WO2024041619A1 - 夹头组件、磨床及其控制方法 - Google Patents

夹头组件、磨床及其控制方法 Download PDF

Info

Publication number
WO2024041619A1
WO2024041619A1 PCT/CN2023/114805 CN2023114805W WO2024041619A1 WO 2024041619 A1 WO2024041619 A1 WO 2024041619A1 CN 2023114805 W CN2023114805 W CN 2023114805W WO 2024041619 A1 WO2024041619 A1 WO 2024041619A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
chuck
clamping
component
workpiece
Prior art date
Application number
PCT/CN2023/114805
Other languages
English (en)
French (fr)
Inventor
徐德军
马飞
卢凯文
Original Assignee
青岛高测科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211028632.XA external-priority patent/CN115351621B/zh
Priority claimed from CN202222247330.3U external-priority patent/CN218875063U/zh
Priority claimed from CN202222247307.4U external-priority patent/CN219617332U/zh
Priority claimed from CN202222247315.9U external-priority patent/CN218856613U/zh
Priority claimed from CN202211029834.6A external-priority patent/CN115401543B/zh
Priority claimed from CN202222249004.6U external-priority patent/CN218891698U/zh
Application filed by 青岛高测科技股份有限公司 filed Critical 青岛高测科技股份有限公司
Publication of WO2024041619A1 publication Critical patent/WO2024041619A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies

