WO2024043196A1 - Laminate, and method for manufacturing coreless substrate - Google Patents

Laminate, and method for manufacturing coreless substrate Download PDF

Info

Publication number
WO2024043196A1
WO2024043196A1 PCT/JP2023/029908 JP2023029908W WO2024043196A1 WO 2024043196 A1 WO2024043196 A1 WO 2024043196A1 JP 2023029908 W JP2023029908 W JP 2023029908W WO 2024043196 A1 WO2024043196 A1 WO 2024043196A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
diffusion prevention
plating
metal layer
resin
Prior art date
Application number
PCT/JP2023/029908
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 喜多村
和晃 川下
隼斗 中川
公幸 野原
豪志 信國
Original Assignee
Mgcエレクトロテクノ株式会社
米沢ダイヤエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mgcエレクトロテクノ株式会社, 米沢ダイヤエレクトロニクス株式会社 filed Critical Mgcエレクトロテクノ株式会社
Publication of WO2024043196A1 publication Critical patent/WO2024043196A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a laminate having a first metal layer provided on at least one side of a core resin layer and provided with a peeling means, and a method for manufacturing a coreless substrate using the laminate.
  • the present invention has been made based on these problems, and provides a laminated layer that allows the first metal layer to be easily removed after separating the core resin layer and that also allows the formation of a good protective plating layer.
  • the present invention aims to provide a method for manufacturing a coreless substrate and a coreless substrate.
  • the invention is as follows. [1] a core resin layer; a first metal layer provided on at least one side of the core resin layer and provided with a peeling means; a diffusion prevention layer provided on a surface of the first metal layer opposite to the core resin layer; A laminate having. [2] The laminate according to [1], wherein a plating resist is provided on a surface of the diffusion prevention layer opposite to the first metal layer. [3] The laminate according to [2], which has a protective plating layer in a region where the plating resist is not provided on the opposite side of the first metal layer of the diffusion prevention layer. [4] The laminate according to [1], which has a plating resist together with the diffusion prevention layer on the surface of the first metal layer opposite to the core resin layer.
  • the diffusion prevention layer contains at least one selected from the group consisting of nickel, aluminum, iron, zinc, tin, lead, chromium, cobalt, silver, and palladium.
  • the thickness from the end surface of the first metal layer on the diffusion prevention layer side to the peeling means is 6 ⁇ m or more.
  • a method for manufacturing a coreless board including: [9] The method for producing a coreless substrate according to [8], which includes a plating resist forming step of forming a plating resist on a surface of the diffusion preventing layer opposite to the first metal layer after the diffusion preventing layer forming step.
  • a plating resist forming step of forming a plating resist on the surface of the first metal layer opposite to the core resin layer Before the diffusion prevention layer forming step, a plating resist forming step of forming a plating resist on the surface of the first metal layer opposite to the core resin layer, The method for manufacturing a coreless substrate according to [8], wherein the diffusion prevention layer is formed in a region where a plating resist is not formed on a surface of the first metal layer opposite to the core resin layer.
  • the first metal layer provided with a peeling means is provided on at least one side of the core resin layer, and the diffusion prevention layer is provided on the side of the first metal layer opposite to the core resin layer. Since the diffusion prevention layer is provided, the diffusion prevention layer can be used as an etching stopper when the remaining first metal layer is removed by etching after the core resin layer is separated and removed by the peeling means. Therefore, the remaining first metal layer can be easily removed. Moreover, since the constituent elements of the first metal layer and the protective plating layer formed thereon can be suppressed from diffusing into each other, a good protective plating layer can be formed.
  • the core resin layer can be removed by the peeling means after forming the wiring board on the first metal layer.
  • the wiring board can be reinforced and damage can be suppressed.
  • FIG. 1 is a diagram showing the configuration of a laminate according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating steps in a method for manufacturing the laminate shown in FIG. 1.
  • FIG. FIG. 2 is a diagram illustrating steps of a first manufacturing method of a wiring board with a support and a coreless board using the laminate shown in FIG. 1.
  • FIG. FIG. 4 is a diagram showing a process subsequent to FIG. 3;
  • FIG. 5 is a diagram showing a process subsequent to FIG. 4;
  • FIG. 2 is a diagram illustrating steps of a second manufacturing method for a wiring board with a support and a coreless board using the laminate shown in FIG. 1.
  • FIG. FIG. 7 is a diagram showing a process subsequent to FIG. 6;
  • FIG. 8 is a diagram showing a process subsequent to FIG. 7;
  • FIG. 2 is a diagram illustrating steps of a third manufacturing method for a wiring board with a support and a coreless board using the laminate shown in FIG. 1.
  • FIG. 10 is a diagram showing a process following FIG. 9.
  • FIG. 12 is a diagram illustrating steps in the method for manufacturing the laminate shown in FIG. 11.
  • FIG. 1 shows the configuration of a laminate 10 according to a first embodiment of the present invention.
  • This laminate 10 includes a core resin layer 11, a first metal layer 12 provided on at least one side of the core resin layer 11 and provided with a peeling means, and a core resin layer 11 of the first metal layer 12. and a plating resist 14 provided on the surface of the diffusion prevention layer 13 opposite to the first metal layer 12.
  • a protective plating layer 15 may be provided on the side opposite to the first metal layer 12 of 13, a protective plating layer 15 may be provided in a region where the plating resist 14 is not provided.
  • This laminate 10 can be used, for example, when manufacturing a wiring board 20 with a support (see, for example, FIGS. 3 and 4) and a coreless board 30 (see, for example, FIG. 5).
  • the wiring board 20 with a support includes a support 10A in which the first metal layer 12 is provided on at least one side of the core resin layer 11, and a wiring board 20A provided on the first metal layer 12. (For example, see FIGS. 3 and 4).
  • the wiring board 20 with a support is also called a printed wiring board with a support or a package board with a support, and includes a printed wiring board or a package board for mounting a semiconductor element as the wiring board 20A.
  • a printed wiring board or a package substrate for mounting a semiconductor element constitutes an electronic component mounting board by mounting an electronic component element such as a semiconductor element, for example.
  • the wiring board 20A is not limited to one on which a semiconductor element is mounted, but may be one on which a surface-mounted electronic component element such as an LED (Light Emitting Diode) element, a capacitor, a resistor, a coil, etc. is mounted.
  • the coreless board 30 is obtained by separating and removing the support body 10A from the support-attached wiring board 20 (for example, see FIG. 5).
  • the core resin layer 11 is for increasing the rigidity of the wiring board 20A, suppressing warping, and improving handling properties in the manufacturing process of the wiring board 20A or the mounting process of semiconductor elements.
  • FIG. 1 shows a case where the first metal layer 12 is provided on one side of the core resin layer 11, the first metal layer 12 may be provided on both sides of the core resin layer 11. You may also do so.
  • the core resin layer 11 is not particularly limited, but may be made of, for example, a prepreg made by impregnating a base material such as glass cloth with an insulating resin material (insulating material) such as a thermosetting resin, or an insulating film. It can be constructed from materials etc.
  • the thickness of the core resin layer 11 is not particularly limited as it is appropriately set as desired, but is preferably 1 ⁇ m or more, for example. This is because if the thickness of the core resin layer 11 is less than 1 ⁇ m, the wiring board 20A may be defective in molding.
  • Prepreg is made by impregnating or coating a base material with an insulating material such as a resin composition.
  • the base material is not particularly limited, and well-known materials can be used as appropriate.
  • the material constituting the base material include inorganic fibers such as E glass, D glass, S glass, or Q glass; organic fibers such as polyimide, polyester, or tetrafluoroethylene; and mixtures thereof.
  • the base material is not particularly limited, but for example, those having shapes such as woven fabric, nonwoven fabric, roving, chopped strand mat, surfacing mat, etc. can be used as appropriate.
  • the material and shape of the base material are selected depending on the intended use and performance of the molded article, and if necessary, it is also possible to use one or more materials and shapes.
  • the thickness of the base material is not particularly limited as long as the thickness of the core resin layer 11 falls within the above-mentioned range.
  • a base material one that has been surface-treated with a silane coupling agent, etc., or one that has been mechanically opened can be used, and these base materials are suitable in terms of heat resistance, moisture resistance, and processability. It is.
  • the insulating material is not particularly limited, and any known resin composition used as an insulating material for printed wiring boards or package substrates for mounting semiconductor elements can be appropriately selected and used.
  • a thermosetting resin having good heat resistance and chemical resistance can be used as a base.
  • Thermosetting resins are not particularly limited, and include, for example, polyimide resins, phenol resins, epoxy resins, cyanate resins, maleimide resins, modified polyphenylene ethers, bismaleimide triazine resins, isocyanate resins, benzocyclobutene resins, and vinyl resins. It will be done. These thermosetting resins may be used alone or in combination of two or more.
  • the polyimide resin is not particularly limited, and commercially available products can be appropriately selected and used.
  • a solvent-soluble polyimide resin synthesized by the manufacturing method described in JP-A-2005-15629 or a block copolymerized polyimide resin can be used.
  • block copolymer polyimide resins include block copolymer polyimide resins described in International Publication No. WO2010-073952.
  • the block copolymerized polyimide resin consists of a structure A in which an imide oligomer consisting of a second structural unit is bonded to the end of an imide oligomer consisting of a first structural unit, and a structure A consisting of a second structural unit.
  • copolymerized polyimide resin having a structure in which structure B, in which an imide oligomer consisting of a first structural unit is bonded to the end of the imide oligomer, is alternately repeated. Note that the second structural unit is different from the first structural unit.
  • block copolymerized polyimide resins are produced by reacting a tetracarboxylic dianhydride and a diamine in a polar solvent to form an imide oligomer, and then reacting the tetracarboxylic dianhydride with another diamine or another tetracarboxylic dianhydride. It can be synthesized by a sequential polymerization reaction in which an acid dianhydride and a diamine are added and imidized.
  • These polyimide resins may be used alone or in combination of two or more.
  • the phenol resin is not particularly limited, and one or more (preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) per molecule is used. ) Generally known compounds or resins can be used as long as they have a phenolic hydroxy group.
  • bisphenol A type phenol resin bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolak resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolak type phenol resin, biphenyl Aralkyl type phenolic resin, cresol novolac type phenolic resin, polyfunctional phenolic resin, naphthol resin, naphthol novolak resin, polyfunctional naphthol resin, anthracene type phenolic resin, naphthalene skeleton modified novolak type phenolic resin, phenol aralkyl type phenolic resin, naphthol aralkyl type
  • examples include phenolic resins, dicyclopentadiene type phenolic resins, biphenyl type phenolic resins, alicyclic phenolic resins, polyol type phenolic resins, phosphorus-containing phenolic resins, and hydroxyl
  • epoxy resins have excellent heat resistance, chemical resistance, and electrical properties, and are relatively inexpensive, so they can be suitably used as insulating materials.
  • the epoxy resin has one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) epoxy groups in one molecule.
  • epoxy resin has one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) epoxy groups in one molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin.
  • cresol novolak type epoxy resin bisphenol A novolac type epoxy resin
  • diglycidyl ether of biphenol diglycidyl ether of naphthalene diol
  • diglycidyl ether of phenols diglycidyl ether of alcohol
  • examples thereof include alkyl substituted products, halides, and hydrogenated products.
  • These epoxy resins may be used alone or in combination of two or more.
  • the curing agent used with this epoxy resin can be used without limitation as long as it cures the epoxy resin.
  • polyfunctional phenols, polyfunctional alcohols, amines, imidazole compounds, acid anhydrides, organic Examples include phosphorus compounds and halides thereof.
  • These epoxy resin curing agents may be used alone or in combination of two or more.
  • Cyanate resin is a resin that produces a cured product having triazine rings as repeating units when heated, and the cured product has excellent dielectric properties. Therefore, it is particularly suitable when high frequency characteristics are required.
  • the cyanate resin has one or more (preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) cyanato groups per molecule ( There are no particular limitations on the compound or resin as long as it has an aromatic moiety in its molecule substituted with a cyanate ester group, but examples include 2,2-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)propane, phenyl)ethane, 2,2-bis(3,5dimethyl-4-cyanatophenyl)methane, 2,2-(4-cyanatophenyl)-1,1,1,3,3,3-hexafluoropropane , ⁇ , ⁇ '-bis(4-cyanatophenyl)-m-
  • 2,2-bis(4-cyanatophenyl)propane is preferred because it has a particularly good balance between the dielectric properties and curability of the cured product and is inexpensive.
  • One type of cyanate resin such as these cyanate ester compounds may be used alone, or two or more types may be used in combination. Further, a portion of the cyanate ester compound may be oligomerized into a trimer or a pentamer in advance.
  • a curing catalyst and a curing accelerator can also be used together with the cyanate resin.
  • the curing catalyst for example, metals such as manganese, iron, cobalt, nickel, copper, and zinc can be used.
  • organic metal salts such as 2-ethylhexanoate and octylate, and acetylacetone Examples include organometallic complexes such as complexes.
  • One type of curing catalyst may be used alone, or two or more types may be used in combination.
  • phenols as the curing accelerator, such as monofunctional phenols such as nonylphenol and paracumylphenol, bifunctional phenols such as bisphenol A, bisphenol F, and bisphenol S, or phenol novolak and cresol novolak. Polyfunctional phenols and the like can be used.
  • One type of curing accelerator may be used alone, or two or more types may be used in combination.
  • the maleimide resin has one or more (preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) maleimide groups in one molecule.
  • Generally known compounds or resins can be used as long as they have the following properties.
  • Modified polyphenylene ether is useful from the viewpoint of being able to improve the dielectric properties of a cured product.
  • modified polyphenylene ethers include poly(2,6-dimethyl-1,4-phenylene) ether, alloyed polymers of poly(2,6-dimethyl-1,4-phenylene) ether and polystyrene, and poly(2,6-dimethyl-1,4-phenylene) ether.
  • functional groups such as amine groups, epoxy groups, carboxyl groups, and styryl groups are introduced at the end of the polymer chain, and amine groups and epoxy groups are introduced into the side chains of the polymer chain.
  • carboxyl group, styryl group, methacrylic group, etc. may be introduced.
  • the isocyanate resin is not particularly limited, and examples thereof include isocyanate resins obtained by a dehydrohalogenation reaction between phenols and cyanogen halides.
  • examples of the isocyanate resin include 4,4'-diphenylmethane diisocyanate MDI, polymethylene polyphenyl polyisocyanate, tolylene diisocyanate, and hexamethylene diisocyanate. These isocyanate resins may be used alone or in combination of two or more.
  • the benzocyclobutene resin is not particularly limited as long as it contains a cyclobutene skeleton, and for example, divinylsiloxane-bisbenzocyclobutene (manufactured by The Dow Chemical Company) can be used. These benzocyclobutene resins may be used alone or in combination of two or more.
  • the vinyl resin is not particularly limited as long as it is a polymer or copolymer of vinyl monomers.
  • Vinyl monomers are not particularly limited, and include, for example, (meth)acrylic acid ester derivatives, vinyl ester derivatives, maleic acid diester derivatives, (meth)acrylamide derivatives, styrene derivatives, vinyl ether derivatives, vinyl ketone derivatives, olefin derivatives, maleimide derivatives, (Meth)acrylonitrile is mentioned. These vinyl resins may be used alone or in combination of two or more.
  • thermoplastic resin can also be blended into the resin composition used as the insulating material, taking dielectric properties, impact resistance, film processability, etc. into consideration.
  • the thermoplastic resin is not particularly limited, and examples thereof include fluororesin, polycarbonate, polyetherimide, polyetheretherketone, polyacrylate, polyamide, polyamideimide, polybutadiene, and the like.
  • One type of thermoplastic resin may be used alone, or two or more types may be used in combination.
  • the fluororesin is not particularly limited, and examples thereof include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride. These fluororesins may be used alone or in combination of two or more.
  • polyamide-imide resin is useful because it has excellent moisture resistance and is also a good adhesive for metals.
  • the raw materials for the polyamide-imide resin are not particularly limited, but the acidic component includes trimellitic anhydride and trimellitic anhydride monochloride, and the amine component includes metaphenylenediamine, paraphenylenediamine, , 4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, bis[4-(aminophenoxy)phenyl]sulfone, 2,2'-bis[4-(4-aminophenoxy)phenyl]propane, and the like.
  • the polyamide-imide resin may be modified with siloxane to improve drying properties, and in this case, siloxane diamine can be used as the amino component.
  • siloxane diamine can be used as the amino component.
  • a filler may be mixed in the resin composition used as the insulating material.
  • Fillers include, but are not particularly limited to, metal oxides (including hydrates) such as alumina, white carbon, titanium white, titanium oxide, zinc oxide, magnesium oxide, and zirconium oxide, aluminum hydroxide, boehmite, Metal hydroxides such as magnesium hydroxide, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, Aerosil, hollow silica, inorganic materials such as clay, kaolin, talc, mica, glass powder, quartz powder, and glass balloons
  • organic fillers organic fillers
  • organic fillers such as styrene-type, butadiene-type, acrylic-type rubber powders, core-shell type rubber powders, silicone resin powders, silicone rubber powders, silicone composite powders, etc. organic fillers). These fillers may be used alone or in combination of two or more.
  • the resin composition used as the insulating material may contain an organic solvent.
  • Organic solvents are not particularly limited, and include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and trimethylbenzene; ketone solvents such as acetone, methyl ethyl ketone, and methyl ibutyl ketone; and tetrahydrofuran.
  • Ether solvents alcohol solvents such as isopropanol and butanol
  • ether alcohol solvents such as 2-methoxyethanol and 2-butoxyethanol
  • N-methylpyrrolidone N,N-dimethylformamide, and N,N-dimethylacetamide
  • An amide solvent or the like can be used in combination as desired.
  • the amount of solvent in the varnish is preferably in the range of 40% by mass to 80% by mass based on the entire resin composition. Further, the viscosity of the varnish is preferably in the range of 20 cP to 100 cP (20 mPa ⁇ s to 100 mPa ⁇ s).
  • the resin composition used as the insulating material may contain a flame retardant.
  • Flame retardants include, but are not particularly limited to, bromine compounds such as decabromodiphenyl ether, tetrabromo bisphenol A, tetrabromo phthalic anhydride, and tribromophenol, triphenyl phosphate, tricyl phosphate, and cresyl phosphate.
  • Known and customary flame retardants such as phosphorus compounds such as dildiphenyl phosphate, red phosphorus and its modified products, antimony compounds such as antimony trioxide and antimony pentoxide, and triazine compounds such as melamine, cyanuric acid, and melamine cyanurate can be used. can.
  • the resin composition used as an insulating material may be further added with the above-mentioned curing agents, curing accelerators, thermoplastic particles, colorants, ultraviolet opaque agents, antioxidants, reducing agents, etc. as necessary. Additives and fillers can be added.
  • the prepreg is made of a resin composition (varnish) such that, for example, the amount of the resin composition adhered to the base material described above is 20% by mass or more and 90% by mass or less in terms of resin content in the prepreg after drying.
  • a resin composition varnish
  • After impregnating or coating a base material with (containing) a base material it can be obtained as a prepreg in a semi-cured state (B stage state) by heating and drying at a temperature of 100° C. or higher and 200° C. or lower for 1 minute to 30 minutes.
  • GHPL-830NS product name
  • GHPL-830NSF product name manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the insulating film material can be composed of, for example, the resin composition of the insulating material described in connection with the prepreg, and can be obtained by processing these resin compositions into a film form.
  • the first metal layer 12 constitutes the support body 10A together with the core resin layer 11.
  • the first metal layer 12 can be made of, for example, metal foil with a carrier.
  • the metal foil with a carrier is, for example, a metal foil 12B laminated on a carrier 12A via a peeling layer (not shown) serving as a peeling means.
  • a commercial product can be used as the metal foil with a carrier, and for example, MT18SD-H-T5 (product name) manufactured by Mitsui Mining & Mining Co., Ltd. can be used.
  • the thickness of the first metal layer 12 is appropriately set as desired and is not particularly limited, but may be, for example, 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the carrier 12A can be made of various metal foils, for example, but is preferably made of copper foil in terms of uniformity of thickness and corrosion resistance of the foil.
  • the thickness of the carrier 12A is thicker than the thickness of the metal foil 12B, and can be, for example, 3 ⁇ m or more and 100 ⁇ m or less, preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 6 ⁇ m or more and 30 ⁇ m or less.
  • the peeling layer is for making it possible to easily peel the carrier 12A and the metal foil 12B.
  • the material for the release layer is not particularly limited, and various known materials can be used as appropriate.
  • organic materials include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids, and the like.
  • nitrogen-containing organic compound include triazole compounds, imidazole compounds, etc. Among them, triazole compounds are preferable because their peelability is easily stable.
  • Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino- Examples include 1H-1,2,4-triazole.
  • Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like.
  • Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like.
  • examples of inorganic materials include metals or alloys made of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, etc., or oxides thereof.
  • the thickness of the release layer can be, for example, 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
  • the metal foil 12B can be made of various metal foils, for example, but is preferably made of copper foil in terms of uniformity of thickness and corrosion resistance of the foil.
  • the thickness of the metal foil 12B is appropriately set as desired and is not particularly limited, but can be, for example, 0.5 ⁇ m or more and 70 ⁇ m or less, preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 6 ⁇ m or more and 30 ⁇ m or less. .
  • the first metal layer 12 may have the carrier 12A on the core resin layer 11 side and the metal foil 12B on the diffusion prevention layer 13 side, or the metal foil 12B on the core resin layer 11 side and the carrier 12A on the diffusion prevention layer 13 side. It may be set to the side of Note that FIG. 1 shows a case where the carrier 12A is on the core resin layer 11 side and the metal foil 12B is on the diffusion prevention layer 13 side.
  • the thickness of the first metal layer 12 from the end surface on the diffusion prevention layer 13 side to the peeling means is preferably 6 ⁇ m or more, and may be 10 ⁇ m or more.
  • the thickness from the end face of the first metal layer 12 on the diffusion prevention layer 13 side to the peeling means is preferably 70 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less. This is because if the first metal layer 12 remaining on the diffusion prevention layer 13 side becomes too thick, it will take time to remove it by etching.
  • the first metal layer 12 can also be made of a metal foil having a peeling layer that is a peeling means.
  • the release layer is stacked on the core resin layer 11 side.
  • the release layer include a layer containing at least a silicon compound, and can be formed, for example, by applying a silicon compound made of a single silane compound or a combination of two or more silane compounds on a metal foil.
  • the means for applying the silicon compound is not particularly limited, and for example, known means such as coating can be used.
  • the adhesive surface of the metal foil with the release layer can be subjected to rust prevention treatment (forming a rust prevention treatment layer).
  • the rust prevention treatment can be performed using nickel, tin, zinc, chromium, molybdenum, cobalt, or an alloy thereof.
  • the thickness of the release layer is not particularly limited, but from the viewpoint of removability and peelability, it is preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and particularly preferably 20 nm or more and 60 nm or less.
  • the metal foil copper foil is preferable from the viewpoint of uniformity of thickness and corrosion resistance of the foil. Also in this case, the thickness from the end surface of the first metal layer 12 on the diffusion prevention layer 13 side to the peeling means is preferably as described above.
  • the diffusion prevention layer 13 functions as an etching stopper when the remaining first metal layer 12 is removed by etching after the core resin layer 11 is separated and removed by the peeling means, and also acts as an etching stopper on the first metal layer 12. This is to prevent the constituent elements of the first metal layer 12 and the protective plating layer 15 from diffusing into each other and corroding the protective plating layer 15 when the protective plating layer 15 is provided in the protective plating layer 15 .
  • the diffusion prevention layer 13 contains at least one member selected from the group consisting of nickel, aluminum, iron, zinc, tin, lead, chromium, cobalt, silver, and palladium. This is because the above-mentioned functions can be obtained.
  • the diffusion prevention layer 13 is provided, for example, in contact with the first metal layer 12.
