WO2024041180A1 - 路径规划方法及装置 - Google Patents

路径规划方法及装置 Download PDF

Info

Publication number
WO2024041180A1
WO2024041180A1 PCT/CN2023/103263 CN2023103263W WO2024041180A1 WO 2024041180 A1 WO2024041180 A1 WO 2024041180A1 CN 2023103263 W CN2023103263 W CN 2023103263W WO 2024041180 A1 WO2024041180 A1 WO 2024041180A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
path
graphic
interface
feature information
Prior art date
Application number
PCT/CN2023/103263
Other languages
English (en)
French (fr)
Inventor
朱卫明
陈天笑
陈褒扬
刘闯闯
伍朝晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024041180A1 publication Critical patent/WO2024041180A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching

Definitions

  • Embodiments of the present application relate to the field of terminal equipment, and in particular, to a path planning method and device.
  • the path planning method on the terminal usually involves the user specifying the starting point and end point, and the terminal plans the corresponding path based on the starting point and end point set by the user.
  • the path planning process is usually planned based on rules such as the shortest path length or the fewest traffic lights.
  • the path planning method is relatively simple and cannot meet the individual needs of users.
  • Embodiments of the present application provide a path planning method and device.
  • the method includes: based on the user's instructions, the electronic device plans a path that conforms to the target graphic specified by the user, which can realize personalized setting of the path and improve the user experience.
  • embodiments of the present application provide a path planning method.
  • the method includes: the electronic device receives a first operation. Wherein, the first operation received is used to indicate the target graphic.
  • the electronic device determines the target path based on the target graphic indicated by the first operation and the target area in the map.
  • the similarity between the shape of the target path and the shape of the target graphic is greater than a preset threshold, and the target path is within the target area, and the target area is set based on the location of the electronic device, or the target area is set based on user operations. .
  • the electronic device determines the target path, it displays the target path on the map. In this way, in the embodiment of the present application, the user can set the graphics arbitrarily without any restrictions.
  • the electronic device can perform path planning based on the graphics set by the user, and obtain a path similar to the graphics set by the user to meet the user's needs, thereby realizing individuality. path settings. Moreover, in the embodiment of the present application, the electronic device performs path planning within the target area in the map, and its planning is more purposeful, which can effectively improve the success rate and efficiency of path planning.
  • the target path planned in the embodiment of this application includes a starting point and an ending point.
  • the starting point and end point are automatically generated based on the planned path.
  • the target path can be in any area within the target area.
  • the electronic device can obtain the current location of the electronic device and determine the target area based on the current location.
  • the range of the target area may be a preset value, or may be determined based on the user's latest setting.
  • the target area may be a circle, a rectangle, or other geometric shapes centered on the current location of the electronic device.
  • the center of the target area may also be determined based on user settings.
  • the target area can cover an urban area or a town on the map, which is not limited in this application.
  • determining the target path based on the target graphic and the target area in the map includes: the electronic device acquires characteristic information of the target graphic in response to the received first operation. Among them, the feature information is used to describe the graphic characteristics of the target graphic. The electronic device determines the target path based on the characteristic information of the target graphic and the target area in the map. In this way, the embodiment of the present application performs corresponding processing on the target graphics to obtain corresponding feature information. Thus, the corresponding target path can be matched according to some graphic features of the target graphic. In other words, the graphics formed by the target path have the same graphic characteristics as the target graphics.
  • obtaining the characteristic information of the target graphic includes: the electronic device abstracts the target graphic to obtain the target abstract graphic of the target graphic; the target abstract graphic is used to describe The connection relationship between key points in the target graph or key points in the target abstract graph.
  • the electronic device obtains feature information based on the target abstract graphics.
  • the feature information includes at least one of the following: connection feature information, geometric feature information, angle feature information, size feature information, and position feature information.
  • connection feature information can be used to indicate the connection status between different geometric figures, and the connection feature information can include connection points and angles corresponding to the connection points.
  • the geometric feature information is used to indicate some geometric figures included in the graphics, which may include but are not limited to: rhombus, rectangle, circle, etc., for example.
  • the size characteristic information is used to indicate the size relationship between different geometric figures, and can also be understood as a size ratio.
  • positional feature information can be used to indicate positional relationships between different graphics.
  • determining the target path based on the characteristic information of the target graphic and the target area in the map includes: the electronic device performs matching within the target area of the map based on the characteristic information. The electronic device determines the successfully matched path as the target path.
  • determining the target path based on the characteristic information of the target graphic and the target area in the map includes: the electronic device performs matching in the target area of the map based on the first characteristic information to obtain a successfully matched result. At least one first target subpath. The electronic device performs matching in the surrounding area of at least one first target sub-path based on the second characteristic information to obtain a successfully matched second target sub-path; wherein the second target sub-path is within the at least one first target sub-path. Matched within the surrounding area of the third target sub-path in; the first feature information and the second feature information are part of the feature information; the second target sub-path and the third target sub-path constitute the target path.
  • multiple feature information included in the feature information are matched one by one with the path in the target area, so as to match the target path that conforms to the feature constraints.
  • determining the target path based on the characteristic information of the target graphic and the target area in the map also includes: the electronic device receives the second operation, and the second The operation is to specify a target path from a path composed of a plurality of second target sub-paths. The electronic device determines the target path in response to the received second operation. In this way, if multiple paths satisfying the feature information constraints are matched, the user can specify the target path.
  • determining the target path based on the characteristic information of the target graphic and the target area in the map includes: determining multiple candidate paths based on the target graphic and the target area in the map. Based on preset conditions, the target path is determined from multiple candidate paths.
  • the preset conditions include at least one of the following: the shape of the target path has the highest similarity with the target abstract figure, the length of the target path is the shortest, and the target path passes through a designated area; the designated area is preset. In this way, if multiple paths are matched based on the constraints, the paths can be further filtered based on the preset conditions to match a path that better meets the requirements of the constraints.
  • receiving the first operation includes: receiving the first operation on the first interface.
  • Displaying the target path on the map includes displaying the target path on the map of the second interface; the second interface is different from the first interface.
  • the embodiment of the present application can provide a user setting interface, that is, the first interface. Users can set the target graphics arbitrarily in the first interface.
  • the electronic device performs path planning based on the target graphic set by the user in the first interface. After obtaining the target path, the target path can be displayed on the map in the second interface. That is to say, when the user indicates the target graphic in the first interface, there is no need to set it according to the map.
  • the first operation is used to instruct drawing the target graphic in the first interface.
  • the first interface is a gallery interface
  • the gallery interface includes at least one image stored locally
  • receiving a first operation on the first interface includes: the electronic device responds to the received target image The first operation is to determine the target graphic;
  • the target image is an image in at least one image.
  • the first interface is an alternative graphical interface
  • the alternative graphical interface includes at least one alternative graphic
  • receiving the first operation on the first interface includes: the electronic device responds to the received
  • the first operation on the target alternative graphics is to determine the target graphics; the target alternative graphics are graphics in at least one candidate graphics.
  • determining the target path based on the feature information and the target area includes: segmenting the target area to obtain N target sub-areas; N is a positive integer greater than 1; based on the target feature information, N Target sub-regions are prioritized; among them, the sub-region containing more paths corresponding to the target feature information has a higher priority; the target feature information is part of the information in the feature information; based on the feature information, according to the N target sub-regions Priority sorting of regions, matching N target sub-regions one by one. In this way, in the embodiment of the present application, by dividing the map, path matching can be performed in each divided map to speed up path search.
  • displaying the target path on the map of the second interface includes: the electronic device displays key points on the target path on the map of the second interface.
  • displaying the target path on the map of the second interface includes: displaying all routes of the target path on the map of the second interface.
  • determining the target path based on the target graphic and the target area in the map includes: obtaining the current location of the electronic device; determining the target area based on the current location of the electronic device and the range of the target area; where , the target area range is a preset value, or the target area range is set based on the received area range setting operation.
  • the target area is set based on the latest received user operation.
  • inventions of the present application provide a path planning device.
  • the device includes: receiving module, processing module and display module.
  • the receiving module is used to receive the first operation; the first operation is used to indicate the target graphic.
  • the processing module is used to determine the target path based on the target graphic and the target area in the map; the similarity between the shape of the target path and the shape of the target graphic is greater than a preset threshold; the target path is within the target area, and the target area is based on the location of the electronic device.
  • the location is set, or the target area is set based on user operations; the display module is used to display the target path on the map.
  • the processing module is specifically configured to obtain the characteristic information of the target graphic in response to the received first operation; the characteristic information is used to describe the graphic characteristics of the target graphic; based on the characteristic information of the target graphic and the map target area and determine the target path.
  • the processing module is specifically used to perform abstract processing on the target graphic to obtain a target abstract graphic of the target graphic; the target abstract graphic is used to describe key points in the target graphic or one of the key points in the target abstract graphic. The connection relationship between them; based on the target abstract graphics, obtain feature information.
  • the feature information includes at least one of the following: connection feature information, geometric feature information, angle feature information, size feature information, and position feature information.
  • the processing module is specifically configured to perform matching within a target area of the map based on the feature information; and determine a successful matching path as the target path.
  • the processing module is specifically configured to perform matching within the target area of the map based on the first feature information to obtain at least one first target sub-path that matches successfully; based on the second feature information, at least Matching is performed within the surrounding area of a first target sub-path to obtain a successfully matched second target sub-path; wherein the second target sub-path is the surrounding area of the third target sub-path in at least one first target sub-path. matched within; the first feature information and the second feature information are part of the feature information; the second target sub-path and the third target sub-path constitute the target path.
  • the processing module is specifically configured to receive a second operation if multiple second target sub-paths are matched.
  • the second operation is used to specify a target from a path composed of multiple second target sub-paths. Path; in response to receiving the second operation, determining the target path.
  • the processing module is specifically configured to determine multiple candidate paths based on the target graphics and the target area in the map; determine the target path from multiple candidate paths based on preset conditions; the preset conditions include the following At least one of: the shape of the target path has the highest similarity with the target abstract figure, the length of the target path is the shortest, and the target path passes through a designated area; the designated area is preset.
  • the receiving module is configured to receive a first operation on the first interface.
  • the display module is used to display the target path on the map of the second interface; the second interface is different from the first interface.
  • the first operation is used to instruct drawing the target graphic in the first interface.
  • the first interface is a gallery interface, which includes at least one locally stored image
  • the receiving module is configured to determine the target graphic in response to the received first operation on the target image; the target image for at least one of the images in the image.
  • the first interface is an alternative graphical interface
  • the alternative graphical interface includes at least one alternative graphic
  • the receiving module is configured to determine, in response to the received first operation on the target alternative graphic, Target graphics
  • target alternative graphics are graphics in at least one alternative graphics.
  • the processing module is used to segment the target area to obtain N target sub-areas; N is a positive integer greater than 1; based on the target feature information, prioritize the N target sub-areas; Among them, the sub-region containing more paths corresponding to the target feature information has a higher priority; the target feature information is part of the information in the feature information; based on the feature information, the N target sub-regions are sorted according to the priority, and the N target sub-regions are sorted one by one. target sub-region for matching.
  • the display module is used to display key points on the target path in the map of the second interface.
  • the display module is configured to display all routes of the target path on the map of the second interface.
  • the processing module is used to obtain the current location of the electronic device; determine the target area based on the current location of the electronic device and the target area range; where the target area range is a preset value, or the target area The scope is set based on the zone scope setting operation received.
  • the target area is set based on the latest received user operation.
  • the second aspect and any implementation manner of the second aspect respectively correspond to the first aspect and any implementation manner of the first aspect.
  • the technical effects corresponding to the second aspect and any implementation manner of the second aspect can be found in the above-mentioned first aspect and first aspect.
  • the technical effects corresponding to any implementation method of this aspect will not be described again here.
  • embodiments of the present application provide a computer-readable medium for storing a computer program, where the computer program includes instructions for executing the method in the first aspect or any possible implementation of the first aspect.
  • embodiments of the present application provide a computer program, which includes instructions for executing the method in the first aspect or any possible implementation of the first aspect.
  • embodiments of the present application provide a chip, which includes a processing circuit and transceiver pins.
  • the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processing circuit executes the method in the first aspect or any possible implementation of the first aspect to control the receiving pin to receive the signal, so as to Control the sending pin to send signals.
  • inventions of the present application provide an electronic device.
  • the electronic device includes one or more processors, memories, and one or more computer programs, where the one or more computer programs are stored on the memory, and when the computer programs are executed by the one or more processors, the electronic device executes A method in the first aspect or any possible implementation of the first aspect.
  • Figure 1 is a schematic diagram of the hardware structure of an exemplary electronic device
  • Figure 2 is a schematic diagram of the software structure of an exemplary electronic device
  • Figure 3 is a schematic flow chart of an exemplary path planning method
  • Figure 4 is a schematic diagram of an exemplary user interface
  • Figure 5 is a schematic diagram of an exemplary user interface
  • Figure 6 is a schematic diagram of an exemplary user interface
  • Figure 7 is a schematic diagram of an exemplary user interface
  • Figure 8 is a schematic diagram of an exemplary user interface
  • Figures 9a to 9c are schematic diagrams of exemplary graphics category processing methods
  • Figure 10 is a schematic diagram of the abstract processing process of the "small fish" graphic shown in an exemplary manner
  • Figure 11 is a schematic diagram of the abstract processing process of the "520" graphic shown in an exemplary manner
  • Figure 12 is an exemplary map segmentation diagram
  • Figure 13 is a schematic diagram illustrating segmented area path matching
  • Figures 14a to 14d are exemplary path matching schematic diagrams
  • Figure 15 is an exemplary path planning schematic diagram
  • Figure 16 is an exemplary path planning diagram
  • Figure 17 is a schematic diagram of an exemplary optimal path display method
  • Figure 18 is a schematic diagram of an exemplary optimal path display method
  • Figure 19 is a schematic diagram of an exemplary user interface
  • Figure 20 is a schematic diagram of an exemplary application scenario
  • Figure 21 is a graphical schematic diagram of an exemplary illustration
  • Figure 22 is a schematic structural diagram of an exemplary path planning device
  • Figure 23 is a schematic structural diagram of an exemplary device.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 shown in FIG. 1 is only an electronic device.
  • electronic device 100 may have more or fewer components than shown in the figures, may combine two or more components, or may have different component configurations.
  • the various components shown in Figure 1 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the electronic device in the embodiment of the present application may be a mobile phone, a tablet, a wearable device, a vehicle-mounted device, and other devices.
  • the electronic device 100 is a mobile phone as an example for description, and this application does not limit it.
  • the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, And subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) wait.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • NPU neural-network processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can separately couple the touch sensor 180K, charger, flash, camera 193, etc. through different I2C bus interfaces.
  • the processor 110 can be coupled to the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to implement the touch function of the electronic device 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 can be coupled with the audio module 170 through the I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface to implement the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface to implement the function of answering calls through a Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect processor 110 to Wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface to implement the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 and the camera 193 communicate through the CSI interface to implement the shooting function of the electronic device 100 .
  • the processor 110 and the display screen 194 communicate through the DSI interface to implement the display function of the electronic device 100 .
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, display screen 194, wireless communication module 160, audio module 170, sensor module 180, etc.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through them. This interface can also be used to connect other electronic devices, such as AR devices, etc.
  • the interface connection relationships between the modules illustrated in the embodiments of the present application are only schematic illustrations and do not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142, it can also provide power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, internal memory 121, external memory, display screen 194, camera 193, wireless communication module 160, etc.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide solutions for wireless communication including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be disposed in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through audio devices (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194.
  • the modem processor may be a stand-alone device.
  • the modem processor may Independent of the processor 110, it is provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (bluetooth, BT), and global navigation satellites. Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR), etc.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi) -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 194 is used to display images, videos, etc.
  • Display 194 includes a display panel.
  • the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the electronic device 100 can implement the shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193. For example, when taking a photo, the shutter is opened, the light is transmitted to the camera sensor through the lens, the optical signal is converted into an electrical signal, and the camera sensor passes the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, the ISP may be provided in the camera 193.
  • Camera 193 is used to capture still images or video.
  • the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • Electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural-network (NN) computing processor. It draws on the structure of biological neural networks, such as the human brain. It transfers patterns between neurons, processes input information quickly, and can continuously learn by itself. Intelligent cognitive applications of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, etc.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes instructions stored in the internal memory 121 to execute various functional applications and data processing of the electronic device 100 .
  • the internal memory 121 may include a program storage area and a data storage area. Among them, the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the electronic device 100 (such as audio data, phone book, etc.).
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 answers a call or a voice message, the voice can be heard by bringing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak close to the microphone 170C with the human mouth and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which in addition to collecting sound signals, may also implement a noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions, etc.
  • the headphone interface 170D is used to connect wired headphones.
  • the headphone interface 170D may be a USB interface 130, or may be a 3.5mm open mobile terminal platform (OMTP) standard interface, or a Cellular Telecommunications Industry Association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA Cellular Telecommunications Industry Association of the USA
  • the pressure sensor 180A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A there are many types of pressure sensors 180A, such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor may include at least two parallel plates of conductive material.
  • the electronic device 100 determines the intensity of the pressure based on the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position based on the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch location but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold is applied to the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of electronic device 100 about three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 180B detects the angle at which the electronic device 100 shakes, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shake of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • Air pressure sensor 180C is used to measure air pressure. In some embodiments, the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • Magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may utilize the magnetic sensor 180D to detect opening and closing of the flip holster.
  • the electronic device 100 may detect the opening and closing of the flip according to the magnetic sensor 180D. Then, based on the detected opening and closing status of the leather case or the opening and closing status of the flip cover, features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices and be used in horizontal and vertical screen switching, pedometer and other applications.
  • Distance sensor 180F for measuring distance.
  • Electronic device 100 can measure distance via infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may utilize the distance sensor 180F to measure distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light outwardly through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect when the user holds the electronic device 100 close to the ear for talking, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in holster mode, and pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touching.
  • Fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to achieve fingerprint unlocking, access to application locks, fingerprint photography, fingerprint answering of incoming calls, etc.
  • Temperature sensor 180J is used to detect temperature.
  • the electronic device 100 utilizes the temperature detected by the temperature sensor 180J to execute the temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the electronic device 100 reduces the performance of a processor located near the temperature sensor 180J in order to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to prevent the low temperature from causing the electronic device 100 to shut down abnormally. In some other embodiments, when the temperature is lower than another threshold, the electronic device 100 performs boosting on the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194.
  • the touch sensor 180K and the display screen 194 form a touch screen, which is also called a "touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near the touch sensor 180K.
  • the touch sensor can pass the detected touch operation to the application processor to determine the touch event type.
