하고, 결함이 없으면(no) 웨이퍼(W)를 다음 공정으로 이동시킨다.
한편, 상기 이미지 비교단계(S30)의 모드1 내지 모드3 모든 경우에, 촬영된 이미지와 미리 준비된 정상이미지를 비교하는 것이 아니라, 촬영된 이미지 내의 다이(Die)와 다이(Die)를 서로 비교하여 비교된 다이 사이에 차이점이 있을 때 상기 웨이퍼 결함 판단단계(S40)에서 결함이 발생한 것으로 판단할 수도 있음은 물론이다(Die to Die 비교 방법). 다이(Die)는 실질적으로 하나의 반도체칩을 구성하는 본질이므로 웨이퍼(W)내 모든 다이와 다이는 동일한 구조(패턴)를 가지는 바, 다이와 다이를 비교하여 결함을 판단하는 것이 가능하다.
상기 가공 공정(가공 장치) 이상 판단단계(S50)는 각 검사모드에서 결함이 발생한 경우 어떤 공정에 문제가 있는지 즉, 어떤 공정의 가공 장치에 이상이 있는지를 판단하는 단계로서, 모드1에서 결함이 발견되면 직전 공정의 가공 장치에 이상이 있는 것으로 판단(S51)하고, 모드2에서 결함이 발견되면 현재 공정의 가공 장치에 이상이 있는 것으로 판단하며(S52), 모드3에서 결함이 발견된 경우에도 현재 공정의 가공 장치에 이상이 있는 것으로 판단한다(S53).
또한 모드3에서 다이 투 다이 방법을 이용하여 투입시와 배출시 각각의 이미지에 대해 개별적으로 결함 판단을 한 경우에는 투입시 이미지에 결함이 있을 때는 직전 공정(가공 장치)에 이상이 있는 것으로 판단하고, 배출시 이미지에 결함이 있을 때는 현재 공정(가공 장치)에 이상이 있는 것으로 판단할 수 있다.
또한, 가공 공정(가공 장치) 이상 판단단계(S50)에서는 웨이퍼(W)를 재가공하여 더 사용할 것인지 또는 폐기할 것인지를 함께 판단할 수 있다. 이러한 웨이퍼(W) 재가공/폐기 판단은 이전의 웨이퍼 결함 판단단계(S40)에서 실시될 수 있음은 물론이다.
상기와 같이 가공 공정(가공 장치) 이상 판단단계(S50)에서 어떤 공정(가공 장치)에 이상이 생겼는지 판단되었으면, 관리컴퓨터(700)는 이를 관리자에게 통보하는 이상 통보 단계(S60)를 실시한다. 관리컴퓨터(700)는 문제가 있는 것으로 판단된 공정(가공 장치)이 어떤 공정(가공 장치)인지를 알려주는 정보를 모니터에 표시하거나, 무선 통신 방법에 의해 관리자가 소지한 통신기기를 통해 통지하거나, 해당 공정의 가공 장치에 마련된 경보수단(경보램프, 경보스피커 등)을 작동시킴으로써 이상이 발생한 공정(가공 장치)을 관리자에게 통보할 수 있다. 따라서 관리자는 어떤 공정(가공 장치)에 문제가 발생했는지를 신속하고 정확하게 인지할 수 있게 되고, 이에 보다 신속하게 적절히 대응할 수 있게 된다.
따라서 문제 발생을 인지하지 못한 상태에서 가공 공정이 계속 진행됨으로써 웨이퍼에 결함이 누적되거나, 결함을 가진 불량 웨이퍼 수가 증가되는 것을 방지할 수 있게 된다.
