WO2024041402A1 - 一种用于无线通信的节点中的方法和装置 - Google Patents

一种用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024041402A1
WO2024041402A1 PCT/CN2023/112783 CN2023112783W WO2024041402A1 WO 2024041402 A1 WO2024041402 A1 WO 2024041402A1 CN 2023112783 W CN2023112783 W CN 2023112783W WO 2024041402 A1 WO2024041402 A1 WO 2024041402A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
information block
ofdm
pdcch
dci format
Prior art date
Application number
PCT/CN2023/112783
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024041402A1 publication Critical patent/WO2024041402A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular, to uplink transmission schemes and devices in wireless communications.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the uplink transmission waveform is mainly configured in a semi-static manner. In the R18 version, it is planned to support dynamic uplink transmission waveform configuration.
  • This application discloses a method used in a first node in wireless communication, which is characterized by including:
  • the waveform used by the first PUSCH is a target waveform, and the target waveform is one of DFT-s-OFDM or CP-OFDM;
  • the first domain is a domain related to the waveform
  • the second domain is a domain different from the first domain
  • whether the DCI format used by the first PDCCH includes the second domain depends on the second domain.
  • Information block, the second information block and the first information block are different; when the DCI format used by the first PDCCH includes the second domain, the DCI format used by the first PDCCH includes The second domain is used to determine the target waveform from DFT-s-OFDM or CP-OFDM; when the DCI format used by the first PDCCH does not include the second domain, the second domain At least the first information block of an information block or the second information block is used to determine the target waveform from between DFT-s-OFDM or CP-OFDM.
  • the target waveform is determined based on whether the DCI format used by the first PDCCH is in the second domain, which provides a fallback mechanism for dynamic waveform conversion and improves performance.
  • the target waveform is determined from DFT-s-OFDM or CP-OFDM through at least the first information block of the first information block or the second information block, which simplifies the design of dynamic waveform conversion.
  • the above method is characterized in that the second information block is a field, the value of the second information block is an enumeration value, and whether the target waveform and the second information block are configured related.
  • the target waveform is related to whether the second information block is configured, which simplifies the design and avoids the ambiguity of the fallback path.
  • the above method is characterized by comprising:
  • the first information block is used to indicate a first reference waveform
  • the third information block is used to indicate a second reference waveform.
  • the first reference waveform is one of DFT-s-OFDM or CP-OFDM. 1.
  • the second reference waveform is one of DFT-s-OFDM or CP-OFDM; when the second information block is not configured, the target waveform is the second reference waveform; when the first When two information blocks are configured and the DCI format adopted by the first PDCCH does not include the second domain, the target waveform is the first reference waveform.
  • the backoff waveform is determined based on whether the second information block is configured and whether the first PDCCH includes the second domain, ensuring backward compatibility while optimizing system performance.
  • the above method is characterized in that the transmission power of the first PUSCH is equal to the smaller value of the first upper limit value or the first power value, and the first parameter value is used
  • the first upper limit value is determined, a second parameter value is used to determine the first power value; the first parameter value is related to the target waveform, and the second parameter value is related to the target waveform.
  • adjusting the power parameters according to the waveform enhances the performance of uplink transmission.
  • the above method is characterized in that the size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or The larger size between the two sizes of the first domain corresponding to CP-OFDM.
  • the size of the first domain included in the DCI format used by the first PDCCH is equal to the larger of the sizes corresponding to different waveforms, ensuring correct reception of the DCI format.
  • the above method is characterized in that the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are not equal; in DFT-s- At least one most significant bit equal to "0" is added to the first field that has a smaller size compared to the first field corresponding to OFDM and the first field corresponding to CP-OFDM. bits until the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are equal.
  • adding at least 1 most significant bit equal to "0" in the first field with a relatively small size ensures consistency in the understanding of bits in the DCI format by the base station and the user equipment.
  • the above method is characterized in that the DCI format adopted by the first PDCCH is used to schedule the first PUSCH; the earliest time domain symbol occupied by the first PUSCH is not earlier than the reference A time domain symbol, the reference time domain symbol is the next uplink symbol whose starting time is later than the end time of the first PDCCH by a first time length; the first time length is related to the target waveform.
  • relating processing delays to target waveforms reduces implementation complexity.
  • This application discloses a method used in a second node in wireless communication, which is characterized by including:
  • the waveform used by the first PUSCH is a target waveform, and the target waveform is one of DFT-s-OFDM or CP-OFDM;
  • the first domain is a domain related to the waveform
  • the second domain is a domain different from the first domain
  • whether the DCI format used by the first PDCCH includes the second domain depends on the second domain.
  • Information block, the second information block and the first information block are different; when the DCI format used by the first PDCCH includes the second domain, the DCI format used by the first PDCCH includes The second domain is used to determine the target waveform from DFT-s-OFDM or CP-OFDM; when the DCI format used by the first PDCCH does not include the second domain, the second domain At least the first information block of an information block or the second information block is used to determine the target waveform from between DFT-s-OFDM or CP-OFDM.
  • the above method is characterized in that the second information block is a field, the value of the second information block is an enumeration value, and whether the target waveform and the second information block are configured related.
  • the above method is characterized by comprising:
  • the first information block is used to indicate a first reference waveform
  • the third information block is used to indicate a second reference waveform.
  • the first reference waveform is one of DFT-s-OFDM or CP-OFDM. 1.
  • the second reference waveform is one of DFT-s-OFDM or CP-OFDM; when the second information block is not configured, the target waveform is the second reference waveform; when the first When two information blocks are configured and the DCI format adopted by the first PDCCH does not include the second domain, the target waveform is the first reference waveform.
  • the above method is characterized in that the transmission power of the first PUSCH is equal to the smaller value of the first upper limit value or the first power value, and the first parameter value is used
  • the first upper limit value is determined, a second parameter value is used to determine the first power value; the first parameter value is related to the target waveform, and the second parameter value is related to the target waveform.
  • the above method is characterized in that the size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or The larger size between the two sizes of the first domain corresponding to CP-OFDM.
  • the above method is characterized in that the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are not equal; in DFT-s- At least one most significant bit equal to "0" is added to the first field that has a smaller size compared to the first field corresponding to OFDM and the first field corresponding to CP-OFDM. bits until the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are equal.
  • the above method is characterized in that the DCI format adopted by the first PDCCH is used to schedule the first PUSCH; the earliest time domain symbol occupied by the first PUSCH is not earlier than the reference A time domain symbol, the reference time domain symbol is the next uplink symbol whose starting time is later than the end time of the first PDCCH by a first time length; the first time length is related to the target waveform.
  • This application discloses a first node device used in wireless communication, which is characterized by including:
  • a first receiver to receive the first information block
  • the second receiver receives the first PDCCH, and the DCI format adopted by the first PDCCH includes at least the first domain;
  • the first transmitter sends the first PUSCH, the waveform used by the first PUSCH is a target waveform, and the target waveform is one of DFT-s-OFDM or CP-OFDM;
  • the first domain is a domain related to the waveform
  • the second domain is a domain different from the first domain
  • whether the DCI format used by the first PDCCH includes the second domain depends on the second domain.
  • Information block, the second information block and the first information block are different; when the DCI format used by the first PDCCH includes the second domain, the DCI format used by the first PDCCH includes The second domain is used to determine the target waveform from DFT-s-OFDM or CP-OFDM; when the DCI format used by the first PDCCH does not include the second domain, the second domain At least the first information block of an information block or the second information block is used to determine the target waveform from between DFT-s-OFDM or CP-OFDM.
  • This application discloses a second node device used in wireless communication, which is characterized in that it includes:
  • the third transmitter sends the first PDCCH, and the DCI format adopted by the first PDCCH includes at least the first domain;
  • the third receiver receives the first PUSCH, the waveform used by the first PUSCH is a target waveform, and the target waveform is one of DFT-s-OFDM or CP-OFDM;
  • the first domain is a domain related to the waveform
  • the second domain is a domain different from the first domain
  • whether the DCI format used by the first PDCCH includes the second domain depends on the second domain.
  • Information block, the second information block and the first information block are different; when the DCI format used by the first PDCCH includes the second domain, the DCI format used by the first PDCCH includes The second domain is used to determine the target waveform from DFT-s-OFDM or CP-OFDM; when the DCI format used by the first PDCCH does not include the second domain, the second domain At least the first information block of an information block or the second information block is used to determine the target waveform from between DFT-s-OFDM or CP-OFDM.
  • Figure 1 shows a flow chart of the first information block, the first PDCCH and the first PUSCH according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 7 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 8 shows a schematic diagram of a second information block according to an embodiment of the present application.
  • Figure 9 shows a schematic diagram of a target waveform according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of the transmission power of the first PUSCH according to an embodiment of the present application
  • Figure 11 shows a schematic diagram of the dimensions of the first domain according to an embodiment of the present application.
  • Figure 12 shows a schematic diagram of added bits according to one embodiment of the present application.
  • Figure 13 shows a schematic diagram of a first time length according to an embodiment of the present application
  • Figure 14 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Figure 15 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart 100 of the first information block, the first PDCCH and the first PUSCH according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step. It should be particularly emphasized that the order of the blocks in the figure is only an example and does not limit the temporal sequence relationship between the steps represented.
  • the first node device in this application receives the first information block in step 101; the first node device in this application receives the first PDCCH in step 102, and the DCI used by the first PDCCH The format at least includes the first domain; the first node device in this application sends the first PUSCH in step 103, the waveform used by the first PUSCH is the target waveform, and the target waveform is DFT-s-OFDM or CP- One of OFDM; wherein, the first domain is a domain related to the waveform, the second domain is a domain different from the first domain, and the first domain Whether the DCI format used by the PDCCH includes the second domain depends on the second information block, and the second information block is different from the first information block; when the DCI format used by the first PDCCH includes the When the second domain is used, the second domain included in the DCI format adopted by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM; when the DCI format used
  • the first information block is transmitted through an air interface or a wireless interface.
  • the first information block includes all or part of a high-layer signaling or a physical layer signaling.
  • the first information block includes all or part of an RRC (Radio Resource Control, Radio Resource Control) layer signaling, or the first information block includes a MAC (Medium Access Control, media access control) layer signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • MAC Medium Access Control, media access control
  • the first information block includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the first information block includes all or part of a SIB1.
  • the first information block is user equipment-specific (UE-specific).
  • the first information block is configured per carrier, or the first information block is configured per BWP (bandwidth part, bandwidth part), or the first information block is per frequency band. (band) or configured per frequency range (FR, Frequency Range).
  • the first information block includes all or part of the fields in DCI (Downlink Control Information) format.
  • DCI Downlink Control Information
  • the first information block includes all or part of the IE (Information Element, information unit) "PUSCH-Config"; or the first information block includes all or part of the IE "BWP-UplinkDedicated” ; Or the first information block includes all or part of IE “BWP-Uplink”; or the first information block includes all or part of IE “ServingCellConfig”; or the first information block includes IE "UplinkConfig” "all or part of it.
  • IE Information Element, information unit
  • the first information block includes all or part of the IE "RACH-ConfigCommon"; or the first information block includes all or part of the IE “BWP-UplinkCommon”.
  • the first information block includes all or part of the IE "ConfiguredGrantConfig”.
  • the first information block includes all or part of the IE "PUSCH-ConfigCommon”.
  • the first information block includes a higher layer parameter "msg3-transformPrecoder".
  • the first information block includes a higher layer parameter "msgA-TransformPrecoder".
  • the first information block includes a higher layer parameter "transformPrecoder”.
  • the first information block includes the higher layer parameter "msg3-transformPrecoder", so that when the dynamic switch transformation precoder is turned off or the second information block is not configured, it can directly fall back to random access.
  • Waveform configuration simplifies the rollback process and reduces implementation complexity.
  • the first information block includes a higher layer parameter "transformPrecoder", so that when the dynamic switch transformation precoder is turned off or the second information block is not configured, it can fall back to the waveform configuration unique to the user equipment. , optimized the coverage performance during rollback.
  • transformPrecoder a higher layer parameter
  • the first information block includes all or part of the PUSCH configuration information.
  • the first information block includes all or part of the random access configuration information.
  • the second information block when the second information block is configured, the second information block is transmitted through an air interface or a wireless interface.
  • the first receiver receives the second information block.
  • the first transmitter sends the second information block.
  • the second information block is transmitted through PUSCH (physical uplink shared channel, physical uplink shared channel).
  • the second information block includes a capability parameter of the first node device.
  • the second information block is used to indicate at least one capability parameter of the first node device.
  • whether the DCI format used by the first PDCCH includes the second domain is related to at least one capability parameter of the sender of the first PUSCH.
  • At least one capability parameter of the sender of the first PUSCH is used to determine that the DCI format adopted by the first PDCCH includes the second domain.
  • At least one capability parameter of the sender of the first PUSCH is used to determine whether to support dynamic switching of transform precoding (or transform precoder), and the first PDCCH adopts
  • the DCI format includes the second domain and is equivalent to a dynamic switch supporting transform precoding (or transform precoder).
  • At least one capability parameter of the sender of the first PUSCH is used to determine whether to support dynamic switching of uplink transmission waveforms, and the DCI format used by the first PDCCH includes the second domain and support for uplink transmission waveforms State switching is equivalent.
  • the first transmitter sends a fourth information block; wherein the fourth information block is used to explicitly or implicitly indicate at least one capability of the first node device.
  • the fourth information block is used to explicitly or implicitly indicate at least one capability of the first node device.
  • Parameter, at least one capability parameter of the first node device is used to indicate whether the first node device supports the DCI format used by the first PDCCH including the second domain.
  • the first transmitter sends a fourth information block; wherein the fourth information block is used to explicitly or implicitly indicate at least one capability of the first node device.
  • the fourth information block is used to explicitly or implicitly indicate at least one capability of the first node device.
  • Parameter, at least one capability parameter of the first node device is used to indicate whether the first node device supports dynamic switching of uplink transmission waveforms.
  • the first transmitter sends a fourth information block; wherein the fourth information block is used to explicitly or implicitly indicate at least one capability of the first node device.
  • the fourth information block is used to explicitly or implicitly indicate at least one capability of the first node device.
  • Parameter, at least one capability parameter of the first node device is used to indicate whether the first node device supports dynamic switching of transform precoding (or transform precoder).
  • At least one capability parameter of the sender of the first PUSCH is used to determine whether to support dynamic switching of transform precoding (or transform precoder), and the first PDCCH adopts
  • the DCI format includes the second domain and is equivalent to a dynamic switch supporting transform precoding (or transform precoder).
  • At least one capability parameter of the sender of the first PUSCH is used to determine whether to support dynamic switching of uplink transmission waveforms, and the DCI format used by the first PDCCH includes the second Domains and support for dynamic switching of uplink transmission waveforms are equivalent.
  • the second information block includes all or part of a high-layer signaling or a physical layer signaling.
  • the second information block includes all or part of an RRC (Radio Resource Control, Radio Resource Control) layer signaling, or the second information block includes a MAC (Medium Access Control, media access control) layer signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • MAC Medium Access Control, media access control
  • the second information block includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the second information block is user equipment specific (UE-specific).
  • the second information block is configured per carrier, or the second information block is configured per BWP (bandwidth part, bandwidth part), or the second information block is per frequency band. (band) or configured per frequency range (FR, Frequency Range).
  • the second information block includes all or part of the fields in DCI (Downlink Control Information) format.
  • DCI Downlink Control Information
  • the second information block includes all or part of the IE "PUSCH-Config”; or the second information block includes all or part of the IE “BWP-UplinkDedicated”; or the second information The block includes all or part of the IE “BWP-Uplink”; or the second information block includes all or part of the IE “ServingCellConfig”; or the second information block includes all or part of the IE "UplinkConfig”.
  • the second information block includes all or part of the IE "ConfiguredGrantConfig”.
  • the second information block includes all or part of the IE "PUSCH-ConfigCommon".
  • the second information block includes all or part of the IE "pdcch-ConfigCommon", or the second information block includes all or part of the IE “BWP-DownlinkCommon", or the second information
  • the block includes all or part of IE "BWP-DownlinkDedicated”, or the second information block includes all or part of IE “pdcch-Config”, or the second information block includes all or part of IE "SearchSpace” part, or the second information block includes all or part of the IE "SearchSpaceExt-v1800", or the second information block includes all or part of the IE "SearchSpaceExt2-r18".
  • the first information block and the second information block are two different domains or two different sub-IEs in the same IE.
  • the first information block and the second information block are two different IEs respectively.
  • the first information block and the second information block are transmitted through the same PDSCH.
  • the first information block and the second information block are transmitted through two different PDSCHs respectively.
  • the first information block is earlier than the second information block.
  • the first information block is later than the second information block.
  • the first PDCCH is transmitted through an air interface or a wireless interface.
  • the first PDCCH occupies one PDCCH candidate.
  • the first PDCCH is transmitted in a common search space (CSS).
  • SCS common search space
  • the first PDCCH is transmitted in the user equipment search space (USS, UE specific search space).
  • USS user equipment search space
  • the first PDCCH is a baseband signal or radio frequency signal of a PDCCH (physical downlink control channel, physical downlink control channel).
  • the first PDCCH is used to carry DCI.
  • the CRC of the first PDCCH is scrambled by RNTI (Radio Network Temporary Identity, Radio Network Temporary Identity).
  • RNTI Radio Network Temporary Identity, Radio Network Temporary Identity
  • the CRC of the first PDCCH is scrambled by C-RNTI.
  • the CRC of the first PDCCH is scrambled by C-RNTI or MCS-RNTI.
  • the CRC of the first PDCCH is scrambled by C-RNTI, MCS-RNTI or SP-CSI-RNTI.
  • the CRC of the first PDCCH is scrambled by CS-RNTI, C-RNTI, MCS-RNTI or SP-CSI-RNTI.
  • the DCI format adopted by the first PDCCH is the DCI format adopted by the DCI carried by the first PDCCH.
  • the DCI format adopted by the first PDCCH is the DCI format used to generate the first PDCCH.
  • the DCI format used by the first PDCCH is a DCI format used by monitoring (monitor) PDCCH candidates occupied by the first PDCCH.
  • the DCI format used by the first PDCCH is the DCI format used when decoding the first PDCCH.
  • the DCI format adopted by the first PDCCH is a DCI format corresponding to the information bits used to generate the first PDCCH.
  • the DCI format adopted by the first PDCCH is the DCI format transmitted on the first PDCCH.
  • the DCI format adopted by the first PDCCH is a DCI format other than DCI format 0_0.
  • the DCI format adopted by the first PDCCH is a DCI format other than DCI format 0_0 or DCI format 1_0.
  • the DCI format (Format) adopted by the first PDCCH is 0_1, or the DCI format adopted by the first PDCCH is 0_2, or the DCI format adopted by the first PDCCH is 0_K, or The DCI format used by the first PDCCH is one of 0_2 and 0_K, or the DCI format used by the first PDCCH is one of 0_1, 0_2, 0_K, or the DCI format used by the first PDCCH is one of 0_1 and 0_2, or the DCI format adopted by the first PDCCH is one of 0_1 and 0_K; where K is a positive integer greater than 2.
  • K is equal to 3.
  • K is equal to 4.
  • K is equal to 5.
  • the DCI format (Format) adopted by the first PDCCH is 1_1, or the DCI format adopted by the first PDCCH is 1_2, or the DCI format adopted by the first PDCCH is 1_K, or The DCI format used by the first PDCCH is one of 1_2 and 1_K, or the DCI format used by the first PDCCH is one of 1_1, 1_2, and 1_K, or the DCI format used by the first PDCCH is one of 1_1 and 1_2, or the DCI format adopted by the first PDCCH is one of 1_1 and 1_K; where K is a positive integer greater than 2.
  • K is equal to 3.
  • K is equal to 4.
  • K is equal to 5.
  • the DCI format (Format) adopted by the first PDCCH is 0_1 or 1_0, or the DCI format adopted by the first PDCCH is 0_2 or 1_2, or the DCI format adopted by the first PDCCH is 0_K or 1_K, or the DCI format used by the first PDCCH is one of 0_2, 0_K, 1_2, 1_K, or the DCI format used by the first PDCCH is 0_1, 0_2, 0_K, 1_1, 1_2, One of 1_K, or the DCI format used by the first PDCCH is one of 0_1, 0_2, 1_1, 1_2, or the DCI format used by the first PDCCH is one of 0_1, 0_K, 1_1, 1_K ;where K is a positive integer greater than 2. As a subsidiary example of the above-mentioned embodiment, K is equal to 3. As a subsidiary example of the above-mentioned embodiment, K is equal to 4. As an additional integer greater than
  • the DCI format combination to which the DCI format used by the first PDCCH belongs is predefined or configured.
  • the DCI format combination to which the DCI format used by the first PDCCH belongs is configured through PDCCH configuration signaling.
  • the DCI format combination to which the DCI format used by the first PDCCH belongs is configured through configuration signaling of the search space.
  • At least one DCI format configured through configuration signaling of a search space set to which the PDCCH candidate occupied by the first PDCCH belongs includes the DCI format used by the first PDCCH.
  • the first DCI format is 2_H, and H is a non-negative integer.
  • the DCI format adopted by the first PDCCH is a DCI format for scheduling uplink channels or signals.
  • the DCI format adopted by the first PDCCH is a DCI format for scheduling downlink channels or signals.
  • the DCI format adopted by the first PDCCH is one of the DCI formats supported by the user equipment-specific search space set (USS set, UE-Specific Search Set).
  • the DCI format adopted by the first PDCCH is DCI supported by a common search space set (CSS set). one of the formats.
  • SCS set common search space set
  • the DCI format adopted by the first PDCCH is used for scheduling the first PUSCH.
  • the DCI format adopted by the first PDCCH is used for scheduling PDSCH.
  • the DCI format adopted by the first PDCCH is used to schedule a PUSCH earlier than the first PUSCH.
  • the DCI format adopted by the first PDCCH is a group common DCI format.
  • the first domain is the "Precoding information and number of layers" domain.
  • the first domain is the "Second Precoding information" domain.
  • the first domain is the "Antenna ports" domain.
  • the first domain is the "PTRS-DMRS association" domain.
  • the first domain is the "DMRS sequence initialization" domain.
  • the first domain is related to the demodulation reference signal of PUSCH.
  • the first field is used to explicitly or implicitly indicate the number of layers occupied by PUSCH and the adopted TPMI (transmitted precoding matrix indicator).
  • the first domain is used to explicitly or implicitly indicate resources in the time-frequency code domain occupied by the demodulation reference signal of the PUSCH.
  • the first field is used to explicitly or implicitly indicate the number of CDM (Code Division Multiplexing, code division multiplexing) groups corresponding to the demodulation reference signal of PUSCH and the demodulation reference to which it belongs. signal port.
  • CDM Code Division Multiplexing, code division multiplexing
  • the first field is used to explicitly or implicitly indicate the number of CDM groups corresponding to the demodulation reference signal of the PUSCH, the demodulation reference signal port to which it belongs, and the initial scrambling sequence used. At least one of the four values and the number of occupied front-load time domain symbols.
  • the first domain is used to explicitly or implicitly indicate the association relationship between a phase tracking reference signal (PTRS, phase tracking reference signal) and the demodulation reference signal of the PUSCH.
  • PTRS phase tracking reference signal
  • the first field is used to explicitly or implicitly indicate the initialization of the generation sequence of the demodulation reference signal of the PUSCH.
  • the first field includes at least one padding bit.
  • the first field does not include any padding bits.
  • the first domain is neither a starting domain nor an ending domain included in the DCI format used by the first PDCCH.
  • the first PUSCH is a dynamically scheduled PUSCH.
  • the first PUSCH is a PUSCH of configured grant (CG).
  • CG configured grant
  • the first PUSCH is a PUSCH of type 1 (type 1) configured grant (CG, configured grant).
  • type 1 type 1 configured grant
  • the first PUSCH is a type 2 (type 2) configured grant (CG) PUSCH.
  • the first PUSCH carries UCI (uplink control information).
  • the first PUSCH does not carry UCI.
  • the first PUSCH carries UL-SCH (Uplink shared channel).
  • UL-SCH Uplink shared channel
  • the first PUSCH does not carry UL-SCH.
  • the first PUSCH is a baseband signal of PUSCH.
  • the first PUSCH is a radio frequency signal of PUSCH.
  • the technical feature "the waveform used by the first PUSCH is a target waveform” includes the following meaning: the target waveform is used for the transmission of the first PUSCH.
  • the technical feature "the waveform used by the first PUSCH is a target waveform” includes the following meaning: the target waveform is used to generate the baseband signal or radio frequency signal of the first PUSCH.
  • the technical feature "the waveform used by the first PUSCH is the target waveform” includes the following meaning: the first PUSCH uses the target waveform for transmission.
  • the technical feature "the waveform used by the first PUSCH is the target waveform” includes the following meaning: the target waveform is the transmission waveform of the first PUSCH.
  • the technical feature "the waveform used by the first PUSCH is the target waveform” includes the following meaning: the transform precoding (transform precoding) or transform precoder (transform precoder) corresponding to the target waveform (open or off) is used to generate the first PUSCH.
  • the technical feature "the waveform used by the first PUSCH is the target waveform” includes the following meaning: the modulation symbols used to generate the first PUSCH use the target waveform to generate the baseband of the first PUSCH signal or radio frequency signal.
  • the technical feature "the waveform used by the first PUSCH is the target waveform” includes the following meaning: the type of OFDM corresponding to the target waveform is used to generate the baseband signal or radio frequency signal of the first PUSCH. .
  • the technical feature "the waveform used by the first PUSCH is the target waveform” includes the following meaning: the uplink transmission waveform used (or configured) by the sender of the first PUSCH is the target waveform.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing, cyclic prefix orthogonal frequency division multiplexing
  • transform precoding or transform precoder
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Extended Orthogonal Frequency Division Multiplexing
  • Transform Precoding or Transform Precoder
  • CP-OFDM and “transform precoding (or transform precoder) that performs DFT extension is disabled” are equivalent or can be used interchangeably.
  • DFT-s-OFDM and “transform precoding (or transform precoder) that performs DFT extension is enabled” are equivalent or can be used interchangeably.
  • the waveform used by the first PUSCH is CP-OFDM
  • the transform precoding (or transform precoder) in the generation of the first PUSCH is turned off (disabled) are equivalent or can be used interchangeably.
  • both “the waveform used by the first PUSCH is DFT-s-OFDM” and “the transform precoding (or transform precoder) in the generation of the first PUSCH is enabled” are equivalent or can be used interchangeably.
  • the technical feature "the target waveform is one of DFT-s-OFDM or CP-OFDM” includes the following meaning: candidates for the target waveform include DFT-s-OFDM and CP-OFDM.
  • the technical feature "the target waveform is one of DFT-s-OFDM or CP-OFDM” includes the following meaning: the target waveform may be DFT-s-OFDM or CP-OFDM.
  • the technical feature "the target waveform is one of DFT-s-OFDM or CP-OFDM” includes the following meaning: DFT-s-OFDM or CP-OFDM are both candidate waveforms for the target waveform.
