WO2024041344A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2024041344A1
WO2024041344A1 PCT/CN2023/110986 CN2023110986W WO2024041344A1 WO 2024041344 A1 WO2024041344 A1 WO 2024041344A1 CN 2023110986 W CN2023110986 W CN 2023110986W WO 2024041344 A1 WO2024041344 A1 WO 2024041344A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
flexible circuit
display panel
traces
display
Prior art date
Application number
PCT/CN2023/110986
Other languages
English (en)
French (fr)
Inventor
董毓杰
刘国和
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024041344A1 publication Critical patent/WO2024041344A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present application relates to a display panel and a display device including the display panel.
  • An organic light-emitting diode (OLED) display screen is a display screen made of organic light-emitting diodes. When different driving voltages are applied to the cathode and anode at both ends of the light-emitting diode, the light-emitting diode emits light.
  • power supply traces are usually provided inside the display panel to provide driving voltage for the light emitting diode.
  • power traces are generally TiAlTi (titanium aluminum titanium) traces, which have large resistivity, resulting in limited improvement in voltage drop (IR Drop). By increasing the width of the power traces, the voltage drop can be reduced to a certain extent.
  • Voltage drop refers to the voltage consumed from the chip source to the component (such as the electrode layer).
  • the actual voltage obtained by the component (such as the electrode layer) is the supply voltage minus the voltage drop.
  • the first aspect of the embodiment of the present application provides a display panel, including a first electrode layer, an organic light-emitting layer, and a second electrode layer that are stacked in sequence.
  • the display panel is divided into a display area and a frame area, and the frame area includes The opposing first end region, the second end region, and the two opposing side regions connected between the first end region and the second end region include:
  • a first flexible circuit board is provided in the first end area and a second flexible circuit board is provided in the second end area.
  • the first flexible circuit board and the second flexible board pass through their respective paths.
  • the line acquires a driving signal supplied from the main board to the first electrode layer;
  • each power line has two opposite ends, one end of each power line is connected to the wiring of the first flexible circuit board, and the other end is connected to the wiring of the second flexible circuit board.
  • the two power traces, the traces of the first flexible circuit board, and the traces of the second flexible circuit board are connected to form a loop, and the two power traces are electrically connected to each other. the first electrode layer.
  • the resistivity of the power line is higher than the resistivity of the traces of the first flexible circuit board and the traces of the second flexible circuit board.
  • the display panel of the present application cleverly uses the first flexible circuit board and the flexible circuit board to connect the driving signals and sets wirings with lower resistivity (such as metal copper materials) to connect and draw out the driving signals, and the wiring connection resistivity is relatively high.
  • the power supply traces (such as the TiAlTi three-layer stacked structure) can realize the low-impedance power trace layout design, reduce the voltage drop, and improve the display effect.
  • the first flexible circuit board is a display flexible circuit board
  • the second flexible circuit board is a touch flexible circuit board
  • the first flexible circuit board is a display flexible circuit board used to transmit input signals related to the display image to each pixel, such as data signals, power signals (such as ELVSS power signals), control signals, etc.
  • the second flexible circuit board is a touch flexible circuit board.
  • the touch flexible circuit board is electrically connected to the touch layer for transmitting touch drive signals to the touch electrodes (such as TX ) of the touch layer and receiving sensing signals from the touch electrodes (such as RX ) of the touch layer. .
  • the two power lines are respectively arranged in two different side areas.
  • the driving signal is an ELVSS voltage signal.
  • the first electrode layer is an entire layer covering at least the display area.
  • the first electrode layer is the cathode, which is a continuous entire layer covering at least the display area, and is transparent to avoid affecting the light emission of the organic light-emitting layer.
  • the material of the traces in the first flexible circuit board and the second flexible circuit board is metal copper.
  • Metal copper has a low resistivity and can better implement low-impedance power trace layout design.
  • the power supply traces are TiAlTi traces.
  • the wiring adopts a TiAlTi three-layer stacked structure.
  • the display panel is flexible and includes a main body part and a first bending part and a second bending part connecting opposite ends of the main body part.
  • the first bending part and the second bending part are The bending part is bent relative to the main body part and laminated on the back surface of the main body part.
  • the first flexible circuit board is disposed on the first bending part and is located on a surface of the first bending part away from the main body part
  • the second flexible circuit board is disposed on the first bending part. on the second bending part and located on the surface of the second bending part away from the main body part.
  • the display panel includes a thin film transistor substrate stacked on a side of the second electrode layer facing away from the organic light-emitting layer.
  • the thin film transistor substrate is flexible and includes a flexible substrate.
  • the display panel further includes a plurality of other power supply lines extending in the display area, and the plurality of other power supply lines are connected in parallel and electrically connected to the first electrode layer,
  • the plurality of other power supply traces are electrically connected to the traces of the first flexible circuit board or the traces of the second flexible circuit board.
  • the area size of the first electrode layer is also relatively large.
  • the power traces are also set up in the display area. However, the power traces need to avoid the area where the pixels are located and be set in the area between the pixels.
  • a second aspect of the embodiment of the present application provides a display panel including the display panel described in the first aspect of the embodiment of the present application, and a polarizer and a transparent cover plate disposed on the display substrate.
  • the display device further includes a touch layer stacked on the display panel.
  • the display device further includes a display driving circuit board.
  • the display driving circuit board is electrically connected to the main board to obtain the driving signal.
  • Both the first flexible circuit board and the second flexible circuit board It is electrically connected to the display driving circuit board to obtain the driving signal.
  • Figure 1 is a schematic cross-sectional view of an OLED display panel.
  • FIG. 2 is a schematic top view of an OLED display panel according to an embodiment of the present application.
  • FIG. 3 is a schematic top view of the ELVSS power traces and the first electrode layer of the OLED display panel according to the embodiment of the present application.
  • FIG. 4 is a schematic side view of an OLED display device according to an embodiment of the present application.
  • FIG. 5 is a schematic back view of an OLED display device according to an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of a thin film transistor substrate of an OLED display panel according to an embodiment of the present application.
