WO2024038761A1 - Cured product, article provided with cured product, and method for lessening internal stress of cured product - Google Patents

Cured product, article provided with cured product, and method for lessening internal stress of cured product Download PDF

Info

Publication number
WO2024038761A1
WO2024038761A1 PCT/JP2023/028212 JP2023028212W WO2024038761A1 WO 2024038761 A1 WO2024038761 A1 WO 2024038761A1 JP 2023028212 W JP2023028212 W JP 2023028212W WO 2024038761 A1 WO2024038761 A1 WO 2024038761A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
cured product
epoxy
acrylic polymer
acrylate
Prior art date
Application number
PCT/JP2023/028212
Other languages
French (fr)
Japanese (ja)
Inventor
秀典 田中
仁 玉井
健一 吉橋
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024038761A1 publication Critical patent/WO2024038761A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a cured product, an article including the cured product, and a method for relieving internal stress in the cured product.
  • a curable composition containing a (meth)acrylic polymer and an epoxy compound is known as a prior art (for example, Patent Document 1).
  • One aspect of the present invention aims to provide a cured product with excellent impact resistance.
  • the cured product according to one embodiment of the present invention is A (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule; An epoxy compound and/or an oxetane compound (B), a photoradical initiator (C); A curable composition containing an epoxy curing agent (D) is cured, The film thickness is 200 ⁇ m or less.
  • a method for relieving internal stress of a cured product includes: A (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule, and an epoxy compound and/or an oxetane compound (B) , a photoradical initiator (C), and an epoxy curing agent (D).
  • the film thickness of the cured product obtained by curing is 200 ⁇ m or less.
  • -OC(O)C(R 1 ) CH 2 (1) (In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
  • a cured product with excellent impact resistance can be achieved.
  • FIG. 3 is a diagram showing the relationship between internal stress and thickness of cured products according to Examples 1 and 2 and Comparative Examples 1 to 3.
  • FIG. 7 is a diagram showing the relationship between internal stress and thickness of cured products according to Examples 3 to 6 and Comparative Examples 4 to 7.
  • curable compositions containing epoxy compounds contract during the curing and/or cooling process, generating large internal stress. Due to the internal stress, the cured product obtained by curing the curable composition has a problem in that it is easily broken by physical impact and/or cooling impact.
  • the present inventors discovered that by adding a (meth)acrylic polymer (A) to a curable composition, the internal stress of the cured product obtained was It has been discovered for the first time that the impact resistance of the cured product can be improved as a result.
  • the cured product according to one embodiment of the present invention contains a (meth)acrylic polymer (A), an epoxy compound and/or an oxetane compound (B), a photoradical initiator (C), and an epoxy curing agent (D). It is obtained by curing the curable composition contained therein. Examples of the curing method include photocuring and/or thermal curing.
  • Photocuring is not particularly limited, but includes photoradical curing.
  • Photo-radical curing is curing initiated by irradiation with active energy rays (UV or electron beams, etc.).
  • the source of active energy rays can be appropriately selected depending on the properties of the photoradical initiator (C).
  • Examples of active energy ray sources include high pressure mercury lamps, low pressure mercury lamps, LEDs, electron beam irradiators, halogen lamps, light emitting diodes, and semiconductor lasers.
  • Thermal curing is curing initiated by heating.
  • the thermosetting temperature is appropriately set depending on the types of the epoxy compound and/or oxetane compound (B), the epoxy curing agent (D), and other additives.
  • the thermosetting temperature is preferably 15 to 300°C, more preferably 15 to 250°C. Within the above temperature range, deterioration of the cured product due to heat can be prevented.
  • a heating furnace, an oven, a heating conveyor, etc. can be used for thermal curing.
  • the upper limit of the film thickness of the cured product is 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less. If the film thickness of the cured product is 200 ⁇ m or less, by adding a (meth)acrylic polymer (A) to the curable composition, the internal stress of the resulting cured product is alleviated and the impact resistance is improved. be able to.
  • the lower limit of the film thickness of the cured product is, for example, 5 ⁇ m or more from the viewpoint of impact resistance.
  • One embodiment of the present invention includes a (meth)acrylic polymer (A), an epoxy compound and/or an oxetane compound (B), a photoradical initiator (C), and an epoxy curing agent (D). Also included is a method for relaxing the internal stress of the cured product, which includes a step of curing the curable composition contained therein, and the film thickness of the cured product obtained by curing is 200 ⁇ m or less.
