WO2024043180A1 - Multilayer body and molded article - Google Patents

Multilayer body and molded article Download PDF

Info

Publication number
WO2024043180A1
WO2024043180A1 PCT/JP2023/029797 JP2023029797W WO2024043180A1 WO 2024043180 A1 WO2024043180 A1 WO 2024043180A1 JP 2023029797 W JP2023029797 W JP 2023029797W WO 2024043180 A1 WO2024043180 A1 WO 2024043180A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin
multilayer body
resin composition
polycarbonate
Prior art date
Application number
PCT/JP2023/029797
Other languages
French (fr)
Japanese (ja)
Inventor
円 山口
竜之介 泉
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022132407A external-priority patent/JP7427730B1/en
Priority claimed from JP2022132408A external-priority patent/JP7427731B1/en
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2024043180A1 publication Critical patent/WO2024043180A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a multilayer body and a molded article.
  • it relates to a multilayer body having a polycarbonate resin layer and an acrylic resin layer.
  • Polycarbonate resin is widely used in various fields because it has excellent transparency, has superior processability and impact resistance compared to glass, and is free from toxic gases compared to other plastic materials. It is also used as a material for thermoforming such as vacuum forming and pressure forming.
  • polycarbonate resin generally has a low surface hardness, the surface of a molded article made of polycarbonate resin tends to be easily scratched. Therefore, when polycarbonate resin is made into a film, it is being considered to form a layer containing acrylic resin or a hard coat layer (protective layer) on the surface to prevent scratches on the product surface.
  • a base material layer whose main component is a polycarbonate resin composition (A) consisting of a polymer alloy of an aromatic polycarbonate (A1) and another resin (A2).
  • a laminated sheet comprising a coating layer containing (B) as a main component, wherein the absolute value of the difference in glass transition temperature between the polycarbonate resin composition (A) and the acrylic resin (B) is within 30°C.
  • a resin sheet for molding is disclosed.
  • the present invention aims to solve this problem, and aims to provide a multilayer body and a molded product that can suppress the occurrence of springback even when heated and molded.
  • the polycarbonate resin contained in the resin composition (x) has an Mw/Mn ratio of 2.2.
  • a multilayer body 80 to 4.40, a multilayer body.
  • the polycarbonate resin contained in the resin composition (X) has a polystyrene-equivalent number average molecular weight (Mn) of 10,000 to 20,000 as measured by gel permeation chromatography.
  • the resin composition (x) contains 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000 and 7 to 40 parts by mass of a polycarbonate oligomer (x2) having a viscosity average molecular weight of 2,000 to 10,000.
  • the resin composition (x) contains an aromatic polycarbonate resin having a terminal structure represented by formula (C) in an amount of 0 to 100 parts by mass based on 100 parts by mass of the polycarbonate component contained in the resin composition (x).
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms.
  • R 2 each independently represents a halogen atom, a carbon atom number 1 Represents an alkyl group with ⁇ 20 or an aryl group with 6 to 12 carbon atoms.
  • n represents an integer of 0 to 4. * indicates a bonding site with another site.
  • the multilayer body according to any one of ⁇ 1> to ⁇ 6>, wherein the resin composition (y) has a glass transition temperature of 130° C. or higher.
  • the resin composition (y) is any one of ⁇ 1> to ⁇ 7>, containing 30 to 90 parts by mass of an acrylic resin (y1) and 10 to 70 parts by mass of a styrene resin (y2). Multilayer body as described.
  • the acrylic resin (y1) is (meth)acrylic compound unit, The multilayer body according to ⁇ 8>, comprising at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit.
  • the acrylic resin (y1) contains 60 to 96% by mass of (meth)acrylic compound units, and at least one of cyclic acid anhydride units, N-substituted maleimide units, and lactone ring units in a total of 4 to 40%. % by mass, the multilayer body according to ⁇ 9>.
  • ⁇ 11> The multilayer body according to ⁇ 9> or ⁇ 10>, wherein the styrene resin (y2) contains 68 to 84% by mass of aromatic vinyl compound units and 16 to 32% by mass of cyclic acid anhydride units.
  • ⁇ 12> The difference between the glass transition temperature of the polycarbonate resin layer (X) and the glass transition temperature of the acrylic resin layer (Y) is 13° C. or less, according to any one of ⁇ 1> to ⁇ 11>.
  • the hard coat layer includes the polycarbonate resin layer (X), the acrylic resin layer (Y), and the hard coat layer, which are laminated in this order.
  • ⁇ 15> one or more of anti-fingerprint treatment, anti-reflection treatment, anti-glare treatment, weather resistance treatment, anti-static treatment, anti-stain treatment and anti-blocking treatment is applied to one or both sides of the multilayer body.
  • the multilayer body satisfies ⁇ thickness of acrylic resin layer (Y)/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)] ⁇ 1/5, ⁇ 1> to ⁇ 15 >The multilayer body according to any one of >.
  • Pencil hardness measured from the acrylic resin layer (Y) side of the multilayer body is F or more,
  • the resin composition (x) has a glass transition temperature of 143° C.
  • the resin composition (x) contains 0 to 30 parts by mass of an aromatic polycarbonate resin having a terminal structure represented by formula (C) based on 100 parts by mass of the polycarbonate resin contained in the resin composition (x).
  • the resin composition (y) has a glass transition temperature of 130°C or higher
  • the resin composition (y) contains 30 to 90 parts by mass of acrylic resin (y1) and 10 to 70 parts by mass of styrene resin (y2)
  • the acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and 4 to 40% by mass of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms.
  • R 2 each independently represents a halogen atom, a carbon atom number 1 Represents an alkyl group with ⁇ 20 or an aryl group with 6 to 12 carbon atoms.
  • n represents an integer of 0 to 4.
  • Pencil hardness measured from the acrylic resin layer (Y) side of the multilayer body is F or more
  • the resin composition (x) has a glass transition temperature of 143° C. or lower
  • the resin composition (x) contains 0 to 30 parts by mass of an aromatic polycarbonate resin having a terminal structure represented by formula (C) based on 100 parts by mass of the polycarbonate component contained in the resin composition (x).
  • the resin composition (y) has a glass transition temperature of 130°C or higher,
  • the resin composition (y) contains 30 to 90 parts by mass of acrylic resin (y1) and 10 to 70 parts by mass of styrene resin (y2),
  • the acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and 4 to 40% by mass of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit.
  • the multilayer according to any one of ⁇ 1> to ⁇ 18>, wherein the styrene resin (y2) contains 68 to 84% by mass of aromatic vinyl compound units and 16 to 32% by mass of cyclic acid anhydride units.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms.
  • R 2 each independently represents a halogen atom, a carbon atom number 1 ⁇ 20 alkyl group or an aryl group having 6 to 12 carbon atoms.
  • n represents an integer of 0 to 4. * is a bonding site with another site.
  • FIG. 1 is a schematic diagram showing the structure of an example of an antireflection film.
  • this embodiment a mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described in detail.
  • the present embodiment below is an illustration for explaining the present invention, and the present invention is not limited only to this embodiment.
  • " ⁇ " is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • various physical property values and characteristic values are assumed to be at 23° C. unless otherwise stated.
  • the description that does not indicate substituted or unsubstituted includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • alkyl group includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • substitution or non-substitution for expressions that do not indicate substitution or non-substitution, non-substitution is preferred.
  • (meth)acrylic compound represents both or either an acrylic compound and a methacrylic compound, with a methacrylic compound being preferred.
  • acrylic resins also include methacrylate (co)polymers.
  • layer (X), layer (Y), and multilayer body are intended to include those in the form of a film or sheet, respectively.
  • “Film” and “sheet” refer to a generally flat molded article that is thin relative to its length and width, respectively.
  • “parts by mass” indicates the relative amount of the component
  • “% by mass” indicates the absolute amount of the component. If the measurement methods, etc. explained in the standards shown in this specification differ from year to year, unless otherwise stated, they shall be based on the standards as of January 1, 2022.
  • the multilayer body of this embodiment includes a polycarbonate resin layer (X) formed from a resin composition (x) containing a polycarbonate resin and an acrylic resin layer (Y) formed from a resin composition (y) containing an acrylic resin.
  • the polycarbonate resin contained in the resin composition (x) has Mw/Mn, which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography. is 2.80 to 4.40. With such a configuration, a multilayer body that can suppress the occurrence of springback can be obtained.
  • Another multilayer body of the present embodiment includes a polycarbonate resin layer (X) formed from a resin composition (x) containing a polycarbonate resin and an acrylic resin layer (Y) formed from a resin composition (y) containing an acrylic resin. ), and the resin composition (x) comprises 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000, and 7 to 93 parts by mass of a polycarbonate oligomer (x2) having a viscosity average molecular weight of 2,000 to 10,000. 40 parts by mass. With such a configuration, a multilayer body in which the occurrence of springback is suppressed can be obtained.
  • the acrylic resin layer becomes soft during heat bending, and the hard coat layer cannot follow the deformation of the acrylic resin layer and becomes hard. Cracks occur in the coating layer. Therefore, as a means to suppress springback, we decided to consider lowering the glass transition temperature of the polycarbonate resin layer itself when thermal bending is performed near the glass transition temperature of the polycarbonate resin layer.
  • a polycarbonate resin layer (X) using a resin composition (x) containing a polycarbonate resin having Mw/Mn of 2.80 to 4.40, Alternatively, a resin composition (x) containing 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000 and 7 to 40 parts by mass of a polycarbonate oligomer (x2) having a viscosity average molecular weight of 2,000 to 10,000.
  • the above problem was successfully solved by forming the polycarbonate resin layer (X) using. The present invention will be explained below.
  • the polycarbonate resin layer (X) is a layer formed from a resin composition (x) containing a polycarbonate resin.
  • Mw/Mn which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography, is 2. It is .80 to 4.40.
  • a resin composition that satisfies the requirements of the resin composition of the first embodiment will be referred to as a resin composition (x1).
  • the second embodiment of the polycarbonate resin in the resin composition (x) includes 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000, and a polycarbonate oligomer having a viscosity average molecular weight of 2,000 to 10,000. (x2) 7 to 40 parts by mass.
  • a resin composition that satisfies the requirements of the resin composition of the second embodiment will be referred to as a resin composition (x2).
  • both the resin composition (x1) and the resin composition (x2) are used. It may be one that satisfies the following. In this specification, when the resin composition (x) is referred to, it means a matter common to both the resin composition (x1) and the resin composition (x2).
  • the first embodiment of the polycarbonate resin contained in the resin composition (x1) has a polystyrene equivalent weight average molecular weight (Mw) and a number average molecular weight (Mn) measured by gel permeation chromatography.
  • Mw polystyrene equivalent weight average molecular weight
  • Mn number average molecular weight measured by gel permeation chromatography.
  • the ratio Mw/Mn is 2.80 to 4.40.
  • the Mw/Mn of the polycarbonate resin contained in the resin composition (x1) is 2.80 or more, preferably 2.90 or more, more preferably 2.95 or more, and 2.98 or more.
  • the Mw/Mn of the polycarbonate resin is 4.40 or less, preferably 4.20 or less, more preferably 4.10 or less, even more preferably 4.00 or less, and 3. More preferably, it is .95 or less. By setting it below the above-mentioned upper limit, it tends to be possible to suppress shrinkage and rupture of the molded product during heat bending.
  • the polystyrene-equivalent number average molecular weight (Mn) of the polycarbonate resin contained in the resin composition (x1) measured by gel permeation chromatography is preferably 10,000 or more, and preferably 11,000 or more. It is more preferable that it is 11,500 or more, and even more preferably that it is 12,000 or more. By setting the above lower limit or more, it tends to be possible to effectively suppress shrinkage and bursting of the molded product during heat bending. Further, in the present embodiment, the polystyrene-equivalent number average molecular weight (Mn) of the polycarbonate resin contained in the resin composition (x1) measured by gel permeation chromatography is preferably 20,000 or less, and preferably 18,000 or less.
  • the number average molecular weight is the number average molecular weight of the mixture. The number average molecular weight is measured according to the description in the Examples below.
  • Examples of means for increasing the molecular weight distribution of the polycarbonate resin include using a polycarbonate resin that inherently has a large Mw/Mn, and blending a relatively high molecular weight polycarbonate resin and a relatively low molecular weight polycarbonate oligomer.
  • a relatively high molecular weight polycarbonate resin and a relatively low molecular weight polycarbonate oligomer in order to satisfy the Mw/Mn of the polycarbonate resin, it is preferable to blend a relatively high molecular weight polycarbonate resin and a relatively low molecular weight polycarbonate oligomer.
  • the resin composition (x1) contains a polycarbonate resin (x11) and a polycarbonate oligomer (x12).
  • the number average molecular weight (Mn) of the polycarbonate resin (x11) is preferably 25,000 or more, preferably 45,000 or less, more preferably 40,000 or less, and even more preferably 35,000 or less.
  • the weight average molecular weight (Mw) of the polycarbonate resin (x11) is preferably 45,000 or more, preferably 150,000 or less, more preferably 100,000 or less, and even more preferably 80,000 or less.
  • the dispersity (Mw/Mn) of the polycarbonate resin (x11) is preferably 2.25 or less, more preferably 2.20 or less, even more preferably 2.15 or less, It is more preferably .10 or less, and even more preferably 2.05 or less.
  • the degree of dispersion (Mw/Mn) of the polycarbonate resin (x11) is preferably 1.80 or more, more preferably 1.85 or more, even more preferably 1.90 or more, and 1. It is more preferably .95 or more, and even more preferably 1.98 or more.
  • the number average molecular weight and the degree of dispersion are measured and calculated according to the description in the Examples described later (the same applies to the number average molecular weight and the degree of dispersion hereinafter).
  • the polycarbonate resin (x11) is a mixture of two or more types, the number average molecular weight and the degree of dispersion are those of the mixture. The same applies to the number average molecular weight and dispersity below.
  • the starting glass transition temperature (Tg) of the polycarbonate resin (x11) used in this embodiment is preferably 160°C or lower, more preferably 155°C or lower, even more preferably 154°C or lower, and 153°C or lower.
  • the temperature is more preferably at most 152°C, even more preferably at most 151°C.
  • the starting glass transition temperature (Tg) of the polycarbonate resin (x11) used in this embodiment is, for example, 148°C or higher, and may further be 149°C or higher, or 150°C or higher.
  • the onset glass transition temperature is measured in accordance with the description in the Examples below (the same applies hereinafter to the onset glass transition temperature). Further, when the polycarbonate resin (x11) is a mixture of two or more types, the glass transition temperature is the glass transition temperature of the mixture of each polycarbonate resin (x11). The same applies to the glass transition temperature below.
  • the polycarbonate resin (x11) used in this embodiment may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin, but an aromatic polycarbonate resin is preferable.
  • aromatic polycarbonate resin By using aromatic polycarbonate resin, it is resistant to environmental tests such as wet heat tests and high temperature tests, and resin deterioration due to molecular weight reduction is less likely to occur.
  • the aromatic polycarbonate resin is preferably a bisphenol type polycarbonate resin, more preferably a bisphenol A type and/or bisphenol C type polycarbonate resin, and even more preferably a bisphenol A type polycarbonate resin. .
  • the bisphenol A type and bisphenol C type polycarbonate resins may also have other structural units other than the carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof.
  • dihydroxy compounds constituting such other structural units include aromatic dihydroxy compounds described in paragraph 0014 of JP 2018-154819 A, the contents of which are incorporated herein.
  • carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof preferably account for 90% by mass or more, more preferably 95% by mass or more of all structural units excluding terminal structures. Preferably, it accounts for 97% by mass or more, and more preferably.
  • the method for producing bisphenol A polycarbonate resin is not particularly limited, and any method can be adopted. Examples include interfacial polymerization, melt transesterification, pyridine method, ring-opening polymerization of cyclic carbonate compounds, and solid phase transesterification of prepolymers.
  • the number average molecular weight of the polycarbonate oligomer (x12) is preferably 8000 or less, more preferably 6000 or less, preferably 5000 or less, may be 4500 or less, and may be 1500 or more. It is preferably 2,500 or more, more preferably 3,000 or more.
  • the weight average molecular weight of the polycarbonate oligomer (x12) is preferably at most 20,000, more preferably at most 15,000, preferably at most 12,000, may be at most 11,000, and is at least 3,000. It is preferably 5,000 or more, more preferably 7,000 or more.
  • the starting glass transition temperature (Tg) of the polycarbonate oligomer (x12) used in this embodiment is preferably 130°C or lower, more preferably 125°C or lower, even more preferably 120°C or lower, and 115°C or lower.
  • the temperature is more preferably 110°C or lower, even more preferably 107°C or lower, and even more preferably 107°C or lower.
  • the starting glass transition temperature (Tg) of the polycarbonate oligomer (x12) used in this embodiment is, for example, 95°C or higher, and may further be 100°C or higher, 103°C or higher, or 105°C or higher.
  • the polycarbonate oligomer (x12) may be aromatic polycarbonate or aliphatic polycarbonate, but aromatic polycarbonate is preferable.
  • the polycarbonate oligomer (x12) is preferably a bisphenol type polycarbonate, more preferably a bisphenol A type and/or bisphenol C type polycarbonate, and even more preferably a bisphenol A type polycarbonate.
  • carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof preferably account for 90% by mass or more of the total structural units excluding terminal structures. , more preferably accounts for 95% by mass or more, and still more preferably accounts for 97% by mass or more.
  • the resin composition (x1) may or may not further contain an aromatic polycarbonate resin having a terminal structure represented by formula (C).
  • the aromatic polycarbonate resin having the terminal structure represented by formula (C) By using the aromatic polycarbonate resin having the terminal structure represented by formula (C), the glass transition temperature of the polycarbonate resin contained in the resin composition (x1) can be lowered more easily.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms.
  • R 2 each independently represents a halogen atom, a carbon atom number 1 ⁇ 20 alkyl group or an aryl group having 6 to 12 carbon atoms.
  • n represents an integer of 0 to 4. * is a bonding site with another site.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms, preferably an alkyl group or alkenyl group having 10 or more carbon atoms, and an alkyl group having 12 or more carbon atoms. or an alkenyl group, more preferably an alkyl group or an alkenyl group of 14 or more. This tends to lower the glass transition temperature of the resin and improve the heat bendability of the multilayer body. Further, R 1 is preferably an alkyl group or alkenyl group having 22 or less carbon atoms, more preferably an alkyl group or alkenyl group having 18 or less carbon atoms. Preferably, R 1 is an alkyl group.
  • the alkyl group and alkenyl group are preferably straight-chain or branched alkyl groups or alkenyl groups, and more preferably straight-chain alkyl groups or alkenyl groups.
  • R 1 is particularly preferably a hexadecyl group.
  • R 2 each independently represents a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and represents a fluorine atom, a chlorine atom, a methyl group, an ethyl group, or a phenyl It is preferably a group, and more preferably a fluorine atom, a chlorine atom, or a methyl group.
  • n represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • the aromatic polycarbonate resin having the terminal structure represented by formula (C) may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin, but an aromatic polycarbonate resin is preferable. By using aromatic polycarbonate resin, it is resistant to environmental tests such as wet heat tests and high temperature tests, and resin deterioration due to molecular weight reduction is less likely to occur.
  • the aromatic polycarbonate resin having a terminal structure represented by formula (C) is preferably a bisphenol type polycarbonate resin, more preferably a bisphenol A type and/or bisphenol C type polycarbonate resin, and a bisphenol A type polycarbonate resin. More preferably, it is a resin.
  • carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof may account for 90% by mass or more of all structural units excluding the terminal structure. Preferably, it accounts for 95% by mass or more, more preferably 97% by mass or more.
  • the terminal structure represented by formula (C) can be added to the polycarbonate resin by using a terminal capping agent such as parahydroxybenzoic acid hexadecyl ester.
  • the starting glass transition temperature (Tg) is preferably 130°C or lower, and preferably 129°C or lower.
  • the temperature is more preferably 128°C or lower, even more preferably 127°C or lower, even more preferably 126°C or lower, and even more preferably 125°C or lower.
  • the starting glass transition temperature (Tg) of the aromatic polycarbonate resin having the terminal structure represented by formula (C) is, for example, 118°C or higher, and even 120°C or higher, or 122°C or higher. good.
  • the resin composition of the present embodiment contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), it contains only one type of aromatic polycarbonate resin having a terminal structure represented by formula (C). or may contain two or more types. When two or more types are included, it is preferable that the glass transition temperature of the mixture falls within the above range.
  • the number average molecular weight (Mn) of the aromatic polycarbonate resin having the terminal structure represented by formula (C) is preferably 15,000 or more, and preferably 35,000 or less, and 30,000 or more. It is more preferably at most 25,000, even more preferably at most 25,000.
  • the weight average molecular weight (Mw) of the aromatic polycarbonate resin having a terminal structure represented by formula (C) is preferably 40,000 or more, and preferably 80,000 or less, and 60,000 or more. It is more preferably at most 50,000, even more preferably at most 50,000.
  • the resin composition (x1) preferably contains 60 to 93 parts by mass of polycarbonate resin (x11) and 7 to 40 parts by mass of polycarbonate oligomer (x12).
  • the proportion of the polycarbonate oligomer (x12) is preferably 8 parts by mass or more, and 9 parts by mass based on a total of 100 parts by mass of the polycarbonate resin (x11) and the polycarbonate oligomer (x12).
  • the amount is more preferably 10 parts by mass or more, further preferably 35 parts by mass or less, more preferably 32 parts by mass or less, and 30 parts by mass or less.
  • the resin composition of this embodiment may contain only one type of polycarbonate resin (x11) and polycarbonate oligomer (x12), or may contain two or more types of each. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the content of the aromatic polycarbonate resin in the resin composition of the present embodiment having a terminal structure represented by formula (C) is 0 parts by mass or more based on 100 parts by mass of the polycarbonate resin contained in the resin composition (x1). , that is, it may or may not be included.
  • the content is 1 part by mass based on 100 parts by mass of the polycarbonate resin contained in the resin composition (x1). It is preferably at least 5 parts by mass, more preferably at least 5 parts by mass, even more preferably at least 8 parts by mass.
  • the resin composition of this embodiment contains two or more types of aromatic polycarbonate resins having the terminal structure represented by formula (C), it is preferable that the total amount falls within the above range.
  • the resin composition (x1) also contains the polycarbonate resin (x11) and the polycarbonate oligomer ( x12). Further, when the resin composition (x1) contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), the resin composition (x1) contains 90% by mass or more (preferably 95% by mass or more) of the aromatic polycarbonate resin having a terminal structure represented by formula (C). , more preferably 97% by mass or more, still more preferably 98% by mass or more) is composed of the polycarbonate resin (x11), the polycarbonate oligomer (x12), and an aromatic polycarbonate resin having a terminal structure represented by formula (C). It is preferable that However, it is preferable that the aromatic polycarbonate resin having the terminal structure represented by formula (C) corresponds to a part of the polycarbonate resin (x11).
  • the resin composition (x2) contains 60 to 93 parts by mass of a polycarbonate resin (x21) having a viscosity average molecular weight of 24,000 to 50,000, and 7 to 40 parts by mass of a polycarbonate oligomer (x22) having a viscosity average molecular weight of 2,000 to 10,000. .
  • a polycarbonate resin (x21) having a viscosity average molecular weight of 24,000 to 50,000 and 7 to 40 parts by mass of a polycarbonate oligomer (x22) having a viscosity average molecular weight of 2,000 to 10,000.
  • the viscosity average molecular weight of the polycarbonate resin (x21) is 24,000 to 50,000, preferably 25,000 or more, and preferably 45,000 or less, more preferably 40,000 or less, and 35,000 or less More preferred.
  • the viscosity average molecular weight is measured according to the description in the examples below.
  • the viscosity average molecular weight is the sum of the viscosity average molecular weight of each polycarbonate resin (x21) multiplied by the mass fraction. The same applies to the viscosity average molecular weight below.
  • the starting glass transition temperature (Tg) of the polycarbonate resin (x21) used in this embodiment is preferably 160°C or lower, more preferably 155°C or lower, even more preferably 154°C or lower, and 153°C or lower.
  • the temperature is more preferably 152°C or lower, even more preferably 151°C or lower, and even more preferably 151°C or lower.
  • the starting glass transition temperature (Tg) of the polycarbonate resin (x21) used in this embodiment is, for example, 148°C or higher, and may further be 149°C or higher, or 150°C or higher.
  • the onset glass transition temperature is measured according to the description in the Examples described later (the same applies to the onset glass transition temperature hereinafter). Moreover, when the polycarbonate resin (x21) is a mixture of two or more types, the glass transition temperature is the glass transition temperature of the mixture of each polycarbonate resin (x21). The same applies to the glass transition temperature below.
  • the polycarbonate resin (x21) used in this embodiment may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin, but an aromatic polycarbonate resin is preferable.
  • aromatic polycarbonate resin By using aromatic polycarbonate resin, it is resistant to environmental tests such as wet heat tests and high temperature tests, and resin deterioration due to molecular weight reduction is less likely to occur.
  • the aromatic polycarbonate resin is preferably a bisphenol type polycarbonate resin, more preferably a bisphenol A type and/or bisphenol C type polycarbonate resin, and even more preferably a bisphenol A type polycarbonate resin. .
  • the bisphenol A type and bisphenol C type polycarbonate resins may also have other structural units other than the carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof.
  • dihydroxy compounds constituting such other structural units include aromatic dihydroxy compounds described in paragraph 0014 of JP 2018-154819 A, the contents of which are incorporated herein.
  • carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof preferably account for 90% by mass or more, more preferably 95% by mass or more of all structural units excluding terminal structures. Preferably, it accounts for 97% by mass or more, and more preferably.
  • the method for producing bisphenol A polycarbonate resin is not particularly limited, and any method can be adopted. Examples include interfacial polymerization, melt transesterification, pyridine method, ring-opening polymerization of cyclic carbonate compounds, and solid phase transesterification of prepolymers.
  • the viscosity average molecular weight of the polycarbonate oligomer (x22) is 2,000 to 10,000, preferably 8,000 or less, more preferably 6,000 or less, may be 5,000 or less, and 3,000 or more. It is preferably 3,500 or more, more preferably 4,000 or more.
  • the starting glass transition temperature (Tg) of the polycarbonate oligomer (x22) used in this embodiment is preferably 130°C or lower, more preferably 125°C or lower, even more preferably 120°C or lower, and 115°C or lower.
  • the temperature is more preferably 110°C or lower, even more preferably 107°C or lower, and even more preferably 107°C or lower.
  • the starting glass transition temperature (Tg) of the polycarbonate oligomer (x22) used in this embodiment is, for example, 95°C or higher, and may further be 100°C or higher, 103°C or higher, or 105°C or higher.
  • the polycarbonate oligomer (x22) may be aromatic polycarbonate or aliphatic polycarbonate, but aromatic polycarbonate is preferable.
  • the polycarbonate oligomer (x22) is preferably a bisphenol type polycarbonate, more preferably a bisphenol A type and/or bisphenol C type polycarbonate, and even more preferably a bisphenol A type polycarbonate.
  • carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof preferably account for 90% by mass or more of the total structural units excluding terminal structures. , more preferably accounts for 95% by mass or more, and still more preferably accounts for 97% by mass or more.
  • the resin composition (x2) may or may not further contain an aromatic polycarbonate resin having a terminal structure represented by formula (C).
  • an aromatic polycarbonate resin having a terminal structure represented by formula (C) By using an aromatic polycarbonate resin having a terminal structure represented by formula (C), the glass transition temperature of the polycarbonate resin can be lowered more easily.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms.
  • R 2 each independently represents a halogen atom, a carbon atom number 1 ⁇ 20 alkyl group or an aryl group having 6 to 12 carbon atoms.
  • n represents an integer of 0 to 4. * is a bonding site with another site.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms, preferably an alkyl group or alkenyl group having 10 or more carbon atoms, and an alkyl group having 12 or more carbon atoms. or an alkenyl group, more preferably an alkyl group or an alkenyl group of 14 or more. This tends to lower the glass transition temperature of the resin and improve the heat bendability of the multilayer body.
  • R 1 is preferably an alkyl group or alkenyl group having 22 or less carbon atoms, more preferably an alkyl group or alkenyl group having 18 or less carbon atoms.
  • R 1 is an alkyl group.
  • the alkyl group and alkenyl group are preferably straight-chain or branched alkyl groups or alkenyl groups, and more preferably straight-chain alkyl groups or alkenyl groups.
  • R 1 is particularly preferably a hexadecyl group.
  • R 2 each independently represents a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and represents a fluorine atom, a chlorine atom, a methyl group, an ethyl group, or a phenyl It is preferably a group, and more preferably a fluorine atom, a chlorine atom, or a methyl group.
  • n represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • the aromatic polycarbonate resin having the terminal structure represented by formula (C) may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin, but an aromatic polycarbonate resin is preferable. By using aromatic polycarbonate resin, it is resistant to environmental tests such as wet heat tests and high temperature tests, and resin deterioration due to molecular weight reduction is less likely to occur.
  • the aromatic polycarbonate resin having a terminal structure represented by formula (C) is preferably a bisphenol type polycarbonate resin, more preferably a bisphenol A type and/or bisphenol C type polycarbonate resin, and a bisphenol A type polycarbonate resin. More preferably, it is a resin.
  • carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof may account for 90% by mass or more of all structural units excluding the terminal structure. Preferably, it accounts for 95% by mass or more, more preferably 97% by mass or more.
  • the terminal structure represented by formula (C) can be added to the polycarbonate resin by using a terminal capping agent such as para-hydroxybenzoic acid hexadecyl ester.
  • the starting glass transition temperature (Tg) thereof is preferably 130°C or lower, and preferably 129°C or lower.
  • the temperature is more preferably 128°C or lower, even more preferably 127°C or lower, even more preferably 126°C or lower, and even more preferably 125°C or lower.
  • the starting glass transition temperature (Tg) of the aromatic polycarbonate resin having the terminal structure represented by formula (C) is, for example, 118°C or higher, and even 120°C or higher, or 122°C or higher. good.
  • the resin composition of the present embodiment contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), it contains only one type of aromatic polycarbonate resin having a terminal structure represented by formula (C). or may contain two or more types. When two or more types are included, it is preferable that the glass transition temperature of the mixture falls within the above range.
  • the viscosity average molecular weight of the aromatic polycarbonate resin having the terminal structure represented by formula (C) is preferably 15,000 or more, and preferably 40,000 or less, and 35,000 or less. More preferably, it is 30,000 or less.
  • the resin composition (x2) contains 60 to 93 parts by mass of polycarbonate resin (x21) and 7 to 40 parts by mass of polycarbonate oligomer (x22).
  • the proportion of the polycarbonate oligomer (x22) is preferably 8 parts by mass or more, and 9 parts by mass, based on a total of 100 parts by mass of the polycarbonate resin (x21) and the polycarbonate oligomer (x22).
  • the amount is more preferably 10 parts by mass or more, further preferably 35 parts by mass or less, more preferably 32 parts by mass or less, and 30 parts by mass or less.
  • the resin composition of this embodiment may contain only one type of polycarbonate resin (x21) and polycarbonate oligomer (x22), or may contain two or more types of each. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the content of the aromatic polycarbonate resin in which the resin composition of the present embodiment has a terminal structure represented by formula (C) is 0 parts by mass or more based on 100 parts by mass of the polycarbonate component contained in the resin composition (x2). , that is, it may or may not be included.
  • the content is 1 part by mass based on 100 parts by mass of the polycarbonate component contained in the resin composition (x2). It is preferably at least 5 parts by mass, more preferably at least 5 parts by mass, even more preferably at least 8 parts by mass.
  • the polycarbonate component refers to a polycarbonate resin (x21), a polycarbonate oligomer (x22), an aromatic polycarbonate resin having a terminal structure represented by formula (C), and other polycarbonates.
  • the resin composition of this embodiment contains two or more types of aromatic polycarbonate resins having the terminal structure represented by formula (C)
  • it is preferable that the total amount falls within the above range.
  • the resin composition (x2) also contains the polycarbonate resin (x21) and the polycarbonate oligomer ( x22). Further, when the resin composition (x2) contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), the resin composition (x2) contains 90% by mass or more (preferably 95% by mass or more) of the aromatic polycarbonate resin having a terminal structure represented by formula (C). , more preferably 97% by mass or more, still more preferably 98% by mass or more) is composed of the polycarbonate resin (x21), the polycarbonate oligomer (x22), and an aromatic polycarbonate resin having a terminal structure represented by formula (C). It is preferable that However, it is preferable that the aromatic polycarbonate resin having the terminal structure represented by formula (C) corresponds to a part of the polycarbonate resin (x21).
  • the resin composition (x) contains an antioxidant and/or a mold release agent.
  • the antioxidant include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, thioether antioxidants, and the like. Among these, in this embodiment, phosphorus antioxidants and phenolic antioxidants (more preferably hindered phenolic antioxidants) are preferred. Phosphorous antioxidants are particularly preferred because they provide excellent hue of molded products.
  • the phosphorus-based antioxidant is preferably a phosphite-based antioxidant, and preferably a phosphite compound represented by the following formula (1) or (2).
  • R 11 and R 12 each independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R 13 to R 17 each independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • the alkyl groups represented by R 11 and R 12 are each independently preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • R 11 and R 12 are an aryl group
  • an aryl group represented by any of the following formulas (1-a), (1-b), or (1-c) is preferred. * in the formula represents the bonding position.
  • R A each independently represents an alkyl group having 1 to 10 carbon atoms.
  • R B each independently represents an alkyl group having 1 to 10 carbon atoms. (Represents 10 alkyl groups.)
  • the content of the antioxidant is preferably 0.001 parts by mass or more, more preferably 0.008 parts by mass or more, based on 100 parts by mass of the resin composition (x). Furthermore, the upper limit of the content of the antioxidant is preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, and 0.2 parts by mass or less based on 100 parts by mass of the resin composition. It is more preferably at most 0.15 parts by mass, even more preferably at most 0.10 parts by mass, even more preferably at most 0.08 parts by mass.
  • a molded article with better hue and heat discoloration resistance can be obtained. Furthermore, by controlling the content of the antioxidant to be at most the above upper limit, a molded article with good wet heat stability can be obtained without deteriorating heat discoloration resistance.
  • One type of antioxidant may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount falls within the above range.
  • the type of mold release agent is not particularly defined, but examples include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds with a number average molecular weight of 200 to 15,000, and number average molecular weights of 100 to 15,000. 5,000 polyether, polysiloxane silicone oil, etc.
  • the content of the mold release agent is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and 0.008 parts by mass based on 100 parts by mass of the resin composition (x). It is more preferable that the amount is at least 1 part.
  • the upper limit is preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, and even more preferably 0.2 parts by mass or less. Only one type of mold release agent may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount falls within the above range.
  • the resin composition (x) also contains a thermoplastic resin other than polycarbonate resin, an ultraviolet absorber, a heat stabilizer, a flame retardant, a flame retardant aid, a coloring agent, an antistatic agent, a fluorescent whitening agent, and an antistatic agent. It may contain a fogging agent, a fluidity improver, a plasticizer, a dispersant, an antibacterial agent, an antiblocking agent, an impact modifier, a sliding modifier, a hue modifier, an acid trapping agent, and the like. These components may be used alone or in combination of two or more. The content of the above components, when included, is preferably 0.1 to 5% by mass in total of the resin composition (x).
  • the starting glass transition temperature of the resin composition (x) or polycarbonate resin layer (X) is preferably 143°C or lower, more preferably 142°C or lower, and even more preferably 141°C or lower. By setting it below the upper limit value, springback during thermal bending can be further suppressed. Further, the starting glass transition temperature of the resin composition (x) or the polycarbonate resin layer (X) is preferably 130°C or higher, more preferably higher than 130°C, and more preferably 131°C or higher, 133°C. The temperature may be 135° C. or higher. By setting it to the above lower limit value or more, thermal contraction of the sheet becomes difficult to occur.
  • the polycarbonate resin layer (X) may be a single layer, or may be a multilayer.
  • the thickness of the polycarbonate resin layer (X) is not particularly limited, but is, for example, 1 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 35 ⁇ m or more, even more preferably 40 ⁇ m or more, and even more preferably 50 ⁇ m. It is more preferably at least 100 ⁇ m, even more preferably at least 300 ⁇ m, even more preferably at least 500 ⁇ m, it may be at least 700 ⁇ m, and it is at least 900 ⁇ m. It's okay.
  • the thickness of the polycarbonate resin layer (X) is preferably 10,000 ⁇ m or less, more preferably 5,000 ⁇ m or less, may be 3,000 ⁇ m or less, and may be 2,500 ⁇ m or less. Good too.
  • the acrylic resin layer (Y) is formed from a resin composition (y) containing an acrylic resin.
  • the resin composition (y) contains at least an acrylic resin, and further contains at least one thermoplastic resin selected from styrene resins, fluororesins such as polyvinylidene fluoride, and aromatic polyether resins such as polyphenylene ether. It is more preferable that the resin contains an acrylic resin and a styrene resin.
  • the resin composition (y) 90% by mass or more (preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 98% by mass or more) of the above acrylic resin and the above thermoplastic resin (preferably styrene) resin).
  • the resin composition (y) preferably contains 30 to 90 parts by mass of acrylic resin (y1) and 10 to 70 parts by mass of styrene resin (y2). With such a configuration, the pencil hardness, heat resistance, and impact resistance tend to be improved more effectively. That is, by blending an acrylic resin, pencil hardness and impact resistance are improved, and by blending a styrene resin, heat resistance is improved.
  • the resin composition (y) contains an acrylic resin (y1) and a styrene resin (y2), the blend ratio is based on a total of 100 parts by mass of the content of the acrylic resin (y1) and the styrene resin (y2).
  • the content of the acrylic resin (y1) is preferably 35 parts by mass or more, more preferably 40 parts by mass or more, even more preferably 45 parts by mass or more, and 50 parts by mass or more. It is more preferably 55 parts by mass or more, even more preferably 60 parts by mass or more, and may be 65 parts by mass or more. By setting it to the above lower limit or more, pencil hardness and impact resistance tend to be improved more effectively.
  • the acrylic resin (y1) and styrene resin (y2) are included, the blend ratio is 85 parts by mass or less based on the total content of acrylic resin (y1) and styrene resin (y2) of 100 parts by mass. It is preferably 80 parts by mass or less, more preferably 75 parts by mass or less.
  • each of the acrylic resin (y1) and the styrene resin (y2) may contain only one type or two types. It may contain more than that. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the acrylic resin (y1) contains a (meth)acrylic compound unit, and the proportion thereof is preferably 60% by mass or more in all structural units excluding terminal groups.
  • the (meth)acrylic compound unit refers to a structural unit composed of a (meth)acrylic compound in the resin (the same applies to the "aromatic vinyl compound unit” etc. described later).
  • the upper limit of the ratio of (meth)acrylic compound units in the acrylic resin (y1) is 100% by mass, and preferably 96% by mass or less, based on all the structural units excluding terminal groups.
  • the acrylic resin (y1) may contain only one type of (meth)acrylic compound unit, or may contain two or more types of (meth)acrylic compound units. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the (meth)acrylic compound is not particularly limited as long as it contains a (meth)acrylic group, but a compound represented by formula (a1) is preferred.
  • Ra 1 is a hydrogen atom or a methyl group
  • Ra 2 is an aliphatic group.
  • Ra 1 is a hydrogen atom or a methyl group, preferably a methyl group.
  • Ra 2 is an aliphatic group, preferably a linear or branched aliphatic group, more preferably a linear aliphatic group.
  • aliphatic groups examples include alkyl groups (including cycloalkyl groups), alkynyl groups (including cycloalkynyl groups), alkenyl groups (including cycloalkenyl groups), and alkyl groups are preferred, and straight-chain or branched alkyl groups are exemplified. A group is more preferable, and a straight-chain alkyl group is even more preferable.
  • the number of carbon atoms in the aliphatic group that is Ra 2 is preferably 1 to 10, more preferably 1 to 5, even more preferably 1 to 3, and even more preferably 1 or 2. Preferably, 1 is even more preferable.
  • the (meth)acrylic compound represented by formula (a1) is preferably an alkyl (meth)acrylate (preferably alkyl methacrylate), more preferably methyl (meth)acrylate (preferably methyl methacrylate).
  • alkyl (meth)acrylate preferably alkyl methacrylate
  • methyl (meth)acrylate preferably methyl methacrylate
  • the acrylic resin (y1) contains monomer units other than (meth)acrylic compound units.
  • examples of other monomer units include cyclic acid anhydride units, N-substituted maleimide units, and lactone ring units, with cyclic acid anhydride units and/or N-substituted maleimide units being preferred, and N-substituted maleimide units being more preferred.
  • the acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit (preferably an N-substituted maleimide unit).
  • the total amount of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit is 100% by mass of the acrylic resin (y1). It is preferably 6% by mass or more, more preferably 9% by mass or more, even more preferably 12% by mass or more, and preferably 35% by mass or less, and 30% by mass. % or less, even more preferably 25% by mass or less, even more preferably 20% by mass or less.
  • the acrylic resin (y1) may contain only one kind of other monomer units, preferably at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit, or two It may contain more than one species. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the acrylic resin (y1) has a total of (meth)acrylic compound units, cyclic acid anhydride units, N-substituted maleimide units, and at least one lactone ring unit of 100% by mass of the acrylic resin (y1). In this case, it preferably accounts for 90% by mass or more, more preferably 95% by mass or more, even more preferably 97% by mass or more, and even more preferably 99% by mass or more.
  • Examples of the cyclic acid anhydride unit include maleic anhydride units and glutaric anhydride units, with maleic anhydride units being preferred.
  • Maleic anhydride constituting the maleic anhydride unit and glutaric acid constituting the glutaric anhydride unit may each have a substituent, but it is preferable that they do not have a substituent.
  • N-substituted maleimide units include N-cyclohexylmaleimide units, N-phenylmaleimide units, N-methylmaleimide units, N-ethylmaleimide units, N-isopropylmaleimide units, Nt-butylmaleimide units, N-dodecylmaleimide units, Examples include N-benzylmaleimide units and N-naphthylmaleimide units, with N-cyclohexylmaleimide units and N-phenylmaleimide units being preferred.
  • the lactone ring unit include the lactone ring units described in JP-A No. 2006-171464 and JP-A No. 2004-168882, the contents of which are incorporated herein.
  • the starting glass transition temperature (Tg) of the acrylic resin (y1) is preferably 100°C or higher, more preferably 105°C or higher, even more preferably 110°C or higher, and even more preferably 115°C or higher. More preferably, the temperature is 120°C or higher. By setting it to the above lower limit or more, the effect of suppressing crack generation during hot bending tends to be further improved. Further, the starting glass transition temperature (Tg) of the acrylic resin (y1) is, for example, 130°C or lower, and may further be 125°C or lower. When the resin composition (y) contains two or more types of acrylic resins (y1), the starting glass transition temperature (Tg) of the acrylic resin (y1) is the Tg of the mixture.
  • the weight average molecular weight of the acrylic resin (y1) is preferably 50,000 or more, more preferably 60,000 or more, even more preferably 70,000 or more, and even more preferably 80,000 or more. More preferably, it is 90,000 or more. By setting it to the above lower limit or more, the impact resistance strength of the obtained acrylic resin layer (Y) can be further improved.
  • the weight average molecular weight of the acrylic resin (y1) is preferably 300,000 or less, more preferably 250,000 or less, even more preferably 200,000 or less, and 170,000 or less. More preferably, it is 150,000 or less. By setting it below the above upper limit, the melt viscosity of the resin composition can be effectively lowered, making it easier to mold a multilayer body.
  • the weight average molecular weight is measured by the method described in the Examples below. Further, when the acrylic resin (y1) is a mixture of two or more types, the weight average molecular weight is the sum of the weight average molecular weights of each acrylic resin (y1) multiplied by the mass fraction. The same applies to the weight average molecular weight below.
  • the styrene resin (y2) is a resin containing aromatic vinyl compound units, preferably containing aromatic vinyl compound units and cyclic acid anhydride units, and 68 to 84% by mass of aromatic vinyl compound units and cyclic acid anhydride units. It is more preferable to contain 16 to 32% by mass of physical units. More specifically, when the styrene resin (y2) is 100% by mass, the proportion of cyclic acid anhydride units is preferably 20% by mass or more, more preferably 23% by mass or more, 24% by mass or more.
  • the total of aromatic vinyl compound units and cyclic acid anhydride units preferably accounts for 90% by mass or more, and preferably accounts for 95% by mass or more when the styrene resin (y2) is 100% by mass. More preferably, it accounts for 97% by mass or more, and even more preferably 99% by mass or more.
  • the styrene resin (y2) may contain only one type of aromatic vinyl compound unit and cyclic acid anhydride unit, or may contain two or more types of each. When two or more types are included, it is preferable that the total amount falls within the above range.
  • Examples of the aromatic vinyl compound unit in the styrene resin (y2) include styrene monomer units such as styrene units, ⁇ -methylstyrene units, o-methylstyrene units, and p-methylstyrene units, and may include styrene units. preferable.
  • Examples of the cyclic acid anhydride unit in the styrene resin (y2) include maleic anhydride units and glutaric anhydride units, with maleic anhydride units being preferred.
  • Maleic anhydride constituting the maleic anhydride unit and glutaric acid constituting the glutaric anhydride unit may each have a substituent, but it is preferable that they do not have a substituent.
  • the styrene resin (y2) may contain monomer units other than the aromatic vinyl compound unit and the cyclic acid anhydride unit. Examples of other monomer units include N-substituted maleimide units, (meth)acrylic compound units, and alkenyl cyanide units.
  • the starting glass transition temperature (Tg) of the styrene resin (y2) is preferably 130°C or higher, more preferably 135°C or higher, and even more preferably 140°C or higher. By setting it above the lower limit, the effect of suppressing cracks during hot bending tends to be further improved. Further, the starting glass transition temperature (Tg) of the styrene resin (y2) is preferably 180°C or lower, more preferably 170°C or lower, and even more preferably 160°C or lower. By setting it below the upper limit value, the effect of suppressing springback during hot bending tends to be further improved.
  • the weight average molecular weight of the styrene resin (y2) is preferably 10,000 or more, more preferably 20,000 or more, even more preferably 30,000 or more, and even more preferably 40,000 or more. It is even more preferable. By setting it to the above-mentioned lower limit or more, the impact strength of the obtained acrylic resin layer (Y) can be further improved. Further, the weight average molecular weight of the styrene resin (y2) is preferably 200,000 or less, more preferably 100,000 or less. By setting it below the upper limit, the melt viscosity of the resin composition can be effectively lowered.
  • the starting glass transition temperature of the resin composition (y) or the acrylic resin layer (Y) is preferably 130°C or higher, more preferably 131°C or higher, and even more preferably 132°C or higher. By setting the above lower limit value or more, cracks are less likely to occur during hot bending. Further, the starting glass transition temperature of the resin composition (y) or the acrylic resin layer (Y) is preferably 145°C or lower, more preferably 140°C or lower, and even more preferably 138°C or lower. , more preferably 136°C or lower, even more preferably 134°C or lower. By setting it below the upper limit value, springback during thermal bending tends to be suppressed.
  • the resin composition (y) also contains thermoplastic resins other than the above, antioxidants, mold release agents, ultraviolet absorbers, heat stabilizers, flame retardants, flame retardant aids, colorants, and antistatic agents. , optical brighteners, antifogging agents, fluidity improvers, plasticizers, dispersants, antibacterial agents, antiblocking agents, impact modifiers, sliding modifiers, hue modifiers, acid trapping agents, etc. good. These components may be used alone or in combination of two or more.
  • the content of the above components, when included, is preferably 0.1 to 5% by mass in total of the resin composition (y).
  • the resin composition (y) includes an antioxidant and/or a mold release agent. The details of the antioxidant and/or mold release agent are the same as the antioxidant and/or mold release agent described in the section of the resin composition (x), and the preferred ranges are also the same.
  • the acrylic resin layer (Y) may be a single layer, or may be a multilayer.
  • the thickness of the acrylic resin layer (Y) is not particularly limited, but the lower limit is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 50 ⁇ m or more. It is more preferably 60 ⁇ m or more, even more preferably 80 ⁇ m or more, and may be 100 ⁇ m or more.
  • the thickness of the acrylic resin layer (Y) is preferably 5,000 ⁇ m or less, more preferably 2,000 ⁇ m or less, and even more preferably 1,000 ⁇ m or less. It is preferably 500 ⁇ m or less, even more preferably 300 ⁇ m or less, and even more preferably 150 ⁇ m or less.
  • the multilayer body of this embodiment includes a polycarbonate resin layer (X) and an acrylic resin layer (Y).
  • the relationship between the thickness of the polycarbonate resin layer (X) and the acrylic resin layer (Y) is ⁇ thickness of the acrylic resin layer (Y)/[total thickness of the polycarbonate resin layer (X) and acrylic resin layer (Y)] ⁇ It is preferable to fill 1/5.
  • the acrylic resin layer (Y) becomes thin as a whole in the multilayer body, so even if the multilayer body is heat-formed, the occurrence of cracks can be more effectively suppressed, and the occurrence of springback can be suppressed more effectively. is suppressed more effectively.
  • ⁇ thickness of acrylic resin layer (Y)/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)] ⁇ 1/6 is more preferable, and ⁇ thickness of acrylic resin layer (Y) More preferably, thickness/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)] ⁇ 1/8.
  • the thickness of Y)/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)]] is more preferable.
  • the polycarbonate resin layer (X) and the acrylic resin layer (Y) satisfy the above-mentioned preferred range of thickness, and the multilayer body satisfies the preferred range of thickness described below, while satisfying the above relationship. It is more preferable. With such a configuration, the effects of the present invention can be achieved more effectively.
  • the difference between the glass transition temperature of the polycarbonate resin layer (X) and the glass transition temperature of the acrylic resin layer (Y) (glass transition temperature of the polycarbonate resin layer (X) - acrylic resin layer (
  • the glass transition temperature of Y) is usually 33°C or lower, preferably 13°C or lower. By setting it below the above-mentioned upper limit value, there is a tendency that occurrence of springback can be suppressed more effectively.
  • the difference in glass transition temperature is more preferably 12°C or less, and even more preferably 11°C or less. Further, the lower limit value is ideally 0°C, but may be 1°C or higher.
  • the multilayer body of this embodiment further includes a hard coat layer.
  • the hard coat layer is preferably laminated in the order of the polycarbonate resin layer (X), the acrylic resin layer (Y), and the hard coat layer. Further, the hard coat layer may also be provided on the polycarbonate resin layer (X) side. It should be noted that between the polycarbonate resin layer (X) and the acrylic resin layer (Y) and between the acrylic resin layer (Y) and the hard coat layer, there are , may have other layers. In this embodiment, it is preferable that the polycarbonate resin layer (X), the acrylic resin layer (Y), and the hard coat layer are successively laminated in this order.
  • the hard coat layer that may be included in the multilayer body of this embodiment is a layer with higher surface hardness than the polycarbonate resin layer. By including such a hard coat layer, the surface hardness of the multilayer body or molded article can be increased.
  • the thickness of the hard coat layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, even more preferably 2 ⁇ m or more, even more preferably 4 ⁇ m or more, and even more preferably 5 ⁇ m or more. is even more preferable. By setting it above the lower limit, the pencil hardness of the entire multilayer body formed by the hard coat layer tends to be further improved.
  • the upper limit of the thickness of the hard coat layer is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, even more preferably 12 ⁇ m or less, even more preferably 10 ⁇ m or less, and 8 ⁇ m or less. is even more preferable. By setting it below the above-mentioned upper limit, the workability during hot bending tends to be further improved.
  • the hard coat layer is preferably obtained by applying and then curing a hard coat material that can be cured by heat or active energy rays.
  • a coating material that is cured using active energy rays is a resin composition consisting of one or more monofunctional or polyfunctional (preferably 2 to 10 functional) (meth)acrylate monomers or oligomers.
  • examples include resin compositions containing monofunctional or polyfunctional (preferably 2 to 10 functional) urethane (meth)acrylate oligomers. It is preferable that a photopolymerization initiator is added to these resin compositions as a curing catalyst.
  • thermosetting resin coatings include polyorganosiloxane coatings and crosslinked acrylic coatings.
  • Such resin compositions are commercially available as hard coating agents for acrylic resin or polycarbonate resin films or sheets, and may be selected as appropriate, taking into account suitability for the coating line.
  • the hard coat layer descriptions in paragraphs 0045 to 0055 of JP 2013-020130, paragraphs 0073 to 0076 of JP 2018-103518, and paragraphs 0062 to 0082 of JP 2017-213771 are used. , the contents of which are incorporated herein.
  • FIG. 1 is a schematic diagram showing an example of an antireflection film, in which 1 is a polycarbonate resin layer (X), 2 is an acrylic resin layer (Y), 3 is a hard coat layer, and 4 is an antireflection layer. Showing.
  • the polycarbonate resin layer (X) 1, the acrylic resin layer (Y) 2, the hard coat layer 3, and the antireflection layer 4 are laminated in the above order, but within the scope of the present embodiment, It may have other layers.
  • one or both sides of the multilayer body may be treated with anti-fingerprint treatment, anti-reflection treatment, anti-glare treatment, weather resistance treatment, or antistatic treatment. It is preferable that at least one of anti-fouling treatment and anti-blocking treatment is applied.
  • An example of the outermost surface of the multilayer body at this time is a hard coat layer.
  • the anti-blocking treatment refers to a treatment that allows films to be easily peeled off even if they are in close contact with each other, and examples thereof include adding an anti-blocking agent and providing irregularities on the surface of a multilayer body.
  • the multilayer body of this embodiment may have other layers in addition to the above. Specifically, an adhesive layer, an adhesive layer, an antifouling layer, etc. are exemplified.
  • the total thickness of the multilayer body of this embodiment is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, even more preferably 100 ⁇ m or more, and even more preferably 500 ⁇ m or more. preferable. As the total thickness increases, the rigidity of the multilayer body tends to improve. Further, the total thickness of the multilayer body is preferably 10,000 ⁇ m or less, more preferably 5,000 ⁇ m or less, and may be 3,000 ⁇ m or less. By making this total thickness, when molding a multilayer body, when the multilayer sheet is pressed between rolls and the resin is cooled, the resin is cooled to the inside of the multilayer body, improving the moldability of the multilayer body. can be done.
  • the multilayer body of this embodiment preferably has high pencil hardness (hardness).
  • the pencil hardness measured from the acrylic resin layer (Y) side is preferably F or higher, more preferably H or higher. Further, although the upper limit is not particularly determined, 3H or less is practical.
  • the pencil hardness measured from the acrylic resin layer (Y) side is preferably H or higher, more preferably 2H or higher, and 3H or higher. It is more preferable that it is above. Further, although the upper limit is not particularly determined, 4H or less is practical. Pencil hardness is measured according to the description in Examples below.
  • the multilayer body of this embodiment uses a main extruder that extrudes the resin composition (x) and a sub-extruder that extrudes the resin composition (y), and melts and extrudes the resin under the conditions of each resin.
  • a multilayer body can be formed by introducing the materials into a die and laminating them inside the die to form a sheet, or by forming them into a sheet and then laminating them.
  • the molded article of this embodiment is a molded article formed from the multilayer body of this embodiment.
  • the multilayer body of this embodiment also has excellent thermal bending resistance, and is therefore suitable for applications having bent portions.
  • it is preferably used for molded products having a portion with a radius of curvature of 50 mmR or less (preferably a radius of curvature of 40 to 50 mmR).
  • the molded article of this embodiment is preferably obtained by thermoforming the multilayer body of this embodiment at, for example, 133° C. or lower, or, for example, 100° C. or higher.
  • the multilayer body of this embodiment has excellent thermal bending resistance, it is particularly useful when used as a molded product having a portion with a radius of curvature of 50 mmR or less.
  • the thermoforming temperature can be lowered, each layer of the multilayer body (polycarbonate resin layer (X), acrylic resin layer (Y), etc.) tends to relax after thermoforming, making thermoforming easier.
  • the thermal bending temperature is preferably 115°C or higher, more preferably 118°C or higher, and preferably 131°C or lower from the viewpoint of springback or crack generation.
  • the multilayer body and molded product of this embodiment can be suitably used for optical components, designed products, antireflection molded products, and the like.
  • the multilayer body and molded product of this embodiment are suitably used for parts such as display devices, electrical and electronic equipment, OA equipment, mobile information terminals, mechanical parts, home appliances, vehicle parts, various containers, and lighting equipment.
  • the molded product of this embodiment is preferably used as a sensor film for touch panels and an antireflection molded product for various displays.
  • E-1000F Bisphenol A type polycarbonate resin, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 152°C, viscosity average molecular weight: 32,500, number average molecular weight (Mn): 32,100, weight average molecular weight (Mw): 64, 500, dispersion degree (Mw/Mn): 2.01
  • E-2000F Bisphenol A type polycarbonate resin, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 150°C, viscosity average molecular weight: 27,000, number average molecular weight (Mn): 26,400, weight average molecular weight (Mw): 53, 100, degree of dispersion (Mw/Mn): 2.01 S-3000F: Bisphenol A type polycarbonate resin, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 147°C, viscosity average molecular weight: 21,000, number average molecular weight (Mn): 18,900, weight average molecular weight
  • ⁇ Polycarbonate oligomer> AL-071: Bisphenol A type polycarbonate oligomer, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 106°C, viscosity average molecular weight: 4,700, number average molecular weight (Mn): 3,800, weight average molecular weight (Mw): 9, 060, dispersity (Mw/Mn): 2.36
  • ADK STAB 2112 In the following compound, tBu represents a t-butyl group.
  • ⁇ Method for measuring viscosity average molecular weight The intrinsic viscosity [ ⁇ ] (unit: dL/g) of the polycarbonate resin and polycarbonate oligomer was measured using methylene chloride as a solvent. The temperature was set at 25°C. The specific viscosity [ ⁇ sp ] at each solution concentration [C] (g/dL) was measured using an Ubbelohde viscometer. The intrinsic viscosity was calculated from the obtained specific viscosity value and concentration using the following formula.
  • ⁇ Method for measuring weight average molecular weight and number average molecular weight The number average molecular weight (Mn), weight average molecular weight (Mw), and degree of dispersion (Mw/Mn) of polycarbonate resin and polycarbonate oligomer, and the weight average molecular weight (Mw) of acrylic resin and styrene resin were measured by gel permeation chromatography. . Specifically, an LC-20AD system (manufactured by Shimadzu Corporation) was used as a gel permeation chromatography device, and an LF-804 (manufactured by Shodex Corporation) was connected as a column. The column temperature was 40°C.
  • the detector used was an RI detector RID-10A (manufactured by Shimadzu Corporation). Chloroform was used as the eluent, and a calibration curve was created using standard polystyrene manufactured by Tosoh Corporation. If the gel permeation chromatography device, column, and detector described above are difficult to obtain, other devices with equivalent performance may be used for measurement.
  • the glass transition temperature of the raw material resin and resin composition was determined by performing two cycles of heating and cooling according to the differential scanning calorimetry (DSC measurement) conditions below, and measuring the glass transition temperature at the time of heating in the second cycle. .
  • the starting glass transition temperature is the intersection of the straight line extending the low-temperature side baseline to the high-temperature side and the tangent to the inflection point, and the intersection of the straight line extending the high-temperature side baseline to the low-temperature side and the tangent to the inflection point is the starting glass transition temperature.
  • the starting glass transition temperature was defined as Tg
  • the intermediate point between the starting glass transition temperature and the ending glass transition temperature was defined as the intermediate glass transition temperature.
  • Measurement start temperature 30°C
  • temperature increase rate 10°C/min
  • final temperature 250°C
  • temperature fall rate 20°C/min.
  • the unit is shown in °C.
  • the measuring device used was a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd., "DSC7020").
  • the resin composition (x) (pellets) for forming the polycarbonate resin layer (X) is melt-kneaded at 260 to 300°C while changing the viscosity of the resin as appropriate, and the resin composition for forming the acrylic resin layer (Y) is melt-kneaded.
  • (y) (pellets) were melt-kneaded at 260°C.
  • the Charpy impact strength of the resin composition (x) used for the polycarbonate resin layer (X) was measured according to JIS K 7111-1. Specifically, the obtained resin composition (x) (pellets) was molded into a vented twin-screw injection molding machine (“PE-100” manufactured by Sodick, intermeshing co-rotating type with twin screw diameter 29 mm, plunger). A molded article (test piece) measuring 80 mm in length x 10 mm in width x 3 mm in thickness was prepared by melt-kneading the mixture at a cylinder temperature of 260°C and a mold temperature of 70°C. Thereafter, a notched Charpy impact test was conducted in accordance with JIS K7111-1 except for the thickness, and the Charpy impact strength was measured. The unit of Charpy impact strength is kJ/m 2 .
  • the resin composition (x) used for forming the polycarbonate resin layer (X) was added to the resin composition (y) of each example and comparative example shown in Tables 1 to 3 in a single-screw extruder with a shaft diameter of 65 mm.
  • the resin was introduced continuously, and the cylinder temperature was extruded at a discharge rate of 32.4 kg/h while changing the cylinder temperature from 240° C. to 290° C. depending on the resin viscosity.
  • a feed block connected to the entire extruder was equipped with distribution pins for two types and two layers to extrude and laminate.
  • each multilayer body It was extruded into a sheet using a T-die connected to the tip, and cooled while transferring the mirror surface using three mirror finish rolls at temperatures of 130° C., 140° C., and 180° C. from the upstream side, to obtain each multilayer body.
  • the total thickness of the central part of the obtained multilayer body was 2000 ⁇ m, and the thickness of layer (Y) was 100 ⁇ m.
  • a photopolymerization initiator (product name: I-184) is added to a total of 100 parts by weight of 5 parts by weight of an oligomer containing a hydrophilic group, a lipophilic group, and a UV-reactive group (product name: RS-90, manufactured by DIC Corporation).
  • ⁇ Pencil hardness> The surface on the acrylic resin layer (Y) side of the multilayer body without a hard coat and the surface on the hard coat layer side of the multilayer body with a hard coat, respectively, were measured in pencil hardness according to JIS K5600-5-4:1999. Pencil hardness was determined using a testing machine under a load of 750 g. The evaluation was conducted by five experts, and the decision was made by majority vote.
  • the unit of Tg (glass transition temperature) is °C, and the unit of Charpy impact strength is kJ/ m2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: a multilayer body wherein the occurrence of spring-back can be suppressed even if the multilayer body is subjected to hot forming; and a molded article. The multilayer body comprises a polycarbonate resin layer (X) which is formed of a resin composition (x) that contains a polycarbonate resin, and an acrylic resin layer (Y) which is formed of a resin composition (y) that contains an acrylic resin. With respect to the polycarbonate resin contained in the resin composition (x), the ratio Mw/Mn of the weight average molecular weight (Mw) in terms of polystyrene as determined by gel permeation chromatography to the number average molecular weight (Mn) is 2.80 to 4.40, and/or 60 to 93 parts by mass of a polycarbonate resin (x1) that have a viscosity-average molecular weight of 24,000 to 50,000 and 7 to 40 parts by mass of a polycarbonate oligomer (x2) that has a viscosity-average molecular weight of 2,000 to 10,000 are contained.