한편, 상기 웨이퍼 촬영단계(S20)에서 웨이퍼(W)의 투입 및 배출시 모두의 경우에 웨이퍼(W)의 이동 방향 후단부의 촬영 이미지가 길게 늘어나는 왜곡 현상이 발생할 수 있다. 이는 웨이퍼(W)의 이동속도와 카메라(360)의 촬영속도의 동기화에 문제가 발생했기 때문으로서, 통상 TDI 스캔시 촬영속도에 비해 피사체의 이동속도가 느린 경우에는 촬영 이미지의 피사체 형상이 길게 늘어나고, 촬영속도에 비해 피사체의 이동속도가 빠른 경우에는 촬영 이미지의 피사체 형상이 짧아지는 왜곡이 발생한다.
웨이퍼 TDI 스캔시에는 이송로봇(200)의 이송속도가 웨이퍼 정지 위치로부터 일정 거리 이전부터 서서히 감소하여 정지 위치에서 0(zero)이 된다. 즉, 웨이퍼(W)의 이동 방향 후방 단부 촬영시에는 웨이퍼(W)의 이동 속도가 이전보다 현저히 느려짐으로써 카메라(360) 촬영속도와 동기화가 깨지면서 웨이퍼(W)의 후단 이미지가 길게 늘어지는 현상이 발생하게 된다.
따라서 상기 웨이퍼 촬영단계(S20)에서는 제1 on신호가 발생하면 촬영을 개시하고, 제2 on신호 발생시 촬영을 지속하며, 제1 off신호가 발생하면 관리컴퓨터(700)에 입력된 프로그램에 의해 카메라(360)의 촬영속도를 감속시켜 정지를 위해 감속 중인 웨이퍼의 이동속도에 카메라(360)의 촬영속도를 동기화시키는 단계를 더 수행할 수 있다(투입시에는 센서A, 센서B 순서로 on/off되고, 배출시에는 센서B, 센서A의 순서로 on/off되므로, 두 가지 경우를 일반화하여 설명할 수 있도록 먼저 발생하는 센서 신호를 제1신호, 나중에 발생하는 센서 신호를 제2신호로 구분하여 설명하였음).
이때 카메라(360)의 촬영속도 감속값은 미리 반복 실시된 시험을 통해 웨이퍼 후단 이미지가 늘어나는 왜곡 현상을 회피할 수 있는 값으로 설정될 수 있다.
상기와 같이 웨이퍼 촬영시 웨이퍼의 정지를 위한 감속 속도에 맞추어 카메라의 촬영속도를 감소시켜 줌으로써 웨이퍼 이동속도와 카메라 촬영속도 동기화가 유지되어 웨이퍼의 후단 이미지가 늘어나는 왜곡 현상을 방지할 수 있게 된다.
이상에서와 같이, 본 발명에 의한 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법에 의하면, 양산 라인의 가공 설비 내부에 가공 설비의 변경 없이 검사모듈을 용이하게 설치 할 수 있고, 웨이퍼를 가공 설비에 투입하거나 배출할 때 실시간으로 전수 검사를 실시할 수 있으며, 양산 라인의 생산성 저하 없이 웨이퍼 및 가공 설비의 결함을 신속하게 파악할 수 있다. 따라서, 웨이퍼 수율이 증가되고 공정 사고에 신속하게 대응할 수 있게 됨으로써 생산성이 향상되고 불필요한 비용 손실을 방지할 수 있게 된다.
상술한 바와 같이, 본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 기초로 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해해야 한다. 따라서 본 발명의 진정한 기술적 보호범위는 이하 기술할 청구범위에 의하며, 상술한 발명의 구체적 내용을 토대로 정해져야 할 것이다.
본 발명은 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법에 관한 것으로, 반도체 웨이퍼 생산과 관련된 산업 분야에 이용 가능하다.