Definitions

  • This application relates to the technical field of equipment such as grinders that need to clamp parts to be processed, and specifically provides a chuck assembly, a grinder including the chuck assembly, and a control method of the grinder.
  • a grinder is a device for grinding hard and brittle materials.
  • a grinder usually includes a loading device, a feeding slide device and a grinding device.
  • a loading device usually includes a loading device, a feeding slide device and a grinding device.
  • a grinding device Taking the hard and brittle material as a silicon rod as an example, first fix the squared silicon rod to the feeding assembly, make certain preliminary adjustments to its position and attitude, and then deliver the silicon rod to the feeding slide.
  • both chucks can be movable chucks, or one of the two chucks can be a movable chuck and the other can be a fixed chuck.
  • the silicon rod is sent to the grinding device to perform grinding processes including rough grinding and fine grinding on the first group of surfaces to be ground.
  • silicon rods After that, the silicon rod is rotated to the second set of surfaces to be ground, and based on this, grinding processing including rough grinding and fine grinding is performed on the second set of surfaces to be ground. Repeat this until all the surfaces to be ground of the silicon rod are ground according to the set grinding standards.
  • silicon rods usually include four groups of surfaces to be inspected/ground (0° surface, 90° surface, 45° chamfer/circle, 135° chamfer/circle).
  • FIG. 1 shows a schematic diagram of the principle when the accuracy of the conventional silicon rod in the clamped state does not meet the standard.
  • the silicon rod 03 is clamped between the fixed chuck 01 on the left and the movable chuck 02 on the right.
  • the theoretical axis a-a of the silicon rod is between the theoretical axis s-s of the (fixed and movable) chuck.
  • angle deviation ⁇ will be manifested in varying degrees of increased silicon rod grinding amount and increased silicon loss, which will lead to a reduction in the processing efficiency of the grinder and a reduction in the surface quality of the silicon rod.
  • This application aims to at least partially solve the above technical problems. Specifically, to suppress or eliminate the angular deviation ⁇ between the theoretical axis a-a of the silicon rod and the theoretical axis s-s of the (fixed and movable) chuck, so as to based on this It improves the loading accuracy of silicon rods, thereby improving the processing efficiency of the grinder and the surface quality of the silicon rods.
  • a chuck assembly of a grinder includes a first chuck and a second chuck, and a workpiece to be processed can be clamped by the first chuck and the third chuck.
  • the first chuck and/or the second chuck are provided with or formed with an adjustment part. Through the movement of the adjustment part, the position of the axis of the workpiece to be processed is changed, and thus the position of the axis of the workpiece to be processed is changed.
  • the adjustment part only includes one component provided on the first chuck or the second chuck; the adjustment part includes part A, part B, and part C, where part A is provided on the first chuck, part B and part C is set on the second chuck; etc.
  • a grinder includes: a chuck assembly, which includes a first chuck and a second chuck, and a workpiece to be processed can be clamped by the first chuck and the second chuck. between the two chucks, wherein the first chuck and/or the second chuck are provided with or formed with an adjustment part, so that the position of the axis of the workpiece to be processed can be adjusted through the movement of the adjustment part.
  • a loading assembly includes a pallet on which the workpiece to be processed can be placed, so The loading assembly can adjust the position of the workpiece to be processed provided on the pallet.
  • the adjustment of part of the degrees of freedom belongs to the chuck assembly and the adjustment of the other part of the degrees of freedom.
  • the main adjustment belongs to one of the chuck assembly and the feeding assembly, and the other serves as an auxiliary mechanism to better assist the completion of the adjustment; one of the chuck assembly and the feeding assembly handles the workpiece
  • One's posture is roughly adjusted or preliminary adjusted, and the other is finely adjusted on this basis; etc.
  • a control method for a grinder includes a feeding device, a chuck assembly, and a grinding device.
  • the grinding device includes a grinding assembly and a detection assembly.
  • the control method It includes: judging whether the state of the workpiece to be processed meets the conditions for grinding it by the grinding component according to the detection result of the detection component; if not, causing the loading device and/or the chuck component to grind the workpiece; The position of the workpiece to be processed is adjusted.
  • the step of “making the loading device and/or the chuck assembly adjust the posture of the workpiece to be processed” includes: selectively placing the workpiece to be processed on the loading device, and adjusting at least part of the state of the workpiece to be processed through the loading device , this step includes: adjusting the positional state of the workpiece to be processed along the vertical direction through the first adjusting part; adjusting the positional state of different parts of the workpiece to be processed along the vertical direction through the second adjusting part; and adjusting the positional state along the vertical direction through the third adjusting part.
  • the position and state of different parts of the workpiece along the loading and unloading direction are adjusted; the position and state of the workpiece to be processed along the loading and unloading direction are adjusted through the fourth adjustment part.
  • this application directly places the parts to be processed in the loading device and re-adjusts them (repeatedly), thus improving accuracy while ensuring accuracy. Adjust efficiency.
  • this application directly places the parts to be processed in the loading device and re-adjusts them (repeatedly), thus improving accuracy while ensuring accuracy. Adjust efficiency.
  • Compared with adjustment through (fixed or moving) chucks in the feeding direction since the structure of the feeding device involves relatively many components, four-dimensional feeding accuracy adjustment can be achieved through different components.
  • the loading device and the (fixed and movable) chuck are structurally separated, it is easier to adjust the corresponding dimensions by adding components.
  • silicon rod to be ground
  • Figure 1 shows a schematic diagram of the principle when the accuracy of the existing silicon rod in the clamped state does not meet the standard
  • Figure 2 shows a schematic structural diagram of a grinder according to an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of the loading device of the grinder according to an embodiment of the present application. This figure shows the centering component
  • Figure 4 shows a second structural schematic diagram of the loading device of the grinder according to an embodiment of the present application. This figure does not show the centering component;
  • Figure 5 shows a schematic cross-sectional view of the lifting assembly in the loading device of the grinder according to an embodiment of the present application
  • Figure 6 shows a schematic cross-sectional view of the lifting assembly in the loading device of the grinder according to an embodiment of the present application.
  • the figure shows the internal structure of the lifting assembly
  • Figure 7 shows a schematic cross-sectional view 2 of the lifting assembly in the loading device of the grinder according to an embodiment of the present application. The figure shows the installation details of the eccentric shaft;
  • Figure 8 shows a schematic structural diagram of the clamping movable end assembly of the clamping assembly of the loading device of the grinder according to an embodiment of the present application
  • Figure 9 shows a schematic structural diagram of the clamping fixed end assembly of the clamping assembly of the loading device of the grinder according to an embodiment of the present application
  • Figure 10 shows a cross-sectional (partial) schematic view of the clamping fixed end assembly of the clamping assembly of the loading device of the grinder according to an embodiment of the present application
  • Figure 11 shows an enlarged schematic view of part A in Figure 10;
  • Figure 12 shows an enlarged schematic view of part B in Figure 10;
  • Figure 13 shows a schematic structural diagram of the loading table assembly in the loading device of the grinder according to an embodiment of the present application
  • Figure 14 shows a schematic structural diagram of the centering component of the grinder according to an embodiment of the present application.
  • Figure 15 shows a schematic structural diagram of the feed slide device of the grinder according to an embodiment of the present application.
  • Figure 16 shows a schematic structural diagram of a rough grinding wheel in a grinding device of a grinder according to an embodiment of the present application
  • Figure 17 shows a schematic structural diagram of the detection component in the grinding device of the grinder according to an embodiment of the present application.
  • Figure 18 shows a schematic diagram of the detection status of the detection component in the grinding device of the grinder according to an embodiment of the present application
  • Figure 19 shows a schematic structural diagram of a fixed chuck of a grinder according to an embodiment of the present application.
  • Figure 20 shows a schematic structural diagram of the floating head in the fixed chuck of the grinder according to the first embodiment of the present application
  • Figure 21 shows a schematic structural diagram of the floating head in the fixed chuck of the grinder according to the second embodiment of the present application.
  • Figure 22 shows an enlarged schematic view of part C in Figure 21;
  • Figure 23 shows a schematic structural diagram of the floating head in the fixed chuck of the grinder according to the third embodiment of the present application.
  • Figure 24 shows a schematic structural diagram of the movable chuck of the grinder according to an embodiment of the present application.
  • Figure 25 shows a schematic structural diagram of the adjustment part in the movable chuck of the grinder according to an embodiment of the present application
  • Figure 26 shows a schematic structural view of the eccentric inner housing in the adjustment part of the movable chuck of the grinder according to an embodiment of the present application
  • Figure 27 shows a schematic diagram of the rotation trajectory of the center point of the outer shell of the fixed chuck of the grinder according to an embodiment of the present application
  • Figure 28 shows a schematic diagram of the principle of achieving deliberate tilting through a clamping assembly in a grinder according to an embodiment of the present application
  • Figure 29 shows a schematic flowchart of a control method for a grinder according to an embodiment of the present application.
  • Figure 30 shows a schematic distribution diagram of detection points of the detection component of the grinder according to an embodiment of the present invention.
  • Figure 31 shows a schematic flowchart of a control method for a grinder according to an embodiment of the present application.
  • the loading assembly of the present application will be described below mainly with reference to part or all of FIGS. 2 to 18 .
  • the posture of the silicon rod is adjusted mainly based on the loading assembly in the loading device.
  • this application first defines the three-dimensional coordinate system of such a silicon rod.
  • the center of the silicon rod is the origin.
  • the opposite direction of the feeding direction of the silicon rod on the grinder is the positive direction of the X-axis.
  • the feeding direction of the silicon rod on the grinder is the positive direction of the Y-axis.
  • the vertical upward direction is the positive direction of the Z-axis. .
  • the accuracy adjustment mainly achieved by the loading assembly of this application includes four dimensions: lifting the silicon rod a certain distance along the Z-axis (hereinafter referred to as position adjustment along the Z-axis), moving the silicon rod a certain distance along the X-axis (hereinafter referred to as position adjustment along the Z-axis) (called position adjustment along the X-axis), rotating at a certain angle around the Z-axis (hereinafter referred to as angle adjustment along the Z-axis) and rotating at a certain angle around the X-axis (hereinafter referred to as angle adjustment along the X-axis).
  • the positive direction of the X-axis is from back to front
  • the positive direction of the Y-axis is from left to right
  • the positive direction of the Z-axis is vertically upward.
  • the position along the X/Y/Z axis is adjusted to move a certain distance in the front/rear/left/right/vertical direction
  • the angle along the X/Y/Z axis is adjusted to rotate a certain distance in the front/rear/left/right/vertical direction. distance.
  • the main part of the grinder 1 mainly includes a base 101 and a vertical frame 102 arranged at the bottom.
  • the base 101 has a certain horizontal adjustment function, thereby providing the feeding device 11 and the grinding device 13 of the grinder 1
  • the structure provides a higher level installation surface.
  • the top of the vertical frame 102 is provided with guide rails, and the feeding slide device 12 is installed on the guide rails.
  • the grinder is mainly used to grind the squared silicon rod 3 as the workpiece to be processed to set specifications.
  • the squared silicon rod 3 is usually a rectangular parallelepiped with equal width and height.
  • the surface of the silicon rod 3 after squaring is not smooth.
  • the middle part of the silicon rod is more convex than the two ends, and the size of the exit edge of the silicon rod is larger than the entry edge of the silicon rod.
  • the side length of the square where the end face is cut by the wire is greater than the side length of the square where the end face is cut by the diamond wire). Therefore, the squared silicon rod needs to be ground into an ideal cuboid of standard specifications using a grinder.
  • the loading device mainly includes a loading platform, a loading platform, and two sets of driving transmission mechanisms disposed between the two.
  • the loading platform is equipped with a loading assembly.
  • the loading assembly mainly includes a supporting plate, a lifting assembly and a clamping assembly, among which the supporting plate is mainly used to carry the silicon rods.
  • the supporting plate includes a supporting plate main body and a supporting plate made of nylon material that is provided or formed on the supporting plate main body, and the supporting plate supports the silicon rod on it.
  • Lifting components It is mainly used to lift the silicon rod to a certain distance.
  • the clamping component mainly includes two clamping ends.
  • both clamping ends are movable ends or one is a fixed end and the other is a movable end.
  • the clamping assembly including a clamping movable end and a clamping fixed end as an example, the silicon rod supported on the supporting plate can be clamped in the feeding direction by the movement of the clamping movable end relative to the clamping fixed end.
  • the loading device 11 is mainly used to adjust the silicon rod to a suitable position and angle, and then the fixed chuck 12121 and the movable chuck 122 of the feeding slide device 12 clamp the silicon rod 3 .
  • the grinder 1 requires a high feeding accuracy.
  • the ideal axis of the silicon rod 3 and the axis of the (fixed or moving) chuck should have a high degree of coaxiality. This application mainly makes the coaxiality reach a more ideal level through the adjustment of the loading device.
  • the loading device 11 mainly includes a loading assembly 111 , a centering assembly 112 and a loading table assembly 113 .
  • the loading assembly 111 and the loading table assembly 113 need to adjust the position and attitude (hereinafter referred to as the posture) of the silicon rod 3 in the aforementioned four dimensions
  • the centering assembly 112 is used to mainly determine the loading assembly 111 The adjustment amount for the posture of the silicon rod 3.
  • the loading assembly 111 mainly includes a lifting assembly 1111 and a clamping assembly 1112.
  • the lifting component 1111 is mainly used to adjust the position of the silicon rod 3 along the Z-axis and the angle along the X-axis (rotation in the vertical plane), and the clamping component 1112 is mainly used to adjust the position of the silicon rod 3 along the Z-axis.
  • the silicon rod 3 is angularly adjusted along the Z-axis (rotation in the horizontal plane).
  • the loading stage assembly 113 is mainly used to adjust the position of the silicon rod along the X-axis during the process of moving the loading assembly 111 holding the silicon rod 3 to the centering assembly 112 . Based on this, after the loading assembly 111 completes the adjustment of the silicon rod in four dimensions, the (fixed and movable) chuck is used to clamp the silicon rod with the standard posture, and the loading process is completed.
  • the lifting assembly 1111 mainly includes a first base plate 11111, an electric cylinder 11112, a transmission plate 11113 as a transmission component, a lifting wheel set, and a supporting plate 11115.
  • the wheel set includes a first lifting wheel 111141 (for example, the first lifting wheel includes two wheel units arranged on the first wheel axle 111191) and a second lifting wheel 111142.
  • the transmission plate 11113 is located corresponding to the first lifting wheel 111141 and the second The positions of the lifting wheels 111142 respectively have slopes 111131 that are inclined downward from left to right as guide surfaces.
  • the connection method between the power output end of the electric cylinder 11112 and the transmission plate 11113 is: the first bottom plate 11111 is provided with a connecting block 11116 as a connecting component.
  • the connecting block 11116 uses screws and other fasteners. It is fixedly connected to the transmission plate 11113 above the first bottom plate 11111.
  • the connecting block 11116 has an extending end below.
  • the power output end of the electric cylinder 11112 is provided with an annular groove that matches the extending end.
  • the connecting block 11116 On the other hand, it is connected to the electric cylinder 11112 through the cooperation between the extended end and the ring groove.
  • the power output end of the electric cylinder 11112 when the power output end of the electric cylinder 11112 extends to the right, it can drive the transmission plate 11113 provided at the bottom of the housing to move to the right synchronously.
  • the two lifting wheels installed on the pallet 11115 can roll from right to left along the inclined plane 111131, that is, from low to high. With this rolling, the pallet can be driven to produce Displacement in the vertical direction. In this way, the position of the silicon rod disposed on the supporting plate 11115 is adjusted along the Z-axis.
  • the power output end of the electric cylinder 11112 retracts, the transmission plate 11113 moves to the left, the lifting wheel rolls from high to low, and the supporting plate 11115 descends.
  • a slide rail adapted to the movement trajectory of the transmission plate 11113 may be provided on the first bottom plate 11111.
  • the middle part of the silicon rod is convex compared with the two end parts.
  • the middle part of the supporting plate is recessed in a direction away from the silicon rod compared to both sides, that is, the downward recess in the figure.
  • the supporting plate 11115 includes a supporting plate main body 111151.
  • the top of the supporting plate main body is provided with upwardly extending support plates 111152 on two sides extending along its length direction.
  • the upper surface of the supporting plate 111152 is in contact with the silicon rod 3
  • the reference plane with the lower surface in direct contact (for example, called reference plane a), for example, can add an anti-skid layer or anti-skid structure made of polyurethane or other materials on the upper side of the support plate, and form the aforementioned depression near the middle of the support plate, such as
  • the specific implementation method is: each side is provided with two separate sections of support plates 111152.
  • the support plates can be fixed to the top of the support plate with the help of fasteners such as screws, and a depression is formed between the two sections of support plates.
  • the support plate has a structure to avoid the silicon rod at the installation part corresponding to the screw.
  • the screws are provided at positions corresponding to the installation positions, and in the installed state , the screw is completely accommodated in the mounting position so that the top of the screw does not come into contact with the bottom of the silicon rod.
  • the two separate support plates can be integrated and the middle portion can be set into a depression, the support plate and the main body of the pallet. Integrated settings, etc.
  • the first base plate 11111 is provided with a connecting shaft 1117 that cooperates with the supporting plate 11115, A return spring 1118 is also provided between the first base plate and the supporting plate.
  • the connecting shaft 1117 Through the arrangement of the connecting shaft 1117, the movement of the supporting plate 11115 along the X-axis and Y-axis directions is restricted, so the supporting plate 11115 can only move along the Z-axis direction under the guidance of the connecting shaft.
  • the return spring 1118 is in a compressed/stretched state (compressed in this example).
  • the supporting plate 11115 When the electric cylinder 11112 retracts, the supporting plate 11115 is lowered by the elastic force of the return spring 1118 and the own gravity of the supporting plate 11115, thereby realizing the reset of the supporting plate 11115.
  • a hole is provided on the supporting plate, and the connecting shaft is freely accommodated in the hole so that the supporting plate can smoothly rise (lift)/lower (return) along the axial direction of the connecting shaft.
  • the bottom end of the connecting shaft is fixedly connected to or integrally formed with the first bottom plate, the top end of the connecting shaft has a radial size larger than the hole, and the axial size of the connecting shaft can ensure the required lifting amount of the silicon rod.
  • the main body of the pallet is roughly a cover structure with an open bottom.
  • the aforementioned support plate is arranged on the top of the cover structure, and the lifting wheel is arranged on the side of the cover structure.
  • the two lifting wheels are installed on the pallet 11115 in the following manner: the first lifting wheel 111141 and the second lifting wheel 111142 are respectively installed to the side of the cover structure through the first wheel axle 111191 and the second wheel axle 111192.
  • the supporting plate 11115 rotates along with the two lifting wheels and rolls on the inclined plane 111131 to realize the lifting/resetting of the supporting plate 11115.
  • the supporting plate and the silicon rods arranged on the supporting plate are lifted smoothly and at the same height throughout the entire length.
  • the lifting assembly in order to make the lifting assembly have the function of adjusting the angle of the silicon rod along the X-axis in addition to the above-mentioned function of adjusting the position of the silicon rod along the Z-axis.
  • the function of the lifting component 1111 is improved.
  • one of the first wheel axle 111191 and the second wheel axle 111192 can be changed into an eccentric shaft.
  • the first wheel axle 111191 corresponding to the first lifting wheel 111141 is changed. It is an eccentric shaft (the outer circle of the shaft is parallel to the axis of the outer circle but not coincident), and the eccentric shaft is configured with a first adjusting motor 1111911.
  • the first adjusting motor is connected to the eccentric shaft through a reducer-coupling. In this way, when the first adjustment motor drives the eccentric shaft corresponding to the first lifting wheel to rotate at a certain angle, the first lifting wheel 111141 installed on the eccentric shaft itself will rise/fall a certain distance.
  • the installation position corresponding to the first adjustment motor can be configured at the position corresponding to the first lifting wheel 111141 and the second lifting wheel 111142.
