WO2024040891A1 - 一种碳酸盐锂黏土的处理方法 - Google Patents

一种碳酸盐锂黏土的处理方法 Download PDF

Info

Publication number
WO2024040891A1
WO2024040891A1 PCT/CN2023/077473 CN2023077473W WO2024040891A1 WO 2024040891 A1 WO2024040891 A1 WO 2024040891A1 CN 2023077473 W CN2023077473 W CN 2023077473W WO 2024040891 A1 WO2024040891 A1 WO 2024040891A1
Authority
WO
WIPO (PCT)
Prior art keywords
flotation
lithium
particles
scrubbing
tailings
Prior art date
Application number
PCT/CN2023/077473
Other languages
English (en)
French (fr)
Inventor
阮丁山
李长东
刘云涛
张鹏
郭萧轲
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024040891A1 publication Critical patent/WO2024040891A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This application relates to the technical field of mineral refining, and specifically to a method for processing lithium carbonate clay.
  • a major source of lithium resources is salt lake brine, but the mining and utilization of this source requires high industrial technology and can easily cause damage to the ecological environment.
  • lithium resources can also come from hard rock lithium minerals.
  • the development of lithium minerals is mainly based on spodumene and lepidolite. After beneficiation and enrichment, the Li 2 O content in the lithium concentrate can be increased to 3%-6%, and then through calcination, leaching, impurity removal and purification, and lithium precipitation After other processes, industrial grade or electronic grade lithium salt can be produced.
  • lithium carbonate clay contains highly enriched lithium content. It is predicted that the lithium carbonate equivalent can exceed one million tons and the lithium content reaches 0.1% to 0.3%. It is defined as lithium carbonate clay.
  • its main mineral composition includes calcite, lithium chlorite, illite, kaolinite, quartz, mica, pyrite, etc.
  • people have carried out preliminary exploration to extract lithium. They mainly use double salt roasting or sulfuric acid ripening to release lithium from the lithium clay into the solution. The resulting lithium-containing leachate is then subjected to impurity removal, concentration, and lithium precipitation processes to prepare lithium. Salt.
  • the purpose of this application is to provide a method for processing lithium carbonate clay, which removes coarse-grained calcite and minerals through multi-stage scrubbing, diversion, flotation and other processes.
  • the improvement of lithium purity can ultimately increase the lithium enrichment factor to more than 2 times, and the lithium recovery rate can reach more than 75%.
  • the mass yield of subsequent smelting lithium extraction processing materials only accounts for 30% to 40% of the lithium carbonate clay.
  • the requirements for equipment and reagents required for treatment are low, and there is no need to introduce high energy-consuming smelting processes, so industrial scale can be achieved.
  • a method for processing lithium carbonate clay including the following steps:
  • the overflow particles d are sequentially subjected to desulfurization and decarburization flotation treatment, calcite removal flotation treatment and lithium flotation treatment to obtain lithium concentrate 2; the flotation foam obtained by the desulfurization and decarburization flotation treatment is used as tail Ore 6, the flotation foam obtained by the calcite removal flotation is used as tailings 7, and the flotation foam obtained by the lithium flotation treatment is used as tailings 8.
  • the coarse-grained calcite in the lithium carbonate clay can be effectively eliminated, and small particle materials can be enriched.
  • Effective secondary separation based on diameter size and impurity content, and step-by-step desulfurization, decarburization, calcite removal and lithium flotation to further reduce the content of iron, calcium and other impurities in the product, and ultimately achieve a lithium enrichment factor of 2 in the resulting lithium concentrate. More than times, the comprehensive recovery rate of lithium reaches more than 75%, and the removal rate of impurity elements such as iron, calcium, sulfur, etc. is greater than 80%.
  • the mass yield of materials for subsequent lithium extraction processing in smelting only accounts for 30% to 40% of lithium carbonate clay.
  • This treatment method makes full use of the characteristics of lithium carbonate clay. In view of its low lithium content, it combines the scrubbing process with low investment and low operating cost with the flotation process with strong adaptability and good sorting performance, reducing the need for mineral processing equipment. Investment and consumption of flotation reagents are low, and it is highly economical.
  • the physical and chemical properties of the screened particles are used to firstly remove sulfur-containing substances and carbonaceous matter in the particles to avoid interference with subsequent flotation; and if the particles If the calcium content is high, the pH value is further adjusted by alkali to remove the fine-grained calcite. Finally, after a large amount of acid-consuming calcite is removed, mixed acid is used to adjust the pH value of the slurry to the range of 1 to 2.5, and the slurry is effectively enriched through lithium flotation.
  • the quality of different batches of lithium carbonate clay is fully taken into consideration, and different processing particles are treated differently with short-distance and long-distance routes to reduce the waste of process reagents and improve the overall product quality.
  • the lithium content of the lithium carbonate clay in step (1) is ⁇ 0.05wt%, and the calcium content is ⁇ 5wt%.
  • the particle size of the crushed lithium carbonate clay is ⁇ 50 mm.
  • the first scrubbing in step (1) is cylinder or vertical scrubbing
  • the second scrubbing is vertical scrubbing
  • the scrubbing concentration of the first scrubbing and the second scrubbing is 50-80%.
  • the agent used in the desulfurization and decarburization flotation treatment is at least one of an acidic pH adjuster, an inhibitor, a foaming agent, and a sulfur carbon collector.
  • the acidic pH adjuster is at least one of sulfuric acid, phosphoric acid, hydrochloric acid and hydrofluoric acid;
  • the inhibitor is at least one of sodium silicate, starch, dextrin and/or modified substances. kind;
  • the foaming agent is at least one of No. 2 oil and methyl isobutyl carbinol;
  • the sulfur carbon collector is xanthate and/or modified substance, black powder and/or modified substance, At least one of diesel and kerosene.
  • the agent used in the calcite removal flotation treatment is at least one of an alkaline pH regulator, an inhibitor, and a calcite collector.
  • the alkaline pH adjuster is a mixture of sodium carbonate and sodium hydroxide; the inhibitor is at least one of sodium silicate, starch, dextrin and/or modified substances; the calcite
  • the collector is an anionic collector, and the anionic collector includes fatty acid soap and sulfonated fatty acid.
  • the agent used in the lithium flotation is at least one of an acidic pH regulator and a lithium clay mineral collector.
  • the lithium clay mineral collector is at least one of an etheramine collector and a polyamine collector.
  • selecting the appropriate treatment environment and treatment chemicals can effectively enrich the lithium element and eliminate various types of impurities, thereby improving the purity of the final lithium concentrate.
  • this application provides a method for processing lithium carbonate clay.
  • This method can effectively eliminate coarse-grained calcite in lithium carbonate clay through multiple scrubbings and mixing particle classification. It is convenient to enrich small particle materials, and then carry out effective secondary separation according to the particle size and impurity content.
  • the particles of different compositions can be desulfurized, decarburized, calcite removed and lithium flotated step by step to further reduce the iron and calcium in the product.
  • Figure 1 is a schematic flow chart of the processing method of lithium carbonate clay described in this application.
  • Figure 2 is a mineral schematic diagram of the lithium carbonate clay used in Example 1 of the present application.
  • Figure 3 is an XRD test chart of the lithium carbonate clay used in Example 1 of the present application.
  • Figure 4 is a schematic flow chart of the processing method of lithium carbonate clay described in Example 1 of the present application.
  • Figure 5 is a schematic flow chart of the processing method of lithium carbonate clay described in Example 2 of the present application.
  • Figure 6 is a schematic flow chart of the processing method of lithium carbonate clay described in Example 3 of the present application.
  • Figure 7 is a schematic flow chart of the processing method of lithium carbonate clay described in Comparative Example 1 of the present application.
  • Figure 8 is a schematic flow chart of the processing method of lithium carbonate clay described in Comparative Example 2 of the present application.
  • Figure 9 is a schematic flow chart of the processing method of lithium carbonate clay described in Comparative Example 3 of the present application.
  • the processing method of lithium carbonate clay described in this application includes the following steps:
  • the overflow particles d are sequentially subjected to desulfurization and decarburization flotation treatment, calcite removal flotation treatment and lithium flotation treatment to obtain lithium concentrate 2; the flotation foam obtained by the desulfurization and decarburization flotation treatment is used as tail Ore 6, the flotation foam obtained by the calcite removal flotation is used as tailings 7, and the flotation foam obtained by the lithium flotation treatment is used as tailings 8.
  • An embodiment of the processing method of lithium carbonate clay described in this application, as shown in Figure 4, includes the following steps:
  • (1) Collect lithium carbonate clay Its mineral diagram is shown in Figure 2; its XRD test chart is shown in Figure 3. It can be seen that in addition to lithium chlorite, the mineral composition includes large-grained calcite Cc 1. Small particle size calcite Cc 2 , quartz Q, etc. After the lithium carbonate clay is crushed to a particle size of ⁇ 15mm, it is placed in a cylinder scrubbing machine and scrubbed once with a scrubbing concentration of 65%. Then, it is subjected to two-layer vibrating wet screening with sieve sizes of 10mm and 1mm.
  • Particles with a particle size >10 mm are screened out as tailings 1; particles with a particle size ⁇ 1 mm are screened out and placed in a hydrocyclone for primary cyclone to obtain underflow particles a and overflow particles b with a particle size of less than 38 ⁇ m. ; Mix the remaining particles with a particle size of 1 to 10 mm and the underflow particles a. The resulting mixture is placed in a vertical scrubbing machine for secondary scrubbing with a scrubbing concentration of 75%, and then vibrating wet screening with a screen aperture of 2mm is performed.
  • the calcium content of the overflow particles b is ⁇ 3wt%, and the desulfurization and decarburization flotation treatment and the lithium flotation treatment are carried out in sequence to obtain the lithium concentrate 1; the flotation foam obtained by the desulfurization and decarburization flotation treatment is used as tail Ore 4, the flotation foam obtained by the lithium flotation treatment is used as tailings 5;
  • the dosage of reagents used in desulfurization and decarburization flotation treatment and the corresponding treatment particle feed materials are: sulfuric acid 3kg/ton flotation feed material, starch 300g/ton flotation feed material, No. 2 oil 40g/ton flotation feed material, Ding
  • the flotation feed is 100g/ton of base xanthate and 30g/ton of diesel; the flotation concentration of this desulfurization and decarburization flotation treatment is 30%;
  • the dosage of reagents used in lithium flotation treatment and the corresponding treated particle feed materials are: sulfuric acid 5kg/ton flotation feed, hydrofluoric acid 2kg/ton flotation feed, ether amine modified collector 300kg/ton flotation feed;
  • the overflow particles d are sequentially subjected to desulfurization and decarburization flotation treatment, calcite removal flotation treatment and lithium flotation treatment to obtain lithium concentrate 2; the flotation foam obtained by the desulfurization and decarburization flotation treatment is used as tail Ore 6, the flotation foam obtained by the calcite removal flotation is used as tailings 7, and the flotation foam obtained by the lithium flotation treatment is used as tailings 8;
  • the dosage of reagents used in desulfurization and decarburization flotation treatment and the corresponding particle feed materials are: sulfuric acid 6kg/ton flotation feed, starch 600g/ton flotation feed, No. 2 oil 50g/ton flotation feed, Ding
  • the flotation feed is 150g/ton of base xanthate and 50g/ton of diesel; the flotation concentration of this desulfurization and decarburization flotation treatment is 30%;
  • the calcite removal flotation treatment stage includes rough flotation and fine flotation stages.
  • the dosage of reagents used in the rough flotation stage and the corresponding treated particle feed materials are: sodium carbonate 2kg/ton of flotation feed, sodium hydroxide 2kg/ton of flotation feed.
  • fine flotation stage includes sodium hydroxide 0.5kg/ton flotation feed, sodium silicate 0.5kg /ton flotation feed, modified oxidized paraffin soap 0.5kg/ton flotation feed;
  • the dosage of reagents used in lithium flotation treatment and the corresponding treated particle feed materials are: 10kg/ton of sulfuric acid flotation feed, 4kg/ton of hydrofluoric acid flotation feed, and 500kg/ton of etheramine modified collector Feed.
  • the yield of lithium concentrate obtained by the treatment method described in Example 1 reaches 45%, and the distribution rate of lithium element reaches 88.62%.
  • the tailings obtained by the mineral processing at each stage are of low grade, and the lithium extraction efficiency is high.
  • the yield of tailings 1 to 3 after simple scrubbing is about 30%, the Li grade is increased from 0.25% of the original ore to 0.34%, and the enrichment is 1.36 times; the subsequent flotation feed only accounts for 70% of the original ore. , and then remove pyrite, carbonaceous, calcite, quartz, etc. through flotation, further increasing the concentrate grade to 0.50%.
  • An embodiment of the processing method of lithium carbonate clay described in the present application, as shown in Figure 5, includes the following steps:
  • the resulting mixture is placed in a vertical scrubbing machine for secondary scrubbing with a scrubbing concentration of 55%, and then vibrated with a screen aperture of 2mm.
  • Wet sieving process sieve out the particles with a particle size greater than 2mm that cannot be sieved as tailings 2; put the screened particles into a hydrocyclone for secondary cyclone to obtain underflow particles c and a particle size of less than 250 ⁇ m.
  • the flow particles d; the bottom material particles c are used as tailings 3;
  • the calcium content of the overflow particles b is >3wt%. Combine it with the overflow particles d and perform desulfurization and decarburization flotation treatment, calcite removal flotation treatment and lithium flotation treatment in sequence to obtain lithium concentrate 2;
  • the flotation foam obtained by the desulfurization and decarbonization flotation treatment is used as tailings 6, the flotation foam obtained by the decalcite flotation is used as tailings 7, and the flotation foam obtained by the lithium flotation treatment is used as tailings 8;
  • the reagent system used in the desulfurization and decarburization flotation treatment is: 2kg/ton of sodium silicate as flotation feed, 100g/ton of methyl isobutyl methanol as flotation feed, and 250g/ton of amyl xanthate as flotation feed; Desulfurization and decarbonization flotation treatment The flotation concentration is 28%;
  • the calcite removal flotation treatment includes one rough flotation stage and two fine flotation stages.
  • the dosage of reagents used in the rough flotation stage and its corresponding treatment particle feed is: sodium carbonate 4kg/ton flotation feed, sodium hydroxide 4kg/ton flotation feed, starch 1kg/ton flotation feed, oxidized paraffin soap and oleic acid soap mixture 3.5kg/ton flotation feed;
  • the first fine flotation stage chemicals include sodium hydroxide 0.5kg/ Ton of flotation feed, sodium silicate 0.75kg/ton of flotation feed, mixture of oxidized paraffin soap and oleic acid soap 0.75kg/ton of flotation feed;
  • the second fine flotation stage chemicals include 0.5kg of sodium hydroxide /ton of flotation feed, sodium silicate 0.25kg/ton of flotation feed, mixture of oxidized paraffin soap and oleic acid soap 0.25kg/ton of flotation feed;
  • the dosage of reagents used in lithium flotation treatment and the corresponding treated particle feed materials are: 15kg/ton of sulfuric acid flotation feed, 4kg/ton of hydrofluoric acid flotation feed, and 800kg/ton of etheramine modified collector Feed.
  • the yield of lithium concentrate obtained by the treatment method described in Example 2 reaches 33%, and the distribution rate of lithium element reaches 75.30%.
  • the tailings obtained from smelting at each stage have low grades, and the lithium extraction efficiency is high.
  • the yield of tailings 1 to 3 after simple scrubbing is about 40%, the Li grade is increased from 0.15% of the original ore to 0.22%, and the enrichment is 1.47 times; the subsequent flotation feed only accounts for 60% of the original ore. , and then remove pyrite, carbonaceous, calcite, quartz, etc. through flotation, further increasing the concentrate grade to 0.34%.
  • An embodiment of the processing method of lithium carbonate clay described in this application, as shown in Figure 6, includes the following steps:
  • the resulting mixture is placed in a vertical scrubbing machine for secondary scrubbing with a scrubbing concentration of 75%, and then vibrated and wetted with a screen aperture of 1mm.
  • Sieve treatment sieve out the particles with a particle size greater than 1 mm that cannot be sieved as tailings 2; place the screened particles into a hydrocyclone for secondary cyclone to obtain underflow particles c and overflow with a particle size below 38 ⁇ m.
  • Particle d the bottom material particle c is put back into the vertical scrubbing machine and mixed with subsequent particles for secondary scrubbing;
  • the calcium content of the overflow particles b is >3wt%. Combine it with the overflow particles d and perform desulfurization and decarburization flotation treatment, calcite removal flotation treatment and lithium flotation treatment in sequence to obtain lithium concentrate 2;
  • the flotation foam obtained by the desulfurization and decarbonization flotation treatment is used as tailings 6, the flotation foam obtained by the decalcite flotation is used as tailings 7, and the flotation foam obtained by the lithium flotation treatment is used as tailings 8;
  • the desulfurization and decarburization flotation treatment includes a rough flotation stage and a fine flotation stage.
  • the dosage of reagents used in the rough flotation stage and the corresponding treated particle feed materials are: 300g/ton of starch/ton of flotation feed, 100g/ton of No. 2 oil tons of flotation feed, butyl xanthate 250g/ton of flotation feed, diesel 100g/ton of flotation feed; the agent used in the fine flotation stage is 100g/ton of starch flotation feed, the desulfurization and decarbonization flotation treatment
  • the flotation concentration is 32%;
  • the calcite removal flotation process includes a rough flotation stage and a fine flotation stage.
  • the dosage of reagents used in the rough flotation stage and the corresponding treatment particle feed materials are: sodium hydroxide 5kg/ton flotation feed, starch 0.6kg/ton