  • OLED display panel 100 first electrode layer 10 Organic light emitting layer 20 Second electrode layer 30 TFT substrate 40 Display area 120 Border area 110 End area 111 Side area 113 First flexible circuit board 50 Second flexible circuit board 60 ELVSS power wiring 70 Driver chip 80 Display driver circuit board 90 Connector 91 Route 51, 61 Gate Driver 115 Luminous Driver 116 Dummy circuit 117 Multiplexer 118 OLED display device 200 Main Body 101 First bending part 102 Second bending part 103 Polarizer 210 Transparent cover 230 Transparent optical glue 250 Encapsulation layer 220
  • the OLED display panel 100 includes a transparent first electrode layer 10 , an organic light-emitting layer 20 , a second electrode layer 30 , and a substrate 40 that are stacked in sequence.
  • the substrate 40 is a thin film transistor (TFT) substrate.
  • the organic light-emitting layer 20 is disposed between the first electrode layer 10 and the second electrode layer 30 .
  • the first electrode layer 10 and the second electrode layer 30 serve as the cathode and anode of the organic light-emitting layer 20 .
  • the two electrode layers 30 receive different voltages respectively to form a sufficient voltage difference between them, so that the organic light-emitting layer 20 emits light.
  • the first electrode layer 10 is a cathode
  • the second electrode layer 30 is an anode.
  • FIG. 2 is a schematic plan view of the OLED display panel 100 .
  • the area of the OLED display panel 100 is divided into a display area 120 (Active Area, AA) and a frame area 110 connected to and surrounding the display area 120 according to different functions.
  • the first electrode layer 10 is a continuous entire layer that at least covers the display area 120 and is transparent to avoid affecting the light emission of the organic light-emitting layer 20 .
  • the material of the first electrode layer 10 may be a transparent conductive material, usually indium tin oxide, but is not limited thereto.
  • the display area 120 defines a plurality of pixels (not shown) arranged in a matrix.
  • the second electrode layer 30 includes a plurality of electrodes with insulating intervals, and each pixel corresponds to an electrode.
  • the second electrode layer 30 is usually made of a metal material with good electrical conductivity.
  • the power supply used by the OLED display usually includes an ELVDD power supply that provides high-level voltage and an ELVSS power supply that provides low-level voltage.
  • ELVDD and ELVSS are the driving voltages for the organic light-emitting layer 20 to emit light.
  • the voltage of the first electrode layer 10 can be provided by the ELVSS power supply, and the ELVSS power signal is transmitted to the first electrode layer 10 through the ELVSS power wiring.
  • the voltage of the second electrode layer 30 is provided by the ELVDD power circuit, and is controlled and transmitted to the corresponding electrodes of each sub-pixel through the TFT substrate 40 .
  • OLED displays are current-driven devices, and the current consistency of each pixel affects the consistency of display brightness.
  • ELVSS power traces are usually provided on both sides of the frame area of the display panel to reduce the voltage drop (IR Drop) and improve the display effect.
  • IR Drop voltage drop
  • the impedance of the ELVSS power traces is difficult to further reduce, affecting the display effect.
  • the larger the screen the more difficult it is to control the voltage drop, and the higher the risk of display effects.
  • this application provides an OLED display panel that reduces the impedance of the power wiring and reduces the voltage drop by designing the layout of the power wiring.
  • the embodiment of the present application takes the layout design of the ELVSS power trace as an example for description, but is not limited to this.
  • the ELVDD power supply traces can also be laid out according to the layout of the ELVSS power supply traces.
  • the frame area 110 of the OLED display panel 100 includes two opposite end areas 111 and two opposite side areas 113 connected between the two end areas 111 .
  • the two end edge areas 111 are located at the upper and lower ends of the display area 120; for the horizontal screen scene of the display panel, the two end edge areas 111 are located at the left and right ends of the display area 120.
  • the OLED display panel 100 includes a first flexible circuit board 50 and a second flexible circuit board 60 .
  • the first flexible circuit board 50 is located in one end area 111
  • the second flexible circuit board 60 is located in the other end area 111 .
  • the first flexible circuit board 50 and the second flexible circuit board 60 are located at opposite ends of the display area 120 .
  • the end edge areas 111 are respectively named a first end edge area and a second end edge area.
  • the first flexible circuit board 50 is located in the first end edge area
  • the second flexible circuit board 60 is located in the second end edge area.
  • the first flexible circuit board 50 is a display flexible circuit board used to transmit input signals related to the display image to each pixel, such as data signals, power signals (such as ELVSS power signals), control signals, etc.
  • the first flexible circuit board 50 is provided with traces 51 for connecting and transmitting ELVSS power signals.
  • the second flexible circuit board 60 is a touch flexible circuit board.
  • the touch flexible circuit board is electrically connected to the touch layer (not shown) for transmitting touch drive signals to the touch electrodes of the touch layer (such as T X ) induction signal.
  • the second flexible circuit board 60 is also provided with traces 61 for connecting and transmitting ELVSS power signals.
  • the second flexible circuit board 60 may also be a flexible circuit board additionally provided for the layout design of the power traces, instead of a touch flexible circuit board.
  • the display panel includes an ELVSS power trace 70 that is electrically connected to the first electrode layer 10 and transmits the ELVSS power signal to the first electrode layer 10 through the ELVSS power trace 70 .
  • ELVSS power traces 70 are located in frame area 110. As shown in FIG. 3 , in this embodiment, the ELVSS power trace 70 has a certain line width, and the edge portion of the first electrode layer 10 and the ELVSS power trace 70 may partially overlap, but this is not a limitation.
  • the ELVSS power trace 70 and the first electrode layer 10 may be located on different layers and may be electrically connected to each other through via holes.
  • FIG. 2 shows two ELVSS power traces 70 of the display panel.
  • the two ELVSS power traces 70 are both arranged in the frame area 110 .
  • the resistivity of the ELVSS power trace 70 is greater than the resistivity of the trace 51 in the first flexible circuit board 50 and is greater than the resistivity of the trace 61 in the second flexible circuit board 60 .
  • One end of each ELVSS power trace 70 is connected to the trace 51 on the first flexible circuit board 50 , and extends across the side area 113 until the other end is connected to the trace 51 on the second flexible circuit board 60 .
  • Route 61 is one end of each ELVSS power trace 70 is connected to the trace 51 on the first flexible circuit board 50 , and extends across the side area 113 until the other end is connected to the trace 51 on the second flexible circuit board 60 .
  • the two ELVSS power traces 70 extend in different side areas 113 and are connected on the traces 51 in the first flexible circuit board 50 and the traces 61 in the second flexible circuit board 60 in the two end edge regions 111 Convergence.