  • the position corresponding to the second lifting wheel 111142 The location is configured with a removable cover 1111921.
  • the silicon rod on the supporting plate can be lifted to a certain height in the vertical direction.
  • the first adjusting motor, the eccentric shaft and the first lifting wheel the positions of different parts of the silicon rod on the supporting plate along the height direction can be differentiated. In this way, the position adjustment of the silicon rod along the Z-axis and the angle adjustment along the X-axis can be realized by lifting the assembly.
  • the clamping assembly 1112 mainly includes a clamping movable end assembly 11121 and a clamping fixed end assembly 11122 , and the clamping movable end assembly 11121 relatively clamps the fixed end assembly. 11122, the silicon rod 3 located on the reference plane a of the supporting plate 11115 can be clamped in the X-axis direction.
  • the clamping movable end assembly and the clamping fixed end assembly are only a specific form of the clamping assembly.
  • the clamping movable end assembly and the clamping fixed end assembly can both be configured in a movable form, etc. .
  • the clamping movable end assembly 11121 mainly includes a first cylinder 111211, two sets of guide rail sliders (X-axis guide rail slider 111212, Y-axis guide rail slider 111213), a movable end return spring 111214 and a movable Clamping plate 111215, after placing the silicon rod 3 to be ground on the reference plane a of the lifting assembly 1111, the first cylinder 111211 is extended, and the X-axis guide rail slider can be moved by pushing the bottom plate of the clamping movable end assembly 11121 The slide block of 111212 slides on the guide rail and then pushes the movable clamping plate 111215 to move toward the clamping fixed end assembly 11122, thereby clamping the silicon rod along the X-axis direction.
  • the movable chuck 122 When the (fixed or movable) chuck clamps the silicon rod, the movable chuck 122 will push the silicon rod to move a little along the Y-axis. Correspondingly, the movable clamping plate 111215 will also move on the guide rail with the slider of the Y-axis guide rail slider. There is a slight movement along the Y-axis by sliding upward, and such movement will cause the two movable end return springs 111214 arranged along the Y-axis direction to be in a compressed and stretched state respectively. After the (fixed and movable) chuck clamps the silicon rod, the first cylinder 111211 retracts, and at the same time the two movable end return springs 111214 return to reset the movable clamping plate 111215.
  • the fixed clamping end assembly 11122 mainly includes a fixed clamping plate 111221 and an adjustment assembly.
  • the fixed clamping plate has a datum surface (for example, it is called datum surface b), and the first cylinder 111211 drives the movable end to clamp By moving the plate closer to the fixed end clamping plate, the silicon rod can be clamped in the X direction.
  • the clamping fixed end assembly 11122 is also provided with a Y-axis guide rail slider and a fixed end return spring that can reset the movable end clamping plate.
  • the adjustment component is mainly used to adjust the angle of the silicon rod along the Z-axis.
  • the adjustment assembly mainly includes a second base plate (base plate) 1112221, an adjustment plate 1112222, and a positioning block 1112223, wherein the positioning block 1112223 can be fixed on the second base plate 1112221 through fasteners such as screws a11122231.
  • the adjustment plate 1112222 is fixed on the fixed clamping plate on one side of the adjustment plate 1112222.
  • the adjustment plate 1112222 is installed on the second base plate 1112221 on the other side (near the left side) through the positioning block 1112223. There is a gap between the positioning block 1112223 and the adjustment plate 1112222, thus allowing the adjustment plate 1112222 to rotate at a small angle around the Z-axis.
  • the silicon rod 3 sandwiched between the fixed end clamping plate and the movable end clamping plate can be rotated around the Z-axis, thereby achieving Adjust the angle of silicon rod 3 along the Z axis.
  • the adjustment assembly also includes a second adjustment motor (driving component) 1112224, an adjustment top block (a first adjustment component, where "top” is a form of the first adjustment structure) 1112225 and an adjustment top block 1112225.
  • Wedge block second adjustment component, where "wedge” is a form of the second adjustment structure 1112226.
  • This application is mainly based on the second bottom plate 1112221, the adjustment plate 1112222 and the positioning block 1112223.
  • the second adjustment motor 1112224 is a stepper motor.
  • the second bottom plate 1112221 has an installation space reserved at the position corresponding to the adjustment top block (close to the right side).
  • the adjustment top block 1112225 can be freely accommodated in the installation space and fixed on the adjustment top block 1112225 with the help of screws b11122251 and other fasteners. on the board.
  • the upper side of the adjustment top block is roughly an arc surface (the first adjustment structure), and a position near the middle of the arc surface extends out of the installation space of the second bottom plate 1112221.
  • the stepper motor is connected to the adjusting wedge 1112226 to push the adjusting wedge to move closer to/away from the adjusting top block 1112225.
  • the lower side (second adjustment structure) of the adjustment wedge 1112226 may be an inclined surface, a curved surface, or a combination of the two. According to the orientation shown in the figure, as in this embodiment, the lower side of the adjusting wedge is a slope inclined downward from right to left.
  • a stepper motor can drive the adjusting wedge 1112226 to move to the left through the T-shaped screw 1112229.
  • a guide rail 1112228 that matches the motion trajectory of the adjustment wedge can be provided on the second bottom plate 1112221.
  • the stepper motor drives the adjustment wedge to move leftward along the guide rail through the T-shaped screw, as in this example.
  • the upper part of the adjustment wedge has a sliding end 1112227 that cooperates with the guide rail. The process of the adjustment wedge moving to the left will push the adjustment top block downward. Since the adjustment top block is fixed on the adjustment plate 1112222, the adjustment plate will rotate clockwise around the positioning block 1112223. In the same way, when the stepper motor rotates in the opposite direction, the adjusting wedge 1112226 moves to the right, the adjusting top block 1112225 moves upward, and the adjusting plate 1112222 rotates counterclockwise around the positioning block 1112223.
  • the bottom surface of the adjustment wedge can also be changed to a flat surface, and the forward direction of the stepper motor can be set to have a certain angle with the second bottom plate.
  • the loading platform assembly 113 mainly includes a loading platform 1131 , a lowering platform 1132 , and two sets of drive transmission systems disposed between them.
  • the drive transmission system mainly includes a loading and unloading motor 11331, a first ball screw 11332 and a first guide rail slider 11333.
  • the loading and unloading motor drives the first ball screw to move under the guidance of the first guide rail slider. Produces displacement along the X-axis direction.
  • Two sets of driving transmission mechanisms are respectively used to drive the loading platform 1131 and the unloading platform 1132 to move along the X-axis direction, thereby realizing the position adjustment of the silicon rod along the X-axis direction and completing the loading and unloading processes.
  • an organ shield 11334 is provided between the loading and unloading platform to provide a certain degree of waterproofing and dustproofing while ensuring that loading and unloading are possible.
  • the centering assembly 112 mainly includes a third base plate 1121 , a centering motor (not shown) disposed on the third base plate 1121 , a rack and pinion mechanism, a splint group, and
  • the centering motor is a servo motor
  • the rack-and-pinion mechanism includes a gear 11240 connected to the power output end of the servo motor and two upper and lower racks meshed with the gear 11240 (denoted as the first and second racks respectively).
  • the splint group includes a first splint 11251 and a second splint 11252 that are arranged opposite and connected to the first rack 11241 and the second rack 11242 respectively.
  • the two splints 11252 are respectively configured with a first probe group, in which the first probe group includes two probes (recorded as the first probe 11261 and the second probe 11262 respectively), which are mainly used for detecting the need for silicon rods. The amount of adjustment made to the pose.
  • the servo motor is disposed on the back side of the third base plate (the rear side in the figure) and is located approximately in the middle.
  • the power output end of the servo motor extends out of the front side of the third base plate and is connected to the first gear 11240 , the first rack located above
  • the position near the left side of 11241 and the position near the right side of the second rack 11242 located below are meshed with the gear 11240 respectively.
  • the right end of the first rack 11241 and the left end of the second rack 11242 are respectively connected to the first splint on the left side. 11251 and the second splint 11252 on the right side.
  • the loading assembly 111 When working, the loading assembly 111 carries the silicon rod to the bottom of the centering assembly 112 and then stops moving.
  • the (first and second) clamping plates move from the outside to the inside respectively, clamp the silicon rod and then stop moving.
  • the base plate is provided with guide rails, and the (first and second) splints are provided with guide grooves that match the guide rails.
  • the rotation of the servo motor drives the gear 11240 to rotate, and the (first and second) teeth
  • the bar moves inward by means of meshing with the gear 11240 to drive the (first and second) clamping plates to move on the guide rail.
  • the (first and second) clamping plates of the centering assembly 112 adjust the position of the silicon rod in the Y-axis direction so that the (moving and fixed) chucks of the feed slide device 12 reach the appropriate position before clamping the silicon rod. position, and the length of the silicon rod can be measured at the same time.
  • the first probe 11261 and the second probe 11262 in the two first probe groups respectively detect the rear side surface and the upper side surface of the silicon rod to determine the adjustment amount of the position and angle of the silicon rod.
  • the second clamping plate 11252 mainly includes a clamping plate body 112521, a first mounting plate 112522 and a second mounting plate 112523, wherein the clamping plate body is used to clamp the silicon rod 3, and the first mounting plate is provided with
  • the groove 1125221 matches the guide rail on the third bottom plate, and the first probe 11261 is arranged on the first mounting plate.
  • the second mounting plate 112523 is substantially parallel to the first mounting plate and is arranged on the underside of the first mounting plate.
  • the second probe 11262 is disposed on the second mounting plate.
  • the second mounting plate is disposed on the first connecting plate through a transverse connecting plate 112524, and a supporting structure 112525 is provided at the intersection between the second mounting plate 112523 and the connecting plate 112524.
  • the first probe 11261 needs to extend its head to touch the upper surface of the silicon rod 3, and then calculate the silicon rod according to the compression amount of the head of the first probe 11261. 3 overall dimensions. After the detection is completed, the head needs to be moved away from the upper surface of the silicon rod 3 .
  • a second cylinder 112611 can be configured for the first probe 11261. If the second cylinder 112611 is installed on the first mounting plate, it can push the head of the first probe to extend. , the compression amount of the head of the first probe can be obtained after touching the surface of silicon rod 3.
  • the second probe 11262 does not need to be equipped with a cylinder and only needs to be fixed on the second mounting plate 112523. Specifically, the second probe 11262 can be compressed by simply moving the silicon rod 3 in a direction close to the second probe 11262 through the loading device 11, thereby obtaining the compression amount. That is, as the silicon rod moves along the X-axis direction, the second probe 11262 can detect the rear surface of the silicon rod.
  • the working principle of the centering assembly 112 is as follows: a pair of splints of the centering assembly 112 clamp the silicon rod 3 and then release it, and the loading platform 1131 continues to advance a certain distance along the X-axis direction to compress the two second probes. 11262, thereby obtaining the outer dimensions (width) of the silicon rod 3 along the X-axis direction, and obtaining the width difference between the two ends of the silicon rod 3 through a pair of second probes 11262.
  • the second cylinder 112611 corresponding to the two first probes extends to drive the heads of the two first probes 11261 to contact the upper surface of the silicon rod and compress it for a certain distance, thereby obtaining the outer dimensions of the silicon rod along the Z-axis direction ( height), and obtain the height difference between the two ends of the silicon rod through a pair of first probes 11261.
  • the required adjustment amount of the silicon rod is calculated and adjusted through the loading device 11. After the adjustment is completed, the (fixed or moving) chuck is used to clamp the silicon rod 3 to complete the loading.
  • the feed slide device 12 mainly includes a slide assembly, a fixed chuck 12121 and a movable chuck 122 , wherein the slide assembly mainly includes a slide housing 1201 and a slide housing 1201 .
  • Desk drive system mainly includes a slide drive motor 1202, a second ball screw 1203, a screw seat 1204 and a second guide rail slider 1205.
  • the screw seat 1204 and the second guide rail slide block 1205 are both installed on the vertical frame 102 of the grinder 1.
  • the slide table drive motor 1202 drives the ball screw to move under the guidance of the second guide rail slide block 1205 and generates motion along the X-axis direction.
  • the displacement realizes the movement of the slide assembly along the Y-axis.
  • the slide housing 1201 is installed on the second guide rail slide block 1205, and the fixed chuck 12121 is fixed on the slide housing 1201 and moves along the Y-axis synchronously with the slide assembly.
  • the movable chuck 122 is installed on the slide table housing 1201 through a movable chuck drive system. Similar to the slide table drive system, the movable chuck drive system includes a movable chuck drive motor 1226 and a third ball screw (not shown). ) and the third guide rail slider (not shown).
  • the movable chuck 122 can move along the Y-axis synchronously with the slide table assembly through the slide table drive motor 1202, or can also move along the Y-axis relative to the slide table assembly under the action of the movable chuck drive system.
  • the fixed chuck 12121 and the movable chuck 122 are respectively equipped with a fixed chuck rotating motor 1213 and a movable chuck rotating motor 1223, so as to rotate the silicon rod after the (fixed and movable) chuck clamps the silicon rod. For example, from One set of surfaces to be ground rotates to another set of surfaces to be ground.
  • the grinding device 13 mainly includes a pair of phases.
  • a pair of facing rough grinding wheels 131 for rough grinding the silicon rod 3 a pair of facing opposite fine grinding wheels 132 for fine grinding the silicon rod 3 , and a detection assembly 133 .
  • the fine grinding wheel 132 is located on the downstream side of the rough grinding wheel 133 along the silicon rod feeding direction to perform fine grinding after rough grinding a certain grinding surface.
  • the detection component 133 is configured on the rough grinding wheel 131 and is mainly used for Before starting the grinding operation, the position of the silicon rod 3 is detected.
  • the rough grinding motor 1311 drives the fourth ball screw 1312 to drive the bracket 1314 equipped with the rough grinding wheel 131 to move in the X-axis direction with the guidance of the fourth guide rail slider 1313 .
  • the detection component 133 is installed on the bracket 1314 for carrying the rough grinding wheel 131 .
  • the movement mode of the fine grinding wheel 132 can be similar to that of the rough grinding wheel 131, which will not be described again here.
  • the detection assembly includes two sets of probes with a pair of rough grinding wheels, and each set of probes includes three probes 52 arranged from top to bottom, such as corresponding to each grinding operation.
  • the operating object is a set of planes (two), and the two sets of probes are used to detect the positions of the two planes respectively.
  • the movement of the probe includes two situations: one is to move synchronously with the rough grinding wheel, and the other is to move closer to/away from the silicon rod relative to the rough grinding wheel.
  • the synchronous movement of the probe and the rough grinding wheel can be realized through the fixed connection of the corresponding structure.
  • the detection component 133 mainly includes a base 1331, The base plate 1332, the sliding plate 1333, the second probe group, the third cylinder 1335 and the fifth guide rail slider 1336.
  • the base plate 1332 is fixed on the base 1331
  • the sliding plate 1333 is arranged on the base plate 1332 through the fifth guide rail slide block 1336 group.
  • the second probe group includes three arranged in the vertical direction and installed on the sliding plate 1333.
  • the movable chuck 122 moves along the Y axis relative to the slide assembly.
  • the shaft moves, thereby clamping the silicon rod through the cooperation between the fixed chuck 12121 and the movable chuck 122.
  • the feed slide device 12 moves along the Y-axis to transport the silicon rod 3 to the grinding area.
  • the feed slide device 12 makes the silicon rod move along the Y-axis and rotates the silicon rod according to the program setting, and completes the grinding. cut.
  • the feeding slide device returns to the unloading area of the loading device 11.
  • the (fixed or moving) chuck releases the silicon rod, allowing the silicon rod to fall to the unloading platform corresponding to the unloading area, and the process is completed. Unloading.
  • the detection component 133 will detect the silicon rod 3 . Specifically, when the silicon rod 3 reaches the first detection position and stops moving, the third cylinder 1335 of the detection assembly 133 extends to push the third probe 1334 to move along the X-axis direction. At this time, the position of the third probe 1334 will be ahead of the grinding wheel. Then, the rough grinding wheel 131 and the detection assembly 133 continue to move along the X-axis direction driven by the rough grinding motor 1311 until the third probe contacts the silicon rod and completes the detection (the point is not ground).
  • the third probe can sequentially detect the entry position of the silicon rod, the middle position along the rod length, and the exit edge position of the silicon rod, and then the chuck drives the silicon rod to rotate 90 degrees. °, repeat the above detection process.
  • the detection component 133 determines whether to perform the aforementioned grinding process on the silicon rod 3. Specifically, if the maximum grinding size of the silicon rod is smaller than the standard size after grinding, the size of the rod is judged to be unqualified and cannot be ground. In this case, the rod needs to be withdrawn, that is, the silicon rod is returned to the blanking platform, and then the rod is processed to varying degrees. of manual intervention. Under the premise that the silicon rod is qualified, the positional deviation and angular deviation between the axis of the (fixed and moving) chuck and the axis of the silicon rod can be measured by measuring the three positions of the silicon with the second probe group.
  • the silicon rod is re-placed (returned) to the loading platform of the loading device and directly placed on the loading platform. Make a second adjustment to the position of the silicon rod and re-test after the adjustment is completed. If the deviation is along the Y-axis, it can be adjusted through the centering component. If the deviation is an angle along the Y-axis, it can be realized through the (fixed or moving) chuck of the feed slide device. After the inspection is completed, grinding can begin. During the detection process, the grinding amount of the rough grinding wheel 131 can be calculated.
  • the rough grinding wheel advances a certain distance to the X-axis for rough grinding.
  • the detection component repeats the previous detection process to calculate the grinding amount of the fine grinding wheel 132.
  • the fine grinding wheel also advances a certain distance to the X-axis for fine grinding.
  • the adjustment principle mainly includes: through the cooperation of the transmission plate, connecting shaft and lifting wheel in the lifting assembly, the silicon rod is adjusted along the Z-axis position adjustment. On this basis, by configuring an eccentric shaft for one of the lifting wheels, the angle adjustment of the silicon rod along the X-axis is simultaneously achieved by lifting the assembly.
  • the adjustment plate fixed to the fixed end clamping plate rotates around the positioning block, thereby realizing the adjustment of the silicon rod. Angle adjustment along the Z axis.
  • the loading table assembly enables the position of the silicon rod along the X-axis to be adjusted during the movement of the loading assembly holding the silicon rod.
  • the silicon rod can be adjusted in four dimensions through the loading device, combined with the position adjustment along the Y-axis through the centering component and the angle along the Y-axis through the (fixed and movable) chuck. Adjustment to ensure the feeding accuracy of the grinder.
  • the chuck assembly of the present application will be described below mainly with reference to part or all of FIGS. 19 to 28 and 30 .
  • the posture of the silicon rod is adjusted mainly based on the chuck assembly.
  • the fixed chuck 121 mainly includes a fixed chuck base 1211, a fixed chuck bearing box 1212, a fixed chuck rotating motor 1213, and a fixed chuck reducer 1214 and floating header 1215.
  • the fixed chuck bearing box is fixed on the fixed chuck base
  • the fixed chuck rotating motor is connected to the left side (spindle) of the fixed chuck bearing box through the fixed chuck reducer
  • the right side (spindle) of the fixed chuck bearing box Spindle) is connected to the floating head.
  • the floating head 1215 mainly includes a fixed chuck inner shell 151 (basic part), a fixed chuck outer shell 152 (movable part), a spring 153 (elastic connection structure) and a floating ball 154.
  • the inner shell of the fixed chuck is connected to the bearing box of the fixed chuck
  • the outer shell of the fixed chuck is arranged on the side of the inner shell of the fixed chuck close to the silicon rod, and between the inner shell of the fixed chuck and the outer shell of the fixed chuck. are connected through reeds.
  • first set of screws 1531 and the second set of screws 1532 respectively are provided on the reed, respectively used to fix the reed to the fixed chuck (inner , outer) on the casing.
  • the reed is roughly a hexagonal ring structure, with a screw provided at each vertex of the hexagon, and the screws corresponding to the chuck (inner and outer) shells are arranged at intervals, that is, :
  • the first set of screws and the second set of screws each include three screws.
  • the stud portion of the screw is fixedly connected to the inner shell of the fixed chuck, while the nut portion of the screw is freely accommodated in the corresponding mounting position 1522 (such as In this example, through holes).
  • the stud part of the screw can maintain the connection relationship between the reed and the corresponding fixed chuck (inner and outer) housing, and the nut part of the screw can be in the through hole. Activities that adapt to the deformation occur within the body.
  • a plurality of fixed chuck head blocks 1521 are provided on the right side of the fixed chuck outer casing, and are provided on the left side of the movable chuck outer casing.
  • the two ends are respectively connected with the plurality of fixed chuck head blocks 1521 and the plurality of movable chuck head blocks 2521.
  • Small surface contact For example, the number of (fixed and moving) chuck head blocks is three or more.