Claims (18)

  1. 웨이퍼를 촬영하는 카메라를 구비하고, 반도체 가공 설비의 웨이퍼 이동공간 내부에 설치되는 검사모듈과;
    상기 웨이퍼의 이동 방향과 동일한 직선 경로 상에 서로 이격 설치되어 웨이퍼를 감지하는 센서A 및 센서B와;
    상기 센서A와 센서B 중 어느 하나라도 웨이퍼를 감지(on)하면 트리거 신호를 발생하는 프레임트리거와;
    상기 프레임트리거에서 트리거 신호가 발생하면 카메라 촬영 개시신호를 발생하고 트리거 신호가 입력되지 않으면 카메라 촬영 종료신호를 발생하며, 카메라에서 촬영된 아날로그신호를 디지털신호로 변환하는 프레임그래버와;
    상기 프레임그래버에서 변환된 디지털신호를 이용하여 웨이퍼 이미지를 생성하고, 생성된 이미지를 연결된 모니터에 표시하며, 생성된 웨이퍼 이미지를 미리 준비된 정상 이미지와 비교하거나 웨이퍼 이미지 내의 다이 이미지끼리 비교하여 웨이퍼의 결함을 검출하는 관리컴퓨터;
    를 포함하는 반도체 웨이퍼 결함 검사 장치.
  2. 청구항 1에 있어서,
    상기 검사모듈은 수평의 상부플레이트와, 상부플레이트의 일단부에 수직으로 연결된 측부플레이트와, 상기 상부플레이트와 측부플레이트의 사이에 설치된 박스와, 상기 측부플레이트의 하단에 설치된 조명모듈을 포함하고, 상기 박스의 일측면에 카메라가 관통 설치된 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  3. 청구항 2에 있어서,
    상기 카메라가 수평으로 설치되고, 상기 박스의 내측에 웨이퍼로부터 반사된 반사광을 굴절시켜 카메라로 입사시키는 프리즘이 설치된 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  4. 청구항 1에 있어서,
    상기 검사모듈은 지지구조물을 매개로 가공 설비의 웨이퍼 이동공간 내부에 설치되고,
    상기 지지구조물은 상부프레임과, 상부프레임의 양단에 설치된 레그와, 양측 레그의 하단에 설치된 높이조절나사를 포함하며,
    상기 검사모듈의 상부플레이트가 상기 지지구조물의 상부프레임 하면에 장착되는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  5. 청구항 4에 있어서,
    상기 지지구조물과 검사모듈은 상기 높이조절나사가 신장 조절되어 상부프레임이 가공 설비의 웨이퍼 이동공간의 천장에 가압 밀착됨으로써 가공 설비에 아무런 변화를 주지 않고 웨이퍼 이동공간 내부에 설치되는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  6. 청구항 2에 있어서,
    상기 조명모듈은 측부플레이트의 전방으로 이격 설치되고, 웨이퍼의 투입 방향 전방 단부를 향해 빛을 후방으로 조사하는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  7. 청구항 2에 있어서,
    상기 조명모듈은 하단에 다수의 LED소자가 구비되고, 상기 LED소자들은 각각의 조사 방향이 상이하게 설치되어 웨이퍼의 표면에서 난반사가 이루어지도록 된 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  8. 청구항 1에 있어서,
    상기 센서A와 센서B는 상기 이송로봇의 엔드이펙터 이동 경로 외측에 설치되는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  9. 청구항 8에 있어서,
    상기 센서A는 투입 대기 위치에 있는 웨이퍼의 원주선 외측이면서 웨이퍼의 투입 진행 방향 앞쪽에 설치되는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  10. 청구항 8에 있어서,
    상기 센서B는 배출 대기 위치에 있는 웨이퍼의 원주선 외측이면서 웨이퍼의 배출 진행 방향 앞쪽의 위치와, 웨이퍼 투입시 웨이퍼의 후방 단부가 카메라의 촬영위치선을 지나치는 위치에 있을 때 그 위치에 있는 웨이퍼의 원주선 외측이면서 투입 진행 방향 뒤쪽의 위치 사이에 설치되는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  11. 청구항 1에 있어서,