  • the flotation feed, the mixture of oxidized paraffin soap and oleic acid soap is 3.5kg/ton of flotation feed;
  • the fine flotation stage chemicals include sodium hydroxide 0.25kg/ton of flotation feed and starch 0.25kg/ton of flotation feed.
  • a mixture of oxidized paraffin soap and oleic acid soap 0.5kg/ton flotation feed;
  • the dosage of reagents used in lithium flotation treatment and the corresponding treated particle feed materials are: sulfuric acid 20kg/ton flotation feed, hydrofluoric acid 6kg/ton flotation feed, etheramine modified collector 700kg/ton flotation Feed.
  • the yield of lithium concentrate obtained by the treatment method described in Example 3 reaches 40%, and the distribution rate of lithium element reaches 83.54%.
  • the tailings obtained by beneficiation at each stage have low grades, and the lithium extraction efficiency is high.
  • the yield of tailings 1 to 2 after simple scrubbing is about 35%, and the Li grade is increased from 0.20% of the raw ore to 0.29%, enriched 1.45 times; the subsequent flotation feed only accounts for 65% of the raw ore, and then through flotation
  • the pyrite, carbonaceous, calcite, quartz, etc. are removed separately and further improved to a concentrate grade of 0.42%.
  • a comparative example of the processing method of lithium carbonate clay described in this application, as shown in Figure 7, includes the following steps:
  • the calcium content of the overflow particles b is >3wt%. Combine it with the overflow particles d and perform desulfurization and decarburization flotation treatment, calcite removal flotation treatment and lithium flotation treatment in sequence to obtain lithium concentrate 2;
  • the flotation foam obtained by the desulfurization and decarbonization flotation treatment is used as tailings 6, the flotation foam obtained by the decalcite flotation is used as tailings 7, and the flotation foam obtained by the lithium flotation treatment is used as tailings 8;
  • the desulfurization and decarburization flotation treatment includes a rough flotation stage and a fine flotation stage.
  • the dosage of reagents used in the rough flotation stage and the corresponding treated particle feed materials are: 500g/ton of starch/ton of flotation feed, 300g/ton of No. 2 oil Ton flotation feed, butyl xanthate 350g/ton flotation feed, diesel 200g/ton flotation feed; the agent used in the fine flotation stage is 200g/ton starch flotation feed, the desulfurization and decarbonization flotation treatment
  • the flotation concentration is 30%;
  • the calcite removal flotation treatment includes a rough flotation stage and a fine flotation stage.
  • the dosage of reagents used in the rough flotation stage and the corresponding treatment particle feed materials are: sodium hydroxide 5kg/ton flotation feed, starch 0.7kg/ton
  • the flotation feed, the mixture of oxidized paraffin soap and oleic acid soap is 4.5kg/ton of flotation feed;
  • the fine flotation stage chemicals include sodium hydroxide 0.5kg/ton of flotation feed and starch 0.3kg/ton of flotation feed.
  • the mixture of oxidized paraffin soap and oleic acid soap is 0.8kg/ton of flotation feed;
  • the dosage of reagents used in lithium flotation treatment and the corresponding treated particle feed materials are: sulfuric acid 10kg/ton flotation feed, hydrofluoric acid 8kg/ton flotation feed, ether amine modified collector 800kg/ton flotation Feed.
  • the lithium concentrate yield obtained by the treatment method described in Comparative Example 1 is 30%, and the distribution rate (recovery rate) of lithium element is only 62.61%, which is much lower than Examples 1, 2 and 3.
  • This comparative example only uses a section of cylinder scrubbing.
  • the yield of tailings 1 is about 15% after scrubbing.
  • the Li grade is increased from 0.14% of the raw ore to 0.16%, which is only enriched 1.14 times. After scrubbing, the particle size of the 3 to 10mm material under the sieve is relatively coarse.
  • a comparative example of the processing method of lithium carbonate clay described in this application, as shown in Figure 8, includes the following steps:
  • the resulting mixture is placed in a vertical scrubbing machine for secondary scrubbing with a scrubbing concentration of 75%, and then vibrated with a screen aperture of 2mm.
  • Wet sieving process sieve out the particles with a particle size greater than 2mm that cannot be sieved as tailings 2; put the screened particles into a hydrocyclone for secondary cyclone to obtain underflow particles c and a particle size of less than 250 ⁇ m.
  • the flow particles d; the bottom material particles c are used as tailings 3;
  • the calcium content of the overflow particles b is >3wt%. Combine it with the overflow particles d and perform desulfurization and decarburization flotation treatment, calcite removal flotation treatment and lithium flotation treatment in sequence to obtain lithium concentrate 2;
  • the flotation foam obtained by the desulfurization and decarbonization flotation treatment is used as tailings 6, the flotation foam obtained by the decalcite flotation is used as tailings 7, and the flotation foam obtained by the lithium flotation treatment is used as tailings 8;
  • the reagent system used in the desulfurization and decarburization flotation treatment is: 2kg/ton of sodium silicate as flotation feed, 100g/ton of methyl isobutyl methanol as flotation feed, and 250g/ton of amyl xanthate as flotation feed;
  • the flotation concentration of desulfurization and decarbonization flotation treatment is 28%;
  • the calcite removal flotation treatment includes one rough flotation stage and two fine flotation stages.
  • the dosage of reagents used in the rough flotation stage and its corresponding treatment particle feed is: sodium carbonate 4kg/ton flotation feed, sodium hydroxide 4kg/ton of flotation feed, 3kg/ton of sodium silicate, 4.5kg/ton of a mixture of oxidized paraffin soap and oleic acid soap;
  • the first fine flotation stage chemicals include 0.5 sodium hydroxide kg/ton of flotation feed, sodium silicate 0.75kg/ton of flotation feed, mixture of oxidized paraffin soap and oleic acid soap 0.75kg/ton of flotation feed;
  • the second fine flotation stage chemicals include sodium hydroxide 0.5kg/ton of flotation feed, 0.25kg/ton of sodium silicate, 0.25kg/ton of mixture of oxidized paraffin soap and oleic acid soap;
  • the dosage of reagents used in lithium flotation treatment and the corresponding treated particle feed materials are: 15kg/ton of sulfuric acid flotation feed, 4kg/ton of hydrofluoric acid flotation feed, and 800kg/ton of etheramine modified collector Feed.
  • a comparative example of the processing method of lithium carbonate clay described in this application, as shown in Figure 9, includes the following steps:
  • the calcium content of the overflow particles b is ⁇ 3wt%, and the desulfurization and decarburization flotation treatment and the lithium flotation treatment are carried out in sequence to obtain the lithium concentrate 1; the flotation foam obtained by the desulfurization and decarburization flotation treatment is used as tail Ore 4, the flotation foam obtained by the lithium flotation treatment is used as tailings 5;
  • the dosage of reagents used in desulfurization and decarburization flotation treatment and the corresponding treatment particle feed materials are: sulfuric acid 3kg/ton flotation feed material, starch 300g/ton flotation feed material, No. 2 oil 40g/ton flotation feed material, Ding
  • the flotation feed is 100g/ton of base xanthate and 30g/ton of diesel; the flotation concentration of this desulfurization and decarburization flotation treatment is 30%;
  • the dosage of reagents used in lithium flotation treatment and the corresponding treated particle feed materials are: sulfuric acid 5kg/ton flotation feed, hydrofluoric acid 2kg/ton flotation feed, ether amine modified collector 300kg/ton flotation feed;
  • the overflow particles d are sequentially subjected to desulfurization and decarburization flotation treatment, calcite removal flotation treatment and lithium flotation treatment to obtain lithium concentrate 2; the flotation foam obtained by the desulfurization and decarburization flotation treatment is used as tail Ore 6, the flotation foam obtained by the calcite removal flotation is used as tailings 7, and the flotation foam obtained by the lithium flotation treatment is used as tailings 8;
  • the dosage of reagents used in desulfurization and decarburization flotation treatment and the corresponding treatment particle feed materials are: sulfuric acid 6kg/ton flotation feed material, starch 600g/ton flotation feed material, No. 2 oil 100g/ton flotation feed material, Ding
  • the flotation feed is 250g/ton of base xanthate and 100g/ton of diesel; the flotation concentration of this desulfurization and decarbonization flotation treatment is 30%;
  • the calcite removal flotation treatment stage includes rough flotation and fine flotation stages.
  • the dosage of reagents used in the rough flotation stage and the corresponding particle feed materials are: sodium carbonate 2kg/ton flotation feed, sodium hydroxide 4kg/ton flotation.
  • fine flotation stage includes sodium hydroxide 0.5kg/ton flotation feed, sodium silicate 0.5kg /ton flotation feed, modified oxidized paraffin soap 0.75kg/ton flotation feed;
  • the dosage of reagents used in lithium flotation treatment and the corresponding treated particle feed materials are: sulfuric acid 8kg/ton flotation feed, hydrofluoric acid 8kg/ton flotation feed, etheramine modified collector 850kg/ton flotation Feed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本申请公开了一种碳酸盐锂黏土的处理方法,属于矿物提炼技术领域。该方法通过多次擦洗及混料颗粒分级,可有效将碳酸盐锂黏土中的粗粒度方解石有效排除,方便富集小颗粒料体,再根据颗粒粒径大小及杂质含量多少进行有效二次分离,对不同组成的颗粒区分分步进行脱硫脱碳、脱方解石及锂浮选,进一步降低产品中铁、钙等杂质的含量,最终实现所得锂精矿的锂富集倍数达2倍以上,锂综合回收率达75%以上,铁、钙、硫等杂质元素排除率大于80%;该处理方法充分利用碳酸盐锂黏土的特点,针对其锂含量低的情况,将投资少、运行成本低的擦洗工艺和适应性强、分选性好的浮选工艺结合,适用经济性高。