  • the main structure of the fixed chuck is substantially the same as that of the embodiment shown in FIG. 20 , but the fixed chuck head is disposed on the outer shell 152 of the fixed chuck.
  • the block 1521 is modified as follows: a plurality of holes 15211 distributed along its axis can be opened on the surface of the fixed chuck head block 1521.
  • the difference between the fixed chuck and the embodiment shown in Figure 21 is that the basic part is changed from the fixed chuck inner shell 151 to the fixed chuck seat 151 ' (chuck seat), the movable part is changed from the fixed chuck outer shell 152 to the columnar body 152', and the elastic connection structure is changed from the reed 153 to the spring 153' (such as a mold spring).
  • the spring 153' such as a mold spring
  • the part of the columnar body close to the right side is reduced in diameter, so that the part of the columnar body corresponding to the diameter reduction process cooperates with the right part of the accommodation space of the fixed chuck seat to form an installation space corresponding to the spring.
  • the spring is sleeved on The part of the columnar body that has been reduced in diameter. In this way, through the movement of the spring in the installation space and the movement of the columnar body in the accommodation space, the columnar body can move a certain amount relative to the fixed chuck base, thereby realizing the floating of the fixed chuck head block at the left end of the columnar body.
  • the fixed clamp head block and the columnar body are integrally formed. Obviously, the two can also be fixedly connected. And in this example, a plurality of table surfaces corresponding to the columnar body are added to the left side of the fixed chuck base. Obviously, those skilled in the art can change it, such as changing it into an integral tabletop or changing the tabletop into a curved surface, etc.
  • the fixed chuck head block can produce a floating amount that is adapted to the rotation of the eccentric structure
  • those skilled in the art can determine the specific method of realizing floating according to actual needs. For example, the aforementioned first/second set of screws, installation position, accommodation space, installation space and other factors can be adjusted and changed, and springs and springs can be removed.
  • Other structures are used to realize the floating of the fixed chuck head block.
  • a floating ball is provided between the (inner and outer) shells of the fixed chuck.
  • the fixed chuck (inner and outer) housings are respectively provided with a first ball seat 1541 and a second ball seat 1542 at positions corresponding to the floating balls.
  • the head of the fixed chuck base (the end axially away from the silicon rod) is equipped with a reference plate 1216 and a tool setter 1217.
  • the main function of the reference plate is to calibrate the detection components of the grinder.
  • the main function of the probe set and tool setter is to set the rough grinding wheel and fine grinding wheel in the grinding assembly.
  • the basic structure of the movable chuck 122 (except for the floating head) is similar to that of the fixed chuck, and mainly includes a movable chuck.
  • the movable chuck bearing box is fixed on the movable chuck base, and the movable chuck rotating motor is connected to the right side (spindle) of the movable chuck bearing box through the movable chuck reducer.
  • the movable chuck of the present application also includes a movable chuck adjustment part 1225.
  • the left side (spindle) of the movable chuck bearing box is connected to the movable chuck adjustment part 1225, wherein the adjustment part has an eccentric structure to facilitate rotation of the movable chuck.
  • the rotation of the motor can drive the end of the silicon rod corresponding to the movable chuck (such as the end of the movable chuck) to a certain degree relative to the end of the silicon rod corresponding to the fixed chuck (such as the end of the fixed chuck).
  • the shift amount causes a certain angular offset between the axis of the silicon rod after the offset and the axis of the silicon rod before the offset.
  • the movable chuck adjustment part 1225 mainly includes a movable chuck inner shell 251 and a movable chuck outer shell 252, wherein the movable chuck inner shell is an eccentric inner shell, and the eccentric inner shell It is connected to the outer shell of the movable chuck through a movable spherical roller bearing 253. Since the spherical roller bearing allows a certain angular deviation in the inner and outer rings, the outer shell of the movable chuck can be tilted in any direction relative to the eccentric inner shell.
  • the spherical roller bearing uses a retaining ring 2531 and a gland 2532 to respectively realize the positioning of the bearing outer ring and the bearing inner ring of the spherical roller bearing. Based on this, it is expected that through the rotation of the outer shell of the movable chuck relative to the eccentric inner shell, the silicon rod can be rotated from the position of one set of grinding surfaces to another set of grinding surfaces, and the eccentric structure can also be used. The setting can reduce or even eliminate the non-axiality between the axis of the silicon rod and the axis of the chuck.
  • the eccentric inner housing includes a first sub-part 2511 and a second sub-part 2512 distributed along the axis direction of the chuck, wherein the axes of the first sub-part and the second sub-part are not concentric.
  • the right part of the dotted line is the first subpart
  • the left part of the dotted line is the second subpart.
  • the axis of the first subpart roughly coincides with the axis of the chuck
  • the axis of the second subpart coincides with the first subpart.
  • the axes of the sub-sections are generally parallel, for example, the distance between the axes of the first sub-section and the second sub-section is recorded as the eccentricity a.
  • the fixed chuck and the movable chuck are respectively equipped with a fixed chuck rotating motor and a movable chuck rotating motor so that after the (fixed and movable) chuck clamps the silicon rod, the silicon rod is rotated to move from a set of to-be-used Rotating the grinding surface to another set of surfaces to be ground is only one of the power configuration methods. For example, it can also be realized by only a relatively powerful motor.
  • a plurality of fixed chuck head blocks 1521 are provided on the right side of the outer shell of the fixed chuck, and a plurality of movable clamps are provided on the left side of the outer body of the movable chuck.
  • the silicon rod is clamped, the two ends of the top block 2521 are in contact with the small surfaces corresponding to the plurality of fixed chuck head blocks 1521 and the plurality of movable chuck head blocks 2521 respectively.
  • the eccentric inner shell is connected to the left side (left side) of the movable chuck bearing box.
  • the spindle rotates synchronously.
  • the center point of the outer shell of the movable chuck will rotate with the axis of the chuck as the axis and the eccentricity a as the radius.
  • the silicon rod corresponds to the end of the movable chuck and the movable chuck shell.
  • the relative position between the bodies remains unchanged. Therefore, the center point of the end of the silicon rod corresponding to the movable chuck will change accordingly, causing the axis of the silicon rod to rotate relative to the position before rotation.
  • the realized silicon rod corresponds to the change of the center point of the end of the movable chuck to reduce or even completely eliminate ⁇ , that is: for any detection grinding plane, the axis of the silicon rod can be realized by synchronous rotation accompanied by the change of the center point Parallel to the chuck axis in the current grinding plane.
  • the working process of the grinder of the present application is roughly as follows: after the silicon rod 3 is clamped through the cooperation between the fixed chuck 121 and the movable chuck 122, the slide assembly 3 transports the silicon rod to the corresponding grinding device. Grinding area by making the silicon rod By rotating, different grinding surfaces (pairs) of the silicon rod can be ground. After the grinding is completed, the (fixed and movable) chuck is used to release the silicon rod, and the silicon rod is dropped to the unloading platform to complete the unloading. Before grinding, the detection component will detect the silicon rod.
  • the grinder is configured with three detection points for the silicon rod, such as the fixed chuck end detection point, the middle detection point and the movable chuck end detection point.
  • the silicon rod stops moving when it reaches the position corresponding to the first detection point.
  • the cylinder of the detection component extends to push the probe to move. At this time, the position of the probe will be ahead of the rough grinding wheel. Then, the rough grinding wheel and detection assembly continue to move driven by the rough grinding motor until the probe contacts the silicon rod and the detection is completed (the point is not ground).
  • the probe can detect the position of the silicon rod in sequence. It is determined whether to grind the silicon rod according to the detection result of the detection component. Specifically, if the maximum grinding size of the silicon rod is smaller than the standard size after grinding, the size of the rod is judged to be unqualified and cannot be ground.
  • the rod needs to be withdrawn, that is, the silicon rod is returned to the blanking platform, and then the rod is processed to varying degrees. of manual intervention.
  • the silicon rod is qualified but the angle between the axis of the silicon rod and the axis of the chuck needs to be adjusted, the angle between the axis of the chuck and the axis of the silicon rod is measured based on the measurement of the three positions of the silicon rod by the probe. The angle difference is adjusted based on the movable chuck with the above-mentioned eccentric structure, thereby reducing or eliminating the angle difference until the grinding accuracy is achieved. At this time, the grinding operation can be carried out on the current pair of grinding surfaces.
  • the above-mentioned selection method of detection points and the number of probes included in each group of probes are only exemplary descriptions, and those skilled in the art can adjust them according to actual needs. For example, it can be: adjusting the positions of the three detection points or increasing the number of detection points; adjusting the number/type/distribution form of the probes in each group of probes; the probes colliding with the silicon rods, And continuously detected through the relative movement between it and the silicon rod (along the axial direction of the silicon rod); etc.
  • the rotation trajectory of the center point of the outer shell of the movable chuck is the trajectory shown by the dotted line in the figure.
  • the center point of the outer shell of the movable chuck (the dot on the dotted line) before adjustment is already directly below the axis of the chuck (negative direction of the Y-axis)
  • the adjustment of the center point of the right end of the silicon rod at this time Combinations can only be made in the positive direction of the X-axis, the negative direction of the X-axis, and the positive direction of the Y-axis, but cannot be continued in the negative direction of the Y-axis.
  • the clamping assembly includes a fixed clamping part 41 (such as the clamping plate in the aforementioned clamping fixed end assembly) and a movable clamping part 42 (such as the aforementioned clamping plate). (Clamping plate in the movable end assembly), the silicon rod can be clamped by the movement of the movable clamping part relative to the fixed clamping part.
  • the fixed clamping part and the movable clamping part are only an exemplary description, for example, both clamping parts can be configured as movable clamping parts, etc.
  • the fixed clamping part of the clamping assembly can be made relative to the movable clamping part
  • the silicon rod is tilted at a certain angle to ensure that the initial state of the silicon rod being clamped by the (fixed or movable) chuck is that the silicon rod has a set initial state of tilting in the negative direction of the Y-axis.
  • the reference surface inside the fixed clamping part can be set as a slope, thereby ensuring that the initial state is a tiltable state and avoiding adjustment failure.
  • the inner surface of the movable clamping part can be set as a slope; the fixed clamping part and the movable clamping part can rotate at a certain angle relative to each other (such as using the aforementioned clamping assembly with an adjustment assembly); etc.
  • the center point of the outer shell may also be located directly to the left of the axis of the chuck.
  • the axis of the silicon rod is deliberately tilted in the direction that "adjustment after clamping does not require adjustment in the negative direction of the X-axis.”
  • the lifting component of the loading component can be tilted at a certain angle with the help of the eccentric shaft, or the surface of the support plate in contact with the silicon rod can be processed into a slope, etc., so as to ensure the initial state. It is a state in which the axis of the silicon rod is tilted in the negative direction of the X-axis.
  • the "deliberate tilt” intervention method can be used to avoid the situation of adjustment failure when the structure of the present application is used for adjustment.
  • Those skilled in the art can use any reasonable intervention means to achieve a deliberately tilted state of the silicon rod that can avoid the failure of the structural adjustment based on the present application in the extreme state.
  • the adjustment principle mainly includes: providing or forming an adjustment portion on the chuck assembly (in this embodiment, the fixed clamp is The head is provided with a floating chuck with an elastic connection structure, and the movable chuck is set as a chuck with an eccentric structure in the inner shell of the movable chuck), through the cooperation between the rotation of the eccentric structure and the adaptive floating of the floating chuck to adjust the axis position of the silicon rod. Based on this adjustment, there are It is hoped that the axis position of the silicon rod can be ensured for grinding only by adjusting the chuck assembly. At the same time, the adjustment failure of the chuck assembly can be avoided by deliberately tilting the silicon rod on the pallet of the loading device.
  • both the loading assembly and the chuck assembly have relatively independent adjustment functions.
  • the former is achieved through four structures corresponding to four dimensions, while the latter is This is achieved through the introduction of the adjustment section.
  • the two also have the possibility of cooperation.
  • the lifting component in the loading assembly can achieve deliberate tilting of the silicon rod to avoid adjustment failure of the chuck assembly.
  • the chuck assembly can adjust the edge of the loading assembly that cannot be adjusted.
  • the Y-axis angle is additionally adjusted in this dimension.
  • both can be configured on the same grinder. Based on this, the silicon rod can be accurately adjusted in a more flexible way.
  • the loading assembly is used to assist in achieving the initial state of the deliberate tilt of the silicon rod required by the chuck assembly, and the chuck assembly is used to supplement the angular adjustment along the Y-axis that cannot be achieved by the loading assembly.
  • the two can also use a set cooperation method to improve the adjustment efficiency while ensuring that the accuracy of the silicon rod reaches the standard. For example: both are involved in the precision adjustment of the silicon rod.
  • the loading assembly Before the chuck assembly clamps the silicon rod, the loading assembly is not only responsible for the aforementioned deliberate tilting, but also is responsible for four-dimensional preparation adjustments (such as it can be called rough Adjustment or first step adjustment), after the chuck assembly clamps the silicon rod, the chuck assembly further adjusts the position and posture of the silicon rod based on the aforementioned preparatory adjustments (for example, it can be called fine adjustment). In this way, it is expected to improve the processing accuracy/quality through the combination of the two adjustments and improve the adjustment efficiency while ensuring accuracy and quality. On the basis of ensuring processing accuracy/quality, effects closely related to cost reduction can be achieved, such as reducing silicon rod losses and improving silicon rod utilization.
  • control method of the grinder of the present application will be introduced below mainly with reference to FIG. 29 . It can be understood that the implementation of the control method of the present application is not limited to the above structure.
  • FIG. 29 shows a schematic flowchart of a control method for a grinder according to an embodiment of the present application.
  • the control method of the grinder of the present application mainly includes the following steps:
  • the feeding slide device sends the silicon rod to the grinding area.
  • the movable chuck moves along the Y-axis relative to the slide component. movement, thereby clamping the silicon rod through the cooperation between the fixed chuck and the movable chuck. After that, the feed slide device moves along the Y-axis to transport the silicon rod to the grinding area.
  • the fixed clamping plate in the clamping assembly in the loading device is adjusted to an inclined surface that slopes upward from right to left.
  • the axis of the silicon rod in the positive direction of the Y-axis such as rotating the chuck motor clockwise
  • the detection component in the grinding device detects the silicon rod, and based on the detection result of the detection component, determines whether the state of the silicon rod meets the conditions for the grinding component to grind it; if not, transfer to S2905 , if yes, go to S2907.
  • the detection component Before grinding, the detection component will detect the silicon rod.
  • the detection component detects the silicon rod in the following manner: when the silicon rod 2 stops moving after reaching the first detection position, the third cylinder 1335 of the detection component extends to push the third probe. The needle moves along the X-axis direction. At this time, the position of the third probe 1334 will lead the grinding wheel. Then, the rough grinding wheel and detection assembly continue to move along the X-axis direction driven by the rough grinding motor until the third probe contacts the silicon rod and completes the detection (the point is not ground).
  • the third probe can sequentially detect the entry position of the silicon rod, the middle position along the rod length, and the exit edge position of the silicon rod, and then the chuck drives the silicon rod to rotate 90 degrees. °, repeat the above detection process.
  • the judgment results based on the detection results of the detection component that the silicon rod does not meet the conditions for grinding it by the grinding component specifically include: 1) If the maximum grinding size of the silicon rod is smaller than the standard size after grinding, Then it is determined that the size of the bar material is unqualified and cannot be ground. At this time, the silicon rod can be returned to the unloading platform (for rod withdrawal). 2) On the premise that the silicon rod is qualified, the positional deviation and angular deviation between the axis of the (fixed and moving) chuck and the axis of the silicon rod can be measured by measuring the three positions of the silicon with the second probe group. , if the deviation is greater than the specified value, it is considered that the state of the silicon rod does not meet the conditions for the grinding assembly to grind it.
  • the silicon rod is directly reset to the loading platform of the loading device, and the posture of the silicon rod is adjusted twice on the loading platform.
  • the position of the silicon rod along the Z-axis and the angular state along the X-axis can be adjusted by lifting the assembly.
  • the angular state of the silicon rod along the Z-axis can be adjusted by adjusting the assembly.
  • the driving transmission mechanism adjusts the position of the X-axis of the silicon rod.
  • the silicon rod is placed in a deliberately tilted state through the loading device.
  • the feed slide device After S2909, rough adjustment and deliberate tilting preparation adjustment, the feed slide device sends the silicon rod to the grinding area for fine adjustment of the silicon rod through the chuck assembly.
  • the grinding component mainly includes a rough grinding wheel and a fine grinding wheel.
  • the grinding amount of the rough grinding wheel can be calculated.
  • the rough grinding wheel advances a certain distance to the X-axis for coarse grinding.
  • the detection component repeats the previous detection process to calculate the grinding amount of the fine grinding wheel.
  • the fine grinding wheel also advances a certain distance to the X-axis for fine grinding.
  • the feeding slide device After completing the grinding, the feeding slide device returns to the unloading area of the loading device. At this time, the (fixed and moving) chuck releases the silicon rod, causing the silicon rod to fall to the unloading table corresponding to the unloading area, and the unloading is completed. material.
  • the position and posture of the silicon rod are adjusted through the loading device (directly repositioned on the loading device) and the chuck assembly (still clamped Between the chuck components, the position and posture of the silicon rod are adjusted through the cooperation between the adaptive adjustment of the fixed chuck and the rotation of the movable chuck) to ensure the precision adjustment of the silicon rod on the grinder.
  • the chuck assembly still clamped Between the chuck components, the position and posture of the silicon rod are adjusted through the cooperation between the adaptive adjustment of the fixed chuck and the rotation of the movable chuck) to ensure the precision adjustment of the silicon rod on the grinder.
  • Those skilled in the art can adopt the same or different structures as the foregoing structures according to actual needs to achieve precision adjustment of the corresponding dimensions.
  • control method of the grinder of the present application mainly includes the following steps:
  • the feeding slide device sends the silicon rod to the grinding area.
  • the detection component in the grinding device detects the silicon rod, and based on the detection result of the detection component, determines whether the state of the silicon rod meets the conditions for the grinding component to grind it; if not, transfer to S1605 , if yes, go to S1607.
  • the detection component detects the silicon rod 4 in the aforementioned manner before the grinding component grinds the silicon rod.
  • the judgment results based on the detection results of the detection component that the silicon rod does not meet the conditions for grinding it by the grinding component include two situations: 1) If the maximum grinding size of the silicon rod is smaller than the standard size after grinding , then it is determined that the size of the bar material is unqualified and cannot be ground. At this time, the silicon rod can be returned to the blanking platform (rod withdrawal). 2) On the premise that the silicon rod is qualified, the angle difference between the axis of the (fixed and moving) chuck and the axis of the silicon rod can be measured by measuring the three positions of the silicon with the probe set.
  • transition to S1605 should be understood as corresponding to the state of the silicon rod in case 2) that does not meet the conditions for the grinding assembly to grind it, that is, in this case, transition to S1605 can be performed.
  • the feed slide device After completing the grinding, the feed slide device returns to the unloading area of the loading device. At this time, the (fixed or moving) chuck releases the silicon rod. Make the silicon rod fall to the blanking platform corresponding to the blanking area to complete blanking. It should be noted that this step means that the above-mentioned steps S1603-S1607 are performed for each group of grinding surfaces.
  • the axis position of the silicon rod can be controlled through the rotation of the (fixed and movable) chuck motor. Adjustment, based on this adjustment, it is expected to ensure that the axis position of the silicon rod satisfies grinding only through the adjustment of the chuck assembly. At the same time, the adjustment failure of the chuck assembly can be avoided by tilting the supporting plate and clamping plate of the loading device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