    상기 센서A와 센서B가 A→B의 순서로 웨이퍼를 감지하면 상기 관리컴퓨터는 모니터에 웨이퍼 투입을 알리는 문자를 표시하고, 반대로 상기 센서A와 센서B가 B→A의 순서로 웨이퍼를 감지하면 상기 관리컴퓨터는 모니터에 웨이퍼 배출을 알리는 문자를 표시하는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  12. 청구항 1에 있어서,
    상기 프레임트리거는 모드1, 모드2, 모드3의 작동모드를 가지며, 상기 작동모드는 관리컴퓨터의 입력 인터페이스를 통해 설정될 수 있고, 상기 프레임트리거는 모드1에서는 웨이퍼 투입시에만 트리거 신호를 발생하고, 모드2에서는 웨이퍼 배출시에만 트리거 신호를 발생하며, 모드3에서는 웨이퍼 투입과 배출시 모두 트리거 신호를 발생하는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  13. 청구항 12에 있어서,
    상기 관리컴퓨터에는 해당 가공 설비에서 가공 장치로 투입되기 전 상태의 웨이퍼 정상 이미지와 가공 장치에서 가공 완료되고 배출된 상태의 웨이퍼 정상 이미지가 미리 저장되어 있고,
    상기 관리컴퓨터는 모드1에서 투입시 촬영 이미지와 해당 정상 이미지를 비교하여 결함을 검출하고, 모드2에서 배출시 촬영 이미지와 해당 정상 이미지를 비교하여 결함을 검출하며, 모드3에서 투입시 촬영 이미지와 배출시 촬영 이미지를 비교하여 결함을 검출하며,
    상기 관리컴퓨터는 모드1에서 결함이 검출된 경우 직전에 수행된 가공 공정(가공 장치)에 이상이 있는 것으로 판단하고, 모드2와 모드3에서는 현재 수행된 가공 공정(가공 장치)에 이상이 있는 것으로 판단하는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  14. 청구항 12에 있어서,
    상기 관리컴퓨터는 모드1에서 투입시 촬영된 웨이퍼 이미지 내부의 다이 이미지끼리 서로 비교하여 결함을 검출하고, 모드2에서 배출시 촬영된 웨이퍼 이미지 내부의 다이 이미지끼리 서로 비교하여 결함을 검출하며, 모드3에서는 투입시 촬영 웨이퍼 이미지의 다이 이미지 비교 및 배출시 촬영 웨이퍼 이미지의 다이 이미지 비교를 모두 실시하여 투입시 웨이퍼 이미지 및 배출시 웨이퍼 이미지의 결함을 각각 검출하며,
    상기 관리컴퓨터는 모드1에서 결함이 검출된 경우 직전에 수행된 가공 공정(가공 장치)에 이상이 있는 것으로 판단하고, 모드2에서는 현재 수행된 가공 공정(가공 장치)에 이상이 있는 것으로 판단하며, 모드3에서는 투입시 이미지에 결함이 검출되면 직전에 수행된 가공 공정(가공 장치)에 이상이 있는 것으로 판단하고 배출시 이미지에 결함이 검출되면 현재 수행된 가공 공정(가공 장치)에 이상이 있는 것으로 판단하는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 장치.
  15. 관리컴퓨터의 입력 인터페이스를 통해 프레임트리거의 작동모드가 설정되는 검사모드 설정단계(S10);
    상기 검사모드 설정단계(S10)에서 설정된 검사모드에 따라 카메라가 이동중인 웨이퍼를 촬영하는 웨이퍼 촬영단계(S20);
    상기 웨이퍼 촬영단계(S20)에서 촬영된 이미지를 미리 마련되어 관리컴퓨터에 저장되어 있는 정상 이미지와 비교하거나 촬영된 웨이퍼 이미지 내의 다이 이미지끼리 비교하는 이미지 비교단계(S30);
    상기 이미지 비교단계(S30)에서 각 모드에 따른 이미지 비교 결과, 비교된 이미지에 차이가 있으면 웨이퍼(W)에 결함이 있는 것으로 판단하는 웨이퍼 결함 판단단계(S40);
    상기 웨이퍼 결함 판단단계(S40)의 각 검사모드에서 결함이 발생한 경우 어떤 가공 공정(가공 장치)에 이상이 있는지를 판단하는 가공 공정(가공 장치) 이상 판단단계(S50)단계; 및
    상기 가공 공정(가공 장치) 이상 판단단계(S50)의 판단 결과를 관리컴퓨터가 관리자에게 통보하는 이상 통보 단계(S60);