  • Visual output related to the touch operation may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 at a location different from that of the display screen 194 .
  • Bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human body's vocal part.
  • the bone conduction sensor 180M can also contact the human body's pulse and receive blood pressure beating signals.
  • the bone conduction sensor 180M can also be provided in an earphone and combined into a bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibrating bone obtained by the bone conduction sensor 180M to implement the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 180M to implement the heart rate detection function.
  • the buttons 190 include a power button, a volume button, etc.
  • Key 190 may be a mechanical key. It can also be a touch button.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
  • touch operations for different applications can correspond to different vibration feedback effects.
  • the motor 191 can also respond to different vibration feedback effects for touch operations in different areas of the display screen 194 .
  • Different application scenarios such as time reminders, receiving information, alarm clocks, games, etc.
  • the touch vibration feedback effect can also be customized.
  • the indicator 192 may be an indicator light, which may be used to indicate charging status, power changes, or may be used to indicate messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to or separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the electronic device 100 can support 1 or N SIM card interfaces, and N is a large number. A positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the electronic device 100 uses an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiment of this application takes the Android system with a layered architecture as an example to illustrate the software structure of the electronic device 100 .
  • FIG. 2 is a software structure block diagram of the electronic device 100 according to the embodiment of the present application.
  • the layered architecture of the electronic device 100 divides the software into several layers, and each layer has clear roles and division of labor.
  • the layers communicate through software interfaces.
  • the Android system is divided into four layers, from top to bottom: application layer, application framework layer, Android runtime and system libraries, and kernel layer.
  • the application layer can include a series of application packages.
  • the application package can include camera, gallery, calendar, calling, map, navigation, WLAN, Bluetooth, music, video, short message and other applications.
  • the application framework layer provides an application programming interface (API) and programming framework for applications in the application layer.
  • API application programming interface
  • the application framework layer includes some predefined functions.
  • the application framework layer can include window manager, content provider, view system, phone manager, resource manager, notification manager, path planning module, etc.
  • a window manager is used to manage window programs.
  • the window manager can obtain the display size, determine whether there is a status bar, lock the screen, capture the screen, etc.
  • Content providers are used to store and retrieve data and make this data accessible to applications.
  • Said data can include videos, images, audio, calls made and received, browsing history and bookmarks, phone books, etc.
  • the view system includes visual controls, such as controls that display text, controls that display pictures, etc.
  • a view system can be used to build applications.
  • the display interface can be composed of one or more views.
  • a display interface including a text message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide communication functions of the electronic device 100 .
  • call status management including connected, hung up, etc.
  • the resource manager provides various resources to applications, such as localized strings, icons, pictures, layout files, video files, etc.
  • the notification manager allows applications to display notification information in the status bar, which can be used to convey notification-type messages and can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also be notifications that appear in the status bar at the top of the system in the form of charts or scroll bar text, such as notifications for applications running in the background, or notifications that appear on the screen in the form of conversation windows. For example, text information is prompted in the status bar, a beep sounds, the electronic device vibrates, the indicator light flashes, etc.
  • the path planning module can be used to perform abstract processing on input information input by an application (such as a map application) and obtain abstract processing results. And based on the abstract processing results, the map is matched to match the optimal path.
  • an application such as a map application
  • Android Runtime includes core libraries and virtual machines. Android runtime is responsible for the scheduling and management of the Android system.
  • the core library contains two parts: one is the functional functions that need to be called by the Java language, and the other is the core library of Android.
  • the application layer and application framework layer run in virtual machines.
  • the virtual machine executes the java files of the application layer and application framework layer into binary files.
  • the virtual machine is used to perform object life cycle management, stack management, thread management, security and exception management, and garbage collection and other functions.
  • System libraries can include multiple functional modules. For example: surface manager (surface manager), media libraries (Media Libraries), 3D graphics processing libraries (for example: OpenGL ES), 2D graphics engines (for example: SGL), etc.
  • the surface manager is used to manage the display subsystem and provides the fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as static image files, etc.
  • the media library can support a variety of Audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, composition, and layer processing.
  • 2D Graphics Engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, camera driver, audio driver, and sensor driver.
  • the components included in the system framework layer, system library and runtime layer shown in Figure 2 do not constitute specific limitations on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • Figure 3 is a schematic flowchart of an exemplary path planning method. Please refer to Figure 3, which includes but is not limited to the following steps:
  • the user can use the interface provided by the map application of the mobile phone to instruct the mobile phone to plan a path according to the results selected by the user.
  • FIG. 4 is a schematic diagram of an exemplary user interface. Please refer to Figure 4.
  • a map application (it can also be other applications, this application only takes the map application as an example for explanation, and this application does not limit it) can provide a path planning function.
  • the path planning display interface 401 includes but is not limited to: list selection options 402 and customization options 403.
  • FIG. 5 is a schematic diagram of an exemplary user interface. Please refer to (1) of Figure 5.
  • the map application responds to the received operation of the user clicking on the list selection option 402,
  • the list selection interface 501 is displayed.
  • the list selection interface 501 includes but is not limited to: list items 502.
  • the list item 502 includes some graphics, such as "520", heart shape, "LOVE", etc. It should be noted that the graph shown in Figure 5 is only a schematic example and is not limited in this application.
  • the graphics described in the embodiments of this application may be character graphics, geometric graphics, and other simple or complex graphics, which are not limited by this application.
  • the map application displays a rule setting interface 503 in response to the received user operation.
  • the rule setting interface 503 includes but is not limited to: search range setting option 504 and path length setting option 505.
  • FIG. 6 is an exemplary user interface. Please refer to (1) of FIG. 6 .
  • the map application displays a search range setting interface 601 in response to the received user operation.
  • the search scope setting interface 601 includes but is not limited to: default options 602 and custom options 603.
  • the default value of the search range may be displayed in the default option 602 .
  • the search range can also be understood as the target area in the map, that is, the mobile phone will perform path planning within the search range (ie, the target area) of the map. In other words, the path planned by the mobile phone based on user demand planning is within the search range.
  • the default value of the search range is optionally within 60KM (kilometres) of the current location.
  • the current location is the current location of the user (i.e., the mobile phone) obtained by the map application by calling the mobile phone's positioning system (such as the GPS system).
  • the range described in the embodiment of this application may be a circular area with the current position as the center, and of course it may also be a rectangular or other shaped area, which is not limited by this application.
  • the numerical values involved in the embodiments of this application are only illustrative examples and can be set according to actual needs. This application does not limit them. No further explanation will be given.
  • the user can also click custom option 603 to set the search range according to requirements.
  • the map application displays the search range customization setting interface 604 in response to the received operation of the user clicking the customization option 603 .
  • the search range customization setting interface 604 includes but is not limited to: search range preview box 605, range setting options 606, confirmation options, reset options, etc.
  • the search range preview box 605 can be used to display a map.
  • the map may be obtained by the map application from the cloud, or may be obtained by the map application from the servers of other map providers, which is not limited in this application.
  • the cloud described in the embodiment of this application may be Huawei Cloud, and the cloud may include one or more servers.
  • the user can slide in the map displayed in the search range preview box 605 and determine the center point of the search range by long pressing (it can also be other operations, which can be set according to actual needs, and is not limited in this application).
  • the center point 605a shown in (2) of Figure 6 is the center point of the search range selected by the user.
  • the user can set the search range in the range setting option 606.
  • the user can click the search range setting option 606, and the map application can display a numeric keyboard (or some optional range lists, which can be set according to actual needs, and is not limited in this application) in response to the received user operation.
  • the user can Enter the required search range, such as 20KM. This value can be set according to actual needs and is not limited in this application.
  • the map application can display the corresponding search range in the search range preview box 605, that is, with the search range center point 605a
  • a circular area with a diameter of 20KM it can also be in other shapes, which is not limited in this application.
  • the user can click the confirmation option to determine the search scope.
  • the map application determines the search scope in response to the received user action.
  • the map application can display the currently set range in the customization option 603 in (1) of Figure 6 , for example, it can display the center point location (such as XX Building, that is, the center point 605a) and the search range (such as 20KM ).
  • the user can also click the reset option to reselect the center point of the search range and/or the search range.
  • the user can also click the path length setting option 505 to set the path length.
  • the path length is the maximum length of the final planned path (such as the path shown in Figure 19). That is to say, the full length (ie, length) of the path planned by the mobile phone based on user needs is less than or equal to the set path. length.
  • FIG. 7 is a schematic diagram of an exemplary user interface. Please refer to (1) of FIG. 7 .
  • the map application displays the path length setting interface 701 in response to the received user click on the path length setting option 505 .
  • the path length setting interface 701 includes but is not limited to: default options 702 and custom options 703.
  • the default option 702 may display a default value of the path length.
  • the default value of the path length is optionally within 10KM, that is, the length of the planned path is less than or equal to 10KM.
  • the user can also click custom option 703 to set the path length according to requirements.
  • the map application may display a numeric keyboard or some selectable path lengths (not shown in the figure) in response to the received operation of the user clicking on the custom option 703.
  • the map application may display a numeric keypad or some selectable path lengths (not shown in the figure). Enter the user input to determine the custom path length, for example, 3KM.
  • the map application can display a value set by the user in the customization option 703, such as 3KM.
  • the user interface shown in the embodiment of this application is only a schematic example.
  • the actual interface may include more or less content, and the position, size and display content of each option can be set according to actual needs. This application is not limited and will not be repeated below.
  • the map application can determine the input information based on the received user operation.
  • the input information can also be understood as the user's needs, or the effect that the user expects from the planned path.
  • the input information includes but is not limited to: the graphics selected by the user (for example, "520" selected in (1) of Figure 5), search range information, path length information, etc.
  • the search range information and path length information may be default values or user-defined values, which are not limited in this application.
  • the path planning setting interface 401 also includes a customization option 403 , which can provide the user with a customization setting interface so that the user can set the required graphics according to needs.
  • FIG. 8 is an exemplary user interface.
  • the map application displays a path customization setting interface 801 in response to the received operation of the user clicking on the customization option 403.
  • the path customization setting interface 801 includes but is not limited to: undo option 802a, gallery option 802b, graphic drawing box 803, confirmation option, reset option, etc.
  • the undo option 802a can be used to undo the content that the user last drew in the graphic drawing box 803.
  • the gallery option 802b can be used to call the gallery in the mobile phone.
  • the map application displays the gallery interface in response to the received user operation.
  • the gallery interface may include at least one picture stored locally on the mobile phone.
  • the user can select one or more of the images.
  • the map application may display the user-selected picture in the graphics drawing box 803 in response to the received user selection operation.
  • the pictures in the gallery selected by the user are user-defined graphics.
  • the user can also perform further drawing on the picture displayed in the graphics drawing box 803 (ie, the picture selected from the gallery).
  • the user can draw graphics in the graphics drawing box 803, and the map application displays the corresponding graphics in response to the received user's drawing operation.
  • the graphics described in the embodiment of the present application may include geometric graphics, character graphics, and other graphics.
  • drawing tools may also be displayed in the graphics drawing box 803, such as pencil tools, fill tools, and line drawing tools. etc., this application is not limited.
  • the user can click the confirmation option to confirm the drawn graphics.
  • the map application obtains the graphics drawn by the user and/or the graphics selected by the user from the gallery.
  • the map application clears the content in the graphics drawing box 803 in response to the received user operation.
  • the user can redraw the graphics in the graphics drawing box 803.
  • the map may display the interface shown in (2) of Figure 5 in response to the received user operation to further set the search range and/or path length.
  • the phone can confirm the input information.
  • Input information includes but is not limited to: graphics drawn by the user (which can also be selected from the gallery), search range information, path length information, etc.
  • the mobile phone can also receive instructions sent by other devices.
  • the instructions can include input information.
  • the input information includes but is not limited to: graphics, search range information, path range information, etc.
  • user B can perform the settings in Figures 5 to 8 on electronic device B.
  • graphics and other information search range information, path range information, etc.
  • electronic device B can send a message to user A's electronic device A.
  • Input information which is the above graphics and other information.
  • Electronic device A can continue to perform subsequent steps based on the received input information to plan the path.
  • the map application sends a route planning request to the route planning service.
  • the map application can send a route planning request to the route planning service.
  • the path planning request includes but is not limited to the above input information.
  • the path planning request is used to request the path planning service to perform path planning based on the input information.
  • module interaction process in the embodiment of the present application may also be conducted through memory.
  • a map application can write input information into memory and trigger a route planning service to read the input information from memory.
  • the module interaction methods described in the embodiments of this application are only illustrative examples, and this application does not limit them.
  • the path planning service performs abstract processing on the input information and obtains the abstract processing result.
  • the path planning service obtains the input information in the path specification request, and can abstract the graph based on the input information to obtain the abstract processing result corresponding to the graph.
  • the path planning service obtains the graphics in the input information (hereinafter referred to as the target graphics).
  • the target graphics For example, the small fish drawn in Figure 8 can also be "520" selected in the list. As mentioned above, "520" can be understood as the character graphics class in graphics.
  • the path planning service can perform image recognition on the target graphics to classify the target graphics.
  • the route planning service can preset some categories.
  • graphics categories include but are not limited to: character graphics, geometric graphics, and other graphics.
  • FIG. 9a to FIG. 9c are schematic diagrams illustrating exemplary graphics category processing methods. Please refer to (1) in Figure 9a. This figure (i.e., heart shape) is a geometric figure. As shown in (1) of Figure 9b, this graphic (i.e., "5") is a character graphic. As shown in (1) of Figure 9c, this figure (ie, the small fish) is other figures and can also be understood as complex figures. It should be noted that other graphics can be filled with colors, which is not limited in this application.
  • the way in which the path planning service performs image recognition on the target graphics can be any feasible image recognition technology in the existing technology, which will not be described again in this application.
  • the abstraction processing process can be understood as abstracting graphics into simple graphics or simple lines.
  • the path planning service can identify the key points of the geometric figure, which are the black dots in (2) of Figure 9a.
  • the pattern composed of multiple scattered points (ie, key points) shown in (2) of Figure 9a is an abstract figure corresponding to the geometric figure (ie, the target figure) shown in (1) of Figure 9a.
  • the path planning service can also connect scattered points (ie key points) through straight lines, as shown in (3) of Figure 9a, which corresponds to the geometric figure shown in (1) of Figure 9a abstract graphics.
  • the path planning's abstract processing method for this type of graphics can be line-based.
  • the path planning service can identify some feature points of the character "5", such as the black dots shown in (2) of Figure 9b, which are the feature points of the character "5".
  • the path planning service can connect feature points to obtain linear abstract graphics. As shown in (2) of Figure 9b, it is the abstraction corresponding to the character graphic "5" (i.e., the target graphic) shown in (1) of Figure 9b. graphics.
  • the path planning service can be aligned for abstract processing to obtain simple geometric figures, as shown in (2) of Figure 9b, which is the abstract figure corresponding to the target figure (ie, the "small fish" figure).
  • Figure 10 is a schematic diagram of the abstract processing process of the "small fish” graphic. Please refer to (1) of Figure 10.
  • This graph is the target graph obtained from the input information by the path planning service.
  • the path planning service can perform image recognition on the "small fish” graphic to identify the outline of the "small fish” graphic.
  • the path planning service determines the geometry that is the same as or similar to the contour based on the recognized contour. For example, the outline of the "little fish" graphic can be abstracted into rhombuses and triangles.
  • the above abstraction method can also be understood as clearing the details (such as fish scales, fins, eyes, etc.) of complex graphics (i.e., "small fish” graphics) to obtain the outline of the "small fish” graphics, and obtain it based on the outline. to the corresponding geometric figure (that is, an abstract figure).
  • the path planning service after the path planning service obtains the abstract graphics, it can obtain feature information based on the abstract graphics.
  • the feature information includes but is not limited to: connection information (also called intersection information), angle information, size information, geometric information, position information, etc.
  • connection information is used to indicate the connection status of different geometric figures.
  • point O is the connection point between the rhombus ABOE and the triangle COD.
  • the angle information is used to indicate the angle in the geometric figure.
  • the angle of AOC can be 125°
  • the vertex angle ⁇ COD of the triangle COD can be 120°
  • the two interior angles ⁇ OCD and ⁇ CDO can be 30°.
  • the angle information may also include angle information of a rhombus, etc., and examples will not be given one by one here.
  • the angle information may include the degrees of all angles in the abstract graphic, or may include the degrees of at least one angle, which is not limited in this application.
  • the size information is used to indicate the proportions of multiple geometric figures.
  • the ratio of the size of the rhombus ABOE to the size of the triangle COD can be 2:1. This value is only a schematic example and is not limited in this application.
  • geometric information which may also be called graphic information, is used to indicate geometric figures included in abstract graphics.
  • the geometric information includes rhombus AOBE and triangle COD. That is, the geometric information is used to indicate that the abstract graphics of the "small fish" graphics include rhombuses and triangles.
  • the position information is used to indicate the positional relationship of scattered points and/or lines in abstract graphics.
  • the location relationship includes but is not limited to information such as orientation and/or distance.
  • the path planning service can indicate the positional relationship between scatter points through location information.
  • scatter point 901 is on the right side of scatter point 902, and the distance is 10 pixels, etc.
  • characteristic information described in the embodiments of this application is only a schematic example. In other embodiments, the characteristic information may also include other information or any combination of information, and is intended to describe abstract graphics.
  • the characteristic information obtained by the path planning service may include but is not limited to:
  • Point O is the intersection point, and the intersection lines include two, which can also be understood as a "cross" intersection point.
  • Angle information angle values such as ⁇ COD, ⁇ OCD, ⁇ CDO, ⁇ AOE, ⁇ OEB (can include more or less values, and is not limited in this application).
  • the above feature information can be used to describe: the abstract graphics of the "small fish" graphic include the rhombus ABOE and the triangle COD, where the connection point of the rhombus ABOE and the triangle COD is point O, and point O is the intersection point of the "cross”. Moreover, the feature information also describes the rhombus ABOE, triangle COD and the values of each angle at the connection point.
  • the path planning service can obtain an abstract processing result corresponding to the "small fish" graphic (ie, the target graphic) shown in (1) of Figure 10 .
  • the abstract processing result includes but is not limited to feature information.
  • Figure 11 is a schematic diagram of the abstract processing process of the "520" graphic shown in an exemplary manner. Please refer to (1) in Figure 11. This figure is the road
  • the path planning service obtains the target graph from the input information.
  • the path planning service can extract key points of the target graphics, such as the black dots shown in (2) of Figure 11, including but not limited to: scatter point 1101, scatter point 1102, Scatter 1103, Scatter 1104 and Scatter 1105. That is, the scattered points obtained after abstracting each character in the character "520".
  • the path information can obtain the feature information corresponding to the abstract graphic.
  • Feature information may include location information and connection information between scattered points.
  • connection information may include connection relationships between scattered points in each character.
  • connection information may also include connection relationships between characters.
  • the position information corresponding to the abstract graphic shown in (2) of Figure 11 may include but is not limited to: scatter point 1101 is on the right side of scatter point 1105, and the distance is 10 pixels. Scatter 1106 is below scatter 1105 at a distance of 10 pixels. Scatter point 1102 is on the right side of scatter point 1101, and the distance is 20 pixels (the distance does not need to be limited, and is not limited in this application). Scatter 1104 is to the right of scatter 1103 and so on.
  • the location information may include more information, and this application will not give examples one by one.
  • the connection information may include but is not limited to: scatter point 1101 is connected to scatter point 1105, and scatter point 1106 is connected to scatter point 1105.
  • connection information may also include the connection between scatter point 1101 and scatter point 1102, and the connection between scatter point 1103 and scatter point 1104. That is to say, the connection information can also be used to indicate the connection relationship of abstract graphics of different characters.
  • the characteristic information can also be understood as path filtering conditions.
  • the path planning service can match paths that meet the conditions based on the characteristic information.
  • the path planning service can divide the feature information into coarse matching information and fine matching information.
  • the rough matching information may also be called rough matching conditions or rough matching condition information, and can be used for rough matching in the path matching process to match paths that satisfy the rough matching information.
  • Fine matching information can also be called fine matching conditions or precise matching condition information, and can be used to further perform fine matching from the paths with successful rough matching to filter out paths with higher similarity. The specific implementation method will be explained in detail below.
  • the coarse matching information may include but is not limited to at least one of the following: geometric information (for concepts, please refer to the above), connection information, location information, etc.
  • the precise matching information may include but is not limited to at least one of the following: angle information, size information, etc. It should be noted that the division method (that is, the included content) of coarse matching information and fine matching information described in the embodiments of this application is only a schematic example, and this application does not limit it.
  • the abstract processing result can be obtained.