  • the two ELVSS power traces 70 , the traces 51 on the first flexible circuit board 50 , and the traces 61 on the second flexible circuit board 60 are connected to form a loop.
  • the two ends of the trace 51 on the first flexible circuit board 50 are connected to the two ELVSS power traces 70 respectively, and the two ends of the trace 61 on the second flexible circuit board 60 are also respectively connected. Connect the two ELVSS power traces 70.
  • the OLED display panel 100 is flexibly bent, but is not limited to this. In other embodiments, the OLED display panel 100 may also be non-flexible.
  • the OLED display panel 100 can adopt the COP bending (Chip on PI bending) process.
  • COP is a flexible OLED technical solution.
  • the display driver chip (IC) is usually bonded to a flexible substrate (material) through heat pressing. It can be made of polyimide (PI) and then bent to the back of the display area, and then connected to the display driver circuit board through a special square conductive adhesive.
  • FIG. 2 is a planar unfolded schematic diagram of the flexible bending OLED display panel 100 , and the position of the dotted line in FIG. 2 is the bending line where the OLED display panel 100 is bent.
  • the ELVSS power signal is provided by the motherboard (not shown), which is equipped with a power management integrated circuit (Power Management IC, PMIC) to output the ELVSS power signal.
  • the first flexible circuit board 50 and the second flexible circuit board 60 are electrically connected to the main board respectively to connect and transmit ELVSS power signals.
  • FIG. 4 is a schematic side view of the OLED display device when the flexible bending OLED display panel 100 is applied to the OLED display device
  • FIG. 5 is a schematic view of the back of the OLED display device.
  • the motherboard is connected to a display driving circuit board 90 through the connector 91
  • the first flexible circuit board 50 and the second flexible circuit board 60 are both electrically connected to the display driving circuit board 90 to connect to the ELVSS.
  • the first flexible circuit board 50 and the second flexible circuit board 60 are respectively provided with traces 61 to lead out the ELVSS power signal and connect the ELVSS power traces 70 .
  • the ELVSS power signal output by the motherboard reaches the first electrode layer 10 through the connector 91, the display driving circuit board 90, the first flexible circuit board 50 and the second flexible circuit board 60, and the ELVSS power trace 70 in sequence, thereby achieving the first
  • the purpose of the electrode layer 10 is to provide power.
  • the material of the traces 61 in the first flexible circuit board 50 and the second flexible circuit board 60 is metal copper, but it is not limited to this.
  • the ELVSS power trace 70 is a TiAlTi trace, that is, a Ti layer, an Al layer, and a Ti layer are stacked in sequence.
  • the wiring of the three-layer stacked structure is not limited to this. Power traces in OLED displays usually use TiAlTi multi-layer metal because this metal structure is easy to dry-etch.
  • the second flexible circuit board 60 , the first flexible circuit board 50 , and the ELVSS power traces 70 can be disposed on different layers, or of course can be located on the same layer.
  • the display panel of the present application cleverly uses the second flexible circuit board 60 (such as a touch flexible circuit board) to connect the ELVSS power signal and sets a trace 61 with a lower resistivity (such as metal copper material) to connect and lead out the ELVSS power signal. And the trace 61 is connected to the ELVSS power trace 70 with higher resistivity (such as the TiAlTi three-layer stacked structure), so the layout design of the ELVSS power trace 70 with low impedance can be realized and the voltage drop can be reduced (the actual voltage is 85% of the ELVSS voltage % to 90% of the ELVSS voltage) to improve the display effect.
  • the second flexible circuit board 60 such as a touch flexible circuit board
  • the end area 111 may also be provided with a display driver chip (IC) 80 , and the driver chip 80 and the first flexible circuit board 50 are located in the same end area 111 .
  • IC display driver chip
  • the OLED display panel 100 also includes a gate driver (Gate Driver) 115, an emission driver (Emission Driver) 116, etc. arranged in two side areas 113 to connect the TFT
  • the pixel driving circuit, gate driver 115 and light emitting driver 116 in the substrate 40 are arranged between the display area 120 and the ELVSS power trace 70 .
  • the two end edge areas 111 of the OLED display panel can also be provided with dummy circuits (Dummy) 117, multiplexers (MUX) 118, etc.
  • Dummy dummy circuits
  • MUX multiplexers
  • the resistance of the ELVSS power supply trace 70 is reduced by arranging the trace 51 with lower resistivity on the first flexible circuit board 50 and the trace 61 with lower resistivity on the second flexible circuit board 60. This can reduce the width of the ELVSS power trace 70 in the frame area 110.
  • the width of the ELVSS power trace 70 in the side area 113 is estimated to be reduced by 0.1 mm.
  • the area size of the first electrode layer 10 is also relatively large. In order to ensure that the first electrode layer Different areas of the display area 10 can receive a consistent ELVSS power supply voltage to ensure the consistency of the display pixels.
  • the OLED display panel may also include multiple ELVSS power supply traces (not shown) extending in the display area 120.
  • the ELVSS power traces are connected in parallel; and the display flexible circuit board is connected to receive the ELVSS power signal, and the first electrode layer 10 is connected to transmit the ELVSS power signal to the first electrode layer 10, thus ensuring that the entire first Each area of the electrode layer 10 can uniformly receive the ELVSS power voltage signal, thereby ensuring the consistency of pixel light emission.
  • the multiple ELVSS power traces 70 need to avoid the area where the pixels are located and be arranged in the area between the pixels. .
  • the embodiment of the present application takes the layout design of ELVSS power traces as an example for description.
  • the layout design of the ELVDD power supply traces can also be carried out with reference to the layout design of the ELVSS power supply traces to reduce the voltage drop, which will not be described again here.
  • the present application also provides an OLED display device 200 including the above-mentioned OLED display panel 100 .
  • the OLED display device 200 further includes a polarizer 210 and a transparent cover 230 stacked on the front surface of the OLED display panel 100 .
  • a transparent optical glue 250 is also disposed between the polarizer 210 and the transparent cover 230 .
  • the OLED display panel 100 is flexible and bendable.
  • the OLED display panel 100 includes a main body part 101 and a first bending part 102 connecting opposite ends of the main body part 101 and The second bending part 103, the first bending part 102 and the second bending part 103 are bent relative to the main body part 101 to the back surface of the main body part 101.
