WO2024042585A1 - Supply-demand adjustment device, supply-demand adjustment method, and program - Google Patents

Supply-demand adjustment device, supply-demand adjustment method, and program Download PDF

Info

Publication number
WO2024042585A1
WO2024042585A1 PCT/JP2022/031585 JP2022031585W WO2024042585A1 WO 2024042585 A1 WO2024042585 A1 WO 2024042585A1 JP 2022031585 W JP2022031585 W JP 2022031585W WO 2024042585 A1 WO2024042585 A1 WO 2024042585A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
supply
microgrid
demand adjustment
demand
Prior art date
Application number
PCT/JP2022/031585
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 中村
薫明 原田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/031585 priority Critical patent/WO2024042585A1/en
Publication of WO2024042585A1 publication Critical patent/WO2024042585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a technology for a plurality of microgrids to work together to adjust supply and demand.
  • Non-Patent Document 1 discloses an output control method that takes into account performance such as the life span of a storage battery in response to rapid output fluctuations in solar power generation.
  • an output control method that takes into account performance such as the life span of a storage battery in response to rapid output fluctuations in solar power generation.
  • a huge amount of storage battery equipment is required.
  • Non-Patent Document 2 discloses a method of spatially controlling power consumption by controlling ICT loads between locations across the country by utilizing a virtualized network.
  • this method since there is a limit to the amount of power that can be adjusted using ICT loads alone, it is unclear whether this method alone can maintain the supply-demand balance in an era when large amounts of renewable energy have been introduced.
  • Non-Patent Document 3 attempts to adjust supply and demand in response to fluctuations in renewable energy within a microgrid by coordinating not only storage batteries but also demand control. However, this method is limited to supply and demand adjustment control within one microgrid.
  • the present invention has been made in view of the above points, and it is an object of the present invention to provide a technology for adjusting supply and demand of electric power in cooperation with a plurality of microgrids.
  • a supply and demand adjustment device that adjusts supply and demand of electricity between a plurality of microgrids, an information collection unit that collects information from each microgrid; a control unit that determines a one-on-one pairing of a power accommodation source microgrid and a power accommodation destination microgrid according to a priority determined based on information collected by the information collection unit;
  • a supply and demand adjustment device is provided, comprising: a control command unit that instructs the pair to perform power interchange;
  • a technology in which a plurality of microgrids work together to adjust supply and demand of electricity.
  • FIG. 1 is a diagram showing an example of the overall configuration of the system.
  • 1 is a diagram showing a configuration example of a supply and demand adjustment device 100.
  • FIG. It is a flowchart for explaining the operation of the supply and demand adjustment device 100. It is a diagram showing an example of the hardware configuration of the device.
  • the total accommodation pattern of energy resources is O(g r ), which is an exponential time.
  • a supply and demand adjustment device 100 which will be described later, solves the above problems and performs power supply and demand adjustment that cooperates between microgrids.
  • the supply and demand adjustment device 100 classifies each microgrid into a surplus group and a strained group, determines priorities in each group, selects microgrids one by one, and creates a 1:1 pair of power interchange source and accommodation destination. decide. Then, a cost function is defined for the selection of energy resources to be accommodated from the accommodating source, and the energy resources are accommodated in the order of resource selection until the shortage or surplus is resolved. By repeating the 1:1 power interchange as described above, control of each energy resource between microgrids is determined within a practicable time.
  • FIG. 1 shows an example of the overall configuration of the system in this embodiment.
  • Each microgrid includes one or more power storage facilities, one or more demand facilities, and one or more power generation facilities.
  • a microgrid may exist in which any one or any two of the power storage facility, the demand facility, and the power generation facility do not exist.
  • Power storage equipment includes storage batteries, electric vehicles, etc. Demand facilities include general households, factories, companies, etc.
  • the power generation equipment here is assumed to be powered by renewable energy. However, the power generation equipment may be a power generation equipment that does not use renewable energy.
  • this system includes a supply and demand adjustment device 100 and a power exchange 300.
  • the supply and demand adjustment device 100 is connected to each microgrid via a network, and performs supply and demand adjustment control described below by communicating with each microgrid.
  • demand and supply balance adjustment (power interchange within the grid) is performed by reducing demand through charging and discharging of power storage equipment and power saving of demand equipment. It will be done.
  • ICT load transfer using virtual networks will physically move locations where power consumption occurs.
  • the off-site PPA Power Purchase Agreement
  • the off-site PPA Power Purchase Agreement
  • FIG. 2 shows a configuration example of the supply and demand adjustment device 100 in this embodiment.
  • the supply and demand adjustment device 100 can communicate with the microgrid group 200 via a network.
  • the supply and demand adjustment device 100 includes an information collection unit 160, a prediction unit 110, a congestion resolution priority determination unit 120, a surplus resolution priority determination unit 130, a supply and demand adjustment control unit 140, a control command unit 170, an execution unit It has a schedule management section 150.
  • the "prediction unit 110, the strain relief priority determination unit 120, the surplus resolution priority determination unit 130, and the supply and demand adjustment control unit 140" may be collectively referred to as a "control unit.”
  • the information collection unit 160 collects power generation information of power generation equipment, demand information of demand equipment, remaining power storage information of power storage equipment, etc. from each microgrid.
  • the prediction unit 110 predicts the amount of power generation and demand based on the information collected by the information collection unit 160.
  • the congestion relief priority order determination unit 120 determines the congestion relief priority order for each microgrid based on the information collected by the information collection unit 160.
  • the surplus elimination priority determination unit 130 determines the surplus elimination priority for each microgrid based on the information collected by the information collection unit.
  • the supply and demand adjustment control unit 140 uses the information obtained from the information collection unit 160, the prediction unit 110, the congestion resolution priority determination unit 120, and the surplus resolution priority determination unit 130 to make the most efficient use of renewable energy. , determines the operations of the power generation equipment, demand equipment, and power storage equipment, and transmits the results to the control command unit 170.
  • the control command unit 170 transmits control instruction contents for each energy resource under its control to each microgrid. That is, the control command unit 170 instructs the target microgrid to perform power interchange, etc. Each microgrid that receives the control instruction content executes control of each energy resource based on the control instruction content.
  • the execution schedule management unit 150 instructs the execution timing of these controls. For adjusting the supply and demand balance, since the same amount of the planned value is required every 30 minutes, one example of this would be to execute the control every 30 minutes. Alternatively, while monitoring the supply and demand balance of each microgrid, the process may be executed at any time when a mismatch between supply and demand is detected or predicted.
  • the information collection unit 160 collects, for example, the following information for each component of each microgrid.
  • the prediction unit 110 predicts the amount of power generation and amount of power consumed for each microgrid. Specifically, the details are as follows.
  • the prediction unit 110 predicts future power consumption for each microgrid based on current values, past data, and weather forecasts. Any method may be used to predict power consumption, but for example, a predicted value of power consumption can be derived from past data as a first-order approximation of temperature and power consumption.
  • the prediction unit 110 predicts the future power generation amount for each microgrid based on the current value, past data, and weather forecast. Any method can be used to predict the amount of power generation, but for example, from past data, the power generation can be estimated as a first-order approximation to solar radiation in the case of solar power generation, or as a first-order approximation to the wind speed in the case of wind power generation. A predicted value of the quantity can be derived.
  • strain relief priority order determination unit 120 generates a strain relief priority order for each microgrid. Specifically, the details are as follows.
  • the power strain relief priority determination unit 120 determines to resolve power strain preferentially in descending order of power purchase price of electric power companies in the microgrid.
  • the method for determining the priority order for strain relief is not limited to this, and the order may be determined based on, for example, the remaining capacity of the storage battery in each microgrid.
  • S4 Creation of surplus elimination priority order>
  • the surplus elimination priority determining unit 130 generates a surplus elimination priority for each microgrid. Specifically, the details are as follows.
  • microgrid group may not be able to consume all of the generated renewable energy. If there is no capacity to charge the storage battery, the electricity will be sold back to the grid, but the purchase price (yen/kWh) will vary depending on the power company. Considering profitability, it is desirable that microgrids where surpluses will eventually occur are located in areas where the unit purchase price is high.
  • the surplus elimination priority determining unit 130 determines the priority order for eliminating surpluses in order of decreasing unit purchase price of the electric power company in each microgrid.
  • the method for determining the surplus elimination ranking is not limited to this, and the ranking may be determined based on, for example, storage battery equipment capacity.
  • ⁇ S5-S11 Transfer of surplus power to other microgrids> In each microgrid, if there is still renewable energy generation or remaining capacity of power storage equipment even after the electricity demand within the microgrid is met, it is assumed that the microgrid has surplus electricity.
  • the supply and demand adjustment device 100 selects a microgrid with a high priority for eliminating surplus as an accommodation source, selects a microgrid with a high priority for eliminating strain as an accommodation destination, and determines whether the surplus is eliminated or the strain is resolved. We will provide power interchange until the end of the year.
  • the supply and demand adjustment control unit 140 determines whether there is a microgrid that is generating surplus power. If there is a microgrid generating surplus power, the process advances to S6; if there is no microgrid generating surplus power, the process advances to S15.
  • the supply and demand adjustment control unit 140 selects one microgrid with the highest surplus elimination priority from among the one or more microgrids in which surplus power is generated.
  • the supply and demand adjustment control unit 140 determines whether there is another microgrid that is experiencing a power shortage during the same time period as the time period when surplus power is being generated. If there are other microgrids experiencing power shortages, the process advances to S8; if there are no other microgrids experiencing power shortages, the process advances to S12.
  • the supply and demand adjustment control unit 140 selects the one with the highest priority for resolving power shortages from among the one or more microgrids experiencing power shortages.
  • the supply and demand adjustment control unit 140 calculates the renewable energy power transmission cost, the storage battery power transmission cost, and the ICT load transfer cost between the selected surplus grid and deficit grid. In other words, the cost required for each power interchange in a plurality of power interchange methods is calculated.
  • the supply and demand adjustment control unit 140 determines to perform power interchange from the surplus grid to the deficit grid using the power interchange method in descending order of cost until the power shortage is resolved or the surplus power disappears,
  • the content of the control is notified to the control command unit 170.
  • the control command unit 170 instructs a one-to-one pair of a power accommodation source microgrid and a power accommodation destination microgrid to execute power accommodation in accordance with the control content.
  • the supply and demand adjustment control unit 140 updates the power supply and demand balance of each microgrid, and returns to S5.
  • ⁇ S12-S14 Processing of surplus power> If surplus power is generated for the entire group as a result of accommodating the microgrids, it will be stored in the power storage equipment. If the power storage equipment does not have sufficient capacity, electricity will be sold using reverse power flow. Specifically, the details are as follows.
  • the supply and demand adjustment control unit 140 determines whether or not the power storage equipment has a capacity that can store surplus power. If the determination result is Yes, the process proceeds to S13; if the determination result is No, the process proceeds to S13. Proceed to S14.
  • the supply and demand adjustment control unit 140 performs control to store surplus power in the power storage equipment via the control command unit 170.
  • the supply and demand adjustment control unit 140 controls, via the control command unit 170, to sell surplus power to the power grid by reverse power flow.
  • ⁇ S15-S19 Demand adjustment for power shortages> If a power shortage occurs even after the surplus power is exchanged, power saving control will be performed on the demand equipment in the microgrid to reduce the power demand and adjust the supply-demand balance. Furthermore, if there is a power shortage, it will be covered by discharging electricity from the power storage equipment. Specifically, it is as follows.
  • the supply and demand adjustment control unit 140 determines whether there is a microgrid that is short of electric power, and if the determination result is Yes, the process proceeds to S16, and if the determination result is No, the process ends. S16 to S19 are performed for each microgrid that is lacking in power.
  • the supply and demand adjustment control unit 140 determines whether there is any equipment that can save power within the microgrid, and if the determination result is Yes, the process proceeds to S17, and if the determination result is No, the process proceeds to S18.
  • the supply and demand adjustment control unit 140 determines to execute power saving within the microgrid, and the control command unit 170 instructs the target microgrid to execute power saving.
  • the supply and demand adjustment control unit 140 determines whether there is a power storage facility that can discharge within the microgrid, and if the determination result is Yes, the process proceeds to S19, and if the determination result is No, the process proceeds to S20. In S19, the supply and demand adjustment control unit 140 determines to execute discharging from the power storage equipment within the microgrid, and the control command unit 170 instructs the target microgrid to execute discharging.
  • ⁇ S20 Purchase electricity from the grid> If a power shortage occurs as a result of adjusting all energy resources as described above, the supply and demand adjustment control unit 140 maintains the supply and demand balance by controlling the difference to be purchased from the grid via the control command unit 170. do.
  • the supply and demand adjustment device 100 can be realized, for example, by having a computer execute a program.
  • This computer may be a physical computer or a virtual machine on the cloud.
  • the supply and demand adjustment device 100 can be realized by using hardware resources such as a CPU and memory built into a computer to execute a program corresponding to the processing performed by the supply and demand adjustment device 100.
  • the above program can be recorded on a computer readable recording medium (such as a portable memory), and can be stored or distributed. Furthermore, it is also possible to provide the above program through a network such as the Internet or e-mail.
  • FIG. 4 is a diagram showing an example of the hardware configuration of the computer.
  • the computer in FIG. 4 includes a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, etc., which are interconnected via a bus BS.
  • a program that realizes processing on the computer is provided, for example, on a recording medium 1001 such as a CD-ROM or a memory card.
  • a recording medium 1001 such as a CD-ROM or a memory card.
  • the program is installed from the recording medium 1001 to the auxiliary storage device 1002 via the drive device 1000.
  • the program does not necessarily need to be installed from the recording medium 1001, and may be downloaded from another computer via a network.
  • the auxiliary storage device 1002 stores installed programs as well as necessary files, data, and the like.
  • the memory device 1003 reads and stores the program from the auxiliary storage device 1002 when there is an instruction to start the program. Further, the memory device 1003 (or the auxiliary storage device 1002) stores information collected by the information collection unit 160, and the information is read out to perform calculations for control.
  • the CPU 1004 implements functions related to the supply and demand adjustment device 100 according to programs stored in the memory device 1003.
  • the interface device 1005 is used as an interface for connecting to a network or the like.
  • a display device 1006 displays a GUI (Graphical User Interface) and the like based on a program.
  • the input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, or the like, and is used to input various operation instructions.
  • An output device 1008 outputs the calculation result.
  • the technology according to this embodiment not only controls supply and demand within a microgrid by controlling each energy resource, but also performs power interchange between microgrids, thereby making renewable energy more effective even when a large amount of renewable energy has been introduced. Utilization and maintenance of supply-demand balance can be achieved. Furthermore, as described below, the problem of the prior art that it requires a huge amount of calculation time is solved.
  • f be the number of surplus microgrids
  • g be the number of strained microgrids
  • r be the number of energy resources in the surplus microgrids
  • r m (r m ⁇ r) be the maximum number of energy resources in one microgrid.
  • the amount of calculation for determining surplus resolution priority and sorting energy resources in the surplus microgrid in order of cost is O(f log f ⁇ r m log r m ) becomes.
  • the amount of calculation for determining the priority order for resolving the power shortage is O(g log g). Therefore, the amount of calculation in this method is max[O(f log f ⁇ r m log r m ), O(g log g)]. This amount of calculation is sufficiently smaller than the amount of calculation O(g r ), which was initially a problem, and it is expected that the effect of the technology according to this embodiment can significantly reduce the calculation time.
  • a supply and demand adjustment device that adjusts supply and demand of electricity between multiple microgrids, memory and at least one processor connected to the memory; including;
  • the processor includes: Collect information from each microgrid, determining a one-on-one pairing of a power interchange source microgrid and a power interchange destination microgrid according to the priority determined based on the information collected by the information collecting unit;
  • a supply and demand adjustment device that instructs the pair to perform power interchange.
  • the processor selects the microgrid with the highest surplus resolution priority from among the one or more microgrids in which surplus power is generated, as the power interchange source microgrid, and The supply and demand adjustment device according to Supplementary Note 1, wherein the microgrid with the highest priority for congestion relief is selected from among the microgrids as the microgrid to which the power is accommodated.
  • the processor calculates the cost of each power interchange in a plurality of power interchange methods for performing power interchange from the power interchange source microgrid to the power accommodation destination microgrid, and calculates the cost of power interchange.
  • the supply and demand adjustment device according to Supplementary Note 1 or 2 which determines to perform power interchange by applying the power interchange method in descending order of the power supply and demand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A supply-demand adjustment device for adjusting supply-demand of electric power among a plurality of microgrids, the supply-demand adjustment device being provided with: an information collection unit for collecting information from each microgrid; a control unit that determines a one-to-one pair of a power exchange source microgrid and a power exchange destination microgrid, in accordance with the priority determined on the basis of the information collected by the information collection unit; and a control instruction unit that instructs the pair to execute the power exchange.