  • the (meth)acrylic polymer (A) has an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule.
  • -OC(O)C(R 1 ) CH 2 (1)
  • R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • R 1 is -H, -CH 3 , -CH 2 CH 3 , -(CH 2 ) n CH 3 (n represents an integer from 2 to 19), -C 6 H 5 (phenyl group), -CH Examples include 2OH , -CN, and the like. From the viewpoint of reactivity, R 1 is preferably -H or -CH 3 . That is, it is preferable that the group represented by general formula (1) is a (meth)acryloyl group.
  • the number of groups represented by general formula (1) per molecule of the (meth)acrylic polymer (A) is preferably 0.85 or more, and 1 or more, from the viewpoint of improving curability.
  • the number may be 1.5 or more.
  • the number of groups represented by general formula (1) is preferably 2.0 or less, more preferably less than 2.0.
  • the (meth)acrylic polymer (A) preferably has a group represented by general formula (1) at one end of the molecule.
  • the number of groups represented by general formula (1) per molecule of the (meth)acrylic polymer (A) is preferably 0.8 or more, and more preferably Preferably it is 0.85 or more.
  • the number is preferably 1.0 or less, and more preferably less than 1.0.
  • the number average molecular weight of the (meth)acrylic polymer (A) is preferably 3,000 to 100,000, more preferably 10,000 to 90, when measured by gel permeation chromatography (GPC). ,000, more preferably 30,000 to 80,000.
  • GPC gel permeation chromatography
  • the number average molecular weight is 3,000 or more, sufficient flexibility and rubber elasticity can be obtained from the cured product.
  • the number average molecular weight is 100,000 or less, the viscosity of the polymer can be suppressed and handling is easy.
  • GPC measurements are performed using chloroform as a mobile phase using a polystyrene gel column, and the number average molecular weight and the like can be determined in terms of polystyrene.
  • the (meth)acrylic monomer that constitutes the main chain of the (meth)acrylic polymer (A) is not particularly limited.
  • Examples of the (meth)acrylic monomer include (meth)acrylic acid and (meth)acrylic ester.
  • (Meth)acrylate esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and (meth)acrylate.
  • the (meth)acrylic polymer (A) preferably has a repeating unit derived from a (meth)acrylic acid ester having an alkoxy group having 1 to 3 carbon atoms.
  • Examples of the (meth)acrylic acid ester monomer having an alkoxy group having 1 to 3 carbon atoms include 2-methoxyethyl (meth)acrylate and 3-methoxybutyl (meth)acrylate.
  • the (meth)acrylic polymer (A) preferably has 1 to 35% by weight of repeating units derived from a (meth)acrylic acid ester having an alkoxy group having 1 to 3 carbon atoms in the total repeating units.
  • the (meth)acrylic polymer (A) includes a (meth)acrylic ester having an alkyl group having 3 to 5 carbon atoms, a (meth)acrylic ester having an alkyl group having 1 to 2 carbon atoms, and a (meth)acrylic ester having an alkyl group having 1 to 2 carbon atoms.
  • a polymer (A1) of (meth)acrylic acid ester having 3 alkoxy groups is preferable.
  • the monomers constituting the main chain of the (meth)acrylic polymer (A1) are not particularly limited, but examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, Isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, 2-methoxy (meth)acrylate Examples include ethyl and 3-methoxybutyl (meth)acrylate.
  • the (meth)acrylic polymer (A1) has an acrylic ester having an alkyl group having 3 to 5 carbon atoms, an acrylic ester having an alkyl group having 1 to 2 carbon atoms, and an alkoxy group having 1 to 3 carbon atoms. It is preferable that the repeating unit derived from acrylic acid ester is 80% by weight or more, more preferably 90% by weight or more, and 95% by weight or more of the total repeating units constituting the (meth)acrylic polymer (A1). More preferably, the upper limit is 100% by weight or less.
  • the molecular weight distribution of the (meth)acrylic polymer (A) is preferably 1.8 or less, more preferably 1.7 or less, still more preferably 1.6 or less, even more preferably 1. It is 5 or less, particularly preferably 1.4 or less, and most preferably 1.3 or less.