  • the position of the dotted line in FIG. 2 is the bending line where the first bending part 102 and the second bending part 103 are bent relative to the main body part 101 .
  • the front side of the OLED display panel 100 is also covered with a flexible encapsulation layer 220 . In the OLED display device 200 , the encapsulation layer 220 is bent together with the OLED display panel 100 .
  • the first bending portion 102 and the second bending portion 103 are mainly formed by bending the portion of the TFT substrate 40 located in the end edge region 111 , as shown in FIG. 6 .
  • the main body part 101 defines the display area 120 and the two side areas 113 , and the two end areas 111 are at least defined by the first bending part 102 and the second bending part 103 . In this way, the first bending part 102 and the second bending part 103 will not occupy too much front area of the display panel, and the front area of the display panel occupied by the two end areas 111 of the frame area 110 can be further reduced.
  • the first flexible circuit board 50 and the driver chip 80 are disposed on the first bending part 102 and are located on the surface of the first bending part 102 away from the main body part 101.
  • the second flexible circuit The plate 60 is disposed on the second bending portion 103 and is located on a surface of the second bending portion 103 away from the main body portion 101 .
  • the OLED display device 200 further includes a display driving circuit board 90 disposed on the back of the main body 101 and approximately located in an area between the first bending portion 102 and the second bending portion 103 .
  • the display driving circuit board 90 is electrically connected to the motherboard (not shown) through the connector 91 to connect the ELVSS power signal.
  • the first flexible circuit board 50 and the second flexible circuit board 60 are both electrically connected to the display driving circuit board 90 to connect ELVSS power signal.
  • the OLED display panel 100 is flexible and bendable, and the TFT substrate 40 is flexible and bendable.
  • the TFT substrate 40 is a conventional TFT substrate and has a multi-layer stacked structure.
  • the TFT substrate includes a flexible substrate (polyimide layer, shown as PI1), an insulating layer ( SiO Imide layer (PI2), insulating layer (SiO x ), insulating layer (SiN x ), insulating layer (SiO x ), gate insulating layer (GI), insulating layer (CI), interlayer dielectric layer (ILD) , passivation layer (PVX), planarization layer (PLN1 and PLN2) and other multiple layers, TFT (not shown), capacitor (not shown), etc.
  • PI1 polyimide layer
  • PI2 insulating layer
  • SiO Imide layer PI2
  • SiO x insulating layer
  • SiN x insulating layer
  • SiO x insulating layer
  • SiO x
  • the ELVSS power trace 70 is provided on the planarization layer (PLN1). In other embodiments, the ELVSS power trace 70 may be disposed on a certain insulation layer, passivation layer, interlayer dielectric layer, and planarization layer of the TFT substrate 40 .
  • the OLED display device 200 also includes a touch layer (not shown).
  • the touch layer can be stacked between the display panel and the polarizer 210, or between the polarizer 210 and the transparent cover 230, but this is not the case. limited. In this application, the touch layer is plug-in.
  • the touch layer is connected to the touch flexible circuit board.