Description

多層体、および、成形品Multilayer bodies and molded products
 本発明は、多層体および成形品に関する。特に、ポリカーボネート樹脂層とアクリル樹脂層とを有する多層体に関する。 The present invention relates to a multilayer body and a molded article. In particular, it relates to a multilayer body having a polycarbonate resin layer and an acrylic resin layer.
 ポリカーボネート樹脂は、透明性に優れることに加え、ガラスと比較して加工性、耐衝撃性に優れ、また、他のプラスチック材料に比べて有毒ガスの心配もないため、様々な分野で広く用いられており、真空成形や圧空成形などの熱成形用材料としても使用されている。 Polycarbonate resin is widely used in various fields because it has excellent transparency, has superior processability and impact resistance compared to glass, and is free from toxic gases compared to other plastic materials. It is also used as a material for thermoforming such as vacuum forming and pressure forming.
 一方、ポリカーボネート樹脂は、一般的に表面硬度が低いため、ポリカーボネート樹脂からなる成形品の表面に傷が入り易い傾向にある。そこで、ポリカーボネート樹脂をフィルム状にした場合、表面にアクリル樹脂を含む層やハードコート層(保護層)を形成し、製品表面に傷が入らないようにすることが検討されている。
 例えば、特許文献1には、芳香族ポリカーボネート(A1)と他の樹脂(A2)とのポリマーアロイからなるポリカーボネート系樹脂組成物(A)を主成分とする基材層の片面に、アクリル系樹脂(B)を主成分とする被覆層を備えた積層シートであって、該ポリカーボネート系樹脂組成物(A)と該アクリル系樹脂(B)とのガラス転移温度の差の絶対値が30℃以内であることを特徴とする成形用樹脂シートが開示されている。
On the other hand, since polycarbonate resin generally has a low surface hardness, the surface of a molded article made of polycarbonate resin tends to be easily scratched. Therefore, when polycarbonate resin is made into a film, it is being considered to form a layer containing acrylic resin or a hard coat layer (protective layer) on the surface to prevent scratches on the product surface.
For example, in Patent Document 1, an acrylic resin is coated on one side of a base material layer whose main component is a polycarbonate resin composition (A) consisting of a polymer alloy of an aromatic polycarbonate (A1) and another resin (A2). A laminated sheet comprising a coating layer containing (B) as a main component, wherein the absolute value of the difference in glass transition temperature between the polycarbonate resin composition (A) and the acrylic resin (B) is within 30°C. A resin sheet for molding is disclosed.
特開2009-196153号公報Japanese Patent Application Publication No. 2009-196153
 ここで、ポリカーボネート樹脂を含む樹脂組成物から形成されたポリカーボネート樹脂層と、アクリル樹脂を含む樹脂組成物から形成されたアクリル樹脂層との多層体とし、所望の形状に加熱成形する場合、熱曲げ後に多層体が元の形に戻る現象(スプリングバック)が発生する場合がある。
 本発明はかかる課題を解決することを目的とするものであって、加熱成形しても、スプリングバックの発生が抑制できる多層体および成形品を提供することを目的とする。
Here, when forming a multilayer body of a polycarbonate resin layer formed from a resin composition containing a polycarbonate resin and an acrylic resin layer formed from a resin composition containing an acrylic resin and heat forming it into a desired shape, heat bending is performed. A phenomenon in which the multilayer body returns to its original shape (springback) may occur later.
The present invention aims to solve this problem, and aims to provide a multilayer body and a molded product that can suppress the occurrence of springback even when heated and molded.
 上記課題のもと、本発明者が検討を行った結果、分子量分布が大きいポリカーボネート樹脂および/または分子量が比較的大きめのポリカーボネート樹脂に、ポリカーボネートオリゴマーを配合したポリカーボネート樹脂層を用いることにより、上記課題を解決しうることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>ポリカーボネート樹脂を含む樹脂組成物(x)から形成されたポリカーボネート樹脂層(X)とアクリル樹脂を含む樹脂組成物(y)から形成されたアクリル樹脂層(Y)を有し、
前記樹脂組成物(x)に含まれるポリカーボネート樹脂は、ゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比であるMw/Mnが2.80~4.40である、多層体。
<2>前記樹脂組成物(X)に含まれるポリカーボネート樹脂のゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の数平均分子量(Mn)が10000~20000である、<1>に記載の多層体。
<3>ポリカーボネート樹脂を含む樹脂組成物(x)から形成されたポリカーボネート樹脂層(X)とアクリル樹脂を含む樹脂組成物(y)から形成されたアクリル樹脂層(Y)を有し、
前記樹脂組成物(x)は、粘度平均分子量24000~50000であるポリカーボネート樹脂(x1)60~93質量部と、粘度平均分子量が2000~10000であるポリカーボネートオリゴマー(x2)7~40質量部とを含む、多層体。
<4>前記多層体のアクリル樹脂層(Y)側から測定した鉛筆硬度がF以上である、<1>~<3>のいずれか1つに記載の多層体。
<5>前記樹脂組成物(x)のガラス転移温度が143℃以下である、<1>~<4>のいずれか1つに記載の多層体。
<6>前記樹脂組成物(x)は、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を、前記樹脂組成物(x)に含まれるポリカーボネート成分100質量部に対し、0~30質量部含む、<1>~<5>のいずれか1つに記載の多層体。
(式(C)中、Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表す。Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表す。nは0~4の整数を表す。*は、他の部位との結合部位である。)
<7>前記樹脂組成物(y)のガラス転移温度が130℃以上である、<1>~<6>のいずれか1つに記載の多層体。
<8>前記樹脂組成物(y)は、アクリル樹脂(y1)30~90質量部とスチレン樹脂(y2)10~70質量部とを含む、<1>~<7>のいずれか1つに記載の多層体。
<9>前記アクリル樹脂(y1)が、
(メタ)アクリル化合物単位と、
環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種と
を含む、<8>に記載の多層体。
<10>前記アクリル樹脂(y1)が、(メタ)アクリル化合物単位60~96質量%と、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種を合計で4~40質量%含む、<9>に記載の多層体。
<11>前記スチレン樹脂(y2)が、芳香族ビニル化合物単位68~84質量%と、環状酸無水物単位16~32質量%とを含む、<9>または<10>に記載の多層体。
<12>前記ポリカーボネート樹脂層(X)のガラス転移温度とアクリル樹脂層(Y)のガラス転移温度の差が、13℃以下である、<1>~<11>のいずれか1つに記載の多層体。
<13>前記樹脂組成物(X)および/または樹脂組成物(Y)が、それぞれ独立に、酸化防止剤および/または離型剤を含む、<1>~<12>のいずれか1つに記載の多層体。
<14>さらに、ハードコート層を含み、前記ハードコート層は、前記ポリカーボネート樹脂層(X)、前記アクリル樹脂層(Y)、前記ハードコート層の順に積層している、<1>~<13>のいずれか1つに記載の多層体。
<15>さらに、前記多層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理、防汚染処理およびアンチブロッキング処理のいずれか1つ以上が施されている、<1>~<14>のいずれか1つに記載の多層体。
<16>前記多層体が、{アクリル樹脂層(Y)の厚み/[ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)の合計厚み]}<1/5を満たす、<1>~<15>のいずれか1つに記載の多層体。
<17>前記多層体の総厚みが10~10,000μmである、<1>~<3>のいずれか1つに記載の多層体。
<18>前記多層体のアクリル樹脂層(Y)側から測定した鉛筆硬度がF以上であり、
前記樹脂組成物(x)のガラス転移温度が143℃以下であり、
前記樹脂組成物(x)は、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を、前記樹脂組成物(x)に含まれるポリカーボネート樹脂100質量部に対し、0~30質量部含み、
前記樹脂組成物(y)のガラス転移温度が130℃以上であり、
前記樹脂組成物(y)は、アクリル樹脂(y1)30~90質量部とスチレン樹脂(y2)10~70質量部とを含み、
前記アクリル樹脂(y1)が、(メタ)アクリル化合物単位60~96質量%と、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種を合計で4~40質量%含み、
前記スチレン樹脂(y2)が、芳香族ビニル化合物単位68~84質量%と、環状酸無水物単位16~32質量%とを含む、<1>~<17>のいずれか1つに記載の多層体。
(式(C)中、Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表す。Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表す。nは0~4の整数を表す。*は、他の部位との結合部位である。)
<19>前記多層体のアクリル樹脂層(Y)側から測定した鉛筆硬度がF以上であり、
前記樹脂組成物(x)のガラス転移温度が143℃以下であり、
前記樹脂組成物(x)は、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を、前記樹脂組成物(x)に含まれるポリカーボネート成分100質量部に対し、0~30質量部含み、
前記樹脂組成物(y)のガラス転移温度が130℃以上であり、
前記樹脂組成物(y)は、アクリル樹脂(y1)30~90質量部とスチレン樹脂(y2)10~70質量部とを含み、
前記アクリル樹脂(y1)が、(メタ)アクリル化合物単位60~96質量%と、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種を合計で4~40質量%含み、
前記スチレン樹脂(y2)が、芳香族ビニル化合物単位68~84質量%と、環状酸無水物単位16~32質量%とを含む、<1>~<18>のいずれか1つに記載の多層体。
(式(C)中、Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表す。Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表す。nは0~4の整数を表す。*は、他の部位との結合部位である。)
<20><1>~<19>のいずれか1つに記載の多層体から形成された成形品。
<21>曲率半径が50mmR以下の部位を有する、<20>に記載の成形品。
As a result of studies conducted by the present inventors based on the above-mentioned problems, the above-mentioned problems can be solved by using a polycarbonate resin layer in which polycarbonate oligomer is blended with a polycarbonate resin having a large molecular weight distribution and/or a polycarbonate resin having a relatively large molecular weight. We found that it is possible to solve the problem.
Specifically, the above problem was solved by the following means.
<1> A polycarbonate resin layer (X) formed from a resin composition (x) containing a polycarbonate resin and an acrylic resin layer (Y) formed from a resin composition (y) containing an acrylic resin,
The polycarbonate resin contained in the resin composition (x) has an Mw/Mn ratio of 2.2. 80 to 4.40, a multilayer body.
<2> The multilayer body according to <1>, wherein the polycarbonate resin contained in the resin composition (X) has a polystyrene-equivalent number average molecular weight (Mn) of 10,000 to 20,000 as measured by gel permeation chromatography.
<3> A polycarbonate resin layer (X) formed from a resin composition (x) containing a polycarbonate resin and an acrylic resin layer (Y) formed from a resin composition (y) containing an acrylic resin,
The resin composition (x) contains 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000 and 7 to 40 parts by mass of a polycarbonate oligomer (x2) having a viscosity average molecular weight of 2,000 to 10,000. Including, multi-layer body.
<4> The multilayer body according to any one of <1> to <3>, wherein the pencil hardness measured from the acrylic resin layer (Y) side of the multilayer body is F or more.
<5> The multilayer body according to any one of <1> to <4>, wherein the resin composition (x) has a glass transition temperature of 143° C. or lower.
<6> The resin composition (x) contains an aromatic polycarbonate resin having a terminal structure represented by formula (C) in an amount of 0 to 100 parts by mass based on 100 parts by mass of the polycarbonate component contained in the resin composition (x). The multilayer body according to any one of <1> to <5>, containing 30 parts by mass.
(In formula (C), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms. R 2 each independently represents a halogen atom, a carbon atom number 1 Represents an alkyl group with ~20 or an aryl group with 6 to 12 carbon atoms. n represents an integer of 0 to 4. * indicates a bonding site with another site.)
<7> The multilayer body according to any one of <1> to <6>, wherein the resin composition (y) has a glass transition temperature of 130° C. or higher.
<8> The resin composition (y) is any one of <1> to <7>, containing 30 to 90 parts by mass of an acrylic resin (y1) and 10 to 70 parts by mass of a styrene resin (y2). Multilayer body as described.
<9> The acrylic resin (y1) is
(meth)acrylic compound unit,
The multilayer body according to <8>, comprising at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit.
<10> The acrylic resin (y1) contains 60 to 96% by mass of (meth)acrylic compound units, and at least one of cyclic acid anhydride units, N-substituted maleimide units, and lactone ring units in a total of 4 to 40%. % by mass, the multilayer body according to <9>.
<11> The multilayer body according to <9> or <10>, wherein the styrene resin (y2) contains 68 to 84% by mass of aromatic vinyl compound units and 16 to 32% by mass of cyclic acid anhydride units.
<12> The difference between the glass transition temperature of the polycarbonate resin layer (X) and the glass transition temperature of the acrylic resin layer (Y) is 13° C. or less, according to any one of <1> to <11>. Multilayered body.
<13> Any one of <1> to <12>, wherein the resin composition (X) and/or the resin composition (Y) each independently contain an antioxidant and/or a mold release agent. Multilayer body as described.
<14> Furthermore, the hard coat layer includes the polycarbonate resin layer (X), the acrylic resin layer (Y), and the hard coat layer, which are laminated in this order. <1> to <13 >The multilayer body according to any one of >.
<15> Furthermore, one or more of anti-fingerprint treatment, anti-reflection treatment, anti-glare treatment, weather resistance treatment, anti-static treatment, anti-stain treatment and anti-blocking treatment is applied to one or both sides of the multilayer body. The multilayer body according to any one of <1> to <14>.
<16> The multilayer body satisfies {thickness of acrylic resin layer (Y)/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)]}<1/5, <1> to <15 >The multilayer body according to any one of >.
<17> The multilayer body according to any one of <1> to <3>, wherein the multilayer body has a total thickness of 10 to 10,000 μm.
<18> Pencil hardness measured from the acrylic resin layer (Y) side of the multilayer body is F or more,
The resin composition (x) has a glass transition temperature of 143° C. or lower,
The resin composition (x) contains 0 to 30 parts by mass of an aromatic polycarbonate resin having a terminal structure represented by formula (C) based on 100 parts by mass of the polycarbonate resin contained in the resin composition (x). including,
The resin composition (y) has a glass transition temperature of 130°C or higher,
The resin composition (y) contains 30 to 90 parts by mass of acrylic resin (y1) and 10 to 70 parts by mass of styrene resin (y2),
The acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and 4 to 40% by mass of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit. ,
The multilayer according to any one of <1> to <17>, wherein the styrene resin (y2) contains 68 to 84% by mass of aromatic vinyl compound units and 16 to 32% by mass of cyclic acid anhydride units. body.
(In formula (C), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms. R 2 each independently represents a halogen atom, a carbon atom number 1 Represents an alkyl group with ~20 or an aryl group with 6 to 12 carbon atoms. n represents an integer of 0 to 4. * indicates a bonding site with another site.)
<19> Pencil hardness measured from the acrylic resin layer (Y) side of the multilayer body is F or more,
The resin composition (x) has a glass transition temperature of 143° C. or lower,
The resin composition (x) contains 0 to 30 parts by mass of an aromatic polycarbonate resin having a terminal structure represented by formula (C) based on 100 parts by mass of the polycarbonate component contained in the resin composition (x). including,
The resin composition (y) has a glass transition temperature of 130°C or higher,
The resin composition (y) contains 30 to 90 parts by mass of acrylic resin (y1) and 10 to 70 parts by mass of styrene resin (y2),
The acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and 4 to 40% by mass of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit. ,
The multilayer according to any one of <1> to <18>, wherein the styrene resin (y2) contains 68 to 84% by mass of aromatic vinyl compound units and 16 to 32% by mass of cyclic acid anhydride units. body.
(In formula (C), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms. R 2 each independently represents a halogen atom, a carbon atom number 1 ~20 alkyl group or an aryl group having 6 to 12 carbon atoms. n represents an integer of 0 to 4. * is a bonding site with another site.)
<20> A molded article formed from the multilayer body according to any one of <1> to <19>.
<21> The molded article according to <20>, which has a portion with a radius of curvature of 50 mmR or less.
 本発明により、加熱成形しても、スプリングバックの発生が抑制できる多層体および成形品を提供可能になった。 According to the present invention, it has become possible to provide a multilayer body and a molded article that can suppress the occurrence of springback even when hot molded.
図1は、反射防止フィルムの一例の構成を示す模式図である。FIG. 1 is a schematic diagram showing the structure of an example of an antireflection film.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。本明細書では、置換および無置換を記していない表記は、無置換の方が好ましい。
 本明細書において、「(メタ)アクリル化合物」は、アクリル化合物およびメタクリル化合物の双方、または、いずれかを表し、メタクリル化合物が好ましい。また、アクリル樹脂は、アクリレートの(共)重合体に加え、メタクリレートの(共)重合体も含む。
 本明細書における層(X)、層(Y)および多層体は、それぞれ、フィルムまたはシートの形状をしているものを含む趣旨である。「フィルム」および「シート」とは、それぞれ、長さと幅に対して、厚さが薄く、概ね、平らな成形品をいう。
 なお、本明細書における「質量部」とは成分の相対量を示し、「質量%」とは成分の絶対量を示す。
 本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2022年1月1日時点における規格に基づくものとする。
Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described in detail. Note that the present embodiment below is an illustration for explaining the present invention, and the present invention is not limited only to this embodiment.
In addition, in this specification, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
In this specification, various physical property values and characteristic values are assumed to be at 23° C. unless otherwise stated.
In the description of a group (atomic group) in this specification, the description that does not indicate substituted or unsubstituted includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group). For example, the term "alkyl group" includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). In this specification, for expressions that do not indicate substitution or non-substitution, non-substitution is preferred.
In this specification, "(meth)acrylic compound" represents both or either an acrylic compound and a methacrylic compound, with a methacrylic compound being preferred. In addition to acrylate (co)polymers, acrylic resins also include methacrylate (co)polymers.
In this specification, layer (X), layer (Y), and multilayer body are intended to include those in the form of a film or sheet, respectively. "Film" and "sheet" refer to a generally flat molded article that is thin relative to its length and width, respectively.
In this specification, "parts by mass" indicates the relative amount of the component, and "% by mass" indicates the absolute amount of the component.
If the measurement methods, etc. explained in the standards shown in this specification differ from year to year, unless otherwise stated, they shall be based on the standards as of January 1, 2022.
 本実施形態の多層体は、ポリカーボネート樹脂を含む樹脂組成物(x)から形成されたポリカーボネート樹脂層(X)とアクリル樹脂を含む樹脂組成物(y)から形成されたアクリル樹脂層(Y)を有し、前記樹脂組成物(x)に含まれるポリカーボネート樹脂は、ゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比であるMw/Mnが2.80~4.40であることを特徴とする。このような構成とすることにより、スプリングバックの発生が抑制できる多層体が得られる。 The multilayer body of this embodiment includes a polycarbonate resin layer (X) formed from a resin composition (x) containing a polycarbonate resin and an acrylic resin layer (Y) formed from a resin composition (y) containing an acrylic resin. The polycarbonate resin contained in the resin composition (x) has Mw/Mn, which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography. is 2.80 to 4.40. With such a configuration, a multilayer body that can suppress the occurrence of springback can be obtained.
 本実施形態の他の多層体は、ポリカーボネート樹脂を含む樹脂組成物(x)から形成されたポリカーボネート樹脂層(X)とアクリル樹脂を含む樹脂組成物(y)から形成されたアクリル樹脂層(Y)を有し、前記樹脂組成物(x)は、粘度平均分子量24000~50000であるポリカーボネート樹脂(x1)60~93質量部と、粘度平均分子量が2000~10000であるポリカーボネートオリゴマー(x2)7~40質量部とを含むことを特徴とする。このような構成とすることにより、スプリングバックの発生が抑制された多層体が得られる。 Another multilayer body of the present embodiment includes a polycarbonate resin layer (X) formed from a resin composition (x) containing a polycarbonate resin and an acrylic resin layer (Y) formed from a resin composition (y) containing an acrylic resin. ), and the resin composition (x) comprises 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000, and 7 to 93 parts by mass of a polycarbonate oligomer (x2) having a viscosity average molecular weight of 2,000 to 10,000. 40 parts by mass. With such a configuration, a multilayer body in which the occurrence of springback is suppressed can be obtained.
 ポリカーボネート樹脂層とアクリル樹脂層の多層体において、熱曲げ加工時に、ポリカーボネート樹脂層には、曲げに対抗する応力が発生する。この残留応力が熱曲げ加工後にも残っている場合、多層体が元の形に戻る現象(スプリングバック)が起こってしまう。このスプリングバックを抑制するための手段として、ポリカーボネート樹脂層のガラス転移温度付近で熱曲げをすることが考えられる。しかしながら、一般的なポリカーボネート樹脂のガラス転移温度は150℃程度と高い。このような高い温度で熱曲げ加工をすると、ガラス転移温度が本来的に低いアクリル樹脂層が柔らかい状態となってしまう。特に、ポリカーボネート樹脂層とアクリル樹脂層とハードコート層からなる多層体において、熱曲げ加工時に、アクリル樹脂層が柔らかい状態となる場合と、ハードコート層がアクリル樹脂層の変形に追従できず、ハードコート層にクラックが生じてしまう。そこで、スプリングバックを抑制するための手段として、ポリカーボネート樹脂層のガラス転移温度付近で熱曲げをするに際し、ポリカーボネート樹脂層そのもののガラス転移温度を低くすることを検討することとした。
 そして、本発明者が検討を行った結果、Mw/Mnが2.80~4.40であるポリカーボネート樹脂を含む樹脂組成物(x)を用いてポリカーボネート樹脂層(X)を形成することにより、あるいは、粘度平均分子量24000~50000であるポリカーボネート樹脂(x1)60~93質量部と、粘度平均分子量が2000~10000であるポリカーボネートオリゴマー(x2)7~40質量部とを含む樹脂組成物(x)を用いてポリカーボネート樹脂層(X)を形成することにより、上記課題を解決することに成功したものである。
 以下、本発明について説明する。
In a multilayer body of a polycarbonate resin layer and an acrylic resin layer, stress that opposes bending is generated in the polycarbonate resin layer during thermal bending. If this residual stress remains even after hot bending, a phenomenon (springback) occurs in which the multilayer body returns to its original shape. As a means for suppressing this springback, it is conceivable to thermally bend the polycarbonate resin layer near its glass transition temperature. However, the glass transition temperature of common polycarbonate resins is as high as about 150°C. When thermal bending is performed at such high temperatures, the acrylic resin layer, which inherently has a low glass transition temperature, becomes soft. In particular, in a multilayer body consisting of a polycarbonate resin layer, an acrylic resin layer, and a hard coat layer, the acrylic resin layer becomes soft during heat bending, and the hard coat layer cannot follow the deformation of the acrylic resin layer and becomes hard. Cracks occur in the coating layer. Therefore, as a means to suppress springback, we decided to consider lowering the glass transition temperature of the polycarbonate resin layer itself when thermal bending is performed near the glass transition temperature of the polycarbonate resin layer.
As a result of studies conducted by the present inventor, by forming a polycarbonate resin layer (X) using a resin composition (x) containing a polycarbonate resin having Mw/Mn of 2.80 to 4.40, Alternatively, a resin composition (x) containing 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000 and 7 to 40 parts by mass of a polycarbonate oligomer (x2) having a viscosity average molecular weight of 2,000 to 10,000. The above problem was successfully solved by forming the polycarbonate resin layer (X) using.
The present invention will be explained below.
<ポリカーボネート樹脂層(X)>
 ポリカーボネート樹脂層(X)は、ポリカーボネート樹脂を含む樹脂組成物(x)から形成された層である。
 前記樹脂組成物(x)の第一の実施形態は、ゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比であるMw/Mnが2.80~4.40である。以下、第一の実施形態の樹脂組成物の要件を満たす樹脂組成物を樹脂組成物(x1)と称する。このように分子量分布が比較的大きいポリカーボネート樹脂を用いることにより、樹脂組成物(x1)のガラス転移温度を低くすることができる。
 また、樹脂組成物(x)におけるポリカーボネート樹脂の第二の実施形態は、粘度平均分子量24000~50000であるポリカーボネート樹脂(x1)60~93質量部と、粘度平均分子量が2000~10000であるポリカーボネートオリゴマー(x2)7~40質量部とを含む。以下、第二の実施形態の樹脂組成物の要件を満たす樹脂組成物を樹脂組成物(x2)と称する。このように分子量が比較的大きいポリカーボネート樹脂に、ポリカーボネートオリゴマーを一定量配合することにより、樹脂組成物(x2)のガラス転移温度を低くすることができる。
 本実施形態においては、樹脂組成物(x)が樹脂組成物(x1)であっても、樹脂組成物(x2)であっても、樹脂組成物(x1)と樹脂組成物(x2)の両方を満たすものであってもよい。本明細書において、樹脂組成物(x)と称するときは、樹脂組成物(x1)と樹脂組成物(x2)の両方に共通する事項であること意味する。
<Polycarbonate resin layer (X)>
The polycarbonate resin layer (X) is a layer formed from a resin composition (x) containing a polycarbonate resin.
In the first embodiment of the resin composition (x), Mw/Mn, which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography, is 2. It is .80 to 4.40. Hereinafter, a resin composition that satisfies the requirements of the resin composition of the first embodiment will be referred to as a resin composition (x1). By using a polycarbonate resin having such a relatively large molecular weight distribution, the glass transition temperature of the resin composition (x1) can be lowered.
Further, the second embodiment of the polycarbonate resin in the resin composition (x) includes 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000, and a polycarbonate oligomer having a viscosity average molecular weight of 2,000 to 10,000. (x2) 7 to 40 parts by mass. Hereinafter, a resin composition that satisfies the requirements of the resin composition of the second embodiment will be referred to as a resin composition (x2). By blending a certain amount of polycarbonate oligomer into a polycarbonate resin having such a relatively large molecular weight, the glass transition temperature of the resin composition (x2) can be lowered.
In this embodiment, whether the resin composition (x) is the resin composition (x1) or the resin composition (x2), both the resin composition (x1) and the resin composition (x2) are used. It may be one that satisfies the following. In this specification, when the resin composition (x) is referred to, it means a matter common to both the resin composition (x1) and the resin composition (x2).
<<第一の実施形態のポリカーボネート樹脂>>
 前記樹脂組成物(x1)に含まれるポリカーボネート樹脂の第一の実施形態は、上述の通り、ゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比であるMw/Mnが2.80~4.40である。このように分子量分布が比較的大きいポリカーボネート樹脂を用いることにより、樹脂組成物(x1)のガラス転移温度を低くすることができる。
 前記樹脂組成物(x1)に含まれるポリカーボネート樹脂のMw/Mnは、2.80以上であり、2.90以上であることが好ましく、2.95以上であることがより好ましく、2.98以上であることがさらに好ましく、3.00以上であることが一層好ましく、3.05以上であることがより一層好ましく、3.10以上であることがさらに一層好ましく、さらには3.15以上、3.20以上、3.25以上、3.30以上、3.40以上、3.50以上であってもよい。前記下限値以上とすることにより、熱曲げ時のスプリングバックの発生を効果的に抑制できる傾向にある。また、ポリカーボネート樹脂のMw/Mnは、4.40以下であり、4.20以下であることが好ましく、4.10以下であることがより好ましく、4.00以下であることがさらに好ましく、3.95以下であることが一層好ましい。前記上限値以下とすることにより、熱曲げ時の成形品の収縮や破裂を抑制できる傾向にある。
<<Polycarbonate resin of first embodiment>>
As described above, the first embodiment of the polycarbonate resin contained in the resin composition (x1) has a polystyrene equivalent weight average molecular weight (Mw) and a number average molecular weight (Mn) measured by gel permeation chromatography. The ratio Mw/Mn is 2.80 to 4.40. By using a polycarbonate resin having such a relatively large molecular weight distribution, the glass transition temperature of the resin composition (x1) can be lowered.
The Mw/Mn of the polycarbonate resin contained in the resin composition (x1) is 2.80 or more, preferably 2.90 or more, more preferably 2.95 or more, and 2.98 or more. It is more preferably 3.00 or more, even more preferably 3.05 or more, even more preferably 3.10 or more, and even more preferably 3.15 or more, 3. It may be .20 or more, 3.25 or more, 3.30 or more, 3.40 or more, or 3.50 or more. By setting the above lower limit value or more, it tends to be possible to effectively suppress the occurrence of springback during thermal bending. The Mw/Mn of the polycarbonate resin is 4.40 or less, preferably 4.20 or less, more preferably 4.10 or less, even more preferably 4.00 or less, and 3. More preferably, it is .95 or less. By setting it below the above-mentioned upper limit, it tends to be possible to suppress shrinkage and rupture of the molded product during heat bending.
 本実施形態においては、樹脂組成物(x1)に含まれるポリカーボネート樹脂のゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の数平均分子量(Mn)は、10000以上であることが好ましく、11000以上であることがより好ましく、11500以上であることがさらに好ましく、12000以上であることが一層好ましい。前記下限値以上とすることにより、熱曲げ時の成形品の収縮や破裂を効果的に抑制できる傾向にある。また、本実施形態においては、樹脂組成物(x1)に含まれるポリカーボネート樹脂のゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の数平均分子量(Mn)は、20000以下であることが好ましく、18000以下であることがより好ましく、17000以下であることがさらに好ましく、16000以下であることが一層好ましく、15000以下であることがより一層好ましい。前記上限値以下とすることにより、熱曲げ時のスプリングバックを効果的に抑制できる傾向にある。
 樹脂組成物(x1)に含まれるポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)が2種以上の場合、混合物の数平均分子量とする。
 数平均分子量は後述する実施例の記載に従って測定される。
In the present embodiment, the polystyrene-equivalent number average molecular weight (Mn) of the polycarbonate resin contained in the resin composition (x1) measured by gel permeation chromatography is preferably 10,000 or more, and preferably 11,000 or more. It is more preferable that it is 11,500 or more, and even more preferably that it is 12,000 or more. By setting the above lower limit or more, it tends to be possible to effectively suppress shrinkage and bursting of the molded product during heat bending. Further, in the present embodiment, the polystyrene-equivalent number average molecular weight (Mn) of the polycarbonate resin contained in the resin composition (x1) measured by gel permeation chromatography is preferably 20,000 or less, and preferably 18,000 or less. More preferably, it is 17,000 or less, even more preferably 16,000 or less, and even more preferably 15,000 or less. By setting it below the upper limit, springback during thermal bending tends to be effectively suppressed.
When the resin composition (x1) contains two or more types of polycarbonate resins (including polycarbonate oligomers), the number average molecular weight is the number average molecular weight of the mixture.
The number average molecular weight is measured according to the description in the Examples below.