  • the thickness of the diffusion prevention layer 13 can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the plating resist 14 is provided, for example, in contact with the diffusion prevention layer 13 and has openings corresponding to the terminal positions of the wiring board 20A formed on the first metal layer 12.
  • the terminal position of the wiring board 20A is, for example, the position of an external connection terminal when the wiring board 20A is mounted on an electronic device by soldering or the like.
  • the plating resist 14 contains, for example, an insulating resin material, and can be composed of a dry film resist, the insulating film material or prepreg described in the core resin layer 11, or the like.
  • the plating resist 14 may be removed after forming the diffusion prevention layer 13 and the protective plating layer 15, but the wiring board 20A may be formed thereon without being removed. This is because after the support 10A is separated and removed from the support-attached wiring board 20 by the peeling means, it can function as a solder resist layer.
  • the insulating resin material has a glass transition temperature of 150° C. or higher. This is because if the glass transition temperature is lower than 150° C., bulges may occur during the processing process and the wiring board 20A may be damaged.
  • the insulating resin material in the plating resist 14 includes materials with excellent heat resistance, such as polyimide resin, epoxy resin, cyanate resin, maleimide resin, bismaleimide triazine resin, polyamideimide resin, nylon resin that is polyamide resin, and , fluororesin. Among these, it is preferable to include at least one selected from polyimide resins, bismaleimide triazine resins, and fluororesins.
  • the thickness of the plating resist 14 is appropriately set as desired, but can be, for example, 1 ⁇ m or more and 100 ⁇ m or less, preferably 1 ⁇ m or more and 30 ⁇ m or less, and more preferably 1 ⁇ m or more and 9 ⁇ m or less. This is to reduce the total thickness of the wiring board 20A.
  • the protective plating layer 15 protects the surface of the external connection terminal of the wiring board 20A. It is preferable that the protective plating layer 15 has, for example, a gold plating layer 15A made of gold and a nickel plating layer 15B made of nickel from the diffusion prevention layer 13 side.
  • the thickness of the gold plating layer 15A can be, for example, 0.05 ⁇ m or more and 0.1 ⁇ m or less, and the thickness of the nickel plating layer 15B can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • FIG. 2 shows a method for manufacturing the laminate 10.
  • a core resin layer 11 and a first metal layer 12 provided on at least one surface side of the core resin layer 11 and provided with a peeling means are provided.
  • a support 10A is prepared (support preparation step). Specifically, for example, a metal foil with a carrier or a metal foil having a release layer is placed on at least one side of the core resin layer 11, and heated and pressurized to form the support 10A.
  • a diffusion prevention layer 13 is formed by electrolytic plating on the surface of the first metal layer 12 opposite to the core resin layer 11 (diffusion prevention layer forming step). .
  • a plating resist 14 is formed on the surface of the diffusion prevention layer 13 opposite to the first metal layer 12 (plating resist forming step).
  • the plating resist 14 is formed by printing a circuit pattern on the dry film resist and developing it.
  • a metal foil with a carrier and a resin layer is placed on the diffusion prevention layer 13 so that the resin layer is on the diffusion prevention layer 13 side, heated and pressurized to peel off the carrier, and then the metal foil is A dry film resist is laminated on top, baked and developed to form a resist pattern, and then the metal foil is etched to form a mask and the resist pattern is removed. The uncovered portions are removed by laser processing or the like, and the mask is removed to form a plating resist 14.
  • a protective plating layer 15 is applied by electrolytic plating to a region where the plating resist 14 is not provided. (protective plating layer formation process). Specifically, for example, the gold plating layer 15A and the nickel plating layer 15B are laminated in this order by electrolytic plating.
  • the laminate 10 can be used when manufacturing the wiring board 20 with a support and the coreless board 30.
  • 3 to 5 illustrate each step of the first manufacturing method of the wiring board 20 with a support and the coreless board 30.
  • the laminate 10 is formed as described above (support preparation step, diffusion prevention layer formation step, plating resist formation step, and protective plating layer formation step).
  • FIG. 3A for example, on the opposite side of the protective plating layer 15 from the diffusion prevention layer 13, a region where the plating resist 14 is not provided is subjected to electrolytic plating, for example, electrolytic copper plating.
  • One wiring conductor 21 is formed (first wiring conductor forming step).
  • first insulating layer 22 is formed on the first wiring conductor 21 and the plating resist 14, and a second wiring conductor 23 is formed thereon.
  • a wiring board 20 with a support having two layers of wiring conductors is obtained (first insulating layer forming step/second wiring conductor forming step).
  • first, for example, the surface of the first wiring conductor 21 is subjected to a roughening treatment in order to increase its adhesion to the first insulating layer 22.
  • the roughening treatment is not particularly limited, and any known means can be used as appropriate, including, for example, means using a copper surface roughening solution.
  • a carrier-attached metal foil with a resin layer is placed on the first wiring conductor 21 and the plating resist 14 so that the resin layer is in contact with the first wiring conductor 21, and heated and pressurized to form a carrier.
  • the carrier-attached metal foil with a resin layer is, for example, a resin layer laminated on the metal foil side of the carrier-attached metal foil, with the resin layer serving as the first insulating layer 22 and the metal foil serving as the second metal layer. Become.
  • the second wiring conductor 23 is formed by a known method such as a subtractive construction method or a semi-additive construction method.
  • the subtractive construction method for example, first, at least one of electroless plating and electrolytic plating is applied to the surface on which the first non-through hole 22A is formed, and the first wiring is formed on the inner wall of the first non-through hole 22A.
  • a first connection via 22B is formed to connect the conductor 21 and the second metal layer, and the thickness of the second metal layer is increased, and the surface is leveled if necessary.
  • a dry film resist or the like is laminated, a negative mask is attached, a circuit pattern is printed and developed, and an etching resist is formed.
  • the second metal layer with increased thickness is etched using the etching resist as a mask to form the second wiring conductor 23, and the etching resist is removed.
  • the first non-through hole 22A is formed, and then the second metal layer is completely removed by etching or the like to expose the first insulating layer 22.
  • electroless plating is performed to form the first connection via 22B on the inner wall of the first non-through hole 22A, and to form an electroless plating layer on the first insulating layer 22.
  • a resist layer is provided by thermocompression bonding a dry film on the electroless plating layer, and exposure and development are performed to form a resist pattern and remove scum (resist residue).
  • an electrolytic plating layer is formed on the surface of the electroless copper plating layer by electrolytic plating, and after removing the resist pattern, the exposed electroless plating layer is etched to form an electroless plating layer.
  • a second wiring conductor 23 made of a plating layer and an electrolytic plating layer is formed.
  • the same steps as the first insulating layer forming step and the second wiring conductor forming step are repeated n times, as shown in FIG. ) layer of wiring conductors may be formed (build-up process).
  • FIG. 3C the same steps as the first insulating layer forming step and the second wiring conductor forming step are repeated four times to form a wiring board 20 with a support having a build-up structure and having six layers of wiring conductors.
  • the figure shows the case where . Specifically, for example, the (m+1)th insulating layer 24 is formed on the (m+1)th insulating layer 22, 24 and the (m+1)th wiring conductor 23, 25.
  • the (m+2)th wiring conductor forming step of forming the (m+2)th wiring conductor 25 by applying at least one of electrolytic plating and electroless plating to the surface thus formed is performed n times in this order to form a build-up structure. (build-up process).
  • m and n are integers of 1 or more, provided that m ⁇ n.
  • solder resist layer 26 is formed thereon so that the second wiring conductor 23 or the (n+2)th wiring conductor 25 is partially exposed (solder resist layer forming step).
  • the method for forming the solder resist layer 26 is not particularly limited, and any known means can be used as appropriate.
  • a protective plating layer 27 is formed (plating finishing step). Specifically, for example, a nickel plating layer 27A made of nickel and a gold plating layer 27B made of gold are laminated in this order from the side of the second wiring conductor 23 or the (n+2)th wiring conductor 25.
  • the core resin layer 11 is separated and removed from the wiring board 20 with a support (core resin layer separation and removal step).
  • the core resin layer 11 is separated and removed, for example, by peeling the first metal layer 12 using a peeling means (for example, a peeling layer or a peeling layer).
  • a peeling means for example, a peeling layer or a peeling layer.
  • the core resin layer 11 and, in some cases, a part of the first metal layer 12 are peeled off. At least a portion of the peeling means for the first metal layer 12 may be peeled off together with at least the core resin layer 11, or may remain without being peeled off.
  • first metal layer/diffusion prevention layer removal After separating and removing the core resin layer 11, for example, as shown in FIG. 5(G), the remaining first metal layer 12 and diffusion prevention layer 13 are removed (first metal layer/diffusion prevention layer removal). process).
  • the means for removing the first metal layer 12 and the diffusion prevention layer 13 is not particularly limited, but can be removed using, for example, a sulfuric acid-based or hydrogen peroxide-based etching solution.
  • the sulfuric acid-based or hydrogen peroxide-based etching solution is not particularly limited, and those used in the industry can be used.
  • the diffusion prevention layer 13 since the diffusion prevention layer 13 is provided between the first metal layer 12 and the protective plating layer 15, the diffusion prevention layer 13 serves as an etching stopper, and the remaining first metal layer 12 can be easily removed. can do.
  • a coreless substrate 30 is thereby obtained. Note that in this coreless substrate 30, the plating resist 14 is used as a solder resist layer.
  • ⁇ Second manufacturing method of wiring board with support and coreless board> 6 to 8 illustrate the steps of the second manufacturing method for the wiring board 20 with support and the coreless board 30.
  • the plating resist 14 is removed using, for example, a resist stripping solution.
  • This method is the same as the first manufacturing method except that it includes a removal step. That is, the second manufacturing method includes, for example, a support preparation step (see FIG. 2(A)), a diffusion prevention layer forming step (see FIG. 2(B)), and a plating resist forming step (see FIG. 2(C)). , protective plating layer forming step (see FIG.
  • first wiring conductor forming step see FIG. 3(A)
  • plating resist removal step see FIG. 6(A)
  • first insulating layer forming step Process - Second wiring conductor formation process (see Figure 6 (B)), build-up process (see Figure 6 (C)), solder resist layer formation process (see Figure 7 (D)), plating finishing process (see Figure 7 (E)), a core resin layer separation/removal step (see FIG. 8(F)), and a first metal layer/diffusion prevention layer removal step (see FIG. 8(G)). Therefore, detailed description of the same steps will be omitted with reference to the drawings.
  • the first insulating layer 22 is used as a solder resist layer.
  • FIGS. 9 and 10 illustrate the steps of the third manufacturing method for the wiring board 20 with support and the coreless board 30.
  • the third manufacturing method includes a support substrate lamination step of laminating the support substrate 28 after the plating finishing step, and a support substrate removal step of removing the support substrate 28 after the first metal layer/diffusion prevention layer removal step.
  • This method is the same as the first manufacturing method or the second manufacturing method except that it includes steps. Since the steps from the support preparation step to the plating finishing step are the same as those in the first manufacturing method or the second manufacturing method, detailed explanations will be omitted. Note that FIGS. 9 and 10 show the case where the plating resist 14 is used without being removed, similarly to the first manufacturing method.
  • the support substrate 28 is for reinforcing the wiring board 20A and suppressing damage when at least the core resin layer 11 is separated and removed in the subsequent core resin layer separation and removal process.
  • the support substrate 28 may have a thermosetting resin layer in addition to the thermoplastic resin layer, for example, or may be composed of only the thermoplastic resin layer. This is because thermoplastic resins have higher toughness and higher strength than thermosetting resins.
  • the material of the thermoplastic resin layer is not particularly limited, and examples thereof include dry film resist. Among these, it is preferable to use a photosensitive resin layer made of a photosensitive thermoplastic resin. This is because the process of forming wiring conductors can be used. Examples of photosensitive thermoplastic resins include dry film resists used for patterning.
  • thermoplastic resin layer may be composed of, for example, a UV peelable resin layer or a thermally peelable resin layer, and is composed of a photosensitive resin layer, a UV peelable resin layer, and a thermally peelable resin layer. It is preferable to have at least one selected from the group.
  • the supporting substrate 28 can be laminated by, for example, placing a film-like or sheet-like supporting substrate 28 on the solder resist layer 26 and the protective plating layer 27 and laminating them by pressure bonding.
  • the step of laminating the photosensitive resin layer includes, for example, arranging the photosensitive resin layer on the solder resist layer 26 and the protective plating layer 27, After laminating, the method may include a step of exposing and curing the entire surface of the photosensitive resin layer. By exposing and curing the entire surface of the photosensitive resin layer, the adhesion to the solder resist layer 26 and the protective plating layer 27 is increased.
  • the step of laminating the UV peelable resin layer or the thermally peelable resin layer includes, for example, the solder resist layer 26 and the protective plating layer.
  • the method may include a step of disposing a UV peelable resin layer or a heat peelable resin layer on the layer 27 and laminating the layer.
  • the thickness of the supporting substrate 28 is appropriately set as desired and is not particularly limited, but can be, for example, 1 ⁇ m or more, preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the support substrate lamination step for example, as shown in FIG. resin layer separation and removal process.
  • the core resin layer separation and removal step for example, as shown in FIG. 10C, the remaining first metal layer 12 and diffusion prevention layer are removed in the same manner as in the first manufacturing method and the second manufacturing method. 13 (first metal layer/diffusion prevention layer removal step).
  • the support substrate 28 is removed to obtain the coreless substrate 30 (support substrate removal step).
  • the means for removing the support substrate 28 is not particularly limited, and can be appropriately selected depending on the material of the support substrate 28.
  • the support substrate 28 may be removed, for example, with a chemical solution such as an aqueous sodium hydroxide solution, a laser, or a plasma treatment.
  • the layer may be peeled off and removed by irradiation with light in the ultraviolet region, and in the case of a thermally peelable resin layer, it may be peeled off and removed by heat treatment.
  • the first metal layer 12 provided with a peeling means is provided on at least one side of the core resin layer 11, and the core resin layer 11 of the first metal layer 12 is Since the diffusion prevention layer 13 is provided on the opposite surface, the diffusion prevention layer 13 is removed when the remaining first metal layer 12 is removed by etching after the core resin layer 11 is separated and removed by the peeling means. It can be used as an etching stopper. Therefore, the remaining first metal layer 12 can be easily removed. Moreover, since the constituent elements of the first metal layer 12 and the protective plating layer 15 formed thereon can be suppressed from diffusing into each other, a good protective plating layer 15 can be formed.
  • the peeling means When separating and removing the core resin layer 11, the wiring board 20A can be reinforced and damage can be suppressed.
  • a diffusion prevention layer 13 is provided on the surface of the first metal layer 12 opposite to the core resin layer 11, and a plating resist is provided on the surface of the diffusion prevention layer 13 opposite to the first metal layer 12.
  • the plating resist 14 is provided has been described, for example, as shown in FIG. It's okay. That is, the first metal layer 12 provided on at least one side of the core resin layer 11 and provided with a peeling means, and the diffusion layer provided on the side of the first metal layer 12 opposite to the core resin layer 11. It has a prevention layer 13 and a plating resist 14, and may further have a protective plating layer 15 on the side of the diffusion prevention layer 13 opposite to the first metal layer 12.
  • the diffusion prevention layer 13 is formed in a region where the plating resist 14 is not formed in contact with the first metal layer 12, and the protective plating layer 15 is formed in the region where the plating resist is not formed. 13 is formed on the side opposite to the first metal layer 12.
  • This laminate 10 can be manufactured, for example, as follows. First, after preparing the support 10A in the same manner as in the first embodiment (support preparation step; see FIG. 2(A)), as shown in FIG. 12(A), the first metal layer 12 is A plating resist 14 is formed on the surface opposite to the core resin layer 11 in the same manner as in the first embodiment (plating resist forming step). Next, for example, as shown in FIG. 12(B), on the surface of the first metal layer 12 opposite to the core resin layer 11, the method of the first embodiment is applied to an area where the plating resist 14 is not formed. Similarly, the diffusion prevention layer 13 is formed (diffusion prevention layer forming step). Subsequently, as shown in FIG. 12C, for example, a protective plating layer 15 is formed on the side of the diffusion prevention layer 13 opposite to the first metal layer 12 in the same manner as in the first embodiment. plating layer formation process).
  • the modified laminate 10 can be used when manufacturing the wiring board 20 with a support and the coreless board 30, and the same effects as in the first embodiment can be obtained. I can do it.
  • Example 1 ⁇ Support preparation step> (see Figure 2(A)) A prepreg (thickness 0.100 mm, manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: GHPL-830NS ST56) made by impregnating glass cloth (glass fiber) with bismaleimide triazine resin (BT resin) and making it into a B stage is used as the core resin layer 11. Then, on both sides of the core resin layer 11, as the first metal layer 12, copper foil with a carrier copper foil (copper foil; thickness 5 ⁇ m: manufactured by Mitsui Mining & Smelting Co., Ltd., product name: MT18SD-H-T5) was applied as the first metal layer 12.
  • BT resin bismaleimide triazine resin
  • the carrier was placed so that the copper foil side was in contact with the core resin layer 11, and vacuum pressing was performed under the conditions of a temperature of 220 ⁇ 2°C, a pressure of 3 ⁇ 0.2MPa, and a holding time of 60 minutes.
  • a support 10A provided with the first metal layer 12 was produced.
  • the carrier copper foil is the carrier 12A, and the copper foil is the metal foil 12B.
  • a nickel plating layer was formed as a diffusion prevention layer 13 on the surface of the first metal layer 12 opposite to the core resin layer 11 by electrolytic plating.
  • the thickness of the diffusion prevention layer 13 was 3 ⁇ m to 10 ⁇ m.
  • ⁇ Protective plating layer formation process> On the side opposite to the first metal layer 12 of the diffusion prevention layer 13, a gold plating layer 15A and a nickel plating layer 15B are laminated in this order by electrolytic plating on the area where the plating resist 14 is not provided, and a protective plating layer 15 is formed. Formed.
  • the thickness of the gold plating layer 15A was 0.05 ⁇ m to 0.1 ⁇ m.
  • the thickness of the nickel plating layer 15B was 3 ⁇ m to 10 ⁇ m.
  • ⁇ First wiring conductor formation step> On the opposite side of the protective plating layer 15 from the diffusion prevention layer 13, a copper sulfate plating line with a copper sulfate concentration of 60 g/L to 80 g/L and a sulfuric acid concentration of 150 g/L to 200 g/L is placed in an area where the plating resist 14 is not provided. Patterned electrolytic copper plating (electrolytic copper plating) with a thickness of 5 ⁇ m to 15 ⁇ m was applied to form the first wiring conductor 21.
  • a copper foil with a carrier copper foil with a resin layer (copper foil thickness 2 ⁇ m, carrier copper foil thickness 18 ⁇ m, resin layer thickness 0.015 mm: Mitsubishi Gas Chemical) Co., Ltd., product name: CRS381NSI) was placed so that the resin layer was in contact with the first wiring conductor 21, and vacuum pressed under the conditions of a pressure of 3 ⁇ 0.2 MPa, a temperature of 220 ⁇ 2°C, and a holding time of 60 minutes. did. Thereafter, the carrier copper foil was peeled off, and a first insulating layer 22 and a second metal layer having a thickness of 2 ⁇ m were laminated on the first wiring conductor 21.
  • a carbon dioxide laser is irradiated from the surface of the second metal layer using a carbon dioxide laser processing machine ML605GTWIII-5200U (manufactured by Mitsubishi Electric Corporation, product name), and the second metal layer and the first insulating layer are 22 to form a first non-through hole 22A reaching the first wiring conductor 21.
  • a desmear treatment was performed using an aqueous sodium permanganate solution at a temperature of 80 ⁇ 5° C. and a concentration of 55 ⁇ 10 g/L.
  • plating with a thickness of 0.4 ⁇ m to 0.8 ⁇ m is performed using electroless copper plating, and further plating is performed with a thickness of 5 ⁇ m to 20 ⁇ m using electrolytic copper plating to form the first non-through hole 22A.
  • a first connection via 22B connecting the first wiring conductor 21 and the second metal layer was formed on the inner wall, and the thickness of the second metal layer was increased and the surface was smoothed.
  • a dry film resist LDF515F (manufactured by Nikko Materials Co., Ltd., product name) was laminated on the second metal layer at a temperature of 110 ⁇ 10° C. and a pressure of 0.50 ⁇ 0.02 MPa. Thereafter, a negative mask was attached, a circuit pattern was printed using a parallel exposure machine, and the dry film resist was developed using a 1% sodium carbonate aqueous solution to form an etching resist. Next, the portions of the second metal layer without the etching resist were removed by etching with a cupric chloride aqueous solution, and then the dry film resist was removed using a sodium hydroxide aqueous solution to form the second wiring conductor 23.
  • solder resist layer formation process After forming the second insulating layer 24 and the third wiring conductor 25, a solder resist layer 26 was formed thereon so that the third wiring conductor 25 was partially exposed. The solder resist layer 26 was formed so that the thickness from the upper surface of the third wiring conductor 25 to the upper surface of the solder resist layer 26 was 10 ⁇ m.
  • ⁇ Plating finishing process> After forming the solder resist layer 26, a nickel plating layer 27A and a gold plating layer 27B were formed as a protective plating layer 27 in this order on the third wiring conductor 25 exposed from the solder resist layer 26 by electrolytic plating.
  • the thickness of the nickel plating layer 27A was 3 ⁇ m to 5 ⁇ m.
  • the thickness of the gold plating layer 27B was 0.05 ⁇ m to 0.1 ⁇ m. Thereby, a wiring board 20 with a support was obtained.
  • first metal layer/diffusion prevention layer removal step> (see FIGS. 8(F) and (G)) Regarding the obtained wiring board 20 with a support, physical force was applied to the boundary between the metal foil 12B of the first metal layer 12 and the carrier 12A to peel off and remove at least the core resin layer 11. Next, the remaining first metal layer 12 (specifically, metal foil 12B) and diffusion prevention layer 13 were removed using a cupric chloride aqueous solution to obtain a set of coreless substrates 30.
  • Example 1 In the coreless substrate 30 obtained in Example 1, no corrosion of the gold plating layer 15A in the protective plating layer 15 was observed, and a good coreless substrate 30 could be obtained.
  • Example 2 A set of coreless substrates 30 was obtained by performing the same steps as in Example 1, except that a tin plating layer was formed as the diffusion prevention layer 13. In Example 2 as well, no corrosion of the gold plating layer 15A in the protective plating layer 15 was observed, and a good coreless substrate 30 could be obtained.
  • Example 3 Electrolytic plating was applied to the copper foil surface of the copper foil with carrier copper foil (copper foil; thickness 5 ⁇ m: manufactured by Mitsui Mining and Mining Co., Ltd., product name: MT18SD-H-T5) used in Example 1.
  • a copper foil with a carrier copper foil having a thickness increased to 10 ⁇ m was produced.
  • a set of coreless substrates 30 was obtained by performing the same steps as in Example 1 except that the thickness of the metal foil 12B in the first metal layer 12 was set to 10 ⁇ m using this copper foil with carrier copper foil. That is, the thickness from the end surface of the first metal layer 12 on the diffusion prevention layer 13 side to the peeling means was 10 ⁇ m.
  • Example 3 As well, no corrosion of the gold plating layer 15A in the protective plating layer 15 was observed, and a good coreless substrate 30 could be obtained. Moreover, since the thickness from the end face of the first metal layer 12 on the side of the diffusion prevention layer 13 to the peeling means was set to be 6 ⁇ m or more, a high yield was obtained in the core resin layer separation and removal step.
  • Example 1 A set of coreless substrates was obtained by performing the same steps as in Example 1 except that no diffusion prevention layer was formed, but corrosion of the gold plating layer in the protective plating layer was observed.
  • Example 2 The same steps as in Example 1 were carried out, except that the diffusion prevention layer was not formed and the copper foil with carrier copper foil prepared in Example 3 was used to set the thickness of the metal foil in the first metal layer to 10 ⁇ m. A set of coreless substrates was obtained, but corrosion of the gold plating layer in the protective plating layer was observed.
  • the diffusion prevention layer 13 corrosion of the protective plating layer could be suppressed, and a good coreless substrate 30 could be obtained. Furthermore, if the thickness from the end surface of the first metal layer 12 on the diffusion prevention layer 13 side to the peeling means is 6 ⁇ m or more, damage in the core resin layer separation and removal process can be suppressed, and a high yield can be obtained. That's what I found out.
  • It can be used for printed wiring boards and package substrates for mounting semiconductor elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