Description

一种碳酸盐锂黏土的处理方法 技术领域
本申请涉及矿物提炼技术领域,具体涉及一种碳酸盐锂黏土的处理方法。
背景技术
锂资源的一大来源为盐湖卤水,但该来源的开采及利用对于工业技术要求较高,同时也容易造成生态环境的破坏。
除盐湖卤水资源外,锂资源还可来源于硬岩锂矿物。目前锂矿物的开发主要以锂辉石、锂云母为主,经选矿富集后锂精矿中Li2O含量可提高到3%-6%,再经煅烧、浸出、除杂净化、沉锂等工序后便可生产出工业级或电子级锂盐。
近年来,人们发现了一种含有高富集锂含量的黏土,预测碳酸锂当量可超百万吨,锂含量达0.1%~0.3%,被定义为碳酸盐锂黏土。通过该类型锂黏土工艺矿物学可知,其主要矿物组成包括方解石、锂绿泥石、伊利石、高岭石、石英、云母、黄铁矿等。针对这种新型矿土,人们进行了初步提锂探索,主要采用复盐焙烧或硫酸熟化将锂从锂黏土中释放到溶液中,所得含锂浸出液再经除杂、浓缩、沉锂工序制备锂盐。然而,由于锂黏土中锂含量很低,生产一吨锂盐往往产出几百吨浸出渣,同时针对这种原料进行冶炼所需耗能极高,锂冶炼厂投资大,运行成本高,性价比极低,制约了这种碳酸盐锂黏土的产业化开发。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
基于现有技术存在的缺陷,本申请的目的在于提供了一种碳酸盐锂黏土的处理方法,通过多段擦洗、分流、浮选等工序对碳酸盐锂黏土进行粗粒方解石的排除及矿物锂纯度的提升,可最终实现锂富集倍数提升至2倍以上,锂回收率达75%以上,后续冶炼提锂处理物料量产率仅占碳酸盐锂黏土的30%~40%,同时对于处理所需的设备及试剂要求低,无需引入高耗能的冶炼工艺,可实现工业规模化。
为了达到上述目的,本申请采取的技术方案为:
一种碳酸盐锂黏土的处理方法,包括以下步骤:
(1)将碳酸盐锂黏土经破碎处理至粒径≤100mm后,置入擦洗机中进行一次擦洗,随后再进行振动湿筛处理,将所得无法过筛的颗粒筛出作为尾矿1;将所得粒径<1mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和溢流颗粒b;将所得余下的颗粒与底流颗粒a混合,所得混料进行二次擦洗,随后再进行筛网孔径为1~2mm的振动湿筛处理,将所得无法过筛的颗粒筛出作为尾矿2;将筛出颗粒置入水力旋流器中二次旋流,得底流颗粒c和溢流颗粒d;所述底料颗粒c作为尾矿3或重新回流至水力旋流器与下一批次的混料混合进行二次擦洗;
(2)若溢流颗粒b的钙含量≤3wt%,则依次进行脱硫脱碳浮选处理及锂浮选处理,得锂精矿1;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿4,所述锂浮选处理得到的浮选泡沫作为尾矿5;若溢流颗粒b的钙含量>3wt%,将溢流颗粒b进行步骤(3)中溢流颗粒d的相同处理;
(3)将溢流颗粒d依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8。
本申请所述碳酸盐锂黏土的处理方法中,通过多次擦洗及混料颗粒分级,可有效将碳酸盐锂黏土中的粗粒度方解石有效排除,富集小颗粒料体,根据颗粒粒径大小及杂质含量多少进行有效二次分离,分步进行脱硫脱碳、脱方解石及锂浮选,进一步降低产品中铁、钙等杂质的含量,最终实现所得锂精矿的锂富集倍数达2倍以上,锂综合回收率达75%以上,铁、钙、硫等杂质元素排除率大于80%,后续冶炼提锂处理物料量产率仅占碳酸盐锂黏土的30%~40%。该处理方法充分利用碳酸盐锂黏土的特点,针对其锂含量低的情况,将投资少、运行成本低的擦洗工艺和适应性强、分选性好的浮选工艺结合,减少了选矿设备投资和浮选药剂消耗,适用经济性高。
在本申请所述碳酸盐锂黏土的处理方法中,利用筛选后的颗粒的理化性质,首先将颗粒中的含硫物质及碳质优先排除,避免其对于后续浮选的干扰;而若颗粒钙含量较高,则进一步通过碱调节pH值,将细粒级方解石脱除;最后大量耗酸方解石排除后,用混合酸将矿浆pH值调整为1~2.5区间,经过锂浮选有效富集得到锂精矿,充分考虑到不同批次的碳酸盐锂黏土的品质,以短程和长程路线区别对待不同的处理颗粒,降低过程试剂的浪费并提升整体产品质量。
可选地,所述步骤(1)中碳酸盐锂黏土的锂含量≥0.05wt%,钙含量≥5wt%。
可选地,所述破碎处理后的碳酸盐锂黏土的粒径≤50mm。
可选地,所述步骤(1)中的一次擦洗为圆筒或立式擦洗,二次擦洗为立式擦洗。
更可选地,所述一次擦洗和二次擦洗的擦洗浓度为50~80%。
可选地,所述脱硫脱碳浮选处理所用药剂为酸性pH调节剂、抑制剂、起泡剂、硫碳捕收剂中的至少一种。
更可选地,所述酸性pH调节剂为硫酸、磷酸、盐酸、氢氟酸中的至少一种;所述抑制剂为硅酸钠、淀粉、糊精和/或改性物中的至少一种;所述起泡剂为二号油、甲基异丁基甲醇中的至少一种;所述硫碳捕收剂为黄药和/或改性物、 黑药和/或改性物、柴油、煤油中的至少一种。
可选地,所述脱方解石浮选处理所用药剂为碱性pH调节剂、抑制剂、方解石捕收剂中的至少一种。
更可选地,所述碱性pH调节剂为碳酸钠和氢氧化钠的混合物;所述抑制剂为硅酸钠、淀粉、糊精和/或改性物中的至少一种;所述方解石捕收剂为阴离子捕收剂,所述阴离子捕收剂包括脂肪酸皂和磺化脂肪酸。
可选地,所述锂浮选所用药剂为酸性pH调节剂、锂黏土矿物捕收剂中的至少一种。
更可选地,所述锂黏土矿物捕收剂为醚胺类捕收剂、多胺类捕收剂中的至少一种。
根据处理颗粒中杂质和目标矿物锂的特性,选用合适的处理环境及处理药剂可有效将锂元素进行富集并排除多类杂质,提升最终得到的锂精矿的纯度。
本申请的有益效果在于,本申请提供了一种碳酸盐锂黏土的处理方法,该方法通过多次擦洗及混料颗粒分级,可有效将碳酸盐锂黏土中的粗粒度方解石有效排除,方便富集小颗粒料体,再根据颗粒粒径大小及杂质含量多少进行有效二次分离,对不同组成的颗粒区分分步进行脱硫脱碳、脱方解石及锂浮选,进一步降低产品中铁、钙等杂质的含量,最终实现所得锂精矿的锂富集倍数达2倍以上,锂综合回收率达75%以上,铁、钙、硫等杂质元素排除率大于80%;该处理方法充分利用碳酸盐锂黏土的特点,针对其锂含量低的情况,将投资少、运行成本低的擦洗工艺和适应性强、分选性好的浮选工艺结合,无需引入高耗能的冶炼工艺,适用经济性高。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请所述碳酸盐锂黏土的处理方法的流程示意图。
图2为本申请实施例1所用碳酸盐锂黏土的矿物示意图。
图3为本申请实施例1所用碳酸盐锂黏土的XRD测试图。
图4为本申请实施例1所述碳酸盐锂黏土的处理方法的流程示意图。
图5为本申请实施例2所述碳酸盐锂黏土的处理方法的流程示意图。
图6为本申请实施例3所述碳酸盐锂黏土的处理方法的流程示意图。
图7为本申请对比例1所述碳酸盐锂黏土的处理方法的流程示意图。
图8为本申请对比例2所述碳酸盐锂黏土的处理方法的流程示意图。
图9为本申请对比例3所述碳酸盐锂黏土的处理方法的流程示意图。
具体实施方式
本申请所述碳酸盐锂黏土的处理方法,包括以下步骤:
(1)将碳酸盐锂黏土经破碎处理至粒径≤100mm后,置入擦洗机中进行一次擦洗,随后再进行振动湿筛处理,将所得无法过筛的颗粒筛出作为尾矿1;将所得粒径<1mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和溢流颗粒b;将所得余下的颗粒与底流颗粒a混合,所得混料进行二次擦洗,随后再进行筛网孔径为1~2mm的振动湿筛处理,将所得无法过筛的颗粒筛出作为尾矿2;将筛出颗粒置入水力旋流器中二次旋流,得底流颗粒c和溢流颗粒d;所述底料颗粒c作为尾矿3或重新回流至水力旋流器与下一批次的混料混合进行二次擦洗;
