WO2024043060A1 - Resin composition for colored coating of optical fiber, optical fiber, and optical fiber ribbon - Google Patents

Resin composition for colored coating of optical fiber, optical fiber, and optical fiber ribbon Download PDF

Info

Publication number
WO2024043060A1
WO2024043060A1 PCT/JP2023/028795 JP2023028795W WO2024043060A1 WO 2024043060 A1 WO2024043060 A1 WO 2024043060A1 JP 2023028795 W JP2023028795 W JP 2023028795W WO 2024043060 A1 WO2024043060 A1 WO 2024043060A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin layer
optical fiber
acrylate
mass
Prior art date
Application number
PCT/JP2023/028795
Other languages
French (fr)
Japanese (ja)
Inventor
勝史 浜窪
矩章 岩口
未歩 池川
千明 徳田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2024043060A1 publication Critical patent/WO2024043060A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/285Acrylic resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/40Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/465Coatings containing composite materials
    • C03C25/475Coatings containing composite materials containing colouring agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/48Coating with two or more coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6226Ultraviolet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present disclosure relates to a resin composition for colored coating of an optical fiber, an optical fiber, and an optical fiber ribbon.
  • an optical fiber has a coating resin layer for protecting the glass fiber that is an optical transmission body.
  • the coating resin layer includes, for example, a primary resin layer and a secondary resin layer.
  • the outermost layer of the coating resin layer is composed of a colored resin layer for identifying the optical fiber (see, for example, Patent Documents 1 to 3).
  • a resin composition for colored coating of an optical fiber contains a photopolymerizable compound, a photoinitiator, and a polydimethylsiloxane compound, and the resin composition contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound.
  • the amount is 5% by mass or more and 40% by mass or less based on the amount of the polydimethylsiloxane compound.
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical fiber according to this embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of the optical fiber according to this embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of the optical fiber ribbon according to this embodiment.
  • Optical fibers are sometimes used in the form of an optical fiber ribbon, in which a plurality of optical fibers are arranged and integrated using a ribbon resin.
  • optical fiber ribbons that use optical fibers with colored resin layers
  • a phenomenon known as "color peeling" occurs in which the colored resin layers peel off from the optical fibers.
  • color peeling occurs in which the colored resin layers peel off from the optical fibers.
  • An object of the present disclosure is to provide a resin composition for colored coating of an optical fiber, an optical fiber, and an optical fiber ribbon, which can produce an optical fiber that does not easily cause color peeling.
  • a resin composition for colored coating of an optical fiber contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound, and contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound.
  • the amount of silicon atoms is 5% by mass or more and 40% by mass or less based on the amount of the polydimethylsiloxane compound.
  • the polydimethylsiloxane compound may have a (meth)acryloyl group from the viewpoint of improving compatibility with the photopolymerizable compound.
  • the photopolymerizable compound may include epoxy di(meth)acrylate from the viewpoint of increasing the strength of the resin layer.
  • the resin composition according to the present embodiment may further contain titanium oxide from the viewpoint of coloring the resin layer.
  • An optical fiber according to one aspect of the present disclosure includes a glass fiber including a core and a cladding, a primary resin layer that contacts the glass fiber and covers the glass fiber, and a secondary resin layer that covers the primary resin layer. a colored resin layer covering the secondary resin layer, the colored resin layer containing a cured product of the resin composition according to any one of (1) to (4) above.
  • An optical fiber according to one aspect of the present disclosure includes a glass fiber including a core and a cladding, a primary resin layer that contacts the glass fiber and covers the glass fiber, and a secondary resin layer that covers the primary resin layer.
  • the secondary resin layer contains a cured product of the resin composition according to any one of (1) to (4) above.
  • an optical fiber ribbon In an optical fiber ribbon according to one aspect of the present disclosure, a plurality of the optical fibers described in (5) or (6) above are arranged in parallel and coated with ribbon resin. Such an optical fiber ribbon does not cause color peeling when the optical fibers are taken out, and the optical fibers can be easily identified.
  • the resin composition for colored coating of optical fibers contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound, and the amount of silicon atoms contained in the polydimethylsiloxane compound is , 5% by mass or more and 40% by mass or less based on the amount of polydimethylsiloxane compound (100% by mass).
  • a polydimethylsiloxane compound is a compound having, as a repeating unit, a dimethylsiloxane skeleton (-Si(CH 3 ) 2 O-) composed of two methyl groups bonded to a silicon atom and an oxygen atom in its main chain.
  • a polydimethylsiloxane compound in which the amount of silicon atoms (Si) is 5% by mass or more and 40% by mass or less color peeling can be reduced.
  • the amount of Si contained in the polydimethylsiloxane compound can be measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) of the polydimethylsiloxane compound. From the viewpoint of further suppressing color peeling, the amount of Si may be 8% by mass or more, 10% by mass or more, 14% by mass or more, or 16% by mass or more. Moreover, the amount of Si may be 38 mass% or less, 36 mass% or less, 34 mass% or less, or 32 mass% or less from the viewpoint of improving the stability of the resin composition.
  • ICP-OES inductively coupled plasma optical emission spectroscopy
  • the polydimethylsiloxane compound may have a (meth)acryloyl group.
  • the polydimethylsiloxane compound may have a (meth)acryloyl group in the side chain or at the end.
  • a polydimethylsiloxane compound having a (meth)acryloyl group can be copolymerized with a photopolymerizable compound described below.
  • a polydimethylsiloxane compound having a (meth)acryloyl group is not included in the photopolymerizable compounds.
  • the number of (meth)acryloyl groups that the polydimethylsiloxane compound has may be 1 or more or 2 or more, or 10 or less or 8 or less.
  • the polydimethylsiloxane compound has at least 2 (meth)acryloyl groups and at most 8, and has an Si content of 14% by mass, from the viewpoint of further improving the stability of the resin composition and further reducing the peeling of the colored resin layer.
  • the content may be greater than or equal to 36% by mass.
  • the content of the polydimethylsiloxane compound is 0.5 parts by mass or more based on 100 parts by mass of the total amount of the polydimethylsiloxane compound and the photopolymerizable compound. , 1.0 parts by mass or more, or 1.5 parts by mass or more, and may be 10.0 parts by mass or less, 8.0 parts by mass or less, or 6.0 parts by mass or less.
  • the photopolymerizable compound according to this embodiment is distinguished from a polydimethylsiloxane compound having a (meth)acryloyl group in that it does not have a dimethylsiloxane skeleton.
  • the photopolymerizable compound may include epoxy di(meth)acrylate.
  • the epoxy di(meth)acrylate a reaction product of a diglycidyl ether compound having a bisphenol skeleton and a compound having a (meth)acryloyl group such as (meth)acrylic acid can be used.
  • epoxy di(meth)acrylates examples include (meth)acrylic acid adducts of bisphenol A diglycidyl ether, (meth)acrylic acid adducts of bisphenol AF diglycidyl ether, and (meth)acrylic acid adducts of bisphenol F diglycidyl ether. Examples include adducts.
  • the content of epoxy di(meth)acrylate is 30 parts by mass or more, 40 parts by mass or more, or 45 parts by mass or more with respect to 100 parts by mass of the total amount of the polydimethylsiloxane compound and the photopolymerizable compound.
  • the amount may be greater than or equal to 70 parts by mass, less than 65 parts by mass, or less than 60 parts by mass.
  • the photopolymerizable compound according to the present embodiment can further include a photopolymerizable compound (hereinafter referred to as a "monomer") other than epoxy di(meth)acrylate.
  • a photopolymerizable compound hereinafter referred to as a "monomer”
  • a monofunctional monomer having one polymerizable group and a polyfunctional monomer having two or more polymerizable groups can be used.
  • a mixture of two or more monomers may be used.
  • monofunctional monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, s-butyl (meth)acrylate, tert-butyl (meth)acrylate, Isobutyl (meth)acrylate, n-pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, isoamyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, 3-phenoxybenzyl acrylate, phenoxydiethylene glycol acryl
  • polyfunctional monomers examples include polyethylene glycol di(meth)acrylate, isocyanuric acid ethylene oxide-modified di(meth)acrylate, ethylene oxide-modified bisphenol F di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, and polypropylene.
  • the photopolymerizable compound according to the present embodiment may contain an alkylene oxide-modified polyfunctional monomer from the viewpoint of adjusting the Young's modulus of the resin layer.
  • the alkylene oxide-modified polyfunctional monomer may have at least one type selected from the group consisting of ethylene oxide (EO) chains and propylene oxide (PO) chains.
  • EO ethylene oxide
  • PO propylene oxide
  • An ethylene oxide chain can be represented as "(EO)n”
  • a propylene oxide chain can be represented as "(PO)n”.
  • n is an integer of 1 or more, may be 2 or more, or 3 or more, and may be 30 or less, 25 or less, or 20 or less.
  • alkylene oxide-modified di(meth)acrylates examples include polyethylene glycol di(meth)acrylate, isocyanuric acid ethylene oxide-modified di(meth)acrylate, ethylene oxide-modified bisphenol F di(meth)acrylate, and ethylene oxide-modified bisphenol A di(meth)acrylate.
  • Meth)acrylates include polypropylene glycol di(meth)acrylate, propylene oxide-modified bisphenol A di(meth)acrylate, and propylene oxide-modified neopentyl glycol di(meth)acrylate.
  • alkylene oxide-modified tri(meth)acrylates include trimethylolpropane tri(meth)acrylate, trimethyloloctane tri(meth)acrylate, trimethylolpropane polyethoxytri(meth)acrylate, and trimethylolpropane polypropoxytri(meth)acrylate.
  • the photopolymerization initiator can be appropriately selected from known radical photopolymerization initiators.
  • the photopolymerization initiator include 1-hydroxycyclohexylphenylketone (Omnirad 184, manufactured by IGM Resins), 2,2-dimethoxy-2-phenylacetophenone, 1-(4-isopropylphenyl)-2-hydroxy-2 -Methylpropan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propane- 1-one (Omnirad 907, manufactured by IGM Resins), 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Omnirad TPO, manufactured by IGM Resins), and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide ( Omnirad 819, manufactured by IGM Resin
  • the content of the photopolymerization initiator is 1 part by mass or more and 10 parts by mass or less, 2 parts by mass or more and 8 parts by mass or less, or 3 parts by mass or more, based on 100 parts by mass of the total amount of the polydimethylsiloxane compound and the photopolymerizable compound. It may be 7 parts by mass or less.
  • the resin composition may further contain a silane coupling agent, a leveling agent, an antifoaming agent, an antioxidant, a sensitizer, and the like.
  • the silane coupling agent is not particularly limited as long as it does not interfere with curing of the resin composition.
  • Examples of the silane coupling agent include tetramethylsilicate, tetraethylsilicate, mercaptopropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxy-ethoxy)silane, ⁇ -(3,4-epoxycyclohexyl) )-Ethyltrimethoxysilane, dimethoxydimethylsilane, diethoxydimethylsilane, 3-acryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -methacryloxy Propyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimeth
  • the resin composition according to this embodiment can further contain titanium oxide particles.
  • titanium oxide particles surface-treated titanium oxide particles may be used.
  • Surface-treated titanium oxide particles are titanium oxide particles that have been surface-treated with an inorganic substance, and have excellent dispersibility in a resin composition.
  • Examples of inorganic substances used for surface treatment include aluminum oxide, silicon dioxide, and zirconium dioxide.
  • the surface-treated titanium oxide particles have a surface-treated layer containing at least one member selected from the group consisting of aluminum oxide, silicon dioxide, and zirconium dioxide, dispersibility can be further improved.
  • the surface treatment layer may be formed on at least a portion of the surface of titanium oxide, or may be formed on the entire surface of titanium oxide.
  • the surface treatment layer is formed by surface treatment of titanium oxide.
  • the amount of the surface treatment layer in the surface-treated titanium oxide particles may be 1% by mass or more, 1.5% by mass or more, or 2% by mass or more from the viewpoint of improving dispersibility, and from the viewpoint of increasing hiding power. , 10% by mass or less, 9% by mass or less, or 8% by mass or less.
  • the amount of the surface treatment layer can be calculated by measuring the amount of titanium element and inorganic elements other than titanium contained in the surface treated titanium oxide particles using inductively coupled mass spectrometry (ICP-MS).
  • the average primary particle size of the surface-treated titanium oxide particles may be 300 nm or less, 295 nm or less, or 290 nm or less, from the viewpoint of improving the lateral pressure resistance of the coating resin layer.
  • the average primary particle size of the surface-treated titanium oxide particles may be 100 nm or more, 150 nm or more, or 200 nm or more, or 200 nm or more and 300 nm or less, from the viewpoint of increasing hiding power.
  • the average primary particle size can be measured, for example, by image analysis of electron micrographs, light scattering method, BET method, etc.
  • the content of the surface-treated titanium oxide particles is 0.6% by mass or more, 1% by mass or more, 2% by mass or more, or 3% by mass based on the total amount of the resin composition. It may be more than that. From the viewpoint of increasing the curability of the resin composition, the content of the surface-treated titanium oxide particles is 20% by mass or less, 15% by mass or less, 10% by mass or less, or 8% by mass or less based on the total amount of the resin composition. There may be.
  • the resin film obtained by curing the resin composition according to the present embodiment with an integrated light amount of 900 mJ/cm 2 or more and 1100 mJ/cm 2 or less is 6% or more and 50% or less at 23°C, the resin has excellent toughness.
  • a layer can be formed.
  • the elongation at break of the resin film may be 6.5% or more, 7% or more, or 10% or more, and may be 45% or less, 40% or less, or 30% or less.
  • the Young's modulus of the resin film may be 400 MPa or more, 450 MPa or more, or 500 MPa or more at 23°C. From the viewpoint of forming a resin layer with excellent toughness, the Young's modulus of the resin film may be 1500 MPa or less, 1200 MPa or less, or 1000 MPa or less at 23°C.
  • the resin composition according to this embodiment can be suitably used as a colored coating material for optical fibers.
  • a colored coating material containing the resin composition according to this embodiment By forming the outermost layer of the coating resin layer using a colored coating material containing the resin composition according to this embodiment, the resistance to wet heat of the optical fiber can be improved.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of an optical fiber according to one embodiment.
  • the optical fiber 1 includes a glass fiber 10 and a coating resin layer 20 that is in contact with the glass fiber 10 and covers the outer periphery of the glass fiber 10.
  • the glass fiber 10 is a light-guiding optical transmission body that transmits the light introduced into the optical fiber 1.
  • the glass fiber 10 is a member made of glass, and is configured using, for example, silica (SiO 2 ) glass as a base material (main component).
  • the glass fiber 10 includes a core 12 and a cladding 14 that covers the core 12. Glass fiber 10 transmits the light introduced into optical fiber 1.
  • the core 12 is provided, for example, in a region including the central axis of the glass fiber 10.
  • the core 12 is made of, for example, pure SiO 2 glass or SiO 2 glass containing GeO 2 and/or fluorine element.
  • the cladding 14 is provided in a region surrounding the core 12.
  • the cladding 14 has a refractive index lower than the refractive index of the core 12.
  • the cladding 14 is made of, for example, pure SiO 2 glass or SiO 2 glass doped with fluorine element.
  • the outer diameter of the glass fiber 10 is approximately 100 ⁇ m to 125 ⁇ m, and the diameter of the core 12 constituting the glass fiber 10 is approximately 7 ⁇ m to 15 ⁇ m.
  • the coating resin layer 20 is an ultraviolet curing resin layer that covers the cladding 14.
  • the coating resin layer 20 includes a primary resin layer 22 that covers the outer periphery of the glass fiber 10 and a secondary resin layer 24 that covers the outer periphery of the primary resin layer 22.
  • the primary resin layer 22 is in contact with the outer peripheral surface of the clad 14 and covers the entire clad 14.
  • the secondary resin layer 24 is in contact with the outer peripheral surface of the primary resin layer 22 and covers the entire primary resin layer 22.
  • the thickness of the primary resin layer 22 is, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the secondary resin layer 24 is, for example, 10 ⁇ m or more and 40 ⁇ m or less.
  • the resin composition according to this embodiment can be applied to the secondary resin layer 24.
  • the secondary resin layer 24 can be formed by curing the resin composition.
  • the secondary resin layer 24 can improve the single-fiber separability and resistance to moist heat of the optical fiber without causing color peeling.
  • the coating resin layer 20 may further include a colored resin layer 26 that covers the outer periphery of the secondary resin layer 24.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of an optical fiber according to one embodiment. As shown in FIG. 2, the optical fiber 1A of this embodiment includes a glass fiber 10 and a coating resin layer 20 that is in contact with the glass fiber 10 and covers the outer periphery of the glass fiber 10.
  • the coating resin layer 20 includes a primary resin layer 22, a secondary resin layer 24, and a colored resin layer 26.
  • the thickness of the colored resin layer 26 is, for example, 3 ⁇ m or more and 10 ⁇ m or less.
  • the resin composition according to this embodiment can be applied to the colored resin layer 26.
  • the colored resin layer 26 can be formed by curing the resin composition.
  • the colored resin layer 26 can improve the single-fiber separability and wet heat resistance of the optical fiber without causing color peeling.
  • the secondary resin layer 24 in the optical fiber 1A may be formed using a conventionally known resin composition, for example, by curing a resin composition containing urethane (meth)acrylate, a monomer, and a photopolymerization initiator. be able to.
  • the primary resin layer 22 can be formed, for example, by curing a resin composition containing urethane (meth)acrylate, a monomer, a photopolymerization initiator, and a silane coupling agent. Conventionally known techniques can be used for the resin composition for the primary resin layer.
  • optical fiber ribbon An optical fiber ribbon can be manufactured using the optical fiber according to this embodiment.
  • the optical fiber ribbon has a plurality of the above-mentioned optical fibers arranged in parallel and is coated with a ribbon resin.
  • FIG. 3 is a schematic cross-sectional view showing the optical fiber ribbon according to this embodiment.
  • the optical fiber ribbon 100 includes a plurality of optical fibers 1A and a connecting resin layer 40 in which the optical fibers 1A are coated with ribbon resin and connected. Although four optical fibers are shown as an example in FIG. 3, the number is not particularly limited.
  • a resin material generally known as a ribbon material can be used as the resin for the ribbon.
  • Ribbon resins are thermosetting resins such as silicone resins, epoxy resins, and urethane resins, or ultraviolet curing resins such as epoxy acrylates, urethane acrylates, and polyester acrylates, from the viewpoint of preventing damage to the optical fibers and making them easy to split. It may also contain resin.
  • the optical fiber ribbon according to the present embodiment does not cause color peeling when removing the connecting resin layer from the optical fiber ribbon to take out the optical fibers, and it is easy to remove the optical fibers. can be identified.
  • the decomposition solution was diluted 10 to 100 times with ultrapure water to prepare a sample.
  • the amount of Si contained in the polydimethylsiloxane compound was calculated by quantifying Si in the sample using an ICP emission spectrometer ("iCAP6300" manufactured by Thermo Fisher Scientific Co., Ltd.).
  • Photopolymerizable compound bisphenol A epoxy diacrylate (EA), tripropylene glycol diacrylate (TPGDA), EO modified trimethylolpropane triacrylate (TMP(EO) 3 TA), EO modified bisphenol A diacrylate (BPA(EO) ) 30 DA was prepared.
  • EA bisphenol A epoxy diacrylate
  • TPGDA tripropylene glycol diacrylate
  • TMP(EO) 3 TA EO modified trimethylolpropane triacrylate
  • BPA(EO) ) 30 DA was prepared.
  • titanium oxide particles surface-treated titanium oxide particles having a surface treatment layer containing aluminum oxide (Al 2 O 3 ) were prepared.
  • the average primary particle size of the surface-treated titanium oxide particles was 200 to 300 nm, and the amount of Al 2 O 3 calculated by ICP-MS measurement was 2.5% by mass.
  • a resin composition was prepared by mixing as follows. Test Examples 1 to 5 correspond to Examples, and Test Examples 6 to 7 correspond to Comparative Examples.
  • a resin film was punched into a JIS K 7127 type No. 5 dumbbell shape, and tested using a tensile tester at a tensile speed of 1 mm/min and a gauge line spacing of 25 mm under the conditions of 23 ⁇ 2°C and 50 ⁇ 10% RH. Tensile, stress-strain curves were obtained. Young's modulus was determined using the 2.5% secant line.
  • a urethane acrylate oligomer obtained by reacting polypropylene glycol with a molecular weight of 4000, isophorone diisocyanate, hydroxyethyl acrylate, and methanol was prepared. 75 parts by mass of this urethane acrylate oligomer, 12 parts by mass of nonylphenol EO modified acrylate, 6 parts by mass of N-vinylcaprolactam, 2 parts by mass of 1,6-hexanediol diacrylate, 1 part by mass of Omnirad TPO, and 3-
  • a resin composition P was prepared by mixing 1 part by mass of mercaptopropyltrimethoxysilane.
  • (Resin composition for secondary resin layer) Acrylic acid addition of 40 parts by mass of urethane acrylate oligomer which is a reaction product of polypropylene glycol having a molecular weight of 600, 2,4-tolylene diisocyanate and 2-hydroxyethyl acrylate, 35 parts by mass of isobornyl acrylate, and bisphenol A diglycidyl ether.
  • a resin composition S was prepared by mixing 24 parts by mass of epoxy acrylate, 1 part by mass of Omnirad TPO, and 1 part by mass of Omnirad 184.
  • Resin composition for ribbon 18 parts by mass of urethane acrylate which is a reaction product of bisphenol A/ethylene oxide addition diol, tolylene diisocyanate and hydroxyethyl acrylate, and 10 parts by mass of urethane acrylate which is a reaction product of polytetramethylene glycol, tolylene diisocyanate and hydroxyethyl acrylate.
  • a resin composition R was prepared by mixing 0.7 parts by mass of -[4-(methylthio)phenyl]-2-morpholino-propan-1-one (Omnirad 907) and 1.3 parts by mass of Omnirad TPO. .
  • a primary resin layer with a thickness of 17.5 ⁇ m is formed using resin composition P on the outer periphery of a glass fiber with a diameter of 125 ⁇ m consisting of a core and a cladding, and a secondary resin layer with a thickness of 15 ⁇ m is further formed on the outer periphery using resin composition S.
  • a resin layer was formed to produce an optical fiber.
  • a colored resin layer with a thickness of 5 ⁇ m was formed on the outer periphery of the secondary resin layer using the resin compositions of Test Examples 1 to 7 while rewinding the optical fiber using a coloring machine.
  • An optical fiber having a diameter of 200 ⁇ m (hereinafter referred to as "colored optical fiber") having a colored resin layer was produced.
  • the linear speed when forming each resin layer was 1500 m/min.
  • optical fiber ribbon Four colored optical fibers were prepared, coated with resin composition R for ribbons, and then cured by irradiation with ultraviolet rays to form a connecting resin layer to produce an optical fiber ribbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