 ポリカーボネート樹脂の分子量分布を大きくする手段としては、Mw/Mnが本来的に大きいポリカーボネート樹脂を用いること、比較的高分子量のポリカーボネート樹脂と比較的低分子量のポリカーボネートオリゴマーをブレンドすることが例示される。
 本実施形態においては、上記ポリカーボネート樹脂のMw/Mnを満たすために比較的高分子量のポリカーボネート樹脂と比較的低分子量のポリカーボネートオリゴマーをブレンドすることが好ましい。より具体的には、樹脂組成物(x1)が、ポリカーボネート樹脂(x11)とポリカーボネートオリゴマー(x12)を含むことが好ましい。
Examples of means for increasing the molecular weight distribution of the polycarbonate resin include using a polycarbonate resin that inherently has a large Mw/Mn, and blending a relatively high molecular weight polycarbonate resin and a relatively low molecular weight polycarbonate oligomer.
In this embodiment, in order to satisfy the Mw/Mn of the polycarbonate resin, it is preferable to blend a relatively high molecular weight polycarbonate resin and a relatively low molecular weight polycarbonate oligomer. More specifically, it is preferable that the resin composition (x1) contains a polycarbonate resin (x11) and a polycarbonate oligomer (x12).
<<<ポリカーボネート樹脂(x11)>>>
 まず、ポリカーボネート樹脂(x11)について説明する。
 ポリカーボネート樹脂(x11)の数平均分子量(Mn)は、25000以上であることが好ましく、また、45000以下であることが好ましく、40000以下であることがより好ましく、35000以下であることがさらに好ましい。
 ポリカーボネート樹脂(x11)の重量平均分子量(Mw)は、45000以上であることが好ましく、また、150000以下であることが好ましく、100000以下であることがより好ましく、80000以下であることがさらに好ましい。
<<<Polycarbonate resin (x11)>>>
First, the polycarbonate resin (x11) will be explained.
The number average molecular weight (Mn) of the polycarbonate resin (x11) is preferably 25,000 or more, preferably 45,000 or less, more preferably 40,000 or less, and even more preferably 35,000 or less.
The weight average molecular weight (Mw) of the polycarbonate resin (x11) is preferably 45,000 or more, preferably 150,000 or less, more preferably 100,000 or less, and even more preferably 80,000 or less.
 また、ポリカーボネート樹脂(x11)の分散度(Mw/Mn)は、2.25以下であることが好ましく、2.20以下であることがより好ましく、2.15以下であることがさらに好ましく、2.10以下であることが一層好ましく、2.05以下であることがより一層好ましい。また、ポリカーボネート樹脂(x11)の分散度(Mw/Mn)は、1.80以上であることが好ましく、1.85以上であることがより好ましく、1.90以上であることがさらに好ましく、1.95以上であることが一層好ましく、1.98以上であることがより一層好ましい。
 数平均分子量および分散度は、後述する実施例の記載に従って測定・算出される(以下、数平均分子量および分散度について同じ)。また、ポリカーボネート樹脂(x11)が2種以上の混合物である場合、数平均分子量および分散度は、混合物の数平均分子量および分散度とする。以下、数平均分子量および分散度について同じである。
Further, the dispersity (Mw/Mn) of the polycarbonate resin (x11) is preferably 2.25 or less, more preferably 2.20 or less, even more preferably 2.15 or less, It is more preferably .10 or less, and even more preferably 2.05 or less. Further, the degree of dispersion (Mw/Mn) of the polycarbonate resin (x11) is preferably 1.80 or more, more preferably 1.85 or more, even more preferably 1.90 or more, and 1. It is more preferably .95 or more, and even more preferably 1.98 or more.
The number average molecular weight and the degree of dispersion are measured and calculated according to the description in the Examples described later (the same applies to the number average molecular weight and the degree of dispersion hereinafter). Moreover, when the polycarbonate resin (x11) is a mixture of two or more types, the number average molecular weight and the degree of dispersion are those of the mixture. The same applies to the number average molecular weight and dispersity below.
 本実施形態で用いるポリカーボネート樹脂(x11)の開始ガラス転移温度(Tg)は、160℃以下であることが好ましく、155℃以下であることがより好ましく、154℃以下であることがさらに好ましく、153℃以下であることが一層好ましく、152℃以下であることがより一層好ましく151℃以下であることがさらに一層好ましい。前記上限値以下とすることにより、多層体の熱曲げ成形性がより向上する傾向にある。また、本実施形態で用いるポリカーボネート樹脂(x11)の開始ガラス転移温度(Tg)は、例えば、148℃以上であり、さらには、149℃以上、150℃以上であってもよい。
 開始ガラス転移温度は後述する実施例の記載に従って測定される(以下、開始ガラス転移温度について同じ)。また、ポリカーボネート樹脂(x11)が2種以上の混合物である場合、ガラス転移温度は、各ポリカーボネート樹脂(x11)の混合物のガラス転移温度とする。以下、ガラス転移温度について同じである。
The starting glass transition temperature (Tg) of the polycarbonate resin (x11) used in this embodiment is preferably 160°C or lower, more preferably 155°C or lower, even more preferably 154°C or lower, and 153°C or lower. The temperature is more preferably at most 152°C, even more preferably at most 151°C. By setting it below the above-mentioned upper limit, the heat bending formability of the multilayer body tends to be further improved. Further, the starting glass transition temperature (Tg) of the polycarbonate resin (x11) used in this embodiment is, for example, 148°C or higher, and may further be 149°C or higher, or 150°C or higher.
The onset glass transition temperature is measured in accordance with the description in the Examples below (the same applies hereinafter to the onset glass transition temperature). Further, when the polycarbonate resin (x11) is a mixture of two or more types, the glass transition temperature is the glass transition temperature of the mixture of each polycarbonate resin (x11). The same applies to the glass transition temperature below.
 本実施形態で用いるポリカーボネート樹脂(x11)としては、芳香族ポリカーボネート樹脂であってもよいし、脂肪族ポリカーボネート樹脂であってもよいが、芳香族ポリカーボネート樹脂が好ましい。芳香族ポリカーボネート樹脂を用いることにより、湿熱試験や高温試験などの環境試験に強く、分子量低下等による樹脂劣化が生じにくくなる。
 本実施形態では、芳香族ポリカーボネート樹脂は、ビスフェノール型ポリカーボネート樹脂であることが好ましく、ビスフェノールA型および/またはビスフェノールC型ポリカーボネート樹脂であることがより好ましく、ビスフェノールA型ポリカーボネート樹脂であることがさらに好ましい。
The polycarbonate resin (x11) used in this embodiment may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin, but an aromatic polycarbonate resin is preferable. By using aromatic polycarbonate resin, it is resistant to environmental tests such as wet heat tests and high temperature tests, and resin deterioration due to molecular weight reduction is less likely to occur.
In this embodiment, the aromatic polycarbonate resin is preferably a bisphenol type polycarbonate resin, more preferably a bisphenol A type and/or bisphenol C type polycarbonate resin, and even more preferably a bisphenol A type polycarbonate resin. .
 ビスフェノールA型およびビスフェノールC型ポリカーボネート樹脂は、また、ビスフェノールAまたはビスフェノールC、およびその誘導体由来のカーボネート構成単位以外の他の構成単位を有していてもよい。このような他の構成単位を構成するジヒドロキシ化合物としては、例えば、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物を挙げることができ、これらの内容は本明細書に組み込まれる。
 ポリカーボネート樹脂(x11)は、ビスフェノールAまたはビスフェノールC、およびその誘導体由来のカーボネート構成単位が、末端構造を除く全構成単位の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましい。
The bisphenol A type and bisphenol C type polycarbonate resins may also have other structural units other than the carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof. Examples of dihydroxy compounds constituting such other structural units include aromatic dihydroxy compounds described in paragraph 0014 of JP 2018-154819 A, the contents of which are incorporated herein. .
In the polycarbonate resin (x11), carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof preferably account for 90% by mass or more, more preferably 95% by mass or more of all structural units excluding terminal structures. Preferably, it accounts for 97% by mass or more, and more preferably.
 ビスフェノールA型ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。 The method for producing bisphenol A polycarbonate resin is not particularly limited, and any method can be adopted. Examples include interfacial polymerization, melt transesterification, pyridine method, ring-opening polymerization of cyclic carbonate compounds, and solid phase transesterification of prepolymers.
<<<ポリカーボネートオリゴマー(x12)>>>
 次に、ポリカーボネートオリゴマー(x12)について説明する。
 ポリカーボネートオリゴマー(x12)の数平均分子量は、8000以下であることが好ましく、6000以下であることがさらに好ましく、5000以下であることが好ましく、4500以下であってもよく、また、1500以上であることが好ましく、2500以上であることがより好ましく、3000以上であることがさらに好ましい。
 ポリカーボネートオリゴマー(x12)の重量平均分子量は、20000以下であることが好ましく、15000以下であることがさらに好ましく、12000以下であることが好ましく、11000以下であってもよく、また、3000以上であることが好ましく、5000以上であることがより好ましく、7000以上であることがさらに好ましい。
<<<Polycarbonate oligomer (x12)>>>
Next, the polycarbonate oligomer (x12) will be explained.
The number average molecular weight of the polycarbonate oligomer (x12) is preferably 8000 or less, more preferably 6000 or less, preferably 5000 or less, may be 4500 or less, and may be 1500 or more. It is preferably 2,500 or more, more preferably 3,000 or more.
The weight average molecular weight of the polycarbonate oligomer (x12) is preferably at most 20,000, more preferably at most 15,000, preferably at most 12,000, may be at most 11,000, and is at least 3,000. It is preferably 5,000 or more, more preferably 7,000 or more.
 本実施形態で用いるポリカーボネートオリゴマー(x12)の開始ガラス転移温度(Tg)は、130℃以下であることが好ましく、125℃以下であることがより好ましく、120℃以下であることがさらに好ましく、115℃以下であることが一層好ましく、110℃以下であることがより一層好ましく107℃以下であることがさらに一層好ましい。前記上限値以下とすることにより、多層体の熱曲げ成形性がより向上する傾向にある。また、本実施形態で用いるポリカーボネートオリゴマー(x12)の開始ガラス転移温度(Tg)は、例えば、95℃以上であり、さらには、100℃以上、103℃以上、105℃以上であってもよい。 The starting glass transition temperature (Tg) of the polycarbonate oligomer (x12) used in this embodiment is preferably 130°C or lower, more preferably 125°C or lower, even more preferably 120°C or lower, and 115°C or lower. The temperature is more preferably 110°C or lower, even more preferably 107°C or lower, and even more preferably 107°C or lower. By setting it below the above-mentioned upper limit, the heat bending formability of the multilayer body tends to be further improved. Further, the starting glass transition temperature (Tg) of the polycarbonate oligomer (x12) used in this embodiment is, for example, 95°C or higher, and may further be 100°C or higher, 103°C or higher, or 105°C or higher.
 ポリカーボネートオリゴマー(x12)としては、芳香族ポリカーボネートであってもよいし、脂肪族ポリカーボネートであってもよいが、芳香族ポリカーボネートが好ましい。
 本実施形態では、ポリカーボネートオリゴマー(x12)は、ビスフェノール型ポリカーボネートであることが好ましく、ビスフェノールA型および/またはビスフェノールC型ポリカーボネートであることがより好ましく、ビスフェノールA型ポリカーボネートであることがさらに好ましい。
 本実施形態におけるポリカーボネートオリゴマー(x12)としての、ビスフェノール型ポリカーボネートは、ビスフェノールAまたはビスフェノールC、およびその誘導体由来のカーボネート構成単位が、末端構造を除く全構成単位の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましい。
The polycarbonate oligomer (x12) may be aromatic polycarbonate or aliphatic polycarbonate, but aromatic polycarbonate is preferable.
In this embodiment, the polycarbonate oligomer (x12) is preferably a bisphenol type polycarbonate, more preferably a bisphenol A type and/or bisphenol C type polycarbonate, and even more preferably a bisphenol A type polycarbonate.
In the bisphenol type polycarbonate used as the polycarbonate oligomer (x12) in this embodiment, carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof preferably account for 90% by mass or more of the total structural units excluding terminal structures. , more preferably accounts for 95% by mass or more, and still more preferably accounts for 97% by mass or more.
<<式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂>>
 樹脂組成物(x1)は、さらに、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含んでいてもよいし、含んでいなくてもよい。式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を用いることにより、樹脂組成物(x1)に含まれるポリカーボネート樹脂のガラス転移温度をより容易に低くすることができる。
(式(C)中、Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表す。Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表す。nは0~4の整数を表す。*は、他の部位との結合部位である。)
<<Aromatic polycarbonate resin having a terminal structure represented by formula (C)>>
The resin composition (x1) may or may not further contain an aromatic polycarbonate resin having a terminal structure represented by formula (C). By using the aromatic polycarbonate resin having the terminal structure represented by formula (C), the glass transition temperature of the polycarbonate resin contained in the resin composition (x1) can be lowered more easily.
(In formula (C), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms. R 2 each independently represents a halogen atom, a carbon atom number 1 ~20 alkyl group or an aryl group having 6 to 12 carbon atoms. n represents an integer of 0 to 4. * is a bonding site with another site.)
 Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表し、炭素原子数10以上のアルキル基またはアルケニル基であることが好ましく、12以上のアルキル基またはアルケニル基であることがより好ましく、さらに14以上のアルキル基またはアルケニル基であることが好ましい。これにより樹脂のガラス転移温度を低くし、多層体の熱曲げ性が向上する傾向にある。また、Rは、炭素原子数22以下のアルキル基またはアルケニル基であることが好ましく、18以下のアルキル基またはアルケニル基であることがより好ましい。Rは、アルキル基であることが好ましい。アルキル基およびアルケニル基は、直鎖または分岐のアルキル基またはアルケニル基であることが好ましく、直鎖のアルキル基またはアルケニル基であることがより好ましい。
 本実施形態では、Rは、特に、ヘキサデシル基であることが好ましい。
 また、R-O-C(=O)-は、メタ位、パラ位、オルト位のいずれに位置していてもよいが、メタ位またはパラ位に位置していることが好ましく、パラ位に位置していることがより好ましい。
R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms, preferably an alkyl group or alkenyl group having 10 or more carbon atoms, and an alkyl group having 12 or more carbon atoms. or an alkenyl group, more preferably an alkyl group or an alkenyl group of 14 or more. This tends to lower the glass transition temperature of the resin and improve the heat bendability of the multilayer body. Further, R 1 is preferably an alkyl group or alkenyl group having 22 or less carbon atoms, more preferably an alkyl group or alkenyl group having 18 or less carbon atoms. Preferably, R 1 is an alkyl group. The alkyl group and alkenyl group are preferably straight-chain or branched alkyl groups or alkenyl groups, and more preferably straight-chain alkyl groups or alkenyl groups.
In this embodiment, R 1 is particularly preferably a hexadecyl group.
In addition, R 1 -O-C(=O)- may be located at any of the meta, para, and ortho positions, but is preferably located at the meta or para position, and is preferably located at the para position. More preferably, it is located at
 Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表し、フッ素原子、塩素原子、メチル基、エチル基、または、フェニル基であることが好ましく、フッ素原子、塩素原子またはメチル基であることがより好ましい。
 nは0~4の整数を表し、0~2の整数であることが好ましく、0または1であることがより好ましく、0であることがさらに好ましい。
R 2 each independently represents a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and represents a fluorine atom, a chlorine atom, a methyl group, an ethyl group, or a phenyl It is preferably a group, and more preferably a fluorine atom, a chlorine atom, or a methyl group.
n represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂は、芳香族ポリカーボネート樹脂であってもよいし、脂肪族ポリカーボネート樹脂であってもよいが、芳香族ポリカーボネート樹脂が好ましい。芳香族ポリカーボネート樹脂を用いることにより、湿熱試験や高温試験などの環境試験に強く、分子量低下等による樹脂劣化が生じにくくなる。
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂は、ビスフェノール型ポリカーボネート樹脂であることが好ましく、ビスフェノールA型および/またはビスフェノールC型ポリカーボネート樹脂であることがより好ましく、ビスフェノールA型ポリカーボネート樹脂であることがさらに好ましい。
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂は、ビスフェノールAまたはビスフェノールC、およびその誘導体由来のカーボネート構成単位が、末端構造を除く全構成単位の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましい。
 式(C)で表される末端構造は、パラヒドロキシ安息香酸ヘキサデシルエステル等の末端封止剤を用いることによって、ポリカーボネート樹脂に付加することができる。これらの詳細は、特開2019-002023号公報の段落0022~0030の記載を参酌でき、これらの内容は本明細書に組み込まれる。
The aromatic polycarbonate resin having the terminal structure represented by formula (C) may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin, but an aromatic polycarbonate resin is preferable. By using aromatic polycarbonate resin, it is resistant to environmental tests such as wet heat tests and high temperature tests, and resin deterioration due to molecular weight reduction is less likely to occur.
The aromatic polycarbonate resin having a terminal structure represented by formula (C) is preferably a bisphenol type polycarbonate resin, more preferably a bisphenol A type and/or bisphenol C type polycarbonate resin, and a bisphenol A type polycarbonate resin. More preferably, it is a resin.
In the aromatic polycarbonate resin having a terminal structure represented by formula (C), carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof may account for 90% by mass or more of all structural units excluding the terminal structure. Preferably, it accounts for 95% by mass or more, more preferably 97% by mass or more.
The terminal structure represented by formula (C) can be added to the polycarbonate resin by using a terminal capping agent such as parahydroxybenzoic acid hexadecyl ester. For these details, the descriptions in paragraphs 0022 to 0030 of JP-A-2019-002023 can be referred to, and the contents thereof are incorporated herein.
 樹脂組成物(x1)が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含む場合、その開始ガラス転移温度(Tg)は、130℃以下であることが好ましく、129℃以下であることがより好ましく、128℃以下であることがさらに好ましく、127℃以下であることが一層好ましく、126℃以下であることがより一層好ましく125℃以下であることがさらに一層好ましい。前記上限値以下とすることにより、多層体の熱曲げ成形性がより向上する傾向にある。また、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂の開始ガラス転移温度(Tg)は、例えば、118℃以上であり、さらには、120℃以上、122℃以上であってもよい。
 本実施形態の樹脂組成物が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含む場合、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、混合物のガラス転移温度が上記範囲となることが好ましい。
When the resin composition (x1) contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), the starting glass transition temperature (Tg) is preferably 130°C or lower, and preferably 129°C or lower. The temperature is more preferably 128°C or lower, even more preferably 127°C or lower, even more preferably 126°C or lower, and even more preferably 125°C or lower. By setting it below the above-mentioned upper limit, the heat bending formability of the multilayer body tends to be further improved. Further, the starting glass transition temperature (Tg) of the aromatic polycarbonate resin having the terminal structure represented by formula (C) is, for example, 118°C or higher, and even 120°C or higher, or 122°C or higher. good.
When the resin composition of the present embodiment contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), it contains only one type of aromatic polycarbonate resin having a terminal structure represented by formula (C). or may contain two or more types. When two or more types are included, it is preferable that the glass transition temperature of the mixture falls within the above range.
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂の数平均分子量(Mn)は、15,000以上であることが好ましく、また、35,000以下であることが好ましく、30,000以下であることがより好ましく、25,000以下であることがさらに好ましい。
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂の重量平均分子量(Mw)は、40,000以上であることが好ましく、また、80,000以下であることが好ましく、60,000以下であることがより好ましく、50,000以下であることがさらに好ましい。
The number average molecular weight (Mn) of the aromatic polycarbonate resin having the terminal structure represented by formula (C) is preferably 15,000 or more, and preferably 35,000 or less, and 30,000 or more. It is more preferably at most 25,000, even more preferably at most 25,000.
The weight average molecular weight (Mw) of the aromatic polycarbonate resin having a terminal structure represented by formula (C) is preferably 40,000 or more, and preferably 80,000 or less, and 60,000 or more. It is more preferably at most 50,000, even more preferably at most 50,000.
<<ポリカーボネートのブレンド比>>
 樹脂組成物(x1)は、上述の通り、ポリカーボネート樹脂(x11)60~93質量部とポリカーボネートオリゴマー(x12)7~40質量部の割合で含むことが好ましい。樹脂組成物(x1)においては、ポリカーボネート樹脂(x11)とポリカーボネートオリゴマー(x12)の合計100質量部に対し、ポリカーボネートオリゴマー(x12)の割合が、8質量部以上であることが好ましく、9質量部以上であることがより好ましく、10質量部以上であることがさらに好ましく、また、35質量部以下であることが好ましく、32質量部以下であることがより好ましく、30質量部以下であることがさらに好ましく、28質量部以下であることが一層好ましく、26質量部以下であることがより一層好ましく、24質量部以下、22質量部以下であってもよい。
 本実施形態の樹脂組成物は、ポリカーボネート樹脂(x11)およびポリカーボネートオリゴマー(x12)を、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態の樹脂組成物が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂の含有量は、樹脂組成物(x1)に含まれるポリカーボネート樹脂100質量部に対し、0質量部以上、すなわち、含んでいてもよく、含まなくてもよい。本実施形態の樹脂組成物が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含む場合の含有量は、樹脂組成物(x1)に含まれるポリカーボネート樹脂100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、8質量部以上であることがさらに好ましい。
 本実施形態の樹脂組成物が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を2種以上含む場合、合計量が上記範囲となることが好ましい。
<<Polycarbonate blend ratio>>
As mentioned above, the resin composition (x1) preferably contains 60 to 93 parts by mass of polycarbonate resin (x11) and 7 to 40 parts by mass of polycarbonate oligomer (x12). In the resin composition (x1), the proportion of the polycarbonate oligomer (x12) is preferably 8 parts by mass or more, and 9 parts by mass based on a total of 100 parts by mass of the polycarbonate resin (x11) and the polycarbonate oligomer (x12). The amount is more preferably 10 parts by mass or more, further preferably 35 parts by mass or less, more preferably 32 parts by mass or less, and 30 parts by mass or less. It is more preferably 28 parts by mass or less, even more preferably 26 parts by mass or less, and may be 24 parts by mass or less, or 22 parts by mass or less.
The resin composition of this embodiment may contain only one type of polycarbonate resin (x11) and polycarbonate oligomer (x12), or may contain two or more types of each. When two or more types are included, it is preferable that the total amount falls within the above range.
The content of the aromatic polycarbonate resin in the resin composition of the present embodiment having a terminal structure represented by formula (C) is 0 parts by mass or more based on 100 parts by mass of the polycarbonate resin contained in the resin composition (x1). , that is, it may or may not be included. When the resin composition of the present embodiment contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), the content is 1 part by mass based on 100 parts by mass of the polycarbonate resin contained in the resin composition (x1). It is preferably at least 5 parts by mass, more preferably at least 5 parts by mass, even more preferably at least 8 parts by mass.
When the resin composition of this embodiment contains two or more types of aromatic polycarbonate resins having the terminal structure represented by formula (C), it is preferable that the total amount falls within the above range.
 樹脂組成物(x1)は、また、その90質量%以上(好ましくは95質量%以上、より好ましくは97質量%以上、さらに好ましくは98質量%以上)が上記ポリカーボネート樹脂(x11)およびポリカーボネートオリゴマー(x12)から構成されることが好ましい。
 また、樹脂組成物(x1)が、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含む場合、樹脂組成物(x1)は、その90質量%以上(好ましくは95質量%以上、より好ましくは97質量%以上、さらに好ましくは98質量%以上)が上記ポリカーボネート樹脂(x11)、ポリカーボネートオリゴマー(x12)および式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂から構成されることが好ましい。ただし、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂は、ポリカーボネート樹脂(x11)の一部に相当することが好ましい。
The resin composition (x1) also contains the polycarbonate resin (x11) and the polycarbonate oligomer ( x12).
Further, when the resin composition (x1) contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), the resin composition (x1) contains 90% by mass or more (preferably 95% by mass or more) of the aromatic polycarbonate resin having a terminal structure represented by formula (C). , more preferably 97% by mass or more, still more preferably 98% by mass or more) is composed of the polycarbonate resin (x11), the polycarbonate oligomer (x12), and an aromatic polycarbonate resin having a terminal structure represented by formula (C). It is preferable that However, it is preferable that the aromatic polycarbonate resin having the terminal structure represented by formula (C) corresponds to a part of the polycarbonate resin (x11).
<<第ニの実施形態のポリカーボネート樹脂>>
 樹脂組成物(x2)は、粘度平均分子量24000~50000であるポリカーボネート樹脂(x21)60~93質量部と、粘度平均分子量が2000~10000であるポリカーボネートオリゴマー(x22)7~40質量部とを含む。このように分子量が比較的大きいポリカーボネート樹脂に、ポリカーボネートオリゴマーを一定量配合することにより、樹脂組成物(x2)のガラス転移温度を低くすることができる。
<<Polycarbonate resin of second embodiment>>
The resin composition (x2) contains 60 to 93 parts by mass of a polycarbonate resin (x21) having a viscosity average molecular weight of 24,000 to 50,000, and 7 to 40 parts by mass of a polycarbonate oligomer (x22) having a viscosity average molecular weight of 2,000 to 10,000. . By blending a certain amount of polycarbonate oligomer into a polycarbonate resin having such a relatively large molecular weight, the glass transition temperature of the resin composition (x2) can be lowered.
<<<ポリカーボネート樹脂(x21)>>>
 まず、ポリカーボネート樹脂(x21)について説明する。
 ポリカーボネート樹脂(x21)の粘度平均分子量は、24000~50000であり、25000以上であることが好ましく、また、45000以下であることが好ましく、40000以下であることがより好ましく、35000以下であることがさらに好ましい。
 粘度平均分子量は、後述する実施例の記載に従って測定される。また、ポリカーボネート樹脂(x21)が2種以上の混合物である場合、粘度平均分子量は、各ポリカーボネート樹脂(x21)の粘度平均分子量に質量分率をかけた値の和とする。以下、粘度平均分子量について同じである。
<<<Polycarbonate resin (x21)>>>
First, the polycarbonate resin (x21) will be explained.
The viscosity average molecular weight of the polycarbonate resin (x21) is 24,000 to 50,000, preferably 25,000 or more, and preferably 45,000 or less, more preferably 40,000 or less, and 35,000 or less More preferred.
The viscosity average molecular weight is measured according to the description in the examples below. Further, when the polycarbonate resin (x21) is a mixture of two or more types, the viscosity average molecular weight is the sum of the viscosity average molecular weight of each polycarbonate resin (x21) multiplied by the mass fraction. The same applies to the viscosity average molecular weight below.
 本実施形態で用いるポリカーボネート樹脂(x21)の開始ガラス転移温度(Tg)は、160℃以下であることが好ましく、155℃以下であることがより好ましく、154℃以下であることがさらに好ましく、153℃以下であることが一層好ましく、152℃以下であることがより一層好ましく、151℃以下であることがさらに一層好ましい。前記上限値以下とすることにより、多層体の熱曲げ成形性がより向上する傾向にある。また、本実施形態で用いるポリカーボネート樹脂(x21)の開始ガラス転移温度(Tg)は、例えば、148℃以上であり、さらには、149℃以上、150℃以上であってもよい。
 開始ガラス転移温度は後述する実施例の記載に従って測定される(以下、開始ガラス転移温度について同じ)。また、ポリカーボネート樹脂(x21)が2種以上の混合物である場合、ガラス転移温度は、各ポリカーボネート樹脂(x21)の混合物のガラス転移温度とする。以下、ガラス転移温度について同じである。
The starting glass transition temperature (Tg) of the polycarbonate resin (x21) used in this embodiment is preferably 160°C or lower, more preferably 155°C or lower, even more preferably 154°C or lower, and 153°C or lower. The temperature is more preferably 152°C or lower, even more preferably 151°C or lower, and even more preferably 151°C or lower. By setting it below the above-mentioned upper limit, the heat bending formability of the multilayer body tends to be further improved. Further, the starting glass transition temperature (Tg) of the polycarbonate resin (x21) used in this embodiment is, for example, 148°C or higher, and may further be 149°C or higher, or 150°C or higher.
The onset glass transition temperature is measured according to the description in the Examples described later (the same applies to the onset glass transition temperature hereinafter). Moreover, when the polycarbonate resin (x21) is a mixture of two or more types, the glass transition temperature is the glass transition temperature of the mixture of each polycarbonate resin (x21). The same applies to the glass transition temperature below.
 本実施形態で用いるポリカーボネート樹脂(x21)としては、芳香族ポリカーボネート樹脂であってもよいし、脂肪族ポリカーボネート樹脂であってもよいが、芳香族ポリカーボネート樹脂が好ましい。芳香族ポリカーボネート樹脂を用いることにより、湿熱試験や高温試験などの環境試験に強く、分子量低下等による樹脂劣化が生じにくくなる。
 本実施形態では、芳香族ポリカーボネート樹脂は、ビスフェノール型ポリカーボネート樹脂であることが好ましく、ビスフェノールA型および/またはビスフェノールC型ポリカーボネート樹脂であることがより好ましく、ビスフェノールA型ポリカーボネート樹脂であることがさらに好ましい。
The polycarbonate resin (x21) used in this embodiment may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin, but an aromatic polycarbonate resin is preferable. By using aromatic polycarbonate resin, it is resistant to environmental tests such as wet heat tests and high temperature tests, and resin deterioration due to molecular weight reduction is less likely to occur.
In this embodiment, the aromatic polycarbonate resin is preferably a bisphenol type polycarbonate resin, more preferably a bisphenol A type and/or bisphenol C type polycarbonate resin, and even more preferably a bisphenol A type polycarbonate resin. .
 ビスフェノールA型およびビスフェノールC型ポリカーボネート樹脂は、また、ビスフェノールAまたはビスフェノールC、およびその誘導体由来のカーボネート構成単位以外の他の構成単位を有していてもよい。このような他の構成単位を構成するジヒドロキシ化合物としては、例えば、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物を挙げることができ、これらの内容は本明細書に組み込まれる。
 ポリカーボネート樹脂(x21)は、ビスフェノールAまたはビスフェノールC、およびその誘導体由来のカーボネート構成単位が、末端構造を除く全構成単位の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましい。
The bisphenol A type and bisphenol C type polycarbonate resins may also have other structural units other than the carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof. Examples of dihydroxy compounds constituting such other structural units include aromatic dihydroxy compounds described in paragraph 0014 of JP 2018-154819 A, the contents of which are incorporated herein. .