Description

需給調整装置、需給調整方法、及びプログラムSupply and demand adjustment device, supply and demand adjustment method, and program
 本発明は、複数のマイクログリッドが連携して需給調整を行うための技術に関連するものである。 The present invention relates to a technology for a plurality of microgrids to work together to adjust supply and demand.
 近年、脱炭素化に向けた世界的な潮流から再生可能エネルギーに注目が集まっており、今後も再生可能エネルギー電源の導入量が増加することが想定される。再生可能エネルギーの中でも代表格となる太陽光発電や風力発電は、発電の際に化石燃料を必要とせずクリーンな電力とされている一方で、日射量や風速などの気象変化に発電出力が大きく影響されるため、安定した出力が得難い。そのため、今後、電力系統内により多くの再生可能エネルギーが導入されると、出力変動による周波数適正範囲の逸脱等が生じる可能性がある。 In recent years, renewable energy has been attracting attention due to the global trend toward decarbonization, and it is expected that the amount of renewable energy power sources introduced will continue to increase in the future. Solar power generation and wind power generation, which are representative renewable energy sources, do not require fossil fuels to generate electricity and are considered to be clean electricity, but the power output is greatly affected by weather changes such as solar radiation and wind speed. Because of this, it is difficult to obtain stable output. Therefore, if more renewable energy is introduced into the power system in the future, deviation from the appropriate frequency range may occur due to output fluctuations.
 再生可能エネルギーの出力変動に対する対応策としては蓄電池制御がある。例えば、非特許文献1には、太陽光発電の急激な出力変動に対し、蓄電池の寿命等の性能も考慮した出力制御手法が開示されている。しかし、本手法のみで大量に導入された再生可能エネルギーの出力変動を吸収するためには莫大な蓄電池設備量が必要となる。 Storage battery control is a countermeasure against fluctuations in the output of renewable energy. For example, Non-Patent Document 1 discloses an output control method that takes into account performance such as the life span of a storage battery in response to rapid output fluctuations in solar power generation. However, in order to absorb the output fluctuations of renewable energy introduced in large quantities using this method alone, a huge amount of storage battery equipment is required.
 また、非特許文献2には、仮想化されたネットワークを活用しICT負荷を全国の拠点間で制御することで消費電力量を空間的に制御する手法が開示されている。しかし、ICT負荷のみでは調整できる電力量に限りがあるため、再生可能エネルギーが大量導入された時代においては本手法のみで需給バランスの維持を達成できるか不明瞭である。 Additionally, Non-Patent Document 2 discloses a method of spatially controlling power consumption by controlling ICT loads between locations across the country by utilizing a virtualized network. However, since there is a limit to the amount of power that can be adjusted using ICT loads alone, it is unclear whether this method alone can maintain the supply-demand balance in an era when large amounts of renewable energy have been introduced.
 また、非特許文献3に開示された技術では、マイクログリッド内において再生可能エネルギーの変動に対し、蓄電池だけでなく需要制御も連携することで需給の調整を図っている。しかし本手法においてはひとつのマイクログリッド内での需給調整制御に留まっている。 Furthermore, the technology disclosed in Non-Patent Document 3 attempts to adjust supply and demand in response to fluctuations in renewable energy within a microgrid by coordinating not only storage batteries but also demand control. However, this method is limited to supply and demand adjustment control within one microgrid.
 従来技術では、エネルギーの地産地消の観点からマイクログリッド内における需給調整の手法が提案されてきた。しかし、再生可能エネルギーの導入量が向上するとマイクログリッド内での制御のみでは電力の無駄が発生しやすくなるため、従来のエネルギーの地産地消に留まらず、マイクログリッド間でも電力融通することで効率的に再生可能エネルギーを活用することが求められる。 In the prior art, methods for adjusting supply and demand within microgrids have been proposed from the perspective of local production and consumption of energy. However, as the amount of renewable energy introduced increases, controlling only within the microgrid will tend to waste electricity. Therefore, it is necessary to utilize renewable energy.
 しかし、マイクログリッド間及びマイクログリッド内の全エネルギーリソースの制御内容の組み合わせから、電力融通のための動作パターンを導出する際には計算時間が膨大になる。そのため、従来技術では、複数のマイクログリッドが連携して電力の需給調整を行うことが困難であった。 However, deriving an operation pattern for power interchange from a combination of control details of all energy resources between and within microgrids requires an enormous amount of calculation time. Therefore, in the conventional technology, it is difficult for a plurality of microgrids to work together to adjust supply and demand of electric power.
 本発明は上記の点に鑑みてなされたものであり、複数のマイクログリッドが連携して電力の需給調整を行うための技術を提供することを目的とする。 The present invention has been made in view of the above points, and it is an object of the present invention to provide a technology for adjusting supply and demand of electric power in cooperation with a plurality of microgrids.
 開示の技術によれば、複数のマイクログリッド間での電力の需給調整を行う需給調整装置であって、
 各マイクログリッドから情報を収集する情報収集部と、
 前記情報収集部により収集された情報に基づいて決定される優先順位に従って、電力融通元のマイクログリッドと電力融通先のマイクログリッドの一対一のペアを決定する制御部と、
 前記ペアに対して電力融通の実行を指示する制御指令部と
 を備える需給調整装置が提供される。
According to the disclosed technology, there is provided a supply and demand adjustment device that adjusts supply and demand of electricity between a plurality of microgrids,
an information collection unit that collects information from each microgrid;
a control unit that determines a one-on-one pairing of a power accommodation source microgrid and a power accommodation destination microgrid according to a priority determined based on information collected by the information collection unit;
A supply and demand adjustment device is provided, comprising: a control command unit that instructs the pair to perform power interchange;
 開示の技術によれば、複数のマイクログリッドが連携して電力の需給調整を行うための技術が提供される。 According to the disclosed technology, a technology is provided in which a plurality of microgrids work together to adjust supply and demand of electricity.
システムの全体構成例を示す図である。FIG. 1 is a diagram showing an example of the overall configuration of the system. 需給調整装置100の構成例を示す図である。1 is a diagram showing a configuration example of a supply and demand adjustment device 100. FIG. 需給調整装置100の動作を説明するためのフローチャートである。It is a flowchart for explaining the operation of the supply and demand adjustment device 100. 装置のハードウェア構成例を示す図である。It is a diagram showing an example of the hardware configuration of the device.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。 Hereinafter, an embodiment of the present invention (this embodiment) will be described with reference to the drawings. The embodiments described below are merely examples, and embodiments to which the present invention is applied are not limited to the following embodiments.
 (課題について)
 まず、本実施の形態に係る技術において解決しようとする課題について詳細に説明する。
(About the assignment)
First, the problem to be solved by the technology according to this embodiment will be explained in detail.
 前述したように、従来技術では、エネルギーの地産地消の観点からマイクログリッド内における需給調整の手法が提案されてきた。しかし再生可能エネルギーが大量導入され気象変化による電源出力の変動が起きる状況においては、マイクログリッド内のみの制御に留まると需給状況によってはあるマイクログリッドでは電力不足で節電等の需要制御をしている一方で、他方のマイクログリッドでは電力余剰により発電設備の出力抑制などで電力が無駄になっている状況が起こる可能性がある。 As mentioned above, in the prior art, methods for adjusting supply and demand within microgrids have been proposed from the perspective of local production and local consumption of energy. However, in situations where a large amount of renewable energy is introduced and power output fluctuates due to weather changes, control may be limited to within the microgrid, depending on the supply and demand situation.In some microgrids, demand control such as power saving due to power shortages may occur. On the other hand, in the other microgrid, there may be a situation where power is wasted due to power generation equipment output suppression due to power surplus.
 このように再生可能エネルギーの導入量が向上するとマイクログリッド内での制御のみでは電力の無駄が発生しやすくなるため、従来のエネルギーの地産地消に留まらず、マイクログリッド間でも電力融通することで効率的に再生可能エネルギーを活用することが求められる。このような状況において、一部ではエリア間を横断した需給制御が検討されていたり、自己託送等の遠方拠点への再生可能エネルギーの送電に関わる制度が設計されてきたりすることで、マイクログリッド間での電力需給制御が可能となってきている。 As the amount of renewable energy introduced increases in this way, it becomes easier to waste electricity if controlled only within the microgrid. Therefore, in addition to the traditional local production and local consumption of energy, it is necessary to exchange electricity between microgrids. Efficient use of renewable energy is required. Under these circumstances, some are considering supply and demand control across areas, and systems related to the transmission of renewable energy to distant locations, such as self-consignment, are being designed to improve the ability to connect microgrids. It is becoming possible to control the supply and demand of electricity.
 今後の再生可能エネルギーが大量に導入される世界においては、これらのマイクログリッド間、マイクログリッド内それぞれでの各エネルギーリソース制御を組み合わせることで、より再生可能エネルギーの利用効率を向上しつつ需給バランスを維持し、グリーン電力導入量拡大と電力品質安定化を目指すことが求められる。 In a world where a large amount of renewable energy will be introduced in the future, by combining energy resource control between and within microgrids, it will be possible to improve the utilization efficiency of renewable energy while balancing supply and demand. It is necessary to maintain this level and aim to expand the amount of green electricity introduced and stabilize the quality of electricity.
 しかし、融通させるエネルギーリソースはマイクログリッド毎に複数種類ある。マイクログリッド間でエネルギーリソースを調整する際は、余剰エリアからひっ迫エリアへエネルギーリソースの融通を行うが、どの余剰マイクログリッドのどのエネルギーリソースについて、どのひっ迫マイクログリッドへ融通するかは多くの組み合わせが存在する。 However, there are multiple types of energy resources available for each microgrid. When adjusting energy resources between microgrids, energy resources are transferred from surplus areas to stressed areas, but there are many combinations of which energy resources from which surplus microgrids are transferred to which stressed microgrids. do.