This laminate (10) has a core resin layer (11), a first metal layer (12) provided on at least one surface side of the core resin layer (11) and provided with a peeling means, a diffusion prevention layer (13) provided on the surface of the first metal layer (12) on the opposite side to the core resin layer (11), and a plating resist (14) provided on the surface of the diffusion prevention layer (13) on the opposite side to the first metal layer (12). A protective plating layer (15) is provided on the side of the diffusion prevention layer (13) opposite to the first metal layer (12), in regions where the plating resist (14) is not provided.

Description

積層体、及び、コアレス基板の製造方法Method for manufacturing laminate and coreless substrate
 本発明は、コア樹脂層の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層を有する積層体、及び、積層体を用いたコアレス基板の製造方法に関する。 The present invention relates to a laminate having a first metal layer provided on at least one side of a core resin layer and provided with a peeling means, and a method for manufacturing a coreless substrate using the laminate.
 電子機器、通信機器及びパーソナルコンピューターなどに広く用いられる半導体パッケージの高機能化及び小型化は、近年、益々加速している。それに伴い、半導体パッケージにおけるプリント配線板及び半導体素子搭載用パッケージ基板の薄型化が要求されている。薄型化したプリント配線板及び半導体素子搭載用パッケージ基板としては、例えば、コア樹脂層に、剥離手段を有する第1の金属層、絶縁層、及び、配線導体を積層して配線基板を形成した後、配線基板からコア樹脂層を剥離したいわゆるコアレス基板が知られている(例えば、特許文献1参照)。 In recent years, the functionality and miniaturization of semiconductor packages widely used in electronic equipment, communication equipment, personal computers, etc. have been accelerating. Accordingly, there is a demand for thinner printed wiring boards and package substrates for mounting semiconductor elements in semiconductor packages. As a thinned printed wiring board and a package substrate for mounting semiconductor elements, for example, after a wiring board is formed by laminating a first metal layer having a peeling means, an insulating layer, and a wiring conductor on a core resin layer, A so-called coreless board in which a core resin layer is peeled off from a wiring board is known (for example, see Patent Document 1).
国際公開WO2020/121652号公報International Publication WO2020/121652 Publication
 しかしながら、このようなコアレス基板では、コア樹脂層を分離した後に、配線基板に残存する第1の金属層をエッチング等で除去する際に、制御が難しく、過剰にエッチングされたり、逆に、エッチングが不十分な場合があるという問題があった。また、第1の金属層の上に保護めっき層を形成し、その上に配線導体を形成しようとした場合には、第1の金属層と保護めっき層との構成元素が互いに拡散して保護めっき層が腐食してしまうという問題もあった。 However, in such a coreless board, when removing the first metal layer remaining on the wiring board by etching after separating the core resin layer, it is difficult to control, and excessive etching may occur, or conversely, the first metal layer remaining on the wiring board may be removed by etching. There was a problem that there were cases where this was insufficient. Furthermore, if a protective plating layer is formed on the first metal layer and a wiring conductor is formed on top of the protective plating layer, the constituent elements of the first metal layer and the protective plating layer will diffuse into each other and the protective plating layer will be protected. There was also the problem that the plating layer corroded.
 本発明は、このような問題に基づきなされたものであり、コア樹脂層を分離した後に第1の金属層を容易に除去することができると共に、良好な保護めっき層を形成することができる積層体、及び、コアレス基板の製造方法を提供することを目的とする。 The present invention has been made based on these problems, and provides a laminated layer that allows the first metal layer to be easily removed after separating the core resin layer and that also allows the formation of a good protective plating layer. The present invention aims to provide a method for manufacturing a coreless substrate and a coreless substrate.
 本発明は以下の通りである。
[1]
 コア樹脂層と、
 前記コア樹脂層の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層と、
 前記第1の金属層の前記コア樹脂層と反対側の面に設けられた拡散防止層と、
 を有する積層体。
[2]
 前記拡散防止層の前記第1の金属層と反対側の面に、めっきレジストを有する、[1]に記載の積層体。
[3]
 前記拡散防止層の前記第1の金属層の反対側において、前記めっきレジストが設けられていない領域に、保護めっき層を有する、[2]に記載の積層体。
[4]
 前記第1の金属層の前記コア樹脂層と反対側の面に、前記拡散防止層と共に、めっきレジストを有する、[1]に記載の積層体。
[5]
 前記拡散防止層の前記第1の金属層と反対側に、保護めっき層を有する、[4]に記載の積層体。
[6]
 前記拡散防止層が、ニッケル、アルミニウム、鉄、亜鉛、スズ、鉛、クロム、コバルト、銀、及び、パラジウムよりなる群から選択される少なくとも1種を含む、[1]に記載の積層体。
[7]
 前記第1の金属層における前記拡散防止層の側の端面から前記剥離手段までの厚みが、6μm以上である、[1]に記載の積層体。
[8]
 コア樹脂層と、前記コア樹脂層の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層と、を有する支持体を準備する支持体準備工程と、
 前記第1の金属層の前記コア樹脂層と反対側の面に、拡散防止層を形成する拡散防止層形成工程と、
 を含む、コアレス基板の製造方法。
[9]
 前記拡散防止層形成工程の後に、前記拡散防止層の前記第1の金属層と反対側の面に、めっきレジストを形成するめっきレジスト形成工程を含む、[8]に記載のコアレス基板の製造方法。
[10]
 前記めっきレジストを形成した後、前記拡散防止層の前記第1の金属層の反対側において、前記めっきレジストが設けられていない領域に、保護めっき層を形成する保護めっき層形成工程を含む、[9]に記載のコアレス基板製造方法。
[11]
 前記拡散防止層形成工程の前に、前記第1の金属層の前記コア樹脂層と反対側の面に、めっきレジストを形成するめっきレジスト形成工程を含み、
 前記拡散防止層は、前記第1の金属層の前記コア樹脂層と反対側の面において、めっきレジストが形成されていない領域に形成する、[8]に記載のコアレス基板の製造方法。
[12]
 前記拡散防止層形成工程の後に、前記拡散防止層の前記第1の金属層と反対側に、保護めっき層を形成する保護めっき層形成工程を含む、[11]に記載のコアレス基板の製造方法。
[13]
 前記拡散防止層が、ニッケル、アルミニウム、鉄、亜鉛、スズ、鉛、クロム、コバルト、銀、及び、パラジウムよりなる群から選択される少なくとも1種を含む、[8]に記載のコアレス基板の製造方法。
[14]
 前記第1の金属層における前記拡散防止層の側の端面から前記剥離手段までの厚みを6μm以上とする、[8]に記載のコアレス基板の製造方法。
The invention is as follows.
[1]
a core resin layer;
a first metal layer provided on at least one side of the core resin layer and provided with a peeling means;
a diffusion prevention layer provided on a surface of the first metal layer opposite to the core resin layer;
A laminate having.
[2]
The laminate according to [1], wherein a plating resist is provided on a surface of the diffusion prevention layer opposite to the first metal layer.
[3]
The laminate according to [2], which has a protective plating layer in a region where the plating resist is not provided on the opposite side of the first metal layer of the diffusion prevention layer.
[4]
The laminate according to [1], which has a plating resist together with the diffusion prevention layer on the surface of the first metal layer opposite to the core resin layer.
[5]
The laminate according to [4], further comprising a protective plating layer on a side of the diffusion prevention layer opposite to the first metal layer.
[6]
The laminate according to [1], wherein the diffusion prevention layer contains at least one selected from the group consisting of nickel, aluminum, iron, zinc, tin, lead, chromium, cobalt, silver, and palladium.
[7]
The laminate according to [1], wherein the thickness from the end surface of the first metal layer on the diffusion prevention layer side to the peeling means is 6 μm or more.
[8]
a support preparation step of preparing a support having a core resin layer and a first metal layer provided on at least one side of the core resin layer and provided with a peeling means;
a diffusion prevention layer forming step of forming a diffusion prevention layer on the surface of the first metal layer opposite to the core resin layer;
A method for manufacturing a coreless board, including:
[9]
The method for producing a coreless substrate according to [8], which includes a plating resist forming step of forming a plating resist on a surface of the diffusion preventing layer opposite to the first metal layer after the diffusion preventing layer forming step. .
[10]
After forming the plating resist, a protective plating layer forming step of forming a protective plating layer in a region where the plating resist is not provided on the opposite side of the first metal layer of the diffusion prevention layer, [ 9], the method for manufacturing a coreless substrate.
[11]
Before the diffusion prevention layer forming step, a plating resist forming step of forming a plating resist on the surface of the first metal layer opposite to the core resin layer,
The method for manufacturing a coreless substrate according to [8], wherein the diffusion prevention layer is formed in a region where a plating resist is not formed on a surface of the first metal layer opposite to the core resin layer.
[12]
The method for producing a coreless substrate according to [11], which includes a protective plating layer forming step of forming a protective plating layer on the side of the diffusion preventing layer opposite to the first metal layer after the diffusion preventing layer forming step. .
[13]
Production of the coreless substrate according to [8], wherein the diffusion prevention layer contains at least one selected from the group consisting of nickel, aluminum, iron, zinc, tin, lead, chromium, cobalt, silver, and palladium. Method.
[14]
The method for manufacturing a coreless substrate according to [8], wherein the thickness from the end surface of the first metal layer on the diffusion prevention layer side to the peeling means is 6 μm or more.
 本発明によれば、コア樹脂層の少なくとも一方の面側に剥離手段を備えた第1の金属層を設け、かつ、第1の金属層のコア樹脂層と反対側の面に拡散防止層を設けるようにしたので、剥離手段においてコア樹脂層を分離除去した後、残存する第1の金属層をエッチングにより除去する際に、拡散防止層をエッチングストッパーとして用いることができる。よって、残存する第1の金属層を容易に除去することができる。また、第1の金属層とその上に形成する保護めっき層との構成元素が互いに拡散することを抑制することができるので、良好な保護めっき層を形成することができる。 According to the present invention, the first metal layer provided with a peeling means is provided on at least one side of the core resin layer, and the diffusion prevention layer is provided on the side of the first metal layer opposite to the core resin layer. Since the diffusion prevention layer is provided, the diffusion prevention layer can be used as an etching stopper when the remaining first metal layer is removed by etching after the core resin layer is separated and removed by the peeling means. Therefore, the remaining first metal layer can be easily removed. Moreover, since the constituent elements of the first metal layer and the protective plating layer formed thereon can be suppressed from diffusing into each other, a good protective plating layer can be formed.
 更に、第1の金属層における拡散防止層の側の端面から剥離手段までの厚みを6μm以上とすれば、第1の金属層の上に配線基板を形成した後に、剥離手段においてコア樹脂層を分離除去する際に、配線基板を補強して破損を抑制することができる。 Furthermore, if the thickness from the end surface of the first metal layer on the diffusion prevention layer side to the peeling means is 6 μm or more, the core resin layer can be removed by the peeling means after forming the wiring board on the first metal layer. When separating and removing, the wiring board can be reinforced and damage can be suppressed.
本発明の第1の実施形態に係る積層体の構成を表す図である。FIG. 1 is a diagram showing the configuration of a laminate according to a first embodiment of the present invention. 図1に示した積層体の製造方法の工程を表す図である。FIG. 2 is a diagram illustrating steps in a method for manufacturing the laminate shown in FIG. 1. FIG. 図1に示した積層体を用いた支持体付き配線基板及びコアレス基板の第1の製造方法の工程を表す図である。FIG. 2 is a diagram illustrating steps of a first manufacturing method of a wiring board with a support and a coreless board using the laminate shown in FIG. 1. FIG. 図3に続く工程を表す図である。FIG. 4 is a diagram showing a process subsequent to FIG. 3; 図4に続く工程を表す図である。FIG. 5 is a diagram showing a process subsequent to FIG. 4; 図1に示した積層体を用いた支持体付き配線基板及びコアレス基板の第2の製造方法の工程を表す図である。FIG. 2 is a diagram illustrating steps of a second manufacturing method for a wiring board with a support and a coreless board using the laminate shown in FIG. 1. FIG. 図6に続く工程を表す図である。FIG. 7 is a diagram showing a process subsequent to FIG. 6; 図7に続く工程を表す図である。FIG. 8 is a diagram showing a process subsequent to FIG. 7; 図1に示した積層体を用いた支持体付き配線基板及びコアレス基板の第3の製造方法の工程を表す図である。FIG. 2 is a diagram illustrating steps of a third manufacturing method for a wiring board with a support and a coreless board using the laminate shown in FIG. 1. FIG. 図9に続く工程を表す図である。10 is a diagram showing a process following FIG. 9. FIG. 本発明の変形例に係る積層体の構成を表す図である。It is a figure showing the structure of the laminated body concerning the modification of the present invention. 図11に示した積層体の製造方法の工程を表す図である。FIG. 12 is a diagram illustrating steps in the method for manufacturing the laminate shown in FIG. 11.
 以下、本発明を実施するための形態(以下、「実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as "embodiments") will be described in detail, but the present invention is not limited thereto, and various modifications may be made without departing from the gist thereof. It is possible.
[第1の実施形態]
 図1は、本発明の第1の実施形態に係る積層体10の構成を表すものである。この積層体10は、コア樹脂層11と、コア樹脂層11の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層12と、第1の金属層12のコア樹脂層11と反対側の面に設けられた拡散防止層13と、拡散防止層13の第1の金属層12と反対側の面に設けられためっきレジスト14とを有しており、更に、拡散防止層13の第1の金属層12と反対側において、めっきレジスト14が設けられていない領域に、保護めっき層15を有していてもよい。この積層体10は、例えば、支持体付き配線基板20(例えば、図3,4参照)及びコアレス基板30(例えば、図5参照)を製造する際に用いることができる。
[First embodiment]
FIG. 1 shows the configuration of a laminate 10 according to a first embodiment of the present invention. This laminate 10 includes a core resin layer 11, a first metal layer 12 provided on at least one side of the core resin layer 11 and provided with a peeling means, and a core resin layer 11 of the first metal layer 12. and a plating resist 14 provided on the surface of the diffusion prevention layer 13 opposite to the first metal layer 12. On the side opposite to the first metal layer 12 of 13, a protective plating layer 15 may be provided in a region where the plating resist 14 is not provided. This laminate 10 can be used, for example, when manufacturing a wiring board 20 with a support (see, for example, FIGS. 3 and 4) and a coreless board 30 (see, for example, FIG. 5).
 支持体付き配線基板20は、コア樹脂層11の少なくとも一方の面側に第1の金属層12が設けられた支持体10Aと、第1の金属層12の上に設けられた配線基板20Aとを備えたものである(例えば、図3,4参照)。支持体付き配線基板20は、例えば、支持体付きプリント配線板又は支持体付きパッケージ基板とも言い、配線基板20Aとしてプリント配線板又は半導体素子搭載用パッケージ基板を備えている。プリント配線板又は半導体素子搭載用パッケージ基板は、例えば、半導体素子等の電子部品素子を実装することで電子部品実装基板を構成するものである。配線基板20Aは、半導体素子を搭載するものに限られず、例えば、LED(Light Emitting Diode)素子、コンデンサ、抵抗、コイル等の表面実装型電子部品素子などを搭載するものであってもよい。コアレス基板30は、支持体付き配線基板20から支持体10Aを分離除去したものである(例えば、図5参照)。 The wiring board 20 with a support includes a support 10A in which the first metal layer 12 is provided on at least one side of the core resin layer 11, and a wiring board 20A provided on the first metal layer 12. (For example, see FIGS. 3 and 4). The wiring board 20 with a support is also called a printed wiring board with a support or a package board with a support, and includes a printed wiring board or a package board for mounting a semiconductor element as the wiring board 20A. A printed wiring board or a package substrate for mounting a semiconductor element constitutes an electronic component mounting board by mounting an electronic component element such as a semiconductor element, for example. The wiring board 20A is not limited to one on which a semiconductor element is mounted, but may be one on which a surface-mounted electronic component element such as an LED (Light Emitting Diode) element, a capacitor, a resistor, a coil, etc. is mounted. The coreless board 30 is obtained by separating and removing the support body 10A from the support-attached wiring board 20 (for example, see FIG. 5).
<積層体の構成>
(コア樹脂層)
 コア樹脂層11は、配線基板20Aの製造プロセス又は半導体素子の実装プロセスにおいて、配線基板20Aの剛性を高めて、反りを抑制すると共に、ハンドリング性を高めるためのものである。なお、図1では、コア樹脂層11の一方の面側に、第1の金属層12が設けられた場合を示しているが、第1の金属層12はコア樹脂層11の両面に設けるようにしてもよい。コア樹脂層11は、特に限定されるものではないが、例えば、ガラスクロス等の基材に熱硬化性樹脂等の絶縁性の樹脂材料(絶縁材料)を含浸させたプリプレグや、絶縁性のフィルム材等により構成することができる。コア樹脂層11の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、1μm以上であることが好ましい。コア樹脂層11の厚みが1μm未満であると、配線基板20Aが成形不良となる場合があるからである。
<Structure of laminate>
(core resin layer)
The core resin layer 11 is for increasing the rigidity of the wiring board 20A, suppressing warping, and improving handling properties in the manufacturing process of the wiring board 20A or the mounting process of semiconductor elements. Although FIG. 1 shows a case where the first metal layer 12 is provided on one side of the core resin layer 11, the first metal layer 12 may be provided on both sides of the core resin layer 11. You may also do so. The core resin layer 11 is not particularly limited, but may be made of, for example, a prepreg made by impregnating a base material such as glass cloth with an insulating resin material (insulating material) such as a thermosetting resin, or an insulating film. It can be constructed from materials etc. The thickness of the core resin layer 11 is not particularly limited as it is appropriately set as desired, but is preferably 1 μm or more, for example. This is because if the thickness of the core resin layer 11 is less than 1 μm, the wiring board 20A may be defective in molding.
 “プリプレグ”は樹脂組成物等の絶縁材料を基材に含浸又は塗工してなるものである。基材としては、特に限定されず、周知のものを適宜使用することができる。基材を構成する材料としては、例えば、Eガラス、Dガラス、Sガラス又はQガラス等の無機繊維;ポリイミド、ポリエステル又はテトラフルオロエチレン等の有機繊維;及びそれらの混合物等が挙げられる。基材は、特に限定されるものではないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等の形状を有するものを適宜用いることができる。基材の材質及び形状は、目的とする成形物の用途や性能により選択され、必要により単独もしくは2種類以上の材質及び形状の使用も可能である。 "Prepreg" is made by impregnating or coating a base material with an insulating material such as a resin composition. The base material is not particularly limited, and well-known materials can be used as appropriate. Examples of the material constituting the base material include inorganic fibers such as E glass, D glass, S glass, or Q glass; organic fibers such as polyimide, polyester, or tetrafluoroethylene; and mixtures thereof. The base material is not particularly limited, but for example, those having shapes such as woven fabric, nonwoven fabric, roving, chopped strand mat, surfacing mat, etc. can be used as appropriate. The material and shape of the base material are selected depending on the intended use and performance of the molded article, and if necessary, it is also possible to use one or more materials and shapes.
 基材の厚みは、コア樹脂層11の厚みが上述した範囲になれば特に制限はない。また、基材としては、シランカップリング剤等で表面処理したものや機械的に開繊処理を施したものを用いることができ、これら基材は耐熱性や耐湿性、加工性の面から好適である。 The thickness of the base material is not particularly limited as long as the thickness of the core resin layer 11 falls within the above-mentioned range. In addition, as a base material, one that has been surface-treated with a silane coupling agent, etc., or one that has been mechanically opened can be used, and these base materials are suitable in terms of heat resistance, moisture resistance, and processability. It is.
 絶縁材料としては、特に限定されず、プリント配線板又は半導体素子搭載用パッケージ基板の絶縁材料として用いられる公知の樹脂組成物を適宜選定して用いることができる。樹脂組成物としては、耐熱性、耐薬品性の良好な熱硬化性樹脂をベースとして用いることができる。熱硬化性樹脂としては、特に限定されず、例えば、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シアネート樹脂、マレイミド樹脂、変性ポリフェニレンエーテル、ビスマレイミドトリアジン樹脂、イソシアネート樹脂、ベンゾシクロブテン樹脂及びビニル樹脂が挙げられる。これらの熱硬化性樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The insulating material is not particularly limited, and any known resin composition used as an insulating material for printed wiring boards or package substrates for mounting semiconductor elements can be appropriately selected and used. As the resin composition, a thermosetting resin having good heat resistance and chemical resistance can be used as a base. Thermosetting resins are not particularly limited, and include, for example, polyimide resins, phenol resins, epoxy resins, cyanate resins, maleimide resins, modified polyphenylene ethers, bismaleimide triazine resins, isocyanate resins, benzocyclobutene resins, and vinyl resins. It will be done. These thermosetting resins may be used alone or in combination of two or more.