本申请涉及磨床技术领域,具体提供了一种夹头组件、磨床及其控制方法,其中磨床包括上料装置、夹头组件和磨削装置,所述磨削装置包括磨削组件和检测组件,所述控制方法包括:根据检测组件的检测结果,判断待加工件的状态是否满足使所述磨削组件对其进行磨削的条件;若否,则使所述上料装置和/或所述夹头组件对所述待加工件的位姿进行调节。本申请通过这样的构成,能够谋求通过两种调整方式中的其中一种或者二者的协作来实现待加工件的精度调节。

Description

夹头组件、磨床及其控制方法
本申请要求申请号为“202222249004.6”,申请日为“2022年8月25日”,发明名称为“夹头组件以及包含该夹头组件的磨床”、申请号为“202222247307.4”,申请日为“2022年8月25日”,发明名称为“磨床”、申请号为“202222247330.3”,申请日为“2022年8月25日”,发明名称为“夹头以及包含该夹头的磨床”、申请号为“202222247315.9”,申请日为“2022年8月25日”,发明名称为“夹头以及包含该夹头的磨床”的中国实用新型专利的优先权以及申请号为“202211028632.X”,申请日为“2022年8月25日”,发明名称为“夹头组件、磨床及其控制方法及***、设备、介质”;申请号为“202211029834.6”,申请日为“2022年8月25日”,发明名称为“磨床及其控制方法及***、设备、计算机可读存储介质”的中国发明专利的优先权。
技术领域
本申请涉及磨床等需要夹持待加工件的设备技术领域,具体提供一种夹头组件、包含该夹头组件的磨床、磨床的控制方法。
背景技术
磨床是对硬脆材料进行磨削加工的设备。如磨床通常包括上料上料装置、进给滑台装置以及磨削装置。以硬脆材料为硅棒为例,如首先将开方后的硅棒固定至上料组件,对其所处的位置和姿态进行后一定的初步调节后,将硅棒送达至进给滑台装置的两个夹头之间,如两个夹头可以均为动夹头,或者两个夹头中的一个为动夹头而另一个为定夹头。通过的硅棒轴向运动,将硅棒送达磨削装置从而对第一组待磨削面进行包括粗磨和精磨在内的磨削加工。之后,通过使硅棒的旋转,从而转动至第二组待磨削面,在此基础上,对该第二组待磨削面进行包括粗磨和精磨在内的磨削加工。如此重复,直至硅棒所有的待磨削面按照设定的磨削标准被磨削。如硅棒通常包括四组待检测/磨削面(0°面、90°面、45°倒角/圆、135°倒角/圆)。
仍以硬脆材料为硅棒、两个夹头中的一个为定夹头另一个为动夹头为例,由于如包括但不限于上料装置的上料平台的基准面与硅棒的轴线之间存在偏差、硅棒的表面不平整、(定、动)夹头在将硅棒夹紧的过程中存在精度损失等方面的原因。导致(定、动)夹头在将放置于上料装置的上料平台上的硅棒夹紧之后,硅棒的轴线与(定、动)夹头的轴线之间存在一定的夹角。如参照图1,图1示出现有例的硅棒在夹紧状态下的精度不达标时的原理示意图。如图1所示,硅棒03被夹持在左侧的定夹头01和右侧的动夹头02之间,硅棒的理论轴线a-a与(定、动)夹头的理论轴线s-s之间存在角度偏差β。显然,角度偏差β的存在便会表现为不同程度的硅棒磨削量的增加、硅损提高,从而导致磨床的加工效率降低、硅棒的表面质量降低。
发明内容
本申请旨在至少一部分地解决上述技术问题,具体而言,对硅棒的理论轴线a-a与(定、动)夹头的理论轴线s-s之间存在角度偏差β进行抑制或者消除,从而在此基础上提高硅棒的上料精度,进而提高磨床的加工效率以及硅棒的表面质量。
根据本申请的一个方面,提供了一种磨床的夹头组件,该夹头组件包括第一夹头和第二夹头,待加工件能够被夹持于所述第一夹头和所述第二夹头之间,其中,所述第一夹头和/或第二夹头设置有或者形成有调整部,通过调整部的活动使所述待加工件的轴线的位置发生改变,并因此调整待加工件在所述第一夹头和所述第二夹头之间的姿态。
可以理解的是,本领域技术人员可以根据实际需求确定调整部包含的部件的个数、其与第一夹头和第二夹头的对应关系、对应于调整功能的活动形式以及产生该活动形式的具体结构等。如可以是:调整部仅包括设置于第一夹头或者第二夹头的一个部件;调整部包括部件A、部件B、部件C,其中,部件A设置于第一夹头,部件B和部件C设置于第二夹头;等。
根据本申请的另一方面,提供了一种磨床,该磨床包括:夹头组件,其包括第一夹头和第二夹头,待加工件能够被夹持于所述第一夹头和第二夹头之间,其中,所述第一夹头和/或第二夹头设置有或者形成有调整部,以便:通过调整部的活动使所述待加工件的轴线的位 置发生改变,并因此调整待加工件在所述第一夹头和所述第二夹头之间的姿态;上料组件,其包括托板,所述托板上能够设置待加工件,所述上料组件能够调整设置于所述托板上的待加工件的位姿。
在二者的协作的情形下,可以理解的是,本领域技术人员可以根据实际需求确定二者的具体分工形式,如可以是:一部分自由度的调整归夹头组件而另一部分自由度的调整归上料组件;主要的调整归夹头组件和上料组件中的其中一个,另一个作为辅助机构,能够更好地辅佐调整的完成;夹头组件和上料组件中的其中一个对待加工件的位姿进行粗调整抑或说初步调整,另一个在此基础上进行精调整;等。
根据本申请的另一方面,提供了一种磨床的控制方法,所述磨床包括上料装置、夹头组件和磨削装置,所述磨削装置包括磨削组件和检测组件,所述控制方法包括:根据检测组件的检测结果,判断待加工件的状态是否满足使所述磨削组件对其进行磨削的条件;若否,则使所述上料装置和/或所述夹头组件对所述待加工件的位姿进行调节。
对于上述控制方法,在一种可能的实施方式中,在“使所述上料装置和/或所述夹头组件对所述待加工件的位姿进行调节”的步骤中,所述“使所述夹头组件对所述待加工件的位姿进行调节”包括:选择性地使待加工件放置于所述上料装置,通过所述上料装置对待加工件的状态进行至少一部分的调节,该步骤包括:通过第一调节部对待加工件沿竖直方向的位置状态进行调节;通过第二调节部对待加工件的不同局部沿竖直方向的位置状态进行调节;通过第三调节部对待加工件的不同局部沿上下料方向的位置状态进行调节;通过第四调节部对待加工件沿上下料方向的位置状态进行调节。
与将待加工件直接下料后(退棒)进行人工参与的方式相比,本申请通过将待加工件直接放置于上料装置中重新(反复)调整,因此在保证精度的前提下提高了调整效率。与在进给方向通过(定、动)夹头进行调节相比,由于进料装置的结构中涉及的部件相对较多,因此可以通过不同的部件实现四个维度的上料精度调节。此外,由于上料装置与(定、动)夹头在结构是分离的,因此更容易通过增加部件等方式来实现相应维度的调整。
需要说明的是,“选择性地使待加工件放置于所述上料装置”应当这样理解:待加工件的状态不满足使所述磨削组件对其进行磨削的条件可能包含需要直接退棒、需要重新调整但是上料装置无法实现这种调整、需要重新调整且调整能够通过上料装置来(仅通过上料装置或者上料装置与其他装置的协作等)实现等。因此,只有在“需要重新调整且调整能够通过上料装置来实现”的情形下,使待加工件放置于所述上料装置才为有效的控制。
附图说明
下面待加工件为待磨削的硅棒(下文简称硅棒)并参照附图来描述本申请的优选实施方式,附图中:
图1示出现有例的硅棒在夹紧状态下的精度不达标时的原理示意图;
图2示出本申请一种实施例的磨床的结构示意图;
图3示出本申请一种实施例的磨床的上料装置的结构示意图一,该图示出了对中组件;
图4示出本申请一种实施例的磨床的上料装置的结构示意图二,该图未示出对中组件;
图5示出本申请一种实施例的磨床的上料装置中抬升组件的剖视示意图;
图6示出本申请一种实施例的磨床的上料装置中抬升组件的剖视示意图一,图中示出了抬升组件的内部结构;
图7示出本申请一种实施例的磨床的上料装置中抬升组件的剖视示意图二,图中示出了偏心轴的安装细节;
图8示出本申请一种实施例的磨床的上料装置的夹持组件中夹持活动端组件的结构示意图;
图9示出本申请一种实施例的磨床的上料装置的夹持组件中夹持固定端组件的结构示意图;
图10示出本申请一种实施例的磨床的上料装置的夹持组件中夹持固定端组件的剖视(局部)示意图;
图11示出图10中局部A的放大示意图;
图12示出图10中局部B的放大示意图;
图13示出本申请一种实施例的磨床的上料装置中上料台组件的结构示意图;
图14示出本申请一种实施例的磨床的对中组件的结构示意图;
图15示出本申请一种实施例的磨床的进给滑台装置的结构示意图;
图16示出本申请一种实施例的磨床的磨削装置中粗磨砂轮的结构示意图;
图17示出本申请一种实施例的磨床的磨削装置中检测组件的结构示意图;以及
图18示出本申请一种实施例的磨床的磨削装置中检测组件的检测状态示意图;
图19示出本申请一种实施例的磨床的定夹头的结构示意图;
图20示出本申请第一种实施例的磨床的定夹头中浮动头的结构示意图;
图21示出本申请第二种实施例的磨床的定夹头中浮动头的结构示意图;
图22示出图21中局部C的放大示意图;
图23示出本申请第三种实施例的磨床的定夹头中浮动头的结构示意图;
图24示出本申请一种实施例的磨床的动夹头的结构示意图;
图25示出本申请一种实施例的磨床的动夹头中调整部的结构示意图;
图26示出本申请一种实施例的磨床的动夹头的调整部中偏心内壳体的结构示意图;
图27示出本申请一种实施例的磨床的定夹头外壳体的中心点的旋转轨迹示意图;
图28示出本申请一种实施例的磨床中通过夹持组件实现刻意倾斜的原理示意图;
图29示出本申请一种实施例的磨床的控制方法的流程示意图;
图30示出本发明一种实施例的磨床的检测组件的检测点的分布示意图;以及
图31示出本申请一种实施例的磨床的控制方法的流程示意图。
具体实施方式
下面参照附图来描述本申请的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。
实施例1
下面主要参照图2至图18中的部分或者全部来描述本申请的上料组件。在该实施例中,主要是基于上料装置中的上料组件对硅棒的位姿进行调节。
为了便于描述,本申请首先定义出这样的硅棒的三维坐标系。硅棒的中心为原点,硅棒在磨床上的进料方向的反方向为X轴正向,硅棒在磨床上的进给方向为Y轴正向,竖直向上的方向为Z轴正向。基于此,本申请的上料组件主要实现的精度调整包括四个维度:使硅棒沿Z轴抬升一定的距离(下文称作沿Z轴的位置调整)、沿X轴移动一定的距离(下文称作沿X轴的位置调整)、绕Z轴方向旋转一定的角度(下文称作沿Z轴的角度调整)和绕X轴方向旋转一定的角度(下文称作沿X轴的角度调整)。按照图2中的方位,X轴正向为自后向前,Y轴正向为自左向右,Z轴正向为竖直向上。与之相对应,沿X/Y/Z轴的位置调整为前后/左右/竖直方向移动一定的距离,沿X/Y/Z轴的角度调整为前后/左右/竖直方向的轴转动一定的距离。
在一种可能的实施方式中,磨床1的主体部分主要包括底座101、设置于底部立式框架102,底座101具备一定的水平调整功能,从而为磨床1的上料装置11、磨削装置13等结构提供一个水平程度较高的安装面。其中,立式框架102的顶部设置有导轨,进给滑台装置12安装于导轨上。磨床主要用于将作为待加工件的开方后的硅棒3磨削加工至设定的规格。具体而言,理想状态下,开方后的硅棒3通常是宽度和高度相等的长方体。但在实际中,开方后的硅棒3的表面并不平整,如通常情形下表现为:硅棒的中间部分较之于两端部分凸起,硅棒出刀口尺寸大于入刀口尺寸(金刚线切出端面的正方形的边长大于金刚线切入端面的正方形的边长)。因此,需要通过磨床将开方后的硅棒磨削至标准规格的理想长方体。
在一种可能的实施方式中,上料装置主要包括上料平台、下料平台以及设置于二者之间的两套驱动传动机构。上料平台上配置有上料组件,通过对应于上料平台的驱动传动机构,可将放置于上料组件上的硅棒运送至与进给滑台装置衔接的位置。通过对应于下料平台的驱动传动机构,可将完成磨削或者检测不合格的硅棒进行下料处理。上料组件主要包括托板、抬升组件和夹持组件,其中,托板主要用于承载硅棒。示例性地,托板包括托板主体以及设置于或者形成于托板主体上的包含尼龙材质的支撑板,支撑板将硅棒承托于其上。抬升组件 主要用于将硅棒抬升一定的距离。夹持组件主要包括两个夹持端,如两个夹持端均为活动端或者一个为固定端一个为活动端。以夹持组件包括夹持活动端和夹持固定端为例,通过夹持活动端相对夹持固定端的运动,能够将承托于托板上的硅棒沿上料方向夹紧。
在一种可能的实施方式中,上料装置11主要用于将硅棒调整到适合的位置和角度后,进给滑台装置12的定夹头12121和动夹头122夹紧硅棒3。为了减小磨削量、降低硅损,提高磨削效率,磨床1需要一个很高的上料精度。在上料精度达标的情形下,硅棒3的理想轴线与(定、动)夹头之间的轴线应当有较高的同轴度。本申请主要是通过上料装置的调整使得同轴度达到较为理想的水平。
在一种可能的实施方式中,上料装置11主要包括上料组件111、对中组件112和上料台组件113。其中,上料组件111和上料台组件113需要在前述的四个维度上对硅棒3的位置和姿态(下文称作位姿)进行调整,对中组件112用于主要确定上料组件111对硅棒3的位姿的调整量。具体而言,上料组件111主要包括抬升组件1111和夹持组件1112。根据对中组件112的检测结果,抬升组件1111主要用于对硅棒3进行沿Z轴的位置调整和沿X轴的角度调整(竖直平面内的转动),夹持组件1112主要用于对硅棒3进行沿Z轴的角度调整(水平面内的转动)。上料台组件113主要用于使夹持有硅棒3的上料组件111移动至对中组件112处的过程中,对硅棒进行沿X轴的位置调整。基于此,在上料组件111完成对硅棒在四个维度上的调整之后,使(定、动)夹头夹紧位姿达标的硅棒,至此上料过程完成。
主要参照图4至图6,在一种可能的实施方式中,抬升组件1111主要包括第一底板11111、电缸11112、作为传动部件的传动板11113、升降轮组以及托板11115,其中,升降轮组包括第一升降轮111141(如第一升降轮包括设置于第一轮轴111191上的两个轮单体)和第二升降轮111142,传动板11113在对应于第一升降轮111141和第二升降轮111142的位置分别具有作为引导面的自左向右向下倾斜的斜面111131。
在本示例中,电缸11112的动力输出端与传动板11113之间的连接方式为:第一底板11111上设置有作为连接部件的连接块11116,连接块11116一方面借助于螺钉等紧固件与处于第一底板11111上方的传动板11113固定连接,连接块11116的下方具有伸出端,相应地,电缸11112的动力输出端上设置有的与伸出端匹配的环槽,连接块11116另一方面通过伸出端与环槽的配合与电缸11112相连接。
这样一来,电缸11112的动力输出端向右伸出时,便可带动设置于壳体底部的传动板11113同步向右运动。与此相适配,安装在托板11115上的两个升降轮此时便可沿斜面111131板自右向左滚动,即由低向高地滚动,伴随着这一滚动,便可带动托板产生沿竖直方向的位移。这样一来,设置于托板11115上的硅棒便实现了沿Z轴的位置调整。同理,电缸11112的动力输出端缩回,传动板11113向左移动,升降轮由高向低滚动,托板11115下降。如为了更好地引导传动板11113的运动,如可以在第一底板11111上设置有与传动板11113的运动轨迹相适配的滑轨。
如前所述,开方后的硅棒3的表面并不平整的表现之一是:硅棒的中间部分较之于两端部分凸起。为了能够将具有该属性的硅棒更平稳地放置于托板上,如托板的中部较之于两侧向远离硅棒的方向凹陷,即图中的向下凹陷。
示例性地,托板11115包括托板主体111151,托板主体的顶部沿其长度方向延伸的两个侧边分别设置有向上延伸的支撑板111152,支撑板111152的上表面为与硅棒3的下表面直接接触的基准面(如称作基准面a),如可以在支撑板的上侧边增加聚氨酯等材质的防滑层或者防滑结构,并在支撑板靠近中部的位置形成前述的凹陷,如具体的实现方式是:每个侧边设置有分开设置的两段支撑板111152,如支撑板可以借助于螺钉等紧固件固定至托板的顶部,两段支撑板之间形成凹陷。在本示例中,支撑板在对应于螺钉的安装部分具有避让硅棒的结构,如在支撑板上设置有多个安装位,螺钉设置于在对应于安装位的位置,并且在安装好的状态下,螺钉完全容纳于安装位并因此使得螺钉的顶部不与硅棒的底部接触。
可以理解的是,本领域技术人员可以根据实际需求对托板形成凹陷的方式进行灵活地调整,如可以将两段分置的支撑板一体设置然后将中部设置成凹陷、支撑板与托板主体一体设置等。
在一种可能的实施方式中,第一底板11111上设置有与托板11115配合的连接轴1117, 第一底板和托板之间还设置有复位弹簧1118。通过连接轴1117的设置,限制了托板11115沿X轴和Y轴方向的运动,因此托板11115在连接轴的引导下只能沿Z轴方向运动。当电缸11112伸出、托板11115被抬升时,复位弹簧1118处于被压紧/拉伸(如本示例中为压紧)的状态。当电缸11112缩回时,托板11115在复位弹簧1118的弹力与托板11115的自身重力的共同使作用下降,实现托板11115的复位。如在本示例中,托板上开设有孔,连接轴自由容纳于孔中以便托板能够沿连接轴的轴向顺利地上升(抬升)/下降(回位)。连接轴的底端与第一底板固定连接或者一体成型,连接轴的顶端具有大于孔的径向尺寸,且连接轴的轴向尺寸能够保证硅棒所需的抬升量。
如在本示例中,托板的托板主体大致为底部开放的罩壳结构,前述的支撑板设置于罩壳结构的顶部,升降轮设置于罩壳结构的侧部。示例性地,两个升降轮安装至托板11115的方式为:第一升降轮111141和第二升降轮111142分别通过第一轮轴111191和第二轮轴111192安装至罩壳结构的侧部。在电缸11112伸出/缩回时,托板11115伴随着两个升降轮的自转及其在斜面111131上的滚动实现托板11115的抬升/复位。如使得托板以及设置于托板上的硅棒在全长范围内被平稳地等高度抬升。
在此基础上,为了使得抬升组件在具有上述调节硅棒沿Z轴的位置调整的功能之外还具有调节硅棒沿X轴的角度调整的功能。本申请中,对抬升组件1111的功能进行了改进。
在一种可能的实施方式中,可以将第一轮轴111191以及第二轮轴111192中的其中一个变更为偏心轴,如在本示例中,是将对应于第一升降轮111141的第一轮轴111191变更为偏心轴(轴的外圆与外圆的轴线平行而不重合),并为偏心轴为配置第一调整电机1111911,如第一调整电机通过减速器-联轴器与偏心轴相连。这样一来,当第一调整电机驱动对应于第一升降轮的偏心轴旋转一定的角度时,安装于偏心轴上的第一升降轮111141本身会抬升/下降一定的距离,此时,由于两个升降轮之间出现高度差,因此,托板11115便会绕X轴旋转一定的角度,从而实现了对硅棒沿X轴的角度调整。与之相适配,在连接轴1117上安装有关节轴承11171,这样一来,连接轴的设置只限制托板11115沿X轴、Y轴方向的移动,而不会限制托板11115绕X轴的转动。在实际产品中,如可以在对应于第一升降轮111141和第二升降轮111142的位置均配置有对应于第一调整电机的安装位,如本示例中,在对应于第二升降轮111142的位置配置有一个可移除的封板1111921。通过将封板移除,便可将第一调整电机更换至对应于第二升降轮111142的位置。