In the polycarbonate resin (x21), carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof preferably account for 90% by mass or more, more preferably 95% by mass or more of all structural units excluding terminal structures. Preferably, it accounts for 97% by mass or more, and more preferably.
 ビスフェノールA型ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。 The method for producing bisphenol A polycarbonate resin is not particularly limited, and any method can be adopted. Examples include interfacial polymerization, melt transesterification, pyridine method, ring-opening polymerization of cyclic carbonate compounds, and solid phase transesterification of prepolymers.
<<<ポリカーボネートオリゴマー(x22)>>>
 次に、ポリカーボネートオリゴマー(x22)について説明する。
 ポリカーボネートオリゴマー(x22)の粘度平均分子量は、粘度平均分子量が2000~10000であり、8000以下であることが好ましく、6000以下であることがさらに好ましく、5000以下であってもよく、また、3000以上であることが好ましく、3500以上であることがより好ましく、4000以上であることがさらに好ましい。
<<<Polycarbonate oligomer (x22)>>>
Next, the polycarbonate oligomer (x22) will be explained.
The viscosity average molecular weight of the polycarbonate oligomer (x22) is 2,000 to 10,000, preferably 8,000 or less, more preferably 6,000 or less, may be 5,000 or less, and 3,000 or more. It is preferably 3,500 or more, more preferably 4,000 or more.
 本実施形態で用いるポリカーボネートオリゴマー(x22)の開始ガラス転移温度(Tg)は、130℃以下であることが好ましく、125℃以下であることがより好ましく、120℃以下であることがさらに好ましく、115℃以下であることが一層好ましく、110℃以下であることがより一層好ましく107℃以下であることがさらに一層好ましい。前記上限値以下とすることにより、多層体の熱曲げ成形性がより向上する傾向にある。また、本実施形態で用いるポリカーボネートオリゴマー(x22)の開始ガラス転移温度(Tg)は、例えば、95℃以上であり、さらには、100℃以上、103℃以上、105℃以上であってもよい。 The starting glass transition temperature (Tg) of the polycarbonate oligomer (x22) used in this embodiment is preferably 130°C or lower, more preferably 125°C or lower, even more preferably 120°C or lower, and 115°C or lower. The temperature is more preferably 110°C or lower, even more preferably 107°C or lower, and even more preferably 107°C or lower. By setting it below the above-mentioned upper limit, the heat bending formability of the multilayer body tends to be further improved. Further, the starting glass transition temperature (Tg) of the polycarbonate oligomer (x22) used in this embodiment is, for example, 95°C or higher, and may further be 100°C or higher, 103°C or higher, or 105°C or higher.
 ポリカーボネートオリゴマー(x22)としては、芳香族ポリカーボネートであってもよいし、脂肪族ポリカーボネートであってもよいが、芳香族ポリカーボネートが好ましい。
 本実施形態では、ポリカーボネートオリゴマー(x22)は、ビスフェノール型ポリカーボネートであることが好ましく、ビスフェノールA型および/またはビスフェノールC型ポリカーボネートであることがより好ましく、ビスフェノールA型ポリカーボネートであることがさらに好ましい。
 本実施形態におけるポリカーボネートオリゴマー(x22)としての、ビスフェノール型ポリカーボネートは、ビスフェノールAまたはビスフェノールC、およびその誘導体由来のカーボネート構成単位が、末端構造を除く全構成単位の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましい。
The polycarbonate oligomer (x22) may be aromatic polycarbonate or aliphatic polycarbonate, but aromatic polycarbonate is preferable.
In this embodiment, the polycarbonate oligomer (x22) is preferably a bisphenol type polycarbonate, more preferably a bisphenol A type and/or bisphenol C type polycarbonate, and even more preferably a bisphenol A type polycarbonate.
In the bisphenol type polycarbonate used as the polycarbonate oligomer (x22) in this embodiment, carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof preferably account for 90% by mass or more of the total structural units excluding terminal structures. , more preferably accounts for 95% by mass or more, and still more preferably accounts for 97% by mass or more.
<<式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂>>
 樹脂組成物(x2)は、さらに、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含んでいてもよいし、含んでいなくてもよい。式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を用いることにより、ポリカーボネート樹脂のガラス転移温度をより容易に低くすることができる。
(式(C)中、Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表す。Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表す。nは0~4の整数を表す。*は、他の部位との結合部位である。)
<<Aromatic polycarbonate resin having a terminal structure represented by formula (C)>>
The resin composition (x2) may or may not further contain an aromatic polycarbonate resin having a terminal structure represented by formula (C). By using an aromatic polycarbonate resin having a terminal structure represented by formula (C), the glass transition temperature of the polycarbonate resin can be lowered more easily.
(In formula (C), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms. R 2 each independently represents a halogen atom, a carbon atom number 1 ~20 alkyl group or an aryl group having 6 to 12 carbon atoms. n represents an integer of 0 to 4. * is a bonding site with another site.)
 Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表し、炭素原子数10以上のアルキル基またはアルケニル基であることが好ましく、12以上のアルキル基またはアルケニル基であることがより好ましく、さらに14以上のアルキル基またはアルケニル基であることが好ましい。これにより樹脂のガラス転移温度を低くし、多層体の熱曲げ性が向上する傾向にある。また、Rは、炭素原子数22以下のアルキル基またはアルケニル基であることが好ましく、18以下のアルキル基またはアルケニル基であることがより好ましい。Rは、アルキル基であることが好ましい。アルキル基およびアルケニル基は、直鎖または分岐のアルキル基またはアルケニル基であることが好ましく、直鎖のアルキル基またはアルケニル基であることがより好ましい。
 本実施形態では、Rは、特に、ヘキサデシル基であることが好ましい。
 また、R-O-C(=O)-は、メタ位、パラ位、オルト位のいずれに位置していてもよいが、メタ位またはパラ位に位置していることが好ましく、パラ位に位置していることがより好ましい。
R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms, preferably an alkyl group or alkenyl group having 10 or more carbon atoms, and an alkyl group having 12 or more carbon atoms. or an alkenyl group, more preferably an alkyl group or an alkenyl group of 14 or more. This tends to lower the glass transition temperature of the resin and improve the heat bendability of the multilayer body. Furthermore, R 1 is preferably an alkyl group or alkenyl group having 22 or less carbon atoms, more preferably an alkyl group or alkenyl group having 18 or less carbon atoms. Preferably, R 1 is an alkyl group. The alkyl group and alkenyl group are preferably straight-chain or branched alkyl groups or alkenyl groups, and more preferably straight-chain alkyl groups or alkenyl groups.
In this embodiment, R 1 is particularly preferably a hexadecyl group.
Further, R 1 -O-C(=O)- may be located at any of the meta, para, and ortho positions, but is preferably located at the meta or para position, and is preferably located at the para position. More preferably, it is located at
 Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表し、フッ素原子、塩素原子、メチル基、エチル基、または、フェニル基であることが好ましく、フッ素原子、塩素原子またはメチル基であることがより好ましい。
 nは0~4の整数を表し、0~2の整数であることが好ましく、0または1であることがより好ましく、0であることがさらに好ましい。
R 2 each independently represents a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and represents a fluorine atom, a chlorine atom, a methyl group, an ethyl group, or a phenyl It is preferably a group, and more preferably a fluorine atom, a chlorine atom, or a methyl group.
n represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂は、芳香族ポリカーボネート樹脂であってもよいし、脂肪族ポリカーボネート樹脂であってもよいが、芳香族ポリカーボネート樹脂が好ましい。芳香族ポリカーボネート樹脂を用いることにより、湿熱試験や高温試験などの環境試験に強く、分子量低下等による樹脂劣化が生じにくくなる。
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂は、ビスフェノール型ポリカーボネート樹脂であることが好ましく、ビスフェノールA型および/またはビスフェノールC型ポリカーボネート樹脂であることがより好ましく、ビスフェノールA型ポリカーボネート樹脂であることがさらに好ましい。
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂は、ビスフェノールAまたはビスフェノールC、およびその誘導体由来のカーボネート構成単位が、末端構造を除く全構成単位の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましい。
 式(C)で表される末端構造は、パラヒドロキシ安息香酸ヘキサデシルエステル等の末端封止剤を用いることによって、ポリカーボネート樹脂に付加することができる。これらの詳細は、特開2019-002023号公報の段落0022~0030の記載を参酌でき、これらの内容は本明細書に組み込まれる。
The aromatic polycarbonate resin having the terminal structure represented by formula (C) may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin, but an aromatic polycarbonate resin is preferable. By using aromatic polycarbonate resin, it is resistant to environmental tests such as wet heat tests and high temperature tests, and resin deterioration due to molecular weight reduction is less likely to occur.
The aromatic polycarbonate resin having a terminal structure represented by formula (C) is preferably a bisphenol type polycarbonate resin, more preferably a bisphenol A type and/or bisphenol C type polycarbonate resin, and a bisphenol A type polycarbonate resin. More preferably, it is a resin.
In the aromatic polycarbonate resin having a terminal structure represented by formula (C), carbonate structural units derived from bisphenol A or bisphenol C and derivatives thereof may account for 90% by mass or more of all structural units excluding the terminal structure. Preferably, it accounts for 95% by mass or more, more preferably 97% by mass or more.
The terminal structure represented by formula (C) can be added to the polycarbonate resin by using a terminal capping agent such as para-hydroxybenzoic acid hexadecyl ester. For these details, the descriptions in paragraphs 0022 to 0030 of JP-A-2019-002023 can be referred to, and the contents thereof are incorporated herein.
 樹脂組成物(x2)が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含む場合、その開始ガラス転移温度(Tg)は、130℃以下であることが好ましく、129℃以下であることがより好ましく、128℃以下であることがさらに好ましく、127℃以下であることが一層好ましく、126℃以下であることがより一層好ましく125℃以下であることがさらに一層好ましい。前記上限値以下とすることにより、多層体の熱曲げ成形性がより向上する傾向にある。また、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂の開始ガラス転移温度(Tg)は、例えば、118℃以上であり、さらには、120℃以上、122℃以上であってもよい。
 本実施形態の樹脂組成物が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含む場合、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、混合物のガラス転移温度が上記範囲となることが好ましい。
When the resin composition (x2) contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), the starting glass transition temperature (Tg) thereof is preferably 130°C or lower, and preferably 129°C or lower. The temperature is more preferably 128°C or lower, even more preferably 127°C or lower, even more preferably 126°C or lower, and even more preferably 125°C or lower. By setting it below the above-mentioned upper limit, the heat bending formability of the multilayer body tends to be further improved. Further, the starting glass transition temperature (Tg) of the aromatic polycarbonate resin having the terminal structure represented by formula (C) is, for example, 118°C or higher, and even 120°C or higher, or 122°C or higher. good.
When the resin composition of the present embodiment contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), it contains only one type of aromatic polycarbonate resin having a terminal structure represented by formula (C). or may contain two or more types. When two or more types are included, it is preferable that the glass transition temperature of the mixture falls within the above range.
 式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂の粘度平均分子量は、15,000以上であることが好ましく、また、40,000以下であることが好ましく、35,000以下であることがより好ましく、30,000以下であることがさらに好ましい。 The viscosity average molecular weight of the aromatic polycarbonate resin having the terminal structure represented by formula (C) is preferably 15,000 or more, and preferably 40,000 or less, and 35,000 or less. More preferably, it is 30,000 or less.
<<<ポリカーボネートのブレンド比>>>
 樹脂組成物(x2)は、上述の通り、ポリカーボネート樹脂(x21)60~93質量部とポリカーボネートオリゴマー(x22)7~40質量部の割合で含む。樹脂組成物(x2)においては、ポリカーボネート樹脂(x21)とポリカーボネートオリゴマー(x22)の合計100質量部に対し、ポリカーボネートオリゴマー(x22)の割合が、8質量部以上であることが好ましく、9質量部以上であることがより好ましく、10質量部以上であることがさらに好ましく、また、35質量部以下であることが好ましく、32質量部以下であることがより好ましく、30質量部以下であることがさらに好ましく、28質量部以下であることが一層好ましく、26質量部以下であることがより一層好ましく、24質量部以下、22質量部以下であってもよい。
 本実施形態の樹脂組成物は、ポリカーボネート樹脂(x21)およびポリカーボネートオリゴマー(x22)を、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態の樹脂組成物が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂の含有量は、樹脂組成物(x2)に含まれるポリカーボネート成分100質量部に対し、0質量部以上、すなわち、含んでいてもよく、含まなくてもよい。本実施形態の樹脂組成物が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含む場合の含有量は、樹脂組成物(x2)に含まれるポリカーボネート成分100質量部に対し、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、8質量部以上であることがさらに好ましい。
 ポリカーボネート成分とは、ポリカーボネート樹脂(x21)、ポリカーボネートオリゴマー(x22)、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂およびその他のポリカーボネートをいう。
 本実施形態の樹脂組成物が式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を2種以上含む場合、合計量が上記範囲となることが好ましい。
<<<Polycarbonate blend ratio>>>
As described above, the resin composition (x2) contains 60 to 93 parts by mass of polycarbonate resin (x21) and 7 to 40 parts by mass of polycarbonate oligomer (x22). In the resin composition (x2), the proportion of the polycarbonate oligomer (x22) is preferably 8 parts by mass or more, and 9 parts by mass, based on a total of 100 parts by mass of the polycarbonate resin (x21) and the polycarbonate oligomer (x22). The amount is more preferably 10 parts by mass or more, further preferably 35 parts by mass or less, more preferably 32 parts by mass or less, and 30 parts by mass or less. It is more preferably 28 parts by mass or less, even more preferably 26 parts by mass or less, and may be 24 parts by mass or less, or 22 parts by mass or less.
The resin composition of this embodiment may contain only one type of polycarbonate resin (x21) and polycarbonate oligomer (x22), or may contain two or more types of each. When two or more types are included, it is preferable that the total amount falls within the above range.
The content of the aromatic polycarbonate resin in which the resin composition of the present embodiment has a terminal structure represented by formula (C) is 0 parts by mass or more based on 100 parts by mass of the polycarbonate component contained in the resin composition (x2). , that is, it may or may not be included. When the resin composition of the present embodiment contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), the content is 1 part by mass based on 100 parts by mass of the polycarbonate component contained in the resin composition (x2). It is preferably at least 5 parts by mass, more preferably at least 5 parts by mass, even more preferably at least 8 parts by mass.
The polycarbonate component refers to a polycarbonate resin (x21), a polycarbonate oligomer (x22), an aromatic polycarbonate resin having a terminal structure represented by formula (C), and other polycarbonates.
When the resin composition of this embodiment contains two or more types of aromatic polycarbonate resins having the terminal structure represented by formula (C), it is preferable that the total amount falls within the above range.
 樹脂組成物(x2)は、また、その90質量%以上(好ましくは95質量%以上、より好ましくは97質量%以上、さらに好ましくは98質量%以上)が上記ポリカーボネート樹脂(x21)およびポリカーボネートオリゴマー(x22)から構成されることが好ましい。
 また、樹脂組成物(x2)が、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を含む場合、樹脂組成物(x2)は、その90質量%以上(好ましくは95質量%以上、より好ましくは97質量%以上、さらに好ましくは98質量%以上)が上記ポリカーボネート樹脂(x21)、ポリカーボネートオリゴマー(x22)および式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂から構成されることが好ましい。ただし、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂は、ポリカーボネート樹脂(x21)の一部に相当することが好ましい。
The resin composition (x2) also contains the polycarbonate resin (x21) and the polycarbonate oligomer ( x22).
Further, when the resin composition (x2) contains an aromatic polycarbonate resin having a terminal structure represented by formula (C), the resin composition (x2) contains 90% by mass or more (preferably 95% by mass or more) of the aromatic polycarbonate resin having a terminal structure represented by formula (C). , more preferably 97% by mass or more, still more preferably 98% by mass or more) is composed of the polycarbonate resin (x21), the polycarbonate oligomer (x22), and an aromatic polycarbonate resin having a terminal structure represented by formula (C). It is preferable that However, it is preferable that the aromatic polycarbonate resin having the terminal structure represented by formula (C) corresponds to a part of the polycarbonate resin (x21).
<<他の成分>>
 樹脂組成物(x)は、酸化防止剤および/または離型剤を含有することが好ましい。
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤などが挙げられる。中でも本実施形態においては、リン系酸化防止剤およびフェノール系酸化防止剤(より好ましくはヒンダードフェノール系酸化防止剤)が好ましい。リン系酸化防止剤は、成形品の色相に優れることから特に好ましい。
<<Other ingredients>>
It is preferable that the resin composition (x) contains an antioxidant and/or a mold release agent.
Examples of the antioxidant include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, thioether antioxidants, and the like. Among these, in this embodiment, phosphorus antioxidants and phenolic antioxidants (more preferably hindered phenolic antioxidants) are preferred. Phosphorous antioxidants are particularly preferred because they provide excellent hue of molded products.
 リン系酸化防止剤は、ホスファイト系酸化防止剤が好ましく、以下の式(1)または(2)で表されるホスファイト化合物が好ましい。
(式(1)中、R11およびR12はそれぞれ独立に、炭素原子数1~30のアルキル基または炭素原子数6~30のアリール基を表す。)
(式(2)中、R13~R17は、それぞれ独立に、水素原子、炭素原子数6~20のアリール基または炭素原子数1~20のアルキル基を表す。)
The phosphorus-based antioxidant is preferably a phosphite-based antioxidant, and preferably a phosphite compound represented by the following formula (1) or (2).
(In formula (1), R 11 and R 12 each independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.)
(In formula (2), R 13 to R 17 each independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.)
 上記式(1)中、R11、R12で表されるアルキル基は、それぞれ独立に、炭素原子数1~10の直鎖または分岐のアルキル基であることが好ましい。R11、R12がアリール基である場合、以下の式(1-a)、(1-b)、または(1-c)のいずれかで表されるアリール基が好ましい。式中の*は結合位置を表す。 In the above formula (1), the alkyl groups represented by R 11 and R 12 are each independently preferably a linear or branched alkyl group having 1 to 10 carbon atoms. When R 11 and R 12 are an aryl group, an aryl group represented by any of the following formulas (1-a), (1-b), or (1-c) is preferred. * in the formula represents the bonding position.
(式(1-a)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。式(1-b)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。) (In formula (1-a), R A each independently represents an alkyl group having 1 to 10 carbon atoms. In formula (1-b), R B each independently represents an alkyl group having 1 to 10 carbon atoms. (Represents 10 alkyl groups.)
 ヒンダードフェノール系酸化防止剤としては、特開2018-090677号公報の段落0063、特開2018-188496号公報の段落0076の記載を参照でき、この内容は本明細書に組み込まれる。 As for the hindered phenol antioxidant, the descriptions in paragraph 0063 of JP 2018-090677A and paragraph 0076 of JP 2018-188496 can be referred to, the contents of which are incorporated herein.
 酸化防止剤は、上記の他、特開2017-031313号公報の段落0057~0061の記載を参酌でき、この内容は本明細書に組み込まれる。 Regarding the antioxidant, in addition to the above, the description in paragraphs 0057 to 0061 of JP-A-2017-031313 can be referred to, the contents of which are incorporated herein.
 酸化防止剤の含有量は、樹脂組成物(x)100質量部に対して、0.001質量部以上であることが好ましく、0.008質量部以上であることがより好ましい。また、酸化防止剤の含有量の上限値としては、樹脂組成物100質量部に対して、0.5質量部以下が好ましく、0.3質量部以下がより好ましく、0.2質量部以下がさらに好ましく、0.15質量部以下であることが一層好ましく、0.10質量部以下であることがさらに一層好ましく、0.08質量部以下であることが特に一層好ましい。 The content of the antioxidant is preferably 0.001 parts by mass or more, more preferably 0.008 parts by mass or more, based on 100 parts by mass of the resin composition (x). Furthermore, the upper limit of the content of the antioxidant is preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, and 0.2 parts by mass or less based on 100 parts by mass of the resin composition. It is more preferably at most 0.15 parts by mass, even more preferably at most 0.10 parts by mass, even more preferably at most 0.08 parts by mass.
 酸化防止剤の含有量を上記下限値以上とすることにより、色相、耐熱変色性がより良好な成形品を得ることができる。また、酸化防止剤の含有量を上記上限値以下とすることにより、耐熱変色性を悪化させることなく、湿熱安定性が良好な成形品を得ることができる。
 酸化防止剤は、1種のみ用いても、2種以上用いてもよい。2種以上用いる場合は合計量が上記範囲となることが好ましい。
By setting the content of the antioxidant to the above lower limit or more, a molded article with better hue and heat discoloration resistance can be obtained. Furthermore, by controlling the content of the antioxidant to be at most the above upper limit, a molded article with good wet heat stability can be obtained without deteriorating heat discoloration resistance.
One type of antioxidant may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount falls within the above range.
 次に、樹脂組成物(x)に含まれる離型剤について説明する。
 離型剤の種類は特に定めるものではないが、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、数平均分子量100~5,000のポリエーテル、ポリシロキサン系シリコーンオイル等が挙げられる。
Next, the mold release agent contained in the resin composition (x) will be explained.
The type of mold release agent is not particularly defined, but examples include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds with a number average molecular weight of 200 to 15,000, and number average molecular weights of 100 to 15,000. 5,000 polyether, polysiloxane silicone oil, etc.
 離型剤の詳細は、国際公開第2015/190162号の段落0035~0039の記載を参酌でき、これらの内容は本明細書に組み込まれる。 For details of the mold release agent, the descriptions in paragraphs 0035 to 0039 of International Publication No. 2015/190162 can be referred to, and the contents thereof are incorporated herein.
 離型剤の含有量は、樹脂組成物(x)100質量部に対して、0.001質量部以上であることが好ましく、0.005質量部以上であることがより好ましく、0.008質量部以上であることがさらに好ましい。上限値としては、0.5質量部以下であることが好ましく、0.3質量部以下であることがより好ましく、0.2質量部以下であることがさらに好ましい。
 離型剤は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
The content of the mold release agent is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and 0.008 parts by mass based on 100 parts by mass of the resin composition (x). It is more preferable that the amount is at least 1 part. The upper limit is preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, and even more preferably 0.2 parts by mass or less.
Only one type of mold release agent may be used, or two or more types may be used. When two or more types are used, it is preferable that the total amount falls within the above range.
 樹脂組成物(x)は、上記成分の他、ポリカーボネート樹脂以外の熱可塑性樹脂、紫外線吸収剤、熱安定剤、難燃剤、難燃助剤、着色剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤、アンチブロッキング剤、衝撃改良剤、摺動改良剤、色相改良剤、酸トラップ剤等を含んでいてもよい。これらの成分は、1種を用いてもよいし、2種以上を併用してもよい。
 上記成分の含有量は、含有する場合、合計で樹脂組成物(x)の0.1~5質量%であることが好ましい。
In addition to the above components, the resin composition (x) also contains a thermoplastic resin other than polycarbonate resin, an ultraviolet absorber, a heat stabilizer, a flame retardant, a flame retardant aid, a coloring agent, an antistatic agent, a fluorescent whitening agent, and an antistatic agent. It may contain a fogging agent, a fluidity improver, a plasticizer, a dispersant, an antibacterial agent, an antiblocking agent, an impact modifier, a sliding modifier, a hue modifier, an acid trapping agent, and the like. These components may be used alone or in combination of two or more.
The content of the above components, when included, is preferably 0.1 to 5% by mass in total of the resin composition (x).
 樹脂組成物(x)ないしポリカーボネート樹脂層(X)の開始ガラス転移温度は、143℃以下であることが好ましく、142℃以下であることがより好ましく、141℃以下であることがさらに好ましい。前記上限値以下とすることにより、熱曲げ時のスプリングバックがより抑制される。また、樹脂組成物(x)ないしポリカーボネート樹脂層(X)の開始ガラス転移温度は、130℃以上であることが好ましく、130℃超であることがより好ましく、さらには、131℃以上、133℃以上、135℃以上であってもよい。前記下限値以上とすることにより、シートの熱収縮が起こりづらくなる。 The starting glass transition temperature of the resin composition (x) or polycarbonate resin layer (X) is preferably 143°C or lower, more preferably 142°C or lower, and even more preferably 141°C or lower. By setting it below the upper limit value, springback during thermal bending can be further suppressed. Further, the starting glass transition temperature of the resin composition (x) or the polycarbonate resin layer (X) is preferably 130°C or higher, more preferably higher than 130°C, and more preferably 131°C or higher, 133°C. The temperature may be 135° C. or higher. By setting it to the above lower limit value or more, thermal contraction of the sheet becomes difficult to occur.
 また、ポリカーボネート樹脂層(X)は単層であってもよいが、多層であってもよい。
 ポリカーボネート樹脂層(X)の厚みは、特に制限はないが、例えば、1μm以上であり、30μm以上であることが好ましく、35μm以上であることがより好ましく、40μm以上であることがさらに好ましく、50μm以上であることが一層好ましく、100μm以上であることがより一層好ましく、300μm以上であることがさらに一層好ましく、500μm以上であることが特に一層好ましく、700μm以上であってもよく、900μm以上であってもよい。また、ポリカーボネート樹脂層(X)の厚みは、10,000μm以下であることが好ましく、5,000μm以下であることがより好ましく、3,000μm以下であってもよく、2,500μm以下であってもよい。
Further, the polycarbonate resin layer (X) may be a single layer, or may be a multilayer.
The thickness of the polycarbonate resin layer (X) is not particularly limited, but is, for example, 1 μm or more, preferably 30 μm or more, more preferably 35 μm or more, even more preferably 40 μm or more, and even more preferably 50 μm. It is more preferably at least 100 μm, even more preferably at least 300 μm, even more preferably at least 500 μm, it may be at least 700 μm, and it is at least 900 μm. It's okay. The thickness of the polycarbonate resin layer (X) is preferably 10,000 μm or less, more preferably 5,000 μm or less, may be 3,000 μm or less, and may be 2,500 μm or less. Good too.
<アクリル樹脂層(Y)>
 次に、アクリル樹脂層(Y)について説明する。アクリル樹脂層(Y)は、アクリル樹脂を含む樹脂組成物(y)から形成される。
 樹脂組成物(y)は、少なくともアクリル樹脂を含み、さらに、スチレン樹脂、ポリフッ化ビニリデンなどのフッ素系樹脂、および、ポリフェニレンエーテルなどの芳香族ポリエーテル樹脂から選択される少なくとも1種の熱可塑性樹脂を含むことがより好ましく、アクリル樹脂およびスチレン樹脂を含むことがさらに好ましい。樹脂組成物(y)は、その90質量%以上(好ましくは95質量%以上、より好ましくは97質量%以上、さらに好ましくは98質量%以上)が上記アクリル樹脂および上記熱可塑性樹脂(好ましくはスチレン樹脂)から構成されることが好ましい。
<Acrylic resin layer (Y)>
Next, the acrylic resin layer (Y) will be explained. The acrylic resin layer (Y) is formed from a resin composition (y) containing an acrylic resin.
The resin composition (y) contains at least an acrylic resin, and further contains at least one thermoplastic resin selected from styrene resins, fluororesins such as polyvinylidene fluoride, and aromatic polyether resins such as polyphenylene ether. It is more preferable that the resin contains an acrylic resin and a styrene resin. In the resin composition (y), 90% by mass or more (preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 98% by mass or more) of the above acrylic resin and the above thermoplastic resin (preferably styrene) resin).
 樹脂組成物(y)は、アクリル樹脂(y1)30~90質量部とスチレン樹脂(y2)10~70質量部とを含むことが好ましい。このような構成とすることにより、鉛筆硬度と耐熱性および耐衝撃性がより効果的に向上する傾向にある。すなわち、アクリル樹脂を配合することにより、鉛筆硬度や耐衝撃性が向上し、スチレン樹脂を配合することにより、耐熱性が向上する。
 樹脂組成物(y)が、アクリル樹脂(y1)とスチレン樹脂(y2)を含む場合、そのブレンド比は、アクリル樹脂(y1)とスチレン樹脂(y2)の含有量の合計100質量部を基準として、アクリル樹脂(y1)の含有量は、35質量部以上であることが好ましく、40質量部以上であることがより好ましく、45質量部以上であることがさらに好ましく、50質量部以上であることが一層好ましく、55質量部以上であることがより一層好ましく、60質量部以上であってもよく、65質量部以上であってもよい。前記下限値以上とすることにより、鉛筆硬度および耐衝撃性がより効果的に向上する傾向にある。また、前記アクリル樹脂(y1)とスチレン樹脂(y2)を含む場合、そのブレンド比は、アクリル樹脂(y1)とスチレン樹脂(y2)の含有量の合計100質量部を基準として、85質量部以下であることが好ましく、80質量部以下であることがより好ましく、75質量部以下であることがさらに好ましい。前記上限値以下とすることにより、耐熱性の低下の抑制効果がより向上する傾向にある。
 樹脂組成物(y)が、アクリル樹脂(y1)とスチレン樹脂(y2)を含む場合、アクリル樹脂(y1)およびスチレン樹脂(y2)は、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The resin composition (y) preferably contains 30 to 90 parts by mass of acrylic resin (y1) and 10 to 70 parts by mass of styrene resin (y2). With such a configuration, the pencil hardness, heat resistance, and impact resistance tend to be improved more effectively. That is, by blending an acrylic resin, pencil hardness and impact resistance are improved, and by blending a styrene resin, heat resistance is improved.
When the resin composition (y) contains an acrylic resin (y1) and a styrene resin (y2), the blend ratio is based on a total of 100 parts by mass of the content of the acrylic resin (y1) and the styrene resin (y2). The content of the acrylic resin (y1) is preferably 35 parts by mass or more, more preferably 40 parts by mass or more, even more preferably 45 parts by mass or more, and 50 parts by mass or more. It is more preferably 55 parts by mass or more, even more preferably 60 parts by mass or more, and may be 65 parts by mass or more. By setting it to the above lower limit or more, pencil hardness and impact resistance tend to be improved more effectively. In addition, when the acrylic resin (y1) and styrene resin (y2) are included, the blend ratio is 85 parts by mass or less based on the total content of acrylic resin (y1) and styrene resin (y2) of 100 parts by mass. It is preferably 80 parts by mass or less, more preferably 75 parts by mass or less. When the content is equal to or less than the upper limit, the effect of suppressing a decrease in heat resistance tends to be further improved.