(2)若溢流颗粒b的钙含量≤3wt%,则依次进行脱硫脱碳浮选处理及锂浮选处理,得锂精矿1;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿4,所述锂浮选处理得到的浮选泡沫作为尾矿5;若溢流颗粒b的钙含量>3wt%,将溢流颗粒b进行步骤(3)中溢流颗粒d的相同处理;
(3)将溢流颗粒d依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8。
本申请所述处理方法的流程示意图如图1所示,为了更好地说明本申请的目的、技术方案和优点,下面将结合具体实施例/对比例对本申请作进一步说明,其目的在于详细地理解本申请的内容,而不是对本申请的限制。本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。本申请实施、对比例所设计的实验试剂、原料及仪器,除非特别说明,均为常用的普通试剂、原料及仪器。
实施例1
本申请所述碳酸盐锂黏土的处理方法的一种实施例,如图4所示,包括以下步骤:
(1)采集碳酸盐锂黏土,其矿物示意图如图2所示;其XRD测试图如图3所示,可以看出,该矿物组成除锂绿泥矿外,包括了大粒径方解石Cc1、小粒径方解石Cc2、石英Q等。将碳酸盐锂黏土经破碎处理至粒径≤15mm后,置入圆筒擦洗机中进行一次擦洗,擦洗浓度为65%,随后再进行10mm和1mm筛径的两层振动湿筛处理,将粒径>10mm的颗粒筛出作为尾矿1;将所得粒径<1mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和粒径为38μm以下的溢流颗粒b;将所得余下粒径1~10mm的颗粒与底流颗粒a混合,所得混料置于立式擦洗机中进行二次擦洗,擦洗浓度75%,随后再进行筛网孔径为2mm的振动湿筛处理,将所得无法过筛的粒径大于2mm的颗粒筛出作为尾矿2;将筛出颗粒置入水力旋流器中二次旋流,得底流颗粒c和粒径为250μm以下溢流颗粒d;所述底料颗粒c作为尾矿3;
(2)溢流颗粒b的钙含量≤3wt%,依次进行脱硫脱碳浮选处理及锂浮选处理,得锂精矿1;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿4,所述锂浮选处理得到的浮选泡沫作为尾矿5;
其中脱硫脱碳浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸3kg/吨浮选入料、淀粉300g/吨浮选入料、2号油40g/吨浮选入料、丁基黄药100g/吨浮选入料、柴油30g/吨浮选入料;该脱硫脱碳浮选处理的浮选浓度为30%;
锂浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸5kg/吨浮选入料、氢氟酸2kg/吨浮选入料、醚胺类改性捕收剂300kg/吨浮选入料;
(3)将溢流颗粒d依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8;
其中脱硫脱碳浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸6kg/吨浮选入料、淀粉600g/吨浮选入料、2号油50g/吨浮选入料、丁基黄药150g/吨浮选入料、柴油50g/吨浮选入料;该脱硫脱碳浮选处理的浮选浓度为30%;
脱方解石浮选处理阶段包括粗浮选和精浮选阶段,粗浮选阶段所用药剂及其对应处理颗粒入料的用量为:碳酸钠2kg/吨浮选入料、氢氧化钠2kg/吨浮选入料、硅酸钠3kg/吨浮选入料、改性氧化石蜡皂3kg/吨浮选入料;精浮选阶段包括氢氧化钠0.5kg/吨浮选入料、硅酸钠0.5kg/吨浮选入料、改性氧化石蜡皂0.5kg/吨浮选入料;
锂浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸10kg/吨浮选入料、氢氟酸4kg/吨浮选入料、醚胺类改性捕收剂500kg/吨浮选入料。
将各阶段产品进行元素含量、产率等统计,其中锂精矿1和2合并,尾矿5和8合并,尾矿4和6合并,尾矿1~3合并,测试结果如表1所示。
表1
可以看出,实施例1所述处理方法得到的锂精矿产率达到45%,锂元素的分布率达到88.62%,而各阶段选矿得到的尾矿品位均较低,提锂效率高。同时,可以看出,经过简单擦洗抛除尾矿1~3的产率约30%,Li品位从原矿0.25%提升到0.34%,富集1.36倍;后续浮选入料仅占原矿的70%,再通过浮选分别脱除黄铁矿、碳质、方解石、石英等,进一步提高至精矿品位0.50%。而该技术方案相比于现有的一些单独使用物理擦洗等手段进行处理的工艺(原矿破碎效率低、擦洗浓度低,无法达到高浓度擦洗抛粗以及选择性磨矿)具有更高的处理效率,进一步提升最终得锂的品位。
实施例2
本申请所述碳酸盐锂黏土的处理方法的一种实施例,如图5所示,包括以下步骤:
(1)将碳酸盐锂黏土经破碎处理至粒径≤100mm后,置入圆筒擦洗机中进行一次擦洗,擦洗浓度为70%,随后再进行40mm和1mm筛径的两层振动湿筛处理,将粒径>40mm的颗粒筛出作为尾矿1;将所得粒径<1mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和粒径为250μm以下的溢流颗粒b;将所得余下粒径1~40mm的颗粒与底流颗粒a混合,所得混料置于立式擦洗机中进行二次擦洗,擦洗浓度55%,随后再进行筛网孔径为2mm的振动湿筛处理,将所得无法过筛的粒径大于2mm的颗粒筛出作为尾矿2;将筛出颗粒置入水力旋流器中二次旋流,得底流颗粒c和粒径为250μm以下溢流颗粒d;所述底料颗粒c作为尾矿3;
(2)溢流颗粒b的钙含量>3wt%,将其与溢流颗粒d合并依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8;
其中脱硫脱碳浮选处理所用药剂制度为:硅酸钠2kg/吨浮选入料、甲基异丁基甲醇100g/吨浮选入料、戊基黄药250g/吨浮选入料;该脱硫脱碳浮选处理 的浮选浓度为28%;
脱方解石浮选处理包括一次粗浮选阶段和两次精浮选阶段,其中粗浮选阶段所用药剂及其对应处理颗粒入料的用量为:碳酸钠4kg/吨浮选入料、氢氧化钠4kg/吨浮选入料、淀粉1kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物3.5kg/吨浮选入料;第一次精浮选阶段药剂包括氢氧化钠0.5kg/吨浮选入料、硅酸钠0.75kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物0.75kg/吨浮选入料;第二次精浮选阶段药剂包括氢氧化钠0.5kg/吨浮选入料、硅酸钠0.25kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物0.25kg/吨浮选入料;
锂浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸15kg/吨浮选入料、氢氟酸4kg/吨浮选入料、醚胺类改性捕收剂800kg/吨浮选入料。
将各阶段产品进行元素含量、产率等统计,其中尾矿1~3合并,测试结果如表2所示。
表2