  • the abstract processing result may include feature information (it may also include geometric information, or the feature information may include geometric information. See the above description for details and will not be repeated here).
  • the path planning service can divide the feature information to obtain coarse matching information and fine matching information. It can also be called rough matching conditions and precise matching conditions, which are not limited in this application.
  • the route planning service may obtain map information from a cloud (for example, Huawei Cloud) or a map provider's server. Taking Huawei Cloud as an example, the path planning service can send request information to the cloud to request the cloud to feedback map information.
  • the request information may include the search range information described above, which is used to request a partial area in the map, that is, a map of the range indicated by the search range information.
  • the cloud feeds back the map to the electronic device (such as a mobile phone) of the route planning service.
  • the information fed back by the cloud can be the entire map or a partial map (that is, a map of the target area, where the target area is the area indicated by the search range), which is not limited in this application.
  • the cloud feeds back all maps for example, including national maps or maps of all provinces, which can be set according to actual needs and is not limited in this application
  • the path planning service can be based on the feature information in the target area in the map. (i.e. the area indicated by the search scope) is path matched.
  • the path planning service can match a path that meets the conditions indicated by the rough matching information in the target area of the map based on the rough matching information.
  • the route planning service can divide the map of the target area to obtain multiple divided areas.
  • Figure 12 is an exemplary map segmentation diagram. Please refer to Figure 12.
  • the route planning service divides the map into n areas, including, for example, divided areas a_1 to divided areas a_n.
  • the path planning service may determine the graphic size area based on the shape of the abstract graphic and the path length set by the user as described above.
  • the graphic size area is the maximum length of the abstract graphic according to the path length. The maximum area that can be achieved after a large value is mapped onto the map.
  • the path planning service can segment the target area based on the graphic size area and the total area of the target area. Among them, the area of each divided area is greater than or equal to the graphic size area.
  • the specific division method can be set according to actual needs, and is not limited in this application.
  • the path planning service prioritizes the segmented areas based on at least one of the rough matching conditions. Among them, the more paths that meet the conditions contained in the segmented area, the higher the priority. For example, still taking the abstract graphic corresponding to the "small fish" graphic shown in (3) of Figure 10 as an example, the path planning service can match each segmented area based on the connection information (i.e., cross information) in the feature information. To detect whether the segmented area contains "cross" cross paths and the number of "cross" cross paths included.
  • connection information i.e., cross information
  • FIG. 13 is a schematic diagram illustrating segmented area path matching. Please refer to FIG. 13 , taking the divided area a_m and the divided area a_p as an example.
  • the path planning service matches the paths in the divided area a_m and the divided area a_p based on the connection information.
  • the matching result is that the divided area a_m does not include the cross path indicated by the connection information, and the divided area a_p includes at least 3 cross paths indicated by connection information.
  • the priority of the divided area a_p is higher than the priority of the divided area a_m.
  • the priority of the area can be set to 0, that is, in the subsequent matching process, the priority of the area can no longer be 0.
  • the segmented areas are matched, thereby reducing the total number of retrieval times for path matching (which can also be understood as the number of matches).
  • the path planning service can match the segmented areas one by one in order of priority based on other information (or conditions) in the rough matching information to obtain a successfully matched path.
  • Figures 14a to 14c are exemplary path matching schematic diagrams. Please refer to Figure 14a.
  • the abstract graphics and corresponding feature information in (3) of Figure 10 are still used as an example for explanation.
  • the rough matching information may include but is not limited to: connection information and geometric information. It can be understood that the connection information is used to indicate intersecting paths. The geometric information is used to indicate whether the rhombus or the triangle is connected to the cross path. For specific description, please refer to the above embodiment and will not be described again here.
  • the path planning service can perform matching within the divided area (the divided area is only an illustrative example and is not limited in this application) based on the connection information, so as to match (or retrieve, detect) to meet the requirements.
  • Cross paths indicated by connection information can be performed within the divided area (the divided area is only an illustrative example and is not limited in this application) based on the connection information, so as to match (or retrieve, detect) to meet the requirements.
  • the path planning service matches multiple cross paths including O1 to O7 that meet the requirements indicated by the connection information, that is, O1 to O7 are all intersection points corresponding to "cross" cross paths.
  • the path planning service continues to match the path indicated by the geometric information within the segmented area according to the geometric figure indicated by the geometric information. Please refer to Figure 14b.
  • the path planning service detects whether the path connected by O1 to O7 includes a path in the shape of a triangle.
  • the path planning service detects that O2-C1-D1 forms a triangle, O2-C2-D2 forms a triangle, and O6-C3-D3 forms a triangle. That is, the above path satisfies the triangular shape required by the geometric information.
  • the path planning service continues to detect to determine whether the path connecting O2 and O6 includes a rhombus-shaped path. For example, as shown in Figure 14c, the path planning service detects that A1-O2-E1-B1 and O2-D2-O6-E1 are diamond-shaped (or approximately diamond-shaped) paths.
  • the path planning service first matches cross paths, and then sequentially matches triangular and rhombus paths.
  • the path planning service can also match in other orders, or can match multiple conditions in parallel, which is not limited in this application.
  • the path planning service is based on rough matching information, and the matched paths include but are not limited to: O2-A1-B1-E2-O2-C2-D2, O2-A1-B1-E2-O2-C1-D1, and O6 -D2-O2-E1-O6-C2-D3.
  • the path planning service may not segment the map. That is, the path planning service may perform path matching on the target area of the map based on the feature information.
  • the matching method is as described above (i.e., Figure 14a ⁇ Figure 14c) is the same and will not be described again here.
  • the path planning service filters the matched paths based on the preset strategy to obtain the optimal path.
  • the path planning service can further match (or filter) the paths successfully matched in S303 based on the characteristic information to obtain the optimal path.
  • the optimal path may include one or more.
  • FIG. 14d is a schematic diagram illustrating the fine matching process.
  • the path planning service is based on rough matching information.
  • the matched paths include but are not limited to: O2-A1-B1-E2-O2-C2-D2, O2-A1-B1 -E2-O2-C1-D1 and O6-D2-O2-E1-O6-C2-D3.
  • the path planning service can perform the above-mentioned path based on the preset strategy. Rows are further matched to get the best path.
  • the preset policy may include but is not limited to precise matching information and path length information (ie, the path length range set by the user in the above embodiment).
  • the path length information is used to indicate that the length of the matched path is less than or equal to the path length indicated by the path length information.
  • the precise matching information includes but is not limited to: angle information and size information.
  • the angle information may include the numerical value of each angle in the abstract figure, and the size information is used to indicate the size ratio of the rhombus and the triangle.
  • the path planning service can set a corresponding matching range for each piece of information in the precise matching information.
  • the angle information indicates that the degree of ⁇ COD is 120°.
  • the path planning service can set the angle range to ⁇ 30° (can be set according to actual needs, and is not limited in this application), which is indicated by the precise matching information.
  • the range of ⁇ COD is [90°, 150°]. The other angle ranges are similar and will not be explained one by one here.
  • the path planning service can also set a range for the size information in the precise matching information. For example, if the original size information indicates a ratio of 2:1, the path planning service can expand this condition to a ratio of 0.5 (i.e. 1:2) ⁇ 3 (i.e. 3:1), which can be set according to actual needs and is not limited in this application.
  • the path planning service can determine the successfully matched path (ie, the optimal path) based on each information (including the set range) in the precise matching information, including: O2-A1-B1-E2-O2 -C2-D2 and O6-D2-O2-E1-O6-C2-D3.
  • the path planning service when the path planning service matches multiple optimal paths based on the precise matching information, the path planning service can further match the path closest to the conditions defined by the precise matching information, that is, is the optimal path.
  • the size ratio of the rhombus O2-A1-B1-E2 and the triangle O2-C2-D2 is 2:1.
  • the size ratio of rhombus O6-D2-O2-E1 and triangle O6-C2-D3 is 1:2.
  • the size ratio in the path O2-A1-B1-E2-O2-C2-D2 is closer to the size ratio indicated by the size information in the precise matching information (ie, 2:1).
  • the path O2-A1-B1-E2-O2-C2-D2 is the optimal path.
  • the path planning service when the path planning service matches multiple optimal paths based on precise matching information, the path planning service can send multiple optimal paths to the map application.
  • the map application can display multiple optimal paths, and the user can select one of them as the optimal path.
  • the map application determines the optimal path in response to the user selection operation received.
  • the path planning service when the path planning service matches multiple optimal paths based on precise matching information, the path planning service can also select the path closest to the target graphic semantics as the optimal path.
  • the path planning service can perform semantic recognition on the target graphics to obtain the graphics semantic recognition results, and the path planning service can perform semantic recognition on the graphics surrounded by the optimal path to obtain the path semantic recognition results.
  • the specific method of semantic recognition can be any feasible method in the existing technical embodiments, and is not limited in this application.
  • the path planning service can match multiple path semantic recognition results with the graphic semantic recognition results to obtain the path with the closest semantics. For example, the semantic similarity is less than or equal to a preset threshold.
  • the optimal path determined by the path planning service has a graphic composed of a path whose similarity to the abstract graphic is greater than or equal to the preset similarity threshold.
  • the precise matching process can be understood as a similarity evaluation process.
  • the path planning service can further match the path with the highest shape similarity to the abstract graphic based on the conditions indicated by the fine matching information.
  • the evaluation conditions for similarity may be diverse.
  • similarity may be evaluated based on geometric similarity. It can also be understood that the higher the geometric similarity between the geometric figure formed by the path and the abstract figure (which can also be understood as the shape of the target figure), the higher the matching degree. For example, if the difference between the size ratio of the geometric figure in the path and the size ratio indicated by the size information in the feature information is less than or equal to the threshold, it can also be understood that the size similarity is greater than or equal to the threshold. Among them, the smaller the difference, the higher the dimensional similarity (i.e. geometric similarity) corresponding to the path.
  • the geometric similarity can also be evaluated based on angles, positions, etc., for example, the difference between the angle in the shape enclosed by the path and the angle indicated in the angle information is less than or equal to the threshold, that is, the angle similarity is greater than or equal to the threshold.
  • the smaller the difference the higher the angular similarity (i.e. geometric similarity) corresponding to the path.
  • the similarity may also be based on semantic similarity evaluation. That is, as mentioned above, the closer the semantic recognition results are, the higher the similarity. It should be noted that each threshold described in this application can be set according to actual needs, and is not limited in this application.
  • the path planning service can further match the optimal path based on the path length information to detect whether the optimal path is less than or equal to the path length range, where the path length of the optimal path needs to be less than or equal to the path length information indicated. path length.
  • the path planning service can also first match the path length information on the path matched by the rough matching process, and then perform fine matching. This application is not limited.
  • the path planning service may select the path with the shortest path length as the optimal path.
  • the user can also choose to specify a path or location during the stage of setting the target graphic.
  • the path planning service matches multiple optimal paths based on precise matching information, the path passing through the specified path or location can be regarded as the optimal path.
  • the path planning service can also use this condition as a rough matching condition in the rough matching stage, which is not limited in this application.
  • the path planning service can also perform rough matching and fine matching simultaneously. For example, after matching intersecting paths, the path planning service can detect the angle of each intersecting path based on the angle information. Among them, if the angle is within the angle range indicated by the angle information, it is a successfully matched cross path.
  • Figure 15 is an exemplary path planning diagram. Please refer to Figure 15.
  • the path planning service can match the corresponding path based on the corresponding feature information.
  • the shape enclosed by the path is similar to the abstract figure shown in (2) of Figure 11.
  • Figure 16 is an exemplary path planning diagram. Please refer to Figure 16.
  • the path planning service can form an optimal path based on the path between two scatter points in the map. That is to say, when planning a path, the connection path between scattered points may not be a curve or a straight line, but a path of any shape, which is not limited in this application.
  • the path planning application sends the optimal path to the map application.
  • the optimal route can be sent to the map application.
  • the optimal path sent by the path planning includes but is not limited to: the starting point, end point and path of the path, etc.
  • the map application displays the optimal path.
  • the map application may determine the starting point and end point as well as the path in response to the obtained optimal path.
  • Maps applications can display the optimal route within a target area of the map.
  • Figure 17 is a schematic diagram illustrating an optimal path display manner.
  • the map application can display all routes of the optimal path and at least one key passing point based on the obtained optimal path.
  • the key waypoint is any place on the optimal path.
  • Figure 18 is a schematic diagram illustrating an optimal path display manner.
  • the map application can display multiple key passing points on the optimal path based on the obtained optimal path.
  • the path planning service can display the optimal path based on any of the methods shown in Figure 17 or Figure 18, which is not limited by this application.
  • Figure 19 is a schematic diagram of an exemplary user interface.
  • the navigation interface 1901 of the map application may include a route display box 1902, route information 1903, and a start navigation option.
  • the path display box 1902 can be used to display the map and the optimal path on the map.
  • the path information 1903 may include but is not limited to: path length (for example, the entire site is 8KM), starting location information, end location information, etc.
  • the user can click the Start Navigation option to instruct the map application to navigate based on the optimal path and the user's location.
  • the map application initiates navigation in response to the received user action.
  • the path planning service can send matching failure information to the map application to indicate that the optimal path cannot be matched.
  • the map application can display a matching failure prompt message to remind the user to reset the input information, including resetting the target graphic, search range, and/or path length, etc.
  • FIG. 20 is a schematic diagram of an exemplary application scenario.
  • the application scenario includes mobile phones and servers.
  • the mobile phone can be used to obtain input information, and the mobile phone sends a path planning request to the server.
  • the server can match the optimal path based on the path planning request. That is to say, the path planning service in the above embodiment is provided in the server. After obtaining the optimal path, the server sends the path planning result to the mobile phone, and the path planning result includes the optimal path.
  • the path planning result includes the optimal path. Please refer to the undescribed parts The above will not be repeated here.
  • the path planning service can pre-store the optimal path corresponding to each graphic in the list in the map, that is to say, the path planning service
  • the process in Figure 3 can be executed in advance to obtain and save the optimal path corresponding to each graph.
  • the path planning service can send the pre-saved optimal path to the map application.
  • the result of abstract processing by the path planning service may be the same as the original graphics.
  • the path planning service can skip the abstract processing process and directly obtain the corresponding feature information based on the original graphics (ie, the target graphics).
  • FIG. 21 is an exemplary graphical diagram. Please refer to Figure 21. What the user depicts is the constellation diagram of Pisces (it can also be selected from the list, which is not limited in this application).
  • the path planning service can directly extract corresponding feature information based on the target graphic (i.e., constellation diagram). For example, it can include location information and connection information between key points.
  • the path planning service can also perform abstract processing on this type of graph, and the processing result is the same graph as the target graph.
  • the electronic device includes corresponding hardware and/or software modules that perform each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions in conjunction with the embodiments for each specific application, but such implementations should not be considered to be beyond the scope of this application.
  • Figure 22 is a schematic structural diagram of an exemplary path planning device 2200.
  • the path planning device 2200 includes but is not limited to: a receiving module 2201, a processing module 2202 and a display module 2203.
  • the receiving module 2201 is used to receive the first operation; the first operation is used to indicate the target graphic.
  • the processing module 2202 is used to determine the target path based on the target graphic and the target area in the map. The similarity between the shape of the target path and the shape of the target graphic is greater than a preset threshold, and the target path is within the target area.
  • the target area is set based on the location of the electronic device, or the target area is set based on the user operation.
  • the display module 2203 is used to display the target path on the map.
  • the processing module 2202 is specifically configured to obtain the characteristic information of the target graphic in response to the received first operation; the characteristic information is used to describe the graphic characteristics of the target graphic; based on the characteristic information of the target graphic and the map In the target area, determine the target path.
  • the processing module 2202 is specifically used to perform abstract processing on the target graphic to obtain a target abstract graphic of the target graphic; the target abstract graphic is used to describe key points in the target graphic or key points in the target abstract graphic. The connection relationship between them; based on the target abstract graphics, obtain feature information.
  • the feature information includes at least one of the following: connection feature information, geometric feature information, angle feature information, size feature information, and position feature information.
  • the processing module 2202 is specifically configured to perform matching within the target area of the map based on the feature information; and determine the path with successful matching as the target path.
  • the processing module 2202 is specifically configured to perform matching within the target area of the map based on the first feature information to obtain at least one first target sub-path that matches successfully; based on the second feature information, in Matching is performed within the surrounding area of at least one first target sub-path to obtain a successfully matched second target sub-path; wherein the second target sub-path is around a third target sub-path in at least one first target sub-path. Matched within the area; the first feature information and the second feature information are part of the feature information; the second target sub-path and the third target sub-path constitute the target path.
  • the processing module 2202 is specifically configured to receive a second operation if multiple second target sub-paths are matched.
  • the second operation is used to specify a path from a path composed of multiple second target sub-paths.
  • Target path in response to receiving the second operation, determining the target path.
  • the processing module 2202 is specifically configured to determine multiple candidate paths based on the target graphics and the target area in the map; determine the target path from the multiple candidate paths based on preset conditions; the preset conditions include At least one of the following: the shape of the target path has the highest similarity with the target abstract figure, the length of the target path is the shortest, and the target path passes through a designated area; the designated area is preset.
  • the receiving module 2201 is configured to receive the first operation on the first interface.
  • the display module is used to display the target path on the map of the second interface; the second interface is different from the first interface.
  • the first operation is used to instruct drawing the target graphic in the first interface.
  • the first interface is a gallery interface, which includes at least one locally stored image
  • the receiving module is configured to determine the target graphic in response to the received first operation on the target image; the target image for at least one of the images in the image.
  • the first interface is an alternative graphical interface
  • the alternative graphical interface includes at least one alternative graphic
  • the receiving module is configured to determine, in response to the received first operation on the target alternative graphic, Target graphics
  • target alternative graphics are graphics in at least one alternative graphics.
  • the processing module 2202 is used to segment the target area to obtain N target sub-areas; N is a positive integer greater than 1; and prioritize the N target sub-areas based on the target feature information. ; Among them, the sub-region with more paths corresponding to the target feature information has a higher priority; the target feature information is part of the information in the feature information; based on the feature information, the N target sub-regions are sorted according to the priority, one by one N target sub-regions are matched.
  • the display module 2203 is configured to display key points on the target path in the map of the second interface.
  • the display module 2203 is configured to display all routes of the target path in the map of the second interface.
  • the processing module 2202 is used to obtain the current location of the electronic device; determine the target area based on the current location of the electronic device and the target area range; where the target area range is a preset value, or the target area
  • the zone scope is set based on the zone scope set operation received.
  • the target area is set based on the latest received user operation.
  • FIG. 23 shows a schematic block diagram of a device 2300 according to an embodiment of the present application.
  • the device 2300 may include: a processor 2301 and a transceiver/transceiver pin 2302, and optionally, a memory 2303.
  • bus 2304 which includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • bus 2304 includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are referred to as bus 2304 in the figure.
  • the memory 2303 may be used for instructions in the foregoing method embodiments.
  • the processor 2301 can be used to execute instructions in the memory 2303, and control the receiving pin to receive signals, and control the transmitting pin to send signals.
  • the device 2300 may be the electronic device or a chip of the electronic device in the above method embodiment.
  • This embodiment also provides a computer storage medium that stores computer instructions.
  • the electronic device When the computer instructions are run on an electronic device, the electronic device causes the electronic device to execute the above related method steps to implement the method in the above embodiment.
  • This embodiment also provides a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to perform the above related steps to implement the method in the above embodiment.
  • inventions of the present application also provide a device.
  • This device may be a chip, a component or a module.
  • the device may include a connected processor and a memory.
  • the memory is used to store computer execution instructions.
  • the processor can execute computer execution instructions stored in the memory, so that the chip executes the methods in each of the above method embodiments.
  • the electronic equipment, computer storage media, computer program products or chips provided in this embodiment are all used to execute the corresponding methods provided above. Therefore, the beneficial effects they can achieve can be referred to the corresponding methods provided above. The beneficial effects of the method will not be repeated here.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may Therefore, the direct coupling or communication connection of devices or units through some interfaces can be electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or it may be distributed to multiple different places. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a readable storage medium if they are implemented in the form of software functional units and sold or used as independent products.
  • the technical solutions of the embodiments of the present application are essentially or contribute to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium , including several instructions to cause a device (which can be a microcontroller, a chip, etc.) or a processor to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.
  • the steps of the methods or algorithms described in connection with the disclosure of the embodiments of this application can be implemented in hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, read only memory (Read Only Memory, ROM), erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), register, hard disk, removable hard disk, compact disc (CD-ROM) or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • first and second in the description and claims of the embodiments of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请实施例提供了一种路径规划方法及装置。该方法包括:电子设备接收到第一操作,可基于第一操作所指示的目标图形以及预先设置的目标区域进行路径规划,以得到位于目标区域内的目标路径。电子设备在地图上显示获取到的目标路径。本申请实施例中的路径规划方法可根据用户指定的目标图形规划合适的路径,以满足用户对路径规划的个性化需求。