    를 포함하는 반도체 웨이퍼 결함 검사 방법.
  16. 청구항 15에 있어서,
    상기 검사모드 설정단계(S10)에서 모드1, 모드2, 모드3 중 어느 하나가 설정되고,
    상기 웨이퍼 촬영단계(S20)에서 상기 모드1은 웨이퍼 투입시에만 웨이퍼가 촬영되고(S21: 투입시 촬영단계), 상기 모드2는 웨이퍼 배출시에만 웨이퍼가 촬영되며(S22: 배출시 촬영단계), 상기 모드3는 웨이퍼 투입과 배출시 모두 웨이퍼가 촬영되며(S23: 투입/배출시 촬영단계),
    상기 이미지 비교단계(S30)에서 모드1인 경우 투입시 촬영 이미지와 해당 정상이미지를 비교하고(S31), 모드2인 경우 배출시 촬영 이미지와 해당 정상이미지를 비교하며(S32), 모드3인 경우 투입시 촬영 이미지와 배출시 촬영 이미지를 비교하며(S33),
    상기 가공 공정(가공 장치) 이상 판단단계(S50)단계에서 모드1에서 결함이 발견되면 직전 공정의 가공 장치에 이상이 있는 것으로 판단하고(S51), 모드2와 모드3에서 결함이 발견되면 현재 공정의 가공 장치에 이상이 있는 것으로 판단(S52, S53)하는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 방법.
  17. 청구항 15에 있어서,
    상기 검사모드 설정단계(S10)에서 모드1, 모드2, 모드3 중 어느 하나가 설정되고,
    상기 웨이퍼 촬영단계(S20)에서 상기 모드1은 웨이퍼 투입시에만 웨이퍼가 촬영되고(S21: 투입시 촬영단계), 상기 모드2는 웨이퍼 배출시에만 웨이퍼가 촬영되며(S22: 배출시 촬영단계), 상기 모드3는 웨이퍼 투입과 배출시 모두 웨이퍼가 촬영되며(S23: 투입/배출시 촬영단계),
    상기 이미지 비교단계(S30)에서 모드1인 경우 투입시 촬영 이미지 내부의 다이 이미지끼리 비교하고(S31), 모드2인 경우 배출시 촬영 이미지 내부의 다이 이미지끼리 비교하며(S32), 모드3인 경우 투입시 촬영 이미지의 다이 이미지 비교와 배출시 촬영 이미지의 다이 이미지 비교를 각각 실시하며(S33),
    상기 가공 공정(가공 장치) 이상 판단단계(S50)단계에서 모드1에서 결함이 발견되면 직전 공정의 가공 장치에 이상이 있는 것으로 판단하고(S51), 모드2에서 결함이 발견되면 현재 공정의 가공 장치에 이상이 있는 것으로 판단(S52)하며, 모드3에서는 투입시 이미지에 결함이 검출되면 직전에 수행된 가공 공정(가공 장치)에 이상이 있는 것으로 판단하고 배출시 이미지에 결함이 검출되면 현재 수행된 가공 공정(가공 장치)에 이상이 있는 것으로 판단(S53)하는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 방법.
  18. 청구항 15에 있어서,
    상기 웨이퍼 촬영단계(S20)에서 상기 센서A와 센서B 중 어느 한 센서에서 on신호가 발생하면 촬영을 개시하고, 나머지 한 센서에서 on신호가 발생되면 촬영을 지속하며, 상기 센서A,B 중 어느 한 센서에서 off신호가 발생하면 관리컴퓨터가 카메라의 촬영속도를 감속시켜 정지를 위해 감속 중인 웨이퍼의 이동속도에 카메라의 촬영속도를 동기화시키는 단계를 더 실시하는 것을 특징으로 하는 반도체 웨이퍼 결함 검사 방법.
PCT/KR2022/019094 2022-08-22 2022-11-29 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법 WO2024043403A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220104751A KR102558405B1 (ko) 2022-08-22 2022-08-22 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법
KR10-2022-0104751 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024043403A1 true WO2024043403A1 (ko) 2024-02-29