  • the technical feature "the first domain is a domain related to waveforms” includes the following meaning: the explanation (or definition) of the first domain is related to waveforms.
  • the technical feature "the first field is a field related to waveforms” includes the following meaning: the information indicated by the first field is related to waveforms.
  • the technical feature "the first domain is a domain related to waveforms" includes the following meaning: the explanation (or definition) of the first domain is related to turning on or off transform precoding (or transform precoder) .
  • the technical feature "the first domain is a domain related to waveforms” includes the following meaning: the interpretation (or definition) of the first domain may be different in the case of different waveforms.
  • the technical feature "the first domain is a domain related to the waveform” includes the following meaning: the interpretation (or definition) of the first domain changes as the waveform changes.
  • the technical feature "the first domain is a domain related to the waveform” includes the following meaning: the interpretation (or definition) of the first domain changes as the waveform changes.
  • the technical feature "the first domain is a domain related to the waveform” includes the following meaning: the size of the first domain is related to the waveform.
  • the technical feature "the first field is a field related to the waveform” includes the following meaning: the number of bits included in the first field is related to the waveform.
  • the technical feature "the first domain is a domain related to the waveform” includes the following meaning: the size of the first domain without adding padding bits is related to the waveform.
  • the technical feature "the first domain is a domain related to a waveform” includes the following meaning: the size of the first domain without adding padding bits may not be equal in the case of different waveforms. .
  • the technical feature "the first domain is a domain related to the waveform" includes the following meaning: the size of the first domain without adding padding bits and transform precoding (or transform precoder ) is turned on or not.
  • the technical feature "the first domain is a domain related to the waveform” includes the following meaning: whether the transform precoding (or transform precoder) is turned on is used to determine that no padding bits (padding bits) are added. Describe the size of the first domain.
  • the first domain is a domain related to waveforms
  • the first domain is a domain related to whether transform precoding (or transform precoder) is turned on
  • the first domain is related to the target waveform.
  • the DCI format adopted by the first PDCCH includes the second domain.
  • the DCI format adopted by the first PDCCH does not include the second domain.
  • the second field only includes 1 bit.
  • the second field includes a plurality of bits.
  • the second domain is a domain newly introduced in version 18 (Rel18).
  • the second domain is an existing domain in version 17 (Rel17) or previous versions.
  • the second domain is a domain that is re-interpreted from existing domains in version 17 (Rel17) or previous versions.
  • the definition of the second domain is related to version.
  • the definition of the second domain is independent of version.
  • the second field is the "transform precoder indicator" field.
  • the second field is the "waveform indicator" field.
  • the second domain is the "CP-OFDM/DFT-s-OFDM indicator” domain.
  • the first domain and the second domain have different positions in the DCI format used by the first PDCCH.
  • the first domain and the second domain respectively include different information bits in the DCI format adopted by the first PDCCH.
  • the first domain and the second domain are two different types of domains.
  • the first domain and the second domain are adjacent in the DCI format used by the first PDCCH.
  • the first domain and the second domain are not adjacent in the DCI format used by the first PDCCH.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: the second information block is used to determine the location of the first PDCCH. Whether the adopted DCI format includes the second domain.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: whether the DCI format used by the first PDCCH includes the The second domain depends on whether the second information block is configured.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: whether the DCI format used by the first PDCCH includes the The second domain depends on whether the second information block is configured, and when the second information block is configured, whether the DCI format adopted by the first PDCCH includes the second domain depends on the second Indication of information block.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: the second information block is used to determine the first DCI format used by PDCCH.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: the second information block is used to configure support for the first A set of search spaces in the DCI format used by the PDCCH.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: all or part of the second information block is used Indicate whether the DCI format adopted by the first PDCCH includes the second domain, explicitly or implicitly.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: all or part of the second information block is used In order to explicitly or implicitly indicate whether to dynamically convert the uplink waveform, whether to dynamically convert the uplink waveform (waveform) is used to determine whether the DCI format used by the first PDCCH includes the second domain.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: all or part of the second information block is used To indicate explicitly or implicitly whether to dynamically switch (enable/disable or on/off) transform precoding (or transform precoder), whether dynamic switching transform precoding (or transform precoder) is used to determine the Whether the DCI format adopted by the first PDCCH includes the second domain.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: the feature domain is a domain included in the second information block ; When the value of the characteristic field included in the second information block is equal to a value (or a state), the DCI format adopted by the first PDCCH includes the second domain; when the second information When the value of the characteristic field included in the block is equal to another value (or another state), the DCI format adopted by the first PDCCH does not include the second field.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: whether the second information block is configured or provided ( provided) is used to determine whether the DCI format adopted by the first PDCCH includes the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information "Information block” includes the following meaning: when the second information block is configured or provided, the DCI format used by the first PDCCH includes the second domain; when the second information block is not When configured or not provided, the DCI format used by the first PDCCH does not include the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: when the second information block is configured or provided ), the DCI format used by the first PDCCH does not include the second domain; when the second information block is not configured or provided, the DCI format used by the first PDCCH including the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: whether the second information block is configured or provided ( provided) is used to determine whether to dynamically switch (enable/disable or on/off) transform precoding (or transform precoder), whether dynamic switch transform precoding (or transform precoder) is used to determine the first Whether the DCI format used by the PDCCH includes the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: whether the second information block is configured or provided (provided) is used to determine whether to dynamically convert the uplink waveform, and whether to dynamically convert the uplink waveform (waveform) is used to determine whether the DCI format used by the first PDCCH includes the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain and depends on the second information block” includes the following meaning: whether the second information block is configured and when the second information block is configured. When two information blocks are configured, the value of a parameter included in the second information block is used to determine whether the DCI format adopted by the first PDCCH includes the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain and depends on the second information block” includes the following meaning: whether the second information block is configured and when the second information block is configured. When two information blocks are configured, the value of a parameter included in the second information block is used to determine whether to dynamically switch (enable/disable or on/off) the transformation precoding (or transformation precoder), and whether to dynamically switch Transform precoding (or transform precoder) is used to determine whether the DCI format adopted by the first PDCCH includes the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain and depends on the second information block” includes the following meaning: whether the second information block is configured and when the second information block is configured. When two information blocks are configured, the value of a parameter included in the second information block is used to determine whether to dynamically convert the uplink waveform, and whether to dynamically convert the uplink waveform (waveform) is used to determine the path used by the first PDCCH. Whether the DCI format includes the second domain.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: the feature domain is a domain included in the second information block ; When the second information block is not configured, the DCI format adopted by the first PDCCH does not include the second domain; when the second information block is configured and the second information block includes When the value of the feature field is equal to a value, the DCI format adopted by the first PDCCH includes the second domain; when the second information block is configured and the feature included in the second information block When the value of the domain is equal to another value, the DCI format adopted by the first PDCCH does not include the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: when the second information block is configured and the second When the value of a field included in the information block is equal to a predefined value, the DCI format adopted by the first PDCCH includes the second domain; otherwise, the DCI format adopted by the first PDCCH does not include the second domain. area.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: the DCI format used by the first PDCCH includes all Whether the size of the second field is equal to 0 depends on the second information block.
  • the technical feature "whether the DCI format used by the first PDCCH includes the second domain depends on the second information block” includes the following meaning: the DCI format used by the first PDCCH includes all Whether the number of bits included in the second field is equal to 0 depends on the second information block.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: the second information block is used to explicitly or implicitly Formulaly indicates at least one capability parameter of the first node device, and at least one capability parameter of the first node device is used to explicitly or implicitly indicate the first PDCCH. Whether the adopted DCI format includes the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information block" includes the following meaning: the second information block is used to explicitly or implicitly Formally indicating at least one capability parameter of the first node device, the at least one capability parameter of the first node device is used to explicitly or implicitly indicate whether to support uplink transmission waveforms. Dynamic switching, whether to support uplink transmission waveform dynamic switching is used to explicitly or implicitly determine whether the DCI format used by the first PDCCH includes the second domain.
  • the technical feature "whether the DCI format adopted by the first PDCCH includes the second domain depends on the second information "Information block” includes the following meaning: the second information block is used to explicitly or implicitly indicate at least one capability parameter of the first node device, and at least one capability parameter of the first node device.
  • the capability parameter is used to indicate whether dynamic switching transform precoding (or transform precoder) is used explicitly or implicitly, whether dynamic switching transform precoding (or transform precoder) is used explicitly or implicitly. Whether the DCI format adopted by the first PDCCH includes the second domain is determined implicitly.
  • whether the DCI format adopted by the first PDCCH includes the second domain also depends on the capability of the first node device.
  • the expressions are equivalent or can be used interchangeably.
  • the DCI format adopted by the first PDCCH does not include the second domain
  • the size of the second domain included in the DCI format adopted by the first PDCCH is equal to 0
  • the two expressions "the second information block is provided” and "the DCI format used by the first PDCCH includes the second domain” are equivalent or can be mutually exclusive. Replacement used.
  • the two expressions "the second information block is configured" and "the DCI format used by the first PDCCH includes the second domain" are equivalent or can be mutually exclusive. Replacement used.
  • the two expressions "the second information block is not configured” and "the DCI format used by the first PDCCH does not include the second domain" are equivalent or can be replaced with each other. in use.
  • the two expressions "the second information block is not provided” and “the second information block is not configured” are equivalent or can be used interchangeably.
  • the two expressions "the second information block is provided” and “the second information block is configured” are equivalent or can be used interchangeably.
  • the two expressions "dynamic conversion of the uplink waveform is enabled (or supported)" and "the DCI format used by the first PDCCH includes the second domain” are equivalent or can be mutually exclusive. Replacement used.
  • the two expressions "dynamic conversion of uplink waveforms is turned off (or not supported)" and "the DCI format adopted by the first PDCCH does not include the second domain" are equivalent or equal to each other. Can be used interchangeably.
  • one of the two expressions: "The value of a parameter included in the second information block is equal to the first characteristic parameter value" and "The DCI format used by the first PDCCH includes the second domain" are equivalent or can be used interchangeably, and the first characteristic parameter value is predefined or configurable.
  • the value of a parameter included in the second information block is equal to the second characteristic parameter value
  • the DCI format used by the first PDCCH does not include the second domain are equivalent or can be used interchangeably, and the second characteristic parameter value is predefined or configurable.
  • the second information block is configured (or provided) and the value of a parameter included in the second information block is equal to the first characteristic parameter value
  • the first PDCCH adopts
  • DCI format includes the second domain are equivalent or can be used interchangeably, and the first characteristic parameter value is predefined or configurable.
  • the second information block is not configured (or provided) or when the second information block is configured (or provided), the value of a parameter included in the second information block is equal to
  • the two expressions “the second characteristic parameter value or” and “the DCI format used by the first PDCCH does not include the second domain” are equivalent or can be used interchangeably.
  • the second characteristic parameter Values are predefined or configurable.
  • the value of a parameter included in the second information block indicates that dynamic switch transform precoding (or the transform precoder is turned on (or supported)
  • the DCI used by the first PDCCH format includes the second field is equivalent or can be used interchangeably.
  • the value of a parameter included in the second information block indicates dynamic switch transform precoding (or the transform precoder is turned off (or not supported)" and "the value used by the first PDCCH
  • DCI format does not include the second domain
  • the value of a parameter included in the second information block indicates that dynamic switch transform precoding (or the transform precoder is turned off (or is not supported)) or the second information block is not provided ( or not configured)
  • the DCI format adopted by the first PDCCH does not include the second domain are equivalent or can be used interchangeably.
  • the value of a parameter included in the second information block indicates that the dynamic switching waveform is turned on (or supported)
  • the DCI format adopted by the first PDCCH includes the second domain
  • the value of a parameter included in the second information block indicates that the dynamic switching waveform is turned off (or not supported)
  • the DCI format adopted by the first PDCCH does not include the second
  • the value of a parameter included in the second information block indicates that the dynamic switching waveform is turned off or the second information block is not provided (or is not configured)
  • the first PDCCH The two expressions "The adopted DCI format does not include the second domain" are equivalent or can be used interchangeably.
  • the second information block includes the first information block when the transform precoding (or transform precoder) switch parameter in the configuration signaling of PUSCH (Physical Uplink Shared Channel) is defaulted.
  • PUSCH Physical Uplink Shared Channel
  • the technical feature "the second domain included in the DCI format adopted by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM" includes the following meanings :
  • the second domain included in the DCI format adopted by the first PDCCH is used by the first node device in this application to determine the target waveform from between DFT-s-OFDM or CP-OFDM.
  • the technical feature "the second domain included in the DCI format adopted by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM" includes the following meanings :
  • the second domain included in the DCI format adopted by the first PDCCH is used to explicitly or implicitly indicate the target waveform from DFT-s-OFDM or CP-OFDM.
  • the technical features “the second domain included in the DCI format adopted by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM" and "the The second domain included in the DCI format used by the first PDCCH is used to explicitly or implicitly indicate whether to use transform precoding (transform precoder). The two are equivalent or can be mutually exclusive. Replacement used.
  • the technical features “the second domain included in the DCI format adopted by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM" and "the The second field included in the DCI format used by the first PDCCH is used to explicitly or implicitly indicate the switch of transform precoding (transform precoder). The two are equivalent or can be mutually exclusive. Replacement used.
  • the technical feature "the second domain included in the DCI format adopted by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM" includes the following meanings : When the value of the second domain included in the DCI format used by the first PDCCH is equal to one value, the target waveform is DFT-s-OFDM; when the DCI format used by the first PDCCH When the included value of the second domain is equal to another value, the target waveform is CP-OFDM.
  • the technical feature "the second domain included in the DCI format adopted by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM” includes the following meanings : When the value of the second domain included in the DCI format used by the first PDCCH is equal to a value, the transform precoding (transform precoder) is turned on; when the DCI used by the first PDCCH When the value of the second field included in the format is equal to another value, the transform precoding (transform precoder) is turned off.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: at least the first information block of the first information block or the second information block is used by the first node device in this application to obtain from DFT-s - Determine the target waveform between OFDM or CP-OFDM.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: both the first information block or the second information block are used to determine the target waveform from DFT-s-OFDM or CP-OFDM.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: only the first information block of the first information block or the second information block is used to determine the target waveform from DFT-s-OFDM or CP-OFDM. Describe the target waveform.
  • the technical feature is “at least the first information block among the first information block or the second information block is "Used to determine the target waveform from DFT-s-OFDM or CP-OFDM” includes the following meaning: all or part of the first information block is used to determine the target waveform from DFT-s-OFDM or CP-OFDM.
  • the target waveform is specified explicitly or implicitly.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: all or part of the first information block is used to explicitly or implicitly indicate the transform precoding (or transform precoder) in the generation of the first PUSCH. switch.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • the "target waveform” includes the following meaning: whether the transform precoding (transform precoder) in the generation of the first PUSCH is switched depends on the value of at least one parameter included in the first information block.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: the waveform explicitly or implicitly indicated by DFT-s-OFDM or CP-OFDM in the first information block is the default waveform of the second information block. The waveform used by the first PUSCH.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • the "target waveform” includes the following meaning: the waveform indicated explicitly or implicitly by the first information block from DFT-s-OFDM or CP-OFDM is that the second information block is not configured (or provided ) is the waveform used by the first PUSCH.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: whether the second information block is configured (or provided) and the first information block determine the target waveform from between DFT-s-OFDM or CP-OFDM.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: when the second information block is not configured (or provided), the target waveform is an information block other than the first information block or the second information block from DFT- The indicated waveform between s-OFDM or CP-OFDM; when the second information block is configured (or provided), the target waveform is the first information block from DFT-s-OFDM or CP-OFDM between the indicated waveforms.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: when the second information block is not configured (or provided), the target waveform is indicated by the first information block from DFT-s-OFDM or CP-OFDM. Waveform; when the second information block is configured (or provided), the target waveform is an information block other than the first information block or the second information block from DFT-s-OFDM or CP-OFDM between the indicated waveforms.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: the first information block is used to determine the number of candidate waveforms of the target waveform; when the number of candidate waveforms of the target waveform indicated by the first information block is greater than 1 , the second information block is used to indicate the target waveform from more than one candidate waveform of the target waveform.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: the second information block is used to determine the number of candidate waveforms of the target waveform; when the number of candidate waveforms of the target waveform indicated by the second information block is greater than 1 , the first information block is used to indicate the target waveform from more than one candidate waveform of the target waveform.
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: the first information block includes the higher layer parameter "msg3-transformPrecoder”; when the second information block is not configured (or provided) and the higher layer parameter "transformPrecoder” in IE “UplinkConfig” " is configured (or provided), the target waveform is the waveform configured by the higher layer parameter "transformPrecoder” in IE “UplinkConfig”; when the second information block is not configured (or provided) and IE “UplinkConfig” When the higher-layer parameter "transformPrecoder” in is not configured (or provided), the target waveform is the waveform configured by the higher-layer parameter "msg3-transformPrecoder” included in the first information block; when the second When the information block is configured (or provided) and the higher-layer parameter "transformPrecoder
  • the technical feature is “At least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM.
  • “Target waveform” includes the following meaning: the first information block includes the higher layer parameter "msg3-transformPrecoder”; when the second information block is not configured (or provided) and the higher layer parameter "transformPrecoder” in IE “UplinkConfig” ” is configured (or provided) when the target waveform is a higher layer parameter in the IE “UplinkConfig”
  • the waveform configured by "transformPrecoder”; when the second information block is not configured (or provided) and the higher layer parameter "transformPrecoder” in IE “UplinkConfig” is not configured (or provided), the target waveform is The waveform configured by the higher layer parameter "msg3-transformPrecoder” included in the first information block; when the second information block is configured (or provided), the target waveform is included in the first information block The
  • the MCS used by the first PUSCH belongs to a first MCS set, the first MCS set includes multiple MCSs, and the first DCI format is used to determine the MCS from the first MCS set.
  • the MCS used by the first PUSCH, and the target waveform is used to determine the first MCS set.
  • the target waveform is used to determine the upper limit of the transmission power of the first PUSCH.
  • the target waveform is used to determine the transmit power of the first PUSCH.
  • the transmit power of the first PUSCH is equal to a first upper limit value or a first power value, whichever is smaller, and the target waveform is used to determine the first power value.
  • the target waveform is used to determine the transmission power of the first PUSCH.
  • the sender of the first PUSCH is the first node device in this application.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in Figure 2.
  • Figure 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolution) Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS can be interconnected with other access networks, but is not shown for simplicity these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR/evolved Node B (gNB/eNB) 203 and other gNB (eNB) 204.
  • the gNB (eNB) 203 provides user and control plane protocol termination towards the UE 201.
  • gNB (eNB) 203 may connect to other gNB (eNB) 204 via an Xn/X2 interface (eg, backhaul).
  • gNB (eNB) 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other Appropriate terminology.
  • gNB (eNB) 203 provides UE 201 with an access point to 5GC/EPC 210.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB (eNB) 203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, Session Management Function) 211, other MME/AMF/SMF214, S-GW (Service Gateway, Service Gateway)/UPF (User Plane Function, User Plane Function) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) /UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node device in this application.
  • the gNB (eNB) 201 corresponds to the second node device in this application.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300, showing in three layers a first node device (UE or gNB) and a second node device (gNB or UE ) Radio protocol architecture of the control plane 300: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first node device between second node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the link between the second node device and the first node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). Radio protocol architecture for the first node device and the second node device in the user plane 350.
  • L1 layer layer 1
  • L2 layer layer 2
  • Radio protocol architecture for the first node device and the second node device in the user plane 350 For the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression on upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g., remote UE, server, etc.) application layer.
  • a network layer eg, IP layer
  • the wireless protocol architecture in Figure 3 is applicable to the first node device in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node device in this application.
  • Embodiment 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application, as shown in FIG. 4 .
  • a controller/processor 490, a data source/buffer 480, a receive processor 452, a transmitter/receiver 456 including an antenna, and a transmit processor 455 may be included in the first node device (450). 460.
  • a controller/processor 440, a data source/buffer 430, a receive processor 412, a transmitter/receiver 416 including an antenna, and a transmit processor 415 may be included in the second node device (410). 420.
  • DL Downlink, downlink
  • upper layer packets such as the first information block in this application, the second information block (when the second information block is configured and transmitted through downlink) and the high layer information included in the third information block
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio control of the first node device 450 based on various priority metrics. Resource allocation.
  • the controller/processor 440 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first node device 450, such as the first information block, the second information block in this application (when the second information block is configured and the high-level information included in the third information block is generated in the controller/processor 440 during downlink transmission.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (i.e., physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc., such as carrying In this application, the physical layer signals of the first information block, the second information block (when the second information block is configured and transmitted through downlink) and the third information block and the physical layer signal carrying the first PDCCH are generated in the transmission process Device 415 is completed.
  • L1 layer i.e., physical layer
  • the generated modulation symbols are divided into parallel streams and each stream is mapped to a corresponding multi-carrier sub-carrier and/or multi-carrier symbol, and then is mapped to the antenna 420 by the transmit processor 415 via the transmitter 416 to be transmitted in the form of a radio frequency signal.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460.
  • Each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receive processor 452.
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes processing the physical layer signal carrying the first information block, the second information block (when the second information block is configured and transmitted through downlink) and the third information block in this application, and the physical layer signal carrying the first PDCCH.
  • Reception of layer signals demodulation based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)) through multi-carrier symbols in a multi-carrier symbol stream, and then demodulation Scrambling, decoding and deinterleaving to recover data or control transmitted by the second node device 410 on the physical channel, the data and control signals are then provided to the controller/processor 490.
  • the controller/processor 490 is responsible for the L2 layer and above.
  • the controller/processor 490 is responsible for the first information block, the second information block (when the second information block is configured and transmitted through downlink) and the third information in this application. Interpret the high-level information contained in the block.
  • the controller/processor may be associated with memory 480 which stores program code and data. Memory 480 may be referred to as computer-readable media.
  • the higher layer information includes the second information block in this application (when the second information block is configured and transmitted through the uplink) and the higher layer information included in the first PUSCH (if the second information block is configured in the uplink).
  • a PUSCH (if it includes high-level information) is generated by the controller/processor 490 and is implemented by the transmit processor 455 for various signal transmission processing functions for the L1 layer (i.e., physical layer), including carrying the second information block (when the second When the information block is configured and transmitted through the uplink) and the generation of the physical layer signal of the first PUSCH is completed in the transmit processor 455, the transmit processor 455 maps it to the antenna 460 via the transmitter 456 and transmits it in the form of a radio frequency signal.
  • Receivers 416 receive radio frequency signals through their corresponding antennas 420. Each receiver 416 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the radio frequency carrier. to the receiving processor 412.
  • the reception processor 412 implements various signal reception processing functions for the L1 layer (i.e., physical layer), including reception processing carrying the second information block (when the second information block is configured and transmitted through the uplink) and the first PUSCH
  • the physical layer signals then provide data and/or control signals to the controller/processor 440.
  • the functions of the L2 layer implemented in the controller/processor 440 include interpreting the higher layer information, including the second information block (when the second information block is configured and transmitted through the uplink) and the high layer information carried by the first PUSCH (if the second information block is transmitted uplink). Interpretation of a PUSCH carrying high-level information).
  • the controller/processor may be associated with a cache 430 that stores program code and data. Buffer 430 is a computer-readable medium.
  • the first node device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first node device 450 at least: receives a first information block; receives a first PDCCH, the DCI format used by the first PDCCH at least includes a first domain; sends a first PUSCH, The waveform used by the first PUSCH is a target waveform, and the target waveform is one of DFT-s-OFDM or CP-OFDM; wherein, the first domain is a domain related to the waveform, and the second domain is and If the first domain is different, whether the DCI format used by the first PDCCH includes the second domain depends on the second information block, and the second information block is different from the first information block; When the DCI format adopted by the first PDCCH includes the second domain, the second domain included in the DCI format adopted by the first PDCCH is used
  • the target waveform when the DCI format adopted by the first PDCCH does not include the second domain, at least the first information block or the second information block An information block is used to determine the target waveform from between DFT-s-OFDM or CP-OFDM.
  • the first node device 450 device includes: a memory that stores a program of computer-readable instructions.
  • the program of computer-readable instructions generates actions when executed by at least one processor.
  • the actions include: receiving The first information block; receiving the first PDCCH, the DCI format used by the first PDCCH includes at least the first domain; sending the first PUSCH, the waveform used by the first PUSCH is a target waveform, and the target waveform is DFT - one of s-OFDM or CP-OFDM; wherein the first domain is a domain related to the waveform, the second domain is a domain different from the first domain, and the DCI used by the first PDCCH Whether the format includes the second domain depends on the second information block, and the second information block is different from the first information block; when the DCI format used by the first PDCCH includes the second domain, The second domain included in the DCI format used by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OF
  • the second node device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second node device 410 at least: sends a first information block; sends a first PDCCH, the DCI format used by the first PDCCH includes at least a first domain; receives a first PUSCH, and the first PUSCH uses The waveform is a target waveform, and the target waveform is one of DFT-s-OFDM or CP-OFDM; wherein the first domain is a domain related to the waveform, and the second domain is different from the first domain.
  • the DCI format used by the first PDCCH includes the second domain depends on the second information block, and the second information block is different from the first information block; when the first PDCCH uses When the DCI format includes the second domain, the second domain included in the DCI format adopted by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM; When the DCI format adopted by the first PDCCH does not include the second domain, at least the first information block of the first information block or the second information block is used to obtain from the DFT Determine the target waveform between -s-OFDM or CP-OFDM.
  • the second node device 410 includes: a memory that stores a computer-readable instruction program that generates actions when executed by at least one processor, and the actions include: sending a first An information block; sending the first PDCCH, the DCI format used by the first PDCCH includes at least a first domain; receiving the first PUSCH, the waveform used by the first PUSCH is a target waveform, and the target waveform is DFT- One of s-OFDM or CP-OFDM; wherein the first domain is a domain related to the waveform, the second domain is a domain different from the first domain, and the DCI format used by the first PDCCH Whether the second domain is included depends on the second information block, and the second information block is different from the first information block; when the DCI format used by the first PDCCH includes the second domain, the second information block is different from the first information block.
  • the second domain included in the DCI format used by the first PDCCH is used to determine the target waveform from DFT-s-OFDM or CP-OFDM; when the DCI format used by the first PDCCH does not
  • the second domain is included, at least the first information block of the first information block or the second information block is used to determine the difference between DFT-s-OFDM or CP-OFDM. Describe the target waveform.
  • the first node device 450 is a user equipment (UE).
  • UE user equipment
  • the second node device 410 is a base station device (gNB/eNB).
  • a receiver 456 (including antenna 460), a receive processor 452 and a controller/processor 490 are used herein to receive the first information block.
  • receiver 456 (including antenna 460) and receive processor 452 are used in this application to receive the first PDCCH.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the first PUSCH.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the second information block (when the second information block is configured and passed downlink transmission).
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the second information block (when the second information block is configured and passed upstream transmission).
  • a receiver 456 (including antenna 460), a receive processor 452 and a controller/processor 490 are used herein to receive the third information block.