This resin composition for a colored coating of an optical fiber contains a photopolymerizable compound, a photopolymerization initiator and a polydimethylsiloxane compound. The amount of silicon atoms contained in the polydimethylsiloxane compound is 5-40 mass% relative to the amount of the polydimethylsiloxane compound.

Description

光ファイバ着色被覆用の樹脂組成物、光ファイバ、及び光ファイバリボンResin composition for colored coating of optical fiber, optical fiber, and optical fiber ribbon
 本開示は、光ファイバ着色被覆用の樹脂組成物、光ファイバ、及び光ファイバリボンに関する。
 本出願は、2022年8月26日出願の日本出願第2022-134775号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a resin composition for colored coating of an optical fiber, an optical fiber, and an optical fiber ribbon.
This application claims priority based on Japanese Application No. 2022-134775 filed on August 26, 2022, and incorporates all the contents described in the said Japanese application.
 一般に、光ファイバは、光伝送体であるガラスファイバを保護するための被覆樹脂層を有している。被覆樹脂層は、例えば、プライマリ樹脂層及びセカンダリ樹脂層を有している。被覆樹脂層の最外層は、光ファイバの識別のための着色樹脂層から構成される(例えば、特許文献1~3参照。)。 Generally, an optical fiber has a coating resin layer for protecting the glass fiber that is an optical transmission body. The coating resin layer includes, for example, a primary resin layer and a secondary resin layer. The outermost layer of the coating resin layer is composed of a colored resin layer for identifying the optical fiber (see, for example, Patent Documents 1 to 3).
特開平6-242355号公報Japanese Patent Application Publication No. 6-242355 特開2003-279811号公報JP2003-279811A 国際公開第2016/047002号International Publication No. 2016/047002
 本開示の一態様に係る光ファイバ着色被覆用の樹脂組成物は、光重合性化合物と、光重合開始剤と、ポリジメチルシロキサン化合物と、を含有し、ポリジメチルシロキサン化合物に含まれるケイ素原子の量が、前記ポリジメチルシロキサン化合物の量を基準として5質量%以上40質量%以下である。 A resin composition for colored coating of an optical fiber according to one aspect of the present disclosure contains a photopolymerizable compound, a photoinitiator, and a polydimethylsiloxane compound, and the resin composition contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound. The amount is 5% by mass or more and 40% by mass or less based on the amount of the polydimethylsiloxane compound.
図1は、本実施形態に係る光ファイバの一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of an optical fiber according to this embodiment. 図2は、本実施形態に係る光ファイバの一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the optical fiber according to this embodiment. 図3は、本実施形態に係る光ファイバリボンの一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of the optical fiber ribbon according to this embodiment.
[本開示が解決しようとする課題]
 光ファイバは、光ファイバを複数本並べてリボン用樹脂により一体化した光ファイバリボンの形態で使用されることがある。着色樹脂層を有する光ファイバを使用した光ファイバリボンでは、リボン材を除去して光ファイバを取り出す作業をする際に、着色樹脂層が光ファイバから剥がれてしまう現象、いわゆる「色剥がれ」が生じることがある。特に着色樹脂層を形成する際の線速を速くすると、色剥がれが生じ易くなる。
[Problems that this disclosure seeks to solve]
Optical fibers are sometimes used in the form of an optical fiber ribbon, in which a plurality of optical fibers are arranged and integrated using a ribbon resin. In optical fiber ribbons that use optical fibers with colored resin layers, when removing the ribbon material to take out the optical fibers, a phenomenon known as "color peeling" occurs in which the colored resin layers peel off from the optical fibers. Sometimes. In particular, if the linear speed when forming the colored resin layer is increased, color peeling is likely to occur.
 本開示は、色剥がれが生じ難い光ファイバを作製することができる光ファイバの着色被覆用の樹脂組成物、光ファイバ、及び光ファイバリボンを提供することを目的とする。 An object of the present disclosure is to provide a resin composition for colored coating of an optical fiber, an optical fiber, and an optical fiber ribbon, which can produce an optical fiber that does not easily cause color peeling.
[本開示の効果]
 本開示によれば、色剥がれが生じ難い光ファイバを作製することができる樹脂組成物、光ファイバの着色被覆材料、光ファイバ、及び光ファイバリボンを提供することができる。
[Effects of this disclosure]
According to the present disclosure, it is possible to provide a resin composition, a colored coating material for an optical fiber, an optical fiber, and an optical fiber ribbon that can produce an optical fiber that does not easily cause color peeling.
[本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
 (1)本開示の一態様に係る光ファイバ着色被覆用の樹脂組成物は、光重合性化合物と、光重合開始剤と、ポリジメチルシロキサン化合物と、を含有し、ポリジメチルシロキサン化合物に含まれるケイ素原子の量が、前記ポリジメチルシロキサン化合物の量を基準として5質量%以上40質量%以下である。
[Description of embodiments of the present disclosure]
First, the contents of the embodiments of the present disclosure will be listed and explained.
(1) A resin composition for colored coating of an optical fiber according to one embodiment of the present disclosure contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound, and contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound. The amount of silicon atoms is 5% by mass or more and 40% by mass or less based on the amount of the polydimethylsiloxane compound.
 このような樹脂組成物は、ポリジメチルシロキサン化合物を用い、かつ、ポリジメチルシロキサン化合物に含まれるケイ素原子の量を特定の範囲とすることで、色剥がれが生じ難い光ファイバを作製することができる。 In such a resin composition, by using a polydimethylsiloxane compound and controlling the amount of silicon atoms contained in the polydimethylsiloxane compound within a specific range, it is possible to produce an optical fiber that does not easily cause color peeling. .
 (2)上記(1)において、光重合性化合物との相溶性を向上する観点から、ポリジメチルシロキサン化合物が、(メタ)アクリロイル基を有してもよい。 (2) In the above (1), the polydimethylsiloxane compound may have a (meth)acryloyl group from the viewpoint of improving compatibility with the photopolymerizable compound.
 (3)上記(1)又は(2)において、樹脂層の強度を高める観点から、前記光重合性化合物は、エポキシジ(メタ)アクリレートを含んでもよい。 (3) In (1) or (2) above, the photopolymerizable compound may include epoxy di(meth)acrylate from the viewpoint of increasing the strength of the resin layer.
 (4)上記(1)から(3)のいずれかにおいて、樹脂層を着色する観点から、本実施形態に係る樹脂組成物は、酸化チタンを更に含有してもよい。 (4) In any one of (1) to (3) above, the resin composition according to the present embodiment may further contain titanium oxide from the viewpoint of coloring the resin layer.
 (5)本開示の一態様に係る光ファイバは、コア及びクラッドを含むガラスファイバと、ガラスファイバに接して該ガラスファイバを被覆するプライマリ樹脂層と、プライマリ樹脂層を被覆するセカンダリ樹脂層と、セカンダリ樹脂層を被覆する着色樹脂層と、を備え、着色樹脂層が、上記(1)から(4)のいずれかに記載の樹脂組成物の硬化物を含む。本実施形態に係る樹脂組成物を着色樹脂層に適用することで、色剥がれが生じることなく、光ファイバの湿熱耐性を向上することができる。 (5) An optical fiber according to one aspect of the present disclosure includes a glass fiber including a core and a cladding, a primary resin layer that contacts the glass fiber and covers the glass fiber, and a secondary resin layer that covers the primary resin layer. a colored resin layer covering the secondary resin layer, the colored resin layer containing a cured product of the resin composition according to any one of (1) to (4) above. By applying the resin composition according to the present embodiment to the colored resin layer, the resistance to humidity and heat of the optical fiber can be improved without causing color peeling.
 (6)本開示の一態様に係る光ファイバは、コア及びクラッドを含むガラスファイバと、ガラスファイバに接して該ガラスファイバを被覆するプライマリ樹脂層と、プライマリ樹脂層を被覆するセカンダリ樹脂層と、を備え、セカンダリ樹脂層が、上記(1)から(4)のいずれかに記載の樹脂組成物の硬化物を含む。本実施形態に係る樹脂組成物をセカンダリ樹脂層に適用することで、色剥がれが生じることなく、光ファイバの湿熱耐性を向上することができる。 (6) An optical fiber according to one aspect of the present disclosure includes a glass fiber including a core and a cladding, a primary resin layer that contacts the glass fiber and covers the glass fiber, and a secondary resin layer that covers the primary resin layer. The secondary resin layer contains a cured product of the resin composition according to any one of (1) to (4) above. By applying the resin composition according to this embodiment to the secondary resin layer, the resistance to humidity and heat of the optical fiber can be improved without causing color peeling.
 (7)本開示の一態様に係る光ファイバリボンは、上記(5)又は(6)に記載の光ファイバが複数並列され、リボン用樹脂で被覆されている。このような光ファイバリボンは、光ファイバを取り出す作業をする際に色剥がれが生じることがなく、光ファイバを容易に識別することができる。 (7) In an optical fiber ribbon according to one aspect of the present disclosure, a plurality of the optical fibers described in (5) or (6) above are arranged in parallel and coated with ribbon resin. Such an optical fiber ribbon does not cause color peeling when the optical fibers are taken out, and the optical fibers can be easily identified.
[本開示の実施形態の詳細]
 本開示の実施形態に係る樹脂組成物及び光ファイバの具体例を、必要により図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されず、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本明細書における(メタ)アクリレートとは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリロイル等の他の類似表現についても同様である。
[Details of embodiments of the present disclosure]
Specific examples of the resin composition and optical fiber according to embodiments of the present disclosure will be described with reference to the drawings as necessary. Note that the present disclosure is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims. In the following description, the same elements are given the same reference numerals in the description of the drawings, and redundant description will be omitted. (Meth)acrylate in this specification means acrylate or a methacrylate corresponding thereto. The same applies to other similar expressions such as (meth)acryloyl.
(樹脂組成物)
 本実施形態に係る光ファイバ着色被覆用の樹脂組成物は、光重合性化合物と、光重合開始剤と、ポリジメチルシロキサン化合物と、を含有し、ポリジメチルシロキサン化合物に含まれるケイ素原子の量が、ポリジメチルシロキサン化合物の量(100質量%)を基準として5質量%以上40質量%以下である。
(Resin composition)
The resin composition for colored coating of optical fibers according to the present embodiment contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound, and the amount of silicon atoms contained in the polydimethylsiloxane compound is , 5% by mass or more and 40% by mass or less based on the amount of polydimethylsiloxane compound (100% by mass).