  • the theoretical lower limit of the molecular weight distribution is 1.
  • the molecular weight distribution is the ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) measured by GPC. When the molecular weight distribution is 1.8 or less, the mechanical properties of the resulting cured product can be easily controlled.
  • the polymerization method for the (meth)acrylic polymer (A) is not particularly limited, but examples thereof include the polymerization methods described in JP-A No. 2005-232419, JP-A No. 2006-291073, and JP-A No. 2016-88944.
  • a method for introducing a group represented by general formula (1) to the terminal of the (meth)acrylic polymer (A) for example, the method described in paragraphs [0081] to [0087] of JP-A-2016-88944 is There are several methods.
  • Epoxy compound and/or oxetane compound (B) The curable composition contains an epoxy compound and/or an oxetane compound (B).
  • the epoxy compound and the oxetane compound play a role in improving the strength of the cured product.
  • the oxetane compound also plays the role of lowering the viscosity of the curable composition and improving workability.
  • the epoxy compound and/or oxetane compound (B) may be used alone or in combination of two or more.
  • Epoxy compound generally refers to a compound having an epoxy group.
  • examples of epoxy compounds include aromatic epoxy compounds and alicyclic epoxy compounds. From the viewpoint of increasing the hardness of the cured product, aromatic epoxy compounds are preferred.
  • the epoxy compound has a radically reactive group.
  • Such an epoxy compound forms a crosslink with the (meth)acryloyl functional group of the (meth)acrylic polymer. Therefore, a tough cured product with low elution into solvents can be obtained.
  • radically reactive groups include acryloyl, methacryloyl, and allyl groups. Epoxy compounds having radically reactive groups are available from Nippon Kayaku Co., Ltd., DIC Corporation, Showa Denko Materials Co., Ltd., and the like.
  • aromatic epoxy compounds include bisphenol A epoxy compounds, bisphenol F epoxy compounds, bisphenol AD epoxy compounds, hydrogenated bisphenol A epoxy compounds, and hydrogenated bisphenol F epoxy compounds.
  • An example of an aromatic epoxy compound is 2,2-bis(4-glycidyloxyphenyl)propane.
  • alicyclic epoxy compounds include compounds having a cyclohexene oxide group, a tricyclodecene oxide group, a cyclopentene oxide group, and the like. More specific examples of alicyclic epoxy compounds include vinylcyclohexene diepoxide, vinylcyclohexene monoepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, 2-(3, Examples include 4-epoxycyclohexyl 5,5-spiro-3,4-epoxy)cyclohexane-m-dioxane, bis(3,4-epoxycyclohexyl) adipate, and bis(3,4-epoxycyclohexylmethylene) adipate.
  • oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 3-(meth)allyloxymethyl-3-ethyloxetane, (3-ethyl-3-oxetanylmethoxy)methylbenzene, 4-fluoro-[1 -(3-ethyl-3-oxetanylmethoxy)methyl]benzene, 4-methoxy-[1-(3-ethyl-3-oxetanylmethoxy)methyl]benzene, [1-(3-ethyl-3-oxetanylmethoxy)ethyl ] Phenyl ether, isobutoxymethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyloxyethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyl (3-ethyl-3-oxetanylmethyl)
  • the weight ratio of the (meth)acrylic polymer (A) to the epoxy compound and/or oxetane compound (B) in the curable composition is preferably 1:99 to 50:50, more preferably 2:98 to 40:60. Preferably, 3:97 to 30:70 is more preferable. If the blending ratio of both is within the above range, sufficient strength and elongation can be imparted to the cured product.
  • the curable composition contains a photoradical initiator (C).
  • the photoradical polymerization initiator (C) plays a role of curing the curable composition using light irradiation (UV irradiation, etc.) as a trigger. Only one type of photoradical polymerization initiator (C) may be used, or two or more types may be used in combination.
  • Examples of the photoradical polymerization initiator (C) include acetophenone, propiophenone, benzophenone, xanthol, fluorein, benzaldehyde, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-methylacetophenone, and 3-pentyl.
  • radical photopolymerization initiator (C) examples include acylphosphine oxide photopolymerization initiators.
  • Acyl phosphine oxide photopolymerization initiators are preferable because they have excellent deep curing properties upon UV irradiation.
  • acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,6-dimethoxy benzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,6-dimethylbenzoyl)-phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-isobutylphosphine oxide, bis(2,6-dimethylbenzoyl)-isobutylphosphine oxide, -dimethoxybenzoyl)-isobutylphosphine oxide and bis(2,6-dimethoxybenzoyl)-phenylphosphine oxide.
  • 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, and bis(2,6-dimethoxybenzoyl)-2,4, 4-trimethyl-pentylphosphine oxide is preferred.
  • photoradical polymerization initiators (C) mentioned above 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2, 2-dimethoxy-1,2-diphenylethan-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide are preferred.
  • the compounding amount of the photoradical initiator (C) is 0.01 parts by weight to 5 parts by weight, based on 100 parts by weight of the total weight of the (meth)acrylic polymer (A) and the epoxy compound and/or oxetane compound (B). 1 part by weight, and more preferably 0.05 part by weight to 1 part by weight from the viewpoint of achieving both deep curability and light transmittance of the cured product.
  • Epoxy curing agent (D) The curable composition contains an epoxy curing agent (D).
  • the epoxy curing agent (D) a wide variety of conventionally known ones can be used.
  • the epoxy curing agent (D) include amine curing agents, imidazole curing agents, acid anhydride curing agents, and photocationic polymerization initiators. Only one type of epoxy curing agent (D) may be used, or two or more types may be used in combination.
  • Amine compounds can be used as the amine curing agent, and examples of amine compounds include aliphatic amines (diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, diethylaminopropylamine, hexamethylenediamine, methylpentamethylenediamine, trimethylhexamine).
  • aliphatic amines diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, diethylaminopropylamine, hexamethylenediamine, methylpentamethylenediamine, trimethylhexamine).
  • methylenediamine, guanidine, oleylamine, etc. alicyclic amines (mensendiamine, isophoronediamine, norbornanediamine, piperidine, N,N'-dimethylpiperazine, N-aminoethylpiperazine, 1,2-diaminocyclohexane, bis(4 -amino-3-methylcyclohexyl)methane, bis(4-aminocyclohexyl)methane, polycyclohexylpolyamine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), etc.); amines having an ether bond ( 3,9-bis(3-aminopropyl)-2,4,8,10-tetraoxaspiro[5,5]undecane (ATU), morpholine, N-methylmorpholine, polyoxypropylene diamine, polyoxypropylene triamine, Polyoxyethylenediamine, etc.
  • imidazole curing agents examples include 2-phenylimidazole, 2-ethyl-4(5)-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2- Phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')] -ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')
  • acid anhydride curing agents examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and dodecyl.
  • acid anhydride curing agents include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and dodecyl.
  • succinic anhydride examples include succinic anhydride.
  • photocationic initiators include onium salt-based photoacid generators such as sulfonium salts, iodonium salts, diazonium salts, ammonium salts, pyridinium salts, phosnium salts, oxonium salts, and quinolinium salts, sulfonic acid derivatives, diazomethanes, and carboxylic acid generators. Examples include acid esters and iron arene complexes. More specific examples of photocationic initiators include those described in paragraphs [0074] to [0079] of JP-A No. 2012-144693.
  • epoxy curing agent (D) examples include polyamide amines (polyamides obtained by reacting dimer acid with polyamines (diethylenetriamine, triethylenetetramine, etc.), and polyamides obtained by reacting polycarboxylic acids other than dimer acid with polyamines).
  • Dicyandiamide Modified amines (epoxy-modified amines obtained by reacting amines with epoxy compounds, Mannich-modified amines obtained by reacting amines with formalin or phenol compounds, Michael addition-modified amines, ketimine, etc.) Can be mentioned.
  • an amine curing agent is preferable as the epoxy curing agent (D). Furthermore, considering the storage stability of the curable composition, a tertiary amine compound is preferable as the epoxy curing agent (D).
  • the blending amount of the epoxy curing agent (D) is preferably 1 to 200 parts by weight, more preferably 5 to 100 parts by weight, based on 100 parts by weight of the epoxy compound and/or oxetane compound (B).
  • amount of the epoxy curing agent (D) is within the above range, the curability of the curable composition can be improved and the component elution from the cured product can be reduced.
  • a mixture of the epoxy compound and/or oxetane compound (B) and the epoxy curing agent (D) may be used.