When the resin composition (y) contains an acrylic resin (y1) and a styrene resin (y2), each of the acrylic resin (y1) and the styrene resin (y2) may contain only one type or two types. It may contain more than that. When two or more types are included, it is preferable that the total amount falls within the above range.
<<アクリル樹脂(y1)>>
 次に、アクリル樹脂(y1)について説明する。
 アクリル樹脂(y1)は、(メタ)アクリル化合物単位を含むことが好ましく、その割合は、末端基を除く全構成単位中、60質量%以上であることが好ましい。前記下限値以上とすることにより、鉛筆硬度および耐衝撃性がより向上する傾向にある。ここで、(メタ)アクリル化合物単位とは、樹脂中の(メタ)アクリル化合物から構成される構成単位をいう(後述する、「芳香族ビニル化合物単位」等についても同様である。)。前記アクリル樹脂(y1)中の(メタ)アクリル化合物単位の割合の上限値は、末端基を除く全構成単位中、100質量%であり、96質量%以下であることが好ましい。
 アクリル樹脂(y1)は、(メタ)アクリル化合物単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<Acrylic resin (y1)>>
Next, the acrylic resin (y1) will be explained.
It is preferable that the acrylic resin (y1) contains a (meth)acrylic compound unit, and the proportion thereof is preferably 60% by mass or more in all structural units excluding terminal groups. By setting it to the above lower limit or more, pencil hardness and impact resistance tend to be further improved. Here, the (meth)acrylic compound unit refers to a structural unit composed of a (meth)acrylic compound in the resin (the same applies to the "aromatic vinyl compound unit" etc. described later). The upper limit of the ratio of (meth)acrylic compound units in the acrylic resin (y1) is 100% by mass, and preferably 96% by mass or less, based on all the structural units excluding terminal groups.
The acrylic resin (y1) may contain only one type of (meth)acrylic compound unit, or may contain two or more types of (meth)acrylic compound units. When two or more types are included, it is preferable that the total amount falls within the above range.
 (メタ)アクリル化合物としては、(メタ)アクリル基を含む限り特に定めるものではないが、式(a1)で表される化合物が好ましい。
(式(a1)中、Raは、水素原子またはメチル基であり、Raは、脂肪族基である。)
 上記式(a1)において、Raは、水素原子またはメチル基であり、メチル基が好ましい。Raは、脂肪族基であり、直鎖または分岐の脂肪族基であることが好ましく、直鎖の脂肪族基であることがより好ましい。脂肪族基は、アルキル基(シクロアルキル基を含む)、アルキニル基(シクロアルキニル基を含む)、アルケニル基(シクロアルケニル基を含む)等が例示され、アルキル基が好ましく、直鎖または分岐のアルキル基がより好ましく、直鎖のアルキル基がさらに好ましい。Raである脂肪族基の炭素原子数は、1~10であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましく、1または2であることが一層好ましく、1であることがより一層好ましい。
 式(a1)で表される(メタ)アクリル化合物は、アルキル(メタ)アクリレート(好ましくはアルキルメタクリレート)であることが好ましく、メチル(メタ)アクリレート(好ましくはメチルメタクリレート)であることがより好ましい。メチルメタクリレートを用いることにより、得られるアクリル樹脂層(Y)の耐衝撃強さが向上する傾向にある。
The (meth)acrylic compound is not particularly limited as long as it contains a (meth)acrylic group, but a compound represented by formula (a1) is preferred.
(In formula (a1), Ra 1 is a hydrogen atom or a methyl group, and Ra 2 is an aliphatic group.)
In the above formula (a1), Ra 1 is a hydrogen atom or a methyl group, preferably a methyl group. Ra 2 is an aliphatic group, preferably a linear or branched aliphatic group, more preferably a linear aliphatic group. Examples of aliphatic groups include alkyl groups (including cycloalkyl groups), alkynyl groups (including cycloalkynyl groups), alkenyl groups (including cycloalkenyl groups), and alkyl groups are preferred, and straight-chain or branched alkyl groups are exemplified. A group is more preferable, and a straight-chain alkyl group is even more preferable. The number of carbon atoms in the aliphatic group that is Ra 2 is preferably 1 to 10, more preferably 1 to 5, even more preferably 1 to 3, and even more preferably 1 or 2. Preferably, 1 is even more preferable.
The (meth)acrylic compound represented by formula (a1) is preferably an alkyl (meth)acrylate (preferably alkyl methacrylate), more preferably methyl (meth)acrylate (preferably methyl methacrylate). By using methyl methacrylate, the impact strength of the resulting acrylic resin layer (Y) tends to improve.
 アクリル樹脂(y1)は、(メタ)アクリル化合物単位以外の他のモノマー単位を含んでいることが好ましい。他のモノマー単位としては、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位が例示され、環状酸無水物単位、および/または、N置換マレイミド単位が好ましく、N置換マレイミド単位がより好ましい。
 アクリル樹脂(y1)は、(メタ)アクリル化合物単位60~96質量%と、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種(好ましくはN置換マレイミド単位)を合計で4~40質量%含むことがより好ましい。
 前記アクリル樹脂(y1)において、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種(好ましくはN置換マレイミド単位)を合計量は、アクリル樹脂(y1)を100質量%としたとき、6質量%以上であることが好ましく、9質量%以上であることがより好ましく、12質量%以上であることがさらに好ましく、また、35質量%以下であることが好ましく、30質量%以下であることがより好ましく、25質量%以下であることがさらに好ましく、20質量%以下であることが一層好ましい。
 アクリル樹脂(y1)は、他のモノマー単位、好ましくは、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種を、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 アクリル樹脂(y1)は、(メタ)アクリル化合物単位と、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種との合計が、アクリル樹脂(y1)を100質量%としたとき、90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましく、99質量%以上を占めることが一層好ましい。
It is preferable that the acrylic resin (y1) contains monomer units other than (meth)acrylic compound units. Examples of other monomer units include cyclic acid anhydride units, N-substituted maleimide units, and lactone ring units, with cyclic acid anhydride units and/or N-substituted maleimide units being preferred, and N-substituted maleimide units being more preferred. preferable.
The acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit (preferably an N-substituted maleimide unit). It is more preferable to contain 4 to 40% by mass.
In the acrylic resin (y1), the total amount of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit (preferably an N-substituted maleimide unit) is 100% by mass of the acrylic resin (y1). It is preferably 6% by mass or more, more preferably 9% by mass or more, even more preferably 12% by mass or more, and preferably 35% by mass or less, and 30% by mass. % or less, even more preferably 25% by mass or less, even more preferably 20% by mass or less.
The acrylic resin (y1) may contain only one kind of other monomer units, preferably at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit, or two It may contain more than one species. When two or more types are included, it is preferable that the total amount falls within the above range.
The acrylic resin (y1) has a total of (meth)acrylic compound units, cyclic acid anhydride units, N-substituted maleimide units, and at least one lactone ring unit of 100% by mass of the acrylic resin (y1). In this case, it preferably accounts for 90% by mass or more, more preferably 95% by mass or more, even more preferably 97% by mass or more, and even more preferably 99% by mass or more.
 環状酸無水物単位は、無水マレイン酸単位、グルタル酸無水物単位などが例示され、無水マレイン酸単位が好ましい。無水マレイン酸単位を構成する無水マレイン酸およびグルタル酸無水物単位を構成するグルタル酸は、それぞれ、置換基を有していてもよいが、置換基を有していない方が好ましい。
 N置換マレイミド単位は、N-シクロヘキシルマレイミド単位、N-フェニルマレイミド単位、N-メチルマレイミド単位、N-エチルマレイミド単位、N-イソプロピルマレイミド単位、N-t-ブチルマレイミド単位、N-ドデシルマレイミド単位、N-ベンジルマレイミド単位、N-ナフチルマレイミド単位が例示され、N-シクロヘキシルマレイミド単位、N-フェニルマレイミド単位が好ましい。
 ラクトン環単位は、特開2006-171464号公報、および、特開2004-168882号公報に記載のラクトン環単位が例示され、これらの内容は本明細書に組み込まれる。
Examples of the cyclic acid anhydride unit include maleic anhydride units and glutaric anhydride units, with maleic anhydride units being preferred. Maleic anhydride constituting the maleic anhydride unit and glutaric acid constituting the glutaric anhydride unit may each have a substituent, but it is preferable that they do not have a substituent.
N-substituted maleimide units include N-cyclohexylmaleimide units, N-phenylmaleimide units, N-methylmaleimide units, N-ethylmaleimide units, N-isopropylmaleimide units, Nt-butylmaleimide units, N-dodecylmaleimide units, Examples include N-benzylmaleimide units and N-naphthylmaleimide units, with N-cyclohexylmaleimide units and N-phenylmaleimide units being preferred.
Examples of the lactone ring unit include the lactone ring units described in JP-A No. 2006-171464 and JP-A No. 2004-168882, the contents of which are incorporated herein.
 前記アクリル樹脂(y1)の開始ガラス転移温度(Tg)は、100℃以上であることが好ましく、105℃以上であることがより好ましく、110℃以上であることがさらに好ましく、115℃以上であることが一層好ましく、120℃以上であることがより好ましい。前記下限値以上とすることにより、熱曲げ時のクラック発生の抑制効果がより向上する傾向にある。また、前記アクリル樹脂(y1)の開始ガラス転移温度(Tg)は、例えば、130℃以下であり、さらには、125℃以下であってもよい。
 樹脂組成物(y)がアクリル樹脂(y1)を2種以上含む場合、アクリル樹脂(y1)の開始ガラス転移温度(Tg)とは、混合物のTgとする。
The starting glass transition temperature (Tg) of the acrylic resin (y1) is preferably 100°C or higher, more preferably 105°C or higher, even more preferably 110°C or higher, and even more preferably 115°C or higher. More preferably, the temperature is 120°C or higher. By setting it to the above lower limit or more, the effect of suppressing crack generation during hot bending tends to be further improved. Further, the starting glass transition temperature (Tg) of the acrylic resin (y1) is, for example, 130°C or lower, and may further be 125°C or lower.
When the resin composition (y) contains two or more types of acrylic resins (y1), the starting glass transition temperature (Tg) of the acrylic resin (y1) is the Tg of the mixture.
 前記アクリル樹脂(y1)の重量平均分子量は、50,000以上であることが好ましく、60,000以上であることがより好ましく、70,000以上であることがさらに好ましく、80,000以上であることが一層好ましく、90,000以上であることがより一層好ましい。前記下限値以上とすることにより、得られるアクリル樹脂層(Y)の耐衝撃強さをより向上させることができる。前記アクリル樹脂(y1)の重量平均分子量は、300,000以下であることが好ましく、250,000以下であることがより好ましく、200,000以下であることがさらに好ましく、170,000以下であることが一層好ましく、150,000以下であることがより一層好ましい。前記上限値以下とすることにより、樹脂組成物の溶融粘度を効果的に低くでき、多層体の成形が容易となる。
 重量平均分子量は、後述する実施例に記載の方法で測定される。また、アクリル樹脂(y1)が2種以上の混合物である場合、重量平均分子量は、各アクリル樹脂(y1)の重量平均分子量に質量分率をかけた値の和とする。以下、重量平均分子量について同じである。
The weight average molecular weight of the acrylic resin (y1) is preferably 50,000 or more, more preferably 60,000 or more, even more preferably 70,000 or more, and even more preferably 80,000 or more. More preferably, it is 90,000 or more. By setting it to the above lower limit or more, the impact resistance strength of the obtained acrylic resin layer (Y) can be further improved. The weight average molecular weight of the acrylic resin (y1) is preferably 300,000 or less, more preferably 250,000 or less, even more preferably 200,000 or less, and 170,000 or less. More preferably, it is 150,000 or less. By setting it below the above upper limit, the melt viscosity of the resin composition can be effectively lowered, making it easier to mold a multilayer body.
The weight average molecular weight is measured by the method described in the Examples below. Further, when the acrylic resin (y1) is a mixture of two or more types, the weight average molecular weight is the sum of the weight average molecular weights of each acrylic resin (y1) multiplied by the mass fraction. The same applies to the weight average molecular weight below.
<<スチレン樹脂(y2)>>
 次に、スチレン樹脂(y2)について説明する。
 スチレン樹脂(y2)は、芳香族ビニル化合物単位を含む樹脂であり、芳香族ビニル化合物単位と環状酸無水物単位を含むことが好ましく、芳香族ビニル化合物単位68~84質量%と、環状酸無水物単位16~32質量%とを含むことがさらに好ましい。
 より具体的には、スチレン樹脂(y2)を100質量%としたとき、環状酸無水物単位の割合は、20質量%以上であることが好ましく、23質量%以上であることがより好ましく、24質量%以上であることがさらに好ましく、また、30質量%以下であることが好ましく、28質量%以下であることがより好ましく、27質量%以下であることが一層好ましい。
 スチレン樹脂(y2)は、芳香族ビニル化合物単位と環状酸無水物単位の合計が、スチレン樹脂(y2)を100質量%としたとき、90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましく、99質量%以上を占めることが一層好ましい。
 スチレン樹脂(y2)は、芳香族ビニル化合物単位と環状酸無水物単位を、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<Styrene resin (y2)>>
Next, the styrene resin (y2) will be explained.
The styrene resin (y2) is a resin containing aromatic vinyl compound units, preferably containing aromatic vinyl compound units and cyclic acid anhydride units, and 68 to 84% by mass of aromatic vinyl compound units and cyclic acid anhydride units. It is more preferable to contain 16 to 32% by mass of physical units.
More specifically, when the styrene resin (y2) is 100% by mass, the proportion of cyclic acid anhydride units is preferably 20% by mass or more, more preferably 23% by mass or more, 24% by mass or more. It is more preferably at least 30% by mass, more preferably at most 28% by mass, and even more preferably at most 27% by mass.
In the styrene resin (y2), the total of aromatic vinyl compound units and cyclic acid anhydride units preferably accounts for 90% by mass or more, and preferably accounts for 95% by mass or more when the styrene resin (y2) is 100% by mass. More preferably, it accounts for 97% by mass or more, and even more preferably 99% by mass or more.
The styrene resin (y2) may contain only one type of aromatic vinyl compound unit and cyclic acid anhydride unit, or may contain two or more types of each. When two or more types are included, it is preferable that the total amount falls within the above range.
 スチレン樹脂(y2)における芳香族ビニル化合物単位としては、スチレン単位、α-メチルスチレン単位、o-メチルスチレン単位、p-メチルスチレン単位等のスチレン系モノマー単位が例示され、スチレン単位を含むことが好ましい。 Examples of the aromatic vinyl compound unit in the styrene resin (y2) include styrene monomer units such as styrene units, α-methylstyrene units, o-methylstyrene units, and p-methylstyrene units, and may include styrene units. preferable.
 スチレン樹脂(y2)における環状酸無水物単位としては、無水マレイン酸単位、グルタル酸無水物単位などが例示され、無水マレイン酸単位が好ましい。無水マレイン酸単位を構成する無水マレイン酸およびグルタル酸無水物単位を構成するグルタル酸は、それぞれ、置換基を有していてもよいが、置換基を有していない方が好ましい。 Examples of the cyclic acid anhydride unit in the styrene resin (y2) include maleic anhydride units and glutaric anhydride units, with maleic anhydride units being preferred. Maleic anhydride constituting the maleic anhydride unit and glutaric acid constituting the glutaric anhydride unit may each have a substituent, but it is preferable that they do not have a substituent.
 スチレン樹脂(y2)は、芳香族ビニル化合物単位と環状酸無水物単位以外の他のモノマー単位を含んでいてもよい。他のモノマー単位としては、N置換マレイミド単位、(メタ)アクリル化合物単位、シアン化アルケニル単位が例示される。 The styrene resin (y2) may contain monomer units other than the aromatic vinyl compound unit and the cyclic acid anhydride unit. Examples of other monomer units include N-substituted maleimide units, (meth)acrylic compound units, and alkenyl cyanide units.
 前記スチレン樹脂(y2)の開始ガラス転移温度(Tg)は、130℃以上であることが好ましく、135℃以上であることがより好ましく、140℃以上であることがさらに好ましい。前記下限値以上とすることにより、熱曲げ時のクラック抑制効果がより向上する傾向にある。また、前記スチレン樹脂(y2)の開始ガラス転移温度(Tg)は、180℃以下であることが好ましく、170℃以下であることがより好ましく、160℃以下であることがさらに好ましい。前記上限値以下とすることにより、熱曲げ時におけるスプリングバックの抑制効果がより向上する傾向にある。 The starting glass transition temperature (Tg) of the styrene resin (y2) is preferably 130°C or higher, more preferably 135°C or higher, and even more preferably 140°C or higher. By setting it above the lower limit, the effect of suppressing cracks during hot bending tends to be further improved. Further, the starting glass transition temperature (Tg) of the styrene resin (y2) is preferably 180°C or lower, more preferably 170°C or lower, and even more preferably 160°C or lower. By setting it below the upper limit value, the effect of suppressing springback during hot bending tends to be further improved.
 前記スチレン樹脂(y2)の重量平均分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることがさらに好ましく、40,000以上であることがより一層好ましい。前記下限値以上とすることにより、得られるアクリル樹脂層(Y)の耐衝撃強さをより向上させることができる。また、前記スチレン樹脂(y2)の重量平均分子量は、200,000以下であることが好ましく、100,000以下であることがより好ましい。前記上限値以下とすることにより、樹脂組成物の溶融粘度を効果的に低くすることができる。 The weight average molecular weight of the styrene resin (y2) is preferably 10,000 or more, more preferably 20,000 or more, even more preferably 30,000 or more, and even more preferably 40,000 or more. It is even more preferable. By setting it to the above-mentioned lower limit or more, the impact strength of the obtained acrylic resin layer (Y) can be further improved. Further, the weight average molecular weight of the styrene resin (y2) is preferably 200,000 or less, more preferably 100,000 or less. By setting it below the upper limit, the melt viscosity of the resin composition can be effectively lowered.
 樹脂組成物(y)ないしアクリル樹脂層(Y)の開始ガラス転移温度は、130℃以上であることが好ましく、131℃以上であることがより好ましく、132℃以上であることがさらに好ましい。前記下限値以上とすることにより、熱曲げ時のクラックが発生しにくくなる。また、樹脂組成物(y)ないしアクリル樹脂層(Y)の開始ガラス転移温度は、145℃以下であることが好ましく、140℃以下であることがより好ましく、138℃以下であることがさらに好ましく、136℃以下であることが一層好ましく、134℃以下であることがより一層好ましい。前記上限値以下とすることにより、熱曲げ時のスプリングバックが抑制される傾向にある。 The starting glass transition temperature of the resin composition (y) or the acrylic resin layer (Y) is preferably 130°C or higher, more preferably 131°C or higher, and even more preferably 132°C or higher. By setting the above lower limit value or more, cracks are less likely to occur during hot bending. Further, the starting glass transition temperature of the resin composition (y) or the acrylic resin layer (Y) is preferably 145°C or lower, more preferably 140°C or lower, and even more preferably 138°C or lower. , more preferably 136°C or lower, even more preferably 134°C or lower. By setting it below the upper limit value, springback during thermal bending tends to be suppressed.
 樹脂組成物(y)は、上記成分の他、上記以外の熱可塑性樹脂、酸化防止剤、離型剤、紫外線吸収剤、熱安定剤、難燃剤、難燃助剤、着色剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤、アンチブロッキング剤、衝撃改良剤、摺動改良剤、色相改良剤、酸トラップ剤等を含んでいてもよい。これらの成分は、1種を用いてもよいし、2種以上を併用してもよい。上記成分の含有量は、含有する場合、合計で樹脂組成物(y)の0.1~5質量%であることが好ましい。
 特に、本実施形態においては、樹脂組成物(y)が、酸化防止剤および/または離型剤を含むことが例示される。酸化防止剤および/または離型剤の詳細は、樹脂組成物(x)の項で述べた酸化防止剤および/または離型剤と同じであり、好ましい範囲も同様である。
In addition to the above components, the resin composition (y) also contains thermoplastic resins other than the above, antioxidants, mold release agents, ultraviolet absorbers, heat stabilizers, flame retardants, flame retardant aids, colorants, and antistatic agents. , optical brighteners, antifogging agents, fluidity improvers, plasticizers, dispersants, antibacterial agents, antiblocking agents, impact modifiers, sliding modifiers, hue modifiers, acid trapping agents, etc. good. These components may be used alone or in combination of two or more. The content of the above components, when included, is preferably 0.1 to 5% by mass in total of the resin composition (y).
In particular, in this embodiment, the resin composition (y) includes an antioxidant and/or a mold release agent. The details of the antioxidant and/or mold release agent are the same as the antioxidant and/or mold release agent described in the section of the resin composition (x), and the preferred ranges are also the same.
 また、アクリル樹脂層(Y)は単層であってもよいが、多層であってもよい。
 アクリル樹脂層(Y)の厚みは、特に制限はないが、下限値が、例えば、1μm以上であり、10μm以上であることが好ましく、20μm以上であることがより好ましく、50μm以上であることがさらに好ましく、60μm以上であることが一層好ましく、80μm以上であることがより一層好ましく、100μm以上であってもよい。前記下限値以上とすることにより、成形がより容易となるとともに、硬度が向上する傾向にある。また、アクリル樹脂層(Y)の厚さの上限に特に制限は無いが、5,000μm以下であることが好ましく、2,000μm以下であることがより好ましく、1,000μm以下であることがさらに好ましく、500μm以下であることが一層好ましく、300μm以下であることがより一層好ましく、150μm以下であることがさらに一層好ましい。
Further, the acrylic resin layer (Y) may be a single layer, or may be a multilayer.
The thickness of the acrylic resin layer (Y) is not particularly limited, but the lower limit is, for example, 1 μm or more, preferably 10 μm or more, more preferably 20 μm or more, and preferably 50 μm or more. It is more preferably 60 μm or more, even more preferably 80 μm or more, and may be 100 μm or more. By making it more than the above-mentioned lower limit, molding becomes easier and hardness tends to improve. Further, there is no particular restriction on the upper limit of the thickness of the acrylic resin layer (Y), but it is preferably 5,000 μm or less, more preferably 2,000 μm or less, and even more preferably 1,000 μm or less. It is preferably 500 μm or less, even more preferably 300 μm or less, and even more preferably 150 μm or less.
<多層体の層構成および物性>
 本実施形態の多層体は、上述の通り、ポリカーボネート樹脂層(X)およびアクリル樹脂層(Y)を含む。
 ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)の厚みの関係性は、{アクリル樹脂層(Y)の厚み/[ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)の合計厚み]}<1/5を満たすことが好ましい。この関係を満たすことで、アクリル樹脂層(Y)が多層体全体として薄いものとなるため、多層体を加熱成形しても、クラックの発生がより効果的に抑制され、かつ、スプリングバックの発生がより効果的に抑制される。より具体的には、スプリングバックを抑制するには、多層体を折り曲げた際に、多層体全体に残っている曲げに対する残留応力を緩和することがより効果的である。本実施形態においては、{アクリル樹脂層(Y)の厚み/[ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)の合計厚み]}<1/6がより好ましく、{アクリル樹脂層(Y)の厚み/[ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)の合計厚み]}<1/8がさらに好ましい。また、1/35<{アクリル樹脂層(Y)の厚み/[ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)の合計厚み]}であることが好ましく、1/25<{アクリル樹脂層(Y)の厚み/[ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)の合計厚み]}であることがより好ましい。特に、本実施形態では、ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)が上述した所定の厚みの好ましい範囲を、また、多層体が後述する厚みの好ましい範囲を満たしつつ、上記関係を満たすことがより好ましい。このような構成とすることにより、本発明の効果がより効果的に達成される。
<Layer structure and physical properties of multilayer body>
As described above, the multilayer body of this embodiment includes a polycarbonate resin layer (X) and an acrylic resin layer (Y).
The relationship between the thickness of the polycarbonate resin layer (X) and the acrylic resin layer (Y) is {thickness of the acrylic resin layer (Y)/[total thickness of the polycarbonate resin layer (X) and acrylic resin layer (Y)]}< It is preferable to fill 1/5. By satisfying this relationship, the acrylic resin layer (Y) becomes thin as a whole in the multilayer body, so even if the multilayer body is heat-formed, the occurrence of cracks can be more effectively suppressed, and the occurrence of springback can be suppressed more effectively. is suppressed more effectively. More specifically, in order to suppress springback, it is more effective to relieve the residual stress due to bending that remains in the entire multilayer body when the multilayer body is bent. In this embodiment, {thickness of acrylic resin layer (Y)/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)]}<1/6 is more preferable, and {thickness of acrylic resin layer (Y) More preferably, thickness/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)]}<1/8. Further, it is preferable that 1/35<{thickness of acrylic resin layer (Y)/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)]}, and 1/25<{thickness of acrylic resin layer ( The thickness of Y)/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)]] is more preferable. In particular, in this embodiment, the polycarbonate resin layer (X) and the acrylic resin layer (Y) satisfy the above-mentioned preferred range of thickness, and the multilayer body satisfies the preferred range of thickness described below, while satisfying the above relationship. It is more preferable. With such a configuration, the effects of the present invention can be achieved more effectively.
 本実施形態の多層体においては、また、ポリカーボネート樹脂層(X)のガラス転移温度とアクリル樹脂層(Y)のガラス転移温度の差(ポリカーボネート樹脂層(X)のガラス転移温度-アクリル樹脂層(Y)のガラス転移温度)が、通常、33℃以下であり、13℃以下であることが好ましい。上記上限値以下とすることにより、スプリングバックの発生をより効果的に抑制できる傾向にある。前記ガラス転移温度の差は、12℃以下であることがより好ましく、11℃以下であることがさらに好ましい。また、下限値は0℃が理想であるが、1℃以上であってもよい。 In the multilayer body of this embodiment, the difference between the glass transition temperature of the polycarbonate resin layer (X) and the glass transition temperature of the acrylic resin layer (Y) (glass transition temperature of the polycarbonate resin layer (X) - acrylic resin layer ( The glass transition temperature of Y) is usually 33°C or lower, preferably 13°C or lower. By setting it below the above-mentioned upper limit value, there is a tendency that occurrence of springback can be suppressed more effectively. The difference in glass transition temperature is more preferably 12°C or less, and even more preferably 11°C or less. Further, the lower limit value is ideally 0°C, but may be 1°C or higher.
 本実施形態の多層体は、さらに、ハードコート層を含むことが好ましい。前記ハードコート層は、前記ポリカーボネート樹脂層(X)、前記アクリル樹脂層(Y)、前記ハードコート層の順に積層していることが好ましい。また、ハードコート層は、ポリカーボネート樹脂層(X)側にも設けられていてもよい。なお、前記ポリカーボネート樹脂層(X)と前記アクリル樹脂層(Y)の間、および、と前記アクリル樹脂層(Y)と前記ハードコート層の間には、本実施形態の趣旨を逸脱しない範囲で、他の層を有していてもよい。本実施形態では、前記ポリカーボネート樹脂層(X)、前記アクリル樹脂層(Y)、前記ハードコート層の順に、連続して、積層していることが好ましい。 It is preferable that the multilayer body of this embodiment further includes a hard coat layer. The hard coat layer is preferably laminated in the order of the polycarbonate resin layer (X), the acrylic resin layer (Y), and the hard coat layer. Further, the hard coat layer may also be provided on the polycarbonate resin layer (X) side. It should be noted that between the polycarbonate resin layer (X) and the acrylic resin layer (Y) and between the acrylic resin layer (Y) and the hard coat layer, there are , may have other layers. In this embodiment, it is preferable that the polycarbonate resin layer (X), the acrylic resin layer (Y), and the hard coat layer are successively laminated in this order.
 次に、ハードコート層の詳細について説明する。本実施形態の多層体に含まれていてもよいハードコート層は、ポリカーボネート樹脂層よりも、表面硬度が高い層である。このようなハードコート層を含むことにより、多層体ないし成形品の表面硬度を高めることができる。
 ハードコート層の厚さは、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることがさらに好ましく、4μm以上であることが一層好ましく、5μm以上であることがより一層好ましい。前記下限値以上とすることにより、ハードコート層による多層体全体の鉛筆硬度がより向上する傾向にある。ハードコート層の厚さの上限は、20μm以下であることが好ましく、15μm以下であることがより好ましく、12μm以下であることがさらに好ましく、10μm以下であることが一層好ましく、8μm以下であることがより一層好ましい。前記上限値以下とすることにより、熱曲げ時の加工性がより向上する傾向にある。
Next, details of the hard coat layer will be explained. The hard coat layer that may be included in the multilayer body of this embodiment is a layer with higher surface hardness than the polycarbonate resin layer. By including such a hard coat layer, the surface hardness of the multilayer body or molded article can be increased.
The thickness of the hard coat layer is preferably 0.5 μm or more, more preferably 1 μm or more, even more preferably 2 μm or more, even more preferably 4 μm or more, and even more preferably 5 μm or more. is even more preferable. By setting it above the lower limit, the pencil hardness of the entire multilayer body formed by the hard coat layer tends to be further improved. The upper limit of the thickness of the hard coat layer is preferably 20 μm or less, more preferably 15 μm or less, even more preferably 12 μm or less, even more preferably 10 μm or less, and 8 μm or less. is even more preferable. By setting it below the above-mentioned upper limit, the workability during hot bending tends to be further improved.
 ハードコート層は、熱硬化または活性エネルギー線による硬化が可能なハードコート材料を塗布後、硬化させて得られるものが好ましい。
 活性エネルギー線を用いて硬化させる塗料の一例としては、1官能あるいは多官能(好ましくは2~10官能)の(メタ)アクリレートモノマーあるいはオリゴマーなどの単独あるいは複数からなる樹脂組成物が挙げられ、好ましくは、1官能あるいは多官能(好ましくは2~10官能)ウレタン(メタ)アクリレートオリゴマーを含む樹脂組成物等が挙げられる。これらの樹脂組成物には、硬化触媒として光重合開始剤が加えられることが好ましい。
 また、熱硬化型樹脂塗料としてはポリオルガノシロキサン系、架橋型アクリル系などのものが挙げられる。この様な樹脂組成物は、アクリル樹脂またはポリカーボネート樹脂フィルムまたはシート用ハードコート剤として市販されているものもあり、塗装ラインとの適正を加味し、適宜選択すればよい。
 ハードコート層としては、特開2013-020130号公報の段落0045~0055の記載、特開2018-103518号公報の段落0073~0076の記載、特開2017-213771号公報の段落0062~0082の記載を参酌でき、これらの内容は本明細書に組み込まれる。
The hard coat layer is preferably obtained by applying and then curing a hard coat material that can be cured by heat or active energy rays.
An example of a coating material that is cured using active energy rays is a resin composition consisting of one or more monofunctional or polyfunctional (preferably 2 to 10 functional) (meth)acrylate monomers or oligomers. Examples include resin compositions containing monofunctional or polyfunctional (preferably 2 to 10 functional) urethane (meth)acrylate oligomers. It is preferable that a photopolymerization initiator is added to these resin compositions as a curing catalyst.
Examples of thermosetting resin coatings include polyorganosiloxane coatings and crosslinked acrylic coatings. Such resin compositions are commercially available as hard coating agents for acrylic resin or polycarbonate resin films or sheets, and may be selected as appropriate, taking into account suitability for the coating line.