 ポリジメチルシロキサン化合物は、主鎖中にケイ素原子に結合した2つのメチル基と酸素原子から構成されるジメチルシロキサン骨格(-Si(CHO-)を繰り返し単位として有する化合物である。ケイ素原子(Si)の量が5質量%以上40質量%以下であるポリジメチルシロキサン化合物を用いることで、色剥がれを低減することができる。 A polydimethylsiloxane compound is a compound having, as a repeating unit, a dimethylsiloxane skeleton (-Si(CH 3 ) 2 O-) composed of two methyl groups bonded to a silicon atom and an oxygen atom in its main chain. By using a polydimethylsiloxane compound in which the amount of silicon atoms (Si) is 5% by mass or more and 40% by mass or less, color peeling can be reduced.
 ポリジメチルシロキサン化合物に含まれるSiの量は、ポリジメチルシロキサン化合物の誘導結合プラズマ発光分光分析(ICP-OES)により測定することができる。Si量は、色剥がれをより抑制する観点から、8質量%以上、10質量%以上、14質量%以上、又は16質量%以上であってもよい。また、Si量は、樹脂組成物の安定性を向上する観点から、38質量%以下、36質量%以下、34質量%以下、又は32質量%以下であってもよい。 The amount of Si contained in the polydimethylsiloxane compound can be measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) of the polydimethylsiloxane compound. From the viewpoint of further suppressing color peeling, the amount of Si may be 8% by mass or more, 10% by mass or more, 14% by mass or more, or 16% by mass or more. Moreover, the amount of Si may be 38 mass% or less, 36 mass% or less, 34 mass% or less, or 32 mass% or less from the viewpoint of improving the stability of the resin composition.
 樹脂組成物の安定性を向上する観点から、ポリジメチルシロキサン化合物は、(メタ)アクリロイル基を有してもよい。ポリジメチルシロキサン化合物は、(メタ)アクリロイル基を側鎖又は末端に有していてもよい。(メタ)アクリロイル基を有するポリジメチルシロキサン化合物は、後述する光重合性化合物と共重合することができる。本実施形態において、(メタ)アクリロイル基を有するポリジメチルシロキサン化合物は、光重合性化合物には含めない。ポリジメチルシロキサン化合物が有する(メタ)アクリロイル基の数は、1以上又は2以上であってもよく、10以下又は8以下であってもよい。ポリジメチルシロキサン化合物は、樹脂組成物の安定性をより向上すると共に、着色樹脂層の色剥がれをより低減する観点から、(メタ)アクリロイル基を2以上8以下有し、Si量が14質量%以上36質量%以下であってもよい。 From the viewpoint of improving the stability of the resin composition, the polydimethylsiloxane compound may have a (meth)acryloyl group. The polydimethylsiloxane compound may have a (meth)acryloyl group in the side chain or at the end. A polydimethylsiloxane compound having a (meth)acryloyl group can be copolymerized with a photopolymerizable compound described below. In this embodiment, a polydimethylsiloxane compound having a (meth)acryloyl group is not included in the photopolymerizable compounds. The number of (meth)acryloyl groups that the polydimethylsiloxane compound has may be 1 or more or 2 or more, or 10 or less or 8 or less. The polydimethylsiloxane compound has at least 2 (meth)acryloyl groups and at most 8, and has an Si content of 14% by mass, from the viewpoint of further improving the stability of the resin composition and further reducing the peeling of the colored resin layer. The content may be greater than or equal to 36% by mass.
 着色樹脂層とリボン用樹脂との密着力を制御する観点から、ポリジメチルシロキサン化合物の含有量は、ポリジメチルシロキサン化合物及び光重合性化合物の総量100質量部に対して、0.5質量部以上、1.0質量部以上、又は1.5質量部以上であってもよく、10.0質量部以下、8.0質量部以下、又は6.0質量部以下であってもよい。 From the viewpoint of controlling the adhesion between the colored resin layer and the ribbon resin, the content of the polydimethylsiloxane compound is 0.5 parts by mass or more based on 100 parts by mass of the total amount of the polydimethylsiloxane compound and the photopolymerizable compound. , 1.0 parts by mass or more, or 1.5 parts by mass or more, and may be 10.0 parts by mass or less, 8.0 parts by mass or less, or 6.0 parts by mass or less.
 本実施形態に係る光重合性化合物は、ジメチルシロキサン骨格を有しない点で、(メタ)アクリロイル基を有するポリジメチルシロキサン化合物と区別される。樹脂層の強度を高める観点から、光重合性化合物は、エポキシジ(メタ)アクリレートを含んでもよい。エポキシジ(メタ)アクリレートとしては、ビスフェノール骨格を有するジグリシジルエーテル化合物と、(メタ)アクリル酸等の(メタ)アクリロイル基を有する化合物との反応物を用いることができる。 The photopolymerizable compound according to this embodiment is distinguished from a polydimethylsiloxane compound having a (meth)acryloyl group in that it does not have a dimethylsiloxane skeleton. From the viewpoint of increasing the strength of the resin layer, the photopolymerizable compound may include epoxy di(meth)acrylate. As the epoxy di(meth)acrylate, a reaction product of a diglycidyl ether compound having a bisphenol skeleton and a compound having a (meth)acryloyl group such as (meth)acrylic acid can be used.
 エポキシジ(メタ)アクリレートとしては、例えば、ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物、ビスフェノールAFジグリシジルエーテルの(メタ)アクリル酸付加物、及びビスフェノールFジグリシジルエーテルの(メタ)アクリル酸付加物が挙げられる。 Examples of epoxy di(meth)acrylates include (meth)acrylic acid adducts of bisphenol A diglycidyl ether, (meth)acrylic acid adducts of bisphenol AF diglycidyl ether, and (meth)acrylic acid adducts of bisphenol F diglycidyl ether. Examples include adducts.
 樹脂層の強度をより高める観点から、エポキシジ(メタ)アクリレートの含有量は、ポリジメチルシロキサン化合物及び光重合性化合物の総量100質量部に対して、30質量部以上、40質量部以上、又は45質量部以上であってもよく、70質量部以下、65質量部以下、又は60質量部以下であってもよい。 From the viewpoint of further increasing the strength of the resin layer, the content of epoxy di(meth)acrylate is 30 parts by mass or more, 40 parts by mass or more, or 45 parts by mass or more with respect to 100 parts by mass of the total amount of the polydimethylsiloxane compound and the photopolymerizable compound. The amount may be greater than or equal to 70 parts by mass, less than 65 parts by mass, or less than 60 parts by mass.
 本実施形態に係る光重合性化合物は、エポキシジ(メタ)アクリレート以外の光重合性化合物(以下、「モノマー」という。)を更に含むことができる。 The photopolymerizable compound according to the present embodiment can further include a photopolymerizable compound (hereinafter referred to as a "monomer") other than epoxy di(meth)acrylate.
 モノマーとしては、重合性基を1つ有する単官能モノマー、重合性基を2つ以上有する多官能モノマーを用いることができる。モノマーは、2種以上を混合して用いてもよい。 As the monomer, a monofunctional monomer having one polymerizable group and a polyfunctional monomer having two or more polymerizable groups can be used. A mixture of two or more monomers may be used.
 単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、3-フェノキシベンジルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、4-tert-ブチルシクロヘキサノールアクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ノニルフェノールポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、イソボルニル(メタ)アクリレート等の(メタ)アクリレート系モノマー;(メタ)アクリル酸、(メタ)アクリル酸ダイマー、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(メタ)アクリレート等のカルボキシ基含有モノマー;N-(メタ)アクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N-(メタ)アクリロイルピペリジン、N-(メタ)アクリロイルピロリジン、3-(3-ピリジン)プロピル(メタ)アクリレート、環状トリメチロールプロパンホルマールアクリレート等の複素環含有モノマー;マレイミド、N-シクロへキシルマレイミド、N-フェニルマレイミド等のマレイミド系モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド等のアミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸tert-ブチルアミノエチル等の(メタ)アクリル酸アミノアルキル系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマーが挙げられる。 Examples of monofunctional monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, s-butyl (meth)acrylate, tert-butyl (meth)acrylate, Isobutyl (meth)acrylate, n-pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, isoamyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, 3-phenoxybenzyl acrylate, phenoxydiethylene glycol acrylate, phenoxypolyethylene glycol acrylate, 4-tert -Butylcyclohexanol acrylate, tetrahydrofurfuryl (meth)acrylate, benzyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, nonylphenol polyethylene glycol (Meth)acrylate monomers such as (meth)acrylate, nonylphenoxy polyethylene glycol (meth)acrylate, isobornyl (meth)acrylate; (meth)acrylic acid, (meth)acrylic acid dimer, carboxyethyl (meth)acrylate, carboxypentyl Carboxy group-containing monomers such as (meth)acrylate, ω-carboxy-polycaprolactone (meth)acrylate; N-(meth)acryloylmorpholine, N-vinylpyrrolidone, N-vinylcaprolactam, N-(meth)acryloylpiperidine, N- Heterocycle-containing monomers such as (meth)acryloylpyrrolidine, 3-(3-pyridine)propyl (meth)acrylate, and cyclic trimethylolpropane formal acrylate; Maleimide monomers such as maleimide, N-cyclohexylmaleimide, and N-phenylmaleimide (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-hexyl(meth)acrylamide, N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, Amide monomers such as N-butyl (meth)acrylamide, N-methylol (meth)acrylamide, N-methylolpropane (meth)acrylamide; aminoethyl (meth)acrylate, aminopropyl (meth)acrylate, (meth)acrylate Aminoalkyl (meth)acrylate monomers such as N,N-dimethylaminoethyl acid and tert-butylaminoethyl (meth)acrylate; N-(meth)acryloyloxymethylene succinimide, N-(meth)acryloyl-6- Examples include succinimide monomers such as oxyhexamethylene succinimide and N-(meth)acryloyl-8-oxyoctamethylene succinimide.
 多官能モノマーとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールFジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、1,14-テトラデカンジオールジ(メタ)アクリレート、1,16-ヘキサデカンジオールジ(メタ)アクリレート、1,20-エイコサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、イソペンチルジオールジ(メタ)アクリレート、3-エチル-1,8-オクタンジオールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパンポリプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシポリプロポキシトリ(メタ)アクリレート、トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリプロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、及びカプロラクトン変性トリス[(メタ)アクリロイルオキシエチル]イソシアヌレートが挙げられる。 Examples of polyfunctional monomers include polyethylene glycol di(meth)acrylate, isocyanuric acid ethylene oxide-modified di(meth)acrylate, ethylene oxide-modified bisphenol F di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, and polypropylene. Glycol di(meth)acrylate, propylene oxide modified bisphenol A di(meth)acrylate, propylene oxide modified neopentyl glycol di(meth)acrylate, polytetraethylene glycol di(meth)acrylate, hydroxypivalic acid neopentyl glycol di(meth)acrylate Acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, 1,14-tetradecanediol di(meth)acrylate, 1,16-hexadecanediol di(meth)acrylate, 1,20-eicosanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, isopentyl diol di(meth)acrylate (meth)acrylate, 3-ethyl-1,8-octanediol di(meth)acrylate; trimethylolpropane tri(meth)acrylate, trimethyloloctane tri(meth)acrylate, trimethylolpropane polyethoxytri(meth)acrylate, Trimethylolpropane polypropoxy tri(meth)acrylate, trimethylolpropane polyethoxypolypropoxy tri(meth)acrylate, tris[(meth)acryloyloxyethyl]isocyanurate, pentaerythritol tri(meth)acrylate, pentaerythritol polyethoxytetra( meth)acrylate, pentaerythritol polypropoxytetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, di Examples include pentaerythritol hexa(meth)acrylate and caprolactone-modified tris[(meth)acryloyloxyethyl]isocyanurate.