  • the OLED display device 200 also includes some conventional laminates (not shown) stacked under the main body 101 of the OLED display panel 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100),包括依次层叠的第一电极层(10)、有机发光层(20)、第二电极层(30)。显示面板(100)划分为显示区(120)和边框区(110)。边框区(110)包括相对的第一端边区域(111)和第二端边区域(111)。显示面板(100)包括设置在第一端边区域(111)的第一柔性电路板(50)、设置第二端边区域(111)的第二柔性电路板(60)、两条电源走线(70)。第一柔性电路板(50)和第二柔性电路板(60)通过各自的走线(51、61)获取供给第一电极层(10)的驱动信号。每一条电源走线(70)的一端与第一柔性电路板(50)的走线(51)连接,另一端与第二柔性电路板(60)的走线(61)连接。电源走线(70)的电阻率高于第一柔性电路板(50)的走线(51)和第二柔性电路板(60)的走线(61)的电阻率。本申请还提供包括该显示面板(100)的显示装置(200)。利用第二柔性电路板(60)上设置走线(61)连接电源走线(70),实现低阻抗的电源走线(70)设计,降低电压降。

Description

显示面板和显示装置
相关申请的交叉引用
本申请要求在2022年8月23日提交中国专利局、申请号为202211012747.X、申请名称为“显示面板和显示装置”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种显示面板和包括该显示面板的显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏是利用有机电自发光二极管制成的显示屏,当发光二极管两端的阴极和阳极被施加不同的驱动电压,则发光二极管发光。现有的OLED显示产品,通常会在显示面板的内部设置电源走线以对发光二极管的发光提供驱动电压。然而,电源走线一般为TiAlTi(钛铝钛)走线,电阻率较大,导致电压降(IR Drop)的改善有限;通过增加电源走线线宽的方式,可在一定程度上降低电压降,但是会影响显示面板的空间和整机的窄边框设计。电压降,就是指从芯片源头供电到元件(例如电极层)所消耗的电压,元件(例如电极层)实际得到的电压就是供电电压减去电压降的部分。
发明内容
本申请实施例第一方面提供了一种显示面板,包括依次层叠设置的第一电极层、有机发光层、第二电极层,所述显示面板划分为显示区和边框区,所述边框区包括相对的第一端边区域、第二端边区域以及连接在所述第一端边区域和所述第二端边区域之间的相对的两个侧边区域,包括:
设置在所述第一端边区域的第一柔性电路板和设置在所述第二端边区域的第二柔性电路板,所述第一柔性电路板和所述第二柔性板通过各自的走线获取从主板供给所述第一电极层的驱动信号;
两条电源线,每一条电源线具有相对的两端,每一条电源线的一端与所述第一柔性电路板的所述走线连接,另一端与所述第二柔性电路板的所述走线连接,使所述两条电源走线、所述第一柔性电路板的走线、以及所述第二柔性电路板的走线连接形成回路,所述两条电源走线均电性连接所述第一电极层。
本申请实施方式中,所述电源线的电阻率高于所述第一柔性电路板的所述走线和所述第二柔性电路板的所述走线的电阻率。
本申请的显示面板,巧妙地利用第一柔性电路板和柔性电路板连接驱动信号并设置电阻率较低的走线(例如金属铜材质)连接并引出驱动信号,且走线连接电阻率较高的电源走线(例如TiAlTi三层层叠的结构),因此可实现低阻抗的电源走线布局设计,降低电压降,改善显示效果。
本申请实施方式中,所述第一柔性电路板为显示柔性电路板,所述第二柔性电路板为触控柔性电路板。
第一柔性电路板为显示柔性电路板,用以传输显示图像相关的输入信号给各个像素,例如包含数据信号、电源信号(例如ELVSS电源信号)、控制信号等。第二柔性电路板为触控柔性电路板。触控柔性电路板电性连接触控层,用以传输触控驱动信号给触控层的触控电极(例如TX),并接收触控层的触控电极(例如RX)的感应信号。
本申请实施方式中,所述两条电源线分别设置在不同的所述两个侧边区域。
通过将两条电源线分别设置在不同侧边区域,可保证第一电极层的相对两侧均能接收到一致的驱动信号。
本申请实施方式中,所述驱动信号为ELVSS电压信号。
本申请实施方式中,所述第一电极层为至少覆盖所述显示区的整层。
第一电极层为阴极,为至少覆盖显示区的连续的整层,且为透明的以避免影响有机发光层的光出射。
本申请实施方式中,所述第一柔性电路板和所述第二柔性电路板中的走线的材质均为金属铜。
金属铜的电阻率较低,可较好地实现低阻抗的电源走线布局设计。
本申请实施方式中,所述电源走线为TiAlTi走线。
所述走线采用TiAlTi三层层叠的结构。
本申请实施方式中,所述显示面板为柔性的,包括主体部和连接所述主体部相对两端的第一弯折部和第二弯折部,所述第一弯折部和所述第二弯折部相对所述主体部弯折且层叠在所述主体部的背面。
设置显示面板为柔性弯折的,可有效降低两个端边区域占用显示装置的正面面积。
本申请实施方式中,所述第一柔性电路板设置在所述第一弯折部上且位于所述第一弯折部背离所述主体部的表面,所述第二柔性电路板设置在所述第二弯折部上且位于所述第二弯折部背离所述主体部的表面。
本申请实施方式中,所述显示面板包括层叠在所述第二电极层背离所述有机发光层一侧的薄膜晶体管基板,所述薄膜晶体管基板为柔性的且包括柔性的基底。
本申请实施方式中,所述显示面板还包括在所述显示区延伸的多条其他的电源走线,所述多条其他的电源走线为并联连接且电性连接所述第一电极层,所述多条其他的电源走线电性连接所述第一柔性电路板的所述走线或所述第二柔性电路板的所述走线。
当所述显示面板应用到显示屏幕的尺寸较大的平板电脑或其他电子装置中时,则所述第一电极层的面积尺寸也相对较大,为确保第一电极层的不同区域都能够接收到一致的驱动电压信号以保证显示像素的一致性,因此在显示区也设置多条其他的电源走线。但电源走线需避开像素所在的区域,设置在像素之间的区域。
本申请实施例第二方面提供了一种包括本申请实施例第一方面所述的显示面板以及设置在所述显示基板上的偏光片和透明盖板。
本申请实施方式中,所述显示装置还包括层叠在所述显示面板上的触控层。
本申请实施方式中,所述显示装置还包括显示驱动电路板,所述显示驱动电路板电性连接主板以获取所述驱动信号,所述第一柔性电路板和所述第二柔性电路板均与所述显示驱动电路板电性连接以获取所述驱动信号。
附图说明
图1是OLED显示面板的剖面示意图。
图2是本申请实施例的OLED显示面板的俯视示意图。
图3是本申请实施例的OLED显示面板的ELVSS电源走线和第一电极层的俯视示意图。
图4是本申请实施例的OLED显示装置的侧面示意图。
图5是本申请实施例的OLED显示装置的背面示意图。
图6是本申请实施例的OLED显示面板的薄膜晶体管基板的剖面示意图。
主要元件符号说明
OLED显示面板                          100
第一电极层                            10
有机发光层                            20
第二电极层                            30
TFT基板                               40
显示区                                120
边框区                                110
端边区域                              111
侧边区域                              113
第一柔性电路板                        50