  • an ultraviolet curable epoxy resin (TB3114, manufactured by ThreeBond) can be used.
  • the curable composition may contain a photosensitive resin (F).
  • a photosensitive resin (F) When the curable composition contains the photosensitive resin (F), it can be applied as a solder resist onto a printed wiring board, and a printed wiring board coated with the cured product can be obtained.
  • the photosensitive resin (F) is not particularly limited, but for example, a photosensitive resin containing a carboxyl group or a photosensitive resin containing a phenolic hydroxyl group can be used. Such photosensitive resins can also be referred to as alkali-soluble resins. From the viewpoint of excellent developability, photosensitive resins containing carboxyl groups are preferred. Further, from the viewpoint of photosensitivity, the molecule may have an ethylenically unsaturated group in addition to the carboxyl group. More specifically, examples of the photosensitive resin containing a carboxyl group include a resin containing a free carboxyl group and having one or more photosensitive unsaturated double bonds.
  • carboxyl group-containing photosensitive resins include polybasic acid-modified radically polymerizable unsaturated monocarboxylated epoxy resins such as polybasic acid-modified epoxy (meth)acrylate resins.
  • a polybasic acid-modified radically polymerizable unsaturated monocarboxylic oxidized epoxy resin is produced by reacting a radically polymerizable unsaturated monocarboxylic acid with at least a portion of the epoxy groups of a polyfunctional epoxy resin having two or more epoxy groups in one molecule. By doing so, a radically polymerizable unsaturated monocarboxylated epoxy resin is obtained, and the hydroxyl groups generated in the resin are reacted with a polybasic acid and/or a polybasic acid anhydride.
  • the chemical structure of the polyfunctional epoxy resin is not particularly limited as long as it is a bifunctional or more functional epoxy resin.
  • the epoxy equivalent of the polyfunctional epoxy resin is not particularly limited, but its upper limit is preferably 2,000, more preferably 1,500, even more preferably 1,000, and particularly preferably 500.
  • the lower limit of the epoxy equivalent is preferably 100, particularly preferably 200.
  • polyfunctional epoxy resins examples include biphenyl-type epoxy resins, naphthalene-type epoxy resins, dicyclopentadiene-type epoxy resins, rubber-modified epoxy resins such as silicone-modified epoxy resins, ⁇ -caprolactone-modified epoxy resins, bisphenol A-type epoxy resins, Phenol novolak type epoxy resins such as bisphenol F type epoxy resin and bisphenol AD type epoxy resin, cresol novolac type epoxy resin such as 4.000-cresol novolak type, bisphenol A novolac type epoxy resin, cycloaliphatic epoxy resin, glycidyl ester type epoxy resin , glycidylamine type epoxy resin, heterocyclic epoxy resin, bisphenol modified novolac type epoxy resin, polyfunctional modified novolac type epoxy resin, condensate type epoxy resin of phenols and aromatic aldehyde having a phenolic hydroxyl group, etc. Can be done. Furthermore, epoxy resins obtained by introducing halogen atoms such as Br and Cl into
  • the radically polymerizable unsaturated monocarboxylic acid is not particularly limited, and examples thereof include (meth)acrylic acid, crotonic acid, cinnamic acid, tiglic acid, and angelic acid. Among these, (meth)acrylic acid is preferred from the viewpoint of easy availability. These may be used alone or in combination of two or more.
  • the radically polymerizable unsaturated monocarboxylic acid reacts with the epoxy group of the polyfunctional epoxy resin, a photosensitive unsaturated double bond is introduced into the epoxy resin, thereby imparting photosensitivity to the epoxy resin.
  • the reaction method of the polyfunctional epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is not particularly limited.
  • An example of this method is heating in an organic solvent).
  • polybasic acid and/or polybasic acid anhydride reacts with the hydroxyl group generated in the radically polymerizable unsaturated monocarboxylated epoxy resin by the reaction between the polyfunctional epoxy resin and the radically polymerizable unsaturated monocarboxylic acid, A free carboxyl group is further introduced into the resin into which the photosensitive unsaturated double bond has been introduced. This imparts alkaline developability to the resin.
  • the polybasic acid and polybasic acid anhydride are not particularly limited, and both saturated and unsaturated types can be used.