 本実施形態に係る光重合性化合物は、樹脂層のヤング率を調整する観点から、アルキレンオキサイド変性された多官能モノマーを含んでもよい。アルキレンオキサイド変性された多官能モノマーは、エチレンオキサイド(EO)鎖及びプロピレンオキサイド(PO)鎖からなる群より選ばれる少なくとも1種を有してもよい。エチレンオキサイド鎖を「(EO)n」、プロピレンオキサイド鎖を「(PO)n」と表すことができる。nは1以上の整数であり、2以上又は3以上であってもよく、30以下、25以下、又は20以下であってもよい。 The photopolymerizable compound according to the present embodiment may contain an alkylene oxide-modified polyfunctional monomer from the viewpoint of adjusting the Young's modulus of the resin layer. The alkylene oxide-modified polyfunctional monomer may have at least one type selected from the group consisting of ethylene oxide (EO) chains and propylene oxide (PO) chains. An ethylene oxide chain can be represented as "(EO)n", and a propylene oxide chain can be represented as "(PO)n". n is an integer of 1 or more, may be 2 or more, or 3 or more, and may be 30 or less, 25 or less, or 20 or less.
 アルキレンオキサイド変性ジ(メタ)アクリレートとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールFジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレートポリプロピレングリコールジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、及びプロピレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレートが挙げられる。 Examples of alkylene oxide-modified di(meth)acrylates include polyethylene glycol di(meth)acrylate, isocyanuric acid ethylene oxide-modified di(meth)acrylate, ethylene oxide-modified bisphenol F di(meth)acrylate, and ethylene oxide-modified bisphenol A di(meth)acrylate. Meth)acrylates include polypropylene glycol di(meth)acrylate, propylene oxide-modified bisphenol A di(meth)acrylate, and propylene oxide-modified neopentyl glycol di(meth)acrylate.
 アルキレンオキサイド変性トリ(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパンポリプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシポリプロポキシトリ(メタ)アクリレート、トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート、及びペンタエリスリトールトリ(メタ)アクリレートが挙げられる。 Examples of alkylene oxide-modified tri(meth)acrylates include trimethylolpropane tri(meth)acrylate, trimethyloloctane tri(meth)acrylate, trimethylolpropane polyethoxytri(meth)acrylate, and trimethylolpropane polypropoxytri(meth)acrylate. ) acrylate, trimethylolpropane polyethoxypolypropoxy tri(meth)acrylate, tris[(meth)acryloyloxyethyl]isocyanurate, and pentaerythritol tri(meth)acrylate.
 光重合開始剤は、公知のラジカル光重合開始剤の中から適宜選択して使用することができる。光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン(Omnirad 184、IGM Resins社製)、2,2-ジメトキシ-2-フェニルアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン(Omnirad 907、IGM Resins社製)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(Omnirad TPO、IGM Resins社製)、及びビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(Omnirad 819、IGM Resins社製)が挙げられる。 The photopolymerization initiator can be appropriately selected from known radical photopolymerization initiators. Examples of the photopolymerization initiator include 1-hydroxycyclohexylphenylketone (Omnirad 184, manufactured by IGM Resins), 2,2-dimethoxy-2-phenylacetophenone, 1-(4-isopropylphenyl)-2-hydroxy-2 -Methylpropan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propane- 1-one (Omnirad 907, manufactured by IGM Resins), 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Omnirad TPO, manufactured by IGM Resins), and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide ( Omnirad 819, manufactured by IGM Resins).
 光重合開始剤の含有量は、ポリジメチルシロキサン化合物及び光重合性化合物の総量100質量部に対して、1質量部以上10質量部以下、2質量部以上8質量部以下、又は3質量部以上7質量部以下であってもよい。 The content of the photopolymerization initiator is 1 part by mass or more and 10 parts by mass or less, 2 parts by mass or more and 8 parts by mass or less, or 3 parts by mass or more, based on 100 parts by mass of the total amount of the polydimethylsiloxane compound and the photopolymerizable compound. It may be 7 parts by mass or less.
 樹脂組成物は、シランカップリング剤、レベリング剤、消泡剤、酸化防止剤、増感剤等を更に含有してもよい。 The resin composition may further contain a silane coupling agent, a leveling agent, an antifoaming agent, an antioxidant, a sensitizer, and the like.
 シランカップリング剤は、樹脂組成物の硬化の妨げにならなければ、特に限定されない。シランカップリング剤としては、例えば、テトラメチルシリケート、テトラエチルシリケート、メルカプトプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、3-アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、ビス-[3-(トリエトキシシリル)プロピル]テトラスルフィド、ビス-[3-(トリエトキシシリル)プロピル]ジスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、及びγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが挙げられる。 The silane coupling agent is not particularly limited as long as it does not interfere with curing of the resin composition. Examples of the silane coupling agent include tetramethylsilicate, tetraethylsilicate, mercaptopropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxy-ethoxy)silane, β-(3,4-epoxycyclohexyl) )-Ethyltrimethoxysilane, dimethoxydimethylsilane, diethoxydimethylsilane, 3-acryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-methacryloxy Propyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane , γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, bis-[3-(triethoxysilyl)propyl]tetrasulfide, bis-[3-(triethoxysilyl) propyl] disulfide, γ-trimethoxysilylpropyl dimethylthiocarbamyl tetrasulfide, and γ-trimethoxysilylpropyl benzothiazyl tetrasulfide.
 樹脂層を着色する観点から、本実施形態に係る樹脂組成物は、酸化チタン粒子を更に含有することができる。酸化チタン粒子としては、表面処理酸化チタン粒子を用いてもよい。表面処理酸化チタン粒子は、酸化チタンが無機物により表面処理が施された粒子であり、樹脂組成物中の分散性に優れている。 From the viewpoint of coloring the resin layer, the resin composition according to this embodiment can further contain titanium oxide particles. As the titanium oxide particles, surface-treated titanium oxide particles may be used. Surface-treated titanium oxide particles are titanium oxide particles that have been surface-treated with an inorganic substance, and have excellent dispersibility in a resin composition.
 表面処理に用いる無機物としては、例えば、酸化アルミニウム、二酸化ケイ素、及び二酸化ジルコニウムが挙げられる。表面処理酸化チタン粒子が、酸化アルミニウム、二酸化ケイ素、及び二酸化ジルコニウムからなる群より選ばれる少なくとも1種を含む表面処理層を有することで、分散性をより向上することができる。表面処理層は、酸化チタンの表面の少なくとも一部に形成されてよく、酸化チタンの全表面に形成されていてもよい。表面処理層は、酸化チタンの表面処理によって形成されたものである。 Examples of inorganic substances used for surface treatment include aluminum oxide, silicon dioxide, and zirconium dioxide. When the surface-treated titanium oxide particles have a surface-treated layer containing at least one member selected from the group consisting of aluminum oxide, silicon dioxide, and zirconium dioxide, dispersibility can be further improved. The surface treatment layer may be formed on at least a portion of the surface of titanium oxide, or may be formed on the entire surface of titanium oxide. The surface treatment layer is formed by surface treatment of titanium oxide.
 表面処理酸化チタン粒子における表面処理層の量は、分散性を向上する観点から、1質量%以上、1.5質量%以上、又は2質量%以上であってもよく、隠蔽力を高める観点から、10質量%以下、9質量%以下、又は8質量%以下であってもよい。表面処理層の量は、誘導結合質量分析(ICP-MS)を用いて、表面処理酸化チタン粒子に含まれるチタン元素及びチタン以外の無機物の元素の量を測定することで算出することができる。 The amount of the surface treatment layer in the surface-treated titanium oxide particles may be 1% by mass or more, 1.5% by mass or more, or 2% by mass or more from the viewpoint of improving dispersibility, and from the viewpoint of increasing hiding power. , 10% by mass or less, 9% by mass or less, or 8% by mass or less. The amount of the surface treatment layer can be calculated by measuring the amount of titanium element and inorganic elements other than titanium contained in the surface treated titanium oxide particles using inductively coupled mass spectrometry (ICP-MS).
 表面処理酸化チタン粒子の平均一次粒径は、被覆樹脂層の側圧耐性を向上する観点から、300nm以下、295nm以下、又は290nm以下であってもよい。表面処理酸化チタン粒子の平均一次粒径は、隠蔽力を高める観点から、100nm以上、150nm以上、又は200nm以上であってもよく、200nm以上300nm以下であってもよい。平均一次粒径は、例えば、電子顕微鏡写真の画像解析、光散乱法、BET法等によって測定することができる。 The average primary particle size of the surface-treated titanium oxide particles may be 300 nm or less, 295 nm or less, or 290 nm or less, from the viewpoint of improving the lateral pressure resistance of the coating resin layer. The average primary particle size of the surface-treated titanium oxide particles may be 100 nm or more, 150 nm or more, or 200 nm or more, or 200 nm or more and 300 nm or less, from the viewpoint of increasing hiding power. The average primary particle size can be measured, for example, by image analysis of electron micrographs, light scattering method, BET method, etc.
 表面処理酸化チタン粒子の含有量は、樹脂層の視認性を向上する観点から、樹脂組成物の総量を基準として0.6質量%以上、1質量%以上、2質量%以上、又は3質量%以上であってもよい。表面処理酸化チタン粒子の含有量は、樹脂組成物の硬化性を高める観点から、樹脂組成物の総量を基準として20質量%以下、15質量%以下、10質量%以下、又は8質量%以下であってもよい。 From the viewpoint of improving the visibility of the resin layer, the content of the surface-treated titanium oxide particles is 0.6% by mass or more, 1% by mass or more, 2% by mass or more, or 3% by mass based on the total amount of the resin composition. It may be more than that. From the viewpoint of increasing the curability of the resin composition, the content of the surface-treated titanium oxide particles is 20% by mass or less, 15% by mass or less, 10% by mass or less, or 8% by mass or less based on the total amount of the resin composition. There may be.
 本実施形態に係る樹脂組成物を900mJ/cm以上1100mJ/cm以下の積算光量で硬化させた樹脂フィルムの破断伸びは、23℃で6%以上50%以下であると、靱性に優れる樹脂層を形成することできる。樹脂フィルムの破断伸びは、6.5%以上、7%以上、又は10%以上であってもよく、45%以下、40%以下、又は30%以下であってもよい。 If the elongation at break of the resin film obtained by curing the resin composition according to the present embodiment with an integrated light amount of 900 mJ/cm 2 or more and 1100 mJ/cm 2 or less is 6% or more and 50% or less at 23°C, the resin has excellent toughness. A layer can be formed. The elongation at break of the resin film may be 6.5% or more, 7% or more, or 10% or more, and may be 45% or less, 40% or less, or 30% or less.