Description

路径规划方法及装置
本申请要求于2022年08月24日提交中国国家知识产权局、申请号为202211020211.2、申请名称为“路径规划方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端设备领域,尤其涉及一种路径规划方法及装置。
背景技术
随着终端设备技术领域的发展,终端设备的功能越来越多,应用场景越来越广泛。用户可通过终端设备提供的地图应用,以规划行驶路径。目前,终端上的路径规划方法通常是由用户指定起点与终点,终端基于用户设置的起点与终点规划相应路径。其中,路径规划过程通常是以路径长度最短或者是红绿灯最少等规则为基础规划的,其路径规划方式较为单一,不能满足用户的个性化需求。
发明内容
本申请实施例提供一种路径规划方法及装置。该方法包括:电子设备基于用户的指示,规划出符合用户指定目标图形的路径,可实现路径的个性化设置,提升用户使用体验。
第一方面,本申请实施例提供一种路径规划方法。该方法包括:电子设备接收第一操作。其中,接收到的第一操作用于指示目标图形。电子设备基于第一操作所指示的目标图形和地图中的目标区域,确定目标路径。其中,目标路径的形状与目标图形的形状的相似度大于预设阈值,并且,目标路径在目标区域内,以及目标区域为基于电子设备所处位置设置的,或者目标区域为基于用户操作设置的。电子设备确定目标路径后,在地图上显示目标路径。这样,本申请实施例中,用户可以任意设置图形,不受任何限制,电子设备可基于用户设置的图形进行路径规划,并得到与用户设置的图形相似的路径,以满足用户需求,从而实现个性化路径设置。并且,在本申请实施例中,电子设备在地图中的目标区域内进行路径规划,其规划时的目的性更强,可以有效提高路径规划的成功率和效率。
示例性的,本申请实施例中所规划的目标路径包括起始点和终点。起始点和终点是基于规划后的路径自动生成的。
示例性的,目标路径可以在目标区域内的任意区域内。
示例性的,电子设备可获取电子设备当前位置,并基于当前位置确定目标区域。
示例性的,目标区域的范围可以是预设值,也可以是基于用户最近一次设置确定的。
示例性的,目标区域可以是以电子设备当前位置为中心的圆形、矩形或其它几何图形。
示例性的,目标区域的中心也可以是基于用户设置确定的。
示例性的,目标区域可以覆盖地图中的一个市区、或者一个城镇等,本申请不做限定。
在一种可能的实现方式中,基于目标图形和地图中的目标区域,确定目标路径,包括:电子设备响应于接收到的第一操作,获取目标图形的特征信息。其中,特征信息用于描述目标图形的图形特征。电子设基于目标图形的特征信息与地图中的目标区域,确定目标路径。这样,本申请实施例通过对目标图形进行相应处理,以获取到对应的特征信息。从而可以根据目标图形的一些图形特征,以匹配到对应的目标路径。也就是说,目标路径所构成的图形具备与目标图形相同的图形特征。
在一种可能的实现方式中,响应于接收到的第一操作,获取目标图形的特征信息,包括:电子设备对目标图形进行抽象处理,得到目标图形的目标抽象图形;目标抽象图形用于描述目标图形中的关键点或目标抽象图形中的关键点之间的连接关系。电子设备基于目标抽象图形,获取特征信息。这样,本申请实施例中针对用户指示的目标图形需求,在保持其原有的关键特征不变的基础上,将目标图形 以数据描述,即特征信息的方式输出,从而能够构建出符合特征信息描述的图形的目标路径。
在一种可能的实现方式中,特征信息包括以下至少之一:连接特征信息、几何特征信息、角度特征信息、尺寸特征信息、位置特征信息。
示例性的,连接特征信息可以用于指示不同的几何图形之间的连接状态,连接特征信息可以包括连接点以及连接点对应的角度。
示例性的,几何特征信息用于指示图形中包括的一些几何图形,例如可以包括但不限于:菱形、矩形、圆形等。
示例性的,尺寸特征信息用于指示不同几何图形之间的尺寸关系,也可以理解为是尺寸比例。
示例性的,位置特征信息可以用于指示不同图形之间的位置关系。
在一种可能的实现方式中,基于目标图形的特征信息与地图中的目标区域,确定目标路径,包括:电子设备基于特征信息,在地图的目标区域内进行匹配。电子设备确定匹配成功的路径为目标路径。
在一种可能的实现方式中,基于目标图形的特征信息与地图中的目标区域,确定目标路径,包括:电子设备基于第一特征信息,在地图的目标区域内进行匹配,以得到匹配成功的至少一个第一目标子路径。电子设备基于第二特征信息,在至少一个第一目标子路径的周围区域内进行匹配,以得到匹配成功的第二目标子路径;其中,第二目标子路径是在至少一个第一目标子路径中的第三目标子路径的周围区域内匹配到的;第一特征信息与第二特征信息为特征信息的部分信息;第二目标子路径与第三目标子路径构成目标路径。这样,本申请实施例中通过将特征信息中包括的多个特征信息逐一与目标区域中的路径进行匹配,以匹配到符合特征约束的目标路径。
在一种可能的实现方式中,若匹配到多个第二目标子路径,基于目标图形的特征信息和地图中的目标区域,确定目标路径,还包括:电子设备接收到第二操作,第二操作用于从多个第二目标子路径所构成的路径中指定目标路径。电子设备响应于接收到的第二操作,确定目标路径。这样,如果匹配到多个满足特征信息约束的路径,可以由用户指定目标路径。
在一种可能的实现方式中,基于目标图形的特征信息与地图中的目标区域,确定目标路径,包括:基于目标图形和地图中的目标区域,确定多个候选路径。基于预设条件,从多个候选路径中确定目标路径。预设条件包括以下至少之一:目标路径的形状与目标抽象图形的相似度最高、目标路径的长度最短、目标路径途径指定区域;指定区域为预先设置的。这样,若基于约束条件匹配到多个路径,则可以基于预设条件对路径进行进一步筛选,以匹配到更符合约束条件要求的路径。
在一种可能的实现方式中,接收第一操作,包括:接收在第一界面上的第一操作。在地图上显示目标路径,包括在第二界面的地图上显示目标路径;第二界面与第一界面不同。这样,本申请实施例中可以提供用户设置界面,即第一界面。用户可以在第一界面中任意设置目标图形。电子设备基于用户在第一界面中设置的目标图形进行路径规划,得到目标路径之后,可在第二界面中的地图中显示目标路径。也就是说,用户在第一界面中指示目标图形时,无需根据地图进行设置,例如无需设置起点或终点,也无需自己选择路径,只需要根据用户的实际需求设置任意图形即可,从而有效降低用户操作难度,无需用户手动选择路径,以实现自动化、个性化的路径规划方式。
在一种可能的实现方式中,第一操作用于指示在第一界面中描绘目标图形。
在一种可能的实现方式中,第一界面为图库界面,图库界面中包括本地存储的至少一个图像,接收在第一界面上的第一操作,包括:电子设备响应于接收到的对目标图像的第一操作,确定目标图形; 目标图像为至少一个图像中的图像。
在一种可能的实现方式中,第一界面为备选图形界面,备选图形界面中包括至少一个备选图形;接收在第一界面上的第一操作,包括:电子设备响应于接收到的对目标备选图形的第一操作,确定目标图形;目标备选图形为至少一个备选图形中的图形。这样,本申请实施例中可预先设置一些备选图形,以供用户选择。
在一种可能的实现方式中,基于特征信息和目标区域,确定目标路径,包括:对目标区域进行分割,得到N个目标子区域;N为大于1的正整数;基于目标特征信息,对N个目标子区域进行优先级排序;其中,包含目标特征信息所对应的路径越多的子区域的优先级越高;目标特征信息为特征信息中的部分信息;基于特征信息,按照N个目标子区域的优先级排序,逐一对N个目标子区域进行匹配。这样,本申请实施例中通过对地图进行分割,从而可以在每块分割的地图中进行路径匹配,以加快路径查找速度。
在一种可能的实现方式中,在第二界面的地图上显示目标路径,包括:电子设备在第二界面的地图中,显示目标路径上的关键点。
在一种可能的实现方式中,在第二界面的地图上显示目标路径,包括:在第二界面的地图中,显示目标路径的全部路线。
在一种可能的实现方式中,基于目标图形和地图中的目标区域,确定目标路径,包括:获取电子设备当前所处位置;基于电子设备当前所处位置与目标区域范围,确定目标区域;其中,目标区域范围为预设值,或者目标区域范围是根据接收到的区域范围设置操作设置的。
在一种可能的实现方式中,目标区域是基于最新一次接收到的用户操作设置的。
第二方面,本申请实施例提供一种路径规划装置。该装置包括:接收模块、处理模块和显示模块。其中,接收模块用于接收第一操作;第一操作用于指示目标图形。处理模块用于基于目标图形和地图中的目标区域,确定目标路径;目标路径的形状与目标图形的形状的相似度大于预设阈值;目标路径在目标区域内,目标区域为基于电子设备所处位置设置的,或者,目标区域为基于用户操作设置的;显示模块用于在地图上显示目标路径。
在一种可能的实现方式中,处理模块具体用于响应于接收到的第一操作,获取目标图形的特征信息;特征信息用于描述目标图形的图形特征;基于目标图形的特征信息与地图中的目标区域,确定目标路径。
在一种可能的实现方式中,处理模块具体用于对目标图形进行抽象处理,得到目标图形的目标抽象图形;目标抽象图形用于描述目标图形中的关键点或目标抽象图形中的关键点之间的连接关系;基于目标抽象图形,获取特征信息。
在一种可能的实现方式中,特征信息包括以下至少之一:连接特征信息、几何特征信息、角度特征信息、尺寸特征信息、位置特征信息。
在一种可能的实现方式中,处理模块具体用于基于特征信息,在地图的目标区域内进行匹配;确定匹配成功的路径为目标路径。
在一种可能的实现方式中,处理模块具体用于基于第一特征信息,在地图的目标区域内进行匹配,以得到匹配成功的至少一个第一目标子路径;基于第二特征信息,在至少一个第一目标子路径的周围区域内进行匹配,以得到匹配成功的第二目标子路径;其中,第二目标子路径是在至少一个第一目标子路径中的第三目标子路径的周围区域内匹配到的;第一特征信息与第二特征信息为特征信息的部分信息;第二目标子路径与第三目标子路径构成目标路径。
在一种可能的实现方式中,处理模块具体用于若匹配到多个第二目标子路径,接收第二操作,第二操作用于从多个第二目标子路径所构成的路径中指定目标路径;响应于接收到的第二操作,确定目标路径。
在一种可能的实现方式中,处理模块具体用于基于目标图形和地图中的目标区域,确定多个候选路径;基于预设条件,从多个候选路径中确定目标路径;预设条件包括以下至少之一:目标路径的形状与目标抽象图形的相似度最高、目标路径的长度最短、目标路径途径指定区域;指定区域为预先设置的。
在一种可能的实现方式中,接收模块用于接收在第一界面上的第一操作。显示模块用于在第二界面的地图上显示目标路径;第二界面与第一界面不同。
在一种可能的实现方式中,第一操作用于指示在第一界面中描绘目标图形。
在一种可能的实现方式中,第一界面为图库界面,图库界面中包括本地存储的至少一个图像,接收模块用于响应于接收到的对目标图像的第一操作,确定目标图形;目标图像为至少一个图像中的图像。
在一种可能的实现方式中,第一界面为备选图形界面,备选图形界面中包括至少一个备选图形;接收模块用于响应于接收到的对目标备选图形的第一操作,确定目标图形;目标备选图形为至少一个备选图形中的图形。
在一种可能的实现方式中,处理模块用于对目标区域进行分割,得到N个目标子区域;N为大于1的正整数;基于目标特征信息,对N个目标子区域进行优先级排序;其中,包含目标特征信息所对应的路径越多的子区域的优先级越高;目标特征信息为特征信息中的部分信息;基于特征信息,按照N个目标子区域的优先级排序,逐一对N个目标子区域进行匹配。
在一种可能的实现方式中,显示模块用于在第二界面的地图中,显示目标路径上的关键点。
在一种可能的实现方式中,显示模块用于在第二界面的地图中,显示目标路径的全部路线。
在一种可能的实现方式中,处理模块用于获取电子设备当前所处位置;基于电子设备当前所处位置与目标区域范围,确定目标区域;其中,目标区域范围为预设值,或者目标区域范围是根据接收到的区域范围设置操作设置的。
在一种可能的实现方式中,目标区域是基于最新一次接收到的用户操作设置的。
第二方面以及第二方面的任意一种实现方式分别与第一方面以及第一方面的任意一种实现方式相对应。第二方面以及第二方面的任意一种实现方式所对应的技术效果可参见上述第一方面以及第一 方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第三方面,本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第四方面,本申请实施例提供了一种计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第五方面,本申请实施例提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚、和该处理电路通过内部连接通路互相通信,该处理电路执行第一方面或第一方面的任一种可能的实现方式中的方法,以控制接收管脚接收信号,以控制发送管脚发送信号。
第六方面,本申请实施例提供了一种电子设备。该电子设备包括一个或多个处理器,存储器,以及一个或多个计算机程序,其中一个或多个计算机程序存储在存储器上,当计算机程序被一个或多个处理器执行时,使得电子设备执行第一方面或第一方面的任一种可能的实现方式中的方法。
附图说明
图1为示例性示出的电子设备的硬件结构示意图;
图2为示例性示出的电子设备的软件结构示意图;
图3为示例性示出的路径规划方法的流程示意图;
图4为示例性示出的用户界面示意图;
图5为示例性示出的用户界面示意图;
图6为示例性示出的用户界面示意图;
图7为示例性示出的用户界面示意图;
图8为示例性示出的用户界面示意图;
图9a~图9c为示例性示出的图形类别处理方式示意图;
图10为示例性示出的“小鱼”图形的抽象处理过程示意图;
图11为示例性示出的“520”图形的抽象处理过程示意图;
图12为示例性示出的地图分割示意图;
图13为示例性示出的分割区域路径匹配的示意图;
图14a~图14d为示例性示出的路径匹配示意图;
图15为示例性示出的路径规划示意图;
图16为示例性示出的路径规划示意图;
图17为示例性示出的最优路径显示方式示意图;
图18为示例性示出的最优路径显示方式示意图;
图19为示例性示出的用户界面示意图;
图20为示例性示出的应用场景示意图;
图21为示例性示出的图形示意图;
图22为示例性示出的路径规划装置的结构示意图;
图23为示例性示出的装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
图1示出了电子设备100的结构示意图。应该理解的是,图1所示电子设备100仅是电子设备的 一个范例,并且电子设备100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图1中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。需要说明的是,本申请实施例中的电子设备可以是手机、平板、可穿戴设备、车载设备等设备。本申请实施例中仅以电子设备100为手机为例进行说明,本申请不做限定。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与 无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等***器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与***设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以 独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑 神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过***SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大 于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时***多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
电子设备100的软件***可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android***为例,示例性说明电子设备100的软件结构。
图2是本申请实施例的电子设备100的软件结构框图。
电子设备100的分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android***分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和***库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图2所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图2所示,应用程序框架层可以包括窗口管理器,内容提供器,视图***,电话管理器,资源管理器,通知管理器,路径规划模块等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图***包括可视控件,例如显示文字的控件,显示图片的控件等。视图***可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在***顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
路径规划模块可用于对应用(例如地图应用)输入的输入信息进行抽象处理,得到抽象处理结果。并基于抽象处理结果,对地图进行匹配,以匹配出最优路径。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓***的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
***库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子***进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种 音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
可以理解的是,图2示出的***框架层、***库与运行时层包含的部件,并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
图3为示例性示出的路径规划方法的流程示意图。请参照图3,具体包括但不限于以下步骤:
S301,获取用户输入。
示例性的,用户可通过手机的地图应用提供的界面,指示手机按照用户选择的结果规划路径。