第二柔性电路板                        60
ELVSS电源走线                         70
驱动芯片                             80
显示驱动电路板                       90
连接器                               91
走线                                 51、61
栅极驱动器                           115
发光驱动器                           116
虚设电路                             117
多路复用器                           118
OLED显示装置                         200
主体部                               101
第一弯折部                           102
第二弯折部                           103
偏光片                               210
透明盖板                             230
透明光学胶                           250
封装层                               220
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请中记载的数据范围值如无特别说明均应包括端值。
请参阅图1,OLED显示面板100包括依次层叠的透明的第一电极层10、有机发光层20、第二电极层30、基板40。本实施例中,所述基板40为薄膜晶体管(Thin Film Transistor,TFT)基板。有机发光层20设置在第一电极层10和第二电极层30之间,第一电极层10和第二电极层30互为有机发光层20的阴极和阳极,当第一电极层10和第二电极层30分别接收不同的电压使二者之间形成足够的电压差,有机发光层20发光。本实施例中,第一电极层10为阴极,第二电极层30为阳极。
图2为OLED显示面板100的平面俯视示意图。如图2所示,OLED显示面板100的区域根据功能的不同划分为显示区120(Active Area,AA)和连接并围绕显示区120的边框区110。本实施例中,第一电极层10为至少覆盖显示区120的连续的整层,且为透明的以避免影响有机发光层20的光出射。第一电极层10的材料可为透明导电材料,通常为氧化铟锡,但不以此为限。所述显示区120定义有矩阵排布的多个像素(图未示),所述第二电极层30包括绝缘间隔的多个电极,每一个像素对应一个电极。第二电极层30通常为导电性能良好的金属材质。
OLED显示器使用的电源通常包括提供高电平电压的ELVDD电源和提供低电平电压的ELVSS电源,ELVDD和ELVSS为有机发光层20发光的驱动电压。本实施例中,第一电极层10的电压可由ELVSS电源提供,ELVSS电源信号通过ELVSS电源走线传输给第一电极层10。第二电极层30的电压由ELVDD电源电路提供,并通过TFT基板40控制并传输给各个子像素对应的电极。
OLED显示器是电流驱动器件,每个像素的电流一致性影响显示亮度的一致性。现有技术中,为了保证亮度均一性,通常会在显示面板的边框区的双侧设置ELVSS电源走线,降低电压降(IR Drop),改善显示效果。然而,受限于显示面板中有限的空间,ELVSS电源走线的阻抗很难进一步下降,影响显示效果。对于显示屏幕较大的平板电脑和手机,屏幕越大,电压降的管控难度越大,显示效果风险越高。
因此,本申请提供一种OLED显示面板,通过对电源走线的布局进行设计,降低电源走线的阻抗,降低电压降。本申请实施例以ELVSS电源走线的布局设计为例进行说明,但不以此为限。例如ELVDD电源走线也可参照ELVSS电源走线的布局方式进行布局。
如图2所示,OLED显示面板100的边框区110包括相对的两个端边区域111和连接在所述两个端边区域111之间的相对的两个侧边区域113。对于显示面板的竖屏场景,两个端边区域111位于所述显示区120的上下两端;对于显示面板的横屏场景,两个端边区域111位于所述显示区120的左右两端。
请参阅图2,OLED显示面板100包括第一柔性电路板50和第二柔性电路板60。第一柔性电路板50位于其中一个端边区域111,第二柔性电路板60位于另一个端边区域111。第一柔性电路板50和第二柔性电路板60位于显示区120的相对两端。将所述端边区域111分别命名为第一端边区域和第二端边区域,第一柔性电路板50位于第一端边区域,第二柔性电路板60位于第二端边区域。
本实施例中,第一柔性电路板50为显示柔性电路板,用以传输显示图像相关的输入信号给各个像素,例如包含数据信号、电源信号(例如ELVSS电源信号)、控制信号等。第一柔性电路板50中设置有走线51用以连接并传输ELVSS电源信号。
本实施例中,第二柔性电路板60为触控柔性电路板。触控柔性电路板电性连接触控层(图未示),用以传输触控驱动信号给触控层的触控电极(例如TX),并接收触控层的触控电极(例如RX)的感应信号。第二柔性电路板60中也设置有走线61用以连接并传输ELVSS电源信号。
其他实施例中,第二柔性电路板60也可为为了电源走线的布局设计额外设置的柔性电路板,而不是触控柔性电路板。
请参阅图3,所述显示面板包括ELVSS电源走线70,ELVSS电源走线70与第一电极层10电性连接,通过ELVSS电源走线70将ELVSS电源信号传输给第一电极层10。ELVSS电源走线70位于边框区110。图3所示,本实施例中,ELVSS电源走线70具有一定的线宽,所述第一电极层10的边缘部分与ELVSS电源走线70可为部分重叠,但不以此为限定。ELVSS电源走线70与所述第一电极层10可位于不同的层,可通过过孔相互电性连接。
请继续参阅图2,图2示出了显示面板的两条ELVSS电源走线70,两条ELVSS电源走线70均设置在边框区110。ELVSS电源走线70的电阻率大于第一柔性电路板50中的走线51的电阻率,且大于第二柔性电路板60中的走线61的电阻率。每一条ELVSS电源走线70的一端连接所述第一柔性电路板50上的走线51,并延伸跨越所述侧边区域113,直至延伸至另一端连接所述第二柔性电路板60上的走线61。两条ELVSS电源走线70在不同的侧边区域113延伸,并在两个端边区域111的第一柔性电路板50中的走线51和第二柔性电路板60中的走线61上连接汇合。所述两根ELVSS电源走线70、所述第一柔性电路板50上的走线51、以及所述第二柔性电路板60上的走线61连接形成回路。本实施例中,所述第一柔性电路板50上走线51的两端分别连接所述两条ELVSS电源走线70,所述第二柔性电路板60上的走线61的两端也分别连接所述两条ELVSS电源走线70。
为降低两个端边区域111占用显示装置的正面面积,本实施例中,OLED显示面板100为柔性弯折的,但不以此为限。其他实施例中,OLED显示面板100也可为非柔性的。OLED显示面板100可采用COP弯折(Chip on PI bending)工艺,COP是一种柔性OLED的技术方案,通常将显示的驱动芯片(IC)通过热压绑定(bonding)在柔性的基底(材质可为聚酰亚胺,PI)上后弯折至显示区背面,再通过异方形导电胶与显示驱动电路板相连。图2为柔性弯折的OLED显示面板100的平面展开示意图,且图2中虚线所在的位置为OLED显示面板100弯折处的弯折线。
ELVSS电源信号由主板(图未示)提供,主板上设置有电源管理集成电路(Power Management IC,PMIC)输出ELVSS电源信号。本申请中,所述第一柔性电路板50和所述第二柔性电路板60均分别电性连接所述主板,以连接并传输ELVSS电源信号。