 光ファイバの湿熱耐性をより向上する観点から、樹脂フィルムのヤング率は、23℃で400MPa以上、450MPa以上、又は500MPa以上であってもよい。靱性に優れる樹脂層を形成する観点から、樹脂フィルムのヤング率は、23℃で1500MPa以下、1200MPa以下、又は1000MPa以下であってもよい。 From the viewpoint of further improving the wet heat resistance of the optical fiber, the Young's modulus of the resin film may be 400 MPa or more, 450 MPa or more, or 500 MPa or more at 23°C. From the viewpoint of forming a resin layer with excellent toughness, the Young's modulus of the resin film may be 1500 MPa or less, 1200 MPa or less, or 1000 MPa or less at 23°C.
 本実施形態に係る樹脂組成物は、光ファイバの着色被覆材料として好適に用いることができる。本実施形態に係る樹脂組成物を含む着色被覆材料を用いて被覆樹脂層の最外層を形成することで、光ファイバの湿熱耐性を向上することができる。 The resin composition according to this embodiment can be suitably used as a colored coating material for optical fibers. By forming the outermost layer of the coating resin layer using a colored coating material containing the resin composition according to this embodiment, the resistance to wet heat of the optical fiber can be improved.
(光ファイバ)
 図1は、一実施形態に係る光ファイバの構成を示す概略断面図である。図1に示されるように、光ファイバ1は、ガラスファイバ10と、ガラスファイバ10に接してガラスファイバ10の外周を覆う被覆樹脂層20とを備えている。
(optical fiber)
FIG. 1 is a schematic cross-sectional view showing the configuration of an optical fiber according to one embodiment. As shown in FIG. 1, the optical fiber 1 includes a glass fiber 10 and a coating resin layer 20 that is in contact with the glass fiber 10 and covers the outer periphery of the glass fiber 10.
 ガラスファイバ10は、光ファイバ1に導入された光を伝送する導光性の光伝送体である。ガラスファイバ10は、ガラス製の部材であって、例えば、シリカ(SiO)ガラスを基材(主成分)として構成される。ガラスファイバ10は、コア12と、コア12を覆うクラッド14とを備えている。ガラスファイバ10は、光ファイバ1に導入された光を伝送する。コア12は、例えば、ガラスファイバ10の中心軸線を含む領域に設けられている。コア12は、例えば、純SiOガラス、又は、SiOガラスにGeO及び/又はフッ素元素等が含まれたものからなっている。クラッド14は、コア12を囲む領域に設けられている。クラッド14は、コア12の屈折率より低い屈折率を有している。クラッド14は、例えば、純SiOガラス、又はフッ素元素が添加されたSiOガラスからなっている。ガラスファイバ10の外径は100μmから125μm程度であり、ガラスファイバ10を構成するコア12の直径は、7μmから15μm程度である。 The glass fiber 10 is a light-guiding optical transmission body that transmits the light introduced into the optical fiber 1. The glass fiber 10 is a member made of glass, and is configured using, for example, silica (SiO 2 ) glass as a base material (main component). The glass fiber 10 includes a core 12 and a cladding 14 that covers the core 12. Glass fiber 10 transmits the light introduced into optical fiber 1. The core 12 is provided, for example, in a region including the central axis of the glass fiber 10. The core 12 is made of, for example, pure SiO 2 glass or SiO 2 glass containing GeO 2 and/or fluorine element. The cladding 14 is provided in a region surrounding the core 12. The cladding 14 has a refractive index lower than the refractive index of the core 12. The cladding 14 is made of, for example, pure SiO 2 glass or SiO 2 glass doped with fluorine element. The outer diameter of the glass fiber 10 is approximately 100 μm to 125 μm, and the diameter of the core 12 constituting the glass fiber 10 is approximately 7 μm to 15 μm.
 被覆樹脂層20は、クラッド14を覆う紫外線硬化型の樹脂層である。被覆樹脂層20は、ガラスファイバ10の外周を被覆するプライマリ樹脂層22と、プライマリ樹脂層22の外周を被覆するセカンダリ樹脂層24と、を備えている。プライマリ樹脂層22は、クラッド14の外周面に接しており、クラッド14の全体を被覆している。セカンダリ樹脂層24は、プライマリ樹脂層22の外周面に接しており、プライマリ樹脂層22の全体を被覆している。プライマリ樹脂層22の厚さは、例えば、10μm以上50μm以下である。セカンダリ樹脂層24の厚さは、例えば、10μm以上40μm以下である。 The coating resin layer 20 is an ultraviolet curing resin layer that covers the cladding 14. The coating resin layer 20 includes a primary resin layer 22 that covers the outer periphery of the glass fiber 10 and a secondary resin layer 24 that covers the outer periphery of the primary resin layer 22. The primary resin layer 22 is in contact with the outer peripheral surface of the clad 14 and covers the entire clad 14. The secondary resin layer 24 is in contact with the outer peripheral surface of the primary resin layer 22 and covers the entire primary resin layer 22. The thickness of the primary resin layer 22 is, for example, 10 μm or more and 50 μm or less. The thickness of the secondary resin layer 24 is, for example, 10 μm or more and 40 μm or less.
 本実施形態に係る樹脂組成物は、セカンダリ樹脂層24に適用することができる。セカンダリ樹脂層24は、上記樹脂組成物を硬化させて形成することができる。セカンダリ樹脂層24は、本実施形態に係る樹脂組成物の硬化物を含むことにより、色剥がれが生じることなく、光ファイバの単心分離性及び湿熱耐性を向上することができる。 The resin composition according to this embodiment can be applied to the secondary resin layer 24. The secondary resin layer 24 can be formed by curing the resin composition. By containing the cured product of the resin composition according to the present embodiment, the secondary resin layer 24 can improve the single-fiber separability and resistance to moist heat of the optical fiber without causing color peeling.
 被覆樹脂層20は、セカンダリ樹脂層24の外周を被覆する着色樹脂層26を更に備えていてもよい。図2は、一実施形態に係る光ファイバの構成を示す概略断面図である。図2に示されるように、本実施形態の光ファイバ1Aは、ガラスファイバ10と、ガラスファイバ10に接してガラスファイバ10の外周を覆う被覆樹脂層20とを備えている。被覆樹脂層20は、プライマリ樹脂層22と、セカンダリ樹脂層24と、着色樹脂層26とを備えている。着色樹脂層26の厚さは、例えば3μm以上10μm以下である。 The coating resin layer 20 may further include a colored resin layer 26 that covers the outer periphery of the secondary resin layer 24. FIG. 2 is a schematic cross-sectional view showing the configuration of an optical fiber according to one embodiment. As shown in FIG. 2, the optical fiber 1A of this embodiment includes a glass fiber 10 and a coating resin layer 20 that is in contact with the glass fiber 10 and covers the outer periphery of the glass fiber 10. The coating resin layer 20 includes a primary resin layer 22, a secondary resin layer 24, and a colored resin layer 26. The thickness of the colored resin layer 26 is, for example, 3 μm or more and 10 μm or less.
 本実施形態に係る樹脂組成物は、着色樹脂層26に適用することができる。着色樹脂層26は、上記樹脂組成物を硬化させて形成することができる。着色樹脂層26は、本実施形態に係る樹脂組成物の硬化物を含むことにより、色剥がれが生じることなく、光ファイバの単心分離性及び湿熱耐性を向上することができる。光ファイバ1Aにおけるセカンダリ樹脂層24は、従来公知の樹脂組成物を用いて形成してよく、例えば、ウレタン(メタ)アクリレート、モノマー、及び光重合開始剤を含む樹脂組成物を硬化させて形成することができる。 The resin composition according to this embodiment can be applied to the colored resin layer 26. The colored resin layer 26 can be formed by curing the resin composition. By containing the cured product of the resin composition according to the present embodiment, the colored resin layer 26 can improve the single-fiber separability and wet heat resistance of the optical fiber without causing color peeling. The secondary resin layer 24 in the optical fiber 1A may be formed using a conventionally known resin composition, for example, by curing a resin composition containing urethane (meth)acrylate, a monomer, and a photopolymerization initiator. be able to.
 プライマリ樹脂層22は、例えば、ウレタン(メタ)アクリレート、モノマー、光重合開始剤、及びシランカップリング剤を含む樹脂組成物を硬化させて形成することができる。プライマリ樹脂層用の樹脂組成物は、従来公知の技術を用いることができる。 The primary resin layer 22 can be formed, for example, by curing a resin composition containing urethane (meth)acrylate, a monomer, a photopolymerization initiator, and a silane coupling agent. Conventionally known techniques can be used for the resin composition for the primary resin layer.
(光ファイバリボン)
 本実施形態に係る光ファイバを用いて光ファイバリボンを作製することができる。光ファイバリボンは、上記光ファイバが複数並列され、リボン用樹脂で被覆されている。
(optical fiber ribbon)
An optical fiber ribbon can be manufactured using the optical fiber according to this embodiment. The optical fiber ribbon has a plurality of the above-mentioned optical fibers arranged in parallel and is coated with a ribbon resin.
 図3は、本実施形態に係る光ファイバリボンを示す概略断面図である。光ファイバリボン100は、複数の光ファイバ1Aと、光ファイバ1Aがリボン用樹脂により被覆されて連結された連結樹脂層40とを有している。図3では、一例として4本の光ファイバが示されているが、その本数は特に限定されるものではない。 FIG. 3 is a schematic cross-sectional view showing the optical fiber ribbon according to this embodiment. The optical fiber ribbon 100 includes a plurality of optical fibers 1A and a connecting resin layer 40 in which the optical fibers 1A are coated with ribbon resin and connected. Although four optical fibers are shown as an example in FIG. 3, the number is not particularly limited.
 リボン用樹脂としては、一般にリボン材として知られている樹脂材料を用いることができる。リボン用樹脂は、光ファイバの損傷防止性、分断容易性等の観点から、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂等の熱硬化型樹脂、又は、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート等の紫外線硬化型樹脂を含有してもよい。 As the resin for the ribbon, a resin material generally known as a ribbon material can be used. Ribbon resins are thermosetting resins such as silicone resins, epoxy resins, and urethane resins, or ultraviolet curing resins such as epoxy acrylates, urethane acrylates, and polyester acrylates, from the viewpoint of preventing damage to the optical fibers and making them easy to split. It may also contain resin.
 本実施形態に係る光ファイバリボンは、上記光ファイバを用いることで、光ファイバリボンから連結樹脂層を除去して光ファイバを取り出す作業をする際に色剥がれが生じることがなく、光ファイバを容易に識別することができる。 By using the above-mentioned optical fibers, the optical fiber ribbon according to the present embodiment does not cause color peeling when removing the connecting resin layer from the optical fiber ribbon to take out the optical fibers, and it is easy to remove the optical fibers. can be identified.
 以下、本開示に係る実施例及び比較例を用いた評価試験の結果を示し、本開示を更に詳細に説明する。なお、本発明はこれら実施例に限定されない。 Hereinafter, the present disclosure will be explained in more detail by showing the results of evaluation tests using examples and comparative examples according to the present disclosure. Note that the present invention is not limited to these Examples.
[着色樹脂層用の樹脂組成物]
(ポリジメチルシロキサン化合物)
 表1に示すポリジメチルシロキサン化合物を準備した。ポリジメチルシロキサン化合物に含まれるSiの量は、ICP-OESにより以下の手順で測定した。まず、ポリジメチルシロキサン化合物0.1gにフッ酸2mL及び硝酸6mLを添加した後、マイクロウェーブ分解装置を用いて30分で200℃まで昇温し20分保持した後、常温まで降温することで、ポリジメチルシロキサン化合物の分解液を得た。次いで、分解液を超純水で10~100倍に希釈し試料を作製した。ICP発光分光分析装置(サーモフィッシャーサイエンティフィック株式会社製の「iCAP6300」)を用いて、試料中のSiを定量することで、ポリジメチルシロキサン化合物に含まれるSiの量を算出した。