图4为示例性示出的用户界面示意图。请参照图4,地图应用(也可以是其他应用,本申请仅以地图应用为例进行说明,本申请不做限定)可提供路径规划功能。路径规划显示界面401中包括但不限于:列表选择选项402和自定义选项403。
示例性的,本申请实施例中可以预先设置一些可供选择的图形,并以列表的方式呈现。举例说明,以用户点击列表选择选项402为例,图5为示例性示出的用户界面示意图,请参照图5的(1),地图应用响应于接收到的用户点击列表选择选项402的操作,显示列表选择界面501。列表选择界面501中包括但不限于:列表项502。列表项502中包括一些图形,例如“520”、心形、“LOVE”等。需要说明的是,图5中所示的图形仅为示意性举例,本申请不做限定。
可选地,本申请实施例中所述的图形可以是字符图形、几何图形以及其它简单或复杂的图形,本申请不做限定。
示例性的,用户可点击任意图形,以用户点击“520”为例进行说明。如图5的(2)所示,地图应用响应于接收到的用户操作,显示规则设置界面503。规则设置界面503中包括但不限于:搜索范围设置选项504和路径长度设置选项505。
示例性的,以用户点击搜索范围设置选项504为例。图6为示例性示出的用户界面,请参照图6的(1),地图应用响应于接收到的用户操作,显示搜索范围设置界面601。搜索范围设置界面601中包括但不限于:默认选项602和自定义选项603。
仍参照图6的(1),默认选项602中可显示搜索范围的默认值。在本申请实施例中,搜索范围也可以理解为是地图中的目标区域,即,手机将在地图的搜索范围(即目标区域)内进行路径规划。也就是说,手机基于用户需求规划所规划的路径是在该搜索范围内的。在本申请实施例中,搜索范围的默认值可选地为当前位置的60KM(千米)范围内。其中,当前位置即为地图应用调用手机的定位***(例如GPS***)获取到的用户(即手机)当前所处的位置。可选地,本申请实施例中所述的范围可以是以当前位置为圆心的圆形区域,当然也可以是矩形或其他形状的区域,本申请不做限定。需要说明的是,本申请实施例中所涉及到的数值(例如图6的(1)中所示的默认值)仅为示意性举例,可根据实际需求设置,本申请不做限定,下文中不再重复说明。
请继续参照图6的(1),示例性的,用户还可以通过点击自定义选项603,以根据需求设置搜索范围。如图6的(2)所示,地图应用响应于接收到的用户点击自定义选项603的操作,显示搜索范围自定义设置界面604。示例性的,搜索范围自定义设置界面604中包括但不限于:搜索范围预览框605、范围设置选项606、确认选项以及重置选项等。
示例性的,搜索范围预览框605可用于显示地图。其中,地图可以是地图应用从云端获取到的,也可以是地图应用从其它地图提供商的服务器获取到的,本申请不做限定。可选地,本申请实施例中所述的云端可以是华为云端,云端可以包括一个或多个服务器。
示例性的,用户可以在搜索范围预览框605显示的地图中滑动,并通过长按(也可以是其他操作,可根据实际需求设置,本申请不做限定)等方式确定搜索范围中心点。例如,图6的(2)中所示的中心点605a,即为用户选定的搜索范围中心点。
示例性的,用户可在范围设置选项606中设置搜索范围。例如,用户可以点击搜索范围设置选项606,地图应用响应于接收到的用户操作,可以显示数字键盘(也可以是一些可选范围列表,可根据实际需求设置,本申请不做限定),用户可以输入所需要的搜索范围,例如20KM,该数值可根据实际需求设置,本申请不做限定。
示例性的,地图应用响应于用户指定的搜索范围中心点(例如中心点605a)以及搜索范围(例如20KM),可在搜索范围预览框605中显示对应的搜索范围,即以搜索范围中心点605a为中心,直径为20KM的圆形区域(也可以是其他形状,本申请不做限定)。
示例性的,用户可以点击确认选项,以确定搜索范围。地图应用响应于接收到的用户操作,确定搜索范围。可选地,地图应用可以在图6的(1)中的自定义选项603中显示当前设定的范围,例如可以显示中心点位置(例如XX大厦,即中心点605a)以及搜索范围(例如20KM)。
示例性的,用户也可以点击重置选项以重新选择搜索范围中心点和/或搜索范围。
请参照图5的(2),示例性的,用户还可以点击路径长度设置选项505,以设置路径长度。示例性的,该路径长度即为最终规划的路径(例如图19中显示的路径)的最大长度,也就是说,手机基于用户需求规划的路径的全长(即长度)小于或等于设置的路径长度。
图7为示例性示出的用户界面示意图。请参照图7的(1),示例性的,地图应用响应于接收到的用户点击路径长度设置选项505,显示路径长度设置界面701。路径长度设置界面701中包括但不限于:默认选项702和自定义选项703。
示例性的,默认选项702中可显示路径长度的默认值。在本申请实施例中,路径长度的默认值可选地为10KM内,即规划后的路径的长度小于或等于10KM。
示例性的,用户也可以点击自定义选项703,以根据需求设置路径长度。如图7的(2)所示,地图应用响应于接收到的用户点击自定义选项703的操作,可以显示数字键盘或一些可选择的路径长度(图中未示出),地图应用可基于接收到的用户输入,确定自定义路径长度,例如为3KM。可选地,地图应用可以在自定义选项703中显示用户设置的数值,例如为3KM。
需要说明的是,本申请实施例中所示的用户界面仅为示意性举例,实际界面可以包括更多或更少的内容,并且,各选项的位置、尺寸以及显示内容可以根据实际需求设置,本申请不做限定,下文中不再重复说明。
示例性的,地图应用即可基于接收到的用户操作,确定输入信息,该输入信息也可以理解为是用户需求,或者是用户期望规划的路径所呈现的效果。输入信息包括但不限于:用户所选择的图形(例如图5的(1)中选择的“520”)、搜索范围信息以及路径长度信息等。其中,搜索范围信息与路径长度信息可以是默认值也可以是用户自定义的数值,本申请不做限定。
仍参照图4,如上文所述,路径规划设置界面401中还包括自定义选项403,该选项可以为用户提供自定义设置接口,以使得用户可以根据需求,设置所需图形。以用户点击该自定义选项403为例,图8为示例性示出的用户界面。请参照图8,地图应用响应于接收到的用户点击自定义选项403的操作,显示路径自定义设置界面801。路径自定义设置界面801中包括但不限于:撤销选项802a、图库选项802b、图形绘制框803、确认选项以及重置选项等。
示例性的,撤销选项802a可以用于撤销用户最近一次在图形绘制框803中绘制的内容。
示例性的,图库选项802b可以用于调用手机中的图库。例如,若用户点击图库选项802b,地图应用响应于接收到的用户操作,显示图库界面。图库界面中可包括手机本地存储的至少一个图片。用户可以选择其中一个或多个图片。地图应用响应于接收到的用户选择操作,可在图形绘制框803中显示用户选择的图片。也就是说,用户选择的图库中的图片即为用户自定义图形。可选地,用户还可以在图形绘制框803中显示的图片(即从图库中选择的图片)上进行进一步绘制。
示例性的,用户可以在图形绘制框803中绘制图形,地图应用响应于接收到的用户的绘制操作,显示对应的图形。示例性的,如上文所述,本申请实施例中所述的图形可以包括几何图形、字符图形以及其它图形。
可选地,图形绘制框803中还可以显示一些绘制工具,例如铅笔工具、填充工具、直线绘制工具 等,本申请不做限定。
示例性的,用户可以点击确认选项,以确认绘制的图形。地图应用响应于接收到的用户点击确认选项的操作,获取用户绘制的图形和/或用户从图库中选择的图形。
示例性的,若用户点击重置选项,地图应用响应于接收到的用户操作,清楚图形绘制框803中的内容。用户可重新在图形绘制框803中绘制图形。
示例性的,用户点击确认选项后,地图响应于接收到的用户操作,可以显示图5的(2)所示的界面,以进一步设置搜索范围和/或路径长度。具体描述可参照图5的(2)~图7的相关内容,此处不再赘述。在该示例中,用户设置完成后,手机可确定输入信息。输入信息包括但不限于:用户绘制的图形(也可以是图库中选择的)、搜索范围信息以及路径长度信息等。
在一种可能的实现方式中,手机也可以接收其它设备发送的指令,指令中可以包括输入信息,输入信息包括但不限于:图形、搜索范围信息、路径范围信息等。例如,用户B可以在电子设备B上执行图5~图8的设置,在图形以及其它信息(搜索范围信息和路径范围信息等)设置完成后,电子设备B可以向用户A的电子设备A发送输入信息,输入信息即为上述图形等信息。电子设备A可基于接收到的输入信息,继续执行后续步骤,以规划路径。
S302,地图应用向路径规划服务发送路径规划请求。
示例性的,地图应用获取到输入信息后,可向路径规划服务发送路径规划请求。路径规划请求中包括但不限于上文中的输入信息,路径规划请求用于请求路径规划服务基于输入信息进行路径规划。
需要说明的是,本申请实施例中的模块交互过程也可能是通过内存进行交互。例如,地图应用可以将输入信息写入到内存中,并触发路径规划服务读取内存中的输入信息。本申请实施例中所述的模块交互方式仅为示意性举例,本申请不做限定。
S303,路径规划服务对输入信息进行抽象处理,得到抽象处理结果。
示例性的,路径规划服务获取路径规格请求中的输入信息,并可基于输入信息,对图形进行抽象化处理,以得到图形对应的抽象处理结果。
具体地,路径规划服务获取到输入信息后,获取输入信息中的图形(以下称为目标图形)。例如图8中绘制的小鱼,也可以是列表中选择的“520”。如上文所述,“520”可以理解为是图形中的字符图形类。
路径规划服务可以对目标图形进行图像识别,以对目标图形进行分类。可选地,路径规划服务可以预先设置一些类别。例如,在本申请实施例中,图形类别包括但不限于:字符图形、几何图形和其它图形。举例说明,图9a~图9c为示例性示出的图形类别处理方式示意图。请参照图9a的(1),该图形(即心形)即为几何图形。如图9b的(1)所示,该图形(即“5”)即为字符图形。如图9c的(1)所示,该图形(即小鱼)即为其它图形,也可以理解为复杂图形。需要说明的是,其它图形可以填充有颜色,本申请不做限定。可选地,路径规划服务对目标图形进行图像识别的方式可以是已有技术中的任意可行的图像识别技术,本申请不再赘述。
在本申请实施例中,抽象处理过程可以理解为将图形抽象为简单图形,或者是简单的线条。举例说明,如图9a的(2)所示,对于几何图形,路径规划服务可以将识别几何图形的关键点,即为图9a的(2)中的黑色圆点。可选地,图9a的(2)所示的多个散点(即关键点)组成的图案,即为图9a的(1)所示的几何图形(即目标图形)所对应的抽象图形。可选地,路径规划服务也可以通过直线,将各散点(即关键点)进行连接,如图9a的(3)所示,该图形即为图9a的(1)所示的几何图形对应的抽象图形。
再举例说明,如图9b的(2)所示,对于字符图形(即图9a的(1)所示的字符图形“5”),路径规划对这一类图形的抽象处理方式可以为线条化。例如,路径规划服务可以识别字符“5”的一些特征点,例如图9b的(2)中所示的黑色圆点,即为字符“5”的特征点。路径规划服务可以将特征点进行连接,得到线条化的抽象图形,如图9b的(2)所示即为图9b的(1)所示的字符图形“5”(即目标图形)对应的抽象图形。
再举例说明,如图9c的(2)所示,对于其它图形,例如图9c的(1)所示的小鱼,路径规划服 务可以对齐进行抽象处理,得到简单的几何图形,如图9b的(2)所示即为目标图形(即“小鱼”图形)所对应的抽象图形。
下面以具体示例对“小鱼”图形与字符图形的抽象画过程进行简单说明。需要说明的是,本申请实施例中仅以一些图形为示例进行说明,对于其它类似的图形,均可以按照本申请实施例中所述的抽象方法进行处理,本申请不再逐一举例说明。
图10为示例性示出的“小鱼”图形的抽象处理过程示意图。请参照图10的(1),该图形即为路径规划服务从输入信息中获取到的目标图形。如图10的(2)所示,路径规划服务可以对“小鱼”图形进行图像识别,以识别“小鱼”图形的轮廓。并且,路径规划服务基于识别到的轮廓,确定与轮廓相同或近似的几何图形。例如,“小鱼”图形的轮廓可以抽象化为菱形和三角形。上述抽象方式也可以理解为是将复杂的图形(即“小鱼”图形)的细节(例如鱼鳞、鱼鳍、眼睛等)图案清除,以获取到“小鱼”图形的轮廓,并基于轮廓获取到对应的几何图形(即为抽象图形)。
在本申请实施例中,路径规划服务获取到抽象图形后,可基于抽象图形,获取到特征信息。
在本申请实施例中,特征信息包括但不限于:连接信息(也可以称为交叉信息)、角度信息、尺寸信息、几何信息、位置信息等。
示例性的,连接信息用于指示不同几何图形的连接情况。举例说明,如图10的(3)所示,O点即为菱形ABOE与三角形COD的连接点。
示例性的,角度信息用于指示几何图形中的角度。举例说明,如图10的(3)所示,AOC的角度可以为125°,三角形COD的顶角∠COD可以为120°,两个内角∠OCD与∠CDO可以为30°。当然,角度信息还可以包括菱形的角度信息等,此处不再逐一举例说明。可选地,角度信息可以包括抽象图形中的所有角度的度数,也可以包括至少一个角度的度数,本申请不做限定。
示例性的,尺寸信息用于指示多个几何图形的比例。举例说明,如图10的(3)所示,菱形ABOE的尺寸与三角形COD的尺寸比例可以是2:1,该数值仅为示意性举例,本申请不做限定。
示例性的,几何信息,也可以称为图形信息,用于指示抽象图形中所包括的几何图形。举例说明,如图10的(3)所示,几何信息包括菱形AOBE和三角形COD。也就是说,该几何信息用于指示“小鱼”图形的抽象图形包括菱形和三角形。
示例性的,位置信息用于指示抽象图形中的散点和/或线条等的位置关系。可选地,位置关系包括但不限于方位和/或距离等信息。举例说明,如图9b的(2)所示,路径规划服务可通过位置信息指示各散点之间的位置关系,例如散点901在散点902的右侧,距离为10像素等。
需要说明的是,本申请实施例中所述的特征信息仅为示意性举例,在其它实施例中,特征信息还可以包括其它信息或者是任意信息组合,其目的用于描述抽象图形。
在本申请实施例中,对于“小鱼”图形的抽象图形(例如图10的(3)所示),路径规划服务获取的特征信息可以包括但不限于:
1)连接信息:O点为交叉点,且交叉线包括两条,也可以理解为是“十字”交叉点。
2)角度信息:∠COD、∠OCD、∠CDO、∠AOE、∠OEB等角度值(可以包括更多或更少数值,本申请不做限定)。
3)尺寸信息:菱形ABOE的尺寸与三角形COD的尺寸比例为2:1。
4)几何信息:菱形ABOE和三角形COD。
可以理解为,上述特征信息可以用于描述:“小鱼”图形的抽象图形包括菱形ABOE和三角形COD,其中,菱形ABOE与三角形COD的连接点为O点,O点为“十字”交叉点。并且,特征信息还描述了菱形ABOE、三角形COD以及连接点处各角度的数值。
需要说明的是,本申请实施例中涉及到的各信息的具体内容以及数值仅为示意性举例,本申请不做限定。
示例性的,路径规划服务可得到对应于图10的(1)所示的“小鱼”图形(即目标图形)的抽象处理结果,抽象处理结果包括但不限于特征信息。
图11为示例性示出的“520”图形的抽象处理过程示意图。请参照图11的(1),该图形即为路 径规划服务从输入信息中获取到的目标图形。如上文所述,对于字符类的图形,路径规划服务可以提取目标图形的关键点,例如图11的(2)中所示的黑色圆点,包括但不限于:散点1101、散点1102、散点1103、散点1104和散点1105。即为字符“520”中每个字符抽象化后得到的散点。
示例性的,路径信息可获取到该抽象图形所对应的特征信息。特征信息可以包括各散点之间的位置信息和连接信息。
在一种可能的实现方式中,对于包括多个字符的图形(例如图11的(1)所示),连接信息可包括每个字符中的各散点之间的连接关系。可选地,连接信息还可以包括各字符之间的连接关系。
举例说明,图11的(2)所示的抽象图形对应的位置信息可以包括但不限于:散点1101在散点1105的右侧,距离为10像素。散点1106在散点1105下方,距离为10像素。散点1102在散点1101的右侧,距离为20像素(也可以不限制距离,本申请不做限定)。散点1104在散点1103的右侧等。位置信息可以包括更多的信息,本申请不再逐一举例说明。
连接信息可以包括但不限于:散点1101与散点1105连接,散点1106与散点1105连接。
可选地,连接信息还可以包括散点1101与散点1102连接,散点1103与散点1104连接。也就是说,连接信息还可以用于指示不同字符的抽象图形的连接关系。
在本申请实施例中,特征信息也可以理解为是路径筛选条件,在后续的路径规划过程中,路径规划服务可以基于特征信息,匹配符合条件的路径。
在一种可能的实现方式中,路径规划服务可以将特征信息进行划分,分为粗匹配信息和精匹配信息。粗匹配信息也可以称为粗匹配条件或粗匹配条件信息,可以用于路径匹配过程中的粗匹配,以匹配出满足粗匹配信息的路径。精匹配信息也可以称为精匹配条件或精匹配条件信息,可以用于从粗匹配成功的路径中进一步进行精细匹配,以筛选出相似度更高的路径。具体实现方式将在下文中详细说明。
可选地,粗匹配信息可以包括但不限于以下至少之一:几何信息(概念可参照上文)、连接信息、位置信息等。可选地,精匹配信息可以包括但不限于以下至少之一:角度信息和尺寸信息等。需要说明的是,本申请实施例中所述的粗匹配信息与精匹配信息的划分方式(即所包括的内容)仅为示意性举例,本申请不做限定。
S304,路径规划服务基于抽象处理结果,匹配路径。
示例性的,如上文所述,路径规划服务对目标图形进行抽象处理之后,可以得到抽象处理结果。抽象处理结果可以包括特征信息(也可以包括几何信息,或者是特征信息中包括几何信息,具体描述见上文,此处不再赘述)。
示例性的,如上文所述,路径规划服务可以对特征信息进行划分,以得到粗匹配信息和精匹配信息。也可以称为是粗匹配条件和精匹配条件,本申请不做限定。
在本申请实施例中,路径规划服务可以从云端(例如为华为云端)或地图提供商的服务器处获取地图信息。以华为云端为例,路径规划服务可以向云端发送请求信息,用于请求云端反馈地图信息。可选地,请求信息中可以包括上文所述的搜索范围信息,用于请求地图中的部分区域,即搜索范围信息所指示的范围的地图。云端响应于接收到的请求信息,向路径规划服务所述电子设备(例如手机)反馈地图。可选地,云端反馈的信息可以是全部地图,也可以是部分地图(即目标区域的地图,其中,目标区域即为搜索范围指示的区域),本申请不做限定。可选地,若云端反馈的是全部地图(例如包括全国地图或者是全省份的地图,可根据实际需求设置,本申请不做限定),路径规划服务可以基于特征信息,在地图中的目标区域(即搜索范围指示的区域)被进行路径匹配。
示例性的,路径规划服务获取到地图后,可基于粗匹配信息,在地图的目标区域内匹配符合粗匹配信息指示的条件的路径。
在一种可能的实现方式中,路径规划服务可以将目标区域的地图进行分割,以获取到多个分割区域。图12为示例性示出的地图分割示意图。请参照图12,示例性的,路径规划服务将地图划分为n个区域,例如包括:分割区域a_1~分割区域a_n。可选地,路径规划服务可基于抽象图形的形状以及上文所述的用户设置的路径长度,确定图形尺寸面积。图形尺寸面积即为抽象图形按照路径长度的最 大值映射到地图上后,可以达到的最大面积。路径规划服务可基于图形尺寸面积与目标区域的总面积,对目标区域进行分割。其中,每个分割区域的面积大于或等于图形尺寸面积。具体分割方式可根据实际需求设置,本申请不做限定。