 具体的にはひっ迫マイクログリッドの数をg、余剰マイクログリッドのエネルギーリソースの数をrとすると、エネルギーリソースの全融通パターンはO(g)となり、指数時間となる。さらにこれに加えてマイクログリッド内での需給調整のためのエネルギーリソースも存在するため、これらの制御も加えた全エネルギーリソースの制御内容の組み合わせから動作パターンを導出する際には計算時間が膨大となる。 Specifically, when the number of strained microgrids is g and the number of energy resources of surplus microgrids is r, the total accommodation pattern of energy resources is O(g r ), which is an exponential time. Furthermore, in addition to this, there are also energy resources for adjusting supply and demand within the microgrid, so deriving an operation pattern from a combination of control details for all energy resources including these controls takes an enormous amount of calculation time. Become.
 そのため、それぞれのマイクログリッドで電力が余剰であったり不足していたりする状況において、どのマイクログリッドからどのマイクログリッドへ、どのエネルギーリソースで電力融通を行い、かつ、マイクログリッド内のリソース制御をどう組み合わせるかという問題に対しては、単一のマイクログリッドの需給バランスを維持する既存技術の組み合わせでは解決できず、エネルギーリソース数の増加に伴い現実的な時間内に解くことが困難であるという課題があった。 Therefore, in situations where each microgrid has a surplus or a shortage of electricity, it is necessary to decide which microgrid to which microgrid uses which energy resources to transfer electricity, and how to combine resource control within the microgrid. This problem cannot be solved by a combination of existing technologies that maintain the supply and demand balance of a single microgrid, and as the number of energy resources increases, it is difficult to solve the problem within a realistic time. there were.
 (実施の形態の概要)
 本実施の形態では、後述する需給調整装置100が、上記の課題を解決し、マイクログリッド間で連携する電力需給調整を実施する。
(Summary of embodiment)
In this embodiment, a supply and demand adjustment device 100, which will be described later, solves the above problems and performs power supply and demand adjustment that cooperates between microgrids.
 需給調整装置100は、各マイクログリッドを、余剰グループとひっ迫グループで分類し、各グループにおいて優先度を決めて1つずつマイクログリッドを選択し、1:1の電力融通元と融通先のペアを決定する。その上で融通元から融通するエネルギーリソースの選択について、コスト関数を定義してリソース選択順にひっ迫か余剰が解消するまで融通させる。上記のように1:1での電力融通を繰り返すことで、実行可能時間内に各エネルギーリソースのマイクログリッド間の制御を決定する。 The supply and demand adjustment device 100 classifies each microgrid into a surplus group and a strained group, determines priorities in each group, selects microgrids one by one, and creates a 1:1 pair of power interchange source and accommodation destination. decide. Then, a cost function is defined for the selection of energy resources to be accommodated from the accommodating source, and the energy resources are accommodated in the order of resource selection until the shortage or surplus is resolved. By repeating the 1:1 power interchange as described above, control of each energy resource between microgrids is determined within a practicable time.
 さらに、融通後、更なる需給バランスが必要な場合はマイクログリッド内の制御により実施することで、あるマイクログリッドでは電力ひっ迫となる一方で他方のマイクログリッドでは電力余剰となる状況を回避しつつ各マイクログリッドの需給バランス維持を考慮したエネルギーリソース制御による電力需給調整を実現する。 Furthermore, if further demand and supply balance is required after accommodation, this can be done through control within the microgrid, thereby avoiding a situation where one microgrid has a power shortage while the other microgrid has a surplus of power. Achieve power supply and demand adjustment through energy resource control that takes into account the maintenance of the supply and demand balance in microgrids.
 以下、本実施の形態に係る構成と動作をより詳細に説明する。 Hereinafter, the configuration and operation according to this embodiment will be explained in more detail.
 (全体構成例)
 図1に、本実施の形態におけるシステムの全体構成例を示す。図1の例において、マイクログリッドA~Cが存在する。各マイクログリッドには、1つ又は複数の蓄電設備、1つ又は複数の需要設備、1つ又は複数の発電設備が存在する。蓄電設備、需要設備、発電設備のうちのいずれか1つ又はいずれか2つが存在しないマイクログリッドが存在してもよい。
(Example of overall configuration)
FIG. 1 shows an example of the overall configuration of the system in this embodiment. In the example of FIG. 1, there are microgrids AC. Each microgrid includes one or more power storage facilities, one or more demand facilities, and one or more power generation facilities. A microgrid may exist in which any one or any two of the power storage facility, the demand facility, and the power generation facility do not exist.
 蓄電設備は、蓄電池、電気自動車等である。需要設備は、一般家庭、工場、企業等である。ここでの発電設備は、再生可能エネルギーによる発電設備を想定している。ただし、発電設備が、再生可能エネルギーを使用しない発電設備であってもよい。 Power storage equipment includes storage batteries, electric vehicles, etc. Demand facilities include general households, factories, companies, etc. The power generation equipment here is assumed to be powered by renewable energy. However, the power generation equipment may be a power generation equipment that does not use renewable energy.
 また、図1に示すように、本システムには、需給調整装置100、及び電力取引所300が存在する。需給調整装置100は、各マイクログリッドとネットワークで接続されており、各マイクログリッドとの間で通信を行うことにより、以下で説明する需給調整制御を実行する。 Furthermore, as shown in FIG. 1, this system includes a supply and demand adjustment device 100 and a power exchange 300. The supply and demand adjustment device 100 is connected to each microgrid via a network, and performs supply and demand adjustment control described below by communicating with each microgrid.
 各マイクログリッド内においては、発電設備の再生可能エネルギーによる発電、需要設備による電力消費に加え、蓄電設備の充放電や需要設備節電による需要削減での需給バランス調整(グリッド内での電力融通)が行われる。またマイクログリッド間においては仮想ネットワークを活用したICT負荷移動により、消費電力が発生する拠点を物理的に移動させる。 Within each microgrid, in addition to power generation using renewable energy from power generation equipment and power consumption by demand equipment, demand and supply balance adjustment (power interchange within the grid) is performed by reducing demand through charging and discharging of power storage equipment and power saving of demand equipment. It will be done. In addition, between microgrids, ICT load transfer using virtual networks will physically move locations where power consumption occurs.
 さらに近年はオフサイトPPA(Power Purchase Agreement)制度により遠距離の拠点に対して再生可能エネルギーを送電することができ、供給先拠点を選択可能である。このようにマイクログリッド間で移動・制御できるエネルギーリソース(再生可能エネルギーの供給先拠点、ICT負荷の稼働拠点)とマイクログリッド内で制御するエネルギーリソース(需要設備や蓄電設備の制御)を組み合わせて複数のマイクログリッドを連携して制御することで、再生可能エネルギーを有効活用し、かつ大量導入された時代においてもより需給バランスの安定化向上を図ることができる。 Furthermore, in recent years, the off-site PPA (Power Purchase Agreement) system has made it possible to transmit renewable energy to distant locations, and it is possible to select the destination location. In this way, energy resources that can be moved and controlled between microgrids (renewable energy supply destinations, ICT load operation bases) and energy resources that can be controlled within the microgrid (control of demand equipment and power storage equipment) can be combined to create multiple By coordinating and controlling these microgrids, it is possible to make effective use of renewable energy and to further stabilize the supply-demand balance even in an era when renewable energy is being introduced in large quantities.
 (需給調整装置100の構成)
 図2に、本実施の形態における需給調整装置100の構成例を示す。需給調整装置100は、ネットワークを介してマイクログリッド群200と通信可能である。
(Configuration of supply and demand adjustment device 100)
FIG. 2 shows a configuration example of the supply and demand adjustment device 100 in this embodiment. The supply and demand adjustment device 100 can communicate with the microgrid group 200 via a network.
 図2に示すように、需給調整装置100は、情報収集部160、予測部110、ひっ迫解消優先順位決定部120、余剰解消優先順位決定部130、需給調整制御部140、制御指令部170、実行スケジュール管理部150を有する。なお、「予測部110、ひっ迫解消優先順位決定部120、余剰解消優先順位決定部130、需給調整制御部140」をまとめて「制御部」と呼んでもよい。 As shown in FIG. 2, the supply and demand adjustment device 100 includes an information collection unit 160, a prediction unit 110, a congestion resolution priority determination unit 120, a surplus resolution priority determination unit 130, a supply and demand adjustment control unit 140, a control command unit 170, an execution unit It has a schedule management section 150. Note that the "prediction unit 110, the strain relief priority determination unit 120, the surplus resolution priority determination unit 130, and the supply and demand adjustment control unit 140" may be collectively referred to as a "control unit."
 情報収集部160は、各マイクログリッドから発電設備の発電情報や需要設備の需要情報、蓄電設備の蓄電残量情報等を収集する。 The information collection unit 160 collects power generation information of power generation equipment, demand information of demand equipment, remaining power storage information of power storage equipment, etc. from each microgrid.
 予測部110は、情報収集部160が収集した情報を基に発電量および需要量の予測を行う。 The prediction unit 110 predicts the amount of power generation and demand based on the information collected by the information collection unit 160.
 ひっ迫解消優先順位決定部120は、情報収集部160が収集した情報を基に各マイクログリッドのひっ迫解消優先順位を決定する。 The congestion relief priority order determination unit 120 determines the congestion relief priority order for each microgrid based on the information collected by the information collection unit 160.
 余剰解消優先順位決定部130は、情報収集部が収集した情報を基に各マイクログリッドの余剰解消優先順位を決定する。 The surplus elimination priority determination unit 130 determines the surplus elimination priority for each microgrid based on the information collected by the information collection unit.
 需給調整制御部140は、情報収集部160、予測部110、ひっ迫解消優先順位決定部120、余剰解消優先順位決定部130から得られた各情報を基に再生可能エネルギーを最も効率よく利用できるよう、発電設備、需要設備、蓄電設備の動作を決定し、結果を制御指令部170へ送信する。 The supply and demand adjustment control unit 140 uses the information obtained from the information collection unit 160, the prediction unit 110, the congestion resolution priority determination unit 120, and the surplus resolution priority determination unit 130 to make the most efficient use of renewable energy. , determines the operations of the power generation equipment, demand equipment, and power storage equipment, and transmits the results to the control command unit 170.