这样一来,通过电缸、传动板和(第一、第二)升降轮的配合,可以使托板上的硅棒沿竖直方向抬升一定的高度。通过第一调整电机、偏心轴和第一升降轮的配合,可以使托板上的硅棒的不同局部沿高度方向的位置有所区别。这样一来,便可通过抬升组件实现了对硅棒的沿Z轴的位置调整以及沿X轴的角度调整。
主要参照图7至图11,在一种可能的实施方式中,夹持组件1112主要包括夹持活动端组件11121和夹持固定端组件11122,通过夹持活动端组件11121相对夹持固定端组件11122,能够将处于托板11115的基准面a上的硅棒3沿X轴方向夹紧。需要说明的是,夹持活动端组件和夹持固定端组件只是构成夹持组件的一种具体的形式,如可以将夹持活动端组件和夹持固定端组件均设置为可活动的形式等。
在一种可能的实施方式中,夹持活动端组件11121主要包括第一气缸111211、两套导轨滑块(X轴导轨滑块111212、Y轴导轨滑块111213)、活动端复位弹簧111214以及活动夹持板111215,在将待磨削的硅棒3放在抬升组件1111的基准面a之后,使第一气缸111211伸出,通过推动夹持活动端组件11121的底板可使X轴导轨滑块111212的滑块在导轨上滑动进而推动活动夹持板111215向夹持固定端组件11122运动,从而沿X轴方向将硅棒夹紧。当(定、动)夹头夹紧硅棒时,动夹头122会推动硅棒沿Y轴有少许运动,相应地,活动夹持板111215也会以Y轴导轨滑块的滑块在导轨上滑动的方式沿Y轴有少许的运动,这样的运动便会使得沿Y轴方向设置的两个活动端复位弹簧111214分别处于压缩和拉伸状态。在(定、动)夹头将硅棒夹紧后,第一气缸111211缩回,同时两个活动端复位弹簧111214复原,使活动夹持板111215复位。
在一种可能的实施方式中,夹持固定端组件11122主要包括固定夹持板111221和调整组件。固定夹持板具有基准面(如称作基准面b),通过第一气缸111211带动活动端夹持 板向靠近固定端夹持板的方向移动,可以将硅棒沿X方向夹紧。与夹持活动端组件11121的结构和功能类似,夹持固定端组件11122也设置能够使活动端夹持板复位的Y轴导轨滑块和固定端复位弹簧。调整组件主要用于实现硅棒沿Z轴的角度调整。
在一种可能的实施方式中,调整组件主要包括第二底板(底板)1112221、调整板1112222和定位块1112223,其中,定位块1112223可以通过如螺钉a11122231等紧固件固定在第二底板1112221上,调整板1112222一方面固定在位于其一侧的固定夹持板上,调整板1112222另一方面通过定位块1112223安装在位于其另一侧的第二底板1112221上(靠近左侧的位置)。其中,定位块1112223与调整板1112222之间存在间隙,因此允许调整板1112222绕Z轴发生小角度的转动。这样一来,通过改变调整板1112222与第二底板1112221之间的夹角,便可使夹置于固定端夹持板与活动端夹持板之间的硅棒3绕Z轴旋转,从而实现对硅棒3沿Z轴的角度调整。
在一种可能的实施方式中,调整组件还包括第二调整电机(驱动部件)1112224、调整顶块(第一调整部件,其中的“顶”为第一调整结构的一种形式)1112225和调整楔块(第二调整部件,其中的“楔”为第二调整结构的一种形式)1112226,本申请主要是基于第二底板1112221、调整板1112222和定位块1112223,通过调整顶块和调整楔块的配合来对硅棒3沿Z轴的角度进行调整的。如在本示例中,第二调整电机1112224为步进电机。其中,第二底板1112221在对应于调整顶块的位置(靠近右侧的位置)预留有安装空间,调整顶块1112225可自由容纳于该安装空间并借助于螺钉b11122251等紧固件固定在调整板上。
如在本示例中,调整顶块的上侧面大致为弧面(第一调整结构),弧面靠近中部的位置伸出第二底板1112221的安装空间。其中,步进电机与调整楔块1112226相连从而推动调整楔块向靠近/远离调整顶块1112225的方向运动。调整楔块1112226的下侧面(第二调整结构)可以为斜面、曲面或者二者的组合。按照图中所示的方位,如在本实施例中,调整楔块的下侧为自右向左地向下倾斜的斜面。
在一种可能的实施方式中,如步进电机可通过T型丝杠1112229带动调整楔块1112226向左运行。优选地,可以在第二底板1112221上设置与调整楔块的运动轨迹相适配的导轨1112228,这样一来,步进电机通过T型丝杠带动调整楔块沿导轨向左运动,如在本示例中,调整楔块的上方具有与导轨配合的滑动端1112227。调整楔块向左运动的过程会推动调整顶块向下运动,由于调整顶块固定在调整板1112222上,调整板便会绕定位块1112223顺时针旋转。同理,步进电机反方向旋转,则调整楔块1112226向右运动、调整顶块1112225向上运动、调整板1112222绕定位块1112223逆时针旋转。
可以理解的是,在精度满足的前提下,也可以将调整楔块的底面变更为平面,而将步进电机的前进方向设定为与第二底板之间具有一定的夹角。
主要参照图3和图12,在一种可能的实施方式中,上料台组件113主要包括上料平台1131、下料平台1132以及设置于二者之间的两套驱动传动***。如在本示例中,驱动传动***主要包括上下料电机11331、第一滚珠丝杠11332和第一导轨滑块11333,上下料电机驱动第一滚珠丝杠在第一导轨滑块的引导下移动并产生沿X轴方向的位移。两套驱动传动机构分别用于驱动上料平台1131和下料平台1132沿X轴方向运动,从而实现硅棒沿X轴方向上的位置调整,完成上料过程和下料过程。如在本示例中,上料平台和下料平台之间设置有风琴护罩11334,以在保证上下料可实现的前提下起到一定的防水防尘作用。
主要参照图13,在一种可能的实施方式中,对中组件112主要包括第三底板1121、设置于第三底板1121上的对中电机(未示出)、齿轮齿条机构、夹板组以及第一探针组,如本示例中,对中电机为伺服电机,齿轮齿条机构包括与伺服电机的动力输出端相连的齿轮11240以及与齿轮11240啮合的上下两个齿条(分别记作第一齿条11241和第二齿条11242),夹板组包括相向设置的、分别与第一齿条11241和第二齿条11242相连的第一夹板11251和第二夹板11252,第一夹板11251和第二夹板11252分别配置有一个第一探针组,其中的第一探针组包括两个探针(分别记作第一探针11261和第二探针11262),主要用于检测需要对硅棒的位姿进行的调整量。
在本示例中,伺服电机设置于第三底板的背侧(图中的后侧)并位于大致中部的位置,伺服电机的动力输出端伸出第三底板的前侧并连接有第一齿轮11240,位于上方的第一齿条 11241靠近左侧的位置以及位于下方的第二齿条11242靠近右侧的位置分别与齿轮11240啮合,第一齿条11241的右端和第二齿条11242的左端分别连接至左侧的第一夹板11251和右侧的第二夹板11252。在工作时,上料组件111将硅棒搬运到对中组件112的下方后停止运动,(第一、第二)夹板分别从外侧向内侧运动,夹紧硅棒后停止运动。为了保证运动的稳定性,底板上设置有导轨,(第一、第二)夹板设置有与导轨匹配的导槽,这样一来,伺服电机转动带动齿轮11240转动,(第一、第二)齿条借助于与齿轮11240的啮合带动(第一、第二)夹板在导轨上移动的方式向内运动。
对中组件112的(第一、第二)夹板通过调整硅棒在Y轴方向上的位置,使进给滑台装置12的(动、定)夹头在夹紧硅棒前预先到达合适的位置,同时可测量出硅棒的长度。两个第一探针组中的第一探针11261和第二探针11262分别通过检测硅棒的后侧表面和上侧表面来确定出硅棒的位置和角度的调整量。
下面以对应于右侧的第二夹板11252为例来说明第一/第二夹板的结构形式以及第一探针组在相应的夹板上的设置方式。在一种可能的实施方式中,第二夹板11252主要包括夹板主体112521、第一安装板112522以及第二安装板112523,其中,夹板主体用于夹持硅棒3,第一安装板上设置有与前述的第三底板上的导轨配合的槽1125221,且第一探针11261设置于第一安装板上,第二安装板112523与第一安装板大致平行并设置于第一安装板的下侧靠后的位置,第二探针11262设置于第二安装板上。第二安装板通过横向的连接板112524设置于第一连接板上,在第二安装板112523和连接板112524之间的交接处设置有支撑结构112525。
在本示例中,其中的第一探针11261则需要通过使其头部伸出碰到硅棒3的上侧表面后,根据第一探针11261的头部的压缩量的大小计算出硅棒3的外形尺寸。在检测完毕之后,需要将使其头部远离硅棒3的上侧表面。为了实现第一探针11261的头部的伸缩,如可以为第一探针11261配置一个第二气缸112611,如第二气缸112611安装至第一安装板可以推动第一探针的头部伸出,碰到硅棒3表面后可得到第一探针的头部的压缩量。而第二探针11262则不需要配置气缸只需将其固定在第二安装板112523上即可。具体而言,只需通过上料装置11使硅棒3向靠近第二探针11262的方向移动便可压缩第二探针11262,从而得到压缩量的大小。即:伴随着硅棒沿X轴方向的移动即可实现第二探头11262对硅棒的后侧表面的检测。
基于此,对中组件112的工作原理为:对中组件112的一对夹板夹紧硅棒3后松开,上料平台1131上继续沿X轴方向前进一段距离,压缩两个第二探针11262,从而得到硅棒3沿X轴方向的外形尺寸(宽度),并通过一对第二探针11262得到硅棒3两头的宽度差。然后对应于两个第一探头的第二气缸112611伸出带动两个第一探针11261的头部与硅棒的上表面接触且压缩一段距离,从而得到硅棒沿Z轴方向的外形尺寸(高度),并通过一对第一探针11261得到硅棒两头的高度差。通过检测的宽度差和高度差,计算出所需的硅棒的调整量并通过上料装置11进行调整,调整完成后,使(定、动)夹头夹紧硅棒3,完成上料。
主要参照图14,在一种可能的实施方式中,进给滑台装置12主要包括滑台组件、定夹头12121和动夹头122,其中,滑台组件主要包括滑台壳体1201和滑台驱动***。滑台驱动***主要包括滑台驱动电机1202、第二滚珠丝杠1203、丝杠座1204和第二导轨滑块1205。丝杠座1204和第二导轨滑块1205均安装在磨床1的立式框架102之上,滑台驱动电机1202驱动滚珠丝杠在第二导轨滑块1205的引导下移动并产生沿X轴方向的位移,实现滑台组件沿Y轴运动。滑台壳体1201安装于第二导轨滑块1205上,定夹头12121固定于滑台壳体1201之上,与滑台组件同步沿Y轴运动。动夹头122通过动夹头驱动***安装于滑台壳体1201之上,如与滑台驱动***类似,动夹头驱动***包括动夹头驱动电机1226、第三滚珠丝杠(未示出)和第三导轨滑块(未示出)。这样一来,动夹头122即可以通过滑台驱动电机1202和滑台组件同步沿Y轴运动,也可以在动夹头驱动***的作用下相对于滑台组件沿Y轴运动。此外,定夹头12121和动夹头122分别配置有定夹头旋转电机1213和动夹头旋转电机1223,以便在(定、动)夹头夹紧硅棒后使硅棒旋转,如可以从一组待磨削面旋转至另一组待磨削面。
主要参照图1、图15至图17,在一种可能的实施方式中,磨削装置13主要包括一对相 向设置的、用于对硅棒3进行粗磨的粗磨砂轮131、一对相向设置的对硅棒3进行精磨的精磨砂轮132以及检测组件133。其中,精磨砂轮132沿硅棒进给方向位于粗磨砂轮133的下游侧,以便在对某一磨削面粗磨之后进行精磨,检测组件133配置于粗磨砂轮131,主要用于在磨削作业开始前对硅棒3的位置进行检测。
在一种可能的实施方式中,粗磨电机1311驱动第四滚珠丝杠1312带动搭载有粗磨砂轮131的支架1314借助于第四导轨滑块1313的引导沿X轴方向移动。检测组件133安装在用于搭载粗磨砂轮131的支架1314上。如精磨砂轮132的运动方式可以与粗磨砂轮131类似,在此不再赘述。
在一种可能的实施方式中,检测组件包括与一对粗磨砂轮两组探针,每组探针包括自上而下设置的三个探针52,如对应于每次磨削作业而言,作业对象是一组平面(两个),两组探针即分别用于检测两个平面的位置。示例性地,如探针配置于粗磨砂轮上,探针的运动包括两种情形:一种是与粗磨砂轮同步运动,一种是相对粗磨砂轮以靠近/远离硅棒的方向运动。如探针与粗磨砂轮同步运动通过相应结构的固接即可实现,探针相对粗磨砂轮以靠近/远离硅棒的方向运动的实现方式如可以是:检测组件133主要包括基座1331、基板1332、滑板1333、第二探针组、第三气缸1335和第五导轨滑块1336。其中,基板1332固定在基座1331上,滑板1333通过第五导轨滑块1336组设置于基板1332上,如第二探针组包括沿竖直方向排布的、安装在滑板1333上的三个第三探针1334。检测时,第三气缸1335伸出推动滑板1333沿X轴方向伸出,检测完毕后,第三气缸1335缩回拉动滑板1333缩回。
基于上述结构,本申请的磨床1的工作过程大致为:
上料装置11完成对硅棒3的位姿调整后,进给滑台装置12根据对中组件112测得的硅棒的长度到达预定的位置后,动夹头122相对于滑台组件沿Y轴运动,从而通过定夹头12121和动夹头122之间的配合将硅棒夹紧。之后,进给滑台装置12沿Y轴运动,将硅棒3运送到磨削区域,进给滑台装置12使硅棒按照程序设定沿Y轴运动以及对硅棒进行旋转,并完成磨削。完成磨削后,进给滑台装置返回至上料装置11的下料区,此时(定、动)夹头松开硅棒,使硅棒落至与下料区对应的下料平台,完成下料。
磨削前,检测组件133会对硅棒3进行检测。具体地,当硅棒3来到第一个检测位置后停止运动,检测组件133的第三气缸1335伸出,推动第三探针1334沿X轴方向运动,此时第三探针1334的位置会超前于砂轮。然后,粗磨砂轮131和检测组件133在粗磨电机1311的驱动下沿X轴方向继续运动,直到第三探针与硅棒接触并完成检测(打点未磨削)。伴随着硅棒沿Y轴方向的运动,第三探针如可以依次对硅棒的入刀口位置、沿棒长的中间位置以及硅棒的出刀口位置进行检测,然后夹头带动硅棒旋转90°,重复上述检测过程。
通过检测组件133的检测结果,确定出是否对硅棒3进行前述的磨削加工。具体而言,若硅棒的最大磨削尺寸小于磨削后的标准尺寸,则判定棒料尺寸不合格,无法磨削,如此时需要退棒,即将硅棒退回下料平台,之后进行不同程度的人工介入。在硅棒合格的前提下,则通过第二探针组对硅的三个位置的测量可以测得(定、动)夹头的轴线和硅棒的轴线之间的位置偏差和角度偏差,若涉及到前述的四个维度(即属于上料装置的调节能力之内)偏差大于规定值,则在将硅棒重新放置于(返回至)上料装置的上料平台,在上料平台上直接对硅棒的位姿进行二次调整,调整完成后重新检测。如偏差为沿Y轴的位置的情形下,可通过对中组件调整。如偏差为沿Y轴的角度的情形下,可通过进给滑台装置的(定、动)夹头来实现。检测完毕后,可以开始磨削。检测过程中可以计算出粗磨砂轮131的磨削量,根据磨削量,粗磨砂轮向X轴前进一定距离,进行粗磨。粗磨结束后,检测组件重复之前的检测过程,计算出精磨砂轮132的磨削量,根据磨削量,精磨砂轮同样向X轴前进一定距离,进行精磨。在本申请中,上料组件与检测组件之间会有直接关联,因此在可选的情形下,也可将对应于对中组件的前述的第一探针组进行适当的减少或者省略。
可以看出,在主要采用上料组件对硅棒的精度进行调节的情形下,调节的原理主要包括:通过抬升组件中的传动板、连接轴与升降轮的配合实现了对硅棒沿Z轴的位置调整。在此基础上,通过为其中一个升降轮配置偏心轴,通过抬升组件同时实现了对硅棒沿X轴的角度调整。通过为夹持组件的夹持固定端组件增加调整组件,基于调整楔块与调整顶块的配合实现了固定至固定端夹持板上的调整板绕定位块的旋转,从而实现了对硅棒沿Z轴的角度调整。 加之上料台组件使夹持有硅棒的上料组件移动的过程中可以对硅棒进行沿X轴的位置调整。基于本申请的方案,可以通过上料装置对硅棒实现四个维度的调整,结合通过对中组件实现的沿Y轴的位置调整以及通过(定、动)夹头实现的沿Y轴的角度调整,从而保证了磨床的上料精度。
实施例2
下面主要参照图19至图28、图30中的部分或者全部来描述本申请的夹头组件。在该实施例中,主要是基于夹头组件对硅棒的位姿进行调节。
主要参照图19和图20,在一种可能的实施方式中,定夹头121主要包括定夹头基座1211、定夹头轴承箱1212、定夹头旋转电机1213、定夹头减速器1214和浮动头1215。其中,定夹头轴承箱固定在定夹头基座上,定夹头旋转电机通过定夹头减速器与定夹头轴承箱的左侧(主轴)相连,定夹头轴承箱的右侧(主轴)连接至浮动头。
在一种可能的实施方式中,浮动头1215主要包括定夹头内壳体151(基础部分)、定夹头外壳体152(活动部分)、簧片153(弹性连接结构)和浮动球154,其中,定夹头内壳体与定夹头轴承箱连接,定夹头外壳体设置于定夹头内壳体靠近硅棒的一侧,且定夹头内壳体和定夹头外壳体之间通过簧片相连。
在一种可能的实施方式中,在簧片上设置有两组方向相反的螺钉(分别记作第一组螺钉1531和第二组螺钉1532),分别用于将簧片固定至定夹头(内、外)壳体上。如在本示例中,簧片大致为六边形的环状结构,对应于六边形的每个顶点处设置有一个螺钉,对应于夹头(内、外)壳体的螺钉间隔设置,即:第一组螺钉和第二组螺钉均包括三个螺钉。以第一组螺钉为例,螺钉的螺柱部分与定夹头内壳体固定连接,而螺钉的螺帽部分则自由容纳于开设在定夹头外壳体上的相应位置的安装位1522(如本示例中为通孔)内。这样一来,在簧片发生形变的情形下,螺钉的螺柱部分能够保持簧片与相应的定夹头(内、外)壳体之间的连接关系,螺钉的螺帽部分能够在通孔内发生与形变相适配的活动。
参考背景技术中的图1中的方位,如在本示例中,定夹头外壳体的右侧设置有的多个定夹头顶块1521(伸出端),动夹头外壳体的左侧设置有的多个动夹头顶块2521(伸出端),硅棒在被夹持好的状态下,两个端部分别与对应于多个定夹头顶块1521与多个动夹头顶块2521的小面接触。如(定、动)夹头顶块的个数为三个及以上。
显然,本领域技术人员可以根据实际需求对簧片的结构、对应于(定、动)夹头的两组螺钉的分布形式以及连接簧片和(定、动)夹头所借助的作为紧固件的形式进行灵活地选择。