示例性的,路径规划服务基于粗匹配条件中的至少一个条件,对分割区域进行优先级排序。其中,分割区域中包含的满足条件的路径越多,则优先级越高。例如,仍以图10的(3)所示的“小鱼”图形所对应的抽象图形为例,路径规划服务可基于特征信息中的连接信息(即交叉信息),对各分割区域进行匹配,以检测分割区域中是否包含“十字”交叉路径以及包含的“十字”交叉路径的数量。
图13为示例性示出的分割区域路径匹配的示意图。请参照图13,示例性的,以分割区域a_m和分割区域a_p为例。示例性的,路径规划服务基于连接信息,对分割区域a_m和分割区域a_p中的路径进行匹配,匹配结果为分割区域a_m中不包括连接信息所指示的交叉路径,而分割区域a_p中包括至少3个连接信息所指示的交叉路径。相应的,分割区域a_p的优先级高于分割区域a_m的优先级。
可选地,对于不包括“十字”交叉路径的分割区域(例如分割区域a_m),可以将该区域的优先级设置为0,即,在后续的匹配过程中,可以不再对优先级为0的分割区域进行匹配,从而减少路径匹配的总检索次数(也可以理解为匹配次数)。
示例性的,路径规划服务可基于粗匹配信息中的其它信息(或称为条件),按照优先级顺序,逐一对分割区域进行匹配,以得到匹配成功的路径。
图14a~图14c为示例性示出的路径匹配示意图。请参照图14a,仍以图10的(3)中的抽象图形及所对应的特征信息为例进行说明。示例性的,如上文所述,该抽象图形所对应的特征信息中,粗匹配信息可以包括但不限于:连接信息和几何信息。可以理解为,该连接信息用于指示交叉的路径。几何信息用于指示与交叉路径连接的是菱形与三角形,具体描述可参照上文实施例,此处不再赘述。
请参照图14a,示例性的,路径规划服务可基于连接信息,在分割区域内(该分割区域仅为示意性举例,本申请不做限定)进行匹配,以匹配(或检索、检测)到满足连接信息所指示的交叉路径。
如图14所示,路径规划服务匹配到满足连接信息所指示的,包括O1~O7在内的多个交叉路径,即O1~O7均为“十字”交叉路径所对应的交叉点。
路径规划服务继续按照几何信息所指示的几何图形,在分割区域内匹配满足几何信息所指示的路径。请参照图14b,示例性的,路径规划服务检测O1~O7所连接的路径中,是否包括形状为三角形的路径。例如,路径规划服务检测到O2-C1-D1构成三角形,O2-C2-D2构成三角形,以及,O6-C3-D3构成三角形。即,上述路径满足几何信息所要求的三角形图形。
示例性的,路径规划服务继续进行检测,以确定O2和O6连接的路径中是否包括形状为菱形的路径。例如,如图14c所示,路径规划服务检测到A1-O2-E1-B1,以及O2-D2-O6-E1为菱形(或者近似于菱形)路径。
需要说明的是,上文实施例中仅以路径规划服务先匹配交叉路径、再依次匹配三角形和菱形路径为例进行说明。在其他实施例中,路径规划服务也可以按照其它顺序进行匹配,或者也可以并行匹配多个条件,本申请不做限定。
示例性的,路径规划服务基于粗匹配信息,匹配到的路径包括但不限于:O2-A1-B1-E2-O2-C2-D2、O2-A1-B1-E2-O2-C1-D1以及O6-D2-O2-E1-O6-C2-D3。
在一种可能的实现方式中,路径规划服务也可以不对地图进行分割,即,路径规划服务可以基于特征信息,对地图的目标区域进行路径匹配,其匹配方式与上文所述(即图14a~图14c)相同,此处不再赘述。
S304,路径规划服务基于预设策略,对匹配到的路径进行筛选,得到最优路径。
示例性的,路径规划服务可基于特征信息对S303中匹配成功的路径进行进一步匹配(或筛选),以得到最优路径。可选地,最优路径可以包括一条或多条。
举例说明,图14d为示例性示出的精匹配过程示意图。请参照图14d,示例性的,如上文所述,路径规划服务基于粗匹配信息,匹配到的路径包括但不限于:O2-A1-B1-E2-O2-C2-D2、O2-A1-B1-E2-O2-C1-D1以及O6-D2-O2-E1-O6-C2-D3。路径规划服务可基于预设策略,对上述路径进 行进一步匹配,以得到最有路径。
可选地,预设策略可以包括但不限于精匹配信息和路径长度信息(即为上文实施例中用户设置的路径长度范围)。其中,路径长度信息用于指示匹配到的路径的长度小于或等于路径长度信息所指示的路径长度。
可选地,精匹配信息包括但不限于:角度信息和尺寸信息。例如,角度信息可以包括抽象图形中的各角度的数值,尺寸信息用于指示菱形与三角形的尺寸比例。
示例性的,路径规划服务可以对精匹配信息中的各信息设置对应的匹配范围。举例说明,角度信息中指示∠COD的度数为120°,示例性的,路径规划服务可设置角度范围为±30°(可根据实际需求设置,本申请不做限定),即精匹配信息所指示的∠COD的范围为[90°,150°],其它角度范围类似,此处不再逐一说明。
示例性的,路径规划服务还可以对精匹配信息中的尺寸信息设置范围,例如,原尺寸信息指示比例为2:1,路径规划服务可将该条件扩大至比例为0.5(即1:2)~3(即3:1),可根据实际需求设置,本申请不做限定。
仍参照图14d,示例性的,路径规划服务可基于精匹配信息中的各信息(包括设置的范围),确定匹配成功的路径(即最优路径)包括:O2-A1-B1-E2-O2-C2-D2和O6-D2-O2-E1-O6-C2-D3。
在一种可能的实现方式中,在路径规划服务基于精匹配信息匹配到多个最优路径的情况下,路径规划服务可以进一步匹配与精匹配信息所限定的各条件中最接近的路径,即为最优路径。例如,路径O2-A1-B1-E2-O2-C2-D2中,菱形O2-A1-B1-E2与三角形O2-C2-D2的尺寸比例为2:1。路径O6-D2-O2-E1-O6-C2-D3中,菱形O6-D2-O2-E1与三角形O6-C2-D3的尺寸比例为1:2。则路径O2-A1-B1-E2-O2-C2-D2中的尺寸比例更接近精匹配信息中的尺寸信息所指示的尺寸比例(即2:1)。路径O2-A1-B1-E2-O2-C2-D2即为最优路径。
在另一种可能的实现方式中,在路径规划服务基于精匹配信息匹配到多个最优路径的情况下,路径规划服务可以向地图应用发送多个最优路径。地图应用可以显示多个最优路径,用户可以选择其中一条作为最优路径。地图应用响应于接收到的用户选择操作,确定最优路径。
在又一种可能的实现方式中,在路径规划服务基于精匹配信息匹配到多个最优路径的情况下,路径规划服务也可以选择与目标图形语义最接近的路径作为最优路径。例如,路径规划服务可以对目标图形进行语义识别,以得到图形语义识别结果,以及,路径规划服务可以对最优路径所围成的图形进行语义识别,以得到路径语义识别结果。语义识别的具体方式可以是已有技术实施例中的任意可行方式,本申请不做限定。路径规划服务可将得到的多个路径语义识别结果分别与图形语义识别结果进行匹配,以得到语义最接近的路径,例如语义的相似度小于或等于预设阈值。
可以理解为,在本申请实施例中,路径规划服务所确定的最优路径,其路径所构成的图形是与抽象图形的相似度大于或等于预设相似度阈值的。也就是说,精匹配过程可以理解为是相似度评价过程。路径规划服务可以基于精匹配信息所指示的条件,进一步匹配与抽象图形的形状相似度最高的路径。
示例性的,相似度的评价条件可以是多样的。一个示例中,相似度可以基于几何相似度评价。也可以理解为路径所构成的几何图形与抽象图形(也可以理解为是目标图形的形状)的几何相似度越高,则其匹配度越高。例如,路径中的几何图形的尺寸比例与特征信息中的尺寸信息所指示的尺寸比例的差值小于或等于阈值,也可以理解为尺寸相似度是大于或等于阈值的。其中,差值越小,则路径对应的尺寸相似度(即几何相似度)越高。可选地,几何相似度还可以是基于角度、位置等进行评价,例如,路径围成的形状中的角度与角度信息中指示的角度的差值小于或等于阈值,即,角度相似度大于或等于阈值。其中,差值越小,则路径对应的角度相似度(即几何相似度)越高。另一个示例中,相似度可以还可以是基于语义相似度评价。即如上文所述,语义识别结果越接近的,则相似度越高。需要说明的是,本申请所述的各阈值可根据实际需求设置,本申请不做限定。
示例性的,路径规划服务可基于路径长度信息对最优路径进行进一步匹配,以检测最优路径是否小于或等于路径长度范围,其中,最优路径的路径长度需小于或等于路径长度信息指示的路径长度。可选地,路径规划服务也可以先对粗匹配过程匹配到的路径进行路径长度信息匹配,再执行精匹配, 本申请不做限定。
在一种可能的实现方式中,在路径规划服务基于精匹配信息匹配到多个最优路径的情况下,路径规划服务可以选择路径长度最短的路径作为最优路径。
在另一种可能的实现方式中,用户也可以在设置目标图形的阶段,选择指定路径或地点。相应的,在路径规划服务基于精匹配信息匹配到多个最优路径的情况下,可以将路过指定路径或地点的路径作为最优路径。当然,在用户选择指定路径或地点的情况下,路径规划服务也可以在粗匹配阶段即将该条件作为粗匹配条件,本申请不做限定。
需要说明的是,本申请实施例中所述的粗匹配与精匹配条件仅为示意性举例,在实际应用中,用户还可以自定义设置更多的路径匹配条件,例如可以设置路径所途径的阴凉处最多、或者路径所途径的学校最多等,本申请不做限定。
在又一种可能的实现方式中,路径规划服务也可以同步执行粗匹配与精匹配。例如,路径规划服务在匹配到交叉路径之后,可以基于角度信息,检测各交叉路径的角度。其中,角度在角度信息指示的角度范围内,即为匹配成功的交叉路径。
图15为示例性示出的路径规划示意图。请参照图15,示例性的,对于目标图形为字符图形的示例,路径规划服务可以基于对应的特征信息,匹配到对应的路径。如图15所示,路径所围成的形状近似于图11的(2)所示的抽象图形。
图16为示例性示出的路径规划示意图。请参照图16,示例性的,对于图9a所示的几何图形,路径规划服务可以基于两个散点之间在地图中的路径,构成最优路径。也就是说,在规划路径时,散点之间的连接路径可能不是曲线或直线,而是任意形状的路径,本申请不做限定。
S306,路径规划应用向地图应用发送最优路径。
示例性的,路径规划服务确定最优路径后,可将最优路径发送给地图应用。可选地,路径规划发送的最优路径包括但不限于:路径的起点、终点以及路径等。
S307,地图应用显示最优路径。
示例性的,地图应用响应于获取到的最优路径,可确定起点和终点以及路径。地图应用可以在地图的目标区域中显示最优路径。
图17为示例性示出的最优路径显示方式示意图。请参照图17,示例性的,地图应用可以基于获取到的最优路径,显示最优路径的全部路线以及至少一个关键途经点。其中,关键途经点为最优路径上的任意地点。
图18为示例性示出的最优路径显示方式示意图。请参照图18,示例性的,地图应用可以基于获取到的最优路径,显示最优路径上的多个关键途经点。
路径规划服务可以基于图17或图18中的任一种方式,显示最优路径,本申请不做限定。
图19为示例性示出的用户界面示意图。请参照图19,示例性的,地图应用的导航界面1901中,可以包括路径显示框1902、路径信息1903和开始导航选项。其中,路径显示框1902可用于显示地图以及地图上的最优路径。路径信息1903可以包括但不限于:路径长度(例如全场8KM),起始位置信息以及终点位置信息等。
示例性的,用户可以点击开始导航选项,以指示地图应用基于最优路径以及用户的位置进行导航。地图应用响应于接收到的用户操作,开始导航。
在一种可能的实现方式中,如果路径规划服务未能匹配到符合特征信息与路径长度信息的路径,路径规划服务可以向地图应用发送匹配失败信息,用于指示未能匹配到最优路径。地图应用可显示匹配失败提示信息,以提醒用户重新设置输入信息,其中包括重新设置目标图形、搜索范围和/或路径长度等。
在另一种可能的实现方式中,图20为示例性示出的应用场景示意图。请参照图20,应用场景中包括手机与服务器。其中,手机可以用于获取输入信息,手机向服务器发送路径规划请求。服务器可基于路径规划请求,匹配最优路径。也就是说,上文实施例中的路径规划服务设置于服务器中。服务器获取到最优路径后,向手机发送路径规划结果,路径规划结果中包括最优路径。未描述部分可参照 上文,此处不再赘述。
在又一种可能的实现方式中,对于图5中所示的列表选择方式,路径规划服务可以预先存储列表中的每个图形在地图中所对应的最优路径,也就是说,路径规划服务可以预先执行图3中的流程,以获取并保存每个图形所对应的最优路径。路径规划服务在获取到用户选择的目标图形、搜索范围以及路径长度之后,可将预先保存的最优路径发送给地图应用。
在另一种可能的实现方式中,对于一些简单图形,路径规划服务对其进行抽象处理后的结果,可能是与原始图形相同的。对于这类图形,路径规划服务可以跳过抽象处理过程,而直接基于原始图形(即目标图形),获取对应的特征信息。举例说明,图21为示例性示出的图形示意图。请参照图21,用户所描绘的为双鱼座的星座图(也可以是列表中选择的,本申请不做限定)。路径规划服务可以直接基于目标图形(即星座图),提取对应的特征信息。例如可以包括关键点之间的位置信息和连接信息等。可选地,路径规划服务也可以对该类图形进行抽象处理,其处理结果与目标图形是相同的图形。
可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图22为示例性示出的路径规划装置2200的结构示意图。请参照图22,路径规划装置2200包括但不限于:接收模块2201、处理模块2202和显示模块2203。其中,接收模块2201用于接收第一操作;第一操作用于指示目标图形。处理模块2202用于基于目标图形和地图中的目标区域,确定目标路径。目标路径的形状与目标图形的形状的相似度大于预设阈值,并且目标路径在目标区域内,目标区域为基于电子设备所处位置设置的,或者,目标区域为基于用户操作设置的。显示模块2203用于在地图上显示目标路径。
在一种可能的实现方式中,处理模块2202具体用于响应于接收到的第一操作,获取目标图形的特征信息;特征信息用于描述目标图形的图形特征;基于目标图形的特征信息与地图中的目标区域,确定目标路径。
在一种可能的实现方式中,处理模块2202具体用于对目标图形进行抽象处理,得到目标图形的目标抽象图形;目标抽象图形用于描述目标图形中的关键点或目标抽象图形中的关键点之间的连接关系;基于目标抽象图形,获取特征信息。
在一种可能的实现方式中,特征信息包括以下至少之一:连接特征信息、几何特征信息、角度特征信息、尺寸特征信息、位置特征信息。
在一种可能的实现方式中,处理模块2202具体用于基于特征信息,在地图的目标区域内进行匹配;确定匹配成功的路径为目标路径。
在一种可能的实现方式中,处理模块2202具体用于基于第一特征信息,在地图的目标区域内进行匹配,以得到匹配成功的至少一个第一目标子路径;基于第二特征信息,在至少一个第一目标子路径的周围区域内进行匹配,以得到匹配成功的第二目标子路径;其中,第二目标子路径是在至少一个第一目标子路径中的第三目标子路径的周围区域内匹配到的;第一特征信息与第二特征信息为特征信息的部分信息;第二目标子路径与第三目标子路径构成目标路径。
在一种可能的实现方式中,处理模块2202具体用于若匹配到多个第二目标子路径,接收第二操作,第二操作用于从多个第二目标子路径所构成的路径中指定目标路径;响应于接收到的第二操作,确定目标路径。
在一种可能的实现方式中,处理模块2202具体用于基于目标图形和地图中的目标区域,确定多个候选路径;基于预设条件,从多个候选路径中确定目标路径;预设条件包括以下至少之一:目标路径的形状与目标抽象图形的相似度最高、目标路径的长度最短、目标路径途径指定区域;指定区域为预先设置的。
在一种可能的实现方式中,接收模块2201用于接收在第一界面上的第一操作。显示模块用于在第二界面的地图上显示目标路径;第二界面与第一界面不同。
在一种可能的实现方式中,第一操作用于指示在第一界面中描绘目标图形。
在一种可能的实现方式中,第一界面为图库界面,图库界面中包括本地存储的至少一个图像,接收模块用于响应于接收到的对目标图像的第一操作,确定目标图形;目标图像为至少一个图像中的图像。
在一种可能的实现方式中,第一界面为备选图形界面,备选图形界面中包括至少一个备选图形;接收模块用于响应于接收到的对目标备选图形的第一操作,确定目标图形;目标备选图形为至少一个备选图形中的图形。
在一种可能的实现方式中,处理模块2202用于对目标区域进行分割,得到N个目标子区域;N为大于1的正整数;基于目标特征信息,对N个目标子区域进行优先级排序;其中,包含目标特征信息所对应的路径越多的子区域的优先级越高;目标特征信息为特征信息中的部分信息;基于特征信息,按照N个目标子区域的优先级排序,逐一对N个目标子区域进行匹配。
在一种可能的实现方式中,显示模块2203用于在第二界面的地图中,显示目标路径上的关键点。
在一种可能的实现方式中,显示模块2203用于在第二界面的地图中,显示目标路径的全部路线。
在一种可能的实现方式中,处理模块2202用于获取电子设备当前所处位置;基于电子设备当前所处位置与目标区域范围,确定目标区域;其中,目标区域范围为预设值,或者目标区域范围是根据接收到的区域范围设置操作设置的。
在一种可能的实现方式中,目标区域是基于最新一次接收到的用户操作设置的。
一个示例中,图23示出了本申请实施例的一种装置2300的示意性框图装置2300可包括:处理器2301和收发器/收发管脚2302,可选地,还包括存储器2303。
装置2300的各个组件通过总线2304耦合在一起,其中总线2304除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都称为总线2304。
可选地,存储器2303可以用于前述方法实施例中的指令。该处理器2301可用于执行存储器2303中的指令,并控制接收管脚接收信号,以及控制发送管脚发送信号。
装置2300可以是上述方法实施例中的电子设备或电子设备的芯片。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的方法。
本实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的方法。
其中,本实施例提供的电子设备、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可 以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请各个实施例的任意内容,以及同一实施例的任意内容,均可以自由组合。对上述内容的任意组合均在本申请的范围之内。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个***是指两个或两个以上的***。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不 脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (22)