可以看出,实施例2所述处理方法得到的锂精矿产率达到33%,锂元素的分布率达到75.30%,而各阶段冶炼得到的尾矿品位均较低,提锂效率高。同时,可以看出,经过简单擦洗抛除尾矿1~3的产率约40%,Li品位从原矿0.15%提升到0.22%,富集1.47倍;后续浮选入料仅占原矿的60%,再通过浮选分别脱除黄铁矿、碳质、方解石、石英等,进一步提高至精矿品位0.34%。
实施例3
本申请所述碳酸盐锂黏土的处理方法的一种实施例,如图6所示,包括以下步骤:
(1)将碳酸盐锂黏土经破碎处理至粒径≤30mm后,置入圆筒擦洗机中进行一次擦洗,擦洗浓度65%,随后再进行15mm和1mm筛径的两层振动湿筛处理,将粒径>15mm的颗粒筛出作为尾矿1;将所得粒径<1mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和粒径为38μm以下的溢流颗粒b;将所得余下粒径1~15mm的颗粒与底流颗粒a混合,所得混料置于立式擦洗机中进行二次擦洗,擦洗浓度75%,随后再进行筛网孔径为1mm的振动湿筛处理,将所得无法过筛的粒径大于1mm的颗粒筛出作为尾矿2;将筛出颗粒置入水力旋流器中二次旋流,得底流颗粒c和粒径为38μm以下溢流颗粒d;所述底料颗粒c重新置入立式擦洗机中与后续的颗粒混合进行二次擦洗;
(2)溢流颗粒b的钙含量>3wt%,将其与溢流颗粒d合并依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8;
其中脱硫脱碳浮选处理包括粗浮选阶段和精浮选阶段,其中粗浮选阶段所用药剂及其对应处理颗粒入料的用量为:淀粉300g/吨浮选入料、2号油100g/吨浮选入料、丁基黄药250g/吨浮选入料、柴油100g/吨浮选入料;精浮选阶段所用药剂为淀粉100g/吨浮选入料,该脱硫脱碳浮选处理的浮选浓度为32%;
脱方解石浮选处理包括粗浮选阶段和精浮选阶段,其中粗浮选阶段所用药剂及其对应处理颗粒入料的用量为:氢氧化钠5kg/吨浮选入料、淀粉0.6kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物3.5kg/吨浮选入料;精浮选阶段药剂包括氢氧化钠0.25kg/吨浮选入料、淀粉0.25kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物0.5kg/吨浮选入料;
锂浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸20kg/吨浮选入料、氢氟酸6kg/吨浮选入料、醚胺类改性捕收剂700kg/吨浮选入料。
将各阶段产品进行元素含量、产率等统计,其中尾矿1和2合并,测试结果如表3所示。
表3

可以看出,实施例3所述处理方法得到的锂精矿产率达到40%,锂元素的分布率达到83.54%,而各阶段选矿得到的尾矿品位均较低,提锂效率高。同时,经过简单擦洗抛除尾矿1~2的产率约35%,Li品位从原矿0.20%提升到0.29%,富集1.45倍;后续浮选入料仅占原矿的65%,再通过浮选分别脱除黄铁矿、碳质、方解石、石英等,进一步提高至精矿品位0.42%。
对比例1
本申请所述碳酸盐锂黏土的处理方法的一种对比例,如图7所示,包括以下步骤:
(1)将碳酸盐锂黏土经破碎处理至粒径≤40mm后,置入圆筒擦洗机中进行一次擦洗,擦洗浓度为65%,随后再进行10mm和3mm筛径的两层振动湿筛处理,将粒径>10mm的颗粒筛出作为尾矿1;将所得粒径<3mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和溢流颗粒b;将所得余下粒径3~10mm的颗粒与底流颗粒a混合,所得混料进入球磨机进行磨矿,磨矿浓度65%,磨机溢流置入水力旋流器中二次旋流,得底流颗粒c和粒径为250μm以 下溢流颗粒d;所述底料颗粒c返回至球磨机继续磨矿;
(2)溢流颗粒b的钙含量>3wt%,将其与溢流颗粒d合并依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8;
其中脱硫脱碳浮选处理包括粗浮选阶段和精浮选阶段,其中粗浮选阶段所用药剂及其对应处理颗粒入料的用量为:淀粉500g/吨浮选入料、2号油300g/吨浮选入料、丁基黄药350g/吨浮选入料、柴油200g/吨浮选入料;精浮选阶段所用药剂为淀粉200g/吨浮选入料,该脱硫脱碳浮选处理的浮选浓度为30%;
脱方解石浮选处理包括粗浮选阶段和精浮选阶段,其中粗浮选阶段所用药剂及其对应处理颗粒入料的用量为:氢氧化钠5kg/吨浮选入料、淀粉0.7kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物4.5kg/吨浮选入料;精浮选阶段药剂包括氢氧化钠0.5kg/吨浮选入料、淀粉0.3kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物0.8kg/吨浮选入料;
锂浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸10kg/吨浮选入料、氢氟酸8kg/吨浮选入料、醚胺类改性捕收剂800kg/吨浮选入料。
将各阶段产品进行元素含量、产率等统计,测试结果如表4所示。
表4