图4为将柔性弯折的OLED显示面板100应用到OLED显示装置中,OLED显示装置的侧面示意图;图5为OLED显示装置的背面示意图。请参阅图4和图5,具体可为:主板通过连接器91连接一显示驱动电路板90,第一柔性电路板50和第二柔性电路板60均电性连接显示驱动电路板90以连接ELVSS电源信号,而所述第一柔性电路板50上和所述第二柔性电路板60中分别设置有走线61引出ELVSS电源信号并连接ELVSS电源走线70。如此,主板输出的ELVSS电源信号依次经过连接器91、显示驱动电路板90、第一柔性电路板50和第二柔性电路板60、ELVSS电源走线70到达第一电极层10,实现给第一电极层10供电的目的。
一些实施例中,第一柔性电路板50和第二柔性电路板60中的走线61的材质为金属铜,但不以此为限。一些实施例中,ELVSS电源走线70为TiAlTi走线,即Ti层、Al层、Ti层依次层叠构成的 三层层叠结构的走线,但不以此为限。OLED显示屏内电源走线通常采用TiAlTi多层金属,因为这种金属结构易于干刻蚀。
可以理解的,由于OLED显示面板为多层的堆叠结构,第二柔性电路板60、第一柔性电路板50、ELVSS电源走线70可设置于不同的层,当然也可位于相同的层上。
本申请的显示面板,巧妙地利用第二柔性电路板60(例如触控柔性电路板)连接ELVSS电源信号并设置电阻率较低的走线61(例如金属铜材质)连接并引出ELVSS电源信号,且走线61连接电阻率较高的ELVSS电源走线70(例如TiAlTi三层层叠的结构),因此可实现低阻抗的ELVSS电源走线70布局设计,降低电压降(实际电压由ELVSS电压的85%提升到ELVSS电压的90%),改善显示效果。
如图2所示,所述端边区域111还可设置显示的驱动芯片(IC)80,所述驱动芯片80与所述第一柔性电路板50位于同一个端边区域111。
可以理解的,请参阅图2,所述OLED显示面板100还包括设置在两个侧边区域113的栅极驱动器(Gate Driver)115、发光驱动器(Emission Driver)116等,用以连接所述TFT基板40中的像素驱动电路,栅极驱动器115、发光驱动器116设置在显示区120与ELVSS电源走线70之间。
可以理解的,请参阅图2,所述OLED显示面板的两个端边区域111还可设置虚设电路(Dummy)117、多路复用器(MUX)118等。
本申请中,通过在第一柔性电路板50设置电阻率较低的走线51和第二柔性电路板60上设置电阻率较低的走线61,以降低ELVSS电源走线70的电阻,由此可减小ELVSS电源走线70在边框区110的走线宽度,例如ELVSS电源走线70在侧边区域113的宽度预估可降低0.1mm。
可以理解的,当所述OLED显示面板应用到显示屏幕的尺寸较大的平板电脑或其他电子装置中时,则所述第一电极层10的面积尺寸也相对较大,为确保第一电极层10的不同区域都能够接收到一致的ELVSS电源电压以保证显示像素的一致性,所述OLED显示面板还可包括在显示区120延伸的多条ELVSS电源走线(图未示),所述多条ELVSS电源走线并联连接;且连接所述显示柔性电路板以接收ELVSS电源信号,并且连接所述第一电极层10以将ELVSS电源信号传输给第一电极层10,如此,保证整个第一电极层10的各个区域能够均匀地接收到ELVSS电源电压信号,从而确保像素发光的一致性。另外,为了避免在显示区120延伸的多条ELVSS电源走线70影响遮挡有机发光层20的出光,所述多条ELVSS电源走线70需避开像素所在的区域,设置在像素之间的区域。
可以理解的,本申请实施例以ELVSS电源走线的布局设计为例进行说明。同样的,ELVDD电源走线的布局设计也可参照ELVSS电源走线的布局设计进行,以降低电压降,在此不再进行赘述。
请参阅图4,本申请还提供包括上述的OLED显示面板100的一种OLED显示装置200。OLED显示装置200还包括层叠在OLED显示面板100的正面上的偏光片210和透明盖板230,所述偏光片210和透明盖板230之间还设置透明光学胶250。
如图4所示,本实施例中,所述OLED显示面板100为柔性可弯曲的,所述OLED显示面板100包括主体部101和连接所述主体部101相对两端的第一弯折部102和第二弯折部103,所述第一弯折部102和所述第二弯折部103相对所述主体部101弯折至所述主体部101的背面。图2中虚线所在的位置为第一弯折部102和第二弯折部103相对所述主体部101弯折的弯折线。如图4所示,OLED显示面板100的正面还覆盖有柔性的封装层220,在OLED显示装置200中,封装层220与所述OLED显示面板100一同弯折。
所述第一弯折部102和所述第二弯折部103主要由TFT基板40位于端边区域111的部分弯折形成,可结合参阅图6所示。
所述主体部101界定所述显示区120以及所述两个侧边区域113,所述两个端边区域111至少由所述第一弯折部102和所述第二弯折部103界定构成。如此第一弯折部102和第二弯折部103不会过多占用显示面板的正面面积空间,可进一步减小边框区110的两个端边区域111占用的显示面板的正面面积。
所述第一柔性电路板50和所述驱动芯片80设置在所述第一弯折部102上且位于所述第一弯折部102背离所述主体部101的表面,所述第二柔性电路板60设置在所述第二弯折部103上且位于所述第二弯折部103背离所述主体部101的表面。如图4和图5所示,OLED显示装置200还包括显示驱动电路板90设置在主体部101的背面,且大致位于第一弯折部102和第二弯折部103之间的区域。 显示驱动电路板90通过连接器91电性连接主板(图未示)以连接ELVSS电源信号,第一柔性电路板50和第二柔性电路板60均与显示驱动电路板90电性连接,以连接ELVSS电源信号。
可以理解的,所述OLED显示面板100为柔性可弯曲的,所述TFT基板40为柔性可弯曲的。所述TFT基板40为常规的TFT基板,为多层层叠的结构。如图6所示,所述TFT基板包括从下至上依次层叠设置的柔性的基底(聚酰亚胺层,图示为PI1)、绝缘层(SiOx)、a-Si层、第二个聚酰亚胺层(PI2)、绝缘层(SiOx)、绝缘层(SiNx)、绝缘层(SiOx)、栅极绝缘层(GI)、绝缘层(CI)、层间介质层(ILD)、钝化层(PVX)、平坦化层(PLN1和PLN2)等多层,像素驱动电路的TFT(图未示)、电容(图未示)等形成在多层层叠的结构中。如图6所示,本实施例中,ELVSS电源走线70设置在平坦化层(PLN1)上。其他实施例中,ELVSS电源走线70可设置于所述TFT基板40的某一个绝缘层、钝化层、层间介质层、平坦化层上。
OLED显示装置200还包括触控层(图未示),触控层可层叠在显示面板与偏光片210之间,或是层叠在偏光片210与透明盖板230之间,但不以此为限定。本申请中,触控层为外挂式的。所述触控层连接所述触控柔性电路板。
可以理解的,如图4所示,OLED显示装置200还包括层叠在OLED显示面板100的主体部101下方的一些常规的叠层(图未示)。
需要说明的是,以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种显示面板,包括依次层叠设置的第一电极层、有机发光层、第二电极层,所述显示面板划分为显示区和边框区,所述边框区包括相对的第一端边区域、第二端边区域以及连接在所述第一端边区域和所述第二端边区域之间的相对的两个侧边区域,其特征在于,包括:
    设置在所述第一端边区域的第一柔性电路板和设置在所述第二端边区域的第二柔性电路板,所述第一柔性电路板和所述第二柔性板通过各自的走线获取从主板供给所述第一电极层的驱动信号;
    两条电源线,每一条电源线具有相对的两端,每一条电源线的一端与所述第一柔性电路板的所述走线连接,另一端与所述第二柔性电路板的所述走线连接,使所述两条电源走线、所述第一柔性电路板的走线、以及所述第二柔性电路板的走线连接形成回路,所述两条电源走线均电性连接所述第一电极层。
  2. 根据权利要求1所述的显示面板,其特征在于,所述电源线的电阻率高于所述第一柔性电路板的所述走线和所述第二柔性电路板的所述走线的电阻率。