 ポリイミド樹脂としては、特に限定されず、市販の製品を適宜選定して用いることができる。例えば、特開2005-15629号公報に記載の製造方法によって合成される溶媒可溶性ポリイミド樹脂や、ブロック共重合ポリイミド樹脂を用いることができる。ブロック共重合体ポリイミド樹脂としては、例えば、国際公開WO2010-073952号公報に記載のブロック共重合体ポリイミド樹脂を挙げることができる。具体的には、ブロック共重合ポリイミド樹脂は、第一の構造単位からなるイミドオリゴマーの末端に第二の構造単位からなるイミドオリゴマーが結合している構造A、及び、第二の構造単位からなるイミドオリゴマーの末端に第一の構造単位からなるイミドオリゴマーが結合している構造B、が交互に繰り返される構造を有する共重合ポリイミド樹脂であれば、特に限定されない。なお、第二の構造単位は、第一の構造単位とは異なる。これらのブロック共重合ポリイミド樹脂は、極性溶媒中で、テトラカルボン酸二無水物とジアミンとを反応させイミドオリゴマーとした後、更にテトラカルボン酸二無水物と別のジアミン、或いは、別のテトラカルボン酸二無水物とジアミンを加え、イミド化する逐次重合反応によって合成することができる。これらのポリイミド樹脂は、1種類を単独で用いてもよいし、2種以上を混合して用いてもよい。 The polyimide resin is not particularly limited, and commercially available products can be appropriately selected and used. For example, a solvent-soluble polyimide resin synthesized by the manufacturing method described in JP-A-2005-15629 or a block copolymerized polyimide resin can be used. Examples of block copolymer polyimide resins include block copolymer polyimide resins described in International Publication No. WO2010-073952. Specifically, the block copolymerized polyimide resin consists of a structure A in which an imide oligomer consisting of a second structural unit is bonded to the end of an imide oligomer consisting of a first structural unit, and a structure A consisting of a second structural unit. It is not particularly limited as long as it is a copolymerized polyimide resin having a structure in which structure B, in which an imide oligomer consisting of a first structural unit is bonded to the end of the imide oligomer, is alternately repeated. Note that the second structural unit is different from the first structural unit. These block copolymerized polyimide resins are produced by reacting a tetracarboxylic dianhydride and a diamine in a polar solvent to form an imide oligomer, and then reacting the tetracarboxylic dianhydride with another diamine or another tetracarboxylic dianhydride. It can be synthesized by a sequential polymerization reaction in which an acid dianhydride and a diamine are added and imidized. These polyimide resins may be used alone or in combination of two or more.
 フェノール樹脂としては、特に限定されず、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のフェノール性ヒドロキシ基を有する化合物又は樹脂であれば、一般に公知のものを使用できる。例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂及び水酸基含有シリコーン樹脂類が挙げられる。これらのフェノール樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The phenol resin is not particularly limited, and one or more (preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) per molecule is used. ) Generally known compounds or resins can be used as long as they have a phenolic hydroxy group. For example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolak resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolak type phenol resin, biphenyl Aralkyl type phenolic resin, cresol novolac type phenolic resin, polyfunctional phenolic resin, naphthol resin, naphthol novolak resin, polyfunctional naphthol resin, anthracene type phenolic resin, naphthalene skeleton modified novolak type phenolic resin, phenol aralkyl type phenolic resin, naphthol aralkyl type Examples include phenolic resins, dicyclopentadiene type phenolic resins, biphenyl type phenolic resins, alicyclic phenolic resins, polyol type phenolic resins, phosphorus-containing phenolic resins, and hydroxyl group-containing silicone resins. These phenolic resins may be used alone or in combination of two or more.
 熱硬化性樹脂の中でも、エポキシ樹脂は耐熱性、耐薬品性及び電気特性に優れ、比較的安価であることから、絶縁材料として好適に用いることができる。エポキシ樹脂としては、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のエポキシ基を有する化合物または樹脂であれば特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェノールのジグリシジルエテール化物、ナフタレンジオールのジグリシジルエテール化物、フェノール類のジグリシジルエテール化物、アルコール類のジグリシジルエテール化物、及びこれらのアルキル置換体、ハロゲン化物、水素添加物が挙げられる。これらのエポキシ樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。また、このエポキシ樹脂とともに用いる硬化剤はエポキシ樹脂を硬化させるものであれば、限定することなく使用でき、例えば、多官能フェノール類、多官能アルコール類、アミン類、イミダゾール化合物、酸無水物、有機リン化合物及びこれらのハロゲン化物が挙げられる。これらのエポキシ樹脂硬化剤は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 Among thermosetting resins, epoxy resins have excellent heat resistance, chemical resistance, and electrical properties, and are relatively inexpensive, so they can be suitably used as insulating materials. The epoxy resin has one or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) epoxy groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin. , cresol novolak type epoxy resin, bisphenol A novolac type epoxy resin, diglycidyl ether of biphenol, diglycidyl ether of naphthalene diol, diglycidyl ether of phenols, diglycidyl ether of alcohol, and Examples thereof include alkyl substituted products, halides, and hydrogenated products. These epoxy resins may be used alone or in combination of two or more. In addition, the curing agent used with this epoxy resin can be used without limitation as long as it cures the epoxy resin. For example, polyfunctional phenols, polyfunctional alcohols, amines, imidazole compounds, acid anhydrides, organic Examples include phosphorus compounds and halides thereof. These epoxy resin curing agents may be used alone or in combination of two or more.
 シアネート樹脂は、加熱によりトリアジン環を繰り返し単位とする硬化物を生成する樹脂であり、硬化物は誘電特性に優れる。このため、特に高周波特性が要求される場合などに好適である。シアネート樹脂としては、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のシアナト基(シアン酸エステル基)により置換された芳香族部分を分子中に有する化合物または樹脂であれば特に限定されないが、例えば、2,2-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エタン、2,2-ビス(3,5ジメチル-4-シアナトフェニル)メタン、2,2-(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン、フェノールノボラック及びアルキルフェノールノボラックのシアネートエステル化物等が挙げられる。その中でも、2,2-ビス(4-シアナトフェニル)プロパンは、硬化物の誘電特性と硬化性とのバランスが特に良好であり、コスト的にも安価であるため好ましい。これらシアネートエステル化合物等のシアネート樹脂は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。また、前記シアネートエステル化合物は予め一部が三量体や五量体にオリゴマー化されていてもよい。 Cyanate resin is a resin that produces a cured product having triazine rings as repeating units when heated, and the cured product has excellent dielectric properties. Therefore, it is particularly suitable when high frequency characteristics are required. The cyanate resin has one or more (preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) cyanato groups per molecule ( There are no particular limitations on the compound or resin as long as it has an aromatic moiety in its molecule substituted with a cyanate ester group, but examples include 2,2-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)propane, phenyl)ethane, 2,2-bis(3,5dimethyl-4-cyanatophenyl)methane, 2,2-(4-cyanatophenyl)-1,1,1,3,3,3-hexafluoropropane , α,α'-bis(4-cyanatophenyl)-m-diisopropylbenzene, cyanate esters of phenol novolak and alkylphenol novolak, and the like. Among these, 2,2-bis(4-cyanatophenyl)propane is preferred because it has a particularly good balance between the dielectric properties and curability of the cured product and is inexpensive. One type of cyanate resin such as these cyanate ester compounds may be used alone, or two or more types may be used in combination. Further, a portion of the cyanate ester compound may be oligomerized into a trimer or a pentamer in advance.
 さらに、シアネート樹脂に対して硬化触媒や硬化促進剤を併用することもできる。硬化触媒としては、例えば、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の金属類を用いることができ、具体的には、2-エチルヘキサン酸塩、オクチル酸塩等の有機金属塩やアセチルアセトン錯体などの有機金属錯体を挙げることができる。硬化触媒は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。 Furthermore, a curing catalyst and a curing accelerator can also be used together with the cyanate resin. As the curing catalyst, for example, metals such as manganese, iron, cobalt, nickel, copper, and zinc can be used. Specifically, organic metal salts such as 2-ethylhexanoate and octylate, and acetylacetone Examples include organometallic complexes such as complexes. One type of curing catalyst may be used alone, or two or more types may be used in combination.
 また、硬化促進剤としてはフェノール類を使用することが好ましく、ノニルフェノール、パラクミルフェノールなどの単官能フェノールや、ビスフェノールA、ビスフェノールF、ビスフェノールSなどの二官能フェノール、又は、フェノールノボラック、クレゾールノボラックなどの多官能フェノールなどを用いることができる。硬化促進剤は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。 Furthermore, it is preferable to use phenols as the curing accelerator, such as monofunctional phenols such as nonylphenol and paracumylphenol, bifunctional phenols such as bisphenol A, bisphenol F, and bisphenol S, or phenol novolak and cresol novolak. Polyfunctional phenols and the like can be used. One type of curing accelerator may be used alone, or two or more types may be used in combination.
 マレイミド樹脂としては、1分子中に1個以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のマレイミド基を有する化合物または樹脂であれば、一般に公知のものを使用できる。例えば、4,4-ジフェニルメタンビスマレイミド、フェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、ポリフェニルメタンマレイミド、ノボラック型マレイミド、ビフェニルアラルキル型マレイミド、及びこれらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーが挙げられるが、特に制限されるものではない。これらのマレイミド樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The maleimide resin has one or more (preferably 2 to 12, more preferably 2 to 6, even more preferably 2 to 4, even more preferably 2 or 3, even more preferably 2) maleimide groups in one molecule. Generally known compounds or resins can be used as long as they have the following properties. For example, 4,4-diphenylmethanebismaleimide, phenylmethanemaleimide, m-phenylenebismaleimide, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, 3,3-dimethyl-5,5-diethyl -4,4-diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide-(2,2,4-trimethyl)hexane, 4,4-diphenyl ether bismaleimide, 4,4 - Diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, polyphenylmethanemaleimide, novolak-type maleimide, biphenylaralkyl-type maleimide, and these maleimide compounds or a prepolymer of a maleimide compound and an amine compound, but is not particularly limited. These maleimide resins may be used alone or in combination of two or more.
 変性ポリフェニレンエーテルは、硬化物の誘電特性を向上させることができるという観点から、有用である。変性ポリフェニレンエーテルとしては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとポリスチレンとのアロイ化ポリマー、ポリ(2,6ジメチル-1,4-フェニレン)エーテルとスチレン-ブタジエンコポリマーとのアロイ化ポリマー、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとスチレン-無水マレイン酸コポリマのアロイ化ポリマー、ポリ(3,6-ジメチル-1,4-フェニレン)エーテルとポリアミドとのアロイ化ポリマー、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとスチレン-ブタジエン-アクリロニトリルコポリマーとのアロイ化ポリマー、オリゴフェニレンエーテルなどが挙げられる。また、ポリフェニレンエーテルに反応性や重合性を付与するために、ポリマー鎖末端にアミン基、エポキシ基、カルボン基、スチリル基などの官能基を導入したり、ポリマー鎖側鎖にアミン基、エポキシ基、カルボキシル基、スチリル基、メタクリル基などの官能基を導入してもよい。 Modified polyphenylene ether is useful from the viewpoint of being able to improve the dielectric properties of a cured product. Examples of modified polyphenylene ethers include poly(2,6-dimethyl-1,4-phenylene) ether, alloyed polymers of poly(2,6-dimethyl-1,4-phenylene) ether and polystyrene, and poly(2,6-dimethyl-1,4-phenylene) ether. , 6 dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, alloyed polymer of poly(2,6-dimethyl-1,4-phenylene) ether and styrene-maleic anhydride copolymer, poly Alloyed polymer of (3,6-dimethyl-1,4-phenylene) ether and polyamide, alloyed polymer of poly(2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene-acrylonitrile copolymer, Examples include oligophenylene ether. In addition, in order to impart reactivity and polymerizability to polyphenylene ether, functional groups such as amine groups, epoxy groups, carboxyl groups, and styryl groups are introduced at the end of the polymer chain, and amine groups and epoxy groups are introduced into the side chains of the polymer chain. , carboxyl group, styryl group, methacrylic group, etc. may be introduced.
 イソシアネート樹脂としては、特に限定されず、例えば、フェノール類とハロゲン化シアンとの脱ハロゲン化水素反応により得られるイソシアネート樹脂がある。イソシアネート樹脂としては、例えば、4,4’-ジフェニルメタンジイソシアネートMDI、ポリメチレンポリフェニルポリイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネートが挙げられる。これらのイソシアネート樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The isocyanate resin is not particularly limited, and examples thereof include isocyanate resins obtained by a dehydrohalogenation reaction between phenols and cyanogen halides. Examples of the isocyanate resin include 4,4'-diphenylmethane diisocyanate MDI, polymethylene polyphenyl polyisocyanate, tolylene diisocyanate, and hexamethylene diisocyanate. These isocyanate resins may be used alone or in combination of two or more.
 ベンゾシクロブテン樹脂としては、シクロブテン骨格を含む樹脂であれば特に限定されないが、例えば、ジビニルシロキサン-ビスベンゾシクロブテン(ダウケミカル社製)を用いることができる。これらのベンゾシクロブテン樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The benzocyclobutene resin is not particularly limited as long as it contains a cyclobutene skeleton, and for example, divinylsiloxane-bisbenzocyclobutene (manufactured by The Dow Chemical Company) can be used. These benzocyclobutene resins may be used alone or in combination of two or more.
 ビニル樹脂としては、ビニルモノマーの重合体もしくは共重合体であれば特に限定されない。ビニルモノマーとしては、特に制限されず、例えば、(メタ)アクリル酸エステル誘導体、ビニルエステル誘導体、マレイン酸ジエステル誘導体、(メタ)アクリルアミド誘導体、スチレン誘導体、ビニルエーテル誘導体、ビニルケトン誘導体、オレフィン誘導体、マレイミド誘導体、(メタ)アクリロニトリルが挙げられる。これらのビニル樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The vinyl resin is not particularly limited as long as it is a polymer or copolymer of vinyl monomers. Vinyl monomers are not particularly limited, and include, for example, (meth)acrylic acid ester derivatives, vinyl ester derivatives, maleic acid diester derivatives, (meth)acrylamide derivatives, styrene derivatives, vinyl ether derivatives, vinyl ketone derivatives, olefin derivatives, maleimide derivatives, (Meth)acrylonitrile is mentioned. These vinyl resins may be used alone or in combination of two or more.
 絶縁材料として用いられる樹脂組成物には、誘電特性、耐衝撃性及びフィルム加工性などを考慮して、熱可塑性樹脂をブレンドすることもできる。熱可塑性樹脂としては、特に限定されず、例えば、フッ素樹脂、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリアクリレート、ポリアミド、ポリアミドイミド、ポリブタジエンなどを挙げることができる。熱可塑性樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。また、フッ素樹脂は、特に限定されず、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン及びポリフッ化ビニルが挙げられる。これらのフッ素樹脂は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 A thermoplastic resin can also be blended into the resin composition used as the insulating material, taking dielectric properties, impact resistance, film processability, etc. into consideration. The thermoplastic resin is not particularly limited, and examples thereof include fluororesin, polycarbonate, polyetherimide, polyetheretherketone, polyacrylate, polyamide, polyamideimide, polybutadiene, and the like. One type of thermoplastic resin may be used alone, or two or more types may be used in combination. Further, the fluororesin is not particularly limited, and examples thereof include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride. These fluororesins may be used alone or in combination of two or more.
 熱可塑性樹脂の中でも、耐湿性に優れ、更に金属に対する接着剤が良好な観点から、ポリアミドイミド樹脂が有用である。ポリアミドイミド樹脂の原料は、特に限定されるものではないが、酸性分としては、無水トリメリット酸、無水トリメリット酸モノクロライドが挙げられ、アミン成分としては、メタフェニレンジアミン、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、ビス[4-(アミノフェノキシ)フェニル]スルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンなどが挙げられる。ポリアミドイミド樹脂は、乾燥性を向上させるためにシロキサン変性としてもよく、この場合、アミノ成分としてシロキサンジアミンを用いることができる。ポリアミドイミド樹脂は、フィルム加工性を考慮すると、分子量が5万以上のものを用いるのが好ましい。 Among thermoplastic resins, polyamide-imide resin is useful because it has excellent moisture resistance and is also a good adhesive for metals. The raw materials for the polyamide-imide resin are not particularly limited, but the acidic component includes trimellitic anhydride and trimellitic anhydride monochloride, and the amine component includes metaphenylenediamine, paraphenylenediamine, , 4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, bis[4-(aminophenoxy)phenyl]sulfone, 2,2'-bis[4-(4-aminophenoxy)phenyl]propane, and the like. The polyamide-imide resin may be modified with siloxane to improve drying properties, and in this case, siloxane diamine can be used as the amino component. When considering film processability, it is preferable to use a polyamide-imide resin having a molecular weight of 50,000 or more.
 絶縁材料として用いられる樹脂組成物には、充填材が混合されていてもよい。充填材としては、特に限定されないが、例えば、アルミナ、ホワイトカーボン、チタンホワイト、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の金属酸化物(水和物を含む)、水酸化アルミニウム、ベーマイト、水酸化マグネシウム等の金属水酸化物、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類、クレー、カオリン、タルク、マイカ、ガラス粉、石英粉、シラスバルーン等の無機系の充填材(無機充填材)の他、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、シリコーンレジンパウダー、シリコーンゴムパウダー、シリコーン複合パウダーなどの有機系の充填材(有機充填材)が挙げられる。これら充填材は、1種類を単独で使用してもよいし、2種類以上を混合して使用してもよい。 A filler may be mixed in the resin composition used as the insulating material. Fillers include, but are not particularly limited to, metal oxides (including hydrates) such as alumina, white carbon, titanium white, titanium oxide, zinc oxide, magnesium oxide, and zirconium oxide, aluminum hydroxide, boehmite, Metal hydroxides such as magnesium hydroxide, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, Aerosil, hollow silica, inorganic materials such as clay, kaolin, talc, mica, glass powder, quartz powder, and glass balloons In addition to organic fillers (inorganic fillers), organic fillers such as styrene-type, butadiene-type, acrylic-type rubber powders, core-shell type rubber powders, silicone resin powders, silicone rubber powders, silicone composite powders, etc. organic fillers). These fillers may be used alone or in combination of two or more.
 絶縁材料として用いられる樹脂組成物は、有機溶媒を含有していてもよい。有機溶媒としては、特に限定されるものではなく、ベンゼン、トルエン、キシレン、トリメチルベンゼンのような芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイノブチルケトンのようなケトン系溶媒;テトラヒドロフランのようなエーテル系溶媒;イソプロパノール、ブタノールのようなアルコール系溶媒;2-メトキシエタノール、2-ブトキシエタノールのようなエーテルアルコール溶媒;N-メチルピロリドン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミドのようなアミド系溶媒などを、所望に応じて併用することができる。尚、プリプレグを作製する場合におけるワニス中の溶媒量は、樹脂組成物全体に対して40質量%~80質量%の範囲とすることが好ましい。また、前記ワニスの粘度は20cP~100cP(20mPa・s~100mPa・s)の範囲が望ましい。 The resin composition used as the insulating material may contain an organic solvent. Organic solvents are not particularly limited, and include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and trimethylbenzene; ketone solvents such as acetone, methyl ethyl ketone, and methyl ibutyl ketone; and tetrahydrofuran. Ether solvents; alcohol solvents such as isopropanol and butanol; ether alcohol solvents such as 2-methoxyethanol and 2-butoxyethanol; such as N-methylpyrrolidone, N,N-dimethylformamide, and N,N-dimethylacetamide An amide solvent or the like can be used in combination as desired. Incidentally, when producing a prepreg, the amount of solvent in the varnish is preferably in the range of 40% by mass to 80% by mass based on the entire resin composition. Further, the viscosity of the varnish is preferably in the range of 20 cP to 100 cP (20 mPa·s to 100 mPa·s).
 絶縁材料として用いられる樹脂組成物は、難燃剤を含有していてもよい。難燃剤としては、特に限定されるものではないが、例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、テトラブロモ無水フタル酸、トリブロモフェノールなどの臭素化合物、トリフェニルフォスフェート、トリキシレルフォスフェート、クレジルジフェニルフォスフェートなどのリン化合物、赤リン及びその変性物、三酸化アンチモン、五酸化アンチモンなどのアンチモン化合物、メラミン、シアヌール酸、シアヌール酸メラミンなどのトリアジン化合物など公知慣例の難燃剤を用いることができる。 The resin composition used as the insulating material may contain a flame retardant. Flame retardants include, but are not particularly limited to, bromine compounds such as decabromodiphenyl ether, tetrabromo bisphenol A, tetrabromo phthalic anhydride, and tribromophenol, triphenyl phosphate, tricyl phosphate, and cresyl phosphate. Known and customary flame retardants such as phosphorus compounds such as dildiphenyl phosphate, red phosphorus and its modified products, antimony compounds such as antimony trioxide and antimony pentoxide, and triazine compounds such as melamine, cyanuric acid, and melamine cyanurate can be used. can.
 絶縁材料として用いられる樹脂組成物に対して、さらに必要に応じて上述の硬化剤、硬化促進剤や、その他、熱可塑性粒子、着色剤、紫外線不透過剤、酸化防止剤、還元剤などの各種添加剤や充填材を加えることができる。 The resin composition used as an insulating material may be further added with the above-mentioned curing agents, curing accelerators, thermoplastic particles, colorants, ultraviolet opaque agents, antioxidants, reducing agents, etc. as necessary. Additives and fillers can be added.
 本実施形態においてプリプレグは、例えば、上述した基材に対する樹脂組成物の付着量が、乾燥後のプリプレグにおける樹脂含有率で20質量%以上90質量%以下となるように、樹脂組成物(ワニスを含む)を基材に含浸又は塗工した後、100℃以上200℃以下の温度で1分から30分間加熱乾燥することで、半硬化状態(Bステージ状態)のプリプレグとして得ることができる。そのようなプリプレグとしては、例えば、三菱ガス化学株式会社製の、GHPL-830NS(製品名)、GHPL-830NSF(製品名)を使用することができる。 In the present embodiment, the prepreg is made of a resin composition (varnish) such that, for example, the amount of the resin composition adhered to the base material described above is 20% by mass or more and 90% by mass or less in terms of resin content in the prepreg after drying. After impregnating or coating a base material with (containing) a base material, it can be obtained as a prepreg in a semi-cured state (B stage state) by heating and drying at a temperature of 100° C. or higher and 200° C. or lower for 1 minute to 30 minutes. As such prepreg, for example, GHPL-830NS (product name) and GHPL-830NSF (product name) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