  • a transmitter 416 (including an antenna 420), a transmit processor 415 and a controller/processor 440 are used to transmit the first information block in this application.
  • the transmitter 416 (including the antenna 420) and the transmission processor 415 are used in this application to transmit the first PDCCH.
  • the receiver 416 (including the antenna 420), the reception processor 412 and the controller/processor 440 are used to receive the first PUSCH in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the second information block in this application (when the second information block is configured and via downstream transmission).
  • the receiver 416 (including the antenna 420), the receive processor 412 and the controller/processor 440 are used to transmit the received second information block in this application (when the second information block is configured and passed upstream transmission).
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the third information block in this application.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the second node device N500 is the maintenance base station of the serving cell of the first node device U550, and the parts in the dotted box are optional. It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • the first information block is sent in step S501
  • the third information block is sent in step S502
  • the first PDCCH is sent in step S503
  • the first PUSCH is received in step S504.
  • the first information block is received in step S551
  • the third information block is received in step S552
  • the first PDCCH is received in step S553
  • the first PUSCH is sent in step S554.
  • the DCI format used by the first PDCCH includes at least a first domain; the waveform used by the first PUSCH is a target waveform, and the target waveform is DFT-s-OFDM or CP-OFDM.
  • the first domain is a domain related to the waveform
  • the second domain is a domain different from the first domain, and whether the DCI format used by the first PDCCH includes the second domain depends on the first domain.
  • Two information blocks, the second information block and the first information block are different; when the DCI format adopted by the first PDCCH includes the second domain, the DCI format adopted by the first PDCCH The included second domain is used to determine the target waveform from DFT-s-OFDM or CP-OFDM; when the DCI format adopted by the first PDCCH does not include the second domain, the At least the first information block of the first information block or the second information block is used to determine the target waveform from between DFT-s-OFDM or CP-OFDM; the third information block is used to indicate a second reference waveform that is one of DFT-s-OFDM or CP-OFDM.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 6 .
  • the second node device N600 is the maintenance base station of the serving cell of the first node device U650, and the parts in the dotted box are optional. It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • the first information block is sent in step S601
  • the third information block is sent in step S602
  • the second information block is sent in step S603
  • the first PDCCH is sent in step S604
  • the first PDCCH is sent in step S605.
  • the first information block is received in step S651
  • the third information block is received in step S652
  • the second information block is received in step S653
  • the first PDCCH is received in step S654
  • the first PDCCH is received in step S655.
  • Send first PUSCH Send first PUSCH.
  • the third information block is transmitted through an air interface or a wireless interface.
  • the third information block includes all or part of a high-layer signaling or a physical layer signaling.
  • the third information block includes all or part of an RRC (Radio Resource Control, Radio Resource Control) layer signaling, or the third information block includes a MAC (Medium Access Control, media access control) layer signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • MAC Medium Access Control, media access control
  • the third information block includes all or part of a system information block (SIB, System Information Block).
  • SIB system information block
  • the third information block is user equipment-specific (UE-specific).
  • the third information block is configured per carrier, or the third information block is configured per BWP (bandwidth part, bandwidth part), or the third information block is per frequency band. (band) or configured per frequency range (FR, Frequency Range).
  • the third information block includes all or part of the fields in DCI (Downlink Control Information) format.
  • DCI Downlink Control Information
  • the third information block includes all or part of the IE (Information Element, information unit) "PUSCH-Config"; or the third information block includes all or part of the IE “BWP-UplinkDedicated” ; Or the third information block includes all or part of IE “BWP-Uplink”; or the third information block includes all or part of IE “ServingCellConfig”; or the third information block includes IE "UplinkConfig” "all or part of it.
  • IE Information Element, information unit
  • the third information block includes all or part of the IE "ConfiguredGrantConfig”.
  • the third information block includes all or part of the IE "PUSCH-ConfigCommon”.
  • the third information block includes a higher layer parameter "transformPrecoder".
  • the third information block includes all or part of the PUSCH configuration information.
  • the third information block is earlier than the first information block.
  • the third information block is later than the first information block.
  • the third information block and the first information block are transmitted through the same physical layer channel.
  • the third information block and the first information block are transmitted through two different physical layer channels respectively.
  • the third information block is earlier than the second information block.
  • the third information block is later than the second information block.
  • the third information block and the second information block are transmitted through the same physical layer channel.
  • the third information block and the second information block are transmitted through two different physical layer channels respectively.
  • the third information block and the first information block respectively belong to two different IEs.
  • the third information block and the second information block respectively belong to two different IEs.
  • the third information block and the second information block belong to the same IE.
  • Embodiment 7 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 7 .
  • the second node device N700 is the maintenance base station of the serving cell of the first node device U750, and the parts in the dotted box are optional. It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • the first information block is sent in step S701
  • the second information block is received in step S702
  • the third information block is sent in step S703
  • the first PDCCH is sent in step S704
  • the first PDCCH is sent in step S705.
  • the first information block is received in step S751
  • the second information block is sent in step S752
  • the third information block is received in step S753
  • the first PDCCH is received in step S754
  • the first PDCCH is received in step S755.
  • Send first PUSCH Send first PUSCH.
  • Embodiment 8 illustrates a schematic diagram of the second information block according to an embodiment of the present application, as shown in FIG. 8 .
  • the rectangular frame represents the second information block when the second information block is configured.
  • the second information block in this application is a field
  • the value of the second information block is an enumeration value
  • whether the target waveform and the second information block in this application are Configuration related.
  • the second information block is a field in a higher-layer IE
  • the value of the second information block is a value of a field in the higher-layer IE
  • the second information block is a field in RRC layer signaling
  • the value of the second information block is the value of a field in RRC layer signaling
  • the value of the second information block is the value of a domain.
  • the value of the second information block is the value of a higher-level parameter represented by the domain.
  • the second information block is used to determine the value of a higher layer parameter.
  • the two expressions "the second information block is a field" and “the second information block is a higher-level parameter” are equivalent or can be used interchangeably.
  • the two expressions "the second information block is a field" and “the second information block is a parameter in higher layer signaling" are equivalent or can be used interchangeably. .
  • the two expressions "the second information block is a field” and “the second information block is a parameter in RRC layer signaling" are equivalent or can be used interchangeably. .
  • the second information block is a field used to enable dynamic waveform conversion.
  • the second information block is a domain used to enable dynamic switching transform precoding (or transform precoder).
  • the second information block is a domain used to enable the DCI format adopted by the first PDCCH to include the second domain.
  • the second information block is a field used to enable or disable dynamic waveform conversion.
  • the second information block is used to enable or disable dynamic switch transformation precoding (or transformation precoding). encoder) domain.
  • the second information block is a domain in which the DCI format used to enable or disable the first PDCCH includes the second domain.
  • the second information block is a domain used to indicate that dynamic waveform conversion is supported.
  • the second information block is used to indicate a domain that supports dynamic switch transform precoding (or transform precoder).
  • the second information block is used to indicate that the DCI format used to support the first PDCCH includes a domain of the second domain.
  • the second information block is a "dynamicwaveformswitching" field.
  • the second information block is an "enablewaveformswitching" field.
  • the second information block is a "dynamictransformprecoding" field, or the second information block is a “dynamictransformprecodingonoff” field, or the second information block is an "enabledynamictransformprecoding” field, or the second information block Is the "enabledynamictransformprecodingonoff” field.
  • the value of the second information block is "enabled".
  • the value of the second information block is “enabled” or “disabled”.
  • the value of the second information block is "supported".
  • the value of the second information block is “supported” or “notsupported”.
  • the value of the second information block is a fixed enumerated value (enumerated).
  • the candidate value of the second information block only includes a fixed enumeration value.
  • the candidate values of the second information block include two enumeration values.
  • the value of the second information block can only be equal to a fixed enumeration value.
  • the value of the second information block may be equal to any one of the two enumeration values.
  • the technical feature "the target waveform is related to whether the second information block is configured” includes the following meaning: whether the second information block is configured is used to determine the target waveform.
  • the technical feature "the target waveform is related to whether the second information block is configured” includes the following meaning: when the second information block is configured, the target waveform is the first PDCCH. The waveform indicated by the second field included in the adopted DCI format; otherwise, the target waveform is the waveform indicated by the first information block.
  • the technical feature "the target waveform is related to whether the second information block is configured” includes the following meaning: when the second information block is configured, the target waveform is the first PDCCH.
  • the technical feature "the target waveform is related to whether the second information block is configured” includes the following meaning: when the second information block is configured and the value of the second information block is equal to a value , the target waveform is the waveform indicated by the second domain included in the DCI format used by the first PDCCH; when the second information block is configured and the value of the second information block is equal to another When the value is configured, the target waveform is the waveform indicated by the first information block; when the second information block is not configured, the target waveform is the waveform indicated by the first information block.
  • the technical feature "the target waveform is related to whether the second information block is configured” includes the following meaning: when the second information block is configured and the value of the second information block is equal to a value , the target waveform is the waveform indicated by the second domain included in the DCI format used by the first PDCCH; when the second information block is configured and the value of the second information block is equal to another value and the higher-layer parameter "transformPrecoder” in IE “UplinkConfig” is configured (or provided), the target waveform is the waveform indicated by the higher-layer parameter "transformPrecoder” in IE “UplinkConfig”; when the second information When the block is not configured and the higher layer parameter "transformPrecoder” in IE “UplinkConfig” is configured (or provided), the target waveform is the waveform indicated by the higher layer parameter "transformPrecoder” in IE “UplinkConfig”; otherwise the The target waveform is the waveform indicated by the first information block.
  • the technical feature "the target waveform is related to whether the second information block is configured” includes the following meaning: when the second information block is configured and the value of the second information block is equal to a value , the target waveform is the waveform indicated by the second domain included in the DCI format used by the first PDCCH; when the second information block is configured and the value of the second information block is equal to another value and the higher-layer parameter "transformPrecoder" in IE “UplinkConfig” is configured (or provided), the target waveform is the waveform indicated by the higher-layer parameter "transformPrecoder” in IE “UplinkConfig”; otherwise, the target waveform is The waveform indicated by the first information block.
  • the technical feature "the target waveform is related to whether the second information block is configured” includes the following meaning: when the second information block is configured and the value of the second information block is equal to a value , the target waveform is the waveform indicated by the second domain included in the DCI format used by the first PDCCH; when the second information block is configured and the value of the second information block is equal to another value, the target waveform is the waveform indicated by the first information block; when the second information block is not configured and the higher layer parameter "transformPrecoder” in IE “UplinkConfig” is configured (or provided) , the target waveform is the waveform indicated by the higher layer parameter "transformPrecoder” in IE “UplinkConfig”; when the second information block is not configured and the higher layer parameter "transformPrecoder” in IE “UplinkConfig” is not configured either (or provided), the target waveform is the waveform indicated by the first information block.
  • Embodiment 9 illustrates a schematic diagram of a target waveform according to an embodiment of the present application, as shown in FIG. 9 .
  • each rectangle represents an operation, and each diamond represents a judgment.
  • the second information block is configured, and in step 903 it is judged whether the first PDCCH includes the first PDCCH.
  • Two fields In step 904, the second field indicates the target waveform.
  • the target waveform is the second reference waveform.
  • the target waveform is the first reference waveform. It should be noted that the sequence number of the steps is only used as an example. The step identifiers in do not limit the execution order of each step.
  • the first information block in this application is used to indicate a first reference waveform
  • the third information block in this application is used to indicate a second reference waveform.
  • the first reference waveform is one of DFT-s-OFDM or CP-OFDM
  • the second reference waveform is one of DFT-s-OFDM or CP-OFDM; when the second information block in this application is not configured,
  • the target waveform in this application is the second reference waveform; when the second information block is configured and the DCI format used by the first PDCCH in this application does not include the second domain, the target waveform is the first reference waveform.
  • the technical feature "the first information block is used to indicate the first reference waveform” includes the following meaning: the first information block is used by the second node device in this application to indicate the first reference waveform. A reference waveform.
  • the technical feature "the first information block is used to indicate the first reference waveform” includes the following meaning: all or part of the first information block is used to indicate explicitly or implicitly the first reference waveform.
  • the technical feature "the first information block is used to indicate the first reference waveform” includes the following meaning: the first information block is used to indicate the first reference waveform from DFT-s-OFDM or CP-OFDM. The first reference waveform.
  • the technical feature "the first information block is used to indicate the first reference waveform” includes the following meaning: the first information block is used to indicate whether the first reference waveform is DFT-s-OFDM or CP-OFDM.
  • the technical feature "the first information block is used to indicate the first reference waveform” includes the following meaning: the first information block is used to indicate whether transform precoding (or transform precoder) is turned on ( or enabled), the first reference waveform is a waveform corresponding to whether the transform precoding (or transform precoder) indicated by the first information block is turned on or off.
  • the technical feature "the third information block is used to indicate the second reference waveform” includes the following meaning: the third information block is used by the second node device in this application to indicate the second reference waveform. Two reference waveforms.
  • the technical feature "the third information block is used to indicate the second reference waveform” includes the following meaning: all or part of the third information block is used to indicate explicitly or implicitly the second reference waveform.
  • the technical feature "the third information block is used to indicate the second reference waveform” includes the following meaning: the third information block is used to indicate the second reference waveform from DFT-s-OFDM or CP-OFDM.
  • the second reference waveform includes the following meaning: the third information block is used to indicate the second reference waveform from DFT-s-OFDM or CP-OFDM. The second reference waveform.
  • the technical feature "the first information block is used to indicate the first reference waveform” includes the following meaning: the third information block is used to indicate whether the second reference waveform is DFT-s-OFDM or CP-OFDM.
  • the technical feature "the third information block is used to indicate the second reference waveform” includes the following meaning: the third information block is used to indicate whether transform precoding (or transform precoder) is turned on ( or enabled), the second reference waveform is a waveform corresponding to whether the transform precoding (or transform precoder) indicated by the third information block is turned on or off.
  • candidates for the first reference waveform include DFT-s-OFDM and CP-OFDM.
  • the first reference waveform may be DFT-s-OFDM or CP-OFDM.
  • candidates for the second reference waveform include DFT-s-OFDM and CP-OFDM.
  • the second reference waveform may be DFT-s-OFDM or CP-OFDM.
  • the first reference waveform and the second reference waveform may be the same or different.
  • the first reference waveform and the second reference waveform are independently indicated by the first information block and the third information block respectively.
  • the second information block is configured and the DCI format adopted by the first PDCCH does not include the second domain
  • the second information block is configured and the second information block "Indicates that the DCI format used by the first PDCCH does not include the second domain” are equivalent or can be used interchangeably.
  • the second information block is configured and the DCI format adopted by the first PDCCH does not include the second domain
  • the second information block is configured and the second information block "Indicate to turn off (or disable) dynamic waveform conversion” are equivalent or can be used interchangeably.
  • the second information block is configured and the DCI format adopted by the first PDCCH does not include the second domain
  • the second information block is configured and the second information block Instructs to turn off (or disable) dynamic switch transformation precoding (or transformation precoder)" are equivalent or can be used interchangeably.
  • the second information block is configured and the DCI format adopted by the first PDCCH does not include the second domain
  • the second information block is configured and the second information block "Indicates that dynamic switching transform precoding (or transform precoder) is not supported” are equivalent or can be used interchangeably.
  • the second information block is configured and the DCI format adopted by the first PDCCH does not include the second domain
  • the second information block is configured and the second information block "The value of a field in is equal to a predefined value" is equivalent or can be used interchangeably.
  • the DCI format used by the first PDCCH when the second information block is configured and the second information block indicates that the DCI format used by the first PDCCH includes the second domain, the DCI format used by the first PDCCH The included second field indicates the target waveform.
  • Embodiment 10 illustrates a schematic diagram of the transmit power of the first PUSCH according to an embodiment of the present application, as shown in Figure 10.
  • the vertical axis represents power, and in each case the two rectangles represent the first upper limit value and the first power value respectively; in case A, the first upper limit value is greater than the first power value; in case B, the first upper limit value is less than the first power value.
  • the transmit power of the first PUSCH in this application is equal to the smaller value of the first upper limit value or the first power value, and the first parameter value is used to determine the The first upper limit value and the second parameter value are used to determine the first power value; the first parameter value is related to the target waveform in this application, and the second parameter value is related to the target waveform. .
  • the unit of the transmission power of the first PUSCH is dBm.
  • the unit of the transmission power of the first PUSCH is watts or milliwatts.
  • the transmission power of the first PUSCH is the transmission power of the PUSCH transmission opportunity (transmission occasion) to which the first PUSCH belongs in the time domain and the uplink BWP to which the first PUSCH belongs in the frequency domain ( transmission power).
  • the first upper limit value is the value of PCMAX, f, c (i) corresponding to the first PUSCH.
  • the first upper limit value is the configured maximum output power of the sender of the first PUSCH.
  • the first upper limit value is the PUSCH transmission opportunity in the carrier occupied by the sender of the first PUSCH in the serving cell to which the first PUSCH belongs and the PUSCH transmission opportunity in the time domain to which the first PUSCH belongs.
  • the first upper limit value is a power value related to the radio frequency characteristics of the first PUSCH by the sender of the first PUSCH.
  • the first power value is the transmission power value of the first PUSCH when the transmission power does not exceed the first upper limit value.
  • the first power value is a transmit power value calculated through open loop power control and closed loop power control when transmitting the first PUSCH.
  • the first power value is a transmission power value related to a path loss (PL, pathloss) of the sender of the first PUSCH.
  • PL path loss
  • the first power value is and includes a power value of closed-loop power control used to calculate the transmit power of the first PUSCH.
  • the first power value is a power value related to a BPRE (bit per resource element, bits per resource element) value.
  • the technical feature "the transmission power of the first PUSCH is equal to the first upper limit value or the first power value, whichever is smaller” includes the following meaning: when the first upper limit value When it is greater than the first power value, the transmit power of the first PUSCH is equal to the first power value; when the first upper limit value is less than the first power value, the transmit power of the first PUSCH The transmit power is equal to the first upper limit value; when the first upper limit value is equal to the first power value, the transmit power of the first PUSCH is equal to the first upper limit value or the first power value.
  • the unit of the first upper limit value is dBm
  • the unit of the first power value is dBm
  • the unit of the first upper limit value is watts or milliwatts
  • the unit of the first power value is watts or milliwatts
  • the unit of the first upper limit value, the unit of the first power value, and the transmit power of the first PUSCH are all the same.
  • the first parameter value is the value of MPR (maximum power reduction).
  • the first parameter value is the value of A-MPR (additional maximum power reduction).
  • the first parameter value is the value of P-MPR (power management maximum power reduction).
  • the first parameter value is a value of a parameter other than MPR, A-MPR or P-MPR.
  • the technical feature "the first parameter value is used to determine the first upper limit value” includes the following meaning: the first parameter value is used by the first node device in this application to determine the The first upper limit value.
  • the technical feature "the first parameter value is used to determine the first upper limit value” includes the following meaning: the first parameter value is used to determine the numerical interval to which the first upper limit value belongs ( or numerical range).
  • the technical feature "the first parameter value is used to determine the first upper limit value” includes the following meaning: the first parameter value is used to determine the numerical interval to which the first upper limit value belongs ( or the lower boundary of a numerical range).
  • the technical feature "the first parameter value is used to determine the first upper limit value” includes the following meaning: the first parameter value is used to determine the lower bound value of the first upper limit value.
  • the technical feature "the first parameter value is used to determine the first upper limit value” includes the following meaning: the first parameter value is used to determine the numerical interval to which the first upper limit value belongs ( or numerical range), the sender of the first PUSCH is allowed to set the first upper limit value within the numerical interval (or numerical range) to which the first upper limit value belongs.
  • the second parameter value is the value of P O_PUSCH, b, f, c (j) corresponding to the first PUSCH.
  • the second parameter value is the value of ⁇ TF, b, f, c (i) corresponding to the first PUSCH.
  • the second parameter value is the value of f b, f, c (i, l) corresponding to the first PUSCH.
  • the second parameter value is the value corresponding to the first PUSCH. value.
  • the second parameter value is P O_PUSCH,b,f,c (j) corresponding to the first PUSCH and ⁇ TF,b,f,c (i) corresponding to the first PUSCH. ), f b, f, c (i, l) corresponding to the first PUSCH or f b, f, c (i, l) corresponding to the first PUSCH.
  • the technical feature "the second parameter value is used to determine the first power value” includes the following meaning: the second parameter value is used by the first node device in this application to determine the first power value. A power value.
  • the technical feature "the second parameter value is used to determine the first power value” includes the following meaning: the second parameter value is used to calculate the first power value.
  • the technical feature "the second parameter value is used to determine the first power value” includes the following meaning: the first power value and the second parameter value are linearly related.
  • the technical feature "the second parameter value is used to determine the first power value” includes the following meaning: the first power value and the logarithmic value of the second parameter value are linearly related.
  • the technical feature "the second parameter value is used to determine the first power value” includes the following meaning: the second parameter value is used to determine the first power value according to a mapping relationship or a corresponding relationship.
  • the technical feature "the second parameter value is used to determine the first power value” includes the following meaning: the first power value is equal to Among them, P O_PUSCH,b,f,c (j), The value of one of the four ⁇ TF, b, f, c (i) or f b, f, c (i, l) is equal to the second parameter value.
  • the technical feature "the second parameter value is used to determine the first power value” includes the following meaning: the first power value is equal to in, The value is equal to the second parameter value.
  • the technical feature "the first parameter value is related to the target waveform” includes the following meaning: the target waveform is used to determine the first parameter value.
  • the technical feature "the first parameter value is related to the target waveform” includes the following meaning: the target waveform is used to determine the first parameter value according to a predefined mapping relationship or correspondence relationship.
  • the technical feature "the first parameter value is related to the target waveform” includes the following meaning: the target waveform is used to determine the first parameter value according to a predefined table relationship.
  • the technical feature "the first parameter value is related to the target waveform” includes the following meaning: the target waveform is used to determine the first parameter value according to a predefined functional relationship.
  • the technical feature "the first parameter value is related to the target waveform” includes the following meaning: the target waveform and the MCS (modulation and coding scheme) used by the first PUSCH together Predefined table relationships are used to determine the first parameter value.
  • the technical feature "the first parameter value is related to the target waveform” includes the following meaning: the target waveform, the MCS used by the first PUSCH, and the frequency domain occupied by the first PUSCH.
  • the locations of resources are used together according to predefined table relationships to determine the first parameter value.
  • the technical feature "the first parameter value is related to the target waveform” includes the following meaning: the target waveform and ⁇ the power level of the sender of the first PUSCH, the carrier of the first PUSCH frequency, the receiving device type of the first PUSCH, the number of frequency domain resources occupied by the first PUSCH, the subcarrier spacing of the subcarriers occupied by the first PUSCH, the The frequency domain position of the frequency domain resource occupied by the first PUSCH and at least one of the MCS used by the first PUSCH are used to determine the first parameter value.
  • the technical feature "the second parameter value is related to the target waveform” includes the following meaning: the target waveform is used to determine the second parameter value.
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the target waveform is used to determine the second parameter according to a predefined mapping relationship or corresponding relationship or conditional relationship. value.
  • the technical feature "the second parameter value is related to the target waveform” includes the following meaning: different waveforms correspond to different second parameter values according to a predefined mapping relationship or corresponding relationship or conditional relationship. candidate value, the second parameter value is the candidate value corresponding to the target waveform.
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the target waveform is used to determine the second parameter value according to a predefined table relationship.
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the second parameter value is P O_PUSCH,b,f,c (j ), the value of parameter j in P O_PUSCH, b, f, c (j) corresponding to the first PUSCH is related to the target waveform.
  • the technical feature "the second parameter value is related to the target waveform” includes the following meaning: the second parameter value is f b, f, c (i, l) corresponding to the first PUSCH ), the value of parameter l in f b, f, c (i, l) corresponding to the first PUSCH is related to the target waveform.
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the second parameter value is ⁇ TF,b,f,c (i ), the ⁇ TF, b, f, c (i) corresponding to the first PUSCH satisfies:
  • K s is related to the target waveform, Equal to a predefined or configured beta offset value.
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the second parameter value is ⁇ TF,b,f,c (i ), the ⁇ TF, b, f, c (i) corresponding to the first PUSCH satisfies:
  • K s is the configured parameter
  • K w is related to the target waveform
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the second parameter value is ⁇ TF,b,f,c (i ), the ⁇ TF, b, f, c (i) corresponding to the first PUSCH satisfies:
  • K s is the configured parameter
  • K w is related to the target waveform
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the second parameter value is ⁇ TF,b,f,c (i ), the ⁇ TF, b, f, c (i) corresponding to the first PUSCH satisfies:
  • K s is the configured parameter
  • K w is related to the target waveform
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the second parameter value is ⁇ TF,b,f,c (i ), the ⁇ TF, b, f, c (i) corresponding to the first PUSCH satisfies:
  • K s is the configured parameter
  • K w is related to the target waveform
  • the technical feature "the second parameter value is related to the target waveform" includes the following meaning: the second parameter value is the value of ⁇ TF, b, f, c (i) corresponding to the first PUSCH, and the ⁇ TF, b, f, c (i) corresponding to the first PUSCH satisfies:
  • K s is the configured parameter
  • K w is related to the target waveform
  • the technical feature "the second parameter value is related to the target waveform” includes the following meaning: the target waveform is used to determine a sub-parameter according to the corresponding relationship or conditional relationship, and the sub-parameter is used to Calculate the second parameter value.
  • Embodiment 11 illustrates a schematic diagram of the size of the first domain according to an embodiment of the present application, as shown in FIG. 11 .
  • the light-filled rectangle represents the size of the first domain corresponding to CP-OFDM
  • the dark-filled rectangle represents the size of the first domain corresponding to DFT-s-OFDM.
  • the size of the first domain included in the DCI format used by the first PDCCH in this application is equal to the size of the first domain corresponding to DFT-s-OFDM or CP-OFDM.
  • the size corresponding to the first domain is the larger size between these two sizes.
  • the size of the first field included in the DCI format used by the first PDCCH is the number of bits included in the first field in the DCI format used by the first PDCCH.
  • the size of the first field included in the DCI format used by the first PDCCH is the number of information bits included in the first field in the DCI format used by the first PDCCH. .
  • the size of the first field included in the DCI format used by the first PDCCH is the bit width (bitwidth) of the first field in the DCI format used by the first PDCCH.
  • the size of the first field included in the DCI format used by the first PDCCH is the size of the non-stuffing bits included in the first field in the DCI format used by the first PDCCH. quantity.
  • the size of the first field included in the DCI format used by the first PDCCH is the sum of non-stuffing bits included in the first field in the DCI format used by the first PDCCH. The total number of padding bits.
  • the size of the first domain included in the DCI format adopted by the first PDCCH may be equal to 0.
  • the size of the first domain included in the DCI format adopted by the first PDCCH is greater than 0.
  • DFT-s-OFDM only corresponds to one candidate size of the first domain.
  • DFT-s-OFDM corresponds to multiple candidate sizes of the first domain.