 制御指令部170は各マイクログリッドに対し配下に存在する各エネルギーリソースの制御指示内容を送信する。つまり、制御指令部170は、対象のマイクログリッドに対して、電力融通の実行等の指示を行う。制御指示内容を受信した各マイクログリッドは、制御指示内容を基に各エネルギーリソースの制御を実行する。 The control command unit 170 transmits control instruction contents for each energy resource under its control to each microgrid. That is, the control command unit 170 instructs the target microgrid to perform power interchange, etc. Each microgrid that receives the control instruction content executes control of each energy resource based on the control instruction content.
 実行スケジュール管理部150は、これらの制御実行タイミングを指示する。需給バランスの調整は30分毎の計画値同時同量が求められていることから、30分ごとに制御実行することが一例として考えられる。また、各マイクログリッドの需給バランスを監視しながら、需給の不一致を検知もしくは予測したタイミングで随時実行することとしてもよい。 The execution schedule management unit 150 instructs the execution timing of these controls. For adjusting the supply and demand balance, since the same amount of the planned value is required every 30 minutes, one example of this would be to execute the control every 30 minutes. Alternatively, while monitoring the supply and demand balance of each microgrid, the process may be executed at any time when a mismatch between supply and demand is detected or predicted.
 (需給調整装置100の動作)
 図3のフローチャートの手順に沿って、上記の構成を備える需給調整装置100の動作を詳細に説明する。
(Operation of supply and demand adjustment device 100)
The operation of the supply and demand adjustment device 100 having the above configuration will be described in detail according to the procedure of the flowchart in FIG. 3.
 <S1:情報収集>
 S1において、情報収集部160が、各マイクログリッドの構成要素ごとに、例えば、以下の情報を収集する。
<S1: Information collection>
In S1, the information collection unit 160 collects, for example, the following information for each component of each microgrid.
 再生可能エネルギー発電設備:設備容量(kW)、現在の発電量(kW)
 需要設備:過去の需要消費電力データ、現在の需要消費電力量(kWh)
 蓄電設備:蓄電容量(kW)、現在の残容量(kWh)
 気象予報:気温、日射量、風速
 電力会社との契約内容:売電価格、買電価格
 <S2:消費電力量予測、発電量予測>
 S2において、予測部110は、マイクログリッド毎に発電量、及び消費電力量を予測する。具体的には下記のとおりである。
Renewable energy power generation equipment: installed capacity (kW), current power generation amount (kW)
Demand equipment: past power demand data, current power demand (kWh)
Energy storage equipment: Energy storage capacity (kW), current remaining capacity (kWh)
Weather forecast: temperature, solar radiation, wind speed Contract details with power company: electricity sales price, electricity purchase price <S2: Power consumption forecast, power generation forecast>
In S2, the prediction unit 110 predicts the amount of power generation and amount of power consumed for each microgrid. Specifically, the details are as follows.
 予測部110は、マイクログリッド毎に、現在値、過去データ、及び気象予報を基に、将来の消費電力量を予測する。消費電力量予測については、どのような方法を用いてもよいが、例えば、過去データから気温と消費電力の一次近似として消費電力量の予測値を導出することができる。 The prediction unit 110 predicts future power consumption for each microgrid based on current values, past data, and weather forecasts. Any method may be used to predict power consumption, but for example, a predicted value of power consumption can be derived from past data as a first-order approximation of temperature and power consumption.
 同様に、予測部110は、マイクログリッド毎に、現在値、過去データ、及び気象予報を基に、将来の発電量を予測する。発電量予測についても、どのような方法を用いてもよいが、例えば、過去データから、太陽光発電であれば日射量との一次近似として、風力発電であれば風速との一次近似として、発電量の予測値を導出することができる。 Similarly, the prediction unit 110 predicts the future power generation amount for each microgrid based on the current value, past data, and weather forecast. Any method can be used to predict the amount of power generation, but for example, from past data, the power generation can be estimated as a first-order approximation to solar radiation in the case of solar power generation, or as a first-order approximation to the wind speed in the case of wind power generation. A predicted value of the quantity can be derived.
 <S3:ひっ迫解消優先順位の作成>
 S3において、ひっ迫解消優先順位決定部120は、マイクログリッド毎にひっ迫解消優先順位を生成する。具体的には下記のとおりである。
<S3: Creation of priority order for stress relief>
In S3, the strain relief priority order determination unit 120 generates a strain relief priority order for each microgrid. Specifically, the details are as follows.
 気候条件や需要条件によっては再生可能エネルギーだけではマイクログリッド群全体の電力を賄えない可能性がある。その際は電力会社からの買電により需給バランスを維持するが、電力自由化が進む中において各マイクログリッドで電力会社からの買電価格が異なってくることが想定される。 Depending on climate and demand conditions, renewable energy alone may not be able to power the entire microgrid group. In that case, the balance between supply and demand will be maintained by purchasing power from power companies, but as power liberalization progresses, it is expected that the price of power purchased from power companies will differ for each microgrid.
 その際、最終的に買電によってバランスを維持するマイクログリッドとして、買電価格が安いマイクログリッドを選択することで、コスト削減を図ることができる。 At that time, costs can be reduced by selecting a microgrid with a low power purchase price as the microgrid that ultimately maintains the balance through power purchase.
 ここでは、電力ひっ迫を優先的に解消する順位として、マイクログリッドにおける電力会社の買電価格の順位を用いる。つまり、ひっ迫解消優先順位決定部120は、マイクログリッドにおける電力会社の買電価格の高い順に、電力ひっ迫を優先的に解消することを決定する。 Here, we use the power purchase price ranking of electric power companies in the microgrid as the priority order for resolving power shortages. In other words, the power strain relief priority determination unit 120 determines to resolve power strain preferentially in descending order of power purchase price of electric power companies in the microgrid.
 ただし、買電価格の順位を用いることは一例に過ぎない。ひっ迫解消優先順位の決定法はこれに限るものではなく、例えば各マイクログリッド内の蓄電池残容量等を基に順位を決定してもよい。 However, using the power purchase price ranking is just one example. The method for determining the priority order for strain relief is not limited to this, and the order may be determined based on, for example, the remaining capacity of the storage battery in each microgrid.
 <S4:余剰解消優先順位の作成>
 S4において、余剰解消優先順位決定部130は、マイクログリッド毎に余剰解消優先順位を生成する。具体的には下記のとおりである。
<S4: Creation of surplus elimination priority order>
In S4, the surplus elimination priority determining unit 130 generates a surplus elimination priority for each microgrid. Specifically, the details are as follows.
 気候条件や需要条件によっては発電された再生可能エネルギーをマイクログリッド群全体で全て消費できない可能性もある。蓄電池への充電する容量もない場合は系統へ逆潮流させ売電することになるが、その際は各電力会社によって買取価格単価(円/kWh)が異なる。収益性を考慮すると最終的に余剰が発生するマイクログリッドは買取価格単価が高いエリアであることが望ましい。 Depending on climate and demand conditions, the entire microgrid group may not be able to consume all of the generated renewable energy. If there is no capacity to charge the storage battery, the electricity will be sold back to the grid, but the purchase price (yen/kWh) will vary depending on the power company. Considering profitability, it is desirable that microgrids where surpluses will eventually occur are located in areas where the unit purchase price is high.
 そこで、余剰解消優先順位決定部130は、余剰を優先的に解消する順位を、各マイクログリッドにおける電力会社の買取価格単価が低い順として決定する。ただし、余剰解消順位の決定法はこれに限るものではなく、例えば蓄電池設備容量等を基に順位を決定してもよい。 Therefore, the surplus elimination priority determining unit 130 determines the priority order for eliminating surpluses in order of decreasing unit purchase price of the electric power company in each microgrid. However, the method for determining the surplus elimination ranking is not limited to this, and the ranking may be determined based on, for example, storage battery equipment capacity.
 <S5~S11:余剰電力の他マイクログリッドへの融通>
 各マイクログリッド内において、マイクログリッド内の電力需要を賄ってもなお、再生可能エネルギー発電量もしくは蓄電設備の残容量がある場合は当該マイクログリッドについて余剰電力があるとみなす。
<S5-S11: Transfer of surplus power to other microgrids>
In each microgrid, if there is still renewable energy generation or remaining capacity of power storage equipment even after the electricity demand within the microgrid is met, it is assumed that the microgrid has surplus electricity.
 あるマイクログリッドの余剰電力は、他のマイクログリッドで電力不足がある場合に当該グリッドへ送電し融通する。この時、需給調整装置100は、融通元として余剰解消優先順位が高いマイクログリッドを選択し、融通先としてひっ迫解消優先順位が高いマイクログリッドを選択し、余剰が解消されるか、ひっ迫が解消されるまで電力融通を行う。 Surplus power from one microgrid is transmitted to another microgrid for power exchange if there is a power shortage in the other microgrid. At this time, the supply and demand adjustment device 100 selects a microgrid with a high priority for eliminating surplus as an accommodation source, selects a microgrid with a high priority for eliminating strain as an accommodation destination, and determines whether the surplus is eliminated or the strain is resolved. We will provide power interchange until the end of the year.
 他マイクログリッドへの融通については「再エネ発電電力のオフサイトPPAでの送電」、「蓄電池放電電力の自己託送」、「仮想ネットワークによるICT負荷の移動」、などの複数のエネルギーリソースがあるが、それぞれについてコストがかかることが想定され、これらコストを比較したうえコストが低い順に融通を行う。「再エネ発電電力のオフサイトPPAでの送電」、「蓄電池放電電力の自己託送」、「仮想ネットワークによるICT負荷の移動」、などを電力融通方法と呼んでもよい。 Regarding accommodation to other microgrids, there are multiple energy resources such as ``transmission of renewable energy generation power through off-site PPA'', ``self-consignment of storage battery discharge power'', and ``transfer of ICT load using virtual network''. , it is assumed that costs will be incurred for each, and after comparing these costs, accommodation will be made in descending order of cost. "Transmission of renewable energy-generated power through an off-site PPA," "self-consignment of storage battery discharge power," "transfer of ICT load using a virtual network," and the like may be called power interchange methods.