 絶縁性のフィルム材は、例えば、プリプレグにおいて説明した絶縁材料の樹脂組成物により構成することができ、これらの樹脂組成物をフィルム状に加工することにより得ることができる。 The insulating film material can be composed of, for example, the resin composition of the insulating material described in connection with the prepreg, and can be obtained by processing these resin compositions into a film form.
(第1の金属層)
 第1の金属層12は、コア樹脂層11と共に支持体10Aを構成するものである。第1の金属層12は、例えば、キャリア付金属箔により構成することができる。キャリア付金属箔は、例えば、キャリア12Aに剥離手段である剥離層(図示せず)を介して金属箔12Bを積層したものである。キャリア付金属箔には市販品を用いることもでき、例えば、三井金属鉱業株式会社製のMT18SD-H-T5(製品名)を使用することができる。第1の金属層12の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、0.5μm以上100μm以下とすることができる。
(First metal layer)
The first metal layer 12 constitutes the support body 10A together with the core resin layer 11. The first metal layer 12 can be made of, for example, metal foil with a carrier. The metal foil with a carrier is, for example, a metal foil 12B laminated on a carrier 12A via a peeling layer (not shown) serving as a peeling means. A commercial product can be used as the metal foil with a carrier, and for example, MT18SD-H-T5 (product name) manufactured by Mitsui Mining & Mining Co., Ltd. can be used. The thickness of the first metal layer 12 is appropriately set as desired and is not particularly limited, but may be, for example, 0.5 μm or more and 100 μm or less.
 キャリア12Aは、例えば、各種金属箔により構成することができるが、厚さの均一性及び箔の耐食性などの点から銅箔により構成することが好ましい。キャリア12Aの厚みは、金属箔12Bの厚みよりも厚く、例えば、3μm以上100μm以下とすることができ、5μm以上50μm以下が好ましく、6μm以上30μm以下が更に好ましい。 The carrier 12A can be made of various metal foils, for example, but is preferably made of copper foil in terms of uniformity of thickness and corrosion resistance of the foil. The thickness of the carrier 12A is thicker than the thickness of the metal foil 12B, and can be, for example, 3 μm or more and 100 μm or less, preferably 5 μm or more and 50 μm or less, and more preferably 6 μm or more and 30 μm or less.
 剥離層は、キャリア12Aと金属箔12Bとを容易に剥離できるようにするためのものである。剥離層の材料は、特に限定されず、各種の周知のものを適宜使用することができる。例えば、有機系の材料であれば、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定しやすい点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N‘,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。また、無機系の材料であれば、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn等のうち少なくとも1種からなる金属若しくは合金、又はこれらの酸化物が挙げられる。剥離層の厚みは、例えば、1nm以上1μm以下とすることができ、好ましくは5nm以上500nm以下である。 The peeling layer is for making it possible to easily peel the carrier 12A and the metal foil 12B. The material for the release layer is not particularly limited, and various known materials can be used as appropriate. For example, organic materials include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids, and the like. Examples of the nitrogen-containing organic compound include triazole compounds, imidazole compounds, etc. Among them, triazole compounds are preferable because their peelability is easily stable. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino- Examples include 1H-1,2,4-triazole. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like. Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like. In addition, examples of inorganic materials include metals or alloys made of at least one of Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, etc., or oxides thereof. The thickness of the release layer can be, for example, 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less.
 金属箔12Bは、例えば、各種金属箔により構成することができるが、厚さの均一性及び箔の耐食性などの点から銅箔により構成することが好ましい。金属箔12Bの厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、0.5μm以上70μm以下とすることができ、1μm以上50μm以下が好ましく、6μm以上30μm以下が更に好ましい。 The metal foil 12B can be made of various metal foils, for example, but is preferably made of copper foil in terms of uniformity of thickness and corrosion resistance of the foil. The thickness of the metal foil 12B is appropriately set as desired and is not particularly limited, but can be, for example, 0.5 μm or more and 70 μm or less, preferably 1 μm or more and 50 μm or less, and more preferably 6 μm or more and 30 μm or less. .
 第1の金属層12は、キャリア12Aをコア樹脂層11の側、金属箔12Bを拡散防止層13の側としてもよく、金属箔12Bをコア樹脂層11の側、キャリア12Aを拡散防止層13の側とするようにしてもよい。なお、図1では、キャリア12Aをコア樹脂層11の側、金属箔12Bを拡散防止層13の側とした場合を示している。第1の金属層12における拡散防止層13の側の端面から剥離手段までの厚み(図1に示した例においては金属箔12Bの厚み)は、6μm以上であることが好ましく、10μm以上であればより好ましく、15μm以上であれば更に好ましい。第1の金属層12の上に配線基板20Aを形成した後に、剥離手段においてコア樹脂層11を分離除去する際に、配線基板20Aを補強して破損を抑制することができるからである。また、第1の金属層12における拡散防止層13の側の端面から剥離手段までの厚みは、70μm以下が好ましく、50μm以下であればより好ましく、30μm以下であれば更に好ましい。拡散防止層13の側に残存する第1の金属層12の厚みが厚くなりすぎると、エッチングによる除去に時間がかかるからである。 The first metal layer 12 may have the carrier 12A on the core resin layer 11 side and the metal foil 12B on the diffusion prevention layer 13 side, or the metal foil 12B on the core resin layer 11 side and the carrier 12A on the diffusion prevention layer 13 side. It may be set to the side of Note that FIG. 1 shows a case where the carrier 12A is on the core resin layer 11 side and the metal foil 12B is on the diffusion prevention layer 13 side. The thickness of the first metal layer 12 from the end surface on the diffusion prevention layer 13 side to the peeling means (in the example shown in FIG. 1, the thickness of the metal foil 12B) is preferably 6 μm or more, and may be 10 μm or more. It is more preferable if it is 15 μm or more, and even more preferably if it is 15 μm or more. This is because, after the wiring board 20A is formed on the first metal layer 12, when the core resin layer 11 is separated and removed by the peeling means, the wiring board 20A can be reinforced and damage can be suppressed. Further, the thickness from the end face of the first metal layer 12 on the diffusion prevention layer 13 side to the peeling means is preferably 70 μm or less, more preferably 50 μm or less, and even more preferably 30 μm or less. This is because if the first metal layer 12 remaining on the diffusion prevention layer 13 side becomes too thick, it will take time to remove it by etching.
 また、第1の金属層12は、図示しないが、剥離手段である剥型層を有する金属箔により構成することもできる。この場合、剥型層がコア樹脂層11の側となるように積層される。剥型層としては、例えば、ケイ素化合物を少なくとも含む層が挙げられ、例えば、金属箔上に、シラン化合物を単独又は複数組合せてなるケイ素化合物を付与することで、形成することができる。尚、ケイ素化合物を付与する手段は特に限定されるものではなく、例えば、塗布等の公知の手段を用いることができる。金属箔の剥型層との接着面には防錆処理を施す(防錆処理層を形成する)ことができる。防錆処理は、ニッケル、錫、亜鉛、クロム、モリブデン、コバルトのいずれか、若しくはそれらの合金を用いて行うことができる。剥型層の厚みは、特に限定されるものではないが、除去性及び剥離性の観点から、5nm以上100nm以下が好ましく、10nm以上80nm以下が更に好ましく、20nm以上60nm以下が特に好ましい。また、金属箔としては、厚さの均一性及び箔の耐食性などの点から銅箔が好ましい。この場合も、第1の金属層12における拡散防止層13の側の端面から剥離手段までの厚みは、上述した通りとすることが好ましい。 Although not shown, the first metal layer 12 can also be made of a metal foil having a peeling layer that is a peeling means. In this case, the release layer is stacked on the core resin layer 11 side. Examples of the release layer include a layer containing at least a silicon compound, and can be formed, for example, by applying a silicon compound made of a single silane compound or a combination of two or more silane compounds on a metal foil. Note that the means for applying the silicon compound is not particularly limited, and for example, known means such as coating can be used. The adhesive surface of the metal foil with the release layer can be subjected to rust prevention treatment (forming a rust prevention treatment layer). The rust prevention treatment can be performed using nickel, tin, zinc, chromium, molybdenum, cobalt, or an alloy thereof. The thickness of the release layer is not particularly limited, but from the viewpoint of removability and peelability, it is preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and particularly preferably 20 nm or more and 60 nm or less. Further, as the metal foil, copper foil is preferable from the viewpoint of uniformity of thickness and corrosion resistance of the foil. Also in this case, the thickness from the end surface of the first metal layer 12 on the diffusion prevention layer 13 side to the peeling means is preferably as described above.
(拡散防止層)
 拡散防止層13は、剥離手段においてコア樹脂層11を分離除去した後、残存する第1の金属層12をエッチングにより除去する際に、エッチングストッパーとして機能すると共に、第1の金属層12の上に保護めっき層15を設ける場合に、第1の金属層12及び保護めっき層15の構成元素が互いに拡散し、保護めっき層15が腐食することを抑制するためのものである。拡散防止層13は、ニッケル、アルミニウム、鉄、亜鉛、スズ、鉛、クロム、コバルト、銀、及び、パラジウムよりなる群から選択される少なくとも1種を含むことが好ましい。上述した機能を得ることができるからである。拡散防止層13は、例えば、第1の金属層12に接して設けられている。拡散防止層13の厚みは、例えば、0.5μm以上10μm以下とすることができる。
(diffusion prevention layer)
The diffusion prevention layer 13 functions as an etching stopper when the remaining first metal layer 12 is removed by etching after the core resin layer 11 is separated and removed by the peeling means, and also acts as an etching stopper on the first metal layer 12. This is to prevent the constituent elements of the first metal layer 12 and the protective plating layer 15 from diffusing into each other and corroding the protective plating layer 15 when the protective plating layer 15 is provided in the protective plating layer 15 . Preferably, the diffusion prevention layer 13 contains at least one member selected from the group consisting of nickel, aluminum, iron, zinc, tin, lead, chromium, cobalt, silver, and palladium. This is because the above-mentioned functions can be obtained. The diffusion prevention layer 13 is provided, for example, in contact with the first metal layer 12. The thickness of the diffusion prevention layer 13 can be, for example, 0.5 μm or more and 10 μm or less.
(めっきレジスト)
 めっきレジスト14は、例えば、拡散防止層13に接して設けられ、第1の金属層12の上に形成する配線基板20Aの端子位置に対応して、開口が設けられている。なお、配線基板20Aの端子位置というのは、例えば、配線基板20Aをはんだ付け等で電子機器に搭載する際の外部接続端子の位置である。めっきレジスト14は、例えば、絶縁性の樹脂材料を含んでおり、ドライフィルムレジストや、コア樹脂層11において説明した絶縁性のフィルム材又はプリプレグ等により構成することができる。めっきレジスト14は、例えば、拡散防止層13及び保護めっき層15を形成した後に除去してもよいが、除去せずにその上に配線基板20Aを形成するようにしてもよい。支持体付き配線基板20から剥離手段において支持体10Aを分離除去した後はソルダーレジスト層として機能させることができるからである。
(plating resist)
The plating resist 14 is provided, for example, in contact with the diffusion prevention layer 13 and has openings corresponding to the terminal positions of the wiring board 20A formed on the first metal layer 12. Note that the terminal position of the wiring board 20A is, for example, the position of an external connection terminal when the wiring board 20A is mounted on an electronic device by soldering or the like. The plating resist 14 contains, for example, an insulating resin material, and can be composed of a dry film resist, the insulating film material or prepreg described in the core resin layer 11, or the like. For example, the plating resist 14 may be removed after forming the diffusion prevention layer 13 and the protective plating layer 15, but the wiring board 20A may be formed thereon without being removed. This is because after the support 10A is separated and removed from the support-attached wiring board 20 by the peeling means, it can function as a solder resist layer.
 めっきレジスト14をソルダーレジスト層として用いる場合には、絶縁性の樹脂材料はガラス転移温度が150℃以上であることが好ましい。ガラス転移温度が150℃よりも低いと加工工程において膨れが生じ、配線基板20Aが破損する場合があるからである。めっきレジスト14における絶縁性の樹脂材料としては、耐熱性に優れた材料、例えば、ポリイミド樹脂、エポキシ樹脂、シアネート樹脂、マレイミド樹脂、ビスマレイミドトリアジン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂であるナイロン樹脂、及び、フッ素系樹脂から選択される少なくとも1種を含むことが好ましい。中でも、ポリイミド樹脂、ビスマレイミドトリアジン樹脂、及び、フッ素系樹脂から選択される少なくとも1種を含むことが好ましい。 When the plating resist 14 is used as a solder resist layer, it is preferable that the insulating resin material has a glass transition temperature of 150° C. or higher. This is because if the glass transition temperature is lower than 150° C., bulges may occur during the processing process and the wiring board 20A may be damaged. The insulating resin material in the plating resist 14 includes materials with excellent heat resistance, such as polyimide resin, epoxy resin, cyanate resin, maleimide resin, bismaleimide triazine resin, polyamideimide resin, nylon resin that is polyamide resin, and , fluororesin. Among these, it is preferable to include at least one selected from polyimide resins, bismaleimide triazine resins, and fluororesins.
 めっきレジスト14の厚みは、所望に応じて適宜設定されるが、例えば、1μm以上100μm以下とすることができ、1μm以上30μm以下が好ましく、1μm以上9μm以下がより好ましい。配線基板20Aの総厚みを薄くするためである。 The thickness of the plating resist 14 is appropriately set as desired, but can be, for example, 1 μm or more and 100 μm or less, preferably 1 μm or more and 30 μm or less, and more preferably 1 μm or more and 9 μm or less. This is to reduce the total thickness of the wiring board 20A.
(保護めっき層)
 保護めっき層15は、配線基板20Aの外部接続端子の表面を保護するものである。保護めっき層15は、例えば、拡散防止層13の側から、金よりなる金めっき層15Aと、ニッケルよりなるニッケルめっき層15Bとを有することが好ましい。金めっき層15Aの厚みは、例えば、0.05μm以上0.1μm以下とすることができ、ニッケルめっき層15Bの厚みは、例えば、0.5μm以上10μm以下とすることができる。
(protective plating layer)
The protective plating layer 15 protects the surface of the external connection terminal of the wiring board 20A. It is preferable that the protective plating layer 15 has, for example, a gold plating layer 15A made of gold and a nickel plating layer 15B made of nickel from the diffusion prevention layer 13 side. The thickness of the gold plating layer 15A can be, for example, 0.05 μm or more and 0.1 μm or less, and the thickness of the nickel plating layer 15B can be, for example, 0.5 μm or more and 10 μm or less.
<積層体の製造方法>
 図2は、積層体10の製造方法を表すものである。まず、例えば、図2(A)に示したように、コア樹脂層11と、コア樹脂層11の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層12と、を有する支持体10Aを準備する(支持体準備工程)。具体的には、例えば、コア樹脂層11の少なくとも一方の面側に、キャリア付金属箔、又は、剥型層を有する金属箔を配置し、加熱及び加圧して、支持体10Aを形成する。次いで、例えば、図2(B)に示したように、第1の金属層12のコア樹脂層11と反対側の面に、電解めっきにより拡散防止層13を形成する(拡散防止層形成工程)。
<Method for manufacturing laminate>
FIG. 2 shows a method for manufacturing the laminate 10. First, for example, as shown in FIG. 2(A), a core resin layer 11 and a first metal layer 12 provided on at least one surface side of the core resin layer 11 and provided with a peeling means are provided. A support 10A is prepared (support preparation step). Specifically, for example, a metal foil with a carrier or a metal foil having a release layer is placed on at least one side of the core resin layer 11, and heated and pressurized to form the support 10A. Next, for example, as shown in FIG. 2(B), a diffusion prevention layer 13 is formed by electrolytic plating on the surface of the first metal layer 12 opposite to the core resin layer 11 (diffusion prevention layer forming step). .
 続いて、例えば、図2(C)に示したように、拡散防止層13の第1の金属層12と反対側の面に、めっきレジスト14を形成する(めっきレジスト形成工程)。具体的には、例えば、拡散防止層13の上にドライフィルムレジストをラミネートした後、ドライフィルムレジストへの回路パターンの焼付け、現像を行うことによりめっきレジスト14を形成する。また、例えば、拡散防止層13の上に樹脂層付きのキャリア付金属箔を樹脂層が拡散防止層13の側となるように配置して、加熱加圧し、キャリアを剥離したのち、金属箔の上にドライフィルムレジストをラミネートし、焼付け、現像をして、レジストパターンを形成し、次いで、金属箔をエッチングしてマスクを形成してレジストパターンを除去し、続いて、樹脂層のうちマスクで覆われていない部分をレーザー加工等により除去し、マスクを除去することによりめっきレジスト14を形成する。 Subsequently, for example, as shown in FIG. 2C, a plating resist 14 is formed on the surface of the diffusion prevention layer 13 opposite to the first metal layer 12 (plating resist forming step). Specifically, for example, after laminating a dry film resist on the diffusion prevention layer 13, the plating resist 14 is formed by printing a circuit pattern on the dry film resist and developing it. Further, for example, a metal foil with a carrier and a resin layer is placed on the diffusion prevention layer 13 so that the resin layer is on the diffusion prevention layer 13 side, heated and pressurized to peel off the carrier, and then the metal foil is A dry film resist is laminated on top, baked and developed to form a resist pattern, and then the metal foil is etched to form a mask and the resist pattern is removed. The uncovered portions are removed by laser processing or the like, and the mask is removed to form a plating resist 14.
 次に、例えば、図2(D)に示したように、拡散防止層13の第1の金属層12と反対側において、めっきレジスト14が設けられていない領域に、電解めっきにより保護めっき層15を形成する(保護めっき層形成工程)。具体的には、例えば、電解めっきにより金めっき層15A、ニッケルめっき層15Bをこの順に積層する。 Next, as shown in FIG. 2D, for example, on the side of the diffusion prevention layer 13 opposite to the first metal layer 12, a protective plating layer 15 is applied by electrolytic plating to a region where the plating resist 14 is not provided. (protective plating layer formation process). Specifically, for example, the gold plating layer 15A and the nickel plating layer 15B are laminated in this order by electrolytic plating.
<支持体付き配線基板及びコアレス基板の第1の製造方法>
 積層体10は、支持体付き配線基板20及びコアレス基板30を製造する際に用いることができる。図3から図5は、支持体付き配線基板20及びコアレス基板30の第1の製造方法の各工程を表すものである。まず、例えば、上述したようにして積層体10を形成する(支持体準備工程、拡散防止層形成工程、めっきレジスト形成工程、及び、保護めっき層形成工程)。次いで、例えば、図3(A)に示したように、保護めっき層15の拡散防止層13と反対側において、めっきレジスト14が設けられていない領域に、電解めっき、例えば、電解銅めっきにより第1の配線導体21を形成する(第1の配線導体形成工程)。
<First manufacturing method of wiring board with support and coreless board>
The laminate 10 can be used when manufacturing the wiring board 20 with a support and the coreless board 30. 3 to 5 illustrate each step of the first manufacturing method of the wiring board 20 with a support and the coreless board 30. First, for example, the laminate 10 is formed as described above (support preparation step, diffusion prevention layer formation step, plating resist formation step, and protective plating layer formation step). Next, as shown in FIG. 3A, for example, on the opposite side of the protective plating layer 15 from the diffusion prevention layer 13, a region where the plating resist 14 is not provided is subjected to electrolytic plating, for example, electrolytic copper plating. One wiring conductor 21 is formed (first wiring conductor forming step).
 続いて、例えば、図3(B)に示したように、第1の配線導体21及びめっきレジスト14の上に、第1の絶縁層22を形成し、その上に第2の配線導体23を形成し、2層の配線導体を有する支持体付き配線基板20とする(第1の絶縁層形成工程・第2の配線導体形成工程)。具体的には、まず、例えば、第1の配線導体21の表面に、第1の絶縁層22との密着力を高めるために粗化処理を施す。粗化処理は、特に限定されず、公知の手段を適宜使用でき、例えば、銅表面粗化液を用いる手段が挙げられる。次いで、例えば、第1の配線導体21及びめっきレジスト14の上に、樹脂層付きのキャリア付金属箔を樹脂層が第1の配線導体21と接するように配置して、加熱加圧し、キャリアを剥離することにより、第1の絶縁層22と第2の金属層とをこの順に積層する。樹脂層付きのキャリア付金属箔は、例えば、キャリア付金属箔の金属箔側に樹脂層を積層したものであり、樹脂層が第1の絶縁層22となり、金属箔が第2の金属層となる。 Subsequently, for example, as shown in FIG. 3B, a first insulating layer 22 is formed on the first wiring conductor 21 and the plating resist 14, and a second wiring conductor 23 is formed thereon. A wiring board 20 with a support having two layers of wiring conductors is obtained (first insulating layer forming step/second wiring conductor forming step). Specifically, first, for example, the surface of the first wiring conductor 21 is subjected to a roughening treatment in order to increase its adhesion to the first insulating layer 22. The roughening treatment is not particularly limited, and any known means can be used as appropriate, including, for example, means using a copper surface roughening solution. Next, for example, a carrier-attached metal foil with a resin layer is placed on the first wiring conductor 21 and the plating resist 14 so that the resin layer is in contact with the first wiring conductor 21, and heated and pressurized to form a carrier. By peeling off, the first insulating layer 22 and the second metal layer are laminated in this order. The carrier-attached metal foil with a resin layer is, for example, a resin layer laminated on the metal foil side of the carrier-attached metal foil, with the resin layer serving as the first insulating layer 22 and the metal foil serving as the second metal layer. Become.