  1. 一种路径规划方法,其特征在于,包括:
    接收第一操作;所述第一操作用于指示目标图形;
    基于所述目标图形和地图中的目标区域,确定目标路径;所述目标路径的形状与所述目标图形的形状的相似度大于预设阈值;所述目标路径在所述目标区域内,所述目标区域为基于电子设备所处位置设置的,或者,所述目标区域为基于用户操作设置的;
    在所述地图上显示所述目标路径。
  2. 根据权利要求1所述的方法,其特征在于,基于所述目标图形和地图中的目标区域,确定目标路径,包括:
    响应于接收到的所述第一操作,获取所述目标图形的特征信息;所述特征信息用于描述所述目标图形的图形特征;
    基于所述目标图形的特征信息与所述地图中的目标区域,确定所述目标路径。
  3. 根据权利要求2所述的方法,其特征在于,所述响应于接收到的所述第一操作,获取所述目标图形的特征信息,包括:
    对所述目标图形进行抽象处理,得到所述目标图形的目标抽象图形;所述目标抽象图形用于描述所述目标图形中的关键点或所述目标抽象图形中的关键点之间的连接关系;
    基于所述目标抽象图形,获取所述特征信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述特征信息包括以下至少之一:
    连接特征信息、几何特征信息、角度特征信息、尺寸特征信息、位置特征信息。
  5. 根据权利要求3所述的方法,其特征在于,所述基于所述目标图形的特征信息与所述地图中的目标区域,确定所述目标路径,包括:
    基于第一特征信息,在所述地图的所述目标区域内进行匹配,以得到匹配成功的至少一个第一目标子路径;
    基于第二特征信息,在所述至少一个第一目标子路径的周围区域内进行匹配,以得到匹配成功的第二目标子路径;其中,所述第二目标子路径是在所述至少一个第一目标子路径中的第三目标子路径的周围区域内匹配到的;所述第一特征信息与所述第二特征信息为所述特征信息的部分信息;所述第二目标子路径与所述第三目标子路径构成所述目标路径。
  6. 根据权利要求3所述的方法,其特征在于,所述基于所述目标图形的特征信息与所述地图中的目标区域,确定所述目标路径,包括:
    基于所述目标图形和地图中的目标区域,确定多个候选路径;
    基于预设条件,从所述多个候选路径中确定所述目标路径;
    所述预设条件包括以下至少之一:
    目标路径的形状与所述目标抽象图形的相似度最高、目标路径的长度最短、目标路径途径指定区域;所述指定区域为预先设置的。
  7. 根据权利要求1至所述的方法,其特征在于,所述接收第一操作,包括:
    接收在第一界面上的第一操作;
    所述在所述地图上显示所述目标路径,包括:
    在第二界面的地图上显示所述目标路径;所述第二界面与所述第一界面不同。
  8. 根据权利要求7所述的方法,其特征在于,所述第一操作用于指示在所述第一界面中描绘所述目标图形。
  9. 根据权利要求7所述的方法,其特征在于,所述第一界面为图库界面,所述图库界面中包括本地存储的至少一个图像,所述接收在第一界面上的第一操作,包括:
    响应于接收到的对目标图像的所述第一操作,确定所述目标图形;所述目标图像为所述至少一个图像中的图像。
  10. 根据权利要求7所述的方法,其特征在于,所述第一界面为备选图形界面,所述备选图形界面中包括至少一个备选图形;所述接收在第一界面上的第一操作,包括:
    响应于接收到的对目标备选图形的所述第一操作,确定所述目标图形;所述目标备选图形为所述至少一个备选图形中的图形。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述基于所述特征信息和目标区域,确定目标路径,包括:
    对所述目标区域进行分割,得到N个目标子区域;N为大于1的正整数;
    基于目标特征信息,对所述N个目标子区域进行优先级排序;其中,包含所述目标特征信息所对应的路径越多的子区域的优先级越高;所述目标特征信息为所述特征信息中的部分信息;
    基于所述特征信息,按照所述N个目标子区域的优先级排序,逐一对所述N个目标子区域进行匹配。
  12. 一种路径规划装置,其特征在于,包括:
    接收模块,用于接收第一操作;所述第一操作用于指示目标图形;
    处理模块,用于基于所述目标图形和地图中的目标区域,确定目标路径;所述目标路径的形状与所述目标图形的形状的相似度大于预设阈值;所述目标路径在所述目标区域内,所述目标区域为基于电子设备所处位置设置的,或者,所述目标区域为基于用户操作设置的;
    显示模块,用于在所述地图上显示所述目标路径。
  13. 根据权利要求12所述的装置,其特征在于,所述处理模块,具体用于:
    响应于接收到的所述第一操作,获取所述目标图形的特征信息;所述特征信息用于描述所述目标图形的图形特征;
    基于所述目标图形的特征信息与所述地图中的目标区域,确定所述目标路径。
  14. 根据权利要求13所述的装置,其特征在于,所述处理模块,具体用于:
    对所述目标图形进行抽象处理,得到所述目标图形的目标抽象图形;所述目标抽象图形用于描述所述目标图形中的关键点或所述目标抽象图形中的关键点之间的连接关系;
    基于所述目标抽象图形,获取所述特征信息。
  15. 根据权利要求13或14所述的装置,其特征在于,所述特征信息包括以下至少之一:
    连接特征信息、几何特征信息、角度特征信息、尺寸特征信息、位置特征信息。
  16. 根据权利要求14所述的装置,其特征在于,所述处理模块,具体用于:
    基于第一特征信息,在所述地图的所述目标区域内进行匹配,以得到匹配成功的至少一个第一目标子路径;
    基于第二特征信息,在所述至少一个第一目标子路径的周围区域内进行匹配,以得到匹配成功的第二目标子路径;其中,所述第二目标子路径是在所述至少一个第一目标子路径中的第三目标子路径的周围区域内匹配到的;所述第一特征信息与所述第二特征信息为所述特征信息的部分信息;所述第二目标子路径与所述第三目标子路径构成所述目标路径。
  17. 根据权利要求14所述的装置,其特征在于,所述处理模块,具体用于:
    基于所述目标图形和地图中的目标区域,确定多个候选路径;
    基于预设条件,从所述多个候选路径中确定所述目标路径;
    所述预设条件包括以下至少之一:
    目标路径的形状与所述目标抽象图形的相似度最高、目标路径的长度最短、目标路径途径指定区域;所述指定区域为预先设置的。
  18. 根据权利要求12所述的装置,其特征在于,
    所述接收模块,用于接收在第一界面上的第一操作;
    所述显示模块,用于在第二界面的地图上显示所述目标路径;所述第二界面与所述第一界面不同。
  19. 根据权利要求12至18任一项所述的装置,其特征在于,所述处理模块,具体用于:
    对所述目标区域进行分割,得到N个目标子区域;N为大于1的正整数;
    基于目标特征信息,对所述N个目标子区域进行优先级排序;其中,包含所述目标特征信息所对应的路径越多的子区域的优先级越高;所述目标特征信息为所述特征信息中的部分信息;
    基于所述特征信息,按照所述N个目标子区域的优先级排序,逐一对所述N个目标子区域进行匹配。
  20. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序存储在所述存储器上,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行权利要求1至11任一项所述的方法。
  21. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1-11任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
PCT/CN2023/103263 2022-08-24 2023-06-28 路径规划方法及装置 WO2024041180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211020211.2 2022-08-24
CN202211020211.2A CN117664159A (zh) 2022-08-24 2022-08-24 路径规划方法及装置