  • polybasic acids examples include succinic acid, maleic acid, adipic acid, citric acid, phthalic acid, and phthalic acid derivatives (e.g., tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methyltetrahydrophthalic acid, 3-ethyl Tetrahydrophthalic acid, 4-ethyltetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 3-ethylhexahydrophthalic acid, 4-ethylhexahydrophthalic acid, methyltetrahydrophthalic acid
  • examples of the polybasic acid anhydride include anhydrides
  • the method for reacting the radically polymerizable unsaturated monocarboxylated epoxy resin with the polybasic acid and/or polybasic acid anhydride is not particularly limited.
  • a method of heating the mixture and/or polybasic acid anhydride in a suitable diluent for example, an inert organic solvent
  • a suitable diluent for example, an inert organic solvent
  • a compound having one or more radically polymerizable unsaturated groups and an epoxy group for example, A carboxyl group-containing photosensitive resin whose photosensitivity is further improved by further introducing a radically polymerizable unsaturated group into the side chain of the resin by reacting a glycidyl compound may also be used.
  • the carboxyl group-containing photosensitive resin with further improved photosensitivity is produced by adding a glycidyl compound to a polybasic acid-modified radically polymerizable unsaturated monocarboxylated epoxy resin, so that the radically polymerizable unsaturated group becomes a polybasic acid-modified radical. Since it is bonded to the side chain of the polymerizable unsaturated monocarboxylated epoxy resin skeleton, the photopolymerization reactivity, that is, the photocurability is further improved, and more excellent photosensitive characteristics are exhibited.
  • glycidyl compound examples include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, pentaerythritol triacrylate monoglycidyl ether, and pentaerythritol trimethacrylate monoglycidyl ether. These may be used alone or in combination of two or more.
  • the acid value of the carboxyl group-containing photosensitive resin is not particularly limited, but its lower limit is preferably 30 mgKOH/g, particularly preferably 40 mgKOH/g, from the viewpoint of obtaining reliable alkali developability.
  • the upper limit of the acid value of the carboxyl group-containing photosensitive resin is preferably 200 mgKOH/g from the viewpoint of preventing dissolution of the exposed area (photocured area) by an alkaline developer, and improves the moisture resistance and insulation of the photocured product. From the viewpoint of reliably preventing a decrease in reliability, 150 mgKOH/g is particularly preferable.
  • the mass average molecular weight (Mw) of the carboxyl group-containing photosensitive resin is not particularly limited, but the lower limit thereof is preferably 6,000, more preferably 7,000, and more preferably 8,000 from the viewpoint of toughness and dryness to the touch of the photocured product. is particularly preferred.
  • the upper limit of the mass average molecular weight (Mw) of the carboxyl group-containing photosensitive resin is preferably 200,000, more preferably 100,000, and particularly preferably 50,000 from the viewpoint of reliably preventing a decrease in alkali developability.
  • the mass average molecular weight (Mw) means the molecular weight measured by GPC measurement.
  • the curable composition according to one embodiment of the present invention may contain various additives depending on the purpose.
  • additives include polymerizable monomers and/or oligomers, fillers, microhollow particles, plasticizers, solvents, thixotropic agents (anti-sagging agents), antioxidants (anti-aging agents), compatibilizers, etc. agent, hardening modifier, radical inhibitor, metal deactivator, ozone deterioration inhibitor, phosphorus peroxide decomposer, lubricant, pigment, antifoaming agent, foaming agent, termiticide, fungicide, ultraviolet rays
  • absorbers and light stabilizers include absorbers and light stabilizers.
  • the additives include paragraphs [0110] to [0124] of JP-A No. 2006-274085, paragraphs [0134] to [0151] of JP-A No. 2006-291073, and paragraphs of JP-A No. 2007-308692. [0232] to [0235], paragraphs [0089] to [0093] of International Publication No. 05/116134, Japanese Patent Publication No. 4-69659, Japanese Patent Publication No. 7-108928, Japanese Patent Publication No. 63-254149, It is described in JP-A-64-22904, JP-A-2001-72854, etc.
  • the curable composition according to one embodiment of the present invention may further contain a reactive diluent, if necessary.
  • the curable composition contains a reactive diluent to ensure sufficient photocuring and obtain a cured product having acid resistance, alkali resistance, etc. Can be done.