 続いて、例えば、炭酸ガスレーザー等を用いたレーザー加工により、第2の金属層及び第1の絶縁層22に穴開けをして第1の配線導体21に達する第1の非貫通孔22Aを形成し、デスミア処理をする。次に、例えば、サブトラクティブ工法又はセミアディティブ工法などの公知の方法により第2の配線導体23を形成する。サブトラクティブ工法の場合には、例えば、まず、第1の非貫通孔22Aを形成した表面に無電解めっき及び電解めっきの少なくとも一方を施し、第1の非貫通孔22Aの内壁に第1の配線導体21と第2の金属層とを接続する第1の接続ビア22Bを形成すると共に、第2の金属層の厚みを増加させ、必要に応じて整面する。次いで、例えば、ドライフィルムレジスト等をラミネートし、ネガ型マスクを張り合わせて回路パターンを焼付け、現像して、エッチングレジストを形成する。続いて、例えば、エッチングレジストをマスクとして厚みを増加させた第2の金属層をエッチングして第2の配線導体23を形成し、エッチングレジストを除去する。 Next, for example, by laser processing using a carbon dioxide laser or the like, a hole is made in the second metal layer and the first insulating layer 22 to form a first non-through hole 22A that reaches the first wiring conductor 21. Form and desmear. Next, the second wiring conductor 23 is formed by a known method such as a subtractive construction method or a semi-additive construction method. In the case of the subtractive construction method, for example, first, at least one of electroless plating and electrolytic plating is applied to the surface on which the first non-through hole 22A is formed, and the first wiring is formed on the inner wall of the first non-through hole 22A. A first connection via 22B is formed to connect the conductor 21 and the second metal layer, and the thickness of the second metal layer is increased, and the surface is leveled if necessary. Next, for example, a dry film resist or the like is laminated, a negative mask is attached, a circuit pattern is printed and developed, and an etching resist is formed. Subsequently, for example, the second metal layer with increased thickness is etched using the etching resist as a mask to form the second wiring conductor 23, and the etching resist is removed.
 セミアディティブ工法の場合には、例えば、まず、第1の非貫通孔22Aを形成した後、第2の金属層をエッチング等により全て除去し、第1の絶縁層22を露出させる。次いで、例えば、無電解めっきを行い、第1の非貫通孔22Aの内壁に第1の接続ビア22Bを形成すると共に、第1の絶縁層22の上に無電解めっき層を形成する。続いて、例えば、無電解めっき層の上にドライフィルムを熱圧着してレジスト層を設け、露光及び現像を行い、レジストパターンを形成してスカム(レジスト残渣)を除去する。次いで、例えば、レジストパターンをめっきレジストとして、無電解銅めっき層の表面に電解めっきにより電解めっき層を形成し、レジストパターンを除去した後、露出された無電解めっき層をエッチングして、無電解めっき層及び電解めっき層からなる第2の配線導体23を形成する。 In the case of the semi-additive construction method, for example, first, the first non-through hole 22A is formed, and then the second metal layer is completely removed by etching or the like to expose the first insulating layer 22. Next, for example, electroless plating is performed to form the first connection via 22B on the inner wall of the first non-through hole 22A, and to form an electroless plating layer on the first insulating layer 22. Subsequently, for example, a resist layer is provided by thermocompression bonding a dry film on the electroless plating layer, and exposure and development are performed to form a resist pattern and remove scum (resist residue). Next, for example, using the resist pattern as a plating resist, an electrolytic plating layer is formed on the surface of the electroless copper plating layer by electrolytic plating, and after removing the resist pattern, the exposed electroless plating layer is etched to form an electroless plating layer. A second wiring conductor 23 made of a plating layer and an electrolytic plating layer is formed.
 第2の配線導体23を形成した後、例えば、図3(C)に示したように、第1の絶縁層形成工程及び第2の配線導体形成工程と同じ工程をn回繰り返し行い、(n+2)層の配線導体を有するビルドアップ構造を形成してもよい(ビルドアップ工程)。なお、図3(C)では、第1の絶縁層形成工程及び第2の配線導体形成工程と同じ工程を4回繰り返し行い、6層の配線導体を有するビルドアップ構造の支持体付き配線基板20を形成した場合について示している。具体的には、例えば、第(m)の絶縁層22,24及び第(m+1)の配線導体23,25の上に、第(m+1)の絶縁層24を形成する第(m+1)の絶縁層形成工程、及び、第(m+1)の絶縁層24に第(m+1)の配線導体23,25に達する第(m+1)の非貫通孔24Aを形成し、第(m+1)の非貫通孔24Aが形成された表面に電解めっき及び無電解めっきの少なくとも一方を施して、第(m+2)の配線導体25を形成する第(m+2)の配線導体形成工程を、この順にn回行い、ビルドアップ構造を形成してもよい(ビルドアップ工程)。m及びnは1以上の整数、但し、m≦nである。 After forming the second wiring conductor 23, the same steps as the first insulating layer forming step and the second wiring conductor forming step are repeated n times, as shown in FIG. ) layer of wiring conductors may be formed (build-up process). In addition, in FIG. 3C, the same steps as the first insulating layer forming step and the second wiring conductor forming step are repeated four times to form a wiring board 20 with a support having a build-up structure and having six layers of wiring conductors. The figure shows the case where . Specifically, for example, the (m+1)th insulating layer 24 is formed on the (m+1)th insulating layer 22, 24 and the (m+1) th wiring conductor 23, 25. Forming step, and forming (m+1)th non-through hole 24A reaching (m+1) th wiring conductor 23, 25 in (m+1)th insulating layer 24, forming (m+1)th non-through hole 24A The (m+2)th wiring conductor forming step of forming the (m+2)th wiring conductor 25 by applying at least one of electrolytic plating and electroless plating to the surface thus formed is performed n times in this order to form a build-up structure. (build-up process). m and n are integers of 1 or more, provided that m≦n.
 第1の絶縁層22及び第2の配線導体23を形成した後、又は、第(n+1)の絶縁層24及び第(n+2)の配線導体25を形成した後、例えば、図4(D)に示したように、それらの上に、第2の配線導体23又は第(n+2)の配線導体25が部分的に露出するようにソルダーレジスト層26を形成する(ソルダーレジスト層形成工程)。ソルダーレジスト層26の形成方法は、特に限定されず、公知の手段を適宜採用することができる。 After forming the first insulating layer 22 and the second wiring conductor 23, or after forming the (n+1)th insulating layer 24 and the (n+2)th wiring conductor 25, for example, as shown in FIG. As shown, a solder resist layer 26 is formed thereon so that the second wiring conductor 23 or the (n+2)th wiring conductor 25 is partially exposed (solder resist layer forming step). The method for forming the solder resist layer 26 is not particularly limited, and any known means can be used as appropriate.
 ソルダーレジスト層26を形成した後、例えば、図4(E)に示したように、ソルダーレジスト層26から露出した第2の配線導体23又は第(n+2)の配線導体25の上に、電解めっきにより保護めっき層27を形成する(めっき仕上げ工程)。具体的には、例えば、第2の配線導体23又は第(n+2)の配線導体25の側から、ニッケルよりなるニッケルめっき層27A及び金よりなる金めっき層27Bをこの順に積層する。 After forming the solder resist layer 26, for example, as shown in FIG. A protective plating layer 27 is formed (plating finishing step). Specifically, for example, a nickel plating layer 27A made of nickel and a gold plating layer 27B made of gold are laminated in this order from the side of the second wiring conductor 23 or the (n+2)th wiring conductor 25.
 保護めっき層27を形成した後、例えば、図5(F)に示したように、支持体付き配線基板20からコア樹脂層11を分離除去する(コア樹脂層分離除去工程)。コア樹脂層11の分離除去は、例えば、第1の金属層12の剥離手段(例えば、剥離層又は剥型層)において剥離することにより行う。剥離は、物理的手段又は化学的手段のいずれも採用することができるが、例えば、剥離手段に物理的な力を加えて、物理的手段により剥離することが好ましい。この剥離により、コア樹脂層11、及び、場合により第1の金属層12の一部が剥離される。第1の金属層12の剥離手段の少なくとも一部は、少なくともコア樹脂層11と共に剥離されてもよく、また、剥離されずに残存してもよい。 After forming the protective plating layer 27, for example, as shown in FIG. 5(F), the core resin layer 11 is separated and removed from the wiring board 20 with a support (core resin layer separation and removal step). The core resin layer 11 is separated and removed, for example, by peeling the first metal layer 12 using a peeling means (for example, a peeling layer or a peeling layer). Although either physical means or chemical means can be used for peeling, it is preferable to apply physical force to the peeling means to peel off by physical means. By this peeling, the core resin layer 11 and, in some cases, a part of the first metal layer 12 are peeled off. At least a portion of the peeling means for the first metal layer 12 may be peeled off together with at least the core resin layer 11, or may remain without being peeled off.
 コア樹脂層11を分離除去した後、例えば、図5(G)に示したように、残存する第1の金属層12及び拡散防止層13を除去する(第1の金属層・拡散防止層除去工程)。第1の金属層12及び拡散防止層13を除去する手段は、特に限定されるものではないが、例えば、硫酸系又は過酸化水素系エッチング液を用いて除去することができる。硫酸系又は過酸化水素系エッチング液は、特に限定されるものではなく、当業界で使用されているものを使用することができる。その際、第1の金属層12と保護めっき層15との間に拡散防止層13が設けられているので、拡散防止層13をエッチングストッパーとし、残存する第1の金属層12を容易に除去することができる。また、第1の金属層12と保護めっき層15との構成元素が互いに拡散することを抑制することができ、良好な保護めっき層を形成することができる。これによりコアレス基板30が得られる。なお、このコアレス基板30では、めっきレジスト14をソルダーレジスト層として用いている。 After separating and removing the core resin layer 11, for example, as shown in FIG. 5(G), the remaining first metal layer 12 and diffusion prevention layer 13 are removed (first metal layer/diffusion prevention layer removal). process). The means for removing the first metal layer 12 and the diffusion prevention layer 13 is not particularly limited, but can be removed using, for example, a sulfuric acid-based or hydrogen peroxide-based etching solution. The sulfuric acid-based or hydrogen peroxide-based etching solution is not particularly limited, and those used in the industry can be used. At that time, since the diffusion prevention layer 13 is provided between the first metal layer 12 and the protective plating layer 15, the diffusion prevention layer 13 serves as an etching stopper, and the remaining first metal layer 12 can be easily removed. can do. Moreover, it is possible to suppress the constituent elements of the first metal layer 12 and the protective plating layer 15 from diffusing into each other, and it is possible to form a good protective plating layer. A coreless substrate 30 is thereby obtained. Note that in this coreless substrate 30, the plating resist 14 is used as a solder resist layer.
<支持体付き配線基板及びコアレス基板の第2の製造方法>
 図6から図8は、支持体付き配線基板20及びコアレス基板30の第2の製造方法の工程を表すものである。第2の製造方法は、第1の配線導体形成工程の後、第1の絶縁層形成工程・第2の配線導体形成工程の前に、例えば、レジスト剥離液によりめっきレジスト14を除去するめっきレジスト除去工程を含むことを除き、第1の製造方法と同一である。すなわち、第2の製造方法は、例えば、支持体準備工程(図2(A)参照)、拡散防止層形成工程(図2(B)参照)、めっきレジスト形成工程(図2(C)参照)、保護めっき層形成工程(図2(D)参照)、第1の配線導体形成工程(図3(A)参照)、めっきレジスト除去工程(図6(A)参照)、第1の絶縁層形成工程・第2の配線導体形成工程(図6(B)参照)、ビルドアップ工程(図6(C)参照)、ソルダーレジスト層形成工程(図7(D)参照)、めっき仕上げ工程(図7(E)参照)、コア樹脂層分離除去工程(図8(F)参照)、第1の金属層・拡散防止層除去工程(図8(G)参照)をこの順に含んでいる。よって、図面を参照し、同一工程につての詳細な説明を省略する。なお、第2の製造方法により得られるコアレス基板30では、第1の絶縁層22をソルダーレジスト層として用いている。
<Second manufacturing method of wiring board with support and coreless board>
6 to 8 illustrate the steps of the second manufacturing method for the wiring board 20 with support and the coreless board 30. In the second manufacturing method, after the first wiring conductor forming step and before the first insulating layer forming step and the second wiring conductor forming step, the plating resist 14 is removed using, for example, a resist stripping solution. This method is the same as the first manufacturing method except that it includes a removal step. That is, the second manufacturing method includes, for example, a support preparation step (see FIG. 2(A)), a diffusion prevention layer forming step (see FIG. 2(B)), and a plating resist forming step (see FIG. 2(C)). , protective plating layer forming step (see FIG. 2(D)), first wiring conductor forming step (see FIG. 3(A)), plating resist removal step (see FIG. 6(A)), first insulating layer forming step Process - Second wiring conductor formation process (see Figure 6 (B)), build-up process (see Figure 6 (C)), solder resist layer formation process (see Figure 7 (D)), plating finishing process (see Figure 7 (E)), a core resin layer separation/removal step (see FIG. 8(F)), and a first metal layer/diffusion prevention layer removal step (see FIG. 8(G)). Therefore, detailed description of the same steps will be omitted with reference to the drawings. Note that in the coreless substrate 30 obtained by the second manufacturing method, the first insulating layer 22 is used as a solder resist layer.
<支持体付き配線基板及びコアレス基板の第3の製造方法>
 図9及び図10は、支持体付き配線基板20及びコアレス基板30の第3の製造方法の工程を表すものである。第3の製造方法は、めっき仕上げ工程の後、支持基板28を積層する支持基板積層工程を含むと共に、第1の金属層・拡散防止層除去工程の後に、支持基板28を除去する支持基板除去工程を含むことを除き、第1の製造方法又は第2の製造方法と同一である。支持体準備工程からめっき仕上げ工程までは第1の製造方法又は第2の製造方法と同一であるので、詳細な説明は省略する。なお、図9及び図10では、第1の製造方法と同様にめっきレジスト14を除去せずに用いる場合について示している。
<Third manufacturing method of wiring board with support and coreless board>
9 and 10 illustrate the steps of the third manufacturing method for the wiring board 20 with support and the coreless board 30. The third manufacturing method includes a support substrate lamination step of laminating the support substrate 28 after the plating finishing step, and a support substrate removal step of removing the support substrate 28 after the first metal layer/diffusion prevention layer removal step. This method is the same as the first manufacturing method or the second manufacturing method except that it includes steps. Since the steps from the support preparation step to the plating finishing step are the same as those in the first manufacturing method or the second manufacturing method, detailed explanations will be omitted. Note that FIGS. 9 and 10 show the case where the plating resist 14 is used without being removed, similarly to the first manufacturing method.
 第3の製造方法では、めっき仕上げ工程を行った後、例えば、図9(A)に示したように、ソルダーレジスト層26及び保護めっき層27の上に、熱可塑性樹脂層を有する支持基板28を積層する(支持基板積層工程)。支持基板28は、後続のコア樹脂層分離除去工程において少なくともコア樹脂層11を分離除去する際に、配線基板20Aを補強して破損を抑制するためのものである。 In the third manufacturing method, after performing the plating finishing process, for example, as shown in FIG. (support substrate lamination process). The support substrate 28 is for reinforcing the wiring board 20A and suppressing damage when at least the core resin layer 11 is separated and removed in the subsequent core resin layer separation and removal process.
 支持基板28は、例えば、熱可塑性樹脂層に加えて熱硬化性樹脂層を有していてもよいが、熱可塑性樹脂層のみにより構成してもよい。熱可塑性樹脂は、熱硬化性樹脂に比べて靭性が高く、高い強度を得ることができるからである。熱可塑性樹脂層の材料は、特に限定されるものではないが、例えば、ドライフィルムレジストが挙げられる。中でも、感光性の熱可塑性樹脂よりなる感光性樹脂層により構成することが好ましい。配線導体形成の工程が使用できるからである。感光性の熱可塑性樹脂としては、例えば、パターニングに使用されるドライフィルムレジストが挙げられる。また、熱可塑性樹脂層は、例えば、UV剥離性樹脂層又は熱剥離性樹脂層により構成するようにしてもよく、感光性樹脂層、UV剥離性樹脂層、及び、熱剥離性樹脂層からなる群より選択される少なくとも1つを有するように構成することが好ましい。 The support substrate 28 may have a thermosetting resin layer in addition to the thermoplastic resin layer, for example, or may be composed of only the thermoplastic resin layer. This is because thermoplastic resins have higher toughness and higher strength than thermosetting resins. The material of the thermoplastic resin layer is not particularly limited, and examples thereof include dry film resist. Among these, it is preferable to use a photosensitive resin layer made of a photosensitive thermoplastic resin. This is because the process of forming wiring conductors can be used. Examples of photosensitive thermoplastic resins include dry film resists used for patterning. Further, the thermoplastic resin layer may be composed of, for example, a UV peelable resin layer or a thermally peelable resin layer, and is composed of a photosensitive resin layer, a UV peelable resin layer, and a thermally peelable resin layer. It is preferable to have at least one selected from the group.
 支持基板28は、例えば、ソルダーレジスト層26及び保護めっき層27の上に、フィルム状又はシート状の支持基板28を配置し、ラミネートすることにより圧着して積層することができる。また、熱可塑性樹脂層を感光性樹脂層により構成する場合には、感光性樹脂層を積層する工程として、例えば、ソルダーレジスト層26及び保護めっき層27の上に感光性樹脂層を配置し、ラミネートした後、感光性樹脂層の全面を露光して硬化する工程を含むことができる。感光性樹脂層の全面を露光、硬化することによって、ソルダーレジスト層26及び保護めっき層27に対する密着力があがる。熱可塑性樹脂層をUV剥離性樹脂層又は熱剥離性樹脂層により構成する場合には、UV剥離性樹脂層又は熱剥離性樹脂層を積層する工程として、例えば、ソルダーレジスト層26及び保護めっき層27の上にUV剥離性樹脂層又は熱剥離性樹脂層を配置し、ラミネートして積層する工程を含むことができる。支持基板28の厚みは、所望に応じて適宜設定されるため、特に限定されないが、例えば、1μm以上とすることができ、1μm以上50μm以下が好ましく、1μm以上30μm以下が更に好ましい。 The supporting substrate 28 can be laminated by, for example, placing a film-like or sheet-like supporting substrate 28 on the solder resist layer 26 and the protective plating layer 27 and laminating them by pressure bonding. In addition, when the thermoplastic resin layer is constituted by a photosensitive resin layer, the step of laminating the photosensitive resin layer includes, for example, arranging the photosensitive resin layer on the solder resist layer 26 and the protective plating layer 27, After laminating, the method may include a step of exposing and curing the entire surface of the photosensitive resin layer. By exposing and curing the entire surface of the photosensitive resin layer, the adhesion to the solder resist layer 26 and the protective plating layer 27 is increased. When the thermoplastic resin layer is composed of a UV peelable resin layer or a thermally peelable resin layer, the step of laminating the UV peelable resin layer or the thermally peelable resin layer includes, for example, the solder resist layer 26 and the protective plating layer. The method may include a step of disposing a UV peelable resin layer or a heat peelable resin layer on the layer 27 and laminating the layer. The thickness of the supporting substrate 28 is appropriately set as desired and is not particularly limited, but can be, for example, 1 μm or more, preferably 1 μm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less.
 支持基板積層工程の後、例えば、図9(B)に示したように、第1の製造方法及び第2の製造方法と同様にして、剥離手段において少なくともコア樹脂層11を分離除去する(コア樹脂層分離除去工程)。コア樹脂層分離除去工程の後、例えば、図10(C)に示したように、第1の製造方法及び第2の製造方法と同様にして、残存する第1の金属層12及び拡散防止層13を除去する(第1の金属層・拡散防止層除去工程)。 After the support substrate lamination step, for example, as shown in FIG. resin layer separation and removal process). After the core resin layer separation and removal step, for example, as shown in FIG. 10C, the remaining first metal layer 12 and diffusion prevention layer are removed in the same manner as in the first manufacturing method and the second manufacturing method. 13 (first metal layer/diffusion prevention layer removal step).
 第1の金属層・拡散防止層除去工程の後、例えば、図10(D)に示したように、支持基板28を除去し、コアレス基板30が得られる(支持基板除去工程)。支持基板28を除去する手段は、特に限定されるものではなく、支持基板28の材料に応じて適宜選択することができる。支持基板28は、例えば、水酸化ナトリウム水溶液等の薬液により除去するようにしてもよく、レーザーにより除去するようにしてもよく、プラズマ処理により除去するようにしてもよく、例えばUV剥離性樹脂層の場合は、紫外線領域の光線を照射することにより剥離させて除去するようにしてもよく、熱剥離性樹脂層の場合は加熱処理により剥離させて除去するようにしてもよい。 After the first metal layer/diffusion prevention layer removal step, for example, as shown in FIG. 10(D), the support substrate 28 is removed to obtain the coreless substrate 30 (support substrate removal step). The means for removing the support substrate 28 is not particularly limited, and can be appropriately selected depending on the material of the support substrate 28. The support substrate 28 may be removed, for example, with a chemical solution such as an aqueous sodium hydroxide solution, a laser, or a plasma treatment. In this case, the layer may be peeled off and removed by irradiation with light in the ultraviolet region, and in the case of a thermally peelable resin layer, it may be peeled off and removed by heat treatment.
 このように本実施の形態によれば、コア樹脂層11の少なくとも一方の面側に剥離手段を備えた第1の金属層12を設け、かつ、第1の金属層12のコア樹脂層11と反対側の面に拡散防止層13を設けるようにしたので、剥離手段においてコア樹脂層11を分離除去した後、残存する第1の金属層12をエッチングにより除去する際に、拡散防止層13をエッチングストッパーとして用いることができる。よって、残存する第1の金属層12を容易に除去することができる。また、第1の金属層12とその上に形成する保護めっき層15との構成元素が互いに拡散することを抑制することができるので、良好な保護めっき層15を形成することができる。 As described above, according to the present embodiment, the first metal layer 12 provided with a peeling means is provided on at least one side of the core resin layer 11, and the core resin layer 11 of the first metal layer 12 is Since the diffusion prevention layer 13 is provided on the opposite surface, the diffusion prevention layer 13 is removed when the remaining first metal layer 12 is removed by etching after the core resin layer 11 is separated and removed by the peeling means. It can be used as an etching stopper. Therefore, the remaining first metal layer 12 can be easily removed. Moreover, since the constituent elements of the first metal layer 12 and the protective plating layer 15 formed thereon can be suppressed from diffusing into each other, a good protective plating layer 15 can be formed.
 更に、第1の金属層12における拡散防止層13の側の端面から剥離手段までの厚みを6μm以上とすれば、第1の金属層12の上に配線基板20Aを形成した後に、剥離手段においてコア樹脂層11を分離除去する際に、配線基板20Aを補強して破損を抑制することができる。 Furthermore, if the thickness from the end surface of the first metal layer 12 on the side of the diffusion prevention layer 13 to the peeling means is 6 μm or more, after the wiring board 20A is formed on the first metal layer 12, the peeling means When separating and removing the core resin layer 11, the wiring board 20A can be reinforced and damage can be suppressed.
[変形例]