[Resin composition for colored resin layer]
(Polydimethylsiloxane compound)
Polydimethylsiloxane compounds shown in Table 1 were prepared. The amount of Si contained in the polydimethylsiloxane compound was measured by ICP-OES according to the following procedure. First, after adding 2 mL of hydrofluoric acid and 6 mL of nitric acid to 0.1 g of a polydimethylsiloxane compound, the temperature was raised to 200 ° C. in 30 minutes using a microwave decomposition device, held for 20 minutes, and then lowered to room temperature. A decomposed solution of a polydimethylsiloxane compound was obtained. Next, the decomposition solution was diluted 10 to 100 times with ultrapure water to prepare a sample. The amount of Si contained in the polydimethylsiloxane compound was calculated by quantifying Si in the sample using an ICP emission spectrometer ("iCAP6300" manufactured by Thermo Fisher Scientific Co., Ltd.).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(光重合性化合物)
 光重合性化合物として、ビスフェノールAエポキシジアクリレート(EA)、トリプロピレングリコールジアクリレート(TPGDA)、EO変性トリメチロールプロパントリアクリレート(TMP(EO)TA)、EO変性ビスフェノールAジアクリレート(BPA(EO)30DA)を準備した。
(Photopolymerizable compound)
As photopolymerizable compounds, bisphenol A epoxy diacrylate (EA), tripropylene glycol diacrylate (TPGDA), EO modified trimethylolpropane triacrylate (TMP(EO) 3 TA), EO modified bisphenol A diacrylate (BPA(EO) ) 30 DA) was prepared.
 光重合開始剤として、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(Omnirad TPO)及び1-ヒドロキシシクロヘキシルフェニルケトン(Omnirad 184)を準備した。 As photopolymerization initiators, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Omnirad TPO) and 1-hydroxycyclohexylphenyl ketone (Omnirad 184) were prepared.
 酸化チタン粒子として、酸化アルミニウム(Al)を含む表面処理層を有する表面処理酸化チタン粒子を準備した。表面処理酸化チタン粒子の平均一次粒径は、200~300nmであり、ICP-MSの測定により算出されるAlの量は、2.5質量%であった。 As titanium oxide particles, surface-treated titanium oxide particles having a surface treatment layer containing aluminum oxide (Al 2 O 3 ) were prepared. The average primary particle size of the surface-treated titanium oxide particles was 200 to 300 nm, and the amount of Al 2 O 3 calculated by ICP-MS measurement was 2.5% by mass.
 表2に示す配合量(質量部)のポリジメチルシロキサン化合物、光重合性化合物、及び光重合開始剤を混合した後、樹脂組成物中の表面処理酸化チタン粒子の含有量が5質量%となるように混合して、樹脂組成物を調製した。試験例1~5が実施例に相当し、試験例6~7が比較例に相当する。 After mixing the polydimethylsiloxane compound, photopolymerizable compound, and photopolymerization initiator in the amounts (parts by mass) shown in Table 2, the content of surface-treated titanium oxide particles in the resin composition becomes 5% by mass. A resin composition was prepared by mixing as follows. Test Examples 1 to 5 correspond to Examples, and Test Examples 6 to 7 correspond to Comparative Examples.
(安定性)
 樹脂組成物を調製した後、25℃の恒温槽に入れて保管した。1日経過後に樹脂組成物の外観に変化がなかった場合を「A」、1日以内に樹脂組成物に相分離等が生じた場合を「B」と評価した。
(Stability)
After preparing the resin composition, it was stored in a constant temperature bath at 25°C. A case where there was no change in the appearance of the resin composition after one day was evaluated as "A", and a case where phase separation etc. occurred in the resin composition within one day were evaluated as "B".
(ヤング率)
 スピンコータを用いて、樹脂組成物をポリエチレンテレフタレート(PET)フィルムの上に塗布した後、無電極UVランプシステム(ヘレウス製の「VPS600(Dバルブ)」)を用いて、1000±100mJ/cmの条件で硬化させ、PETフィルム上に厚み50±5μmの樹脂層を形成した。樹脂層をPETフィルムから剥がし、樹脂フィルムを得た。
(Young's modulus)
After applying the resin composition onto a polyethylene terephthalate (PET) film using a spin coater, an electrodeless UV lamp system ("VPS600 (D bulb)" manufactured by Heraeus) was used to apply a resin composition of 1000±100 mJ/ cm2. The resin layer was cured under the following conditions to form a resin layer with a thickness of 50±5 μm on the PET film. The resin layer was peeled off from the PET film to obtain a resin film.
 樹脂フィルムをJIS K 7127 タイプ5号のダンベル形状に打ち抜き、23±2℃、50±10%RHの条件下で、引張試験機を用いて1mm/分の引張速度、標線間25mmの条件で引張り、応力-歪み曲線を得た。2.5%割線によりヤング率を求めた。 A resin film was punched into a JIS K 7127 type No. 5 dumbbell shape, and tested using a tensile tester at a tensile speed of 1 mm/min and a gauge line spacing of 25 mm under the conditions of 23 ± 2°C and 50 ± 10% RH. Tensile, stress-strain curves were obtained. Young's modulus was determined using the 2.5% secant line.
(プライマリ樹脂層用の樹脂組成物)
 分子量4000のポリプロピレングリコール、イソホロンジイソシアネート、ヒドロキシエチルアクリレート及びメタノールを反応させることにより得られるウレタンアクリレートオリゴマーを準備した。このウレタンアクリレートオリゴマーを75質量部、ノニルフェノールEO変性アクリレートを12質量部、N-ビニルカプロラクタムを6質量部、1,6-ヘキサンジオールジアクリレートを2質量部、Omnirad TPOを1質量部、及び3-メルカプトプロピルトリメトキシシランを1質量部混合して、樹脂組成物Pを調製した。
(Resin composition for primary resin layer)
A urethane acrylate oligomer obtained by reacting polypropylene glycol with a molecular weight of 4000, isophorone diisocyanate, hydroxyethyl acrylate, and methanol was prepared. 75 parts by mass of this urethane acrylate oligomer, 12 parts by mass of nonylphenol EO modified acrylate, 6 parts by mass of N-vinylcaprolactam, 2 parts by mass of 1,6-hexanediol diacrylate, 1 part by mass of Omnirad TPO, and 3- A resin composition P was prepared by mixing 1 part by mass of mercaptopropyltrimethoxysilane.
(セカンダリ樹脂層用の樹脂組成物)
 分子量600のポリプロピレングリコール、2,4-トリレンジイソシアネート及び2-ヒドロキシエチルアクリレートの反応物であるウレタンアクリレートオリゴマーを40質量部、イソボルニルアクリレートを35質量部、ビスフェノールAジグリシジルエーテルのアクリル酸付加物であるエポキシアクリレートを24質量部、及びOmnirad TPOを1質量部、Omnirad 184を1質量部混合して、樹脂組成物Sを調製した。
(Resin composition for secondary resin layer)
Acrylic acid addition of 40 parts by mass of urethane acrylate oligomer which is a reaction product of polypropylene glycol having a molecular weight of 600, 2,4-tolylene diisocyanate and 2-hydroxyethyl acrylate, 35 parts by mass of isobornyl acrylate, and bisphenol A diglycidyl ether. A resin composition S was prepared by mixing 24 parts by mass of epoxy acrylate, 1 part by mass of Omnirad TPO, and 1 part by mass of Omnirad 184.
(リボン用の樹脂組成物)
 ビスフェノールA・エチレンオキサイド付加ジオール、トリレンジイソシアネート及びヒドロキシエチルアクリレートの反応物であるウレタンアクリレートを18質量部、ポリテトラメチレングリコール、トリレンジイソシアネート及びヒドロキシエチルアクリレートの反応物であるウレタンアクリレートを10質量部、トリシクロデカンジメタノールジアクリレートを15質量部、N-ビニルピロリドンを10質量部、イソボルニルアクリレートを10質量部、ビスフェノールA・エチレンオキサイド付加ジオールジアクリレートを5質量部、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン(Omnirad 907)を0.7質量部、及びOmnirad TPOを1.3質量部混合して、樹脂組成物Rを調製した。
(Resin composition for ribbon)
18 parts by mass of urethane acrylate which is a reaction product of bisphenol A/ethylene oxide addition diol, tolylene diisocyanate and hydroxyethyl acrylate, and 10 parts by mass of urethane acrylate which is a reaction product of polytetramethylene glycol, tolylene diisocyanate and hydroxyethyl acrylate. , 15 parts by mass of tricyclodecane dimethanol diacrylate, 10 parts by mass of N-vinylpyrrolidone, 10 parts by mass of isobornyl acrylate, 5 parts by mass of bisphenol A/ethylene oxide addition diol diacrylate, 2-methyl-1 A resin composition R was prepared by mixing 0.7 parts by mass of -[4-(methylthio)phenyl]-2-morpholino-propan-1-one (Omnirad 907) and 1.3 parts by mass of Omnirad TPO. .
[光ファイバの作製]
 コア及びクラッドから構成される直径125μmのガラスファイバの外周に、樹脂組成物Pを用いて厚さ17.5μmのプライマリ樹脂層を形成し、更にその外周に樹脂組成物Sを用いて15μmのセカンダリ樹脂層を形成して、光ファイバを作製した。次いで、光ファイバを一旦巻き取った後に、着色機で光ファイバを改めて繰り出しながらセカンダリ樹脂層の外周に試験例1~7の樹脂組成物により、厚さ5μmの着色樹脂層を形成することで、着色樹脂層を有する直径200μmの光ファイバ(以下、「着色光ファイバ」という。)を作製した。各樹脂層を形成する際の線速は1500m/分とした。
[Production of optical fiber]
A primary resin layer with a thickness of 17.5 μm is formed using resin composition P on the outer periphery of a glass fiber with a diameter of 125 μm consisting of a core and a cladding, and a secondary resin layer with a thickness of 15 μm is further formed on the outer periphery using resin composition S. A resin layer was formed to produce an optical fiber. Next, after winding up the optical fiber, a colored resin layer with a thickness of 5 μm was formed on the outer periphery of the secondary resin layer using the resin compositions of Test Examples 1 to 7 while rewinding the optical fiber using a coloring machine. An optical fiber having a diameter of 200 μm (hereinafter referred to as "colored optical fiber") having a colored resin layer was produced. The linear speed when forming each resin layer was 1500 m/min.
[光ファイバリボンの作製]
 着色光ファイバを4本用意し、リボン用の樹脂組成物Rを被覆した後、紫外線を照射して硬化して連結樹脂層を形成し、光ファイバリボンを作製した。
[Production of optical fiber ribbon]
Four colored optical fibers were prepared, coated with resin composition R for ribbons, and then cured by irradiation with ultraviolet rays to form a connecting resin layer to produce an optical fiber ribbon.
(色剥がれ試験)
 光ファイバリボンを85℃85%RH(暗所)環境下で90日間保管した後、光フイバリボンからTelcordia GR-20 5.3.1に準拠し、光ファイバを単心分離した。その際の着色樹脂層の剥がれの有無を評価した。着色樹脂層に剥がれが無かった場合を「A」、着色樹脂層にリボン用樹脂の一部が残った場合を「B」、着色樹脂層に剥がれが有った場合を「C」と評価した。
(Color peeling test)
After storing the optical fiber ribbon in an environment of 85° C. and 85% RH (in the dark) for 90 days, single optical fibers were separated from the optical fiber ribbon in accordance with Telcordia GR-20 5.3.1. At that time, the presence or absence of peeling of the colored resin layer was evaluated. It was rated "A" if there was no peeling in the colored resin layer, "B" if some ribbon resin remained in the colored resin layer, and "C" if there was peeling in the colored resin layer. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1,1A…光ファイバ
 10…ガラスファイバ
 12…コア
 14…クラッド
 20…被覆樹脂層
 22…プライマリ樹脂層
 24…セカンダリ樹脂層
 26…着色樹脂層
 40…連結樹脂層
 100…光ファイバリボン
1,1A...Optical fiber 10...Glass fiber 12...Core 14...Clad 20...Coating resin layer 22...Primary resin layer 24...Secondary resin layer 26...Colored resin layer 40...Connection resin layer 100...Optical fiber ribbon