As the hard coat layer, descriptions in paragraphs 0045 to 0055 of JP 2013-020130, paragraphs 0073 to 0076 of JP 2018-103518, and paragraphs 0062 to 0082 of JP 2017-213771 are used. , the contents of which are incorporated herein.
 さらに、本実施形態の多層体は、前記ハードコート層上であって、前記アクリル樹脂層(Y)とは反対側の面に、低屈折率層を有することも好ましい。すなわち、上記多層体は、反射防止フィルムとして用いることができる。
 図1は、反射防止フィルムの一例を示す模式図であって、1はポリカーボネート樹脂層(X)を、2はアクリル樹脂層(Y)を、3はハードコート層を、4は反射防止層を示している。図1では、ポリカーボネート樹脂層(X)1、アクリル樹脂層(Y)2、ハードコート層3および反射防止層4が、前記順に積層しているが、本実施形態の趣旨を逸脱しない範囲で、他の層を有していてもよい。シャルピー衝撃強さの多層体が他の層を有している場合の態様としては、前記多層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理、防汚染処理およびアンチブロッキング処理のいずれか1つ以上が施されていることが好ましい。このときの多層体の最表面の一例として、ハードコート層が挙げられる。また、アンチブロッキング処理とは、フィルム同士が密着しても容易に剥離できるようにする処理をいい、アンチブロッキング剤を添加すること、多層体の表面に凹凸を設けることなどが例示される。
 さらに、本実施形態の多層体には、上記の他、他の層を有していてもよい。具体的には、接着層、粘着層、防汚層等が例示される。
Furthermore, it is also preferable that the multilayer body of this embodiment has a low refractive index layer on the hard coat layer and on the surface opposite to the acrylic resin layer (Y). That is, the above multilayer body can be used as an antireflection film.
FIG. 1 is a schematic diagram showing an example of an antireflection film, in which 1 is a polycarbonate resin layer (X), 2 is an acrylic resin layer (Y), 3 is a hard coat layer, and 4 is an antireflection layer. Showing. In FIG. 1, the polycarbonate resin layer (X) 1, the acrylic resin layer (Y) 2, the hard coat layer 3, and the antireflection layer 4 are laminated in the above order, but within the scope of the present embodiment, It may have other layers. In the case where the multilayer body with Charpy impact strength has other layers, one or both sides of the multilayer body may be treated with anti-fingerprint treatment, anti-reflection treatment, anti-glare treatment, weather resistance treatment, or antistatic treatment. It is preferable that at least one of anti-fouling treatment and anti-blocking treatment is applied. An example of the outermost surface of the multilayer body at this time is a hard coat layer. Further, the anti-blocking treatment refers to a treatment that allows films to be easily peeled off even if they are in close contact with each other, and examples thereof include adding an anti-blocking agent and providing irregularities on the surface of a multilayer body.
Furthermore, the multilayer body of this embodiment may have other layers in addition to the above. Specifically, an adhesive layer, an adhesive layer, an antifouling layer, etc. are exemplified.
 本実施形態の多層体の総厚みは、特に制限はないが、10μm以上であることが好ましく、20μm以上であることがより好ましく、100μm以上であることがさらに好ましく、500μm以上であることが一層好ましい。総厚みが厚いほうが、多層体としての剛性が向上する傾向がある。また、多層体の総厚みは、10,000μm以下であることが好ましく、5,000μm以下であることがより好ましく、3,000μm以下であってもよい。このような総厚みにすることで、多層体成形時において、ロール間で多層シートを圧着させ、樹脂を冷却する際に、多層体内部まで樹脂が冷却されるため、多層体の成形性を向上させることができる。 The total thickness of the multilayer body of this embodiment is not particularly limited, but is preferably 10 μm or more, more preferably 20 μm or more, even more preferably 100 μm or more, and even more preferably 500 μm or more. preferable. As the total thickness increases, the rigidity of the multilayer body tends to improve. Further, the total thickness of the multilayer body is preferably 10,000 μm or less, more preferably 5,000 μm or less, and may be 3,000 μm or less. By making this total thickness, when molding a multilayer body, when the multilayer sheet is pressed between rolls and the resin is cooled, the resin is cooled to the inside of the multilayer body, improving the moldability of the multilayer body. can be done.
 次に、多層体の鉛筆硬度について説明する。
 本実施形態の多層体は、鉛筆硬度が高い(硬い)ことが好ましい。アクリル樹脂層(Y)側から測定した鉛筆硬度がF以上であることが好ましく、H以上であることがより好ましい。また、上限は特に定めるものではないが、3H以下が実際的である。
 特に、本実施形態の多層体において、ハードコート層を設けた場合の、アクリル樹脂層(Y)側から測定した鉛筆硬度がH以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがさらに好ましい。また、上限は特に定めるものではないが、4H以下が実際的である。
 鉛筆硬度は後述する実施例の記載に従って測定される。
Next, the pencil hardness of the multilayer body will be explained.
The multilayer body of this embodiment preferably has high pencil hardness (hardness). The pencil hardness measured from the acrylic resin layer (Y) side is preferably F or higher, more preferably H or higher. Further, although the upper limit is not particularly determined, 3H or less is practical.
In particular, in the multilayer body of this embodiment, when a hard coat layer is provided, the pencil hardness measured from the acrylic resin layer (Y) side is preferably H or higher, more preferably 2H or higher, and 3H or higher. It is more preferable that it is above. Further, although the upper limit is not particularly determined, 4H or less is practical.
Pencil hardness is measured according to the description in Examples below.
<多層体の製造方法>
 本実施形態の多層体は、樹脂組成物(x)を押出するメイン押出機と、樹脂組成物(y)を押出するサブ押出機とを用い、各々用いる樹脂の条件にて樹脂を溶融し押し出しダイに導き、ダイ内部で積層しシート状に成形する、もしくはシート状に成形した後に積層することで多層体を形成することができる。
<Method for manufacturing multilayer body>
The multilayer body of this embodiment uses a main extruder that extrudes the resin composition (x) and a sub-extruder that extrudes the resin composition (y), and melts and extrudes the resin under the conditions of each resin. A multilayer body can be formed by introducing the materials into a die and laminating them inside the die to form a sheet, or by forming them into a sheet and then laminating them.
<成形品および成形品の製造方法>
 次に、本実施形態の多層体を用いた成形品および成形品の製造方法について説明する。
 本実施形態の成形品は、本実施形態の多層体から形成された成形品である。
 本実施形態の多層体は、また、熱曲げ耐性に優れているため、屈曲部を有する用途にも適している。例えば、曲率半径が50mmR以下(好ましくは曲率半径が40~50mmR)の部位を有する成形品にも好ましく用いられる。
 本実施形態の成形品は、好ましくは、本実施形態の多層体を、例えば133℃以下、また、例えば100℃以上で熱曲成形することにより得られる。本実施形態の多層体は、熱曲げ耐性に優れているため、曲率半径が50mmR以下の部位を有する成形品としたときに、特に有益である。特に、熱成形温度を低めとできるため、多層体の各層(ポリカーボネート樹脂層(X)、アクリル樹脂層(Y)等)の熱成形後の緩和が起こりやすく、熱成形をより容易にできる。本実施形態では、前記熱曲げ温度は、スプリングバックやクラックの発生の観点から115℃以上であることが好ましく、118℃以上であることがより好ましく、また、131℃以下であることが好ましい。
<Molded product and method for manufacturing molded product>
Next, a molded article and a method for manufacturing the molded article using the multilayer body of this embodiment will be described.
The molded article of this embodiment is a molded article formed from the multilayer body of this embodiment.
The multilayer body of this embodiment also has excellent thermal bending resistance, and is therefore suitable for applications having bent portions. For example, it is preferably used for molded products having a portion with a radius of curvature of 50 mmR or less (preferably a radius of curvature of 40 to 50 mmR).
The molded article of this embodiment is preferably obtained by thermoforming the multilayer body of this embodiment at, for example, 133° C. or lower, or, for example, 100° C. or higher. Since the multilayer body of this embodiment has excellent thermal bending resistance, it is particularly useful when used as a molded product having a portion with a radius of curvature of 50 mmR or less. In particular, since the thermoforming temperature can be lowered, each layer of the multilayer body (polycarbonate resin layer (X), acrylic resin layer (Y), etc.) tends to relax after thermoforming, making thermoforming easier. In this embodiment, the thermal bending temperature is preferably 115°C or higher, more preferably 118°C or higher, and preferably 131°C or lower from the viewpoint of springback or crack generation.
<用途>
 本実施形態の多層体および成形品は、光学部品や意匠製品、反射防止成形品などに好適に用いることができる。
 本実施形態の多層体および成形品は、表示装置、電気電子機器、OA機器、携帯情報末端、機械部品、家電製品、車輌部品、各種容器、照明機器等の部品等に好適に用いられる。これらの中でも、特に、各種ディスプレイ、電気電子機器、OA機器、携帯情報末端および家電製品の筐体、照明機器および車輌部品(特に、車輌内装部品)、スマートフォンやタッチパネル等の表層フィルム、光学材料、光学ディスクに好適に用いられる。特に、本実施形態の成形品は、タッチパネルのセンサー用フィルムや各種ディスプレイの反射防止成形品として好ましく用いられる。
<Application>
The multilayer body and molded product of this embodiment can be suitably used for optical components, designed products, antireflection molded products, and the like.
The multilayer body and molded product of this embodiment are suitably used for parts such as display devices, electrical and electronic equipment, OA equipment, mobile information terminals, mechanical parts, home appliances, vehicle parts, various containers, and lighting equipment. Among these, in particular, various displays, electrical and electronic equipment, OA equipment, mobile information terminals and housings of home appliances, lighting equipment and vehicle parts (especially vehicle interior parts), surface films for smartphones and touch panels, optical materials, Suitable for use in optical discs. In particular, the molded product of this embodiment is preferably used as a sensor film for touch panels and an antireflection molded product for various displays.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
The present invention will be explained in more detail with reference to Examples below. The materials, usage amounts, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
If the measuring equipment used in the examples is difficult to obtain due to discontinuation or the like, measurement can be performed using other equipment with equivalent performance.
1.原料
<ポリカーボネート>
E-1000F:ビスフェノールA型ポリカーボネート樹脂、三菱ガス化学株式会社製、Tg:152℃、粘度平均分子量:32,500、数平均分子量(Mn):32,100、重量平均分子量(Mw):64,500、分散度(Mw/Mn):2.01
E-2000F:ビスフェノールA型ポリカーボネート樹脂、三菱ガス化学株式会社製、Tg:150℃、粘度平均分子量:27,000、数平均分子量(Mn):26,400、重量平均分子量(Mw):53,100、分散度(Mw/Mn):2.01
S-3000F:ビスフェノールA型ポリカーボネート樹脂、三菱ガス化学株式会社製、Tg:147℃、粘度平均分子量:21,000、数平均分子量(Mn):18,900、重量平均分子量(Mw):40,000、分散度(Mw/Mn):2.11
H-7000F:ビスフェノールA型ポリカーボネート樹脂、三菱ガス化学株式会社製、Tg:137℃、粘度平均分子量:14,000、数平均分子量(Mn):11,100、重量平均分子量(Mw):24,200、分散度(Mw/Mn):2.17
T-1380:パラヒドロキシ安息香酸ヘキサデシルエステルを末端封止剤に用いたビスフェノールA型ポリカーボネート樹脂、三菱ガス化学株式会社製、Tg:124℃、粘度平均分子量:25,500、数平均分子量(Mn):23,500、重量平均分子量(Mw):47,200、分散度(Mw/Mn):2.01
1. Raw material <polycarbonate>
E-1000F: Bisphenol A type polycarbonate resin, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 152°C, viscosity average molecular weight: 32,500, number average molecular weight (Mn): 32,100, weight average molecular weight (Mw): 64, 500, dispersion degree (Mw/Mn): 2.01
E-2000F: Bisphenol A type polycarbonate resin, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 150°C, viscosity average molecular weight: 27,000, number average molecular weight (Mn): 26,400, weight average molecular weight (Mw): 53, 100, degree of dispersion (Mw/Mn): 2.01
S-3000F: Bisphenol A type polycarbonate resin, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 147°C, viscosity average molecular weight: 21,000, number average molecular weight (Mn): 18,900, weight average molecular weight (Mw): 40, 000, dispersity (Mw/Mn): 2.11
H-7000F: Bisphenol A type polycarbonate resin, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 137°C, viscosity average molecular weight: 14,000, number average molecular weight (Mn): 11,100, weight average molecular weight (Mw): 24, 200, degree of dispersion (Mw/Mn): 2.17
T-1380: Bisphenol A type polycarbonate resin using parahydroxybenzoic acid hexadecyl ester as an end capping agent, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 124°C, viscosity average molecular weight: 25,500, number average molecular weight (Mn ): 23,500, weight average molecular weight (Mw): 47,200, degree of dispersion (Mw/Mn): 2.01
<ポリカーボネートオリゴマー>
AL-071:ビスフェノールA型ポリカーボネートオリゴマー、三菱ガス化学株式会社製、Tg:106℃、粘度平均分子量:4,700、数平均分子量(Mn):3,800、重量平均分子量(Mw):9,060、分散度(Mw/Mn):2.36
<Polycarbonate oligomer>
AL-071: Bisphenol A type polycarbonate oligomer, manufactured by Mitsubishi Gas Chemical Co., Ltd., Tg: 106°C, viscosity average molecular weight: 4,700, number average molecular weight (Mn): 3,800, weight average molecular weight (Mw): 9, 060, dispersity (Mw/Mn): 2.36
<酸化防止剤>
アデカスタブ2112:下記化合物、tBuは、t-ブチル基を示す。
<Antioxidant>
ADK STAB 2112: In the following compound, tBu represents a t-butyl group.
<離型剤>
S-100A:グリセリンモノステアレート、理研ビタミン株式会社製、リケマールS-100A
<Release agent>
S-100A: Glycerin monostearate, manufactured by Riken Vitamin Co., Ltd., Rikemar S-100A
<アクリル樹脂>
SK540N:旭化成社製、アクリル樹脂、デルペットSK540N、N-シクロヘキシルマレイミド:N-フェニルマレイミド:MMAの質量比=7質量%:8質量%:85質量%、Tg:124℃、重量平均分子量:128,000
80HD:旭化成社製、PMMA樹脂、デルペット80HD、Tg:108℃、重量平均分子量:124,600
<Acrylic resin>
SK540N: manufactured by Asahi Kasei Corporation, acrylic resin, Delpet SK540N, mass ratio of N-cyclohexylmaleimide: N-phenylmaleimide: MMA = 7% by mass: 8% by mass: 85% by mass, Tg: 124°C, weight average molecular weight: 128 ,000
80HD: Asahi Kasei Co., Ltd., PMMA resin, Delpet 80HD, Tg: 108°C, weight average molecular weight: 124,600
<スチレン樹脂>
XIRANSO26080:Polyscope社製、スチレン樹脂、XIRANSO26080、スチレン:無水マレイン酸=74質量%:26質量%、Tg:150℃、重量平均分子量:47,600
SMA-725:Jiaxing Huawen Chemical社製、スチレン樹脂、SMA-725、スチレン:無水マレイン酸=75質量%:25質量%、Tg:141℃、重量平均分子量:84,100
<Styrene resin>
XIRANSO26080: manufactured by Polyscope, styrene resin, XIRANSO26080, styrene: maleic anhydride = 74% by mass: 26% by mass, Tg: 150°C, weight average molecular weight: 47,600
SMA-725: Manufactured by Jiaxing Huawen Chemical Co., Ltd., styrene resin, SMA-725, styrene: maleic anhydride = 75% by mass: 25% by mass, Tg: 141°C, weight average molecular weight: 84,100
<粘度平均分子量の測定方法>
 ポリカーボネート樹脂およびポリカーボネートオリゴマーの極限粘度[η](単位dL/g)は、溶媒としてメチレンクロライドを使用して測定した。温度は25℃条件とした。ウベローデ粘度計にて、各溶液濃度[C](g/dL)での比粘度[ηsp]を測定した。得られた比粘度の値と濃度から下記式により極限粘度を算出した。
<Method for measuring viscosity average molecular weight>
The intrinsic viscosity [η] (unit: dL/g) of the polycarbonate resin and polycarbonate oligomer was measured using methylene chloride as a solvent. The temperature was set at 25°C. The specific viscosity [η sp ] at each solution concentration [C] (g/dL) was measured using an Ubbelohde viscometer. The intrinsic viscosity was calculated from the obtained specific viscosity value and concentration using the following formula.
 粘度平均分子量[Mv]は、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83から算出した。 The viscosity average molecular weight [Mv] was calculated from Schnell's viscosity formula, ie, η=1.23×10 −4 Mv 0.83 .
<重量平均分子量および数平均分子量の測定方法>
 ポリカーボネート樹脂、ポリカーボネートオリゴマーの数平均分子量(Mn)、重量平均分子量(Mw)、および分散度(Mw/Mn)、アクリル樹脂およびスチレン樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィーによって測定した。
 具体的には、ゲル浸透クロマトグラフィー装置には、LC-20AD system(島津製作所社製)を用い、カラムとして、LF-804(Shodex社製)を接続して用いた。カラム温度は40℃とした。検出器はRID-10A(島津製作所社製)のRI検出器を用いた。溶離液として、クロロホルムを用い、検量線は、東ソー社製の標準ポリスチレンを使用して作成した。
 上記ゲル浸透クロマトグラフィー装置、カラム、検出器が入手困難な場合、同等の性能を有する他の装置等を用いて測定する。
<Method for measuring weight average molecular weight and number average molecular weight>
The number average molecular weight (Mn), weight average molecular weight (Mw), and degree of dispersion (Mw/Mn) of polycarbonate resin and polycarbonate oligomer, and the weight average molecular weight (Mw) of acrylic resin and styrene resin were measured by gel permeation chromatography. .
Specifically, an LC-20AD system (manufactured by Shimadzu Corporation) was used as a gel permeation chromatography device, and an LF-804 (manufactured by Shodex Corporation) was connected as a column. The column temperature was 40°C. The detector used was an RI detector RID-10A (manufactured by Shimadzu Corporation). Chloroform was used as the eluent, and a calibration curve was created using standard polystyrene manufactured by Tosoh Corporation.
If the gel permeation chromatography device, column, and detector described above are difficult to obtain, other devices with equivalent performance may be used for measurement.
<開始ガラス転移温度(Tg)の測定>
 原料樹脂および樹脂組成物のガラス転移温度は、下記の示差走査熱量測定(DSC測定)条件のとおりに、昇温、降温を2サイクル行い、2サイクル目の昇温時のガラス転移温度を測定した。
 低温側のベースラインを高温側に延長した直線と、変曲点の接線の交点を開始ガラス転移温度とし、高温側のベースラインを低温側に延長した直線と、変曲点の接線の交点を終了ガラス転移温度とし、開始ガラス転移温度と終了ガラス転移温度の中間地点を中間ガラス転移温度とした場合の開始ガラス転移温度をTgとした。測定開始温度:30℃、昇温速度:10℃/分、到達温度:250℃、降温速度:20℃/分とした。単位は、℃で示した。
 測定装置は、示差走査熱量計(DSC、日立ハイテクサイエンス社製、「DSC7020」)を使用した。
<Measurement of starting glass transition temperature (Tg)>
The glass transition temperature of the raw material resin and resin composition was determined by performing two cycles of heating and cooling according to the differential scanning calorimetry (DSC measurement) conditions below, and measuring the glass transition temperature at the time of heating in the second cycle. .
The starting glass transition temperature is the intersection of the straight line extending the low-temperature side baseline to the high-temperature side and the tangent to the inflection point, and the intersection of the straight line extending the high-temperature side baseline to the low-temperature side and the tangent to the inflection point is the starting glass transition temperature. The starting glass transition temperature was defined as Tg, and the intermediate point between the starting glass transition temperature and the ending glass transition temperature was defined as the intermediate glass transition temperature. Measurement start temperature: 30°C, temperature increase rate: 10°C/min, final temperature: 250°C, temperature fall rate: 20°C/min. The unit is shown in °C.
The measuring device used was a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd., "DSC7020").
2.実施例1~14、比較例1~7
<樹脂組成物(ペレット)の製造>
 ポリカーボネート樹脂層(X)形成用の樹脂組成物(x)(ペレット)、および、アクリル樹脂層(Y)形成用の樹脂組成物(y)(ペレット)を以下の方法に従って製造した。
 上記に記載の各成分を、表1~3に記載の添加量(表1~3の各成分は質量部表記である)となるように計量した。その後、タンブラーにて15分間混合した後、スクリュー径32mmのベント付二軸押出機(日本製鋼所社製「TEX30α」)により、溶融混練し、ストランドカットによりペレットを得た。なお、ポリカーボネート樹脂層(X)形成用の樹脂組成物(x)(ペレット)については樹脂粘度によって260~300℃で適時変更しながら溶融混練し、アクリル樹脂層(Y)形成用の樹脂組成物(y)(ペレット)については260℃で溶融混練した。
2. Examples 1 to 14, Comparative Examples 1 to 7
<Manufacture of resin composition (pellets)>
A resin composition (x) (pellet) for forming a polycarbonate resin layer (X) and a resin composition (y) (pellet) for forming an acrylic resin layer (Y) were manufactured according to the following method.
Each of the components described above was weighed so that the amounts added were as shown in Tables 1 to 3 (each component in Tables 1 to 3 is expressed in parts by mass). Thereafter, after mixing in a tumbler for 15 minutes, the mixture was melt-kneaded using a vented twin-screw extruder with a screw diameter of 32 mm ("TEX30α" manufactured by Japan Steel Works, Ltd.), and pellets were obtained by strand cutting. The resin composition (x) (pellets) for forming the polycarbonate resin layer (X) is melt-kneaded at 260 to 300°C while changing the viscosity of the resin as appropriate, and the resin composition for forming the acrylic resin layer (Y) is melt-kneaded. (y) (pellets) were melt-kneaded at 260°C.
<シャルピー衝撃強さの測定>
 ポリカーボネート樹脂層(X)に用いられる樹脂組成物(x)のシャルピー衝撃強さは、JIS K 7111-1に従って測定した。
 具体的には、得られた樹脂組成物(x)(ペレット)をベント付二軸射出成形機(Sodick社製「PE-100」、二軸スクリュー径29mmの噛合型同方向回転式、プランジャー直径28mm)により、シリンダー温度260℃で溶融混練し、金型温度70℃の条件にて長さ80mm×幅10mm×厚さ3mmの成形体(試験片)を作製した。その後、厚み以外はJIS K7111-1に準拠し、ノッチありのシャルピー衝撃試験を行い、シャルピー衝撃強さを測定した。シャルピー衝撃強さの単位は、kJ/mで示した。
<Measurement of Charpy impact strength>
The Charpy impact strength of the resin composition (x) used for the polycarbonate resin layer (X) was measured according to JIS K 7111-1.
Specifically, the obtained resin composition (x) (pellets) was molded into a vented twin-screw injection molding machine (“PE-100” manufactured by Sodick, intermeshing co-rotating type with twin screw diameter 29 mm, plunger). A molded article (test piece) measuring 80 mm in length x 10 mm in width x 3 mm in thickness was prepared by melt-kneading the mixture at a cylinder temperature of 260°C and a mold temperature of 70°C. Thereafter, a notched Charpy impact test was conducted in accordance with JIS K7111-1 except for the thickness, and the Charpy impact strength was measured. The unit of Charpy impact strength is kJ/m 2 .
<ハードコート(HC)なし多層体の製造>
 軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結された650mm幅のTダイを有する多層押出装置を用いて多層体を成形した。軸径32mmの単軸押出機に、表1~3に示す各実施例および比較例の層(Y)の形成に使用される樹脂組成物(y)を導入し、シリンダー温度250℃、吐出量を1.8kg/hの条件で押し出した。また、軸径65mmの単軸押出機に表1~3に示す各実施例および比較例の樹脂組成物(y)にポリカーボネート樹脂層(X)の形成に使用される樹脂組成物(x)を連続的に導入し、シリンダー温度は樹脂粘度によって240℃~290に適時変更しつつ、吐出量を32.4kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、押し出して、積層した。その先に連結されたTダイでシート状に押し出し、上流側から温度130℃、140℃、180℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、各多層体を得た。得られた多層体の中央部の全体厚みは2000μm、層(Y)の厚みは100μmであった。
<Production of multilayer body without hard coat (HC)>
Using a multilayer extrusion device having a single screw extruder with a shaft diameter of 32 mm, a single screw extruder with a shaft diameter of 65 mm, a feed block connected to all the extruders, and a T-die with a width of 650 mm connected to the feed block. A multilayer body was molded. The resin composition (y) used for forming the layer (Y) of each example and comparative example shown in Tables 1 to 3 was introduced into a single-screw extruder with a shaft diameter of 32 mm, and the cylinder temperature was 250°C and the discharge amount was was extruded at a rate of 1.8 kg/h. In addition, the resin composition (x) used for forming the polycarbonate resin layer (X) was added to the resin composition (y) of each example and comparative example shown in Tables 1 to 3 in a single-screw extruder with a shaft diameter of 65 mm. The resin was introduced continuously, and the cylinder temperature was extruded at a discharge rate of 32.4 kg/h while changing the cylinder temperature from 240° C. to 290° C. depending on the resin viscosity. A feed block connected to the entire extruder was equipped with distribution pins for two types and two layers to extrude and laminate. It was extruded into a sheet using a T-die connected to the tip, and cooled while transferring the mirror surface using three mirror finish rolls at temperatures of 130° C., 140° C., and 180° C. from the upstream side, to obtain each multilayer body. The total thickness of the central part of the obtained multilayer body was 2000 μm, and the thickness of layer (Y) was 100 μm.
<ハードコート付き多層体の製造>
 6官能ウレタンアクリレートオリゴマー(製品名:U6HA、新中村化学工業株式会社製)60質量部、PEG200#ジアクリレート(製品名:4EG-A、共栄社化学株式会社製)35質量部、および含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマー(製品名:RS-90、DIC株式会社製)5質量部の合計100質量部に対して、光重合開始剤(製品名:I-184〔化合物名:1-ヒドロキシ-シクロヘキシルフェニルケトン〕BASF株式会社製)を1質量%加えた塗料を、上記で作製したハードコートなしの多層体のアクリル樹脂層(Y)の表面にバーコーターにて塗布し、メタルハライドランプ(20mW/cm)を5秒間当ててハードコートを硬化させた。ハードコート層の膜厚は6μmであった。
<Manufacture of multilayer body with hard coat>
60 parts by mass of hexafunctional urethane acrylate oligomer (product name: U6HA, manufactured by Shin-Nakamura Chemical Co., Ltd.), 35 parts by mass of PEG200# diacrylate (product name: 4EG-A, manufactured by Kyoeisha Chemical Co., Ltd.), and fluorine-containing groups. A photopolymerization initiator (product name: I-184) is added to a total of 100 parts by weight of 5 parts by weight of an oligomer containing a hydrophilic group, a lipophilic group, and a UV-reactive group (product name: RS-90, manufactured by DIC Corporation). [Compound name: 1-hydroxy-cyclohexylphenyl ketone] (manufactured by BASF Corporation) was added to the paint in an amount of 1% by mass on the surface of the multilayer acrylic resin layer (Y) without a hard coat prepared above using a bar coater. The hard coat was cured by applying a metal halide lamp (20 mW/cm 2 ) for 5 seconds. The thickness of the hard coat layer was 6 μm.
<130℃熱プレス成形性評価>
 上記で得られたハードコート付き多層体について、曲率半径が50mmRとなる凸型(オス型)と凹型(メス型)の金型を作製した。ハードコート層を塗装した多層体は成形前に90℃で1分間予備加熱し、ハードコート層を塗装した側の表面が凸側になるように、金型に置き、金型温度130℃で5分間プレスを行った。その後上記熱プレス成形品を目視で評価した。評価は、5人の専門家が行い、多数決で判断した。
A:成形品に特段の不良が見られなかった。
B:多層体が収縮してしまった。
C:多層体が破裂してしまった。
<130℃ hot press moldability evaluation>
Convex (male) and concave (female) molds with a radius of curvature of 50 mmR were produced for the hard coated multilayer body obtained above. The multilayered body coated with a hard coat layer was preheated at 90°C for 1 minute before molding, placed in a mold with the hard coated layer facing the convex side, and heated at a mold temperature of 130°C for 5 minutes. Pressed for a minute. Thereafter, the hot press molded product was visually evaluated. The evaluation was conducted by five experts, and the decision was made by majority vote.
A: No particular defects were observed in the molded product.
B: The multilayer body has shrunk.
C: The multilayer body has ruptured.
<130℃熱曲げ後スプリングバック>
 上記で得られた熱プレス成形品(A判定のみ)を50mmRの円筒に沿わせて、下記の基準でスプリングバックの合否判定を行い、Aを合格とした。評価は、5人の専門家が行い、多数決で判断した。
A:円筒に沿う(スプリングバック無し)。
B:円筒に沿わない(スプリングバック有り)。
<Springback after heat bending at 130℃>
The hot press molded product obtained above (only graded A) was placed along a cylinder of 50 mmR, and the springback was judged based on the following criteria, and A was judged as passing. The evaluation was conducted by five experts, and the decision was made by majority vote.
A: Along the cylinder (no springback).
B: Does not follow the cylinder (with springback).
<130℃熱上げ後クラック>
 上記で得られた熱プレス成形品(A判定のみ)の曲げ部分のクラックを目視で評価した。評価は、5人の専門家が行い、多数決で判断した。
A:熱プレス成形品の曲げ部分にクラックが確認されなかった。
B:熱プレス成形品の曲げ部分にクラックが確認された。
<Crack after heating to 130℃>
Cracks in the bent portion of the hot press molded product obtained above (only graded A) were visually evaluated. The evaluation was conducted by five experts, and the decision was made by majority vote.
A: No cracks were observed in the bent portion of the hot press molded product.
B: Cracks were observed in the bent portion of the hot press molded product.
<加熱試験後不溶物>
 得られたハードコート(HC)なし多層体を真空乾燥機(ヤマト科学社製、DP23)中で、窒素下、300℃で16時間加熱した後、ジクロロメタン50mLに5g溶解させ、濾過径が10μmのメンブレンフィルターを用いて吸引ろ過した。フィルター上に回収された不溶物の質量を測定した。この不溶物は、ポリカーボネート樹脂の末端にあるエステル結合が切れて、エステル交換が三次元的に起こることにより生じるゲル状の物質を含む。
 以下の通り評価した。
A:5mg未満
B:5mg以上10mg未満
C:10mg以上
<Insoluble matter after heating test>
The obtained multilayer body without hard coat (HC) was heated in a vacuum dryer (manufactured by Yamato Kagaku Co., Ltd., DP23) at 300°C for 16 hours under nitrogen, then 5g was dissolved in 50mL of dichloromethane, and a filtration diameter of 10μm was obtained. Suction filtration was performed using a membrane filter. The mass of insoluble matter collected on the filter was measured. This insoluble matter includes a gel-like substance that is produced when the ester bond at the end of the polycarbonate resin is broken and transesterification occurs three-dimensionally.
It was evaluated as follows.
A: Less than 5 mg B: 5 mg or more and less than 10 mg C: 10 mg or more
<鉛筆硬度>
 上記で作製したハードコートなし多層体のアクリル樹脂層(Y)側の面、ハードコート付き多層体のハードコート層側の面について、それぞれ、JIS K5600-5-4:1999に準拠し、鉛筆硬度試験機を用いて、750g荷重にて測定した鉛筆硬度を求めた。評価は、5人の専門家が行い、多数決で判断した。
<Pencil hardness>
The surface on the acrylic resin layer (Y) side of the multilayer body without a hard coat and the surface on the hard coat layer side of the multilayer body with a hard coat, respectively, were measured in pencil hardness according to JIS K5600-5-4:1999. Pencil hardness was determined using a testing machine under a load of 750 g. The evaluation was conducted by five experts, and the decision was made by majority vote.
 上記表1~3において、Tg(ガラス転移温度)の単位は℃で、シャルピー衝撃強さの単位はkJ/mで示した。 In Tables 1 to 3 above, the unit of Tg (glass transition temperature) is °C, and the unit of Charpy impact strength is kJ/ m2 .
1  ポリカーボネート樹脂層(X)
2  アクリル樹脂層(Y)
3  ハードコート層
4  反射防止層
1 Polycarbonate resin layer (X)
2 Acrylic resin layer (Y)
3 Hard coat layer 4 Anti-reflection layer