 例えば、再エネ発電電力のオフサイトPPAでは電力会社の送電網を使うコスト(託送料金)が発生し、蓄電池放電電力の自己託送では同様に託送料金に加え、再エネ賦課金が発生する。またICT負荷の移動についてはそれを実行するための追加の消費電力が発生するため、発生した消費電力分の電気料金がコストとして発生する。これらのコストはすべて融通する電力量(kWh)に比例するため、「託送料金単価(円/kWh)×電力量(kWh)」や「電気料金単価(円/kWh)×電力量(kWh)」といった形の融通する電力量の一次式で記述可能であり、計算時間は従来の課題となっていた計算時間オーダーと比較して充分に小さい。 For example, in an off-site PPA for renewable energy-generated power, the cost of using the power company's power grid (transmission fee) will be incurred, and in the self-transfer of storage battery discharge power, a renewable energy surcharge will be incurred in addition to the wheeling fee. Furthermore, since additional power consumption is generated to move the ICT load, an electricity bill corresponding to the generated power consumption is incurred as a cost. All of these costs are proportional to the amount of electricity (kWh) to be accommodated, so they can be expressed as "unit unit price of wheeling charge (yen/kWh) x amount of electricity (kWh)" or "unit price of electricity charge (yen/kWh) x amount of electricity (kWh)" It can be described by a flexible linear equation of power consumption in the form, and the calculation time is sufficiently small compared to the calculation time order that has been a problem in the past.
 上記の処理の詳細を図3のフローチャートを参照して説明する。 The details of the above processing will be explained with reference to the flowchart in FIG.
 S5において、需給調整制御部140は、余剰電力が発生しているマイクログリッドが有るか否かを判断する。余剰電力が発生しているマイクログリッドが有る場合はS6に進み、余剰電力が発生しているマイクログリッドが無い場合はS15に進む。 In S5, the supply and demand adjustment control unit 140 determines whether there is a microgrid that is generating surplus power. If there is a microgrid generating surplus power, the process advances to S6; if there is no microgrid generating surplus power, the process advances to S15.
 S6において、需給調整制御部140は、余剰電力が発生している1つ又は複数のマイクログリッドの中から余剰解消優先順位が最も高いマイクログリッドを1つ選択する。 In S6, the supply and demand adjustment control unit 140 selects one microgrid with the highest surplus elimination priority from among the one or more microgrids in which surplus power is generated.
 S7において、需給調整制御部140は、余剰電力が発生している時間帯と同じ時間帯に電力不足が発生している他のマイクログリッドが有るか否かを判断する。電力不足が発生している他のマイクログリッドが有る場合はS8に進み、電力不足が発生している他のマイクログリッドが無い場合はS12に進む。 In S7, the supply and demand adjustment control unit 140 determines whether there is another microgrid that is experiencing a power shortage during the same time period as the time period when surplus power is being generated. If there are other microgrids experiencing power shortages, the process advances to S8; if there are no other microgrids experiencing power shortages, the process advances to S12.
 S8において、需給調整制御部140は、電力不足が発生している1つ又は複数のマイクログリッドの中からひっ迫解消優先順位が一番高いものを選択する。 In S8, the supply and demand adjustment control unit 140 selects the one with the highest priority for resolving power shortages from among the one or more microgrids experiencing power shortages.
 S9において、需給調整制御部140は、選択した余剰グリッドと不足グリッドの間での再エネ電力送電コスト、蓄電池電力送電コスト、及びICT負荷移動コストを算出する。つまり、複数の電力融通方法におけるそれぞれの電力融通にかかるコストを算出する。 In S9, the supply and demand adjustment control unit 140 calculates the renewable energy power transmission cost, the storage battery power transmission cost, and the ICT load transfer cost between the selected surplus grid and deficit grid. In other words, the cost required for each power interchange in a plurality of power interchange methods is calculated.
 S10において、需給調整制御部140は、コストが安い順に、電力融通方法を用いて、電力不足が解消するか余剰電力が無くなるまで、余剰グリッドから不足グリッドへ電力の融通を行うことを決定し、その制御内容を制御指令部170に通知する。制御指令部170は、当該制御内容に従って、電力融通元のマイクログリッドと電力融通先のマイクログリッドの一対一のペアに対して電力融通の実行を指示する。 In S10, the supply and demand adjustment control unit 140 determines to perform power interchange from the surplus grid to the deficit grid using the power interchange method in descending order of cost until the power shortage is resolved or the surplus power disappears, The content of the control is notified to the control command unit 170. The control command unit 170 instructs a one-to-one pair of a power accommodation source microgrid and a power accommodation destination microgrid to execute power accommodation in accordance with the control content.
 S11において、需給調整制御部140は、各マイクログリッドの電力需給バランスを更新し、S5に戻る。 In S11, the supply and demand adjustment control unit 140 updates the power supply and demand balance of each microgrid, and returns to S5.
 <S12~S14:余剰電力の処理>
 マイクログリッド間の融通を行った結果、群全体として余剰電力が発生した場合は蓄電設備へ蓄電する。蓄電設備に充分な容量がない場合は逆潮流による売電を実施する。具体的には下記のとおりである。
<S12-S14: Processing of surplus power>
If surplus power is generated for the entire group as a result of accommodating the microgrids, it will be stored in the power storage equipment. If the power storage equipment does not have sufficient capacity, electricity will be sold using reverse power flow. Specifically, the details are as follows.
 S12において、需給調整制御部140は、余剰電力を蓄電可能な容量が蓄電設備にあるか否かを判断し、判断結果がYes(有り)の場合はS13に進み、No(無し)の場合はS14に進む。 In S12, the supply and demand adjustment control unit 140 determines whether or not the power storage equipment has a capacity that can store surplus power. If the determination result is Yes, the process proceeds to S13; if the determination result is No, the process proceeds to S13. Proceed to S14.
 S13において、需給調整制御部140は、制御指令部170を介して、余剰電力を蓄電設備へ蓄電する制御を行う。S14において、需給調整制御部140は、制御指令部170を介して、余剰電力を逆潮流により系統へ売電する制御を行う。 In S13, the supply and demand adjustment control unit 140 performs control to store surplus power in the power storage equipment via the control command unit 170. In S14, the supply and demand adjustment control unit 140 controls, via the control command unit 170, to sell surplus power to the power grid by reverse power flow.
 <S15~S19:電力不足に対する需要調整>
 余剰電力の融通後も電力不足が発生する場合は、マイクログリッド内の需要設備で節電制御を行い、需要電力を減らし需給バランスの調整を図る。さらに電力不足がある場合は、蓄電設備による放電により賄う。具体的には下記のとおりである。
<S15-S19: Demand adjustment for power shortages>
If a power shortage occurs even after the surplus power is exchanged, power saving control will be performed on the demand equipment in the microgrid to reduce the power demand and adjust the supply-demand balance. Furthermore, if there is a power shortage, it will be covered by discharging electricity from the power storage equipment. Specifically, it is as follows.
 S15において、需給調整制御部140は、電力が不足しているマイクログリッドが有るか否かを判断し、判断結果がYesであればS16に進み、判断結果がNoであれば処理を終了する。S16~S19は、電力が不足しているマイクログリッド毎に行う。 In S15, the supply and demand adjustment control unit 140 determines whether there is a microgrid that is short of electric power, and if the determination result is Yes, the process proceeds to S16, and if the determination result is No, the process ends. S16 to S19 are performed for each microgrid that is lacking in power.
 S16において、需給調整制御部140は、マイクログリッド内で節電可能な設備があるか否かを判断し、判断結果がYesであればS17に進み、NoであればS18に進む。S17において、需給調整制御部140は、マイクログリッド内で節電を実行することを決定し、制御指令部170が対象マイクログリッドに対して節電実行を指示する。 In S16, the supply and demand adjustment control unit 140 determines whether there is any equipment that can save power within the microgrid, and if the determination result is Yes, the process proceeds to S17, and if the determination result is No, the process proceeds to S18. In S17, the supply and demand adjustment control unit 140 determines to execute power saving within the microgrid, and the control command unit 170 instructs the target microgrid to execute power saving.
 S18において、需給調整制御部140は、マイクログリッド内で放電可能な蓄電設備があるか否かを判断し、判断結果がYesであればS19に進み、NoであればS20に進む。S19において、需給調整制御部140は、マイクログリッド内で蓄電設備からの放電を実行することを決定し、制御指令部170が対象マイクログリッドに対して放電実行を指示する。 In S18, the supply and demand adjustment control unit 140 determines whether there is a power storage facility that can discharge within the microgrid, and if the determination result is Yes, the process proceeds to S19, and if the determination result is No, the process proceeds to S20. In S19, the supply and demand adjustment control unit 140 determines to execute discharging from the power storage equipment within the microgrid, and the control command unit 170 instructs the target microgrid to execute discharging.
 <S20:系統からの電力購入>
 以上のように全エネルギーリソースを調整した結果、不足電力が生じる場合、需給調整制御部140は、制御指令部170を介して、差分を系統から購入するように制御することで、需給バランスを維持する。
<S20: Purchase electricity from the grid>
If a power shortage occurs as a result of adjusting all energy resources as described above, the supply and demand adjustment control unit 140 maintains the supply and demand balance by controlling the difference to be purchased from the grid via the control command unit 170. do.
 (ハードウェア構成例)
 需給調整装置100は、例えば、コンピュータにプログラムを実行させることにより実現できる。このコンピュータは、物理的なコンピュータであってもよいし、クラウド上の仮想マシンであってもよい。
(Hardware configuration example)
The supply and demand adjustment device 100 can be realized, for example, by having a computer execute a program. This computer may be a physical computer or a virtual machine on the cloud.
 すなわち、需給調整装置100は、コンピュータに内蔵されるCPUやメモリ等のハードウェア資源を用いて、需給調整装置100で実施される処理に対応するプログラムを実行することによって実現することが可能である。上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。 That is, the supply and demand adjustment device 100 can be realized by using hardware resources such as a CPU and memory built into a computer to execute a program corresponding to the processing performed by the supply and demand adjustment device 100. . The above program can be recorded on a computer readable recording medium (such as a portable memory), and can be stored or distributed. Furthermore, it is also possible to provide the above program through a network such as the Internet or e-mail.