主要参照图21和图22,如在另一种可能的实施方式中,定夹头的主体结构与图20所示的实施例大致相同,不过对设置于定夹头外壳体152的定夹头顶块1521作这样的改进:可以在定夹头顶块1521的表面开设有多个沿其轴线分布的孔15211。通过这样的设置,在将硅棒夹置于(定、动)夹头之间的情形下,由于提高了接触面上的摩擦系数,因此增加了硅棒和定夹头顶块之间的摩擦力,从而保证了夹持的可靠性。显然,也可以将动夹头顶块设置为与定夹头顶块类似的结构形式。
主要参照图23,如在另一种可能的实施方式中,定夹头与图21所示的实施例之间的区别是:基础部分由定夹头内壳体151变更为定夹头座151’(夹头座),活动部分由定夹头外壳体152变更为柱状体152’,弹性连接结构由簧片153变更为弹簧153’(如模具弹簧)。其中,定夹头座的左侧形成有容纳空间,柱状体除定夹头顶块之外的部分主要自由容纳于容纳空间。对柱状体靠近右侧的部分进行缩径处理,从而使得柱状体对应于缩径处理的部分与定夹头座的容纳空间的右侧部分配合形成对应于弹簧的安装空间,如弹簧套设于柱状体进行了缩径处理的部分。这样一来,通过弹簧在安装空间内的活动以及柱状体在容纳空间内的活动,柱状体便可相对定夹头座发生一定的活动量,实现柱状体左端的定夹头顶块的浮动。
如在本示例中,定夹头顶块与柱状体一体成型,显然,也可以将二者设置为固定连接的方式。以及在本示例中,定夹头座的左侧面增设有与柱状体对应的多个台面。显然,本领域技术人员可以对其进行变更,如变更为一个整体的台面或者将台面变更为弧面等。
可以理解的是,在能够保证定夹头顶块产生与偏心结构的转动相适应的浮动量的前提下,本领域技术人员可以根据实际需求确定浮动实现的具体方式。如可以对前述的第一/第二组螺钉、安装位、容纳空间、安装空间等要素进行调整变更,以及可以采用除簧片、弹簧 之外的其他结构来实现定夹头顶块的浮动。
为了保证定夹头外壳体能够相对于定夹头内壳体活动,如可以以任意方向进发生一定的偏移/倾斜量,在定夹头(内、外)壳体之间设置有浮动球154,如定夹头(内、外)壳体在对应于浮动球的位置分别设置有第一球座1541和第二球座1542。
除此之外,定夹头基座的头部(沿轴向远离硅棒的端部)安装有基准板1216和对刀仪1217,其中,基准板的主要作用是标定磨床的检测组件中的探针组,对刀仪的主要作用是对磨削组件中的粗磨砂轮和精磨砂轮进行对刀。
主要参照图24至图27,在一种可能的实施方式中,在一种可能的实施方式中,动夹头122的基础结构(除浮动头之外)与定夹头类似,主要包括动夹头基座1221、动夹头轴承箱1222、动夹头旋转电机动夹头旋转电机1223和动夹头减速器1224。其中,动夹头轴承箱固定在动夹头基座上,动夹头旋转电机通过动夹头减速器与动夹头轴承箱的右侧(主轴)相连。本申请的动夹头还包括动夹头调整部1225,动夹头轴承箱的左侧(主轴)连接的是动夹头调整部1225,其中,调整部具有偏心结构,以便通过动夹头旋转电机的旋转能够带动对应于动夹头的硅棒的端部(如称作动夹头端部)相对其对应于定夹头的端部(如称作定夹头端部)发生一定的偏移量,从而使得偏移后的硅棒的轴线与偏移前的硅棒的轴线之间发生一定的角度偏移。这样一来,在(定、动)夹头电机同步转动的情形下,夹持于(定、动)夹头之间硅棒的轴线的位置便有望发生改变,基于此,便有望通过这种改变来调整硅棒的轴线与夹头轴线(此处应当理解为(定、动)夹头电机之间的轴线)之间的夹角。
在一种可能的实施方式中,动夹头调整部1225主要包括动夹头内壳体251和动夹头外壳体252,其中,动夹头内壳体为偏心内壳体,偏心内壳体和动夹头外壳体之间通过动调心滚子轴承253连接。由于调心滚子轴承允许内外圈出现一定的角度偏差,因此动夹头外壳体可以相对于偏心内壳体在任意方向发生角度的倾斜。示例性地,调心滚子轴承通过孔用挡圈2531和压盖2532来分别实现调心滚子轴承的轴承外圈和轴承内圈的定位。基于此,便有望通过动夹头外壳体相对于偏心内壳体的转动,在能够将硅棒从一组磨削面的位置转动至另一组磨削面的过程中,还能够通过偏心结构的设置来减小甚至消除硅棒的轴线与夹头轴线之间的不同轴度。
一种可能的实施方式中,偏心内壳体包括沿夹头轴线方向分布的第一子部分2511和第二子部分2512,其中,第一子部分和第二子部分的轴线不同心。如在本示例中,虚线的右侧部分为第一子部分,虚线的左侧部分为第二子部分,第一子部分的轴线与夹头轴线大致重合,第二子部分的轴线与第一子部分的轴线大致平行,如将第一子部分和第二子部分的轴线之间的距离记作偏心距a。
可以理解的是,为定夹头和动夹头分别配置有定夹头旋转电机和动夹头旋转电机以便在(定、动)夹头夹紧硅棒后使硅棒旋转从而从一组待磨削面旋转至另一组待磨削面只是其中的一种动力配置方式,如也可以仅通过一个功率较大的电机来实现。
按照图19和图24中的方位,如在本示例中,定夹头外壳体的右侧设置有的多个定夹头顶块1521,动夹头外壳体的左侧设置有的多个动夹头顶块2521,硅棒在被夹持好的状态下,两个端部分别与对应于多个定夹头顶块1521与多个动夹头顶块2521的小面接触。
在一种可能的实施方式中,当动夹头旋转电机通过动夹头减速器驱动动夹头轴承箱的右侧(主轴)旋转时,偏心内壳体与动夹头轴承箱的左侧(主轴)同步旋转,同时,伴随着这一旋转的发生,动夹头外壳体的中心点便会以与夹头轴线为轴心、偏心距a为半径进行旋转。由于在硅棒被(定、动)夹头夹紧后,动夹头外壳体与硅棒之间便不会发生相对错动,即硅棒对应于动夹头的端部与动夹头外壳体之间的相对位置不变,因此,硅棒对应于动夹头的端部的中心点便会随之改变并因此使得硅棒的轴线相对于旋转之前的位置发生旋转。
以前述的硅棒的轴线与夹头轴线之间的夹角为β为例,针对任一组检测/磨削面,通过(定、动)夹头的同步旋转并结合基于偏心内壳体而实现的硅棒对应于动夹头的端部的中心点的改变来减小甚至完全消除β,即:对于任意一个检测磨削平面,可以伴随着中心点的改变的同步旋转来实现硅棒轴线与夹头轴线在当前磨削平面内的平行。
基于上述结构,本申请的磨床的工作过程大致为:通过定夹头121和动夹头122之间的配合将硅棒3夹紧之后,滑台组件3将硅棒运送到对应于磨削装置的磨削区域,通过使硅棒 旋转的方式便可对硅棒的不同磨削面(对)进行磨削。完成磨削后,使(定、动)夹头松开硅棒,将硅棒落至下料平台,完成下料。磨削前,检测组件会对硅棒进行检测。示例性地,磨床为硅棒配置三个检测点,如分别是定夹头端检测点、中部检测点和动夹头端检测点。硅棒来到对应于第一个检测点的位置后停止运动,检测组件的气缸伸出推动探针运动,此时探针的位置会超前于粗磨砂轮。然后,粗磨砂轮和检测组件在粗磨电机的驱动下继续运动,直到探针与硅棒接触并完成检测(打点未磨削)。伴随着硅棒沿夹头轴线方向的运动,探针如可以依次对硅棒的位置进行检测。根据检测组件的检测结果确定出是否对硅棒进行磨削加工。具体而言,若硅棒的最大磨削尺寸小于磨削后的标准尺寸,则判定棒料尺寸不合格,无法磨削,如此时需要退棒,即将硅棒退回下料平台,之后进行不同程度的人工介入。在硅棒合格但是硅棒轴线与夹头轴线之间的夹角需要调节的情形下,则根据探针对硅棒的三个位置的测量测得的夹头轴线和硅棒轴线之间的角度差,基于上述具有偏心结构的动夹头对这一角度差进行调节,从而减少或者消除这种角度差直至达到磨削精度。此时,便可对一对当前磨削面进行磨削作业。
显然,上述检测点的选取方式以及每组探针包含的探针个数只是一种示例性的描述,本领域技术人员可以根据实际需求对其进行调整。如可以是:对三个检测点的位置进行调整或者增加检测点的个数;对每组探针中的探针的个数/类型/分布形式等进行调整;探针抵触在硅棒上,并通过其与硅棒之间的相对移动(沿硅棒的轴向)连续检测;等。
伴随着(定、动)夹头的同步旋转,动夹头外壳体的中心点的旋转轨迹为图中虚线所示的轨迹。假设未调整之前的动夹头外壳体中心点(虚线上的圆点)已经位于夹头轴线的正下方(Y轴负方向),则此时对硅棒的右侧端部的中心点的调节只能在沿X轴正方向、X轴负方向以及Y轴正方向这三个方向上进行组合,而无法向Y轴负方向继续调整。换言之,假设实际中遇到了这样的情形,便会导致无法基于当前的结构对硅棒的轴线相对夹头轴线的位置进行调整。而硅棒的夹紧状态是随机的,因此上述情形具有与其他任意情形类似的可能性。为了避免上述情形的出现,本申请进行了这样的干预:使硅棒的轴线刻意地向“夹紧后的调整不需要向Y轴负方向调整”的方向倾斜。
主要参照图28,在一种可能的实施方式中,如夹持组件包括固定夹持部分41(如前述的夹持固定端组件中的夹持板)和活动夹持部分42(如前述的夹持活动端组件中的夹持板),通过活动夹持部分相对固定夹持部分的活动可以将硅棒夹紧。显然,固定夹持部分和活动夹持部分只是一种示例性的描述,如可以将两个夹持部分均设置为活动夹持部分等。为了实现前述的使硅棒的轴线刻意地向“夹紧后的调整不需要向Y轴负方向调整”的方向倾斜的干预,如可以使夹持组件中的固定夹持部分相对活动夹持部分倾斜的一定角度,从而保证硅棒被(定、动)夹头夹紧的初状态在硅棒具有向Y轴负方向倾斜的设定的初状态。示例性地,可以将其中的固定夹持部分内侧的基准面设置为斜面,从而保证初状态为可以倾斜的、避免调整失效的状态。显然,也可以采用任意其他合理的方式来实现初状态的刻意倾斜。如可以是:将活动夹持部分内侧面设置为斜面;固定夹持部分和活动夹持部分可以相对彼此转动一定的角度(如采用前述的具有调整组件的夹持组件);等。
与前述的外壳体的中心点位于夹头轴线正下方类似,外壳体的中心点还可能位于夹头轴线的正左方。同样,为了避免出现基于本申请的结构无法调节的情形,应当作这样的干预:使硅棒的轴线刻意地向“夹紧后的调整不需要向X轴负方向调整”的方向倾斜。
在一种可能的实施方式中,如可以使上料组件的抬升组件借助于偏心轴的配合倾斜一定的角度或者将托板与硅棒接触的支撑板的表面加工为斜面等,从而保证初状态为硅棒轴线向X轴负方向倾斜的状态。
这样一来,便可通过“刻意倾斜”的干预方式避免了采用本申请的结构进行调整时候出现调整失效的情形。本领域技术人员可以采用任意合理的干预手段来实现能够避免极限状态下基于本申请的结构调整失效的硅棒的刻意倾斜状态。
可以看出,在主要采用上料组件对硅棒的精度进行调节的情形下,调节的原理主要包括:通过将夹头组件上设置有或者形成有调整部(本实施例中,是将定夹头设置具有弹性连接结构的浮动夹头,将动夹头设置为动夹头内壳体为偏心结构的夹头),便可通过偏心结构的转动以及浮动夹头的适应性浮动之间的配合来实现对硅棒的轴线位置的调节,基于该调节,有 望仅通过夹头组件的调节来保证硅棒的轴线位置满足磨削。同时,可以通过对上料装置的托板上的硅棒进行刻意倾斜处理来避免夹头组件出现调节失效的情形。
可以看出,在本申请的磨床中,一方面,上料组件和夹头组件均具有相对独立的调整功能,如前者是通过对应于四个维度的四种结构来实现的,而后者则是通过调整部的引入来实现的。另一方面,二者还具有协作的可能性,如上料组件中的抬升组件可以实现硅棒的刻意倾斜从而避免夹头组件出现调整失效的情形,夹头组件可以对上料组件无法调节的沿Y轴的角度这一维度进行补充调整。
基于这样的前提,可以将二者配置于同一磨床上。基于此,可以以更灵活的方式对硅棒进行精度的调整。如除了前述的各自独立调整、上料组件用于辅助实现夹头组件所需要的硅棒的刻意倾斜的初始状态、夹头组件用于补充实现上料组件无法实现的沿Y轴的角度调整之外,还可以使二者通过设定的协作方式,在保证硅棒的精度能够达标的情形下,提高调节效率。如可以是:二者均参与对硅棒的精度调整,在夹头组件将硅棒夹紧之前,上料组件除了前述的刻意倾斜,还负责有四个维度的准备调整(如可以称作粗调整或者第一步调整),在夹头组件将硅棒夹紧之后,夹头组件在前述的准备调整的基础上对硅棒的位姿进行进一步调整(如可以称作精调整)。这样一来,便有望通过两种调整的结合来提高加工精度/质量且在能够保证精度质量的前提下提高调节效率。在加工精度/质量得以保证的基础上,便可获得如减少硅棒损失、提高硅棒利用率等与降低成本密切相关的效果。
基于上述结构,下面主要参照图29来介绍本申请的磨床的控制方法的一种实施例。可以理解的是,本申请的控制方法的实现并非仅局限于上述结构。
参照图29,图29示出本申请一种实施例的磨床的控制方法的流程示意图。如图29所示,在一种可能的实施方式中,本申请的磨床的控制方法主要包括如下步骤:
S2901、上料装置对硅棒进行初调整之后,进给滑台装置将硅棒送至磨削区。
具体而言,上料装置完成对硅棒的位姿调整后,进给滑台装置根据对中组件测得的硅棒的长度到达预定的位置后,动夹头相对于滑台组件沿Y轴运动,从而通过定夹头和动夹头之间的配合将硅棒夹紧。之后,进给滑台装置沿Y轴运动,将硅棒运送到磨削区域。
在本示例中,将上料装置中的夹持组件中的固定夹持板调整为自右向左向上倾斜的倾斜面。通过这样的刻意倾斜,必然需要沿Y轴正向调整(如使动夹头电机顺时针旋转)硅棒的轴线才能够满足磨削条件。
S2903、磨削装置中的检测组件对硅棒进行检测,根据检测组件的检测结果,判断硅棒的状态是否满足使所述磨削组件对其进行磨削的条件;若否,则转入S2905,若是,则转入S2907。
磨削前,检测组件会对硅棒进行检测。在一种可能的实施方式中,检测组件会对硅棒进行检测的方式为:当硅棒2来到第一个检测位置后停止运动,检测组件的第三气缸1335伸出,推动第三探针沿X轴方向运动,此时第三探针1334的位置会超前于砂轮。然后,粗磨砂轮和检测组件在粗磨电机的驱动下沿X轴方向继续运动,直到第三探针与硅棒接触并完成检测(打点未磨削)。伴随着硅棒沿Y轴方向的运动,第三探针如可以依次对硅棒的入刀口位置、沿棒长的中间位置以及硅棒的出刀口位置进行检测,然后夹头带动硅棒旋转90°,重复上述检测过程。
通过检测组件的检测结果判断硅棒的状态不满足使所述磨削组件对其进行磨削的条件的判断结果具体包括:1)若硅棒的最大磨削尺寸小于磨削后的标准尺寸,则判定棒料尺寸不合格,无法磨削,此时可以将硅棒退回至下料平台(退棒的)。2)在硅棒合格的前提下,则通过第二探针组对硅的三个位置的测量可以测得(定、动)夹头的轴线和硅棒的轴线之间的位置偏差和角度偏差,若偏差大于规定值,则认为硅棒的状态不满足使磨削组件对其进行磨削的条件。不满足条件的情形主要包括两种:21)硅棒沿Y轴的角度具有偏差;22)硅棒沿(X、Z)轴的位置/角度具有偏差。在偏差为21)的情形下,可以通过具有调整部的夹头组件的调节来实现,在偏差为22)的情形下,可以通过具有调整部的夹头组件和/或上料装置来实现。即:除了棒料尺寸不合格的情形,均可通过本申请的控制方法来实现精度调节,即均可转入S2905。
S2905、使硅棒接重新放置(无人工介入)于上料装置的上料平台,通过上料装置对硅 棒的状态进行粗调节。
具体而言,将硅棒直接重置于至上料装置的上料平台,在上料平台上对硅棒的位姿进行二次调整。如前文中所述,可以通过抬升组件对硅棒沿Z轴的位置状态以及沿X轴的角度状态进行调节,通过调整组件对硅棒沿Z轴的角度状态进行调节,通过上料台组件的驱动传动机构对硅棒X轴的位置状态进行调节。
S2907、通过上料装置使硅棒处于刻意倾斜的状态。
S2909、粗调整以及刻意倾斜的准备调整之后,进给滑台装置将硅棒送至磨削区通过夹头组件对硅棒进行精调整。
调整完成后,返回S2903重新检测,直至检测完毕且满足使磨削组件对其进行磨削的条件后,可以转入S2911。
S2911、使磨削组件对硅棒进行磨削。
具体而言,磨削组件主要包括粗磨砂轮和精磨砂轮,在前述的检测过程中可以计算出粗磨砂轮的磨削量,根据磨削量,粗磨砂轮向X轴前进一定距离,进行粗磨。粗磨结束后,检测组件重复之前的检测过程,计算出精磨砂轮的磨削量,根据磨削量,精磨砂轮同样向X轴前进一定距离,进行精磨。
S2913、磨削完成、下料。
完成磨削后,进给滑台装置返回至上料装置的下料区,此时(定、动)夹头松开硅棒,使硅棒落至与下料区对应的下料台,完成下料。
可以看出,在申请的磨床的控制方法中,根据检测组件的检测结果,通过上料装置(直接重新放置于上料装置对硅棒的位姿进行调整)和夹头组件(仍被夹持于夹头组件之间,通过定夹头的适应性调整和动夹头的转动之间的配合对硅棒的位姿进行调整)协作的方式来保证磨床上硅棒的精度调整。本领域技术人员可以根据实际需求采用与前述的结构相同或者不同的结构来实现相应维度的精度调整。
如图31所示,在一种可能的实施方式中,本申请的磨床的控制方法主要包括如下步骤:
S1601、上料装置将对承托于托板上的硅棒送达上料平台之后,进给滑台装置将硅棒送至磨削区域。
S1603、磨削装置中的检测组件对硅棒进行检测,根据检测组件的检测结果,判断硅棒的状态是否满足使所述磨削组件对其进行磨削的条件;若否,则转入S1605,若是,则转入S1607。
对于每一组磨削面而言,检测组件在磨削组件对硅棒进行磨削前按照前述的方式对硅棒4进行检测。通过检测组件的检测结果判断硅棒的状态不满足使磨削组件对其进行磨削的条件的判断结果具体包括两种情形:1)若硅棒的最大磨削尺寸小于磨削后的标准尺寸,则判定棒料尺寸不合格,无法磨削,此时可以将硅棒退回至下料平台(退棒)。2)在硅棒合格的前提下,则通过探针组对硅的三个位置的测量可以测得(定、动)夹头的轴线和硅棒的轴线之间的角度差,若角度偏差大于规定值,则认为硅棒的状态不满足使磨削组件对其进行磨削的条件。显然,前述的转入S1605应当理解为对应于情形2)的不满足使磨削组件对其进行磨削的条件的硅棒状态,即在此种情形下可转入S1605。
由于S1601中对硅棒进行了刻意倾斜,也可以认为在该步骤中,硅棒的状态必然不满足磨削条件,因此必然需要包含偏心结构的夹头组件来对轴线的角度偏差进行调整。
S1605、使动夹头电机带动偏心内壳体转动,伴随着转动,第二部分的中心点为发生位置变化,从而带动动夹头外壳体紧密抵接的硅棒的右端(按照图1中的方位)中心点发生位置变化,由于硅棒的左端(按照图1中的方位)中心点几乎不会发生位置变化,因此基于这样的调整,便可使得硅棒的轴线发生一定的转动量,基于转动量的调整,便有望通过夹头组件对硅棒的状态进行调整。
调整完成后,返回S1603重新检测,直至检测完毕且满足使磨削组件对其进行磨削的条件后,可以转入S1607。
S1607、使磨削组件对硅棒进行磨削。
S1609、磨削完成、下料。
完成磨削后,进给滑台装置返回至上料装置的下料区,此时(定、动)夹头松开硅棒, 使硅棒落至与下料区对应的下料平台,完成下料。需要说明的是,该步骤表示对于每一组磨削面均进行了上述S1603-S1607的步骤。
可以看出,在本申请的磨床的控制方法中,通过将动夹头内壳体设置为偏心结构,便可通过(定、动)夹头电机的转动配合来实现对硅棒的轴线位置的调节,基于该调节,有望仅通过夹头组件的调节来保证硅棒的轴线位置满足磨削。同时,可以通过对上料装置的托板、夹持板等进行倾斜处理来避免夹头组件出现调节失效的情形。
本领域技术人员容易理解的是,本申请的保护范围显然不局限于这些具体实施方式。在不偏离本申请的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本申请的保护范围之内。