Claims (21)

  1. ポリカーボネート樹脂を含む樹脂組成物(x)から形成されたポリカーボネート樹脂層(X)とアクリル樹脂を含む樹脂組成物(y)から形成されたアクリル樹脂層(Y)を有し、
    前記樹脂組成物(x)に含まれるポリカーボネート樹脂は、ゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比であるMw/Mnが2.80~4.40である、多層体。
    It has a polycarbonate resin layer (X) formed from a resin composition (x) containing a polycarbonate resin and an acrylic resin layer (Y) formed from a resin composition (y) containing an acrylic resin,
    The polycarbonate resin contained in the resin composition (x) has an Mw/Mn ratio of 2.2. 80 to 4.40, a multilayer body.
  2. 前記樹脂組成物(X)に含まれるポリカーボネート樹脂のゲルパーミエションクロマトグラフィーにより測定したポリスチレン換算の数平均分子量(Mn)が10000~20000である、請求項1に記載の多層体。 The multilayer body according to claim 1, wherein the polycarbonate resin contained in the resin composition (X) has a polystyrene equivalent number average molecular weight (Mn) of 10,000 to 20,000 as measured by gel permeation chromatography.
  3. ポリカーボネート樹脂を含む樹脂組成物(x)から形成されたポリカーボネート樹脂層(X)とアクリル樹脂を含む樹脂組成物(y)から形成されたアクリル樹脂層(Y)を有し、
    前記樹脂組成物(x)は、粘度平均分子量24000~50000であるポリカーボネート樹脂(x1)60~93質量部と、粘度平均分子量が2000~10000であるポリカーボネートオリゴマー(x2)7~40質量部とを含む、多層体。
    It has a polycarbonate resin layer (X) formed from a resin composition (x) containing a polycarbonate resin and an acrylic resin layer (Y) formed from a resin composition (y) containing an acrylic resin,
    The resin composition (x) contains 60 to 93 parts by mass of a polycarbonate resin (x1) having a viscosity average molecular weight of 24,000 to 50,000 and 7 to 40 parts by mass of a polycarbonate oligomer (x2) having a viscosity average molecular weight of 2,000 to 10,000. Including, multi-layer body.
  4. 前記多層体のアクリル樹脂層(Y)側から測定した鉛筆硬度がF以上である、請求項1~3のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 3, wherein the multilayer body has a pencil hardness of F or more as measured from the acrylic resin layer (Y) side.
  5. 前記樹脂組成物(x)のガラス転移温度が143℃以下である、請求項1~3のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 3, wherein the resin composition (x) has a glass transition temperature of 143° C. or lower.
  6. 前記樹脂組成物(x)は、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を、前記樹脂組成物(x)に含まれるポリカーボネート成分100質量部に対し、0~30質量部含む、請求項1~3のいずれか1項に記載の多層体。
    (式(C)中、Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表す。Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表す。nは0~4の整数を表す。*は、他の部位との結合部位である。)
    The resin composition (x) contains 0 to 30 parts by mass of an aromatic polycarbonate resin having a terminal structure represented by formula (C) based on 100 parts by mass of the polycarbonate component contained in the resin composition (x). The multilayer body according to any one of claims 1 to 3, comprising:
    (In formula (C), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms. R 2 each independently represents a halogen atom, a carbon atom number 1 Represents an alkyl group with ~20 or an aryl group with 6 to 12 carbon atoms. n represents an integer of 0 to 4. * indicates a bonding site with another site.)
  7. 前記樹脂組成物(y)のガラス転移温度が130℃以上である、請求項1~3のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 3, wherein the resin composition (y) has a glass transition temperature of 130°C or higher.
  8. 前記樹脂組成物(y)は、アクリル樹脂(y1)30~90質量部とスチレン樹脂(y2)10~70質量部とを含む、請求項1~3のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 3, wherein the resin composition (y) contains 30 to 90 parts by mass of an acrylic resin (y1) and 10 to 70 parts by mass of a styrene resin (y2).
  9. 前記アクリル樹脂(y1)が、
    (メタ)アクリル化合物単位と、
    環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種と
    を含む、請求項8に記載の多層体。
    The acrylic resin (y1) is
    (meth)acrylic compound unit,
    The multilayer body according to claim 8, comprising at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit.
  10. 前記アクリル樹脂(y1)が、(メタ)アクリル化合物単位60~96質量%と、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種を合計で4~40質量%含む、請求項9に記載の多層体。 The acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and 4 to 40% by mass of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit. 10. The multilayer body according to claim 9.
  11. 前記スチレン樹脂(y2)が、芳香族ビニル化合物単位68~84質量%と、環状酸無水物単位16~32質量%とを含む、請求項9に記載の多層体。 The multilayer body according to claim 9, wherein the styrene resin (y2) contains 68 to 84% by mass of aromatic vinyl compound units and 16 to 32% by mass of cyclic acid anhydride units.
  12. 前記ポリカーボネート樹脂層(X)のガラス転移温度とアクリル樹脂層(Y)のガラス転移温度の差が、13℃以下である、請求項1~3のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 3, wherein the difference between the glass transition temperature of the polycarbonate resin layer (X) and the glass transition temperature of the acrylic resin layer (Y) is 13° C. or less.
  13. 前記樹脂組成物(X)および/または樹脂組成物(Y)が、それぞれ独立に、酸化防止剤および/または離型剤を含む、請求項1~3のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 3, wherein the resin composition (X) and/or the resin composition (Y) each independently contain an antioxidant and/or a mold release agent.
  14. さらに、ハードコート層を含み、前記ハードコート層は、前記ポリカーボネート樹脂層(X)、前記アクリル樹脂層(Y)、前記ハードコート層の順に積層している、請求項1~3のいずれか1項に記載の多層体。 Any one of claims 1 to 3, further comprising a hard coat layer, wherein the hard coat layer is laminated in the order of the polycarbonate resin layer (X), the acrylic resin layer (Y), and the hard coat layer. The multilayer body described in Section.
  15. さらに、前記多層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理、防汚染処理およびアンチブロッキング処理のいずれか1つ以上が施されている、請求項1~3のいずれか1項に記載の多層体。 Furthermore, one or more of anti-fingerprint treatment, anti-reflection treatment, anti-glare treatment, weather resistance treatment, antistatic treatment, anti-staining treatment and anti-blocking treatment is applied to one or both sides of the multilayer body. The multilayer body according to any one of claims 1 to 3.
  16. 前記多層体が、{アクリル樹脂層(Y)の厚み/[ポリカーボネート樹脂層(X)とアクリル樹脂層(Y)の合計厚み]}<1/5を満たす、請求項1~3のいずれか1項に記載の多層体。 Any one of claims 1 to 3, wherein the multilayer body satisfies {thickness of acrylic resin layer (Y)/[total thickness of polycarbonate resin layer (X) and acrylic resin layer (Y)]}<1/5. The multilayer body described in Section.
  17. 前記多層体の総厚みが10~10,000μmである、請求項1~3のいずれか1項に記載の多層体。 The multilayer body according to any one of claims 1 to 3, wherein the total thickness of the multilayer body is 10 to 10,000 μm.
  18. 前記多層体のアクリル樹脂層(Y)側から測定した鉛筆硬度がF以上であり、
    前記樹脂組成物(x)のガラス転移温度が143℃以下であり、
    前記樹脂組成物(x)は、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を、前記樹脂組成物(x)に含まれるポリカーボネート樹脂100質量部に対し、0~30質量部含み、
    前記樹脂組成物(y)のガラス転移温度が130℃以上であり、
    前記樹脂組成物(y)は、アクリル樹脂(y1)30~90質量部とスチレン樹脂(y2)10~70質量部とを含み、
    前記アクリル樹脂(y1)が、(メタ)アクリル化合物単位60~96質量%と、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種を合計で4~40質量%含み、
    前記スチレン樹脂(y2)が、芳香族ビニル化合物単位68~84質量%と、環状酸無水物単位16~32質量%とを含む、請求項1に記載の多層体。
    (式(C)中、Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表す。Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表す。nは0~4の整数を表す。*は、他の部位との結合部位である。)
    The pencil hardness measured from the acrylic resin layer (Y) side of the multilayer body is F or more,
    The glass transition temperature of the resin composition (x) is 143°C or less,
    The resin composition (x) contains 0 to 30 parts by mass of an aromatic polycarbonate resin having a terminal structure represented by formula (C) based on 100 parts by mass of the polycarbonate resin contained in the resin composition (x). including,
    The resin composition (y) has a glass transition temperature of 130°C or higher,
    The resin composition (y) contains 30 to 90 parts by mass of acrylic resin (y1) and 10 to 70 parts by mass of styrene resin (y2),
    The acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and 4 to 40% by mass of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit. ,
    The multilayer body according to claim 1, wherein the styrene resin (y2) contains 68 to 84% by mass of aromatic vinyl compound units and 16 to 32% by mass of cyclic acid anhydride units.
    (In formula (C), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms. R 2 each independently represents a halogen atom, a carbon atom number 1 ~20 alkyl group or an aryl group having 6 to 12 carbon atoms. n represents an integer of 0 to 4. * is a bonding site with another site.)
  19. 前記多層体のアクリル樹脂層(Y)側から測定した鉛筆硬度がF以上であり、
    前記樹脂組成物(x)のガラス転移温度が143℃以下であり、
    前記樹脂組成物(x)は、式(C)で表される末端構造を有する芳香族ポリカーボネート樹脂を、前記樹脂組成物(x)に含まれるポリカーボネート成分100質量部に対し、0~30質量部含み、
    前記樹脂組成物(y)のガラス転移温度が130℃以上であり、
    前記樹脂組成物(y)は、アクリル樹脂(y1)30~90質量部とスチレン樹脂(y2)10~70質量部とを含み、
    前記アクリル樹脂(y1)が、(メタ)アクリル化合物単位60~96質量%と、環状酸無水物単位、N置換マレイミド単位、および、ラクトン環単位の少なくとも1種を合計で4~40質量%含み、
    前記スチレン樹脂(y2)が、芳香族ビニル化合物単位68~84質量%と、環状酸無水物単位16~32質量%とを含む、請求項3に記載の多層体。
    (式(C)中、Rは、炭素原子数8~36のアルキル基、または、炭素原子数8~30のアルケニル基を表す。Rは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、または、炭素原子数6~12のアリール基を表す。nは0~4の整数を表す。*は、他の部位との結合部位である。)
    The pencil hardness measured from the acrylic resin layer (Y) side of the multilayer body is F or more,
    The glass transition temperature of the resin composition (x) is 143°C or less,
    The resin composition (x) contains 0 to 30 parts by mass of an aromatic polycarbonate resin having a terminal structure represented by formula (C) based on 100 parts by mass of the polycarbonate component contained in the resin composition (x). including,
    The resin composition (y) has a glass transition temperature of 130°C or higher,
    The resin composition (y) contains 30 to 90 parts by mass of acrylic resin (y1) and 10 to 70 parts by mass of styrene resin (y2),
    The acrylic resin (y1) contains a total of 60 to 96% by mass of (meth)acrylic compound units and 4 to 40% by mass of at least one of a cyclic acid anhydride unit, an N-substituted maleimide unit, and a lactone ring unit. ,
    The multilayer body according to claim 3, wherein the styrene resin (y2) contains 68 to 84% by mass of aromatic vinyl compound units and 16 to 32% by mass of cyclic acid anhydride units.
    (In formula (C), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 30 carbon atoms. R 2 each independently represents a halogen atom, a carbon atom number 1 ~20 alkyl group or an aryl group having 6 to 12 carbon atoms. n represents an integer of 0 to 4. * is a bonding site with another site.)
  20. 請求項1~3、18および19のいずれか1項に記載の多層体から形成された成形品。 A molded article formed from the multilayer body according to any one of claims 1 to 3, 18 and 19.
  21. 曲率半径が50mmR以下の部位を有する、請求項20に記載の成形品。 The molded article according to claim 20, having a portion with a radius of curvature of 50 mmR or less.
PCT/JP2023/029797 2022-08-23 2023-08-18 Multilayer body and molded article WO2024043180A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-132408 2022-08-23
JP2022132407A JP7427730B1 (en) 2022-08-23 2022-08-23 Multilayer bodies and molded products
JP2022-132407 2022-08-23
JP2022132408A JP7427731B1 (en) 2022-08-23 2022-08-23 Multilayer bodies and molded products