 図4は、上記コンピュータのハードウェア構成例を示す図である。図4のコンピュータは、それぞれバスBSで相互に接続されているドライブ装置1000、補助記憶装置1002、メモリ装置1003、CPU1004、インタフェース装置1005、表示装置1006、入力装置1007、出力装置1008等を有する。 FIG. 4 is a diagram showing an example of the hardware configuration of the computer. The computer in FIG. 4 includes a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, etc., which are interconnected via a bus BS.
 当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体1001によって提供される。プログラムを記憶した記録媒体1001がドライブ装置1000にセットされると、プログラムが記録媒体1001からドライブ装置1000を介して補助記憶装置1002にインストールされる。但し、プログラムのインストールは必ずしも記録媒体1001より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置1002は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。 A program that realizes processing on the computer is provided, for example, on a recording medium 1001 such as a CD-ROM or a memory card. When the recording medium 1001 storing the program is set in the drive device 1000, the program is installed from the recording medium 1001 to the auxiliary storage device 1002 via the drive device 1000. However, the program does not necessarily need to be installed from the recording medium 1001, and may be downloaded from another computer via a network. The auxiliary storage device 1002 stores installed programs as well as necessary files, data, and the like.
 メモリ装置1003は、プログラムの起動指示があった場合に、補助記憶装置1002からプログラムを読み出して格納する。また、メモリ装置1003(又は補助記憶装置1002)には、情報収集部160により収集された情報が格納され、当該情報が読み出されて制御のための演算が実施される。 The memory device 1003 reads and stores the program from the auxiliary storage device 1002 when there is an instruction to start the program. Further, the memory device 1003 (or the auxiliary storage device 1002) stores information collected by the information collection unit 160, and the information is read out to perform calculations for control.
 CPU1004は、メモリ装置1003に格納されたプログラムに従って、需給調整装置100に係る機能を実現する。インタフェース装置1005は、ネットワーク等に接続するためのインタフェースとして用いられる。表示装置1006はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置1007はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。出力装置1008は演算結果を出力する。 The CPU 1004 implements functions related to the supply and demand adjustment device 100 according to programs stored in the memory device 1003. The interface device 1005 is used as an interface for connecting to a network or the like. A display device 1006 displays a GUI (Graphical User Interface) and the like based on a program. The input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, or the like, and is used to input various operation instructions. An output device 1008 outputs the calculation result.
 (実施の形態の効果)
 本実施の形態に係る技術では、各エネルギーリソースの制御によりマイクログリッド内の需給制御に加えマイクログリッド間の電力融通も行うことで、再生可能エネルギーが大量導入された中においても再生可能エネルギーの有効利用と需給バランスの維持を達成することができる。また、下記のとおり、膨大な計算時間を要するという従来技術の課題が解決される。
(Effects of embodiment)
The technology according to this embodiment not only controls supply and demand within a microgrid by controlling each energy resource, but also performs power interchange between microgrids, thereby making renewable energy more effective even when a large amount of renewable energy has been introduced. Utilization and maintenance of supply-demand balance can be achieved. Furthermore, as described below, the problem of the prior art that it requires a huge amount of calculation time is solved.
 余剰マイクログリッドの数をf、ひっ迫マイクログリッドの数をg、余剰マイクログリッドのエネルギーリソースの数をr、1つのマイクログリッド内で最大のエネルギーリソース数をr(r≦r)とする。 Let f be the number of surplus microgrids, g be the number of strained microgrids, r be the number of energy resources in the surplus microgrids, and r m (r m ≦r) be the maximum number of energy resources in one microgrid.
 本実施の形態に係る技術において、電力融通元を考えると余剰解消優先順位決定および余剰マイクログリッド内のエネルギーリソースのコスト順での並べ替え計算量はO(f log f×r log r)となる。また電力融通先を考えるとひっ迫解消優先順位決定の計算量はO(g log g)となる。よって本手法における計算量はmax[O(f log f×r log r),O(g log g)]となる。この計算量は当初課題となっていた計算量O(g)よりも十分小さく、本実施の形態に係る技術の効果で計算時間が大幅に削減できることが期待される。 In the technology according to the present embodiment, considering the power interchange source, the amount of calculation for determining surplus resolution priority and sorting energy resources in the surplus microgrid in order of cost is O(f log f×r m log r m ) becomes. In addition, considering the power exchange destination, the amount of calculation for determining the priority order for resolving the power shortage is O(g log g). Therefore, the amount of calculation in this method is max[O(f log f×r m log r m ), O(g log g)]. This amount of calculation is sufficiently smaller than the amount of calculation O(g r ), which was initially a problem, and it is expected that the effect of the technology according to this embodiment can significantly reduce the calculation time.
 (実施の形態のまとめ)
 本明細書には、少なくとも下記各項の需給調整装置、需給調整方法、及びプログラムが開示されている。
(付記項1)
 複数のマイクログリッド間での電力の需給調整を行う需給調整装置であって、
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 各マイクログリッドから情報を収集し、
 前記情報収集部により収集された情報に基づいて決定される優先順位に従って、電力融通元のマイクログリッドと電力融通先のマイクログリッドの一対一のペアを決定し、
 前記ペアに対して電力融通の実行を指示する
 需給調整装置。
(付記項2)
 前記プロセッサは、余剰電力が発生している1以上のマイクログリッドの中から余剰解消優先順位が最も高いマイクログリッドを前記電力融通元のマイクログリッドとして選択し、電力不足が発生している1以上のマイクログリッドの中からひっ迫解消優先順位が最も高いマイクログリッドを前記電力融通先のマイクログリッドとして選択する
 付記項1に記載の需給調整装置。
(付記項3)
 前記プロセッサは、前記電力融通元のマイクログリッドから前記電力融通先のマイクログリッドに対して電力融通を行うための複数の電力融通方法におけるそれぞれの電力融通にかかるコストを算出し、電力融通にかかるコストの低い順に電力融通方法を適用して電力融通を行うことを決定する
 付記項1又は2に記載の需給調整装置。
(付記項4)
 前記プロセッサは、複数のマイクログリッド間での電力融通後に需給調整が必要であると判断した場合には、マイクログリッド内での電力制御により需給調整を行うことを決定する
 付記項1ないし3のうちいずれか1項に記載の需給調整装置。
(付記項5)
 複数のマイクログリッド間での電力の需給調整を行う需給調整装置が実行する需給調整方法であって、
 各マイクログリッドから情報を収集するステップと、
 収集された情報に基づいて決定される優先順位に従って、電力融通元のマイクログリッドと電力融通先のマイクログリッドの一対一のペアを決定するステップと、
 前記ペアに対して電力融通の実行を指示するステップと
 を備える需給調整方法。
(付記項6)
 コンピュータを、付記項1ないし4のうちいずれか1項に記載の需給調整装置における各部として機能させるためのプログラムを記憶した非一時的記憶媒体。
(Summary of embodiments)
This specification discloses at least a supply and demand adjustment device, a supply and demand adjustment method, and a program as described below.
(Additional note 1)
A supply and demand adjustment device that adjusts supply and demand of electricity between multiple microgrids,
memory and
at least one processor connected to the memory;
including;
The processor includes:
Collect information from each microgrid,
determining a one-on-one pairing of a power interchange source microgrid and a power interchange destination microgrid according to the priority determined based on the information collected by the information collecting unit;
A supply and demand adjustment device that instructs the pair to perform power interchange.
(Additional note 2)
The processor selects the microgrid with the highest surplus resolution priority from among the one or more microgrids in which surplus power is generated, as the power interchange source microgrid, and The supply and demand adjustment device according to Supplementary Note 1, wherein the microgrid with the highest priority for congestion relief is selected from among the microgrids as the microgrid to which the power is accommodated.
(Additional note 3)
The processor calculates the cost of each power interchange in a plurality of power interchange methods for performing power interchange from the power interchange source microgrid to the power accommodation destination microgrid, and calculates the cost of power interchange. The supply and demand adjustment device according to Supplementary Note 1 or 2, which determines to perform power interchange by applying the power interchange method in descending order of the power supply and demand.
(Additional note 4)
If the processor determines that supply and demand adjustment is necessary after power interchange between multiple microgrids, the processor determines to adjust supply and demand through power control within the microgrid. The supply and demand adjustment device according to any one of the items.
(Additional note 5)
A supply and demand adjustment method executed by a supply and demand adjustment device that adjusts supply and demand of electricity between multiple microgrids, the method comprising:
collecting information from each microgrid;
determining a one-on-one pairing of a power accommodation source microgrid and a power accommodation destination microgrid according to priorities determined based on the collected information;
A supply and demand adjustment method comprising: instructing the pair to perform power interchange.
(Additional note 6)
A non-temporary storage medium storing a program for causing a computer to function as each part of the supply and demand adjustment device according to any one of Additional Items 1 to 4.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention as described in the claims. It is possible.
100 需給調整装置
110 予測部
120 ひっ迫解消優先順位決定部
130 余剰解消優先順位決定部
140 需給調整制御部
150 実行スケジュール管理部
160 情報収集部
170 制御指令部
200 マイクログリッド群
300 電力取引所
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置
1008 出力装置
100 Supply and demand adjustment device 110 Prediction unit 120 Congestion resolution priority determination unit 130 Surplus resolution priority determination unit 140 Supply and demand adjustment control unit 150 Execution schedule management unit 160 Information collection unit 170 Control command unit 200 Microgrid group 300 Power exchange 1000 Drive device 1001 Recording medium 1002 Auxiliary storage device 1003 Memory device 1004 CPU
1005 Interface device 1006 Display device 1007 Input device 1008 Output device