  • CP-OFDM only corresponds to one candidate size of the first domain.
  • CP-OFDM corresponds to multiple candidate sizes of the first domain.
  • the size of the first domain corresponding to DFT-s-OFDM is a candidate size for the first domain of DFT-s-OFDM.
  • the size of the first domain corresponding to DFT-s-OFDM is a candidate size of the first domain when scheduling PUSCH using DFT-s-OFDM.
  • the size of the first domain corresponding to DFT-s-OFDM is the size included in the DCI format used by the first PDCCH when the first PUSCH uses DFT-s-OFDM.
  • a candidate size for the first domain is the size included in the DCI format used by the first PDCCH when the first PUSCH uses DFT-s-OFDM.
  • the size of the first domain corresponding to DFT-s-OFDM is when the first PUSCH adopts DFT-s-OFDM.
  • the first domain corresponding to DFT-s-OFDM The size of the domain is the size of the first domain included in the DCI format adopted by the first PDCCH when the first PUSCH adopts DFT-s-OFDM.
  • DFT-s-OFDM only corresponds to one candidate size of the first domain.
  • the size of the first domain corresponding to DFT-s-OFDM is the size of the first domain when the PUSCH of DFT-s-OFDM is used for scheduling under a given parameter value set
  • the given parameter value set includes a transmission scheme (codebook-based or non-codebook-based transmission), full power mode, maximum rank, codebook At least one of the parameter values of codebook subset, demodulation reference signal type, demodulation reference signal maximum length, modulation and coding method, and SRS resource indication value.
  • the size of the first domain corresponding to DFT-s-OFDM is equal to the first domain included in the DCI format used by the first PDCCH when assuming that the target waveform is DFT-s-OFDM.
  • the size of a domain is equal to the first domain included in the DCI format used by the first PDCCH when assuming that the target waveform is DFT-s-OFDM.
  • the size of the first domain corresponding to DFT-s-OFDM is equal to the size of the hypothetical transform precoding (or transform precoding).
  • the size of the first domain corresponding to CP-OFDM is a possible size of the first domain for CP-OFDM.
  • the size of the first domain corresponding to CP-OFDM is a possible size of the first domain when scheduling PUSCH using CP-OFDM.
  • the size of the first domain corresponding to CP-OFDM is the size of the first domain included in the DCI format used by the first PDCCH when the first PUSCH uses CP-OFDM.
  • a candidate size is the size of the first domain included in the DCI format used by the first PDCCH when the first PUSCH uses CP-OFDM.
  • the size of the first domain corresponding to CP-OFDM is when the first PUSCH adopts CP-OFDM.
  • the size of the first domain corresponding to CP-OFDM is the size of the first domain included in the DCI format adopted by the first PDCCH when the first PUSCH adopts CP-OFDM.
  • CP-OFDM only corresponds to one candidate size of the first domain.
  • the size of the first domain corresponding to CP-OFDM is the size of the first domain when the PUSCH of CP-OFDM is used for scheduling under a given set of parameter values.
  • the given The parameter value set includes the transmission scheme (codebook-based or non-codebook-based transmission), full power mode, max rank, codebook subset subset), demodulation reference signal type, demodulation reference signal maximum length, modulation and coding method, and SRS resource indication value.
  • the size of the first domain corresponding to CP-OFDM is equal to the size of the first domain included in the DCI format used by the first PDCCH when the target waveform is CP-OFDM.
  • the size of the first domain corresponding to CP-OFDM is equal to the size included in the DCI format used for the first PDCCH assuming that transform precoding (or transform precoder) is turned off.
  • the size of the first field is equal to the size included in the DCI format used for the first PDCCH assuming that transform precoding (or transform precoder) is turned off.
  • the size of the first domain when transform precoding (or transform precoder) is turned off is always not smaller than the size of the first domain when transform precoding (or transform precoder) is turned on. The size of the domain.
  • the size of the first domain when transform precoding (or transform precoder) is turned off is always no larger than the size of the first domain when transform precoding (or transform precoder) is turned on. The size of the domain.
  • the size of the first domain corresponding to DFT-s-OFDM is always not smaller than the size of the first domain corresponding to CP-OFDM.
  • the size of the first domain corresponding to DFT-s-OFDM is always no larger than the size of the first domain corresponding to CP-OFDM.
  • the size of the first domain corresponding to DFT-s-OFDM and “the size of the first domain corresponding to when transform precoding (or transform precoder) is turned on (enabled) "The two are equivalent or can be used interchangeably.
  • the size of the first domain corresponding to CP-OFDM and “the size of the first domain corresponding to when transform precoding (or transform precoder) is turned off” are equivalent or can be used interchangeably.
  • the technical feature is “The size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or the size of the first domain corresponding to CP-OFDM.
  • the larger size of the first domain between these two sizes includes the following meaning: when the size of the first domain corresponding to DFT-s-OFDM is larger than the size of the first domain corresponding to CP-OFDM When the size of a domain is equal to the size of the first domain included in the DCI format used by the first PDCCH, it is equal to the size of the first domain corresponding to DFT-s-OFDM; when the size of the first domain corresponding to DFT-s-OFDM is When the size of the corresponding first domain is smaller than the size of the first domain corresponding to CP-OFDM, the size of the first domain included in the DCI format used by the first PDCCH is equal to that of CP-OFDM.
  • the corresponding size of the first domain when the size of the first domain corresponding to DFT-s-OFDM is equal to the size of the first domain corresponding to CP-OFDM, the size used by the first PDCCH
  • the size of the first domain included in the DCI format is equal to the equal size of the first domain corresponding to DFT-s-OFDM and CP-OFDM.
  • the technical feature is “The size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or the size of the first domain corresponding to CP-OFDM. "The larger size of the first domain between these two sizes” includes the following meaning: the size of the first domain included in the DCI format adopted by the first PDCCH is the size of the first PDCCH The first domain included in the adopted DCI format is the largest size of the first domain that can be obtained in the case of DFT-s-OFDM or CP-OFDM.
  • the technical feature is “The size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or the size of the first domain corresponding to CP-OFDM.
  • the size of the first domain "the larger size between these two sizes” includes the following meaning: the size of the first domain corresponding to DFT-s-OFDM is one of X2 candidate sizes, CP- OFDM institute The corresponding size of the first domain is one of the X2 candidate sizes, and the X2 is not less than 2.
  • the X2 candidate sizes respectively correspond to X2 parameter value combinations one by one, and the X2 parameter value combinations Any one of the parameter value combinations includes at least one parameter value, and at least one of the X2 parameter value combinations includes a parameter value of a transform precoding (or transform precoder) switch; in the When all parameter values other than the transform precoding (or transform precoder) switch parameter values included in the value combination are given, the X2 parameter value combinations include transform precoding (or transform precoding The parameter value combination of the switch) is the maximum value among all candidate sizes corresponding to the X2 candidate sizes.
  • the technical feature is “The size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or the size of the first domain corresponding to CP-OFDM.
  • the "larger size of the first domain size between these two sizes” includes the following meaning: the size of the first domain corresponding to DFT-s-OFDM is always not larger than the size of the first domain corresponding to CP-OFDM.
  • the size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to CP-OFDM.
  • the technical feature is “The size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or the size of the first domain corresponding to CP-OFDM.
  • the "larger size of the first domain size between these two sizes” includes the following meaning: the size of the first domain corresponding to DFT-s-OFDM is always not smaller than the size of the first domain corresponding to CP-OFDM.
  • the size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM.
  • the first domain with a smaller size is Add "0" bits or "1" bits until the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are equal after adding bits. .
  • the size of the first domain that is smaller in comparison is Add at least 1 most significant bit (MSB, Most Significant bit) equal to "0" in a field until the size of the first field corresponding to DFT-s-OFDM and the size of the first field corresponding to CP-OFDM
  • MSB most significant bit
  • the size of the first domain that is smaller in comparison is Add at least 1 most significant bit (MSB, Most Significant bit) equal to "1" in a field until the size of the first field corresponding to DFT-s-OFDM and the size of the first field corresponding to CP-OFDM
  • MSB most significant bit
  • the size of the first domain that is smaller in comparison is Add at least 1 least significant bit (LSB, Least Significant bit) equal to "0" to a field until the size of the first field corresponding to DFT-s-OFDM and the size of the first field corresponding to CP-OFDM
  • LSB least significant bit
  • the size of the first domain that is smaller in comparison is Add at least 1 least significant bit (LSB, Least Significant bit) equal to "1" in a domain until the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM
  • LSB least significant bit
  • Embodiment 12 illustrates a schematic diagram of added bits according to an embodiment of the present application, as shown in FIG. 12 .
  • the direction to the left is the MSB (most significant bit) of the first field, and to the right is the direction of the LSB (least significant bit) of the first field; in case In case A, the size of the first domain corresponding to CP-OFDM is smaller than the size of the first domain corresponding to DFT-s-OFDM; in case B, the size of the first domain corresponding to CP-OFDM is larger than that of DFT-s- The size of the first domain corresponding to OFDM.
  • the size of the first domain in this application corresponding to DFT-s-OFDM is not equal to the size of the first domain corresponding to CP-OFDM; Add at least 1 most significant bit equal to "0" to the first domain with a smaller size compared to the first domain corresponding to CP-OFDM, until The size of the first domain corresponding to DFT-s-OFDM is equal to the size of the first domain corresponding to CP-OFDM.
  • the technical feature is “the first domain having a smaller size compared to the first domain corresponding to DFT-s-OFDM and the first domain corresponding to CP-OFDM.
  • “Add at least 1 most significant bit equal to "0”” includes the following meaning: when the size of the first domain corresponding to DFT-s-OFDM is smaller than the size of the first domain corresponding to CP-OFDM , add at least 1 most significant bit equal to "0" in the first domain corresponding to DFT-s-OFDM; when the size of the first domain corresponding to DFT-s-OFDM is larger than CP-OFDM When the size of the corresponding first field is equal to the size of the first field corresponding to CP-OFDM, at least one most significant bit equal to “0” is added to the first field corresponding to CP-OFDM.
  • the technical feature is “the first domain having a smaller size compared to the first domain corresponding to DFT-s-OFDM and the first domain corresponding to CP-OFDM.
  • the technical feature is “the first domain having a smaller size compared to the first domain corresponding to DFT-s-OFDM and the first domain corresponding to CP-OFDM.
  • “Add at least 1 most significant bit equal to “0”” includes the following meaning: add M1 bits equal to "0" to the first domain corresponding to DFT-s-OFDM and to the first domain corresponding to CP-OFDM A new first domain is obtained from the first domain with a smaller size compared to the first domain, and the added M1 bits equal to "0" occupy the new first domain.
  • the highest M1 bits, M1 is a positive integer.
  • the technical feature "until the size of the first domain corresponding to DFT-s-OFDM is equal to the size of the first domain corresponding to CP-OFDM” includes the following meaning: until DFT-s -The size of the first domain corresponding to OFDM and the size of the first domain corresponding to CP-OFDM are equal after adding bits to one of the first domains.
  • the technical feature "until the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are equal” includes the following meaning: in DFT-s -The most significant bit equal to "0" added to the first field that is smaller than the size of the first field corresponding to OFDM and the size of the first field corresponding to CP-OFDM The number is equal to the absolute value of the difference between the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM.
  • the technical feature "until the size of the first domain corresponding to DFT-s-OFDM is equal to the size of the first domain corresponding to CP-OFDM” includes the following meaning: DFT-s- The size of the first field corresponding to OFDM and the size of the first field corresponding to CP-OFDM are smaller than the size of the first field after at least one most significant bit equal to "0". After the addition of, the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are equal to each other.
  • the technical feature "until the size of the first domain corresponding to DFT-s-OFDM is equal to the size of the first domain corresponding to CP-OFDM” includes the following meaning: when DFT-s -When the size of the first domain corresponding to OFDM is larger than the size of the first domain corresponding to CP-OFDM, after adding at least one most significant bit equal to "0", the size of the CP-OFDM The size of the corresponding new first domain is equal to the size of the first domain corresponding to DFT-s-OFDM; when the size of the first domain corresponding to DFT-s-OFDM is smaller than that of CP-OFDM When corresponding to the size of the first domain, the new size of the first domain and CP-OFDM corresponding to DFT-s-OFDM after the addition of at least 1 most significant bit equal to "0" The corresponding sizes of the first domains are equal.
  • Embodiment 13 illustrates a schematic diagram of the first time length according to an embodiment of the present application, as shown in FIG. 13 .
  • the horizontal axis represents that the rectangle filled with diagonal lines represents the reference time domain symbol, the two unfilled rectangles represent the first PDCCH and the first PUSCH respectively, and the cut-off time of the first PDCCH to the start of the reference time domain symbol
  • the length of the time interval between the starting moments is not less than the first length of time.
  • the DCI format used by the first PDCCH in this application is used to schedule the first PUSCH in this application; the earliest time domain symbol occupied by the first PUSCH is no earlier than Reference time domain symbol, the reference time domain symbol is the next uplink symbol whose starting time is later than the cutoff time of the first PDCCH by a first time length; the first time length and the target in this application related to the waveform.
  • the technical feature "the DCI format adopted by the first PDCCH is used to schedule the first PUSCH” includes the following meaning: the DCI format adopted by the first PDCCH is used to schedule the first PUSCH explicitly or implicitly.
  • formula indicates the time domain resources occupied by the first PUSCH, the frequency domain resources occupied by the first PUSCH, the MCS adopted by the first PUSCH, and the redundancy version (RV, redundancy) of the first PUSCH. version) and the HARQ process to which the first PUSCH belongs.
  • the technical feature "the DCI format adopted by the first PDCCH is used to schedule the first PUSCH” includes the following meaning: the DCI format adopted by the first PDCCH is used to dynamically schedule the first PUSCH. A push.
  • the technical feature "the DCI format adopted by the first PDCCH is used to schedule the first PUSCH” includes the following meaning: the DCI format adopted by the first PDCCH is used to configure grant (configured grant) ) schedules the first PUSCH.
  • the technical feature "the DCI format adopted by the first PDCCH is used for scheduling the first PUSCH” includes the following meaning: the DCI format adopted by the first PDCCH is used for semi-static (semi- persistent) to schedule the first PUSCH.
  • the first PUSCH includes a demodulation reference signal (DMRS, Demodulation Reference).
  • DMRS demodulation reference signal
  • the first PUSCH does not include a demodulation reference signal (DMRS, Demodulation Reference).
  • DMRS demodulation reference signal
  • the earliest time domain symbol occupied by the first PUSCH is the earliest time domain symbol included in the time domain by the allocation of the first PUSCH.
  • the earliest time domain symbol occupied by the first PUSCH is the earliest time domain symbol occupied by the first PUSCH including DMRS.
  • the earliest time domain symbol occupied by the first PUSCH is the earliest time domain symbol occupied by the first PUSCH (excluding DMRS) and the earliest time domain symbol occupied by the DMRS of the first PUSCH.
  • the earlier time domain symbol between time domain symbols.
  • the earliest time domain symbol occupied by the first PUSCH is the starting time occupied by the first PUSCH.
  • the earliest time domain symbol occupied by the first PUSCH is the earliest time domain symbol occupied by the first PUSCH indicated by the DCI format adopted by the first PDCCH.
  • the earliest time domain symbol occupied by the first PUSCH is the time slot offset value and time domain resource assignment (TDRA, time domain resource assignment) indicated by the DCI format used by the first PDCCH.
  • TDRA time domain resource assignment
  • the earliest time domain symbol in the defined time domain resource is the time slot offset value and time domain resource assignment (TDRA, time domain resource assignment) indicated by the DCI format used by the first PDCCH.
  • the earliest time domain symbol occupied by the first PUSCH is the earliest time domain symbol occupied by the first PUSCH that includes a timing advance (TA, timing advance) effect.
  • TA timing advance
  • the subcarrier spacing corresponding to the earliest time domain symbol occupied by the first PUSCH is equal to the subcarrier spacing of one subcarrier occupied by the first PUSCH in the frequency domain.
  • the subcarrier spacing corresponding to the earliest time domain symbol occupied by the first PUSCH is equal to the subcarrier spacing corresponding to the reference time domain symbol.
  • the starting time of the earliest time domain symbol occupied by the first PUSCH is not earlier than the starting time of the reference time domain symbol.
  • the cut-off time of the earliest time domain symbol occupied by the first PUSCH is not earlier than the cut-off time of the reference time domain symbol.
  • the earliest time domain symbol occupied by the first PUSCH is later than the reference time domain symbol.
  • the earliest time domain symbol occupied by the first PUSCH is the same as the reference time domain symbol.
  • the cut-off time of the first PDCCH is the end time of reception of the first PDCCH.
  • the cut-off time of the first PDCCH is the reception cut-off time of the latest time domain symbol occupied by the first PDCCH in the time domain.
  • the technical feature "the reference time domain symbol is the next uplink symbol whose starting time is later than the end time of the first PDCCH by a first length of time” includes the following meaning: the reference time domain symbol is The starting time of the included cyclic prefix is the next uplink symbol later than the ending time of the first PDCCH by the first time length.
  • the technical feature "the reference time domain symbol is the next uplink symbol whose starting time is later than the end time of the first PDCCH by a first length of time” includes the following meaning: the reference time domain symbol is In the case of the included TA effect, the starting time of the included cyclic prefix is later than the end time of the first PDCCH by the next uplink symbol of the first time length.
  • the technical feature "the reference time domain symbol is the next uplink symbol whose starting time is later than the end time of the first PDCCH by a first length of time” includes the following meaning: the reference time domain symbol is The time interval between the starting time of the included cyclic prefix and the ending time of the first PDCCH is not less than the earliest uplink symbol of the first time length.
  • the unit of the first time length is seconds or milliseconds.
  • the first time length is PUSCH preparation procedure time.
  • the first time length is T proc,2 .
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: the target waveform is used to determine the first time length.
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: the target waveform is used to determine the first time length according to the corresponding relationship or mapping relationship.
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: the target waveform is used to determine the first time length according to a conditional relationship or a table relationship.
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: the target waveform is used as a parameter to calculate the first time length according to a function.
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: the first time length changes as the target waveform changes.
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: whether the target waveform is DFT-s-OFDM or CP-OFDM will affect the first time length.
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: whether the target waveform is the same as the waveform used in the uplink transmission earlier than the first PUSCH is used to determine The first length of time.
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: whether the target waveform is the same as the waveform used in the uplink transmission immediately before the first PUSCH. Determine the first length of time.
  • the technical feature "the first time length is related to the target waveform" includes the following meaning: the target parameter is a parameter used to calculate the first time length, and the target waveform is used to determine the Describe the target parameters.
  • the target parameter is d 2,2 in the calculation formula of T proc,2 .
  • the target parameter is d 2 in the calculation formula of T proc,2 .
  • the target parameter is T switch in the calculation formula of T proc,2 .
  • the target parameter is a parameter other than N 2 , d 2,1 , T ext , T switch or d 2,2 in the calculation formula of T proc,2 .
  • the technical feature "the first time length is related to the target waveform” includes the following meaning: the target parameter is a parameter used to calculate the first time length, whether the target waveform is related to the first time length, and whether the target waveform is related to the first time length.
  • the same waveform used in the uplink transmission immediately before a PUSCH is used to determine the target parameter.
  • the target parameter is d 2,2 in the calculation formula of T proc,2 .
  • the target parameter is d 2 in the calculation formula of T proc,2 .
  • the target parameter is T switch in the calculation formula of T proc,2 .
  • the target parameter is a parameter other than N 2 , d 2,1 , T ext , T switch or d 2,2 in the calculation formula of T proc,2 .
  • T proc,2 represents the first time length
  • N 2 is a value related to the subcarrier spacing
  • T ext is a value related to whether the spectrum resource to which the first PUSCH belongs in the frequency domain is an unlicensed spectrum
  • d 2 , 1 is a value related to whether the starting time domain symbol in the time domain in the allocation of the first PUSCH includes DMRS
  • d 2 2 is equal to the BWP conversion time when BWP conversion occurs, otherwise it is equal to 0
  • d 2 is a value related to the target waveform
  • is equal to 64
  • is equal to a subcarrier interval index
  • T c 1/(480 ⁇ 10 3 ⁇ 4096) seconds
  • T switch represents the duration of the uplink transmission switching interval.
  • T proc,2 represents the first time length
  • N 2 is a value related to the subcarrier spacing
  • T ext is a value related to whether the spectrum resource to which the first PUSCH belongs in the frequency domain is an unlicensed spectrum
  • d 2 , 1 is a value related to whether the starting time domain symbol in the time domain in the allocation of the first PUSCH includes DMRS
  • d 2 2 is equal to the transition time of BWP when BWP transition occurs, otherwise it is equal to 0
  • is equal to 64
  • is equal to a subcarrier interval index
  • T c 1/(480 ⁇ 10 3 ⁇ 4096) seconds
  • T switch represents the duration of the uplink transmission conversion interval; when the target waveform and the time before the first PUSCH When the waveforms of uplink transmission are the same, d 2 is equal to 0; when the target waveform is different from the waveform of an uplink transmission before the first PUSCH, d 2 is equal to a predefined value or one reported by the
  • T proc,2 represents the first time length
  • N 2 is a value related to the subcarrier spacing
  • T ext is a value related to whether the spectrum resource to which the first PUSCH belongs in the frequency domain is an unlicensed spectrum
  • d 2 , 1 is a value related to whether the starting time domain symbol in the time domain in the allocation of the first PUSCH includes DMRS
  • d 2 2 is equal to the BWP conversion time when BWP conversion occurs, otherwise it is equal to 0,
  • d 2 Equal to the value reported by the first node device or equal to 0,
  • 64
  • equals a subcarrier interval index
  • T c 1/(480 ⁇ 10 3 ⁇ 4096) seconds
  • T switch represents the duration of the uplink transmission conversion interval Time
  • T waveform represents the value related to the target waveform.
  • T proc,2 represents the first time length
  • N 2 is a value related to the subcarrier spacing
  • T ext is a value related to whether the spectrum resource to which the first PUSCH belongs in the frequency domain is an unlicensed spectrum
  • d 2 , 1 is the starting time domain symbol in the time domain in the allocation of the first PUSCH Whether to include DMRS related values
  • d 2, 2 is equal to the BWP transition time when BWP transition occurs, otherwise equal to 0
  • d 2 is equal to the value reported by the first node device or equal to
  • is equal to 64
  • is equal to a Subcarrier interval index
  • T c 1/(480 ⁇ 10 3 ⁇ 4096) seconds
  • T switch represents the duration of the uplink transmission conversion interval; when the target waveform is different from the waveform of an uplink transmission before the first PUSCH At the same time, T waveform is equal to 0; when the target waveform is different from the waveform of an uplink transmission before the first PUSCH,
  • T proc,2 represents the first time length
  • N 2 is a value related to the subcarrier spacing
  • T ext is a value related to whether the spectrum resource to which the first PUSCH belongs in the frequency domain is an unlicensed spectrum
  • d 2 , 1 is a value related to whether the starting time domain symbol in the time domain in the allocation of the first PUSCH includes DMRS
  • d 2 2 is equal to the BWP conversion time when BWP conversion occurs, otherwise it is equal to 0,
  • T switch represents the duration of the uplink transmission conversion interval Time, d 3 and the value related to the target waveform.
  • T proc,2 represents the first time length
  • N 2 is a value related to the subcarrier spacing
  • T ext is a value related to whether the spectrum resource to which the first PUSCH belongs in the frequency domain is an unlicensed spectrum
  • d 2 , 1 is a value related to whether the starting time domain symbol in the time domain in the allocation of the first PUSCH includes DMRS
  • d 2 2 is equal to the BWP conversion time when BWP conversion occurs, otherwise it is equal to 0,
  • T switch represents the duration of the uplink transmission conversion interval time; when the target waveform is the same as the waveform of an uplink transmission before the first PUSCH, d 3 is equal to 0; when the target waveform is different from the waveform of an uplink transmission before the first PUSCH, d 3 is equal
  • T proc,2 represents the first time length
  • N 2 is a value related to the subcarrier spacing
  • T ext is a value related to whether the spectrum resource to which the first PUSCH belongs in the frequency domain is an unlicensed spectrum
  • d 2 , 1 is a value related to whether the starting time domain symbol in the time domain in the allocation of the first PUSCH includes DMRS
  • d 2 2 is equal to the BWP conversion time when BWP conversion occurs, otherwise it is equal to 0,
  • T switch represents the duration of the uplink transmission conversion interval Time
  • d 2, 3 are values related to the target waveform.
  • T proc,2 represents the first time length
  • N 2 is a value related to the subcarrier spacing
  • T ext is a value related to whether the spectrum resource to which the first PUSCH belongs in the frequency domain is an unlicensed spectrum
  • d 2 , 1 is a value related to whether the starting time domain symbol in the time domain in the allocation of the first PUSCH includes DMRS
  • d 2 2 is equal to the BWP conversion time when BWP conversion occurs, otherwise it is equal to 0,
  • T switch represents the duration of the uplink transmission conversion interval time; when the target waveform is the same as the waveform of an uplink transmission before the first PUSCH, d 2, 3 is equal to 0; when the target waveform is not phase with the waveform of an uplink transmission before the first PUSCH At the same time
  • Embodiment 14 illustrates a structural block diagram of the processing device in the first node device of an embodiment, as shown in FIG. 14 .
  • the first node device processing device 1400 includes a first receiver 1401, a second receiver 1402 and a first transmitter 1403.
  • the first receiver 1401 includes the transmitter/receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 in Figure 4 of the present application;
  • the second receiver 1402 includes the transmitter/receiver 456 in Figure 4 of the present application.
  • the first transmitter 1403 includes the transmitter/receiver 456 (including antenna 460) in Figure 4 of this application, transmitting processor 455 and controller/ Processor 490.
  • the first receiver 1401 receives the first information block; the second receiver 1402 receives the first PDCCH, and the DCI format used by the first PDCCH includes at least the first domain; the first transmitter 1403 sends the first A PUSCH, the waveform used by the first PUSCH is a target waveform, and the target waveform is one of DFT-s-OFDM or CP-OFDM; wherein, the first domain is a domain related to the waveform, and the second The domain is a domain that is different from the first domain. Whether the DCI format used by the first PDCCH includes the second domain depends on the second information block.
  • the second information block and the first information block are not the same; when the DCI format adopted by the first PDCCH includes the second domain, the second domain included in the DCI format adopted by the first PDCCH is used to select from DFT-s-OFDM or The target waveform is determined between CP-OFDM; when the DCI format adopted by the first PDCCH does not include the second domain, at least one of the first information block or the second information block The first information block is used to determine the target waveform from between DFT-s-OFDM or CP-OFDM.
  • the second information block is a field
  • the value of the second information block is an enumeration value
  • the target waveform is related to whether the second information block is configured.
  • the first receiver 1401 receives a third information block; wherein the first information block is used to indicate the first reference waveform, the third information block is used to indicate the second reference waveform, and the The first reference waveform is one of DFT-s-OFDM or CP-OFDM, and the second reference waveform is one of DFT-s-OFDM or CP-OFDM; when the second information block is not configured, The target waveform is the second reference waveform; when the second information block is configured and the DCI format adopted by the first PDCCH does not include the second domain, the target waveform is the first Reference waveform.