Claims (8)

  1.  光重合性化合物と、光重合開始剤と、ポリジメチルシロキサン化合物と、を含有し、
     前記ポリジメチルシロキサン化合物に含まれるケイ素原子の量が、前記ポリジメチルシロキサン化合物の量を基準として5質量%以上40質量%以下である、光ファイバ着色被覆用の樹脂組成物。
    Contains a photopolymerizable compound, a photopolymerization initiator, and a polydimethylsiloxane compound,
    A resin composition for colored coating of an optical fiber, wherein the amount of silicon atoms contained in the polydimethylsiloxane compound is 5% by mass or more and 40% by mass or less, based on the amount of the polydimethylsiloxane compound.
  2.  前記ポリジメチルシロキサン化合物が、(メタ)アクリロイル基を有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the polydimethylsiloxane compound has a (meth)acryloyl group.
  3.  前記光重合性化合物が、エポキシジ(メタ)アクリレートを含む、請求項1または請求項2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the photopolymerizable compound contains epoxy di(meth)acrylate.
  4.  酸化チタンを更に含有する、請求項1から請求項3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, further containing titanium oxide.
  5.  コア及びクラッドを含むガラスファイバと、
     前記ガラスファイバに接して前記ガラスファイバを被覆するプライマリ樹脂層と、
     前記プライマリ樹脂層を被覆するセカンダリ樹脂層と、
     前記セカンダリ樹脂層を被覆する着色樹脂層と、を備え、
     前記着色樹脂層が、請求項1から請求項4のいずれか一項に記載の樹脂組成物の硬化物を含む、光ファイバ。
    a glass fiber including a core and a cladding;
    a primary resin layer coating the glass fiber in contact with the glass fiber;
    a secondary resin layer covering the primary resin layer;
    a colored resin layer covering the secondary resin layer,
    An optical fiber in which the colored resin layer contains a cured product of the resin composition according to any one of claims 1 to 4.
  6.  コア及びクラッドを含むガラスファイバと、
     前記ガラスファイバに接して前記ガラスファイバを被覆するプライマリ樹脂層と、
     前記プライマリ樹脂層を被覆するセカンダリ樹脂層と、を備え、
     前記セカンダリ樹脂層が、請求項1から請求項4のいずれか一項に記載の樹脂組成物の硬化物を含む、光ファイバ。
    a glass fiber including a core and a cladding;
    a primary resin layer coating the glass fiber in contact with the glass fiber;
    a secondary resin layer covering the primary resin layer,
    An optical fiber in which the secondary resin layer contains a cured product of the resin composition according to any one of claims 1 to 4.
  7.  請求項5に記載の光ファイバが複数並列され、リボン用樹脂で被覆された、光ファイバリボン。 An optical fiber ribbon comprising a plurality of optical fibers according to claim 5 arranged in parallel and coated with ribbon resin.
  8.  請求項6に記載の光ファイバが複数並列され、リボン用樹脂で被覆された、光ファイバリボン。 An optical fiber ribbon comprising a plurality of the optical fibers according to claim 6 arranged in parallel and coated with ribbon resin.
PCT/JP2023/028795 2022-08-26 2023-08-07 Resin composition for colored coating of optical fiber, optical fiber, and optical fiber ribbon WO2024043060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134775 2022-08-26
JP2022-134775 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024043060A1 true WO2024043060A1 (en) 2024-02-29