 第1の実施形態では、第1の金属層12のコア樹脂層11と反対側の面に拡散防止層13を設け、拡散防止層13の第1の金属層12と反対側の面にめっきレジスト14を設ける場合について説明したが、例えば、図11に示したように、第1の金属層12のコア樹脂層11と反対側の面に、拡散防止層13と共に、めっきレジスト14を設けるようにしてもよい。すなわち、コア樹脂層11の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層12と、第1の金属層12のコア樹脂層11と反対側の面に設けられた拡散防止層13及びめっきレジスト14とを有し、更に、拡散防止層13の第1の金属層12と反対側に保護めっき層15を有するようにしてもよい。すなわち、拡散防止層13は、第1の金属層12に接して、めっきレジスト14が形成されていない領域に形成され、保護めっき層15は、めっきレジストが形成されていない領域において、拡散防止層13の第1の金属層12と反対側に形成されている。
[Modified example]
In the first embodiment, a diffusion prevention layer 13 is provided on the surface of the first metal layer 12 opposite to the core resin layer 11, and a plating resist is provided on the surface of the diffusion prevention layer 13 opposite to the first metal layer 12. Although the case where the plating resist 14 is provided has been described, for example, as shown in FIG. It's okay. That is, the first metal layer 12 provided on at least one side of the core resin layer 11 and provided with a peeling means, and the diffusion layer provided on the side of the first metal layer 12 opposite to the core resin layer 11. It has a prevention layer 13 and a plating resist 14, and may further have a protective plating layer 15 on the side of the diffusion prevention layer 13 opposite to the first metal layer 12. That is, the diffusion prevention layer 13 is formed in a region where the plating resist 14 is not formed in contact with the first metal layer 12, and the protective plating layer 15 is formed in the region where the plating resist is not formed. 13 is formed on the side opposite to the first metal layer 12.
 この積層体10は、例えば、次のようにして製造することができる。まず、第1の実施形態と同様にして支持体10Aを準備した後(支持体準備工程;図2(A)参照)、図12(A)に示したように、第1の金属層12のコア樹脂層11と反対側に面に、第1の実施形態と同様にして、めっきレジスト14を形成する(めっきレジスト形成工程)。次いで、例えば、図12(B)に示したように、第1の金属層12のコア樹脂層11と反対側の面において、めっきレジスト14が形成されていない領域に、第1の実施形態と同様にして拡散防止層13を形成する(拡散防止層形成工程)。続いて、例えば、図12(C)に示したように、拡散防止層13の第1の金属層12と反対側に、第1の実施形態と同様にして保護めっき層15を形成する(保護めっき層形成工程)。 This laminate 10 can be manufactured, for example, as follows. First, after preparing the support 10A in the same manner as in the first embodiment (support preparation step; see FIG. 2(A)), as shown in FIG. 12(A), the first metal layer 12 is A plating resist 14 is formed on the surface opposite to the core resin layer 11 in the same manner as in the first embodiment (plating resist forming step). Next, for example, as shown in FIG. 12(B), on the surface of the first metal layer 12 opposite to the core resin layer 11, the method of the first embodiment is applied to an area where the plating resist 14 is not formed. Similarly, the diffusion prevention layer 13 is formed (diffusion prevention layer forming step). Subsequently, as shown in FIG. 12C, for example, a protective plating layer 15 is formed on the side of the diffusion prevention layer 13 opposite to the first metal layer 12 in the same manner as in the first embodiment. plating layer formation process).
 変形例の積層体10についても、第1の実施形態と同様に、支持体付き配線基板20及びコアレス基板30を製造する際に用いることができ、第1の実施形態と同様の効果を得ることができる。 Similarly to the first embodiment, the modified laminate 10 can be used when manufacturing the wiring board 20 with a support and the coreless board 30, and the same effects as in the first embodiment can be obtained. I can do it.
 以下に、実施例により本実施形態及び変形例を具体的に説明するが、本実施形態及び変形例はこれらの実施例により何ら制限されるものではない。 The present embodiment and modified examples will be specifically explained below using Examples, but the present embodiment and modified examples are not limited to these Examples in any way.
[実施例1]
<支持体準備工程>(図2(A)参照)
 ビスマレイミドトリアジン樹脂(BT樹脂)をガラスクロス(ガラス繊維)に含浸させてBステージとしたプリプレグ(厚み0.100mm:三菱ガス化学株式会社製、製品名:GHPL-830NS ST56)をコア樹脂層11とし、コア樹脂層11の両面に、第1の金属層12として厚み18μmのキャリア銅箔付銅箔(銅箔;厚み5μm:三井金属鉱業株式会社製、製品名:MT18SD-H-T5)を、キャリア銅箔側がコア樹脂層11と接するように配置し、温度220±2℃、圧力3±0.2MPa、保持時間60分間の条件にて真空プレスを実施し、コア樹脂層11の両面に第1の金属層12を設けた支持体10Aを作製した。キャリア銅箔がキャリア12A、銅箔が金属箔12Bである。
[Example 1]
<Support preparation step> (see Figure 2(A))
A prepreg (thickness 0.100 mm, manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: GHPL-830NS ST56) made by impregnating glass cloth (glass fiber) with bismaleimide triazine resin (BT resin) and making it into a B stage is used as the core resin layer 11. Then, on both sides of the core resin layer 11, as the first metal layer 12, copper foil with a carrier copper foil (copper foil; thickness 5 μm: manufactured by Mitsui Mining & Smelting Co., Ltd., product name: MT18SD-H-T5) was applied as the first metal layer 12. The carrier was placed so that the copper foil side was in contact with the core resin layer 11, and vacuum pressing was performed under the conditions of a temperature of 220±2°C, a pressure of 3±0.2MPa, and a holding time of 60 minutes. A support 10A provided with the first metal layer 12 was produced. The carrier copper foil is the carrier 12A, and the copper foil is the metal foil 12B.
<拡散防止層形成工程>(図2(B)参照)
 第1の金属層12のコア樹脂層11と反対側の面に、拡散防止層13として電解めっきによりニッケルめっき層を形成した。拡散防止層13の厚みは、3μm~10μmであった。
<Diffusion prevention layer formation process> (see Figure 2(B))
A nickel plating layer was formed as a diffusion prevention layer 13 on the surface of the first metal layer 12 opposite to the core resin layer 11 by electrolytic plating. The thickness of the diffusion prevention layer 13 was 3 μm to 10 μm.
<めっきレジスト形成工程>(図2(C)参照)
 拡散防止層13の第1の金属層12と反対側の面に、温度110±10℃、圧力0.50±0.02MPaの条件で、厚み25μmのドライフィルムレジストRD-1225(昭和電工マテリアルズ株式会社製、製品名)をラミネートした。ドライフィルムレジストへの回路パターンの焼付けを、平行露光機にて実施した後、1%炭酸ナトリウム水溶液を用いてドライフィルムレジストを現像し、めっきレジスト14を形成した。
<Plating resist forming process> (see Figure 2(C))
A 25 μm thick dry film resist RD-1225 (Showa Denko Materials Co., Ltd. Co., Ltd., product name) was laminated. After printing a circuit pattern onto the dry film resist using a parallel exposure machine, the dry film resist was developed using a 1% aqueous sodium carbonate solution to form a plating resist 14.
<保護めっき層形成工程>(図2(D)参照)
 拡散防止層13の第1の金属層12と反対側において、めっきレジスト14が設けられていない領域に、電解めっきにより金めっき層15A及びニッケルめっき層15Bをこの順に積層し、保護めっき層15を形成した。金めっき層15Aの厚みは、0.05μm~0.1μmであった。ニッケルめっき層15Bの厚みは、3μm~10μmであった。
<Protective plating layer formation process> (see Figure 2(D))
On the side opposite to the first metal layer 12 of the diffusion prevention layer 13, a gold plating layer 15A and a nickel plating layer 15B are laminated in this order by electrolytic plating on the area where the plating resist 14 is not provided, and a protective plating layer 15 is formed. Formed. The thickness of the gold plating layer 15A was 0.05 μm to 0.1 μm. The thickness of the nickel plating layer 15B was 3 μm to 10 μm.
<第1の配線導体形成工程>(図3(A)参照)
 保護めっき層15の拡散防止層13と反対側において、めっきレジスト14が設けられていない領域に、硫酸銅濃度60g/L~80g/L、硫酸濃度150g/L~200g/Lの硫酸銅めっきラインにて厚さ5μm~15μmのパターン電解銅めっき(電解銅めっき)を施し、第1の配線導体21を形成した。
<First wiring conductor formation step> (see FIG. 3(A))
On the opposite side of the protective plating layer 15 from the diffusion prevention layer 13, a copper sulfate plating line with a copper sulfate concentration of 60 g/L to 80 g/L and a sulfuric acid concentration of 150 g/L to 200 g/L is placed in an area where the plating resist 14 is not provided. Patterned electrolytic copper plating (electrolytic copper plating) with a thickness of 5 μm to 15 μm was applied to form the first wiring conductor 21.
<めっきレジスト除去工程>(図6(A)参照)
 第1の配線導体21を形成した後、アミン系のレジスト剥離液を用いてめっきレジスト14を剥離除去した。
<Plating resist removal process> (see Figure 6(A))
After forming the first wiring conductor 21, the plating resist 14 was peeled off using an amine resist stripper.
<第1の絶縁層形成工程・第2の配線導体形成工程>(図6(B)参照)
 次いで、第1の配線導体21の表面に、第1の絶縁層22との密着力を高めるために、銅表面粗化液CZ-8101(メック株式会社製、製品名)を用いて粗化処理を施した。続いて、第1の配線導体21及び拡散防止層13の上に、樹脂層付きのキャリア銅箔付銅箔(銅箔厚み2μm、キャリア銅箔厚み18μm、樹脂層厚み0.015mm:三菱ガス化学株式会社製、製品名:CRS381NSI)を樹脂層が第1の配線導体21と接するように配置して、圧力3±0.2MPa、温度220±2℃、保持時間60分間の条件で、真空プレスした。その後、キャリア銅箔を剥離して、第1の配線導体21の上に、第1の絶縁層22と厚み2μmの第2の金属層とを積層した。
<First insulating layer forming step/second wiring conductor forming step> (see FIG. 6(B))
Next, the surface of the first wiring conductor 21 is roughened using copper surface roughening liquid CZ-8101 (manufactured by MEC Co., Ltd., product name) in order to increase the adhesion with the first insulating layer 22. was applied. Subsequently, on the first wiring conductor 21 and the diffusion prevention layer 13, a copper foil with a carrier copper foil with a resin layer (copper foil thickness 2 μm, carrier copper foil thickness 18 μm, resin layer thickness 0.015 mm: Mitsubishi Gas Chemical) Co., Ltd., product name: CRS381NSI) was placed so that the resin layer was in contact with the first wiring conductor 21, and vacuum pressed under the conditions of a pressure of 3 ± 0.2 MPa, a temperature of 220 ± 2°C, and a holding time of 60 minutes. did. Thereafter, the carrier copper foil was peeled off, and a first insulating layer 22 and a second metal layer having a thickness of 2 μm were laminated on the first wiring conductor 21.
 次に、第2の金属層の表面から炭酸ガスレーザー加工機 ML605GTWIII-5200U(三菱電機株式会社製、製品名)を用いて炭酸ガスレーザーを照射し、第2の金属層及び第1の絶縁層22に穴開けし、第1の配線導体21に達する第1の非貫通孔22Aを形成した。次いで、温度80±5℃、濃度55±10g/Lの過マンガン酸ナトリウム水溶液を用いてデスミア処理を施した。続いて、無電解銅めっきにて0.4μm~0.8μmの厚みのめっきを実施し、更に、電解銅めっきにて5μm~20μmの厚みのめっきを実施し、第1の非貫通孔22Aの内壁に第1の配線導体21と第2の金属層とを接続する第1の接続ビア22Bを形成すると共に、第2の金属層の厚みを増加させ整面した。 Next, a carbon dioxide laser is irradiated from the surface of the second metal layer using a carbon dioxide laser processing machine ML605GTWIII-5200U (manufactured by Mitsubishi Electric Corporation, product name), and the second metal layer and the first insulating layer are 22 to form a first non-through hole 22A reaching the first wiring conductor 21. Next, a desmear treatment was performed using an aqueous sodium permanganate solution at a temperature of 80±5° C. and a concentration of 55±10 g/L. Subsequently, plating with a thickness of 0.4 μm to 0.8 μm is performed using electroless copper plating, and further plating is performed with a thickness of 5 μm to 20 μm using electrolytic copper plating to form the first non-through hole 22A. A first connection via 22B connecting the first wiring conductor 21 and the second metal layer was formed on the inner wall, and the thickness of the second metal layer was increased and the surface was smoothed.
 次に、第2の金属層の上に、温度110±10℃、圧力0.50±0.02MPaの条件でドライフィルムレジストLDF515F(ニッコー・マテリアルズ株式会社製、製品名)をラミネートした。その後、ネガ型マスクを張り合わせ、平行露光機を用いて回路パターンを焼付け、1%炭酸ナトリウム水溶液を用いてドライフィルムレジストを現像してエッチングレジストを形成した。次いで、エッチングレジストのない部分の第2の金属層を塩化第二銅水溶液でエッチング除去した後、水酸化ナトリウム水溶液を用いてドライフィルムレジストを除去し、第2の配線導体23を形成した。 Next, a dry film resist LDF515F (manufactured by Nikko Materials Co., Ltd., product name) was laminated on the second metal layer at a temperature of 110±10° C. and a pressure of 0.50±0.02 MPa. Thereafter, a negative mask was attached, a circuit pattern was printed using a parallel exposure machine, and the dry film resist was developed using a 1% sodium carbonate aqueous solution to form an etching resist. Next, the portions of the second metal layer without the etching resist were removed by etching with a cupric chloride aqueous solution, and then the dry film resist was removed using a sodium hydroxide aqueous solution to form the second wiring conductor 23.
<ビルドアップ工程>(図6(C)参照)
 第2の配線導体23を形成した後、第1の絶縁層形成工程及び第2の配線導体形成工程と同じ工程をもう一度繰り返し行い、第2の絶縁層24及び第3の配線導体25を形成して、3層の配線導体を有するビルドアップ構造の支持体付き配線基板20を形成した。
<Build-up process> (see Figure 6(C))
After forming the second wiring conductor 23, the same steps as the first insulating layer forming step and the second wiring conductor forming step are repeated once again to form the second insulating layer 24 and the third wiring conductor 25. Thus, a wiring board 20 with a support having a build-up structure having three layers of wiring conductors was formed.
<ソルダーレジスト層形成工程>(図7(D)参照)
 第2の絶縁層24及び第3の配線導体25を形成した後、その上に、第3の配線導体25が部分的に露出するようにソルダーレジスト層26を形成した。ソルダーレジスト層26は、第3の配線導体25の上面からソルダーレジスト層26の上面までの厚みが10μmとなるように形成した。
<Solder resist layer formation process> (see FIG. 7(D))
After forming the second insulating layer 24 and the third wiring conductor 25, a solder resist layer 26 was formed thereon so that the third wiring conductor 25 was partially exposed. The solder resist layer 26 was formed so that the thickness from the upper surface of the third wiring conductor 25 to the upper surface of the solder resist layer 26 was 10 μm.
<めっき仕上げ工程>(図7(E)参照)
 ソルダーレジスト層26を形成した後、ソルダーレジスト層26から露出した第3の配線導体25の上に、保護めっき層27としてニッケルめっき層27A及び金めっき層27Bをこの順に電解めっきによりを形成した。ニッケルめっき層27Aの厚みは、3μm~5μmであった。金めっき層27Bの厚みは、0.05μm~0.1μmであった。これにより、支持体付き配線基板20を得た。
<Plating finishing process> (see Figure 7 (E))
After forming the solder resist layer 26, a nickel plating layer 27A and a gold plating layer 27B were formed as a protective plating layer 27 in this order on the third wiring conductor 25 exposed from the solder resist layer 26 by electrolytic plating. The thickness of the nickel plating layer 27A was 3 μm to 5 μm. The thickness of the gold plating layer 27B was 0.05 μm to 0.1 μm. Thereby, a wiring board 20 with a support was obtained.
<コア樹脂層分離除去工程、第1の金属層・拡散防止層除去工程>(図8(F)(G)参照)
 得られた支持体付き配線基板20について、第1の金属層12の金属箔12Bとキャリア12Aの境界部に物理的な力を加えて、少なくともコア樹脂層11を剥離して除去した。次いで、残存する第1の金属層12(具体的には、金属箔12B)及び拡散防止層13を、塩化第二銅水溶液を用いて除去し、一組のコアレス基板30を得た。
<Core resin layer separation/removal step, first metal layer/diffusion prevention layer removal step> (see FIGS. 8(F) and (G))
Regarding the obtained wiring board 20 with a support, physical force was applied to the boundary between the metal foil 12B of the first metal layer 12 and the carrier 12A to peel off and remove at least the core resin layer 11. Next, the remaining first metal layer 12 (specifically, metal foil 12B) and diffusion prevention layer 13 were removed using a cupric chloride aqueous solution to obtain a set of coreless substrates 30.
 実施例1で得られたコアレス基板30において、保護めっき層15における金めっき層15Aの腐食は見られず、良好なコアレス基板30を得ることができた。 In the coreless substrate 30 obtained in Example 1, no corrosion of the gold plating layer 15A in the protective plating layer 15 was observed, and a good coreless substrate 30 could be obtained.
[実施例2]
 拡散防止層13として、スズめっき層を形成した以外は、実施例1と同様の工程を行い、一組のコアレス基板30を得た。実施例2においても保護めっき層15における金めっき層15Aの腐食は見られず、良好なコアレス基板30を得ることができた。
[Example 2]
A set of coreless substrates 30 was obtained by performing the same steps as in Example 1, except that a tin plating layer was formed as the diffusion prevention layer 13. In Example 2 as well, no corrosion of the gold plating layer 15A in the protective plating layer 15 was observed, and a good coreless substrate 30 could be obtained.
[実施例3]
 実施例1で用いた、厚み18μmのキャリア銅箔付銅箔(銅箔;厚み5μm:三井金属鉱業株式会社製、製品名:MT18SD-H-T5)の銅箔表面に対して、電解めっきを行い、厚みを10μmに増加させたキャリア銅箔付き銅箔を作製した。このキャリア銅箔付銅箔を用いて第1の金属層12における金属箔12Bの厚みを10μmとした以外は、実施例1と同様の工程を行い、一組のコアレス基板30を得た。すなわち、第1の金属層12における拡散防止層13の側の端面から剥離手段までの厚みを10μmとした。実施例3においても保護めっき層15における金めっき層15Aの腐食は見られず、良好なコアレス基板30を得ることができた。また、第1の金属層12における拡散防止層13の側の端面から剥離手段までの厚みを6μm以上としたので、コア樹脂層分離除去工程において高い歩留まりが得られた。
[Example 3]
Electrolytic plating was applied to the copper foil surface of the copper foil with carrier copper foil (copper foil; thickness 5 μm: manufactured by Mitsui Mining and Mining Co., Ltd., product name: MT18SD-H-T5) used in Example 1. A copper foil with a carrier copper foil having a thickness increased to 10 μm was produced. A set of coreless substrates 30 was obtained by performing the same steps as in Example 1 except that the thickness of the metal foil 12B in the first metal layer 12 was set to 10 μm using this copper foil with carrier copper foil. That is, the thickness from the end surface of the first metal layer 12 on the diffusion prevention layer 13 side to the peeling means was 10 μm. In Example 3 as well, no corrosion of the gold plating layer 15A in the protective plating layer 15 was observed, and a good coreless substrate 30 could be obtained. Moreover, since the thickness from the end face of the first metal layer 12 on the side of the diffusion prevention layer 13 to the peeling means was set to be 6 μm or more, a high yield was obtained in the core resin layer separation and removal step.
[比較例1]
 拡散防止層を形成しない以外は、実施例1と同様の工程を行い、一組のコアレス基板を得たが、保護めっき層における金めっき層の腐食が見られた。
[Comparative example 1]
A set of coreless substrates was obtained by performing the same steps as in Example 1 except that no diffusion prevention layer was formed, but corrosion of the gold plating layer in the protective plating layer was observed.
[比較例2]
 拡散防止層を形成せず、かつ、実施例3で作製したキャリア銅箔付き銅箔を用いて第1の金属層における金属箔の厚みを10μmとした以外は、実施例1と同様の工程を行い、一組のコアレス基板を得たが、保護めっき層における金めっき層の腐食が見られた。
[Comparative example 2]
The same steps as in Example 1 were carried out, except that the diffusion prevention layer was not formed and the copper foil with carrier copper foil prepared in Example 3 was used to set the thickness of the metal foil in the first metal layer to 10 μm. A set of coreless substrates was obtained, but corrosion of the gold plating layer in the protective plating layer was observed.
(特性評価)
 実施例1,2,3及び比較例1,2の特性を以下の方法により測定した。
(Characteristics evaluation)
The properties of Examples 1, 2, and 3 and Comparative Examples 1 and 2 were measured by the following method.
[保護めっき層の腐食性評価]
 拡散防止層13による保護めっき層15の腐食抑制効果の確認のため、得られたコアレス基板30の保護めっき層15を観察した。観察は、走査型電子顕微鏡(日本電子株式会社JSM-IT700HR)の元素分析機能を使用し、1,000倍に倍率を合わせて行った。ソルダーレジスト層として機能する第1の絶縁層22から露出した保護めっき層15の面積を100%とし、保護めっき層由来の元素で覆われた面積が90%以上であれば腐食無し、90%未満であれば腐食有りとした。得られた結果を表1に示す。
[Corrosion evaluation of protective plating layer]
In order to confirm the corrosion inhibiting effect of the protective plating layer 15 by the diffusion prevention layer 13, the protective plating layer 15 of the obtained coreless substrate 30 was observed. Observation was performed using the elemental analysis function of a scanning electron microscope (JSM-IT700HR, JEOL Ltd.) at a magnification of 1,000 times. The area of the protective plating layer 15 exposed from the first insulating layer 22 functioning as a solder resist layer is taken as 100%, and if the area covered with elements derived from the protective plating layer is 90% or more, there is no corrosion, and less than 90%. If so, it was determined that there was corrosion. The results obtained are shown in Table 1.
[コア樹脂層分離除去工程の歩留まり評価]
 コア樹脂層分離除去工程において、配線基板全数に対して破損が見られた数量を集計し、下記式により歩留まりを算出した。得られた結果を表1に示す。
  [全数―破損が見られた数量]/全数×100
[Yield evaluation of core resin layer separation and removal process]
In the core resin layer separation/removal step, the number of damaged wiring boards was totaled with respect to the total number of wiring boards, and the yield was calculated using the following formula. The results obtained are shown in Table 1.
[Total number - Quantity found to be damaged]/Total number x 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 すなわち、本実施例によれば、拡散防止層13を設けることにより、保護めっき層の腐食を抑制することができ、良好なコアレス基板30を得られることが分かった。また、第1の金属層12における拡散防止層13の側の端面から剥離手段までの厚みを6μm以上とすれば、コア樹脂層分離除去工程における破損を抑制することができ、高い歩留まりを得られることが分かった。 That is, according to this example, it was found that by providing the diffusion prevention layer 13, corrosion of the protective plating layer could be suppressed, and a good coreless substrate 30 could be obtained. Furthermore, if the thickness from the end surface of the first metal layer 12 on the diffusion prevention layer 13 side to the peeling means is 6 μm or more, damage in the core resin layer separation and removal process can be suppressed, and a high yield can be obtained. That's what I found out.
 プリント配線板及び半導体素子搭載用パッケージ基板に利用することができる。 It can be used for printed wiring boards and package substrates for mounting semiconductor elements.
 10…積層体、10A…支持体、11…コア樹脂層、12…第1の金属層、12A…キャリア、12B…金属箔、13…拡散防止層、14…めっきレジスト、15…保護めっき層、15A…金めっき層、15B…ニッケルめっき層、20…支持体付き配線基板、20A…配線基板、21…第1の配線導体、22…第1の絶縁層、22A…第1の非貫通孔、22B…第1の接続ビア、23…第2の配線導体、24…第(m+1)の絶縁層、24A…第(m+1)の非貫通孔、24B…第(m+1)の接続ビア、25…第(m+2)の配線導体、26…ソルダーレジスト層、27…保護めっき層、27A…ニッケルめっき層、27B…金めっき層、28…支持基板、30…コアレス基板