  • the transmit power of the first PUSCH is equal to the first upper limit value or the first power value, whichever is smaller, and the first parameter value is used to determine the first upper limit value.
  • the second parameter value is used to determine the first power value; the first parameter value is related to the target waveform, and the second parameter value is related to the target waveform.
  • the size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or the size of the first domain corresponding to CP-OFDM.
  • the size of the first domain is the larger size between these two sizes.
  • the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are not equal; in the first domain corresponding to DFT-s-OFDM Add at least 1 most significant bit equal to "0" to the first domain with a smaller size compared to the first domain corresponding to CP-OFDM until DFT-s-OFDM The size of the corresponding first domain is equal to the size of the first domain corresponding to CP-OFDM.
  • the DCI format used by the first PDCCH is used to schedule the first PUSCH; the earliest time domain symbol occupied by the first PUSCH is not earlier than the reference time domain symbol, and the reference time domain symbol is not earlier than the reference time domain symbol.
  • the domain symbol is the next uplink symbol whose starting time is later than the end time of the first PDCCH by a first time length; the first time length is related to the target waveform.
  • Embodiment 15 illustrates a structural block diagram of the processing device in the second node device of an embodiment, as shown in FIG. 15 .
  • the second node device processing device 1500 includes a second transmitter 1501, a third transmitter 1502 and a third receiver 1503.
  • the second transmitter 1501 includes the transmitter/receiver 416 (including the antenna 460), the transmit processor 415 and the controller/processor 440 in Figure 4 of the present application;
  • the third transmitter 1502 includes the transmitter/receiver 416 in Figure 4 of the present application.
  • the transmitter/receiver 416 (including the antenna 460) and the transmit processor 415; the third receiver 1503 includes the transmitter/receiver 416 (including the antenna 460) in Figure 4 of the present application, the receive processor 412 and the controller/ Processor 440.
  • the second transmitter 1501 sends the first information block; the third transmitter 1502 sends the first PDCCH, and the DCI format used by the first PDCCH includes at least the first domain; the third receiver 1503 receives the first PDCCH.
  • a PUSCH the waveform used by the first PUSCH is a target waveform, and the target waveform is one of DFT-s-OFDM or CP-OFDM; wherein, the first domain is a domain related to the waveform, and the second The domain is a domain that is different from the first domain. Whether the DCI format used by the first PDCCH includes the second domain depends on the second information block.
  • the second information block and the first information block are not the same; when the DCI format adopted by the first PDCCH includes the second domain, the second domain included in the DCI format adopted by the first PDCCH is used to select from DFT-s-OFDM or The target waveform is determined between CP-OFDM; when the DCI format used by the first PDCCH does not include the In the case of two domains, at least the first information block of the first information block or the second information block is used to determine the target waveform from DFT-s-OFDM or CP-OFDM.
  • the second information block is a field
  • the value of the second information block is an enumeration value
  • the target waveform is related to whether the second information block is configured.
  • the second transmitter 1501 sends a third information block; wherein the first information block is used to indicate the first reference waveform, the third information block is used to indicate the second reference waveform, and the The first reference waveform is one of DFT-s-OFDM or CP-OFDM, and the second reference waveform is one of DFT-s-OFDM or CP-OFDM; when the second information block is not configured, The target waveform is the second reference waveform; when the second information block is configured and the DCI format adopted by the first PDCCH does not include the second domain, the target waveform is the first Reference waveform.
  • the transmit power of the first PUSCH is equal to the first upper limit value or the first power value, whichever is smaller, and the first parameter value is used to determine the first upper limit value.
  • the second parameter value is used to determine the first power value; the first parameter value is related to the target waveform, and the second parameter value is related to the target waveform.
  • the size of the first domain included in the DCI format used by the first PDCCH is equal to the size of the first domain corresponding to DFT-s-OFDM or the size of the first domain corresponding to CP-OFDM.
  • the size of the first domain is the larger size between these two sizes.
  • the size of the first domain corresponding to DFT-s-OFDM and the size of the first domain corresponding to CP-OFDM are not equal; in the first domain corresponding to DFT-s-OFDM Add at least 1 most significant bit equal to "0" to the first domain with a smaller size compared to the first domain corresponding to CP-OFDM until DFT-s-OFDM The size of the corresponding first domain is equal to the size of the first domain corresponding to CP-OFDM.
  • the DCI format used by the first PDCCH is used to schedule the first PUSCH; the earliest time domain symbol occupied by the first PUSCH is not earlier than the reference time domain symbol, and the reference time domain symbol is not earlier than the reference time domain symbol.
  • the domain symbol is the next uplink symbol whose starting time is later than the end time of the first PDCCH by a first time length; the first time length is related to the target waveform.
  • the first node device or second node device or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication equipment, aircraft, Aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, relay satellite, satellite base station, air base station, etc. Wireless communications equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的节点中的方法和装置。节点接收第一信息块;节点接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;节点发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;所述第一域是和波形有关的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。本申请增强覆盖性能。

Description

一种用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及无线通信中的上行传输方案和装置。
背景技术
未来无线通信***的应用场景越来越多元化,不同的应用场景对***提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
在新空口技术的上行传输中同时支持CP-OFDM(Cyclic Prefix-Orthogonal Frequency Division Multiplexing)和DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)两种波形。这两种波形可以针对不同的应用场景满足不同的应用需求。
发明内容
在R17及以前版本的5G NR(New Radio,新空口)中,主要是采用半静态的方式对上行传输的波形进行配置。在R18版本中打算支持动态的上行传输波形的配置。
针对动态的上行传输波形的配置过程中所面临的问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是动态波形配置作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景(比如其它对覆盖情况动态变化或者高速移动的场景,包括但不限于容量增强***、采用更高频率的***、覆盖增强***、非授权频域通信、IoT(Internet of Things,物联网)、URLLC(Ultra Reliable Low Latency Communication,超鲁棒低时延通信)网络、车联网等),也可以取得类似的技术效果。此外,不同场景(包括但不限于多载波的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS37系列、TS38系列中的定义。
本申请公开了一种用于无线通信中的第一节点中的方法,其特征在于,包括:
接收第一信息块;
接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;
发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;
其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,根据第一PDCCH所采用的DCI格式是否第二域来判断目标波形,为动态波形转换提供了回退机制,提高了性能。
作为一个实施例,通过第一信息块或者第二信息块这两者中的至少第一信息块从DFT-s-OFDM或CP-OFDM之间确定目标波形,简化了动态波形转换的设计。
根据本申请的一个方面,上述方法的特征在于,所述第二信息块是一个域,所述第二信息块的值是枚举值,所述目标波形和所述第二信息块是否被配置有关。
作为一个实施例,目标波形和第二信息块是否被配置有关简化了设计,避免了回退路径模糊。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信息块;
其中,所述第一信息块被用于指示第一参考波形,所述第三信息块被用于指示第二参考波形,所述第一参考波形是DFT-s-OFDM或CP-OFDM中之一,所述第二参考波形是DFT-s-OFDM或CP-OFDM中之一;当所述第二信息块未被配置时,所述目标波形是所述第二参考波形;当所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述目标波形是所述第一参考波形。
作为一个实施例,根据第二信息块是否被配置和第一PDCCH是否包括第二域判断回退的波形,保证了后向兼容性的同时最优化的***性能。
根据本申请的一个方面,上述方法的特征在于,所述第一PUSCH的发射功率等于第一上限值或者第一功率值这两者之间相比较的小值,第一参数值被用于确定所述第一上限值,第二参数值被用于确定所述第一功率值;所述第一参数值和所述目标波形有关,所述第二参数值和所述目标波形有关。
作为一个实施例,根据波形调整功率参数,增强了上行传输的性能。
根据本申请的一个方面,上述方法的特征在于,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸。
作为一个实施例,第一PDCCH所采用的DCI格式所包括的第一域的尺寸等于不同波形所对应的尺寸的更大只,保证了DCI格式的正确接收。
根据本申请的一个方面,上述方法的特征在于,DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸不相等;在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特,直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等。
作为一个实施例,在尺寸比较小的第一域中添加至少1个等于“0”的最高有效位比特,基站和用户设备对DCI格式中的比特的理解的一致性。
根据本申请的一个方面,上述方法的特征在于,所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH;所述第一PUSCH所占用的最早的时域符号不早于参考时域符号,所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号;所述第一时间长度和所述目标波形有关。
作为一个实施例,处理延时和目标波形有关降低了实现中的复杂性。
本申请公开了一种用于无线通信中的第二节点中的方法,其特征在于,包括:
发送第一信息块;
发送第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;
接收第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;
其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
根据本申请的一个方面,上述方法的特征在于,所述第二信息块是一个域,所述第二信息块的值是枚举值,所述目标波形和所述第二信息块是否被配置有关。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信息块;
其中,所述第一信息块被用于指示第一参考波形,所述第三信息块被用于指示第二参考波形,所述第一参考波形是DFT-s-OFDM或CP-OFDM中之一,所述第二参考波形是DFT-s-OFDM或CP-OFDM中之一;当所述第二信息块未被配置时,所述目标波形是所述第二参考波形;当所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述目标波形是所述第一参考波形。
根据本申请的一个方面,上述方法的特征在于,所述第一PUSCH的发射功率等于第一上限值或者第一功率值这两者之间相比较的小值,第一参数值被用于确定所述第一上限值,第二参数值被用于确定所述第一功率值;所述第一参数值和所述目标波形有关,所述第二参数值和所述目标波形有关。
根据本申请的一个方面,上述方法的特征在于,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸。
根据本申请的一个方面,上述方法的特征在于,DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸不相等;在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特,直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等。
根据本申请的一个方面,上述方法的特征在于,所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH;所述第一PUSCH所占用的最早的时域符号不早于参考时域符号,所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号;所述第一时间长度和所述目标波形有关。
本申请公开了一种用于无线通信中的第一节点设备,其特征在于,包括:
第一接收机,接收第一信息块;
第二接收机,接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;
第一发射机,发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;
其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
本申请公开了一种用于无线通信中的第二节点设备,其特征在于,包括:
第二发射机,发送第一信息块;
第三发射机,发送第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;
第三接收机,接收第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;
其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息块、第一PDCCH和第一PUSCH的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的另一个实施例的无线信号传输流程图;
图8示出了根据本申请的一个实施例的第二信息块的示意图;
图9示出了根据本申请的一个实施例的目标波形的示意图;
图10示出了根据本申请的一个实施例的第一PUSCH的发射功率的示意图;
图11示出了根据本申请的一个实施例的第一域的尺寸的示意图;
图12示出了根据本申请的一个实施例的添加的比特的示意图;
图13示出了根据本申请的一个实施例的第一时间长度的示意图;
图14示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息块、第一PDCCH和第一PUSCH的流程图100,如附图1所示。在附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序只是一个示例,并不限制所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点设备在步骤101中接收第一信息块;本申请中的第一节点设备在步骤102中接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;本申请中的第一节点设备在步骤103中发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一 PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,所述第一信息块通过空中接口或者无线接口传输。
作为一个实施例,所述第一信息块包括了一个高层信令或者一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息块包括了一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分,或者所述第一信息块包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第一信息块包括了一个***信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第一信息块包括了一个SIB1中的全部或部分。
作为一个实施例,所述第一信息块是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息块是每载波(carrier)配置的,或者所述第一信息块是每BWP(bandwidth part,带宽部分)配置的,或者所述第一信息块是每频带(band)或者每频率范围(FR,Frequency Range)配置的。
作为一个实施例,所述第一信息块包括DCI(Downlink Control Information)格式中的全部或部分域。
作为一个实施例,所述第一信息块包括IE(Information Element,信息单元)“PUSCH-Config”中的全部或者部分;或者所述第一信息块包括IE“BWP-UplinkDedicated”中的全部或者部分;或者所述第一信息块包括IE“BWP-Uplink”中的全部或者部分;或者所述第一信息块包括IE“ServingCellConfig”中的全部或者部分;或者所述第一信息块包括IE“UplinkConfig”中的全部或者部分。
作为一个实施例,所述第一信息块包括IE“RACH-ConfigCommon”中的全部或者部分;或者所述第一信息块包括IE“BWP-UplinkCommon”中的全部或者部分。
作为一个实施例,所述第一信息块包括IE“ConfiguredGrantConfig”中的全部或者部分。
作为一个实施例,所述第一信息块包括IE“PUSCH-ConfigCommon”中的全部或者部分。
作为一个实施例,所述第一信息块包括更高层参数“msg3-transformPrecoder”。
作为一个实施例,所述第一信息块包括更高层参数“msgA-TransformPrecoder”。
作为一个实施例,所述第一信息块包括更高层参数“transformPrecoder”。
作为一个实施例,所述第一信息块包括更高层参数“msg3-transformPrecoder”,从而当动态开关变换预编码器被关闭或者所述第二信息块没有被配置时可以直接回退到随机接入的波形配置,简化了回退流程和降低实现复杂性。
作为一个实施例,所述第一信息块包括更高层参数“transformPrecoder”,从而当动态开关变换预编码器被关闭或者所述第二信息块没有被配置时可以回退到用户设备特有的波形配置,优化了回退时的覆盖性能。
作为一个实施例,所述第一信息块包括全部或者部分的PUSCH配置信息。
作为一个实施例,所述第一信息块包括全部或者部分的随机接入配置信息。
作为一个实施例,当所述第二信息块被配置时,所述第二信息块通过空中接口或者无线接口传输。
作为一个实施例,所述第一接收机接收所述第二信息块。
作为一个实施例,所述第一发射机发送所述第二信息块。
作为一个实施例,所述第二信息块通过PUSCH(physical uplink shared channel,物理上行共享信道)传输。
作为一个实施例,所述第二信息块包括所述第一节点设备的能力(capability)参数。
作为一个实施例,所述第二信息块被用于指示所述第一节点设备的至少1个能力(capability)参数。
作为一个实施例,所述第一PDCCH所采用的DCI格式是否包括所述第二域和所述第一PUSCH的发送者的至少1个能力(capability)参数有关。
作为一个实施例,所述第一PUSCH的发送者的至少1个能力(capability)参数被用于确定所述第一PDCCH所采用的DCI格式包括所述第二域。
作为一个实施例,所述第一PUSCH的发送者的至少1个能力(capability)参数被用于确定是否支持变换预编码(或变换预编码器)的动态开关,所述第一PDCCH所采用的DCI格式包括所述第二域和支持变换预编码(或变换预编码器)的动态开关是等同的。
作为一个实施例,所述第一PUSCH的发送者的至少1个能力(capability)参数被用于确定是否支持上行传输波形的动态切换,所述第一PDCCH所采用的DCI格式包括所述第二域和支持上行传输波形的动 态切换是等同的。
作为一个实施例,所述第一发射机发送第四信息块;其中,所述第四信息块被用于显式地或者隐式地指示所述第一节点设备的至少1个能力(capability)参数,所述第一节点设备的至少1个能力(capability)参数被用于指示所述第一节点设备是否支持所述第一PDCCH所采用的DCI格式包括所述第二域。
作为一个实施例,所述第一发射机发送第四信息块;其中,所述第四信息块被用于显式地或者隐式地指示所述第一节点设备的至少1个能力(capability)参数,所述第一节点设备的至少1个能力(capability)参数被用于指示所述第一节点设备是否支持上行传输波形的动态切换。
作为一个实施例,所述第一发射机发送第四信息块;其中,所述第四信息块被用于显式地或者隐式地指示所述第一节点设备的至少1个能力(capability)参数,所述第一节点设备的至少1个能力(capability)参数被用于指示所述第一节点设备是否支持变换预编码(或变换预编码器)的动态开关。
作为一个实施例,所述第一PUSCH的发送者的至少1个能力(capability)参数被用于确定是否支持变换预编码(或变换预编码器)的动态开关,所述第一PDCCH所采用的DCI格式包括所述第二域和支持变换预编码(或变换预编码器)的动态开关是等同的。
作为一个实施例,所述第一PUSCH的发送者的至少1个能力(capability)参数被用于确定是否支持上行传输波形的动态切换,所述第一PDCCH所采用的DCI格式包括所述第二域和支持上行传输波形的动态切换是等同的。
作为一个实施例,所述第二信息块包括了一个高层信令或者一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息块包括了一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分,或者所述第二信息块包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第二信息块包括了一个***信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第二信息块是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息块是每载波(carrier)配置的,或者所述第二信息块是每BWP(bandwidth part,带宽部分)配置的,或者所述第二信息块是每频带(band)或者每频率范围(FR,Frequency Range)配置的。
作为一个实施例,所述第二信息块包括DCI(Downlink Control Information)格式中的全部或部分域。
作为一个实施例,所述第二信息块包括IE“PUSCH-Config”中的全部或者部分;或者所述第二信息块包括IE“BWP-UplinkDedicated”中的全部或者部分;或者所述第二信息块包括IE“BWP-Uplink”中的全部或者部分;或者所述第二信息块包括IE“ServingCellConfig”中的全部或者部分;或者所述第二信息块包括IE“UplinkConfig”中的全部或者部分。
作为一个实施例,所述第二信息块包括IE“ConfiguredGrantConfig”中的全部或者部分。
作为一个实施例,所述第二信息块包括IE“PUSCH-ConfigCommon”中的全部或者部分。
作为一个实施例,所述第二信息块包括IE“pdcch-ConfigCommon”中的全部或者部分,或者所述第二信息块包括IE“BWP-DownlinkCommon”中的全部或者部分,或者所述第二信息块包括IE“BWP-DownlinkDedicated”中的全部或者部分,或者所述第二信息块包括IE“pdcch-Config”中的全部或者部分,或者所述第二信息块包括IE“SearchSpace”中的全部或者部分,或者所述第二信息块包括IE“SearchSpaceExt-v1800”中的全部或者部分,或者所述第二信息块包括IE“SearchSpaceExt2-r18”中的全部或者部分。
作为一个实施例,所述第一信息块和所述第二信息块是同一个IE中的两个不同的域或者两个不同的子IE。
作为一个实施例,所述第一信息块和所述第二信息块分别是两个不同的IE。
作为一个实施例,所述第一信息块和所述第二信息块通过同一个PDSCH传输。
作为一个实施例,所述第一信息块和所述第二信息块分别通过两个不同的PDSCH传输。
作为一个实施例,所述第一信息块早于所述第二信息块。
作为一个实施例,所述第一信息块晚于所述第二信息块。
作为一个实施例,所述第一PDCCH通过空中接口或者无线接口传输。
作为一个实施例,所述第一PDCCH占用一个PDCCH候选(candidate)。
作为一个实施例,所述第一PDCCH在公共搜索空间(CSS,common search space)中传输。
作为一个实施例,所述第一PDCCH在用户设备搜索空间(USS,UE specific search space)中传输。
作为一个实施例,所述第一PDCCH是一个PDCCH(physical downlink control channel,物理下行控制信道)的基带信号或者射频信号。
作为一个实施例,所述第一PDCCH被用于携带DCI。
作为一个实施例,所述第一PDCCH的CRC被RNTI(Radio Network Temporary Identity,无线网络临时标识)加扰。
作为一个实施例,所述第一PDCCH的CRC被C-RNTI加扰。
作为一个实施例,所述第一PDCCH的CRC被C-RNTI或者MCS-RNTI加扰。
作为一个实施例,所述第一PDCCH的CRC被C-RNTI、MCS-RNTI或者SP-CSI-RNTI加扰。
作为一个实施例,所述第一PDCCH的CRC被CS-RNTI、C-RNTI、MCS-RNTI或者SP-CSI-RNTI加扰。
作为一个实施例,所述第一PDCCH所采用的DCI格式是所述第一PDCCH所携带的DCI所采用的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是被用于生成所述第一PDCCH的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是监测(monitor)所述第一PDCCH所占用的PDCCH候选所采用的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是对所述第一PDCCH进行译码时所采用的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是生成所述第一PDCCH的信息比特所对应的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是在所述第一PDCCH上传输的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是DCI格式0_0之外的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是DCI格式0_0或DCI格式1_0之外的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式(Format)是0_1,或者所述第一PDCCH所采用的DCI格式是0_2,或者所述第一PDCCH所采用的DCI格式是0_K,或者所述第一PDCCH所采用的DCI格式是0_2、0_K中之一,或者所述第一PDCCH所采用的DCI格式是0_1、0_2、0_K中之一,或者所述第一PDCCH所采用的DCI格式是0_1、0_2中之一,或者所述第一PDCCH所采用的DCI格式是0_1、0_K中之一;其中,K是大于2的正整数。作为上述实施例的一个附属实施例,K等于3。作为上述实施例的一个附属实施例,K等于4。作为上述实施例的一个附属实施例,K等于5。
作为一个实施例,所述第一PDCCH所采用的DCI格式(Format)是1_1,或者所述第一PDCCH所采用的DCI格式是1_2,或者所述第一PDCCH所采用的DCI格式是1_K,或者所述第一PDCCH所采用的DCI格式是1_2、1_K中之一,或者所述第一PDCCH所采用的DCI格式是1_1、1_2、1_K中之一,或者所述第一PDCCH所采用的DCI格式是1_1、1_2中之一,或者所述第一PDCCH所采用的DCI格式是1_1、1_K中之一;其中,K是大于2的正整数。作为上述实施例的一个附属实施例,K等于3。作为上述实施例的一个附属实施例,K等于4。作为上述实施例的一个附属实施例,K等于5。
作为一个实施例,所述第一PDCCH所采用的DCI格式(Format)是0_1或1_0,或者所述第一PDCCH所采用的DCI格式是0_2或1_2,或者所述第一PDCCH所采用的DCI格式是0_K或1_K,或者所述第一PDCCH所采用的DCI格式是0_2、0_K、1_2、1_K中之一,或者所述第一PDCCH所采用的DCI格式是0_1、0_2、0_K、1_1、1_2、1_K中之一,或者所述第一PDCCH所采用的DCI格式是0_1、0_2、1_1、1_2中之一,或者所述第一PDCCH所采用的DCI格式是0_1、0_K、1_1、1_K中之一;其中,K是大于2的正整数。作为上述实施例的一个附属实施例,K等于3。作为上述实施例的一个附属实施例,K等于4。作为上述实施例的一个附属实施例,K等于5。
作为一个实施例,所述第一PDCCH所采用的DCI格式所属的DCI格式组合是预定义的或者是配置的。
作为一个实施例,所述第一PDCCH所采用的DCI格式所属的DCI格式组合是通过PDCCH配置信令配置的。
作为一个实施例,所述第一PDCCH所采用的DCI格式所属的DCI格式组合是通过搜索空间的配置信令配置的。
作为一个实施例,通过所述第一PDCCH所占用的PDCCH候选所属的搜索空间集合的配置信令所配置的至少1个DCI格式中包括所述第一PDCCH所采用的DCI格式。
作为一个实施例,所述第一DCI格式是2_H,所述H是非负整数。
作为一个实施例,所述第一PDCCH所采用的DCI格式是调度上行信道或信号的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是调度下行信道或信号的DCI格式。
作为一个实施例,所述第一PDCCH所采用的DCI格式是用户设备特有搜索空间集合(USS set,UE-Specific Search Set)支持的DCI格式中之一。
作为一个实施例,所述第一PDCCH所采用的DCI格式是公共搜索空间集合(CSS set)支持的DCI 格式中之一。
作为一个实施例,所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH。
作为一个实施例,所述第一PDCCH所采用的DCI格式被用于调度PDSCH。
作为一个实施例,所述第一PDCCH所采用的DCI格式被用于调度早于所述第一PUSCH的PUSCH。
作为一个实施例,所述第一PDCCH所采用的DCI格式是组共同(group common)的DCI格式。