Family

ID=87428394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019094 WO2024043403A1 (ko) 2022-08-22 2022-11-29 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법

Country Status (2)

Country Link
KR (1) KR102558405B1 (ko)
WO (1) WO2024043403A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117330583B (zh) * 2023-09-28 2024-03-26 北京微科思创科技有限公司 一种半导体照明检测设备及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374762B1 (ko) * 1998-07-28 2003-03-04 히다치 덴시 엔지니어링 가부시키 가이샤 결함 검사 장치 및 그 방법
JP2009113888A (ja) * 2007-11-02 2009-05-28 Ishida Co Ltd 品質検査装置
KR20100049781A (ko) * 2008-11-04 2010-05-13 두원공과대학산학협력단 표면실장부품의 검사장치
KR20150049799A (ko) * 2013-10-31 2015-05-08 삼성전자주식회사 기판의 표면 검사 방법 및 이를 수행하기 위한 장치
JP2016020824A (ja) * 2014-07-14 2016-02-04 株式会社サイオクス 基板の検査装置及び基板の検査方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931364B1 (ko) 2007-10-02 2009-12-11 주식회사 실트론 웨이퍼 결함 검사장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374762B1 (ko) * 1998-07-28 2003-03-04 히다치 덴시 엔지니어링 가부시키 가이샤 결함 검사 장치 및 그 방법
JP2009113888A (ja) * 2007-11-02 2009-05-28 Ishida Co Ltd 品質検査装置
KR20100049781A (ko) * 2008-11-04 2010-05-13 두원공과대학산학협력단 표면실장부품의 검사장치
KR20150049799A (ko) * 2013-10-31 2015-05-08 삼성전자주식회사 기판의 표면 검사 방법 및 이를 수행하기 위한 장치
JP2016020824A (ja) * 2014-07-14 2016-02-04 株式会社サイオクス 基板の検査装置及び基板の検査方法

Also Published As

Publication number Publication date
KR102558405B1 (ko) 2023-07-24

Similar Documents

Publication Publication Date Title
WO2014163375A1 (ko) 기판의 이물질 검사방법
JP2000180371A (ja) 異物検査装置および半導体工程装置
WO2024043403A1 (ko) 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법
WO2015080480A1 (ko) 웨이퍼 영상 검사 장치
WO2014204179A1 (en) Method for verifying bad pattern in time series sensing data and apparatus thereof
WO2018147478A1 (ko) 머신 비전을 활용한 와이어 하네스 케이블의 터미널 크림핑 검사 장치 및 검사 방법 그리고 그 작동 방법
WO2018016889A1 (ko) 비전검사모듈 및 그를 가지는 소자핸들러
WO2017039171A1 (ko) 레이저 가공장치 및 레이저 가공방법
WO2017204560A1 (en) Method and apparatus of detecting particles on upper surface of glass, and method of irradiating incident light
WO2012033301A4 (ko) 웨이퍼 검사장치 및 이를 구비한 웨이퍼 검사 시스템
WO2019172689A1 (ko) 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법
WO2021145516A1 (ko) 웨이퍼 모서리 결함 검사장치 및 검사방법
CN108604880B (zh) 检测太阳能晶片上的豁口的方法和***
WO2018146657A1 (ko) 검사 장치, 및 그 장치를 이용한 검사 방법
KR20170031122A (ko) 기판 처리 장치, 기판 처리 방법 및 그 기판 처리 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
WO2014192999A1 (ko) 불규칙 패턴을 가지는 대상물을 검사하는 불량 검사 시스템
WO2021033895A1 (ko) 보정용 패널, 패널검사용 보정장치 및 패널 검사장치의 보정방법
WO2020226273A1 (ko) 가상의 그리드 선을 이용한 미세 입자 계수용 이미지 센서 패키지, 미세 입자 계수 시스템 및 방법
WO2011074806A2 (ko) 기판 검사 장치 및 이를 이용한 기판 검사 방법
WO2023008637A1 (ko) 원형 배터리 검사장치
WO2021242015A1 (ko) 기판 처리 시스템 및 기판 처리 시스템의 검사 방법
WO2017126854A1 (ko) 비전검사모듈, 비전검사모듈의 초점거리조절모듈, 및 그를 가지는 소자검사시스템
WO2017069388A1 (ko) 레이저 가공 장비의 자동 검사 장치 및 방법
WO2019132599A1 (ko) 기판에 삽입된 복수의 핀의 삽입 상태를 검사하는 방법 및 기판 검사 장치
KR20100042340A (ko) 반도체 웨이퍼 후면 검사 장치 및 검사 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956609

Country of ref document: EP

Kind code of ref document: A1