可以看出,对比例1所述处理方法得到的锂精矿产率30%,锂元素的分布率(回收率)仅62.61%,远低于实施例1、2和3。该对比例仅采用一段圆筒擦洗,擦洗抛除尾矿1产率约15%,Li品位从原矿0.14%提升到0.16%,仅富集1.14倍,擦洗后筛下3~10mm物料粒度较粗,不适合直接浮选,增加了设备投资较高的磨矿分级作业;而小于3mm物料进入旋流器1产生的溢流产品,其Ca含量超标,必须进入路线2;后续浮选入料占原矿的产率高达85%,再通过浮选分别脱除黄铁矿、碳质、方解石、石英等,进一步提高至精矿品位0.29%,但浮选药剂用量大幅增加。
对比例2
本申请所述碳酸盐锂黏土的处理方法的一种对比例,如图8所示,包括以下步骤:
(1)将碳酸盐锂黏土经破碎处理至粒径≤15mm后,置入圆筒擦洗机中进行一次擦洗,擦洗浓度为65%,随后再进行10mm和3mm筛径的两层振动湿筛处理,将粒径>10mm的颗粒筛出作为尾矿1;将所得粒径<3mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和粒径为250μm以下的溢流颗粒b;将所得余下粒径3~10mm的颗粒与底流颗粒a混合,所得混料置于立式擦洗机中进行二次擦洗,擦洗浓度75%,随后再进行筛网孔径为2mm的振动湿筛处理,将所得无法过筛的粒径大于2mm的颗粒筛出作为尾矿2;将筛出颗粒置入水力旋流器中二次旋流,得底流颗粒c和粒径为250μm以下溢流颗粒d;所述底料颗粒c作为尾矿3;
(2)溢流颗粒b的钙含量>3wt%,将其与溢流颗粒d合并依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8;
其中脱硫脱碳浮选处理所用药剂制度为:硅酸钠2kg/吨浮选入料、甲基异丁基甲醇100g/吨浮选入料、戊基黄药250g/吨浮选入料;该脱硫脱碳浮选处理的浮选浓度为28%;
脱方解石浮选处理包括一次粗浮选阶段和两次精浮选阶段,其中粗浮选阶段所用药剂及其对应处理颗粒入料的用量为:碳酸钠4kg/吨浮选入料、氢氧化钠4kg/吨浮选入料、硅酸钠3kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物4.5kg/吨浮选入料;第一次精浮选阶段药剂包括氢氧化钠0.5kg/吨浮选入料、硅酸钠0.75kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物0.75kg/吨浮选入料;第二次精浮选阶段药剂包括氢氧化钠0.5kg/吨浮选入料、硅酸钠0.25kg/吨浮选入料、氧化石蜡皂与油酸皂的混合物0.25kg/吨浮选入料;
锂浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸15kg/吨浮选入料、氢氟酸4kg/吨浮选入料、醚胺类改性捕收剂800kg/吨浮选入料。
将各阶段产品进行元素含量、产率等统计,其中尾矿1~3合并,测试结果如表5所示。
表5
从实施例1和对比例2两个方案的测试结果统计中可以看出,对比例2所述处理方法中第一组旋流器入料为粒径<3mm的粒级物料,溢流产品为粒径<250μm细泥,其Ca含量较高,须进入路线2进行处理,导致擦洗尾矿产率从30%降低至26%,浮选尾矿7产率从10%增加到17%,增加了药剂消耗等选矿成本,锂精矿产率从45%降至40%,精矿Li品位和Li回收率分别从0.50%和88.62%降低至0.44%和81.75%。
对比例3
本申请所述碳酸盐锂黏土的处理方法的一种对比例,如图9所示,包括以下步骤:
(1)将碳酸盐锂黏土经破碎处理至粒径≤15mm后,置入圆筒擦洗机中进行一次擦洗,擦洗浓度为65%,随后再进行10mm和1mm筛径的两层振动湿筛处理,将粒径>10mm的颗粒筛出作为尾矿1;将所得粒径<1mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和粒径为38μm以下的溢流颗粒b;将所得余下粒径1~10mm的颗粒与底流颗粒a混合,所得混料进入球磨机进行磨矿,磨矿浓度65%,磨机溢流置入水力旋流器中二次旋流,得底流颗粒c和粒径为250μm以下溢流颗粒d;所述底料颗粒c返回至球磨机继续磨矿;
(2)溢流颗粒b的钙含量≤3wt%,依次进行脱硫脱碳浮选处理及锂浮选处理,得锂精矿1;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿4,所述锂浮选处理得到的浮选泡沫作为尾矿5;
其中脱硫脱碳浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸3kg/吨浮选入料、淀粉300g/吨浮选入料、2号油40g/吨浮选入料、丁基黄药100g/吨浮选入料、柴油30g/吨浮选入料;该脱硫脱碳浮选处理的浮选浓度为30%;
锂浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸5kg/吨浮选入料、氢氟酸2kg/吨浮选入料、醚胺类改性捕收剂300kg/吨浮选入料;
(3)将溢流颗粒d依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8;
其中脱硫脱碳浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸6kg/吨浮选入料、淀粉600g/吨浮选入料、2号油100g/吨浮选入料、丁基黄药250g/吨浮选入料、柴油100g/吨浮选入料;该脱硫脱碳浮选处理的浮选浓度为30%;
脱方解石浮选处理阶段包括粗浮选和精浮选阶段,粗浮选阶段所用药剂及其对应处理颗粒入料的用量为:碳酸钠2kg/吨浮选入料、氢氧化钠4kg/吨浮选入料、硅酸钠5kg/吨浮选入料、改性氧化石蜡皂6kg/吨浮选入料;精浮选阶段包括氢氧化钠0.5kg/吨浮选入料、硅酸钠0.5kg/吨浮选入料、改性氧化石蜡皂0.75kg/吨浮选入料;
锂浮选处理所用药剂及其对应处理颗粒入料的用量为:硫酸8kg/吨浮选入料、氢氟酸8kg/吨浮选入料、醚胺类改性捕收剂850kg/吨浮选入料。
将各阶段产品进行元素含量、产率等统计,其中锂精矿1和2合并,尾矿5和8合并,尾矿4和6合并,测试结果如表6所示。
表6

从实施例1和对比例3两个方法的测试结果中可以看出,对比例3所述处理方法中仅采用一段擦洗,导致擦洗尾矿1只有15%产率,浮选尾矿7产率从10%增加到30%,大幅增加了磨矿成本和药剂成本,锂精矿产率从45%降低至40%,精矿Li品位和Li回收率分别从0.50%和88.62%降低至0.44%和78.81%。
最后所应当说明的是,以上实施例仅用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的实质和范围。

Claims (9)