作为一个实施例,所述第一域是“Precoding information and number of layers”域。
作为一个实施例,所述第一域是“Second Precoding information”域。
作为一个实施例,所述第一域是“Antenna ports”域。
作为一个实施例,所述第一域是“PTRS-DMRS association”域。
作为一个实施例,所述第一域是“DMRS sequence initialization”域。
作为一个实施例,所述第一域和PUSCH的解调参考信号有关。
作为一个实施例,所述第一域被用于显式地或者隐式地指示PUSCH所占用的层(layer)数和所采用的TPMI(transmitted precoding matrix indicator,发射预编码矩阵指示)。
作为一个实施例,所述第一域被用于显式地或者隐式地指示PUSCH的解调参考信号所占用的时频码域的资源。
作为一个实施例,所述第一域被用于显式地或者隐式地指示PUSCH的解调参考信号所对应的CDM(Code Division Multiplexing,码分复用)组的数量和所属的解调参考信号端口。
作为一个实施例,所述第一域被用于显式地或者隐式地指示PUSCH的解调参考信号所对应的CDM组的数量、所属的解调参考信号端口、所采用的扰码序列初始值和所占用的前置(front-load)时域符号(symbol)的数量这四者中的至少之一。
作为一个实施例,所述第一域被用于显式地或者隐式地指示相位跟踪参考信号(PTRS,phase tracking reference signal)和PUSCH的解调参考信号之间的关联(association)关系。
作为一个实施例,所述第一域被用于显式地或者隐式地指示PUSCH的解调参考信号的生成序列的初始化。
作为一个实施例,所述第一域包括至少一个填充比特(padding bit)。
作为一个实施例,所述第一域不包括任何填充比特。
作为一个实施例,所述第一域既不是所述第一PDCCH所采用的DCI格式所包括的起始的域也不是截止的域。
作为一个实施例,所述第一PUSCH是动态调度的PUSCH。
作为一个实施例,所述第一PUSCH是配置授予(CG,configured grant)的PUSCH。
作为一个实施例,所述第一PUSCH是类型1(type1)的配置授予(CG,configured grant)的PUSCH。
作为一个实施例,所述第一PUSCH是类型2(type2)的配置授予(CG,configured grant)的PUSCH。
作为一个实施例,所述第一PUSCH携带UCI(uplink control information)。
作为一个实施例,所述第一PUSCH不携带UCI。
作为一个实施例,所述第一PUSCH携带UL-SCH(Uplink shared channel,上行共享信道)。
作为一个实施例,所述第一PUSCH不携带UL-SCH。
作为一个实施例,所述第一PUSCH是PUSCH的基带信号。
作为一个实施例,所述第一PUSCH是PUSCH的射频信号。
作为一个实施例,技术特征“所述第一PUSCH所采用的波形是目标波形”包括以下含义:所述目标波形被用于所述第一PUSCH的传输。
作为一个实施例,技术特征“所述第一PUSCH所采用的波形是目标波形”包括以下含义:所述目标波形被用于所述第一PUSCH的基带信号或者射频信号的生成。
作为一个实施例,技术特征“所述第一PUSCH所采用的波形是目标波形”包括以下含义:所述第一PUSCH采用所述目标波形进行传输。
作为一个实施例,技术特征“所述第一PUSCH所采用的波形是目标波形”包括以下含义:所述目标波形是所述第一PUSCH的传输波形。
作为一个实施例,技术特征“所述第一PUSCH所采用的波形是目标波形”包括以下含义:所述目标波形所对应的变换预编码(transform precoding)或变换预编码器(transform precoder)(打开或者关闭)被用于生成所述第一PUSCH。
作为一个实施例,技术特征“所述第一PUSCH所采用的波形是目标波形”包括以下含义:被用于生成所述第一PUSCH的调制符号采用所述目标波形生成所述第一PUSCH的基带信号或者射频信号。
作为一个实施例,技术特征“所述第一PUSCH所采用的波形是目标波形”包括以下含义:所述目标波形所对应的OFDM的类型被用于生成所述第一PUSCH的基带信号或者射频信号。
作为一个实施例,技术特征“所述第一PUSCH所采用的波形是目标波形”包括以下含义:所述第一PUSCH的发送者所采用(或者被配置)的上行传输波形是所述目标波形。
作为一个实施例,“CP-OFDM(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,循环前缀正交频分复用)”和“变换预编码(或者变换预编码器)被关闭(disable)”两者之间是等同的或者是可以互相替换使用的。
作为一个实施例,“DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展的正交频分复用)”和“变换预编码(或者变换预编码器)被打开(enable)”两者之间是等同的或者是可以互相替换使用的。
作为一个实施例,“CP-OFDM”和“执行DFT扩展的变换预编码(或者变换预编码器)被关闭(disable)”两者之间是等同的或者是可以互相替换使用的。
作为一个实施例,“DFT-s-OFDM”和“执行DFT扩展的变换预编码(或者变换预编码器)被打开(enable)”两者之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第一PUSCH所采用的波形是CP-OFDM”和“所述第一PUSCH的生成中的变换预编码(或者变换预编码器)被关闭(disable)”两者之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第一PUSCH所采用的波形是DFT-s-OFDM”和“所述第一PUSCH的生成中的变换预编码(或者变换预编码器)被打开(enable)”两者之间是等同的或者是可以互相替换使用的。
作为一个实施例,技术特征“所述目标波形是DFT-s-OFDM或CP-OFDM中之一”包括以下含义:所述目标波形的候选包括DFT-s-OFDM和CP-OFDM。
作为一个实施例,技术特征“所述目标波形是DFT-s-OFDM或CP-OFDM中之一”包括以下含义:所述目标波形可能是DFT-s-OFDM也可能是CP-OFDM。
作为一个实施例,技术特征“所述目标波形是DFT-s-OFDM或CP-OFDM中之一”包括以下含义:DFT-s-OFDM或CP-OFDM都是所述目标波形的候选波形。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:所述第一域的解释(或定义)和波形有关。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:所述第一域所指示的信息和波形有关。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:所述第一域的解释(或定义)和变换预编码(或变换预编码器)开启或关闭有关。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:不同的波形的情况下的所述第一域的解释(或定义)可能不同。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:所述第一域的解释(或定义)随着波形的变化而变化。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:所述第一域的解释(或定义)随着波形的变化而变化。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:所述第一域的尺寸和波形有关。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:所述第一域所包括的比特的数量和波形有关。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:没有添加填充比特(padding bit)的所述第一域的尺寸和波形有关。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:没有添加填充比特(padding bit)的所述第一域的尺寸在不同的波形的情况下可能不相等。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:没有添加填充比特(padding bit)的所述第一域的尺寸和变换预编码(或变换预编码器)是否打开有关。
作为一个实施例,技术特征“所述第一域是和波形有关的域”包括以下含义:变换预编码(或变换预编码器)是否打开被用于确定没有添加填充比特(padding bit)的所述第一域的尺寸。
作为一个实施例,“所述第一域是和波形有关的域”和“所述第一域是和变换预编码(或变换预编码器)是否打开有关的域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,所述第一域和所述目标波形有关。
作为一个实施例,所述第一PDCCH所采用的DCI格式中包括所述第二域。
作为一个实施例,所述第一PDCCH所采用的DCI格式不包括所述第二域。
作为一个实施例,所述第二域仅包括1个比特。
作为一个实施例,所述第二域包括多个比特。
作为一个实施例,所述第二域是版本18(Rel18)新引入的域。
作为一个实施例,所述第二域是版本17(Rel17)或者之前的版本中已有的域。
作为一个实施例,所述第二域是版本17(Rel17)或者之前的版本中已有的域进行重解释(re-interpret)的域。
作为一个实施例,所述第二域的定义是和版本有关的。
作为一个实施例,所述第二域的定义和版本无关。
作为一个实施例,所述第二域是“transform precoder indicator”域。
作为一个实施例,所述第二域是“waveform indicator”域。
作为一个实施例,所述第二域是“CP-OFDM/DFT-s-OFDM indicator”域。
作为一个实施例,所述第一域和所述第二域在所述第一PDCCH所采用的DCI格式中的位置不相同。
作为一个实施例,所述第一域和所述第二域分别包括所述第一PDCCH所采用的DCI格式中的不同的信息比特。
作为一个实施例,所述第一域和所述第二域是两个不同类型的域。
作为一个实施例,所述第一域和所述第二域在所述第一PDCCH所采用的DCI格式中的位置相邻。
作为一个实施例,所述第一域和所述第二域在所述第一PDCCH所采用的DCI格式中的位置不相邻。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:第二信息块被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于所述第二信息块是否被配置。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于所述第二信息块是否被配置,并且当所述第二信息块被配置时,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于所述第二信息块的指示。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块被用于确定所述第一PDCCH所采用的DCI格式。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块被用于配置支持所述第一PDCCH所采用的DCI格式的搜索空间集合。
作为一个实施例,配置了所述第一PDCCH所采用的DCI格式的搜索空间集合所支持的所有的DCI格式都支持包括所述第二域。
作为一个实施例,配置了所述第一PDCCH所采用的DCI格式的搜索空间集合所支持的所有的DCI格式中仅部分DCI格式支持包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块所包括的全部或者部分被用于显式地或者隐式地指示所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块所包括的全部或者部分被用于显式地或者隐式地指示是否动态转换上行波形,是否动态转换上行波形(waveform)被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块所包括的全部或者部分被用于显式地或者隐式地指示是否动态开关(enable/disable或者on/off)变换预编码(或者变换预编码器),是否动态开关变换预编码(或者变换预编码器)被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:特征域是所述第二信息块所包括的一个域;当所述第二信息块所包括的所述特征域的值等于一个值(或一个状态)时,所述第一PDCCH所采用的DCI格式包括所述第二域;当所述第二信息块所包括的所述特征域的值等于另一个值(或另一个状态)时,所述第一PDCCH所采用的DCI格式不包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块是否被配置或者是否被提供(provided)被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信 息块”包括以下含义:当所述第二信息块被配置或者被提供(provided)时,所述第一PDCCH所采用的DCI格式包括所述第二域;当所述第二信息块没有被配置或者没有被提供(provided)时,所述第一PDCCH所采用的DCI格式不包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:当所述第二信息块被配置或者被提供(provided)时,所述第一PDCCH所采用的DCI格式不包括所述第二域;当所述第二信息块没有被配置或者没有被提供(provided)时,所述第一PDCCH所采用的DCI格式包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块是否被配置或者是否被提供(provided)被用于确定是否动态开关(enable/disable或者on/off)变换预编码(或者变换预编码器),是否动态开关变换预编码(或者变换预编码器)被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块是否被配置或者是否被提供(provided)被用于确定是否动态转换上行波形,是否动态转换上行波形(waveform)被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块是否被配置以及当所述第二信息块被配置时的所述第二信息块所包括的一个参数的值被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块是否被配置以及当所述第二信息块被配置时的所述第二信息块所包括的一个参数的值被用于确定否动态开关(enable/disable或者on/off)变换预编码(或者变换预编码器),是否动态开关变换预编码(或者变换预编码器)被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块是否被配置以及当所述第二信息块被配置时的所述第二信息块所包括的一个参数的值被用于确定是否动态转换上行波形,是否动态转换上行波形(waveform)被用于确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:特征域是所述第二信息块所包括的一个域;当所述第二信息块没有被配置时,所述第一PDCCH所采用的DCI格式不包括所述第二域;当所述第二信息块被配置并且所述第二信息块所包括的所述特征域的值等于一个值时,所述第一PDCCH所采用的DCI格式包括所述第二域;当所述第二信息块被配置并且所述第二信息块所包括的所述特征域的值等于另一个值时,所述第一PDCCH所采用的DCI格式不包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:当所述第二信息块被配置并且所述第二信息块所包括的一个域的值等于预定义的值时,所述第一PDCCH所采用的DCI格式包括所述第二域;否则所述第一PDCCH所采用的DCI格式不包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第一PDCCH所采用的DCI格式所包括的所述第二域的尺寸是否等于0依赖于所述第二信息块。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第一PDCCH所采用的DCI格式所包括的所述第二域所包括的比特的数量是否等于0依赖于所述第二信息块。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块被用于显式地或者隐式地指示所述第一节点设备的至少1个能力(capability)参数,所述第一节点设备的至少1个能力(capability)参数被用于显式地或者隐式地指示所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块”包括以下含义:所述第二信息块被用于显式地或者隐式地指示所述第一节点设备的至少1个能力(capability)参数,所述第一节点设备的至少1个能力(capability)参数被用于显示地或者隐式地指示是否支持上行传输波形的动态切换,是否支持上行传输波形的动态切换被用于显式地或者隐式地确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信 息块”包括以下含义:所述第二信息块被用于显式地或者隐式地指示所述第一节点设备的至少1个能力(capability)参数,所述第一节点设备的至少1个能力(capability)参数被用于显式地或者隐式地指示是否动态开关变换预编码(或变换预编码器),是否动态开关变换预编码(或变换预编码器)被用于显式地或者隐式地确定所述第一PDCCH所采用的DCI格式是否包括所述第二域。
作为一个实施例,所述第一PDCCH所采用的DCI格式是否包括所述第二域还依赖于所述第一节点设备的能力。
作为一个实施例,“所述第一PDCCH所采用的DCI格式是否包括所述第二域”和“所述第一PDCCH所采用的DCI格式所包括的所述第二域的尺寸是否等于0”这两种表述之间是等同的或者是可以互相替换使用。
作为一个实施例,“所述第一PDCCH所采用的DCI格式是否包括所述第二域”和“所述第一PDCCH所采用的DCI格式所包括的所述第二域中的比特的数量是否等于0”这两种表述之间是等同的或者是可以互相替换使用。
作为一个实施例,“所述第一PDCCH所采用的DCI格式包括所述第二域”和“所述第一PDCCH所采用的DCI格式所包括的所述第二域的尺寸大于0”这两种表述之间是等同的或者是可以互相替换使用。
作为一个实施例,“所述第一PDCCH所采用的DCI格式不包括所述第二域”和“所述第一PDCCH所采用的DCI格式所包括的所述第二域的尺寸等于0”这两种表述之间是等同的或者是可以互相替换使用。
作为一个实施例,“所述第二信息块被提供(provided)”和“所述第一PDCCH所采用的DCI格式包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块被配置(configured)”和“所述第一PDCCH所采用的DCI格式包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块没有被配置”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块没有被提供”和“所述第二信息块没有被配置”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块被提供”和“所述第二信息块被配置”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“动态转换上行波形(waveform)”和“动态开关(enable/disable或者on/off)变换预编码(或者变换预编码器)”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“动态开关(enable/disable或者on/off)变换预编码(或者变换预编码器)被打开(或被支持)”和“所述第一PDCCH所采用的DCI格式包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“动态开关(enable/disable或者on/off)变换预编码(或者变换预编码器)被关闭(或不被支持)”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“动态转换上行波形被打开(或被支持)”和“所述第一PDCCH所采用的DCI格式包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“动态转换上行波形被关闭(或不被支持)”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块所包括的一个参数的值等于第一特征参数值”和“所述第一PDCCH所采用的DCI格式包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的,所述第一特征参数值是预定义的或者是可配置的。
作为一个实施例,“所述第二信息块所包括的一个参数的值等于第二特征参数值”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的,所述第二特征参数值是预定义的或者是可配置的。
作为一个实施例,“所述第二信息块被配置(或被提供)并且所述第二信息块所包括的一个参数的值等于第一特征参数值”和“所述第一PDCCH所采用的DCI格式包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的,所述第一特征参数值是预定义的或者是可配置的。
作为一个实施例,“所述第二信息块没有被配置(或被提供)或者当所述第二信息块被配置(或被提供)时所述第二信息块所包括的一个参数的值等于第二特征参数值或者”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的,所述第二特征参数值是预定义的或者是可配置的。
作为一个实施例,“所述第二信息块所包括的一个参数的值指示动态开关变换预编码(或者变换预编码器被打开(或被支持)”和“所述第一PDCCH所采用的DCI格式包括所述第二域”这两种表述之间是 等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块所包括的一个参数的值指示动态开关变换预编码(或者变换预编码器被关闭(或不被支持)”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块所包括的一个参数的值指示动态开关变换预编码(或者变换预编码器被关闭(或不被支持)或者所述第二信息块不被提供(或不被配置)”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块所包括的一个参数的值指示动态切换波形被打开(或被支持)”和“所述第一PDCCH所采用的DCI格式包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块所包括的一个参数的值指示动态切换波形被关闭(或不被支持)”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块所包括的一个参数的值指示动态切换波形被关闭或者所述第二信息块不被提供(或者不被配置)”和“所述第一PDCCH所采用的DCI格式不包括所述第二域”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,所述第二信息块包括当PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的配置信令中的变换预编码(或变换预编码器)开关参数缺省时的所述第一PUSCH的变换预编码(或变换预编码器)开关状态。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一PDCCH所采用的DCI格式所包括的所述第二域被本申请中的所述第一节点设备用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间显式地或者隐式地指示所述目标波形。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”和“所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于显式地或者隐式地指示是否采用变换预编码(变换预编码器)”这两者是等同的或者是可以互相替换使用的。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”和“所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于显式地或者隐式地指示变换预编码(变换预编码器)的开关”这两者是等同的或者是可以互相替换使用的。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:当所述第一PDCCH所采用的DCI格式所包括的所述第二域的值等于一个值时,所述目标波形是DFT-s-OFDM;当所述第一PDCCH所采用的DCI格式所包括的所述第二域的值等于另一个值时,所述目标波形是CP-OFDM。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:当所述第一PDCCH所采用的DCI格式所包括的所述第二域的值等于一个值时,变换预编码(变换预编码器)的被打开;当所述第一PDCCH所采用的DCI格式所包括的所述第二域的值等于另一个值时,变换预编码(变换预编码器)的被关闭。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被本申请中的所述第一节点设备用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块或者所述第二信息块这两者都被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块或者所述第二信息块这两者中的仅所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被 用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块所包括的全部或者部分被用于从DFT-s-OFDM或CP-OFDM之间显式地或者隐式地指示定所述目标波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块所包括的全部或者部分被用于显式地或者隐式地指示所述第一PUSCH的生成中的变换预编码(或变换预编码器)的开关。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一PUSCH的生成中的变换预编码(变换预编码器)是否被开关依赖于所述第一信息块所包括的至少1个参数的值。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块从DFT-s-OFDM或CP-OFDM之间所显式地或者隐式地指示的波形是所述第二信息块缺省时的所述第一PUSCH所采用的波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块从DFT-s-OFDM或CP-OFDM之间所显式地或者隐式地指示的波形是所述第二信息块没有被配置(或提供)时的所述第一PUSCH所采用的波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第二信息块是否被配置(或被提供)和所述第一信息块一起从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:当所述第二信息块未被配置(或提供)时,所述目标波形是所述第一信息块或所述第二信息块之外的信息块从DFT-s-OFDM或CP-OFDM之间所指示的波形;当所述第二信息块被配置(或提供)时,所述目标波形是所述第一信息块从DFT-s-OFDM或CP-OFDM之间所指示的波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:当所述第二信息块未被配置(或提供)时,所述目标波形是所述第一信息块从DFT-s-OFDM或CP-OFDM之间所指示的波形;当所述第二信息块被配置(或提供)时,所述目标波形是所述第一信息块或所述第二信息块之外的信息块从DFT-s-OFDM或CP-OFDM之间所指示的波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块被用于确定所述目标波形的候选波形的数量;当所述第一信息块所指示的所述目标波形的候选波形的数量大于1时,所述第二信息块被用于从所述目标波形的多于1个的候选波形中指示所述目标波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第二信息块被用于确定所述目标波形的候选波形的数量;当所述第二信息块所指示的所述目标波形的候选波形的数量大于1时,所述第一信息块被用于从所述目标波形的多于1个的候选波形中指示所述目标波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块包括更高层参数“msg3-transformPrecoder”;当所述第二信息块未被配置(或提供)并且IE“UplinkConfig”中的更高层参数“transformPrecoder”被配置(或提供)时,所述目标波形是IE“UplinkConfig”中的更高层参数“transformPrecoder”所配置的波形;当所述第二信息块未被配置(或提供)并且IE“UplinkConfig”中的更高层参数“transformPrecoder”也未被配置(或提供)时,所述目标波形是所述第一信息块所包括的更高层参数“msg3-transformPrecoder”所配置的波形;当所述第二信息块被配置(或提供)并且IE“UplinkConfig”中的更高层参数“transformPrecoder”被配置(或提供)时,所述目标波形是IE“UplinkConfig”中的更高层参数“transformPrecoder”所配置的波形;当所述第二信息块被配置(或提供)并且IE“UplinkConfig”中的更高层参数“transformPrecoder”未被配置(或提供)时,所述目标波形是所述第一信息块所包括的更高层参数“msg3-transformPrecoder”所配置的波形。
作为一个实施例,技术特征“所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形”包括以下含义:所述第一信息块包括更高层参数“msg3-transformPrecoder”;当所述第二信息块未被配置(或提供)并且IE“UplinkConfig”中的更高层参数“transformPrecoder”被配置(或提供)时,所述目标波形是IE“UplinkConfig”中的更高层参数 “transformPrecoder”所配置的波形;当所述第二信息块未被配置(或提供)并且IE“UplinkConfig”中的更高层参数“transformPrecoder”也未被配置(或提供)时,所述目标波形是所述第一信息块所包括的更高层参数“msg3-transformPrecoder”所配置的波形;当所述第二信息块被配置(或提供)时,所述目标波形是所述第一信息块所包括的更高层参数“msg3-transformPrecoder”所配置的波形。
作为一个实施例,所述第一PUSCH所采用的MCS属于第一MCS集合,所述第一MCS集合包括多个MCS,所述第一DCI格式被用于从所述第一MCS集合中确定所述第一PUSCH所采用的MCS,所述目标波形被用于确定所述第一MCS集合。
作为一个实施例,所述目标波形被用于确定所述第一PUSCH的发射功率的上限值。
作为一个实施例,所述目标波形被用于确定所述第一PUSCH的发射功率。
作为一个实施例,所述第一PUSCH的发射功率等于第一上限值或者第一功率值这两者之间相比较的小值,所述目标波形被用于确定所述第一功率值。
作为一个实施例,当所述第一PUSCH的发射功率小于所述第一PUSCH的发射功率的上限值时,所述目标波形被用于确定所述第一PUSCH的发射功率。
作为一个实施例,所述第一PUSCH的发送者是本申请中的所述第一节点设备。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组***)200某种其它合适术语。5GS/EPS200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR/演进节点B(gNB/eNB)203和其它gNB(eNB)204。gNB(eNB)203提供朝向UE201的用户和控制平面协议终止。gNB(eNB)203可经由Xn/X2接口(例如,回程)连接到其它gNB(eNB)204。gNB(eNB)203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB(eNB)203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB(eNB)203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点设备。
作为一个实施例,所述gNB(eNB)201对应本申请中的所述第二节点设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或gNB)和第二节点设备(gNB或UE)的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。 层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点设备与第二节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点设备之间的对第一节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点设备。
实施例4
实施例4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图,如附图4所示。
在第一节点设备(450)中可以包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。
在第二节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信息块、第二信息块(当第二信息块被配置并且通过下行传输时)和第三信息块所包括的高层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一节点设备450的信令,比如本申请中的第一信息块、第二信息块(当第二信息块被配置并且通过下行传输时)和第三信息块所包括的高层信息在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,比如携带本申请中的第一信息块、第二信息块(当第二信息块被配置并且通过下行传输时)和第三信息块的物理层信号和携带第一PDCCH的物理层信号的生成在发射处理器415完成。生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对携带本申请中的第一信息块、第二信息块(当第二信息块被配置并且通过下行传输时)和第三信息块的物理层信号和携带第一PDCCH的物理层信号的接收,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一信息块、第二信息块(当第二信息块被配置并且通过下行传输时)和第三信息块所包括的高层信息进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,和下行传输类似,高层信息包括本申请中的第二信息块(当第二信息块被配置并且通过上行传输时)和第一PUSCH所包括的高层信息(如果第一PUSCH包括高层信息的话)在控制器/处理器490生成后经过发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,包括携带第二信息块(当第二信息块被配置并且通过上行传输时)和第一PUSCH的物理层信号的生成在发射处理器455完成,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提 供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理携带第二信息块(当第二信息块被配置并且通过上行传输时)和第一PUSCH的物理层信号,随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能包括对高层信息进行解读,包括第二信息块(当第二信息块被配置并且通过上行传输时)和第一PUSCH所携带的高层信息(如果第一PUSCH携带高层信息)的解读。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430为计算机可读媒体。
作为一个实施例,所述第一节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一节点设备450装置至少:接收第一信息块;接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,所述第一节点设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息块;接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,所述第二节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二节点设备410装置至少:发送第一信息块;发送第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;接收第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,所述第二节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息块;发送第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;接收第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,所述第一节点设备450是一个用户设备(UE)。
作为一个实施例,所述第二节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息块。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中接收第一PDCCH。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一PUSCH。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信息块(当所述第二信息块被配置并且通过下行传输)。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二信息块(当所述第二信息块被配置并且通过上行传输)。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信息块。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息块。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于本申请中发送所述第一PDCCH。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述第一PUSCH。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信息块(当所述第二信息块被配置并且通过下行传输)。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于发送本申请中的接收第二信息块(当所述第二信息块被配置并且通过上行传输)。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三信息块。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第二节点设备N500是第一节点设备U550的服务小区的维持基站,虚线框中的部分是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第二节点设备N500,在步骤S501中发送第一信息块,在步骤S502中发送第三信息块,在步骤S503中发送第一PDCCH,在步骤S504中接收第一PUSCH。