Publications (1)

Publication Number Publication Date
WO2024041180A1 true WO2024041180A1 (zh) 2024-02-29

Family

ID=90012378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103263 WO2024041180A1 (zh) 2022-08-24 2023-06-28 路径规划方法及装置

Country Status (2)

Country Link
CN (1) CN117664159A (zh)
WO (1) WO2024041180A1 (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204016A (ja) * 2009-03-05 2010-09-16 Zenrin Datacom Co Ltd 道筋探索装置、道筋探索方法およびコンピュータプログラム
JP2012215586A (ja) * 2012-07-19 2012-11-08 Zenrin Datacom Co Ltd 道筋探索装置、道筋探索方法およびコンピュータプログラム
CN105526943A (zh) * 2016-02-19 2016-04-27 苏州大学 一种基于路径轨迹规划的趣味出行指引方法及***
JP2016080654A (ja) * 2014-10-22 2016-05-16 日本電信電話株式会社 移動経路抽出装置、移動経路抽出方法、移動経路抽出プログラム
WO2017113367A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 一种路线推荐方法、电子设备及图形用户界面
CN107560611A (zh) * 2017-08-21 2018-01-09 北京小米移动软件有限公司 运动路线获取方法及装置
CN107729367A (zh) * 2017-09-08 2018-02-23 咪咕互动娱乐有限公司 一种运动路线推荐方法、装置及存储介质
CN108074009A (zh) * 2016-11-11 2018-05-25 菜鸟智能物流控股有限公司 一种运动路线的生成方法、装置、移动终端和服务器
CN108088454A (zh) * 2017-12-13 2018-05-29 北京小米移动软件有限公司 路线规划方法、装置和设备
CN110633346A (zh) * 2019-08-27 2019-12-31 腾讯科技(深圳)有限公司 一种运动路线推荐方法、装置及存储介质
CN110926486A (zh) * 2019-11-26 2020-03-27 百度在线网络技术(北京)有限公司 一种路线确定方法、装置、设备和计算机存储介质
CN113819913A (zh) * 2021-07-27 2021-12-21 腾讯科技(深圳)有限公司 一种路径规划方法及装置、计算机设备和存储介质
CN114322992A (zh) * 2022-01-18 2022-04-12 武汉元科技术有限公司 运动路径规划方法、生成方法、装置、设备及存储介质
CN114323048A (zh) * 2021-12-31 2022-04-12 深圳市大数据研究院 一种构建互动跑步路径的方法
CN115127557A (zh) * 2022-04-28 2022-09-30 广东小天才科技有限公司 路径导航方法、装置、可穿戴设备及存储介质
CN115683127A (zh) * 2021-07-26 2023-02-03 腾讯科技(深圳)有限公司 路径规划方法、装置、设备以及介质

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204016A (ja) * 2009-03-05 2010-09-16 Zenrin Datacom Co Ltd 道筋探索装置、道筋探索方法およびコンピュータプログラム
JP2012215586A (ja) * 2012-07-19 2012-11-08 Zenrin Datacom Co Ltd 道筋探索装置、道筋探索方法およびコンピュータプログラム
JP2016080654A (ja) * 2014-10-22 2016-05-16 日本電信電話株式会社 移動経路抽出装置、移動経路抽出方法、移動経路抽出プログラム
WO2017113367A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 一种路线推荐方法、电子设备及图形用户界面
CN105526943A (zh) * 2016-02-19 2016-04-27 苏州大学 一种基于路径轨迹规划的趣味出行指引方法及***
CN108074009A (zh) * 2016-11-11 2018-05-25 菜鸟智能物流控股有限公司 一种运动路线的生成方法、装置、移动终端和服务器
CN107560611A (zh) * 2017-08-21 2018-01-09 北京小米移动软件有限公司 运动路线获取方法及装置
CN107729367A (zh) * 2017-09-08 2018-02-23 咪咕互动娱乐有限公司 一种运动路线推荐方法、装置及存储介质
CN108088454A (zh) * 2017-12-13 2018-05-29 北京小米移动软件有限公司 路线规划方法、装置和设备
CN110633346A (zh) * 2019-08-27 2019-12-31 腾讯科技(深圳)有限公司 一种运动路线推荐方法、装置及存储介质
CN110926486A (zh) * 2019-11-26 2020-03-27 百度在线网络技术(北京)有限公司 一种路线确定方法、装置、设备和计算机存储介质
CN115683127A (zh) * 2021-07-26 2023-02-03 腾讯科技(深圳)有限公司 路径规划方法、装置、设备以及介质
CN113819913A (zh) * 2021-07-27 2021-12-21 腾讯科技(深圳)有限公司 一种路径规划方法及装置、计算机设备和存储介质
CN114323048A (zh) * 2021-12-31 2022-04-12 深圳市大数据研究院 一种构建互动跑步路径的方法
CN114322992A (zh) * 2022-01-18 2022-04-12 武汉元科技术有限公司 运动路径规划方法、生成方法、装置、设备及存储介质
CN115127557A (zh) * 2022-04-28 2022-09-30 广东小天才科技有限公司 路径导航方法、装置、可穿戴设备及存储介质

Also Published As

Publication number Publication date
CN117664159A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN112231025B (zh) Ui组件显示的方法及电子设备
WO2021213164A1 (zh) 应用界面交互方法、电子设备和计算机可读存储介质
WO2021000881A1 (zh) 一种分屏方法及电子设备
CN110910872B (zh) 语音交互方法及装置
CN110138959B (zh) 显示人机交互指令的提示的方法及电子设备
CN111669459B (zh) 键盘显示方法、电子设备和计算机可读存储介质
CN110825469A (zh) 语音助手显示方法及装置
WO2020029306A1 (zh) 一种图像拍摄方法及电子设备
EP4261680A1 (en) Widget display method and electronic device
CN111835904A (zh) 一种基于情景感知和用户画像开启应用的方法及电子设备
CN113641271A (zh) 应用窗口的管理方法、终端设备及计算机可读存储介质
CN114995715B (zh) 悬浮球的控制方法和相关装置
WO2021238740A1 (zh) 一种截屏方法及电子设备
CN115964231A (zh) 基于负载模型的评估方法和装置
CN112449101A (zh) 一种拍摄方法及电子设备
WO2023207667A1 (zh) 一种显示方法、汽车和电子设备
CN115032640B (zh) 手势识别方法和终端设备
CN113448658A (zh) 截屏处理的方法、图形用户接口及终端
CN113380240B (zh) 语音交互方法和电子设备
CN113407300B (zh) 应用误杀评估方法及相关设备
US20230280894A1 (en) Control moving method and electronic device
EP4160372A1 (en) Method for determining screenshot area, and related apparatus
CN115729427A (zh) 消息提示方法和电子设备
WO2024041180A1 (zh) 路径规划方法及装置
CN115291779A (zh) 一种窗口控制方法及其设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856271

Country of ref document: EP

Kind code of ref document: A1