 
DESCRIPTION OF SYMBOLS 10... Laminate, 10A... Support, 11... Core resin layer, 12... First metal layer, 12A... Carrier, 12B... Metal foil, 13... Diffusion prevention layer, 14... Plating resist, 15... Protective plating layer, 15A... Gold plating layer, 15B... Nickel plating layer, 20... Wiring board with support, 20A... Wiring board, 21... First wiring conductor, 22... First insulating layer, 22A... First non-through hole, 22B...first connection via, 23...second wiring conductor, 24...(m+1)th insulating layer, 24A...(m+1)th non-through hole, 24B...(m+1)th connection via, 25...th (m+2) wiring conductor, 26... solder resist layer, 27... protective plating layer, 27A... nickel plating layer, 27B... gold plating layer, 28... support substrate, 30... coreless board

Claims (14)

  1.  コア樹脂層と、
     前記コア樹脂層の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層と、
     前記第1の金属層の前記コア樹脂層と反対側の面に設けられた拡散防止層と、
     を有する積層体。
    a core resin layer;
    a first metal layer provided on at least one side of the core resin layer and provided with a peeling means;
    a diffusion prevention layer provided on a surface of the first metal layer opposite to the core resin layer;
    A laminate having.
  2.  前記拡散防止層の前記第1の金属層と反対側の面に、めっきレジストを有する、請求項1に記載の積層体。 The laminate according to claim 1, further comprising a plating resist on a surface of the diffusion prevention layer opposite to the first metal layer.
  3.  前記拡散防止層の前記第1の金属層の反対側において、前記めっきレジストが設けられていない領域に、保護めっき層を有する、請求項2に記載の積層体。 The laminate according to claim 2, further comprising a protective plating layer in a region where the plating resist is not provided on the opposite side of the first metal layer of the diffusion prevention layer.
  4.  前記第1の金属層の前記コア樹脂層と反対側の面に、前記拡散防止層と共に、めっきレジストを有する、請求項1に記載の積層体。 The laminate according to claim 1, further comprising a plating resist on a surface of the first metal layer opposite to the core resin layer, together with the diffusion prevention layer.
  5.  前記拡散防止層の前記第1の金属層と反対側に、保護めっき層を有する、請求項4に記載の積層体。 The laminate according to claim 4, further comprising a protective plating layer on a side of the diffusion prevention layer opposite to the first metal layer.
  6.  前記拡散防止層が、ニッケル、アルミニウム、鉄、亜鉛、スズ、鉛、クロム、コバルト、銀、及び、パラジウムよりなる群から選択される少なくとも1種を含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the diffusion prevention layer contains at least one selected from the group consisting of nickel, aluminum, iron, zinc, tin, lead, chromium, cobalt, silver, and palladium.
  7.  前記第1の金属層における前記拡散防止層の側の端面から前記剥離手段までの厚みが、6μm以上である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the thickness of the first metal layer from the end surface on the diffusion prevention layer side to the peeling means is 6 μm or more.
  8.  コア樹脂層と、前記コア樹脂層の少なくとも一方の面側に設けられ且つ剥離手段を備えた第1の金属層と、を有する支持体を準備する支持体準備工程と、
     前記第1の金属層の前記コア樹脂層と反対側の面に、拡散防止層を形成する拡散防止層形成工程と、
     を含む、コアレス基板の製造方法。
    a support preparation step of preparing a support having a core resin layer and a first metal layer provided on at least one side of the core resin layer and provided with a peeling means;
    a diffusion prevention layer forming step of forming a diffusion prevention layer on the surface of the first metal layer opposite to the core resin layer;
    A method for manufacturing a coreless board, including:
  9.  前記拡散防止層形成工程の後に、前記拡散防止層の前記第1の金属層と反対側の面に、めっきレジストを形成するめっきレジスト形成工程を含む、請求項8に記載のコアレス基板の製造方法。 The method for manufacturing a coreless substrate according to claim 8, further comprising a plating resist forming step of forming a plating resist on a surface of the diffusion preventing layer opposite to the first metal layer after the diffusion preventing layer forming step. .
  10.  前記めっきレジストを形成した後、前記拡散防止層の前記第1の金属層の反対側において、前記めっきレジストが設けられていない領域に、保護めっき層を形成する保護めっき層形成工程を含む、請求項9に記載のコアレス基板製造方法。 A protective plating layer forming step of forming a protective plating layer in a region where the plating resist is not provided on the opposite side of the first metal layer of the diffusion prevention layer after forming the plating resist. Item 9. The coreless substrate manufacturing method according to item 9.
  11.  前記拡散防止層形成工程の前に、前記第1の金属層の前記コア樹脂層と反対側の面に、めっきレジストを形成するめっきレジスト形成工程を含み、
     前記拡散防止層は、前記第1の金属層の前記コア樹脂層と反対側の面において、めっきレジストが形成されていない領域に形成する、請求項8に記載のコアレス基板の製造方法。
    Before the diffusion prevention layer forming step, a plating resist forming step of forming a plating resist on the surface of the first metal layer opposite to the core resin layer,
    9. The method for manufacturing a coreless substrate according to claim 8, wherein the diffusion prevention layer is formed in a region where a plating resist is not formed on a surface of the first metal layer opposite to the core resin layer.
  12.  前記拡散防止層形成工程の後に、前記拡散防止層の前記第1の金属層と反対側に、保護めっき層を形成する保護めっき層形成工程を含む、請求項11に記載のコアレス基板の製造方法。 The method for manufacturing a coreless substrate according to claim 11, comprising a protective plating layer forming step of forming a protective plating layer on a side of the diffusion preventing layer opposite to the first metal layer after the diffusion preventing layer forming step. .
  13.  前記拡散防止層が、ニッケル、アルミニウム、鉄、亜鉛、スズ、鉛、クロム、コバルト、銀、及び、パラジウムよりなる群から選択される少なくとも1種を含む、請求項8に記載のコアレス基板の製造方法。 Manufacturing the coreless substrate according to claim 8, wherein the diffusion prevention layer contains at least one selected from the group consisting of nickel, aluminum, iron, zinc, tin, lead, chromium, cobalt, silver, and palladium. Method.
  14.  前記第1の金属層における前記拡散防止層の側の端面から前記剥離手段までの厚みを6μm以上とする、請求項8に記載のコアレス基板の製造方法。 The method for manufacturing a coreless substrate according to claim 8, wherein the thickness from the end face of the first metal layer on the diffusion prevention layer side to the peeling means is 6 μm or more.
PCT/JP2023/029908 2022-08-26 2023-08-18 Laminate, and method for manufacturing coreless substrate WO2024043196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022135419 2022-08-26
JP2022-135419 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024043196A1 true WO2024043196A1 (en) 2024-02-29

Family

ID=90013317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029908 WO2024043196A1 (en) 2022-08-26 2023-08-18 Laminate, and method for manufacturing coreless substrate

Country Status (1)

Country Link
WO (1) WO2024043196A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2014063950A (en) * 2012-09-24 2014-04-10 Shinko Electric Ind Co Ltd Method of manufacturing wiring board
WO2015122258A1 (en) * 2014-02-14 2015-08-20 古河電気工業株式会社 Carrier-equipped ultrathin copper foil, and copper-clad laminate, printed circuit substrate and coreless substrate that are manufactured using same
JP2018092975A (en) * 2016-11-30 2018-06-14 新光電気工業株式会社 Manufacturing method of wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2014063950A (en) * 2012-09-24 2014-04-10 Shinko Electric Ind Co Ltd Method of manufacturing wiring board
WO2015122258A1 (en) * 2014-02-14 2015-08-20 古河電気工業株式会社 Carrier-equipped ultrathin copper foil, and copper-clad laminate, printed circuit substrate and coreless substrate that are manufactured using same
JP2018092975A (en) * 2016-11-30 2018-06-14 新光電気工業株式会社 Manufacturing method of wiring board

Similar Documents

Publication Publication Date Title
US7115681B2 (en) Resin composition
JP2003055486A (en) Prepreg and laminate
WO2022034872A1 (en) Resin layer-equipped copper foil and layered body using same
CN112601662B (en) Laminate, metal foil-clad laminate, patterned laminate with metal foil, laminate having laminate structure, printed circuit board, multilayer coreless substrate, and method for producing same
JP7145403B2 (en) SUPPORT AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE MOUNTING BOARD USING THE SAME
WO2024043196A1 (en) Laminate, and method for manufacturing coreless substrate
TWI830797B (en) Method for manufacturing package substrate for mounting semiconductor device
WO2023106208A1 (en) Wiring board with support, method for manufacturing wiring board with support, and method for manufacturing electronic component mounting board
TW202216441A (en) Copper foil with resin layer and laminate using same
WO2023054516A1 (en) Method for manufacturing package substrate for carrying semiconductor element, and laminate with support substrate
WO2023054517A1 (en) Method of manufacturing package substrate for mounting semiconductor element
WO2020121652A1 (en) Method for manufacturing package substrate for mounting semiconductor element
TW202410319A (en) Method for manufacturing laminated body and coreless substrate
WO2018105662A1 (en) Method for producing semiconductor device
KR20240070561A (en) Manufacturing method of package substrate for mounting semiconductor devices
CN118020150A (en) Method for manufacturing package substrate for mounting semiconductor element
CN118043958A (en) Method for manufacturing package substrate for mounting semiconductor element and laminate with support substrate
WO2014157468A1 (en) Laminate, laminated sheet, printed circuit board, and production method for laminate and laminated sheet
KR20240070560A (en) Manufacturing method of package substrate for semiconductor device mounting and laminate with support substrate
JP2004168943A (en) Prepreg having adhesive layer, method for producing metal-clad laminated board and metal-clad laminated board
TWI835731B (en) Support body and method for manufacturing semiconductor element mounting board using same
JP2004168942A (en) Method for producing prepreg having adhesive layer and prepreg having adhesive layer
TW202110617A (en) Base material with insulating resin layer, laminate using same, and method for manufacturing laminate
TW202130509A (en) Resin sheet and printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857307

Country of ref document: EP

Kind code of ref document: A1