对于第一节点设备U550,在步骤S551中接收第一信息块,在步骤S552中接收第三信息块,在步骤S553中接收第一PDCCH,在步骤S554中发送第一PUSCH。
在实施例5中,所述第一PDCCH所采用的DCI格式至少包括第一域;所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;所述第三信息块被用于指示第二参考波形,所述第二参考波形是DFT-s-OFDM或CP-OFDM中之一。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第二节点设备N600是第一节点设备U650的服务小区的维持基站,虚线框中的部分是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第二节点设备N600,在步骤S601中发送第一信息块,在步骤S602中发送第三信息块,在步骤S603中发送第二信息块,在步骤S604中发送第一PDCCH,在步骤S605中接收第一PUSCH。
对于第一节点设备U650,在步骤S651中接收第一信息块,在步骤S652中接收第三信息块,在步骤S653中接收第二信息块,在步骤S654中接收第一PDCCH,在步骤S655中发送第一PUSCH。
作为一个实施例,所述第三信息块通过空中接口或者无线接口传输。
作为一个实施例,所述第三信息块包括了一个高层信令或者一个物理层信令中的全部或部分。
作为一个实施例,所述第三信息块包括了一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分,或者所述第三信息块包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第三信息块包括了一个***信息块(SIB,System Information Block)中的全部或部分。
作为一个实施例,所述第三信息块是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息块是每载波(carrier)配置的,或者所述第三信息块是每BWP(bandwidth part,带宽部分)配置的,或者所述第三信息块是每频带(band)或者每频率范围(FR,Frequency Range)配置的。
作为一个实施例,所述第三信息块包括DCI(Downlink Control Information)格式中的全部或部分域。
作为一个实施例,所述第三信息块包括IE(Information Element,信息单元)“PUSCH-Config”中的全部或者部分;或者所述第三信息块包括IE“BWP-UplinkDedicated”中的全部或者部分;或者所述第三信息块包括IE“BWP-Uplink”中的全部或者部分;或者所述第三信息块包括IE“ServingCellConfig”中的全部或者部分;或者所述第三信息块包括IE“UplinkConfig”中的全部或者部分。
作为一个实施例,所述第三信息块包括IE“ConfiguredGrantConfig”中的全部或者部分。
作为一个实施例,所述第三信息块包括IE“PUSCH-ConfigCommon”中的全部或者部分。
作为一个实施例,所述第三信息块包括更高层参数“transformPrecoder”。
作为一个实施例,所述第三信息块包括全部或者部分的PUSCH配置信息。
作为一个实施例,所述第三信息块早于所述第一信息块。
作为一个实施例,所述第三信息块晚于所述第一信息块。
作为一个实施例,所述第三信息块和所述第一信息块通过同一个物理层信道传输。
作为一个实施例,所述第三信息块和所述第一信息块分别通过两个不同的物理层信道传输。
作为一个实施例,所述第三信息块早于所述第二信息块。
作为一个实施例,所述第三信息块晚于所述第二信息块。
作为一个实施例,所述第三信息块和所述第二信息块通过同一个物理层信道传输。
作为一个实施例,所述第三信息块和所述第二信息块分别通过两个不同的物理层信道传输。
作为一个实施例,所述第三信息块和所述第一信息块分别属于两个不同的IE。
作为一个实施例,所述第三信息块和所述第二信息块分别属于两个不同的IE。
作为一个实施例,所述第三信息块和所述第二信息块属于同一个IE。
实施例7
实施例7示例了根据本申请的另一个实施例的无线信号传输流程图,如附图7所示。在附图7中,第二节点设备N700是第一节点设备U750的服务小区的维持基站,虚线框中的部分是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第二节点设备N700,在步骤S701中发送第一信息块,在步骤S702中接收第二信息块,在步骤S703中发送第三信息块,在步骤S704中发送第一PDCCH,在步骤S705中接收第一PUSCH。
对于第一节点设备U750,在步骤S751中接收第一信息块,在步骤S752中发送第二信息块,在步骤S753中接收第三信息块,在步骤S754中接收第一PDCCH,在步骤S755中发送第一PUSCH。
实施例8
实施例8示例了根据本申请的一个实施例的第二信息块的示意图,如附图8所示。在附图8中,在情况A、B、C和D中,矩形框代表当第二信息块被配置时的第二信息块。
在实施例8中,本申请中的所述第二信息块是一个域,所述第二信息块的值是枚举值,本申请中的所述目标波形和所述第二信息块是否被配置有关。
作为一个实施例,所述第二信息块是更高层IE中的一个域,所述第二信息块的值是更高层IE中的一个域的值。
作为一个实施例,所述第二信息块是RRC层信令中的一个域,所述第二信息块的值是RRC层信令中的一个域的值。
作为一个实施例,所述第二信息块的值是域的值。
作为一个实施例,所述第二信息块的值是域所代表的更高层参数的值。
作为一个实施例,所述第二信息块被用于确定一个更高层参数的值。
作为一个实施例,“所述第二信息块是一个域”和“所述第二信息块是一个更高层参数”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块是一个域”和“所述第二信息块是更高层信令中的一个参数”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块是一个域”和“所述第二信息块是RRC层信令中的一个参数”这两种表述之间是等同的或者是可以互相替换使用的。
作为一个实施例,所述第二信息块是被用于使能(enable)动态波形转换的域。
作为一个实施例,所述第二信息块是被用于使能动态开关变换预编码(或变换预编码器)的域。
作为一个实施例,所述第二信息块是被用于使能所述第一PDCCH所采用的DCI格式包括所述第二域的域。
作为一个实施例,所述第二信息块是被用于使能(enable)或去使能(disable)动态波形转换的域。
作为一个实施例,所述第二信息块是被用于使能或去使能(disable)动态开关变换预编码(或变换预 编码器)的域。
作为一个实施例,所述第二信息块是被用于使能或去使能(disable)所述第一PDCCH所采用的DCI格式包括所述第二域的域。
作为一个实施例,所述第二信息块是被用于指示支持(support)动态波形转换的域。
作为一个实施例,所述第二信息块是被用于指示支持动态开关变换预编码(或变换预编码器)的域。
作为一个实施例,所述第二信息块是被用于指示支持所述第一PDCCH所采用的DCI格式包括所述第二域的域。
作为一个实施例,所述第二信息块是“dynamicwaveformswitching”域。
作为一个实施例,所述第二信息块是“enablewaveformswitching”域。
作为一个实施例,所述第二信息块是“dynamictransformprecoding”域,或者所述第二信息块是“dynamictransformprecodingonoff”域,或者所述第二信息块是“enabledynamictransformprecoding”域,或者所述第二信息块是“enabledynamictransformprecodingonoff”域。
作为一个实施例,所述第二信息块的值是“enabled”。
作为一个实施例,所述第二信息块的值是“enabled”或“disabled”。
作为一个实施例,所述第二信息块的值是“supported”。
作为一个实施例,所述第二信息块的值是“supported”或“notsupported”。
作为一个实施例,所述第二信息块的值是一个固定的枚举值(enumerated)。
作为一个实施例,所述第二信息块的候选值仅包括一个固定的枚举值。
作为一个实施例,所述第二信息块的候选值包括两个枚举值。
作为一个实施例,所述第二信息块的值仅能够等于一个固定的枚举值。
作为一个实施例,所述第二信息块的值可以等于两个枚举值中的任意一个。
作为一个实施例,技术特征“所述目标波形和所述第二信息块是否被配置有关”包括以下含义:所述第二信息块是否被配置被用于确定所述目标波形。
作为一个实施例,技术特征“所述目标波形和所述第二信息块是否被配置有关”包括以下含义:当所述第二信息块被配置时,所述目标波形是所述第一PDCCH所采用的DCI格式所包括的所述第二域所指示的波形;否则所述目标波形是所述第一信息块所指示的波形。
作为一个实施例,技术特征“所述目标波形和所述第二信息块是否被配置有关”包括以下含义:当所述第二信息块被配置时,所述目标波形是所述第一PDCCH所采用的DCI格式所包括的所述第二域所指示的波形;当所述第二信息块未被配置并且IE“UplinkConfig”中的更高层参数“transformPrecoder”被配置(或提供)时,所述目标波形是IE“UplinkConfig”中的更高层参数“transformPrecoder”所指示的波形;当所述第二信息块未被配置并且IE“UplinkConfig”中的更高层参数“transformPrecoder”也未被配置(或提供)时,所述目标波形是所述第一信息块所指示的波形。
作为一个实施例,技术特征“所述目标波形和所述第二信息块是否被配置有关”包括以下含义:当所述第二信息块被配置并且所述第二信息块的值等于一个值时,所述目标波形是所述第一PDCCH所采用的DCI格式所包括的所述第二域所指示的波形;当所述第二信息块被配置并且所述第二信息块的值等于另一个值时,所述目标波形是所述第一信息块所指示的波形;当所述第二信息块未被配置时,所述目标波形是所述第一信息块所指示的波形。
作为一个实施例,技术特征“所述目标波形和所述第二信息块是否被配置有关”包括以下含义:当所述第二信息块被配置并且所述第二信息块的值等于一个值时,所述目标波形是所述第一PDCCH所采用的DCI格式所包括的所述第二域所指示的波形;当所述第二信息块被配置并且所述第二信息块的值等于另一个值并且IE“UplinkConfig”中的更高层参数“transformPrecoder”被配置(或提供)时,所述目标波形是IE“UplinkConfig”中的更高层参数“transformPrecoder”所指示的波形;当所述第二信息块未被配置并且IE“UplinkConfig”中的更高层参数“transformPrecoder”被配置(或提供)时,所述目标波形是IE“UplinkConfig”中的更高层参数“transformPrecoder”所指示的波形;否则所述目标波形是所述第一信息块所指示的波形。
作为一个实施例,技术特征“所述目标波形和所述第二信息块是否被配置有关”包括以下含义:当所述第二信息块被配置并且所述第二信息块的值等于一个值时,所述目标波形是所述第一PDCCH所采用的DCI格式所包括的所述第二域所指示的波形;当所述第二信息块被配置并且所述第二信息块的值等于另一个值并且IE“UplinkConfig”中的更高层参数“transformPrecoder”被配置(或提供)时,所述目标波形是IE“UplinkConfig”中的更高层参数“transformPrecoder”所指示的波形;否则所述目标波形是所述第一信息块所指示的波形。
作为一个实施例,技术特征“所述目标波形和所述第二信息块是否被配置有关”包括以下含义:当所述第二信息块被配置并且所述第二信息块的值等于一个值时,所述目标波形是所述第一PDCCH所采用的DCI格式所包括的所述第二域所指示的波形;当所述第二信息块被配置并且所述第二信息块的值等于另一 个值时,所述目标波形是所述第一信息块所指示的波形;当所述第二信息块未被配置并且IE“UplinkConfig”中的更高层参数“transformPrecoder”被配置(或提供)时,所述目标波形是IE“UplinkConfig”中的更高层参数“transformPrecoder”所指示的波形;当所述第二信息块未被配置并且IE“UplinkConfig”中的更高层参数“transformPrecoder”也未被配置(或提供)时,所述目标波形是所述第一信息块所指示的波形。
实施例9
实施例9示例了根据本申请的一个实施例的目标波形的示意图,如附图9所示。在附图9中,每个矩形代表一次操作,每个菱形代表一次判断,从步骤901中开始,在步骤902中判断第二信息块是否被配置,在步骤903中判断第一PDCCH是否包括第二域,在步骤904中第二域指示目标波形,在步骤905中目标波形是第二参考波形,在步骤906中目标波形是第一参考波形;特别需要指出的,步骤的序号只是作为一个示例中的步骤标识,并不限制各个步骤之间的执行的先后顺序。
在实施例9中,本申请中的所述第一信息块被用于指示第一参考波形,本申请中的所述第三信息块被用于指示第二参考波形,所述第一参考波形是DFT-s-OFDM或CP-OFDM中之一,所述第二参考波形是DFT-s-OFDM或CP-OFDM中之一;当本申请中的所述第二信息块未被配置时,本申请中的所述目标波形是所述第二参考波形;当所述第二信息块被配置并且本申请中的所述第一PDCCH所采用的DCI格式不包括本申请中的所述第二域时,所述目标波形是所述第一参考波形。
作为一个实施例,技术特征“所述第一信息块被用于指示第一参考波形”包括以下含义:所述第一信息块被本申请中的所述第二节点设备用于指示所述第一参考波形。
作为一个实施例,技术特征“所述第一信息块被用于指示第一参考波形”包括以下含义:所述第一信息块所包括的全部或者部分被用于显式地或者隐式地指示所述第一参考波形。
作为一个实施例,技术特征“所述第一信息块被用于指示第一参考波形”包括以下含义:所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间指示所述第一参考波形。
作为一个实施例,技术特征“所述第一信息块被用于指示第一参考波形”包括以下含义:所述第一信息块被用于指示所述第一参考波形是DFT-s-OFDM还是CP-OFDM。
作为一个实施例,技术特征“所述第一信息块被用于指示第一参考波形”包括以下含义:所述第一信息块被用于指示变换预编码(或变换预编码器)是否打开(或是否使能),所述第一参考波形是所述第一信息块所指示的变换预编码(或变换预编码器)打开或者关闭所对应的波形。
作为一个实施例,技术特征“所述第三信息块被用于指示第二参考波形”包括以下含义:所述第三信息块被本申请中的所述第二节点设备用于指示所述第二参考波形。
作为一个实施例,技术特征“所述第三信息块被用于指示第二参考波形”包括以下含义:所述第三信息块所包括的全部或者部分被用于显式地或者隐式地指示所述第二参考波形。
作为一个实施例,技术特征“所述第三信息块被用于指示第二参考波形”包括以下含义:所述第三信息块被用于从DFT-s-OFDM或CP-OFDM之间指示所述第二参考波形。
作为一个实施例,技术特征“所述第一信息块被用于指示第一参考波形”包括以下含义:所述第三信息块被用于指示所述第二参考波形是DFT-s-OFDM还是CP-OFDM。
作为一个实施例,技术特征“所述第三信息块被用于指示第二参考波形”包括以下含义:所述第三信息块被用于指示变换预编码(或变换预编码器)是否打开(或是否使能),所述第二参考波形是所述第三信息块所指示的变换预编码(或变换预编码器)打开或者关闭所对应的波形。
作为一个实施例,所述第一参考波形的候选包括DFT-s-OFDM和CP-OFDM。
作为一个实施例,所述第一参考波形可能是DFT-s-OFDM也可能是CP-OFDM。
作为一个实施例,所述第二参考波形的候选包括DFT-s-OFDM和CP-OFDM。
作为一个实施例,所述第二参考波形可能是DFT-s-OFDM也可能是CP-OFDM。
作为一个实施例,所述第一参考波形和所述第二参考波形可能相同也可能不相同。
作为一个实施例,所述第一参考波形和所述第二参考波形是分别通过所述第一信息块和所述第三信息块独立指示的。
作为一个实施例,“所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域”和“所述第二信息块被配置并且所述第二信息块指示所述第一PDCCH所采用的DCI格式不包括所述第二域”之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域”和“所述第二信息块被配置并且所述第二信息块指示关闭(或去使能)动态波形转换”之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域”和“所述第二信息块被配置并且所述第二信息块指示关闭(或去使能)动态开关变换预编码(或变换 预编码器)”之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域”和“所述第二信息块被配置并且所述第二信息块指示不支持动态开关变换预编码(或变换预编码器)”之间是等同的或者是可以互相替换使用的。
作为一个实施例,“所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域”和“所述第二信息块被配置并且所述第二信息块中的一个域的值等于预定义的值”之间是等同的或者是可以互相替换使用的。
作为一个实施例,当所述第二信息块被配置并且所述第二信息块指示所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域指示所述目标波形。
实施例10
实施例10示例了根据本申请的一个实施例的第一PUSCH的发射功率的示意图,如附图10所示。在附图10中,在情况A和情况B中,纵轴代表功率,在每种情况中两个矩形分别代表第一上限值和第一功率值;在情况A中,第一上限值大于第一功率值;在情况B中,第一上限值小于第一功率值。
在实施例10中,本申请中的所述第一PUSCH的发射功率等于第一上限值或者第一功率值这两者之间相比较的小值,第一参数值被用于确定所述第一上限值,第二参数值被用于确定所述第一功率值;所述第一参数值和本申请中的所述目标波形有关,所述第二参数值和所述目标波形有关。
作为一个实施例,所述第一PUSCH的发射功率的单位是dBm。
作为一个实施例,所述第一PUSCH的发射功率的单位是瓦或者毫瓦。
作为一个实施例,所述第一PUSCH的发射功率是在所述第一PUSCH在时域所属的PUSCH传输机会(transmission occasion)和所述第一PUSCH在频域所属的上行BWP中的传输功率(transmission power)。
作为一个实施例,所述第一上限值是所述第一PUSCH所对应的PCMAX,f,c(i)的值。
作为一个实施例,所述第一上限值是所述第一PUSCH的发送者的配置最大输出功率(configured maximum output power)。
作为一个实施例,所述第一上限值是所述第一PUSCH的发送者在所述第一PUSCH所属的服务小区所占用的载波中和所述第一PUSCH在时域所属的PUSCH传输机会中的的配置最大输出功率。
作为一个实施例,所述第一上限值是和所述第一PUSCH的发送者在所述第一PUSCH的射频特性有关的功率值。
作为一个实施例,所述第一功率值是发射功率没有超过所述第一上限值时的所述第一PUSCH的发射功率值。
作为一个实施例,所述第一功率值是传输所述第一PUSCH时经过开环(open loop)功率控制和闭环(close loop)功率控制计算得到的发射功率值。
作为一个实施例,所述第一功率值是和所述第一PUSCH的发送者的路径损耗(PL,pathloss)有关的发射功率值。
作为一个实施例,所述第一功率值是和包括闭环功率控制的被用于计算所述第一PUSCH的发射功率的功率值。
作为一个实施例,所述第一功率值是和BPRE(bit per resource element,每资源单元比特数)值有关的功率值。
作为一个实施例,技术特征“所述第一PUSCH的发射功率等于第一上限值或者第一功率值这两者之间相比较的小值”包括以下含义:当所述第一上限值大于所述第一功率值的时候,所述第一PUSCH的发射功率等于所述第一功率值;当所述第一上限值小于所述第一功率值的时候,所述第一PUSCH的发射功率等于所述第一上限值;当所述第一上限值等于所述第一功率值的时候,所述第一PUSCH的发射功率等于所述第一上限值或所述第一功率值。
作为一个实施例,所述第一上限值的单位是dBm,所述第一功率值的单位是dBm。
作为一个实施例,所述第一上限值的单位是瓦或毫瓦,所述第一功率值的单位是瓦或毫瓦。
作为一个实施例,所述第一上限值的单位、所述第一功率值的单位和所述第一PUSCH的发射功率这三者之间都相同。
作为一个实施例,所述第一参数值是MPR(maximum power reduction)的值。
作为一个实施例,所述第一参数值是A-MPR(additional maximum power reduction)的值。
作为一个实施例,所述第一参数值是P-MPR(power management maximum power reduction)的值。
作为一个实施例,所述第一参数值MPR、A-MPR或者P-MPR之外的一个参数的值。
作为一个实施例,技术特征“第一参数值被用于确定所述第一上限值”包括以下含义:所述第一参数值被本申请中的所述第一节点设备用于确定所述第一上限值。
作为一个实施例,技术特征“第一参数值被用于确定所述第一上限值”包括以下含义:所述第一参数值被用于确定所述第一上限值所属的数值区间(或数值范围)。
作为一个实施例,技术特征“第一参数值被用于确定所述第一上限值”包括以下含义:所述第一参数值被用于确定所述第一上限值所属的数值区间(或数值范围)的下边界。
作为一个实施例,技术特征“第一参数值被用于确定所述第一上限值”包括以下含义:所述第一参数值被用于确定所述第一上限值的下界值。
作为一个实施例,技术特征“第一参数值被用于确定所述第一上限值”包括以下含义:所述第一参数值被用于确定所述第一上限值所属的数值区间(或数值范围),所述第一PUSCH的发送者被允许在所述第一上限值所属的数值区间(或数值范围)内设定所述第一上限值。
作为一个实施例,所述第二参数值是所述第一PUSCH所对应的PO_PUSCH,b,f,c(j)的值。
作为一个实施例,所述第二参数值是所述第一PUSCH所对应的ΔTF,b,f,c(i)的值。
作为一个实施例,所述第二参数值是所述第一PUSCH所对应的fb,f,c(i,l)的值。
作为一个实施例,所述第二参数值是所述第一PUSCH所对应的的值。
作为一个实施例,所述第二参数值是所述第一PUSCH所对应的PO_PUSCH,b,f,c(j)、所述第一PUSCH所对应的ΔTF,b,f,c(i)、所述第一PUSCH所对应的fb,f,c(i,l)或者所述第一PUSCH所对应的之外的一个参数的值。
作为一个实施例,技术特征“第二参数值被用于确定所述第一功率值”包括以下含义:所述第二参数值被本申请中的所述第一节点设备用于确定所述第一功率值。
作为一个实施例,技术特征“第二参数值被用于确定所述第一功率值”包括以下含义:所述第二参数值被用于计算所述第一功率值。
作为一个实施例,技术特征“第二参数值被用于确定所述第一功率值”包括以下含义:所述第一功率值和所述第二参数值线性相关。
作为一个实施例,技术特征“第二参数值被用于确定所述第一功率值”包括以下含义:所述第一功率值和所述第二参数值的对数值线性相关。
作为一个实施例,技术特征“第二参数值被用于确定所述第一功率值”包括以下含义:所述第二参数值根据映射关系或者对应关系被用于确定所述第一功率值。
作为一个实施例,技术特征“第二参数值被用于确定所述第一功率值”包括以下含义:所述第一功率值等于其中,PO_PUSCH,b,f,c(j)、ΔTF,b,f,c(i)或者fb,f,c(i,l)这四者中的之一的值等于所述第二参数值。
作为一个实施例,技术特征“第二参数值被用于确定所述第一功率值”包括以下含义:所述第一功率值等于其中,的值等于所述第二参数值。
作为一个实施例,技术特征“所述第一参数值和所述目标波形有关”包括以下含义:所述目标波形被用于确定所述第一参数值。
作为一个实施例,技术特征“所述第一参数值和所述目标波形有关”包括以下含义:所述目标波形根据预定义的映射关系或者对应关系被用于确定所述第一参数值。
作为一个实施例,技术特征“所述第一参数值和所述目标波形有关”包括以下含义:所述目标波形根据预定义的表格关系被用于确定所述第一参数值。
作为一个实施例,技术特征“所述第一参数值和所述目标波形有关”包括以下含义:所述目标波形根据预定义的函数关系被用于确定所述第一参数值。
作为一个实施例,技术特征“所述第一参数值和所述目标波形有关”包括以下含义:所述目标波形和所述第一PUSCH所采用的MCS(modulation and coding scheme,调制编码方式)一起根据预定义的表格关系被用于确定所述第一参数值。
作为一个实施例,技术特征“所述第一参数值和所述目标波形有关”包括以下含义:所述目标波形、所述第一PUSCH所采用的MCS、所述第一PUSCH所占用的频域资源的位置一起根据预定义的表格关系被用于确定所述第一参数值。
作为一个实施例,技术特征“所述第一参数值和所述目标波形有关”包括以下含义:所述目标波形和{所述第一PUSCH的发送者的功率等级,所述第一PUSCH的载波频率,所述第一PUSCH的接收设备类别,所述第一PUSCH所占用的频域资源的数量,所述第一PUSCH所占用的子载波的子载波间距,所述 第一PUSCH所占用的频域资源的频域位置,所述第一PUSCH所采用的MCS}中的至少之一被用于确定所述第一参数值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述目标波形被用于确定所述第二参数值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述目标波形根据预定义的映射关系或者对应关系或者条件关系被用于确定所述第二参数值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:不同的波形根据预定义的映射关系或者对应关系或者条件关系对应不同的所述第二参数值的候选值,所述第二参数值是所述目标波形所对应的候选值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述目标波形根据预定义的表格关系被用于确定所述第二参数值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述第二参数值是所述第一PUSCH所对应的PO_PUSCH,b,f,c(j)的值,所述第一PUSCH所对应的PO_PUSCH,b,f,c(j)中的参数j的值和所述目标波形有关。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述第二参数值是所述第一PUSCH所对应的fb,f,c(i,l)的值,所述第一PUSCH所对应的fb,f,c(i,l)中的参数l的值和所述目标波形有关。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述第二参数值是所述第一PUSCH所对应的ΔTF,b,f,c(i)的值,所述第一PUSCH所对应的ΔTF,b,f,c(i)满足:
其中,Ks和所述目标波形有关,等于一个预定义的或配置的β偏移值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述第二参数值是所述第一PUSCH所对应的ΔTF,b,f,c(i)的值,所述第一PUSCH所对应的ΔTF,b,f,c(i)满足:
其中,Ks是配置的参数,Kw和所述目标波形有关,等于一个预定义的或配置的β偏移值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述第二参数值是所述第一PUSCH所对应的ΔTF,b,f,c(i)的值,所述第一PUSCH所对应的ΔTF,b,f,c(i)满足:
其中,Ks是配置的参数,Kw和所述目标波形有关,等于一个预定义的或配置的β偏移值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述第二参数值是所述第一PUSCH所对应的ΔTF,b,f,c(i)的值,所述第一PUSCH所对应的ΔTF,b,f,c(i)满足:
其中,Ks是配置的参数,Kw和所述目标波形有关,等于一个预定义的或配置的β偏移值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述第二参数值是所述第一PUSCH所对应的ΔTF,b,f,c(i)的值,所述第一PUSCH所对应的ΔTF,b,f,c(i)满足:
其中,Ks是配置的参数,Kw和所述目标波形有关,等于一个预定义的或配置的β偏移值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述第二参数值 是所述第一PUSCH所对应的ΔTF,b,f,c(i)的值,所述第一PUSCH所对应的ΔTF,b,f,c(i)满足:
其中,Ks是配置的参数,Kw和所述目标波形有关,等于一个预定义的或配置的β偏移值。
作为一个实施例,技术特征“所述第二参数值和所述目标波形有关”包括以下含义:所述目标波形根据对应关系或者条件关系被用于确定一个子参数,所述子参数被用于计算所述第二参数值。
实施例11
实施例11示例了根据本申请的一个实施例的第一域的尺寸的示意图,如附图11所示。在附图11中,在情况A和情况B中,浅色填充的矩形代表CP-OFDM对应的第一域的尺寸,深色填充的矩形代表DFT-s-OFDM对应的第一域的尺寸。
在实施例11中,本申请中的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸。
作为一个实施例,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸是所述第一PDCCH所采用的DCI格式中的所述第一域所包括的比特的数量。
作为一个实施例,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸是所述第一PDCCH所采用的DCI格式中的所述第一域所包括的信息比特的数量。
作为一个实施例,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸是所述第一PDCCH所采用的DCI格式中的所述第一域的比特宽度(bitwidth)。
作为一个实施例,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸是所述第一PDCCH所采用的DCI格式中的所述第一域所包括的非填充比特的数量。
作为一个实施例,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸是所述第一PDCCH所采用的DCI格式中的所述第一域所包括的非填充比特和填充比特的总的比特的数量。
作为一个实施例,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸可以等于0。
作为一个实施例,所所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸大于0。
作为一个实施例,DFT-s-OFDM仅对应所述第一域的一个候选尺寸。
作为一个实施例,DFT-s-OFDM对应所述第一域的多个候选尺寸。
作为一个实施例,CP-OFDM仅对应所述第一域的一个候选尺寸。
作为一个实施例,CP-OFDM对应所述第一域的多个候选尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸是针对DFT-s-OFDM的所述第一域的一个候选的尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸是调度采用DFT-s-OFDM的PUSCH时的所述第一域的一个候选的尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸是当所述第一PUSCH采用DFT-s-OFDM时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的一个候选的尺寸。
作为一个实施例,在给定其它影响所述第一域的尺寸的参数或状态的情况下,DFT-s-OFDM所对应的所述第一域的尺寸是当所述第一PUSCH采用DFT-s-OFDM时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸。
作为一个实施例,在给定编码预编码(或变换预编码器)开关之外的影响所述第一域的尺寸的参数或状态的情况下,DFT-s-OFDM所对应的所述第一域的尺寸是当所述第一PUSCH采用DFT-s-OFDM时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸。
作为一个实施例,在给定其它参数的值或状态的情况下,DFT-s-OFDM仅对应一个所述第一域的候选尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸是在给定参数值集合的情况下的调度采用DFT-s-OFDM的PUSCH时的所述第一域的尺寸,所述给定参数值集合包括传输方案(基于码本(codebook)或基于非码本(non-codebook)的传输)、全功率模式(full power mode)、最大秩数(max rank)、码本子集(codebook subset)、解调参考信号类型、解调参考信号最大长度、调制编码方式、SRS资源指示值这些参数值中的至少之一。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸等于假定所述目标波形是DFT-s-OFDM时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸等于针对假定变换预编码(或者变换预编 码器)被打开时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸。
作为一个实施例,CP-OFDM所对应的所述第一域的尺寸是针对CP-OFDM的所述第一域的一个可能的尺寸。
作为一个实施例,CP-OFDM所对应的所述第一域的尺寸是调度采用CP-OFDM的PUSCH时的所述第一域的一个可能的尺寸。
作为一个实施例,CP-OFDM所对应的所述第一域的尺寸是当所述第一PUSCH采用CP-OFDM时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的一个候选的尺寸。
作为一个实施例,在给定其它影响所述第一域的尺寸的参数或状态的情况下,CP-OFDM所对应的所述第一域的尺寸是当所述第一PUSCH采用CP-OFDM时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸。
作为一个实施例,在给定编码预编码(或变换预编码器)开关之外的影响所述第一域的尺寸的参数或状态的情况下,CP-OFDM所对应的所述第一域的尺寸是当所述第一PUSCH采用CP-OFDM时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸。
作为一个实施例,在给定其它参数的值或状态的情况下,CP-OFDM仅对应一个所述第一域的候选尺寸。
作为一个实施例,CP-OFDM所对应的所述第一域的尺寸是在给定参数值集合的情况下的调度采用CP-OFDM的PUSCH时的所述第一域的尺寸,所述给定参数值集合包括传输方案(基于码本(codebook)或基于非码本(non-codebook)的传输)、全功率模式(full power mode)、最大秩数(max rank)、码本子集(codebook subset)、解调参考信号类型、解调参考信号最大长度、调制编码方式、SRS资源指示值这些参数值中的至少之一。
作为一个实施例,CP-OFDM所对应的所述第一域的尺寸等于假定所述目标波形是CP-OFDM时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸。
作为一个实施例,CP-OFDM所对应的所述第一域的尺寸等于针对假定变换预编码(或者变换预编码器)被关闭时的所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸。
作为一个实施例,针对变换预编码(或者变换预编码器)被关闭时的所述第一域的尺寸总是不小于针对变换预编码(或者变换预编码器)被打开时的所述第一域的尺寸。
作为一个实施例,针对变换预编码(或者变换预编码器)被关闭时的所述第一域的尺寸总是不大于针对变换预编码(或者变换预编码器)被打开时的所述第一域的尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸总是不小于CP-OFDM所对应的所述第一域的尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸总是不大于CP-OFDM所对应的所述第一域的尺寸。
作为一个实施例,“DFT-s-OFDM所对应的所述第一域的尺寸”和“变换预编码(或者变换预编码器)被打开(enable)时所对应的所述第一域的尺寸”两者之间是等同的或者是可以互相替换使用的。
作为一个实施例,“CP-OFDM所对应的所述第一域的尺寸”和“变换预编码(或者变换预编码器)被关闭(disable)时所对应的所述第一域的尺寸”两者之间是等同的或者是可以互相替换使用的。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸”包括以下含义:当DFT-s-OFDM所对应的所述第一域的尺寸大于CP-OFDM所对应的所述第一域的尺寸时,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸;当DFT-s-OFDM所对应的所述第一域的尺寸小于CP-OFDM所对应的所述第一域的尺寸时,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于CP-OFDM所对应的所述第一域的尺寸;当DFT-s-OFDM所对应的所述第一域的尺寸等于CP-OFDM所对应的所述第一域的尺寸时,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM和CP-OFDM所对应的相等的所述第一域的尺寸。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸”包括以下含义:所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸是所述第一PDCCH所采用的DCI格式所包括的所述第一域是在DFT-s-OFDM或CP-OFDM情况下所能得到的最大的所述第一域的尺寸。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸”包括以下含义:DFT-s-OFDM所对应的所述第一域的尺寸是X2个候选尺寸中之一,CP-OFDM所 对应的所述第一域的尺寸是所述X2个候选尺寸中之一,所述X2不小于2,所述X2个候选尺寸分别一一对应X2个参数值组合,所述X2个参数值组合中的任意一个参数值组合包括至少一个参数值,所述X2个参数值组合中的至少1个参数值组合包括变换预编码(或变换预编码器)开关的参数值;在所述X2个参数值组合所包括的所有的变换预编码(或变换预编码器)开关参数值之外的参数值都给定的情况下,所述X2个参数值组合中的包括变换预编码(或变换预编码器)开关的参数值组合在所述X2个候选尺寸中对应的所有的候选尺寸中的最大值。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸”包括以下含义:DFT-s-OFDM所对应的所述第一域的尺寸总是不大于CP-OFDM所对应的所述第一域的尺寸,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于CP-OFDM所对应的所述第一域的尺寸。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸”包括以下含义:DFT-s-OFDM所对应的所述第一域的尺寸总是不小于CP-OFDM所对应的所述第一域的尺寸,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸。
作为一个实施例,当DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间不相等时,在尺寸小的所述第一域中添加“0”比特或者“1”比特,直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间在经过添加比特后相等。