Claims (25)

  1. 一种夹头组件,其特征在于,所述夹头组件包括第一夹头和第二夹头,待加工件能够被夹持于所述第一夹头和所述第二夹头之间,
    其中,所述第一夹头和/或第二夹头设置有或者形成有调整部,以便:
    通过调整部的活动使所述待加工件的轴线的位置发生改变,并因此调整待加工件在所述第一夹头和所述第二夹头之间的姿态。
  2. 根据权利要求1所述的夹头组件,其特征在于,所述调整部包括第一调整部分和第二调整部分,所述第一调整部分为偏心结构,所述第二调整部分能够提供如下事实发生所需要的适应性调整:
    在所述偏心结构旋转时,允许其带动待加工件靠近所述偏心结构的端部伴随该旋转产生活动量。
  3. 根据权利要求2所述的夹头组件,其特征在于,所述调整部包括:
    驱动部件;
    第一部分,其与所述驱动部件驱动连接;以及
    第二部分,其与所述第一部分连接并且能够相对所述第一部分发生一定的活动量,所述第二部分远离所述第一部分的侧部能够与待加工件抵接;
    其中,所述偏心结构设置于所述驱动部件以及所述第一部分之间和/或所述第一部分以及所述第二部分之间;并且/或者
    所述第一部分和/或所述第二部分为偏心结构。
  4. 根据权利要求3所述的夹头组件,其特征在于,所述第一部分包括沿所述驱动部件的轴向分布的第一子部分和第二子部分,所述第一子部分与所述驱动部件驱动连接,所述第二子部分与所述第二部分连接,
    其中,所述第一子部分和/或所述第二子部分为偏心结构;并且/或者
    所述偏心结构设置于第一子部分和所述第二子部分之间;并且/或者
    所述第一子部分和所述第二子部分构成所述偏心结构。
  5. 根据权利要求4所述的夹头组件,其特征在于,所述第一部分和/或所述第二部分为罩壳结构;所述第一子部分为第一筒状结构,所述第二子部分为第二筒状结构,所述第一筒状结构和所述第二筒状结构的轴线不同心;所述第二子部分和所述第二部分通过调心滚子轴承连接。
  6. 根据权利要求2所述的夹头组件,其特征在于,所述第二调整部分为设置于或者形成于所述第一夹头和/或第二夹头上的浮动结构,从而使得所述第一夹头和/或所述第二夹头变更为浮动夹头;所述浮动夹头包括基础部分和活动部分,所述基础部分和所述活动部分之间设置有弹性连接结构,
    所述弹性连接结构与所述基础部分和所述活动部分分别连接从而允许所述活动部分相对所述基础部分发生一定的活动量,
    其中,所述活动部分能够与待加工件抵接。
  7. 根据权利要求6所述的夹头组件,其特征在于,所述弹性连接结构为簧片,所述簧片通过至少一个第一连接结构与所述基础部分相连接,所述簧片通过至少一个第二连接结构与所述活动部分相连接;所述活动部分设置有第一安装位,所述第一连接结构靠近所述活动部分的侧部的至少一部分能够自由容纳于所述第一安装位;并且/或者
    所述基础部分设置有第二安装位,所述第二连接结构靠近所述基础部分的侧部的至少一部分能够自由容纳于所述第二安装位;
    优选地,所述簧片配置有浮动球,
    相应地,所述基础部分和/或所述活动部分在对应于所述浮动球的位置设置有与所述浮动球配合的球座,
    以便:
    所述活动部分伴随着所述浮动球在所述球座内的活动相对所述基础部分发生活动量。
  8. 根据权利要求6所述的夹头组件,其特征在于,所述弹性连接结构为弹簧,所述活动部分与所述基础部分形成安装空间,所述弹簧设置于所述安装空间,至少通过所述弹簧在所 述安装空间内的活动而允许所述活动部分相对所述基础部分发生一定的活动量;所述基础部分形成有容纳空间,所述活动部分的至少一部分自由容纳于所述容纳空间,以便:
    所述活动部分通过其在所述容纳空间内的活动和/或所述弹簧在所述安装空间内的活动而允许所述活动部分相对所述基础部分发生一定的活动量。
  9. 根据权利要求2所述的夹头组件,其特征在于,所述第一夹头和所述第二夹头中的一个为定夹头而另一个为动夹头;所述第一调整部分设置于或者形成于所述动夹头,所述第二调整部分设置于或者形成于所述定夹头。
  10. 一种磨床,其特征在于,所述磨床包括:
    权利要求1至8中任一项所述的夹头组件;
    上料组件,其包括托板,所述托板上能够设置待加工件,所述上料组件能够调整设置于所述托板上的待加工件的位姿。
  11. 根据权利要求10所述的磨床,其特征在于,所述上料组件包括:
    抬升组件,其包括:
    抬升驱动部件;
    升降轮组,其包括至少一个升降轮,所述升降轮中的至少一部分以可转动的方式固定连接至所述托板;以及
    传动部件,所述传动部件一方面与所述抬升驱动部件相连接,另一方面与所述升降轮对接,
    所述传动部件在靠近所述升降轮的位置具有倾斜的引导面,使得:
    当所述驱动部件驱动所述传动部件横移时,所述升降轮沿所述引导面转动,并因此抬升所述托板以及设置于所述托板上的待加工件。
  12. 根据权利要求11所述的磨床,其特征在于,所述抬升组件还包括:
    约束部件,所述托板在所述约束部件的作用下产生沿高度方向的位移,并因此抬升所述托板和设置于所述托板上的待加工件;
    优选地,所述抬升组件还包括抬升底板,所述抬升底板和所述托板之间形成腔室,
    所述传动部件容纳于所述腔室并且/或者所述抬升驱动部件设置于所述抬升底板远离所述腔室的侧部并且/或者所述约束部件固定在所述抬升底板上。
  13. 根据权利要求11所述的磨床,其特征在于,所述升降轮包括多个,所述升降轮以可转动的方式设置于轮轴,多个所述升降轮的轮轴中的至少一部分为偏心轴,所述偏心轴配置有偏心轴驱动部件,以便:
    所述偏心轴驱动部件驱动所述偏心轴发生转动,并因此使得与所述偏心轴的升降轮与其他升降轮之间的高度不同;所述托板用于承托待加工件的面为倾斜面。
  14. 根据权利要求10所述的磨床,其特征在于,所述上料组件包括:
    夹持组件,其包括:
    夹持第一端组件;
    夹持第二端组件,待加工件能够夹持于所述夹持第一端组件和所述夹持第二端组件之间;以及
    调整组件,其包括:
    调整底板,所述夹持第二端组件和/或所述夹持第一端组件以可活动的方式设置于所述调整底板;
    调整驱动部件,其与相应的所述夹持第一端组件或者所述夹持第二端组件操作连接,以便:
    在所述调整驱动部件的驱动下,相应的所述夹持第一端组件或者所述夹持第二端组件与所述调整底板的不同局部之间的距离不同。
  15. 根据权利要求14所述的磨床,其特征在于,所述调整底板预留有调整安装空间,所述调整组件包括:
    第一调整部件,其设置于所述夹持第二端组件和/或所述夹持第一端组件的夹持板,所述第一调整部件自由容纳于所述安装空间并且具有伸出所述调整安装空间的第一调整结构;
    所述调整驱动部件与所述第一调整结构操作连接,以便:
    在所述调整驱动部件的驱动下,所述第一调整结构向靠近所述调整安装空间的方向运动从而带动所述夹持板相对所述调整底板活动,进而使得所述夹持板与所述调整底板的不同局部之间的距离不同。
  16. 根据权利要求15所述的磨床,其特征在于,所述调整组件包括:
    第二调整部件,其与所述调整驱动部件驱动连接以带动所述第二调整部件向靠近/远离所述第一调整部件的方向移动;
    其中,所述第二调整部件在靠近所述第一调整部件的侧部具有倾斜的第二调整结构,使得:
    所述调整驱动部件驱动第二调整结构移动并抵压第一调整结构从而带动所述夹持板与所述调整底板之间发生一定的转动量,并因此使得所述夹持板与所述调整底板的不同局部之间的距离不同;并且/或者
    所述调整驱动部件驱动所述第二调整部件沿与所述调整底板之间具有夹角的方向移动从而带动所述夹持板与所述调整底板之间发生一定的转动量,并因此使得所述夹持板与所述调整底板的不同局部之间的距离不同。
  17. 根据权利要求15或16所述的磨床,其特征在于,所述调整组件包括:
    调整板,其设置于所述调整底板和所述夹持板之间,
    其中,所述调整底板以可活动的方式与所述调整板连接,所述第一调整部件与所述调整板固定连接或者一体成型,所述调整板和所述夹持板之间固定连接或者一体成型;
    优选地,所述调整组件包括:
    定位块,其固定设置于所述调整底板;
    所述调整板在对应于所述定位块的位置形成有预留空间,并且
    在组装好的状状态下,所述定位块处于所述预留空间的部分与所述预留空间之间具有间隙,使得:
    通过所述定位块在所述预留空间内的活动实现所述夹持板与所述调整底板之间的转动量。
  18. 根据权利要求10所述的磨床,其特征在于,所述上料组件包括:
    夹持组件,其包括:
    夹持第一端组件;
    夹持第二端组件,待加工件能够夹持于所述夹持第一端组件和所述夹持第二端组件之间;
    其中,所述夹持第一端组件和/或所述夹持第二端组件与待加工件接触的面为倾斜面。
  19. 一种磨床的控制方法,其特征在于,所述磨床包括上料装置、夹头组件和磨削装置,所述磨削装置包括磨削组件和检测组件,
    所述控制方法包括:
    根据检测组件的检测结果,判断待加工件的状态是否满足使所述磨削组件对其进行磨削的条件;
    若否,则使所述上料装置和/或所述夹头组件对所述待加工件的位姿进行调节。
  20. 根据权利要求19所述的磨床的控制方法,其特征在于,在“使所述上料装置和/或所述夹头组件对所述待加工件的位姿进行调节”的步骤中,“使所述上料装置对所述待加工件的位姿进行调节”包括:
    通过第一调节部对待加工件沿竖直方向的位置状态进行调节;
    通过第二调节部对待加工件的不同局部沿竖直方向的位置状态进行调节;
    通过第三调节部对待加工件的不同局部沿上下料方向的位置状态进行调节;
    通过第四调节部对待加工件沿上下料方向的位置状态进行调节;
    优选地,所述第一调节部包括抬升组件,所述抬升组件包括第一驱动部件、升降轮组以及托板,所述升降轮组包括多个升降轮,
    相应地,所述的“通过第一调节部对待加工件沿竖直方向的位置状态进行调节”包括:
    使所述第一驱动部件运行,通过所述第一驱动部件驱动所述升降轮转动从而抬升所述托板以及设置于所述托板上的待加工件,进而对待加工件沿竖直方向的位置状态进行调节。
  21. 根据权利要求20所述的磨床的控制方法,其特征在于,所述上料装置包括夹持组件,所述夹持组件包括夹持第一端组件和夹持第二端组件,所述第三调节部为配置于所述夹持第一端组件和/或所述夹持第二端组件上的调整组件,所述调整组件包括第二底板和第三驱动部件,
    相应地,所述的“通过第二调节部对待加工件的不同局部沿竖直方向的位置状态进行调节”包括:
    使所述第三驱动部件运行,以便:
    在所述第三驱动部件的驱动下,相应的所述夹持第一端组件和/或所述夹持第二端组件与所述第二底板的不同局部之间的距离不同,从而对待加工件的不同局部沿上下料方向的位置状态进行调节;
    优选地,所述第二底板预留有安装空间,所述调整组件包括:第一调整部件,其自由容纳于所述安装空间并且具有伸出所述安装空间的第一调整结构;以及第二调整部件,其与所述第三驱动部件驱动连接且所述第二调整部件在靠近所述第一调整部件的侧部具有倾斜的第二调整结构,
    相应地,所述的“在所述第三驱动部件的驱动下,相应的所述夹持第一端组件和/或所述夹持第二端组件与所述第二底板的不同局部之间的距离不同”包括:
    所述第三驱动部件驱动所述第二调整部件向靠近所述第一调整部件的方式移动时,所述第二调整结构抵压第一调整结构从而带动夹持板与所述第二底板之间发生一定的转动量,并因此使得所述夹持板与所述第二底板的不同局部之间的距离不同。
  22. 根据权利要求19所述的磨床的控制方法,其特征在于,所述夹头组件包括第一夹头和第二夹头,待加工件能够被夹持于所述第一夹头和所述第二夹头之间,
    其中,所述第一夹头和/或第二夹头设置有或者形成有调整部,
    在“使所述上料装置和/或所述夹头组件对所述待加工件的位姿进行调节”的步骤中,“使所述夹头组件对所述待加工件的位姿进行调节”包括:
    至少使设置有或者形成有调整部的所述第一夹头和/或所述第二夹头活动,从而:
    通过调整部的活动使所述待加工件的轴线的位置发生改变,并因此调整待加工件在所述第一夹头和所述第二夹头之间的姿态;
    优选地,所述调整部包括第一调整部分和第二调整部分,所述第一调整部分为偏心结构,
    所述的“至少使设置有或者形成有调整部的所述第一夹头和/或所述第二夹头活动,从而:通过调整部的活动使所述待加工件的轴线的位置发生改变,并因此调整待加工件在所述第一夹头和所述第二夹头之间的姿态”包括:
    至少使设置有或者形成有第一调整部分的所述第一夹头和/或所述第二夹头旋转,以便:
    伴随着设置有或者形成有所述第二调整部分的所述第一夹头和/或所述第二夹头提供的在“在所述偏心结构旋转时,允许其带动待加工件靠近所述偏心结构的端部伴随该旋转产生活动量”发生时所需要的适应性调整,改变所述待加工件的轴线的位置,并因此调整待加工件在所述第一夹头和所述第二夹头之间的姿态。
  23. 根据权利要求22所述的磨床的控制方法,其特征在于,所述第一夹头和第二夹头中的一个为动夹头而另一个为动夹头,
    所述的“至少使设置有或者形成有第一调整部分的所述第一夹头和/或所述第二夹头旋转”包括:
    使所述动夹头旋转。
  24. 根据权利要求23所述的磨床的控制方法,其特征在于,所述第一调整部分设置于动夹头,所述第二调整部分设置于定夹头,所述的“至少使设置有或者形成有第一调整部分的所述第一夹头和/或所述第二夹头旋转,以便:伴随着设置有或者形成有所述第二调整部分的所述第一夹头和/或所述第二夹头提供的在“在所述偏心结构旋转时,允许其带动待加工件靠近所述偏心结构的端部伴随该旋转产生活动量”发生时所需要的适应性调整,改变所述待加工件的轴线的位置,并因此调整待加工件在所述第一夹头和所述第二夹头之间的姿态”包括:
    使所述动夹头旋转,以便:
    伴随着所述定夹头借助于所述第二调整部分产生的适应性调整,改变所述待加工件的轴线的位置,并因此调整待加工件在所述第一夹头和所述第二夹头之间的姿态。
  25. 根据权利要求23所述的磨床的控制方法,其特征在于,在“根据所述检测组件的检测结果,判断待加工件的状态是否满足使所述磨削组件对其进行磨削的条件”之前,所述控制方法包括:
    使待加工件处于设定的倾斜状态,以便:
    基于该倾斜状态,通过所述调整部来改变所述待加工件的轴线的位置;
    优选地,所述磨床包括上料装置,所述上料装置包括托板,待加工件能够设置于所述托板,
    所述的“使待加工件处于设定的倾斜状态”包括:
    将所述托板用于承托待加工件的面变更为倾斜面;并且/或者
    将所述托板用于承托待加工件的面调整为倾斜面;
    或,
    所述磨床包括上料装置,所述上料装置包括夹持组件,所述夹持组件包括第一夹持部分和第二夹持部分,待加工件能够夹持于所述第一夹持部分和所述第二夹持部分之间,
    所述的“使待加工件处于设定的倾斜状态”包括:
    将所述第一夹持部分和/或所述第二夹持部分与待加工件接触的面变更为倾斜面;并且/或者
    将所述第一夹持部分和/或所述第二夹持部分用于承托待加工件的面调整为倾斜面调整为倾斜面。
PCT/CN2023/114805 2022-08-25 2023-08-24 夹头组件、磨床及其控制方法 WO2024041619A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202222247307.4 2022-08-25
CN202211028632.XA CN115351621B (zh) 2022-08-25 2022-08-25 夹头组件、磨床及其控制方法及***、设备、介质
CN202222247330.3U CN218875063U (zh) 2022-08-25 2022-08-25 夹头以及包含该夹头的磨床
CN202222247307.4U CN219617332U (zh) 2022-08-25 2022-08-25 磨床
CN202222247330.3 2022-08-25
CN202211028632.X 2022-08-25
CN202222247315.9U CN218856613U (zh) 2022-08-25 2022-08-25 夹头以及包含该夹头的磨床
CN202222247315.9 2022-08-25
CN202211029834.6 2022-08-25
CN202211029834.6A CN115401543B (zh) 2022-08-25 2022-08-25 磨床及其控制方法及***、设备、计算机可读存储介质
CN202222249004.6 2022-08-25
CN202222249004.6U CN218891698U (zh) 2022-08-25 2022-08-25 夹头组件以及包含该夹头组件的磨床

Publications (1)

Publication Number Publication Date
WO2024041619A1 true WO2024041619A1 (zh) 2024-02-29

Family

ID=90012608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114805 WO2024041619A1 (zh) 2022-08-25 2023-08-24 夹头组件、磨床及其控制方法

Country Status (1)

Country Link
WO (1) WO2024041619A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688447A (en) * 1970-05-04 1972-09-05 Heald Machine Co Grinding machine
US4995301A (en) * 1989-12-14 1991-02-26 Phillips Sr Douglas B Tri-motion grinding fixture
CN209190401U (zh) * 2018-07-05 2019-08-02 青岛高测科技股份有限公司 一种硅棒磨面抛光倒角一体机
CN110860966A (zh) * 2019-12-24 2020-03-06 青岛高测科技股份有限公司 一种组合式高效磨倒一体机
CN111906663A (zh) * 2020-08-24 2020-11-10 连城凯克斯科技有限公司 半导体硅棒自动磨削加工机床
CN111975494A (zh) * 2020-09-02 2020-11-24 大连连城数控机器股份有限公司 一种晶硅棒磨床输送硅棒的升降定心夹紧装置
CN114346883A (zh) * 2022-03-16 2022-04-15 禹奕智能科技(杭州)有限公司 一种自动化恒力磨抛装置及方法
CN115351621A (zh) * 2022-08-25 2022-11-18 青岛高测科技股份有限公司 夹头组件、磨床及其控制方法及***、设备、介质
CN115401543A (zh) * 2022-08-25 2022-11-29 青岛高测科技股份有限公司 磨床及其控制方法及***、设备、计算机可读存储介质
CN218856613U (zh) * 2022-08-25 2023-04-14 青岛高测科技股份有限公司 夹头以及包含该夹头的磨床
CN218875063U (zh) * 2022-08-25 2023-04-18 青岛高测科技股份有限公司 夹头以及包含该夹头的磨床
CN218891698U (zh) * 2022-08-25 2023-04-21 青岛高测科技股份有限公司 夹头组件以及包含该夹头组件的磨床

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688447A (en) * 1970-05-04 1972-09-05 Heald Machine Co Grinding machine
US4995301A (en) * 1989-12-14 1991-02-26 Phillips Sr Douglas B Tri-motion grinding fixture
CN209190401U (zh) * 2018-07-05 2019-08-02 青岛高测科技股份有限公司 一种硅棒磨面抛光倒角一体机
CN110860966A (zh) * 2019-12-24 2020-03-06 青岛高测科技股份有限公司 一种组合式高效磨倒一体机
CN111906663A (zh) * 2020-08-24 2020-11-10 连城凯克斯科技有限公司 半导体硅棒自动磨削加工机床
CN111975494A (zh) * 2020-09-02 2020-11-24 大连连城数控机器股份有限公司 一种晶硅棒磨床输送硅棒的升降定心夹紧装置
CN114346883A (zh) * 2022-03-16 2022-04-15 禹奕智能科技(杭州)有限公司 一种自动化恒力磨抛装置及方法
CN115351621A (zh) * 2022-08-25 2022-11-18 青岛高测科技股份有限公司 夹头组件、磨床及其控制方法及***、设备、介质
CN115401543A (zh) * 2022-08-25 2022-11-29 青岛高测科技股份有限公司 磨床及其控制方法及***、设备、计算机可读存储介质
CN218856613U (zh) * 2022-08-25 2023-04-14 青岛高测科技股份有限公司 夹头以及包含该夹头的磨床
CN218875063U (zh) * 2022-08-25 2023-04-18 青岛高测科技股份有限公司 夹头以及包含该夹头的磨床
CN218891698U (zh) * 2022-08-25 2023-04-21 青岛高测科技股份有限公司 夹头组件以及包含该夹头组件的磨床

Similar Documents

Publication Publication Date Title
CN115401543B (zh) 磨床及其控制方法及***、设备、计算机可读存储介质
CN218639349U (zh) 上料装置以及包括该上料装置的磨床
CN218639221U (zh) 对中组件以及包括该对中组件的磨床
CN218639363U (zh) 夹持组件以及包括该夹持组件的磨床
CN109332725A (zh) 一种双主轴自动化车床
CN213828500U (zh) 一种多工位研磨机微调机构
TW434116B (en) Method and apparatus for grinding a workpiece
JP2928218B1 (ja) 平面加工装置
KR20200139628A (ko) 척 테이블 기울기 조정 기구
CN218639296U (zh) 抬升组件以及包括该抬升组件的磨床
WO2024041619A1 (zh) 夹头组件、磨床及其控制方法
US11992916B2 (en) Fine adjustment thread assembly and processing apparatus
CN218639214U (zh) 可调节的抬升组件以及包括该抬升组件的磨床
CN106926070A (zh) 一种先端丝锥磨床
CN115502795B (zh) 上料装置、磨床的上料控制方法及***、设备、介质
CN115502824A (zh) 可调节的抬升组件、磨床、控制方法及***、设备、介质
CN115709400A (zh) 抬升组件、磨床及其抬升控制方法及***、设备、介质
CN218875063U (zh) 夹头以及包含该夹头的磨床
CN218856613U (zh) 夹头以及包含该夹头的磨床
CN115351621B (zh) 夹头组件、磨床及其控制方法及***、设备、介质
CN115502840A (zh) 磨床的上料控制方法及***、计算机设备、介质
CN219617332U (zh) 磨床
WO2024032734A1 (zh) 上料装置以及包括该上料装置的磨床
CN110227970B (zh) 一种微刀磨床
CN115502794B (zh) 夹持组件、磨床及其夹持控制方法及***、设备、介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856706

Country of ref document: EP

Kind code of ref document: A1