Publications (1)

Publication Number Publication Date
WO2024043180A1 true WO2024043180A1 (en) 2024-02-29

Family

ID=90013280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029797 WO2024043180A1 (en) 2022-08-23 2023-08-18 Multilayer body and molded article

Country Status (1)

Country Link
WO (1) WO2024043180A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353831A (en) * 2000-06-13 2001-12-25 Teijin Chem Ltd Polycarbonate resin laminate
WO2014061817A1 (en) * 2012-10-15 2014-04-24 帝人株式会社 Laminate
JP2022080270A (en) * 2020-11-17 2022-05-27 三菱瓦斯化学株式会社 Resin composition, tabular molding, multilayer body, molding, and method for producing molding
JP2022080269A (en) * 2020-11-17 2022-05-27 三菱瓦斯化学株式会社 Resin composition, tabular molding, multilayer body and method for producing molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353831A (en) * 2000-06-13 2001-12-25 Teijin Chem Ltd Polycarbonate resin laminate
WO2014061817A1 (en) * 2012-10-15 2014-04-24 帝人株式会社 Laminate
JP2022080270A (en) * 2020-11-17 2022-05-27 三菱瓦斯化学株式会社 Resin composition, tabular molding, multilayer body, molding, and method for producing molding
JP2022080269A (en) * 2020-11-17 2022-05-27 三菱瓦斯化学株式会社 Resin composition, tabular molding, multilayer body and method for producing molding

Similar Documents

Publication Publication Date Title
WO2015133530A1 (en) Laminate body
KR20220158257A (en) Acrylic composition and molded article
US9206294B2 (en) Acrylic resin film having good transparency and impact resistance and method for manufacturing same
JP2022080269A (en) Resin composition, tabular molding, multilayer body and method for producing molding
WO2022131015A1 (en) Multi-layer body and molded article
WO2022131014A1 (en) Resin composition, plate-shape molded body, laminate, molded product, and molded product production method
WO2024043180A1 (en) Multilayer body and molded article
JP7427731B1 (en) Multilayer bodies and molded products
JP7427730B1 (en) Multilayer bodies and molded products
KR102008456B1 (en) Resin laminate with curved shape
KR102008464B1 (en) Resin laminate
JP2022080270A (en) Resin composition, tabular molding, multilayer body, molding, and method for producing molding
WO2021100661A1 (en) Resin composition, flat molded body, multilayer body, and anti-reflection molded body
JP2020164680A (en) (meth)acrylic resin film
JP7076664B1 (en) Multilayers and molded products
JP7524450B2 (en) Resin composition, flat molded body, multi-layer body, and molded article
WO2024135551A1 (en) Resin composition, plate-shaped molded object, multilayer object, and molded article
JP2021080345A (en) Resin composition, flat plate-shaped molding, multilayer body, and antireflection film
JP2023088417A (en) Resin composition, flat plate-shaped molding, multilayer body, and molded article
JP2024064272A (en) Multilayers and molded articles
JP2022158929A (en) Resin composition, plate-like molding, and multilayer body
JP2024064271A (en) Resin composition, flat plate-shaped molded body, and multi-layer body
CN114729173B (en) Resin composition, flat molded body, multilayer body, and antireflection film
CN115141449A (en) Resin composition, flat plate-shaped molded article, and multilayer body
CN116615335A (en) Resin composition, flat molded body, multilayer body, molded article, and method for producing molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857292

Country of ref document: EP

Kind code of ref document: A1