作为一个实施例,当DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间不相等时,在相比较尺寸小的所述第一域中添加至少1个等于“0”的最高有效位比特(MSB,Most Significant bit),直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间在经过添加比特后相等。
作为一个实施例,当DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间不相等时,在相比较尺寸小的所述第一域中添加至少1个等于“1”的最高有效位比特(MSB,Most Significant bit),直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间在经过添加比特后相等。
作为一个实施例,当DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间不相等时,在相比较尺寸小的所述第一域中添加至少1个等于“0”的最低有效位比特(LSB,Least Significant bit),直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间在经过添加比特后相等。
作为一个实施例,当DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间不相等时,在相比较尺寸小的所述第一域中添加至少1个等于“1”的最低有效位比特(LSB,Least Significant bit),直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间在经过添加比特后相等。
实施例12
实施例12示例了根据本申请的一个实施例的添加的比特的示意图,如附图12所示。在附图12中,在情况A和情况B中,往左是第一域的MSB(最高有效位比特)的方向,往右是第一域的LSB(最低有效位比特)的方向;在情况A中,CP-OFDM所对应的第一域的尺寸小于DFT-s-OFDM所对应的第一域的尺寸;在情况B中,CP-OFDM所对应的第一域的尺寸大于DFT-s-OFDM所对应的第一域的尺寸。
在实施例12中,DFT-s-OFDM所对应的本申请中的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸不相等;在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特,直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等。
作为一个实施例,技术特征“在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特”包括以下含义:当DFT-s-OFDM所对应的所述第一域的尺寸小于CP-OFDM所对应的所述第一域的尺寸时,在DFT-s-OFDM所对应的所述第一域中添加至少1个等于“0”的最高有效位比特;当DFT-s-OFDM所对应的所述第一域的尺寸大于CP-OFDM所对应的所述第一域的尺寸时,在CP-OFDM所对应的所述第一域中添加至少1个等于“0”的最高有效位比特。
作为一个实施例,技术特征“在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特”包括以下含 义:在DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相比较小的所述第一域的已有比特的高位中添加至少1个等于“0”的比特。
作为一个实施例,技术特征“在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特”包括以下含义:将M1个等于“0”的比特添加到DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中得到新的所述第一域,所添加的M1个等于“0”的比特占用新的所述第一域的最高M1个比特位,所述M1是正整数。
作为一个实施例,技术特征“直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等”包括以下含义:直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间在其中一个所述第一域经过添加比特后相等。
作为一个实施例,技术特征“直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等”包括以下含义:在DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相比较小的所述第一域中所添加的等于“0”的最高有效位比特的数量等于DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间的差值的绝对值。
作为一个实施例,技术特征“直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等”包括以下含义:DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相比较小的所述第一域在经过至少1个等于“0”的最高有效位比特的添加之后,DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等。
作为一个实施例,技术特征“直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等”包括以下含义:当DFT-s-OFDM所对应的所述第一域的尺寸大于CP-OFDM所对应的所述第一域的尺寸时,在经过至少1个等于“0”的最高有效位比特的添加之后的CP-OFDM所对应的新的所述第一域的尺寸和DFT-s-OFDM所对应的所述第一域的尺寸相等;当DFT-s-OFDM所对应的所述第一域的尺寸小于CP-OFDM所对应的所述第一域的尺寸时,在经过至少1个等于“0”的最高有效位比特的添加之后的DFT-s-OFDM所对应的新的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸相等。
实施例13
实施例13示例了根据本申请的一个实施例的第一时间长度的示意图,如附图13所示。在附图13中,横轴代表,斜线填充的矩形代表参考时域符号,两个无填充的矩形分别代表第一PDCCH和第一PUSCH,第一PDCCH的截止时刻到参考时域符号的起始时刻之间的时间间隔长度不小于第一时间长度。
在实施例13中,本申请中的所述第一PDCCH所采用的DCI格式被用于调度本申请中的所述第一PUSCH;所述第一PUSCH所占用的最早的时域符号不早于参考时域符号,所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号;所述第一时间长度和本申请中的所述目标波形有关。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH”包括以下含义:所述第一PDCCH所采用的DCI格式被用于显式地或者隐式地指示所述第一PUSCH所占用的时域资源、所述第一PUSCH所占用的频域资源、所述第一PUSCH所采用的MCS、所述第一PUSCH的冗余版本(RV,redundancy version)、所述第一PUSCH所属的HARQ进程这五者中的至少之一。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH”包括以下含义:所述第一PDCCH所采用的DCI格式被用于动态调度所述第一PUSCH。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH”包括以下含义:所述第一PDCCH所采用的DCI格式被用于配置授予(configured grant)调度所述第一PUSCH。
作为一个实施例,技术特征“所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH”包括以下含义:所述第一PDCCH所采用的DCI格式被用于半静态(semi-persistent)调度所述第一PUSCH。
作为一个实施例,所述第一PUSCH包括解调参考信号(DMRS,Demodulation Reference)。
作为一个实施例,所述第一PUSCH不包括解调参考信号(DMRS,Demodulation Reference)。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号是所述第一PUSCH的分配(allocation)在时域所包括的最早的时域符号。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号是包括DMRS的所述第一PUSCH所占用的最早的时域符号。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号是所述第一PUSCH(不包括DMRS)所占用的最早的时域符号和所述第一PUSCH的DMRS所占用的最早的时域符号之间更早的时域符号。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号是所述第一PUSCH所占用的起始时刻 最早的时域符号。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号是所述第一PDCCH所采用的DCI格式所指示的所述第一PUSCH所占用的最早的时域符号。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号是所述第一PDCCH所采用的DCI格式所指示的时隙偏移值和时域资源分配(TDRA,time domain resource assignment)所定义的时域资源中的最早的时域符号。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号是包括了定时提前(TA,timing advance)效应(effect)的所述第一PUSCH所占用的最早的时域符号。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号对应的子载波间隔等于所述第一PUSCH在频域所占用的一个子载波的子载波间隔。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号对应的子载波间隔和所述参考时域符号所对应的子载波间隔相等。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号的起始时刻不早于所述参考时域符号的起始时刻。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号的截止时刻不早于所述参考时域符号的截止时刻。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号晚于所述参考时域符号。
作为一个实施例,所述第一PUSCH所占用的最早的时域符号和所述参考时域符号相同。
作为一个实施例,所述第一PDCCH的截止时刻是所述第一PDCCH的接收的结束时刻。
作为一个实施例,所述第一PDCCH的截止时刻是所述第一PDCCH在时域所占用的最晚的时域符号的接收截止时刻。
作为一个实施例,技术特征“所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号”包括以下含义:所述参考时域符号是所包括的循环前缀的起始时刻比所述第一PDCCH的截止时刻晚了所述第一时间长度的下一个上行符号。
作为一个实施例,技术特征“所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号”包括以下含义:所述参考时域符号是在包括的TA效应的情况下所包括的循环前缀的起始时刻比所述第一PDCCH的截止时刻晚了所述第一时间长度的下一个上行符号。
作为一个实施例,技术特征“所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号”包括以下含义:所述参考时域符号是所包括的循环前缀的起始时刻和所述第一PDCCH的截止时刻之间的时间间隔不小于所述第一时间长度的最早的上行符号。
作为一个实施例,所述第一时间长度的单位是秒或者毫秒。
作为一个实施例,所述第一时间长度是以Tc的数量表示的,其中Tc=1/(480·103·4096)秒。
作为一个实施例,所述第一时间长度是PUSCH准备过程时间(preparation procedure time)。
作为一个实施例,所述第一时间长度是Tproc,2
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:所述目标波形被用于确定所述第一时间长度。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:所述目标波形根据对应关系或者映射关系被用于确定所述第一时间长度。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:所述目标波形根据条件关系或者表格关系被用于确定所述第一时间长度。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:所述目标波形作为一个参数被用于根据函数计算所述第一时间长度。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:所述第一时间长度随着所述目标波形的变化而变化。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:所述目标波形是DFT-s-OFDM还是CP-OFDM会影响所述第一时间长度。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:所述目标波形是否和早于所述第一PUSCH的上行传输所采用的波形相同被用于确定所述第一时间长度。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:所述目标波形是否和所述第一PUSCH之前的紧邻的上行传输所采用的波形相同被用于确定所述第一时间长度。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:目标参数是用于计算所述第一时间长度的一个参数,所述目标波形被用于确定所述目标参数。作为上述实施例的一个附 属实施例,所述目标参数是Tproc,2的计算公式中的d2,2。作为上述实施例的一个附属实施例,所述目标参数是Tproc,2的计算公式中的d2。作为上述实施例的一个附属实施例,所述目标参数是Tproc,2的计算公式中的Tswitch。作为上述实施例的一个附属实施例,所述目标参数是Tproc,2的计算公式中的N2、d2,1、Text、Tswitch或d2,2之外的一个参数。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”包括以下含义:目标参数是用于计算所述第一时间长度的一个参数,所述目标波形是否和所述第一PUSCH之前的紧邻的上行传输所采用的波形相同被用于确定所述目标参数。作为上述实施例的一个附属实施例,所述目标参数是Tproc,2的计算公式中的d2,2。作为上述实施例的一个附属实施例,所述目标参数是Tproc,2的计算公式中的d2。作为上述实施例的一个附属实施例,所述目标参数是Tproc,2的计算公式中的Tswitch。作为上述实施例的一个附属实施例,所述目标参数是Tproc,2的计算公式中的N2、d2,1、Text、Tswitch或d2,2之外的一个参数。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”是通过满足下式实现的:
Tproc,2=max((N2+d2,1+d2)(2048+144)·κ2·TC+Text+Tswitch,d2,2)
其中,Tproc,2代表所述第一时间长度,N2是和子载波间隔有关的值,Text是和所述第一PUSCH在频域所属的频谱资源是否是非授权频谱有关的值,d2,1是和所述第一PUSCH的分配中在时域的起始时域符号是否进包括DMRS有关的值,d2,2等于当发生BWP转换时的BWP的转换时间否则等于0,d2是和所述目标波形有关的值,κ等于64,μ等于一个子载波间隔索引,Tc=1/(480·103·4096)秒,Tswitch代表上行发送转换间隔的持续时间。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”是通过满足下式实现的:
Tproc,2=max((N2+d2,1+d2)(2048+144)·κ2·TC+Text+Tswitch,d2,2)
其中,Tproc,2代表所述第一时间长度,N2是和子载波间隔有关的值,Text是和所述第一PUSCH在频域所属的频谱资源是否是非授权频谱有关的值,d2,1是和所述第一PUSCH的分配中在时域的起始时域符号是否进包括DMRS有关的值,d2,2等于当发生BWP转换时的BWP的转换时间否则等于0,κ等于64,μ等于一个子载波间隔索引,Tc=1/(480·103·4096)秒,Tswitch代表上行发送转换间隔的持续时间;当所述目标波形和所述第一PUSCH之前的一次上行传输的波形相同时,d2等于0;当所述目标波形和所述第一PUSCH之前的一次上行传输的波形不相同时,d2等于一个预定义的或者所述第一节点设备报告的一个值。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”是通过满足下式实现的:
Tproc,2=max((N2+d2,1+d2)(2048+144)·κ2·TC+Text+Tswitch+Twaveform,d2,2)
其中,Tproc,2代表所述第一时间长度,N2是和子载波间隔有关的值,Text是和所述第一PUSCH在频域所属的频谱资源是否是非授权频谱有关的值,d2,1是和所述第一PUSCH的分配中在时域的起始时域符号是否进包括DMRS有关的值,d2,2等于当发生BWP转换时的BWP的转换时间否则等于0,d2等于所述第一节点设备报告的值或等于0,κ等于64,μ等于一个子载波间隔索引,Tc=1/(480·103·4096)秒,Tswitch代表上行发送转换间隔的持续时间,Twaveform代表和所述目标波形有关的值。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”是通过满足下式实现的:
Tproc,2=max((N2+d2,1+d2)(2048+144)·κ2·TC+Text+Tswitch+Twaveform,d2,2)
其中,Tproc,2代表所述第一时间长度,N2是和子载波间隔有关的值,Text是和所述第一PUSCH在频域所属的频谱资源是否是非授权频谱有关的值,d2,1是和所述第一PUSCH的分配中在时域的起始时域符号 是否进包括DMRS有关的值,d2,2等于当发生BWP转换时的BWP的转换时间否则等于0,d2等于所述第一节点设备报告的值或等于0,κ等于64,μ等于一个子载波间隔索引,Tc=1/(480·103·4096)秒,Tswitch代表上行发送转换间隔的持续时间;当所述目标波形和所述第一PUSCH之前的一次上行传输的波形相同时,Twaveform等于0;当所述目标波形和所述第一PUSCH之前的一次上行传输的波形不相同时,Twaveform等于一个预定义的或者所述第一节点设备报告的一个值。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”是通过满足下式实现的:
Tproc,2=max((N2+d2,1+d2+d3)(2048+144)·κ2·TC+Text+Tswitch,d2,2)
其中,Tproc,2代表所述第一时间长度,N2是和子载波间隔有关的值,Text是和所述第一PUSCH在频域所属的频谱资源是否是非授权频谱有关的值,d2,1是和所述第一PUSCH的分配中在时域的起始时域符号是否进包括DMRS有关的值,d2,2等于当发生BWP转换时的BWP的转换时间否则等于0,d2等于所述第一节点设备报告的值或等于0,κ等于64,μ等于一个子载波间隔索引,Tc=1/(480·103·4096)秒,Tswitch代表上行发送转换间隔的持续时间,d3和所述目标波形有关的值。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”是通过满足下式实现的:
Tproc,2=max((N2+d2,1+d2+d3)(2048+144)·κ2·TC+Text+Tswitch,d2,2)
其中,Tproc,2代表所述第一时间长度,N2是和子载波间隔有关的值,Text是和所述第一PUSCH在频域所属的频谱资源是否是非授权频谱有关的值,d2,1是和所述第一PUSCH的分配中在时域的起始时域符号是否进包括DMRS有关的值,d2,2等于当发生BWP转换时的BWP的转换时间否则等于0,d2等于所述第一节点设备报告的值或等于0,κ等于64,μ等于一个子载波间隔索引,Tc=1/(480·103·4096)秒,Tswitch代表上行发送转换间隔的持续时间;当所述目标波形和所述第一PUSCH之前的一次上行传输的波形相同时,d3等于0;当所述目标波形和所述第一PUSCH之前的一次上行传输的波形不相同时,d3等于一个预定义的或者所述第一节点设备报告的一个值。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”是通过满足下式实现的:
Tproc,2=max((N2+d2,1+d2)(2048+144)·κ2·TC+Text+Tswitch,d2,2+d2,3)
其中,Tproc,2代表所述第一时间长度,N2是和子载波间隔有关的值,Text是和所述第一PUSCH在频域所属的频谱资源是否是非授权频谱有关的值,d2,1是和所述第一PUSCH的分配中在时域的起始时域符号是否进包括DMRS有关的值,d2,2等于当发生BWP转换时的BWP的转换时间否则等于0,d2等于所述第一节点设备报告的值或等于0,κ等于64,μ等于一个子载波间隔索引,Tc=1/(480·103·4096)秒,Tswitch代表上行发送转换间隔的持续时间;d2,3是和所述目标波形有关的值。
作为一个实施例,技术特征“所述第一时间长度和所述目标波形有关”是通过满足下式实现的:
Tproc,2=max((N2+d2,1+d2)(2048+144)·κ2·TC+Text+Tswitch,d2,2+d2,3)
其中,Tproc,2代表所述第一时间长度,N2是和子载波间隔有关的值,Text是和所述第一PUSCH在频域所属的频谱资源是否是非授权频谱有关的值,d2,1是和所述第一PUSCH的分配中在时域的起始时域符号是否进包括DMRS有关的值,d2,2等于当发生BWP转换时的BWP的转换时间否则等于0,d2等于所述第一节点设备报告的值或等于0,κ等于64,μ等于一个子载波间隔索引,Tc=1/(480·103·4096)秒,Tswitch代表上行发送转换间隔的持续时间;当所述目标波形和所述第一PUSCH之前的一次上行传输的波形相同时,d2,3等于0;当所述目标波形和所述第一PUSCH之前的一次上行传输的波形不相同时,d2,3等于一个 预定义的或者所述第一节点设备报告的一个值。
实施例14
实施例14示例了一个实施例的第一节点设备中的处理装置的结构框图,如附图14所示。在附图14中,第一节点设备处理装置1400包括第一接收机1401、第二接收机1402和第一发射机1403。第一接收机1401包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第二接收机1402包括本申请附图4中的发射器/接收器456(包括天线460)和接收处理器452;第一发射机1403包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490。
在实施例14中,第一接收机1401接收第一信息块;第二接收机1402接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;第一发射机1403发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,所述第二信息块是一个域,所述第二信息块的值是枚举值,所述目标波形和所述第二信息块是否被配置有关。
作为一个实施例,第一接收机1401接收第三信息块;其中,所述第一信息块被用于指示第一参考波形,所述第三信息块被用于指示第二参考波形,所述第一参考波形是DFT-s-OFDM或CP-OFDM中之一,所述第二参考波形是DFT-s-OFDM或CP-OFDM中之一;当所述第二信息块未被配置时,所述目标波形是所述第二参考波形;当所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述目标波形是所述第一参考波形。
作为一个实施例,所述第一PUSCH的发射功率等于第一上限值或者第一功率值这两者之间相比较的小值,第一参数值被用于确定所述第一上限值,第二参数值被用于确定所述第一功率值;所述第一参数值和所述目标波形有关,所述第二参数值和所述目标波形有关。
作为一个实施例,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸不相等;在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特,直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等。
作为一个实施例,所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH;所述第一PUSCH所占用的最早的时域符号不早于参考时域符号,所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号;所述第一时间长度和所述目标波形有关。
实施例15
实施例15示例了一个实施例的第二节点设备中的处理装置的结构框图,如附图15所示。在附图15中,第二节点设备处理装置1500包括第二发射机1501、第三发射机1502和第三接收机1503。第二发射机1501包括本申请附图4中的发射器/接收器416(包括天线460),发射处理器415和控制器/处理器440;第三发射机1502包括本申请附图4中的发射器/接收器416(包括天线460)和发射处理器415;第三接收机1503包括本申请附图4中的发射器/接收器416(包括天线460),接收处理器412和控制器/处理器440。
在实施例15中,第二发射机1501发送第一信息块;第三发射机1502发送第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;第三接收机1503接收第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第 二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
作为一个实施例,所述第二信息块是一个域,所述第二信息块的值是枚举值,所述目标波形和所述第二信息块是否被配置有关。
作为一个实施例,第二发射机1501发送第三信息块;其中,所述第一信息块被用于指示第一参考波形,所述第三信息块被用于指示第二参考波形,所述第一参考波形是DFT-s-OFDM或CP-OFDM中之一,所述第二参考波形是DFT-s-OFDM或CP-OFDM中之一;当所述第二信息块未被配置时,所述目标波形是所述第二参考波形;当所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述目标波形是所述第一参考波形。
作为一个实施例,所述第一PUSCH的发射功率等于第一上限值或者第一功率值这两者之间相比较的小值,第一参数值被用于确定所述第一上限值,第二参数值被用于确定所述第一功率值;所述第一参数值和所述目标波形有关,所述第二参数值和所述目标波形有关。
作为一个实施例,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸。
作为一个实施例,DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸不相等;在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特,直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等。
作为一个实施例,所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH;所述第一PUSCH所占用的最早的时域符号不早于参考时域符号,所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号;所述第一时间长度和所述目标波形有关。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备或者第二节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种用于无线通信中的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信息块;
    第二接收机,接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;
    第一发射机,发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;
    其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第二信息块是一个域,所述第二信息块的值是枚举值,所述目标波形和所述第二信息块是否被配置有关。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一接收机接收第三信息块;其中,所述第一信息块被用于指示第一参考波形,所述第三信息块被用于指示第二参考波形,所述第一参考波形是DFT-s-OFDM或CP-OFDM中之一,所述第二参考波形是DFT-s-OFDM或CP-OFDM中之一;当所述第二信息块未被配置时,所述目标波形是所述第二参考波形;当所述第二信息块被配置并且所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述目标波形是所述第一参考波形。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一PUSCH的发射功率等于第一上限值或者第一功率值这两者之间相比较的小值,第一参数值被用于确定所述第一上限值,第二参数值被用于确定所述第一功率值;所述第一参数值和所述目标波形有关,所述第二参数值和所述目标波形有关。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一PDCCH所采用的DCI格式所包括的所述第一域的尺寸等于DFT-s-OFDM所对应的所述第一域的尺寸或CP-OFDM所对应的所述第一域的尺寸这两个尺寸之间的更大的尺寸。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸不相等;在DFT-s-OFDM所对应的所述第一域和CP-OFDM所对应的所述第一域的之间相比较具有更小的尺寸的所述第一域中添加至少1个等于“0”的最高有效位比特,直到DFT-s-OFDM所对应的所述第一域的尺寸和CP-OFDM所对应的所述第一域的尺寸之间相等。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一PDCCH所采用的DCI格式被用于调度所述第一PUSCH;所述第一PUSCH所占用的最早的时域符号不早于参考时域符号,所述参考时域符号是起始时刻比所述第一PDCCH的截止时刻晚了第一时间长度的下一个上行符号;所述第一时间长度和所述目标波形有关。
  8. 一种用于无线通信中的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信息块;
    第三发射机,发送第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;
    第三接收机,接收第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;
    其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
  9. 一种用于无线通信中的第一节点中的方法,其特征在于,包括:
    接收第一信息块;
    接收第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;
    发送第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;
    其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括 的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
  10. 一种用于无线通信中的第二节点中的方法,其特征在于,包括:
    发送第一信息块;
    发送第一PDCCH,所述第一PDCCH所采用的DCI格式至少包括第一域;
    接收第一PUSCH,所述第一PUSCH所采用的波形是目标波形,所述目标波形是DFT-s-OFDM或CP-OFDM中之一;
    其中,所述第一域是和波形有关的域,第二域是和所述第一域不相同的域,所述第一PDCCH所采用的DCI格式是否包括所述第二域依赖于第二信息块,所述第二信息块和所述第一信息块不相同;当所述第一PDCCH所采用的DCI格式包括所述第二域时,所述第一PDCCH所采用的DCI格式所包括的所述第二域被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形;当所述第一PDCCH所采用的DCI格式不包括所述第二域时,所述第一信息块或者所述第二信息块这两者中的至少所述第一信息块被用于从DFT-s-OFDM或CP-OFDM之间确定所述目标波形。
PCT/CN2023/112783 2022-08-25 2023-08-12 一种用于无线通信的节点中的方法和装置 WO2024041402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211024817.3A CN117729550A (zh) 2022-08-25 2022-08-25 一种用于无线通信的节点中的方法和装置
CN202211024817.3 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024041402A1 true WO2024041402A1 (zh) 2024-02-29

Family

ID=90012521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112783 WO2024041402A1 (zh) 2022-08-25 2023-08-12 一种用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117729550A (zh)
WO (1) WO2024041402A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282433A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种上行信号发送方法、接收方法、终端及基站
CN111316729A (zh) * 2017-09-26 2020-06-19 夏普株式会社 终端装置以及基站装置
CN113767684A (zh) * 2019-03-29 2021-12-07 三星电子株式会社 无线通信***中频域资源分配的方法和装置
WO2021260659A1 (en) * 2020-06-26 2021-12-30 Lenovo (Singapore) Pte. Ltd. Control signal configuration waveform type
CN114503736A (zh) * 2019-10-02 2022-05-13 三星电子株式会社 用于在无线通信***中分配频率资源的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282433A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种上行信号发送方法、接收方法、终端及基站
CN111316729A (zh) * 2017-09-26 2020-06-19 夏普株式会社 终端装置以及基站装置
CN113767684A (zh) * 2019-03-29 2021-12-07 三星电子株式会社 无线通信***中频域资源分配的方法和装置
CN114503736A (zh) * 2019-10-02 2022-05-13 三星电子株式会社 用于在无线通信***中分配频率资源的方法和装置
WO2021260659A1 (en) * 2020-06-26 2021-12-30 Lenovo (Singapore) Pte. Ltd. Control signal configuration waveform type

Also Published As

Publication number Publication date
CN117729550A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2021204156A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021147892A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018054155A1 (zh) 一种ue、基站中的发射功率调整的方法和装置
WO2022121832A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2019134152A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2022100638A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2024041402A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2022205848A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2021155816A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022345A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023241553A1 (zh) 一种用于无线通信的节点中的方法和装置
US20240049220A1 (en) Method and device in nodes used for wireless communication
WO2023185523A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2024067393A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023151672A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023103924A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023092953A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023231972A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023169324A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2024001937A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023284598A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023221799A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023001217A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023131145A1 (zh) 一种用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856492

Country of ref document: EP

Kind code of ref document: A1