Claims (6)

  1.  複数のマイクログリッド間での電力の需給調整を行う需給調整装置であって、
     各マイクログリッドから情報を収集する情報収集部と、
     前記情報収集部により収集された情報に基づいて決定される優先順位に従って、電力融通元のマイクログリッドと電力融通先のマイクログリッドの一対一のペアを決定する制御部と、
     前記ペアに対して電力融通の実行を指示する制御指令部と
     を備える需給調整装置。
    A supply and demand adjustment device that adjusts supply and demand of electricity between multiple microgrids,
    an information collection unit that collects information from each microgrid;
    a control unit that determines a one-on-one pairing of a power accommodation source microgrid and a power accommodation destination microgrid according to a priority determined based on information collected by the information collection unit;
    A control command unit that instructs the pair to perform power interchange. A supply and demand adjustment device.
  2.  前記制御部は、余剰電力が発生している1以上のマイクログリッドの中から余剰解消優先順位が最も高いマイクログリッドを前記電力融通元のマイクログリッドとして選択し、電力不足が発生している1以上のマイクログリッドの中からひっ迫解消優先順位が最も高いマイクログリッドを前記電力融通先のマイクログリッドとして選択する
     請求項1に記載の需給調整装置。
    The control unit selects, as the power interchange source microgrid, a microgrid with the highest surplus resolution priority from among the one or more microgrids in which surplus power is generated, and selects the microgrid as the power interchange source microgrid, and The supply and demand adjustment device according to claim 1, wherein the microgrid with the highest priority for congestion relief is selected from among the microgrids as the microgrid to which the power is accommodated.
  3.  前記制御部は、前記電力融通元のマイクログリッドから前記電力融通先のマイクログリッドに対して電力融通を行うための複数の電力融通方法におけるそれぞれの電力融通にかかるコストを算出し、電力融通にかかるコストの低い順に電力融通方法を適用して電力融通を行うことを決定する
     請求項1に記載の需給調整装置。
    The control unit calculates the cost of each power interchange in a plurality of power interchange methods for performing power interchange from the power interchange source microgrid to the power interchange destination microgrid, and The supply and demand adjustment device according to claim 1, wherein it is determined to perform power accommodation by applying power accommodation methods in descending order of cost.
  4.  前記制御部は、複数のマイクログリッド間での電力融通後に需給調整が必要であると判断した場合には、マイクログリッド内での電力制御により需給調整を行うことを決定する
     請求項1に記載の需給調整装置。
    When the control unit determines that supply and demand adjustment is necessary after power interchange between a plurality of microgrids, the control unit determines to perform supply and demand adjustment by power control within the microgrid. Supply and demand adjustment device.
  5.  複数のマイクログリッド間での電力の需給調整を行う需給調整装置が実行する需給調整方法であって、
     各マイクログリッドから情報を収集するステップと、
     収集された情報に基づいて決定される優先順位に従って、電力融通元のマイクログリッドと電力融通先のマイクログリッドの一対一のペアを決定するステップと、
     前記ペアに対して電力融通の実行を指示するステップと
     を備える需給調整方法。
    A supply and demand adjustment method executed by a supply and demand adjustment device that adjusts supply and demand of electricity between multiple microgrids, the method comprising:
    collecting information from each microgrid;
    determining a one-on-one pairing of a power accommodation source microgrid and a power accommodation destination microgrid according to a priority determined based on the collected information;
    A supply and demand adjustment method comprising: instructing the pair to perform power interchange.
  6.  コンピュータを、請求項1ないし4のうちいずれか1項に記載の需給調整装置における各部として機能させるためのプログラム。 A program for causing a computer to function as each part of the supply and demand adjustment device according to any one of claims 1 to 4.
PCT/JP2022/031585 2022-08-22 2022-08-22 Supply-demand adjustment device, supply-demand adjustment method, and program WO2024042585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031585 WO2024042585A1 (en) 2022-08-22 2022-08-22 Supply-demand adjustment device, supply-demand adjustment method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031585 WO2024042585A1 (en) 2022-08-22 2022-08-22 Supply-demand adjustment device, supply-demand adjustment method, and program