  1. 一种碳酸盐锂黏土的处理方法,其中,包括以下步骤:
    (1)将碳酸盐锂黏土经破碎处理至粒径≤100mm后,置入擦洗机中进行一次擦洗,随后再进行振动湿筛处理,将所得无法过筛的颗粒筛出作为尾矿1;将所得粒径<1mm的颗粒筛出并置入水力旋流器中一次旋流,得底流颗粒a和溢流颗粒b;将所得余下的颗粒与底流颗粒a混合,所得混料进行二次擦洗,随后再进行筛网孔径为1~2mm的振动湿筛处理,将所得无法过筛的颗粒筛出作为尾矿2;将筛出颗粒置入水力旋流器中二次旋流,得底流颗粒c和溢流颗粒d;所述底料颗粒c作为尾矿3或重新回流至水力旋流器与下一批次的混料混合进行二次擦洗;
    (2)若溢流颗粒b的钙含量≤3wt%,则依次进行脱硫脱碳浮选处理及锂浮选处理,得锂精矿1;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿4,所述锂浮选处理得到的浮选泡沫作为尾矿5;若溢流颗粒b的钙含量>3wt%,将溢流颗粒b进行步骤(3)中溢流颗粒d的相同处理;
    (3)将溢流颗粒d依次进行脱硫脱碳浮选处理、脱方解石浮选处理及锂浮选处理,得锂精矿2;将所述脱硫脱碳浮选处理得到的浮选泡沫作为尾矿6,所述脱方解石浮选得到的浮选泡沫作为尾矿7,所述锂浮选处理得到的浮选泡沫作为尾矿8。
  2. 如权利要求1所述碳酸盐锂黏土的处理方法,其中,所述步骤(1)中碳酸盐锂黏土的锂含量≥0.05wt%,钙含量≥5wt%。
  3. 如权利要求1所述碳酸盐锂黏土的处理方法,其中,所述步骤(1)中的一次擦洗为圆筒或立式擦洗,二次擦洗为立式擦洗;所述一次擦洗和二次擦洗的擦洗浓度为50~80%。
  4. 如权利要求1所述碳酸盐锂黏土的处理方法,其中,所述脱硫脱碳浮选处理所用药剂为酸性pH调节剂、抑制剂、起泡剂、硫碳捕收剂中的至少一种。
  5. 如权利要求4所述碳酸盐锂黏土的处理方法,其中,所述酸性pH调节剂为硫酸、磷酸、盐酸、氢氟酸中的至少一种;所述抑制剂为硅酸钠、淀粉、糊精和/或改性物中的至少一种;所述起泡剂为二号油、甲基异丁基甲醇中的至少一种;所述硫碳捕收剂为黄药和/或改性物、黑药和/或改性物、柴油、煤油中的至少一种。
  6. 如权利要求1所述碳酸盐锂黏土的处理方法,其中,所述脱方解石浮选处理所用药剂为碱性pH调节剂、抑制剂、方解石捕收剂中的至少一种。
  7. 如权利要求6所述碳酸盐锂黏土的处理方法,其中,所述碱性pH调节剂为碳酸钠和氢氧化钠的混合物;所述抑制剂为硅酸钠、淀粉、糊精和/或改性物中的至少一种;所述方解石捕收剂为阴离子捕收剂,所述阴离子捕收剂包括脂肪酸皂和磺化脂肪酸。
  8. 如权利要求1所述碳酸盐锂黏土的处理方法,其中,所述锂浮选所用药剂为酸性pH调节剂、锂黏土矿物捕收剂中的至少一种。
  9. 如权利要求8所述碳酸盐锂黏土的处理方法,其中,所述锂黏土矿物捕收剂为醚胺类捕收剂、多胺类捕收剂中的至少一种。
PCT/CN2023/077473 2022-08-23 2023-02-21 一种碳酸盐锂黏土的处理方法 WO2024040891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211017078.5 2022-08-23
CN202211017078.5A CN115418498B (zh) 2022-08-23 2022-08-23 一种碳酸盐锂黏土的处理方法

Publications (1)

Publication Number Publication Date
WO2024040891A1 true WO2024040891A1 (zh) 2024-02-29

Family

ID=84197554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077473 WO2024040891A1 (zh) 2022-08-23 2023-02-21 一种碳酸盐锂黏土的处理方法

Country Status (3)

Country Link
CN (1) CN115418498B (zh)
CL (1) CL2023001937A1 (zh)
WO (1) WO2024040891A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418498B (zh) * 2022-08-23 2023-12-12 广东邦普循环科技有限公司 一种碳酸盐锂黏土的处理方法
CN115999758B (zh) * 2023-01-19 2024-07-09 广东邦普循环科技有限公司 一种锂黏土矿的选矿方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270927A (zh) * 1999-04-20 2000-10-25 中国地质科学院盐湖与热水资源研究发展中心 从碳酸盐型卤水中提取锂盐方法
CN110038737A (zh) * 2019-05-17 2019-07-23 贵州三稀新能源科技股份有限公司 一种含锂泥质硅质岩物理选矿的方法
CN110694788A (zh) * 2019-10-30 2020-01-17 中蓝长化工程科技有限公司 一种高钙镁型低品位锂辉石矿的选矿方法
CN111330743A (zh) * 2020-04-09 2020-06-26 北京矿冶科技集团有限公司 锂辉石矿浮选捕收剂及其制备方法、粘土矿物化的锂辉石矿的选别工艺
JP2020164969A (ja) * 2019-03-29 2020-10-08 Jx金属株式会社 リチウム濃縮方法及び、水酸化リチウムの製造方法
CN113825848A (zh) * 2019-03-29 2021-12-21 锂业美洲公司 从沉积粘土中提取锂的方法
CN115418498A (zh) * 2022-08-23 2022-12-02 广东邦普循环科技有限公司 一种碳酸盐锂黏土的处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147658B (zh) * 2018-01-17 2018-12-11 成都绿锂环保科技有限公司 一种锂渣的高值化综合利用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270927A (zh) * 1999-04-20 2000-10-25 中国地质科学院盐湖与热水资源研究发展中心 从碳酸盐型卤水中提取锂盐方法
JP2020164969A (ja) * 2019-03-29 2020-10-08 Jx金属株式会社 リチウム濃縮方法及び、水酸化リチウムの製造方法
CN113825848A (zh) * 2019-03-29 2021-12-21 锂业美洲公司 从沉积粘土中提取锂的方法
CN110038737A (zh) * 2019-05-17 2019-07-23 贵州三稀新能源科技股份有限公司 一种含锂泥质硅质岩物理选矿的方法
CN110694788A (zh) * 2019-10-30 2020-01-17 中蓝长化工程科技有限公司 一种高钙镁型低品位锂辉石矿的选矿方法
CN111330743A (zh) * 2020-04-09 2020-06-26 北京矿冶科技集团有限公司 锂辉石矿浮选捕收剂及其制备方法、粘土矿物化的锂辉石矿的选别工艺
CN115418498A (zh) * 2022-08-23 2022-12-02 广东邦普循环科技有限公司 一种碳酸盐锂黏土的处理方法

Also Published As

Publication number Publication date
CN115418498A (zh) 2022-12-02
CN115418498B (zh) 2023-12-12
CL2023001937A1 (es) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2024040891A1 (zh) 一种碳酸盐锂黏土的处理方法
CN111302377A (zh) 一种磷石膏除杂增白的方法
CN104689913B (zh) 一种多晶系硫铁矿混合回收的方法
CN110860367B (zh) 一种三水铝石型铝土矿重选分离的方法
CN111482264B (zh) 中贫氧化矿石的处理方法
CN108636591A (zh) 一种从铁尾矿中回收石英的方法
CN111530622B (zh) 一种从高品位硫精矿去除杂质的方法
CN114247559A (zh) 一种锂矿石回收无尾化选矿方法
CN112090576A (zh) 一种有色金属尾矿中提纯石英的方法与装置
CN117165787A (zh) 锂辉石提锂同时回收低铁低硫硅铝微粉、高纯石膏、钽铌精矿和富锂铁料的方法
CN112169974B (zh) 一种铁矿废土石的加工工艺
CN114314616A (zh) 一种从富钾板岩提取碳酸钾和氧化铝的工艺
CN105750090A (zh) 一种硅钙质胶磷矿分选方法
CN117065916A (zh) 一种锂渣综合回收利用方法
CN105597941B (zh) 一种从硫铁矿烧渣中提取铁精粉的工艺方法
CN104805311A (zh) 一种利用含铷长石提铷联产硅肥的方法
CN114226413A (zh) 一种锂渣的综合处理工艺
CN116532235A (zh) 锂辉石冶炼渣资源化综合利用方法
CN116159666A (zh) 一种高硅铁尾矿的梯级全值利用方法
CN108339658B (zh) 一种富钾板岩中回收硫精矿的工艺方法
CN112718231A (zh) 富镁矿物的辉钼矿的选矿方法
CN113926586B (zh) 高硫化型浅成铜矿及其尾矿精细化利用的选矿方法
CN107661813B (zh) 一种从电除尘灰中综合回收银、铅、铁的方法
CN115999758B (zh) 一种锂黏土矿的选矿方法
CN112007759A (zh) 一种处理低镁高铁铝硅钙质胶磷矿的双反中矿正浮选方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855988

Country of ref document: EP

Kind code of ref document: A1