  • the reactive diluent is not particularly limited, it is possible to use a compound that is a photopolymerizable monomer and has at least one polymerizable double bond per molecule, preferably at least two polymerizable double bonds per molecule.
  • the compound include monofunctional (meth)acrylate monomers, bifunctional (meth)acrylate monomers, trifunctional or more functional (meth)acrylate monomers, and the like.
  • the curable composition according to one embodiment of the present invention may further contain silica if necessary.
  • silica By containing silica, a cured product with excellent solder heat resistance and thermal shock resistance can be obtained without impairing basic properties such as alkali developability and coating appearance.
  • silica for example, scaly silica and/or spherical (for example, true spherical) silica having a main surface and end surfaces can be used.
  • the scaly silica having a surface and an end face is a flaky silica, unlike an amorphous silica powder formed by crushing large particles of silica. Further, a plurality of flaky silica particles are interconnected to form a thin film-like connected aggregate.
  • spherical silica has a spherical external shape (for example, a true spherical shape), unlike amorphous silica powder formed by pulverizing large particles of silica.
  • Spherical silica is, for example, an aggregate of primary particles. Note that the silica has not been subjected to surface treatment such as hydrophobic treatment. Therefore, it is different from silica, which can be used as a matting agent described below.
  • the curable composition according to one embodiment of the present invention may further contain an inorganic filler.
  • an inorganic filler solder heat resistance can be improved.
  • the inorganic filler include, but are not limited to, talc, barium sulfate, alumina, aluminum hydroxide, mica, silica other than flaky silica and spherical silica having a main surface and end faces, and the like.
  • the curable composition according to one embodiment of the present invention may further include a matting agent.
  • a matting agent By including a matting agent, it is possible to obtain a cured product with excellent soldering heat resistance and thermal shock resistance while reducing glossiness without impairing basic properties such as alkali developability and coating appearance. . Further, by including the matting agent, the surface shape of the coating film becomes uneven and roughened (mattized), thereby reducing glossiness and providing a matte appearance.
  • Matting agents include inorganic matting agents and organic matting agents.
  • inorganic matting agents include: spherical silica whose surface has been treated with a hydrophobic compound, etc.; hydrophilic porous silica whose surface has not been subjected to a hydrophobic treatment with a hydrophobic compound, etc.; magnesium oxide , spherical metal oxides such as calcium oxide and zinc oxide; spherical metal carbonates such as calcium carbonate and magnesium carbonate; spherical silicon carbide; and clay particles.
  • the organic matting agent include polyolefins such as urethane resins, phenol resins, silicone resins, fluororesins, polyamides, and polypropylene.
  • thermosetting component The curable composition according to one embodiment of the present invention may contain a thermosetting component.
  • the thermosetting component is not particularly limited, but includes amine resins, blocked isocyanate compounds, cyclocarbonate compounds, polyfunctional epoxy compounds, polyfunctional oxetane compounds, episulfide resins, melamine derivatives, and the like.
  • the thermosetting components may be used alone or in combination of two or more.
  • the curable composition according to one embodiment of the present invention may contain an organic acid.
  • an organic acid By containing an organic acid, the contact angle of the dried coating film can be easily adjusted to a constant value, so the components contained in the dissolved photosensitive resin composition will not precipitate at the bottom of the developer, and as a result, the This is effective in that it can suppress contamination of the developer and clogging of the developing device due to sediment.
  • the organic acid is not particularly limited, but includes carboxylic acids, mono- or diesters of phosphorous acid, mono- or diesters of phosphoric acid, and the like.
  • the organic acid does not have an aromatic ring. By blending an organic acid that does not have an aromatic ring, the light absorption of the organic acid itself is suppressed, the photoreactivity of the photosensitive component is relatively improved, and excellent resolution can be obtained.
  • the curable composition according to one embodiment of the present invention may contain a dispersant.
  • a dispersant By including a dispersant, the dispersibility and settling properties of the curable composition can be improved.
  • the dispersant include DISPERBYK-191 (manufactured by BYK Chemie Japan).
  • the curable composition according to one embodiment of the present invention may contain a photopolymerization inhibitor.
  • a photopolymerization inhibitor By adding a photopolymerization inhibitor, a certain amount of radical polymerization that occurs inside the curable composition due to exposure to light can be suppressed depending on the type of polymerization inhibitor and the amount added.