  3. 根据权利要求1或2所述的显示面板,其特征在于,所述第一柔性电路板为显示柔性电路板,所述第二柔性电路板为触控柔性电路板。
  4. 根据权利要求1至3中任一项所述的显示面板,其特征在于,所述两条电源线分别设置在不同的所述两个侧边区域。
  5. 根据权利要求1至4中任一项所述的显示面板,其特征在于,所述驱动信号为ELVSS电压信号。
  6. 根据权利要求5所述的显示面板,其特征在于,所述第一电极层为至少覆盖所述显示区的整层。
  7. 根据权利要求1至6中任一项所述的显示面板,其特征在于,所述第一柔性电路板和所述第二柔性电路板中的走线的材质均为金属铜。
  8. 根据权利要求1至7中任一项所述的显示面板,其特征在于,所述电源走线为TiAlTi走线。
  9. 根据权利要求1至8中任一项所述的显示面板,其特征在于,所述显示面板为柔性的,包括主体部和连接所述主体部相对两端的第一弯折部和第二弯折部,所述第一弯折部和所述第二弯折部相对所述主体部弯折且层叠在所述主体部的背面。
  10. 根据权利要求9所述的显示面板,其特征在于,所述第一柔性电路板设置在所述第一弯折部上且位于所述第一弯折部背离所述主体部的表面,所述第二柔性电路板设置在所述第二弯折部上且位于所述第二弯折部背离所述主体部的表面。
  11. 根据权利要求9所述的显示面板,其特征在于,所述显示面板包括层叠在所述第二电极层背离所述有机发光层一侧的薄膜晶体管基板,所述薄膜晶体管基板为柔性的且包括柔性的基底。
  12. 根据权利要求1至11中任一项所述的显示面板,其特征在于,所述显示面板还包括在所述显示区延伸的多条其他的电源走线,所述多条其他的电源走线为并联连接且电性连接所述第一电极层,所述多条其他的电源走线电性连接所述第一柔性电路板的所述走线或所述第二柔性电路板的所述走线。
  13. 一种显示装置,其特征在于,包括如权利要求1至12中任一项所述的显示面板以及设置在所述显示基板上的偏光片和透明盖板。
  14. 根据权利要求13所述的显示装置,其特征在于,所述显示装置还包括层叠在所述显示面板上的触控层。
  15. 根据权利要求13所述的显示装置,其特征在于,所述显示装置还包括显示驱动电路板,所述显示驱动电路板电性连接主板以获取所述驱动信号,所述第一柔性电路板和所述第二柔性电路板均与所述显示驱动电路板电性连接以获取所述驱动信号。
PCT/CN2023/110986 2022-08-23 2023-08-03 显示面板和显示装置 WO2024041344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211012747.X 2022-08-23
CN202211012747.XA CN117693243A (zh) 2022-08-23 2022-08-23 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2024041344A1 true WO2024041344A1 (zh) 2024-02-29

Family

ID=90012481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110986 WO2024041344A1 (zh) 2022-08-23 2023-08-03 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN117693243A (zh)
WO (1) WO2024041344A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071082A1 (en) * 2000-09-07 2002-06-13 Hiroyuki Okita Display device
CN202150459U (zh) * 2011-08-16 2012-02-22 京东方科技集团股份有限公司 有源矩阵有机发光二极管显示器
CN208110205U (zh) * 2018-05-10 2018-11-16 昆山龙腾光电有限公司 显示装置及电子设备
CN109273490A (zh) * 2018-08-20 2019-01-25 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN114695439A (zh) * 2020-12-31 2022-07-01 乐金显示有限公司 有机发光显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071082A1 (en) * 2000-09-07 2002-06-13 Hiroyuki Okita Display device
CN202150459U (zh) * 2011-08-16 2012-02-22 京东方科技集团股份有限公司 有源矩阵有机发光二极管显示器
CN208110205U (zh) * 2018-05-10 2018-11-16 昆山龙腾光电有限公司 显示装置及电子设备
CN109273490A (zh) * 2018-08-20 2019-01-25 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN114695439A (zh) * 2020-12-31 2022-07-01 乐金显示有限公司 有机发光显示装置

Also Published As

Publication number Publication date
CN117693243A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
JP7311562B2 (ja) 表示装置
CN105390526B (zh) 集成了内嵌式触摸面板的柔性有机发光显示设备
KR102124906B1 (ko) 터치스크린을 구비한 유기전계 발광소자 및 이의 제조 방법
US9504124B2 (en) Narrow border displays for electronic devices
KR101736930B1 (ko) 플렉서블 유기발광 디스플레이 장치
KR20180047536A (ko) 유기발광 표시장치
KR102298367B1 (ko) 표시 장치
KR20170079993A (ko) 유기 발광 표시 패널 및 유기 발광 표시 장치
KR20200004174A (ko) 다중패널 유기발광 표시장치
WO2021258910A1 (zh) 显示基板及显示装置
KR20150095988A (ko) 표시 장치 및 이의 제조 방법
KR102654664B1 (ko) 유기 발광 표시 장치
US20140300849A1 (en) Chip-on-film package and device assembly including the same
CN110416393B (zh) 电子装置
CN113345933A (zh) 显示设备
WO2021248489A1 (zh) 显示基板及显示装置
KR20180001978A (ko) 회로 기판 및 회로 기판을 포함하는 표시장치
KR20190018948A (ko) 표시 장치
CN111403468A (zh) 显示面板和显示装置
WO2024041344A1 (zh) 显示面板和显示装置
KR102150839B1 (ko) 표시 장치
KR20220112901A (ko) 표시 장치
KR20130015690A (ko) 반도체 장치
KR20220025987A (ko) 표시 장치
KR20210083709A (ko) 유기 발광 표시 장치 및 이를 포함하는 멀티 스크린 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856434

Country of ref document: EP

Kind code of ref document: A1