Publications (1)

Publication Number Publication Date
WO2024042585A1 true WO2024042585A1 (en) 2024-02-29

Family

ID=90012831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031585 WO2024042585A1 (en) 2022-08-22 2022-08-22 Supply-demand adjustment device, supply-demand adjustment method, and program

Country Status (1)

Country Link
WO (1) WO2024042585A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191754A1 (en) * 2016-05-02 2017-11-09 三菱電機株式会社 Power interchange control device, power interchange control method, and power interchange control system
JP2019022381A (en) * 2017-07-20 2019-02-07 株式会社東芝 Micro grid interconnection system, micro grid interconnection control method, and control program
JP2020058212A (en) * 2018-10-03 2020-04-09 京セラ株式会社 Power management device, power management system, and power management method
JP2020515222A (en) * 2017-03-09 2020-05-21 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Uncertainty and flexibility matching engine for intertemporal electric energy products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191754A1 (en) * 2016-05-02 2017-11-09 三菱電機株式会社 Power interchange control device, power interchange control method, and power interchange control system
JP2020515222A (en) * 2017-03-09 2020-05-21 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Uncertainty and flexibility matching engine for intertemporal electric energy products
JP2019022381A (en) * 2017-07-20 2019-02-07 株式会社東芝 Micro grid interconnection system, micro grid interconnection control method, and control program
JP2020058212A (en) * 2018-10-03 2020-04-09 京セラ株式会社 Power management device, power management system, and power management method

Similar Documents

Publication Publication Date Title
Alam et al. An optimal P2P energy trading model for smart homes in the smart grid
Komarnicki et al. Electric energy storage system
Ju et al. A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response
Chen et al. Optimal allocation and economic analysis of energy storage system in microgrids
Cioara et al. Exploiting data centres energy flexibility in smart cities: Business scenarios
JP5639540B2 (en) Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method
CN101310227A (en) Predictive contract system and method
JP5998046B2 (en) Power suppression control system and power suppression control method
WO2021246087A1 (en) Data center system and operating method therefor, and data center system base design assistance device and method
Tumuluru et al. Integrating price responsive demand into the unit commitment problem
WO2017149618A1 (en) Control device, power generation control device, control method, system, and program
Dufo-López et al. Influence of mathematical models in design of PV-Diesel systems
Abdulmohsen et al. Active/reactive power management in islanded microgrids via multi-agent systems
Mallol-Poyato et al. Joint optimization of a Microgrid's structure design and its operation using a two-steps evolutionary algorithm
JP7074724B2 (en) Information processing equipment, information processing methods and programs
CN117639113B (en) Intelligent micro-grid intelligent power distribution method, device and storage medium
Lian et al. Robust multi-objective optimization for islanded data center microgrid operations
Sardar et al. A demand side management scheme for optimal power scheduling of industrial loads
CN112803454A (en) Power resource management method and device, electronic equipment and storage medium
Chao et al. A fair energy resource allocation strategy for micro grid
Faiz et al. Demand side management using chicken swarm optimization
Ufluoğlu et al. Mathematical model for a microgrid consisting of wind turbine, PV panels, and energy storage unit
WO2024042585A1 (en) Supply-demand adjustment device, supply-demand adjustment method, and program
Minhas et al. Real-time power balancing in photovoltaic-integrated smart micro-grid
JP6989364B2 (en) Power management equipment, power management methods and programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956413

Country of ref document: EP

Kind code of ref document: A1