Family

ID=90013094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028795 WO2024043060A1 (en) 2022-08-26 2023-08-07 Resin composition for colored coating of optical fiber, optical fiber, and optical fiber ribbon

Country Status (1)

Country Link
WO (1) WO2024043060A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504250A (en) * 2000-06-22 2004-02-12 ピレリー・カビ・エ・システミ・ソチエタ・ペル・アツィオーニ Colored optical fiber and optical fiber ribbon assembly containing the fiber
JP2005165227A (en) * 2003-12-05 2005-06-23 Sumitomo Electric Ind Ltd Colored coated optical fiber core wire and optical fiber ribbon
JP2016124731A (en) * 2014-12-26 2016-07-11 古河電気工業株式会社 Method for producing optical fiber
JP2022115744A (en) * 2021-01-28 2022-08-09 古河電気工業株式会社 Production method of optical fiber core wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504250A (en) * 2000-06-22 2004-02-12 ピレリー・カビ・エ・システミ・ソチエタ・ペル・アツィオーニ Colored optical fiber and optical fiber ribbon assembly containing the fiber
JP2005165227A (en) * 2003-12-05 2005-06-23 Sumitomo Electric Ind Ltd Colored coated optical fiber core wire and optical fiber ribbon
JP2016124731A (en) * 2014-12-26 2016-07-11 古河電気工業株式会社 Method for producing optical fiber
JP2022115744A (en) * 2021-01-28 2022-08-09 古河電気工業株式会社 Production method of optical fiber core wire

Similar Documents

Publication Publication Date Title
WO2020255829A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for manufacturing optical fiber
JP7367698B2 (en) Resin composition and optical fiber
CN111902442A (en) Resin composition, secondary coating material for optical fiber, and optical fiber
KR20200088904A (en) Resin composition and optical fiber
JP7367697B2 (en) Resin composition, optical fiber, and method for producing optical fiber
WO2021019908A1 (en) Optical fiber ribbon and optical fiber cable
WO2023195295A1 (en) Resin composition for optical fiber coating, colored coating material for optical fiber, optical fiber, and optical fiber ribbon
WO2020250838A1 (en) Resin composition, optical fiber, and method for producing optical fiber
JP7367696B2 (en) Resin composition, optical fiber, and method for producing optical fiber
US20220041501A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for producing optical fiber
WO2020071544A1 (en) Resin composition and optical fiber
WO2020255830A1 (en) Resin composition, secondary coating material of optical fiber, optical fiber, and method for producing optical fiber
WO2024043060A1 (en) Resin composition for colored coating of optical fiber, optical fiber, and optical fiber ribbon
WO2023195296A1 (en) Resin composition for optical fiber coating, colored coating material for optical fiber, optical fiber, and optical fiber ribbon
WO2024043059A1 (en) Resin composition for colored coating on optical fiber, optical fiber, and optical fiber ribbon
WO2023074295A1 (en) Resin composition for optical fiber coating, colored coating material for optical fiber, and optical fiber
JP7135670B2 (en) Optical fiber and UV curable resin composition
WO2020255835A1 (en) Optical fiber
WO2023074296A1 (en) Resin composition for optical fiber coating, colored coating material for optical fiber, and optical fiber
JP7063217B2 (en) Optical fiber manufacturing method
WO2022130855A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for manufacturing optical fiber
WO2020255774A1 (en) Resin composition, optical fiber and method for producing optical fiber
WO2022130808A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for manufacturing optical fiber
KR102666777B1 (en) Resin compositions, secondary coating materials for optical fibers, and optical fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857174

Country of ref document: EP

Kind code of ref document: A1