  • thermosetting catalyst The curable composition according to one embodiment of the present invention may include a thermosetting catalyst.
  • thermosetting catalyst include imidazole derivatives, amine compounds, hydrazine compounds, phosphorus compounds, and S-triazine derivatives.
  • the curable composition according to one embodiment of the present invention may contain a thermal polymerization inhibitor. By including a thermal polymerization inhibitor, thermal polymerization or polymerization over time of the curable composition can be prevented.
  • the curable composition according to one embodiment of the present invention may contain a chain transfer agent.
  • a chain transfer agent By including a chain transfer agent, the sensitivity of the curable composition can be improved.
  • Known chain transfer agents can be used, such as N-phenylglycines, phenoxyacetic acids, thiophenoxyacetic acids, mercaptothiazole, and the like.
  • the curable composition according to one embodiment of the present invention may contain an organic solvent.
  • organic solvent include, but are not particularly limited to, ketones, aromatic hydrocarbons, glycol ethers, esters, aliphatic hydrocarbons, petroleum solvents, and the like. These solvents may be used alone or in combination of two or more.
  • the curable composition according to one embodiment of the present invention may contain a curing agent.
  • the curing agent include phenol resins, polycarboxylic acids and their acid anhydrides, cyanate ester resins, active ester resins, maleimide compounds, alicyclic olefin polymers, and the like.
  • One type of curing agent may be used alone, or two or more types may be used in combination.
  • the curable composition according to one embodiment of the present invention may contain a colorant.
  • Colorants include, but are not limited to, pigments, dyes, pigments, and the like.
  • the curable composition according to one embodiment of the present invention may contain a photopolymerizable monomer.
  • the photopolymerizable monomer may be a monomer having an ethylenically unsaturated double bond.
  • Examples of the photopolymerizable monomer include polyester (meth)acrylate, polyether (meth)acrylate, urethane (meth)acrylate, carbonate (meth)acrylate, and epoxy (meth)acrylate.
  • thermosetting resin The curable composition according to one embodiment of the present invention may contain a thermosetting resin.
  • Thermosetting resins are not particularly limited, but include, for example, amino resins, maleimide compounds, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, episulfide resins, and the like.
  • the curable composition according to one embodiment of the present invention may contain a sensitizer.
  • the sensitizer may be an anthracene compound, and commercially available products can be used.
  • Commercially available products include, for example, UVS-107 (molecular weight 410) and UVS-581 (molecular weight 434) manufactured by Kawasaki Chemical Industries, Ltd.
  • the curable composition according to one embodiment of the present invention may contain a silane coupling agent.
  • a silane coupling agent for example, a silane coupling agent having an imidazole ring can be used.
  • the curable composition according to one embodiment of the present invention may include an elastomer.
  • an elastomer By including an elastomer, the elastic modulus can be lowered, so stress during curing can be relaxed and crack resistance can be further improved.
  • the elastomer is not particularly limited, but examples include polyester elastomer, styrene elastomer, polyurethane elastomer, polyester urethane elastomer, polyamide elastomer, polyesteramide elastomer, acrylic elastomer, olefin elastomer, silicone elastomer, etc. It will be done.
  • resins in which part or all of the epoxy groups of epoxy resins having various skeletons are modified with carboxylic acid-modified butadiene-acrylonitrile rubber at both ends can also be used.
  • epoxy-containing polybutadiene elastomers, acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers, block copolymers, etc. can also be used.
  • the curable composition according to one embodiment of the present invention may contain a photopolymerization initiation aid in combination with the photoradical initiator (C).
  • the photopolymerization initiation aid is not particularly limited, examples thereof include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds.
  • the article including the cured product according to an embodiment of the present invention is not particularly limited, but may be an article obtained by, for example, coating a curable composition on a base material, etc., and then curing it. .
  • Examples of such articles include printed wiring boards coated with solder resist.
  • known methods can be used to apply the curable composition to the substrate, such as screen printing, bar coater, spray coating, applicator, blade coater, knife coater, roll coater, gravure coater, etc. can be mentioned.
  • the cured product according to one embodiment of the present invention has good electrical insulation, it can be suitably used for electrical/electronic parts, resist materials, and the like. However, it is not limited to these uses, and can be used in various other uses.
  • electrical/electronic parts include electrical insulation materials (insulating coating materials for wires and cables, etc.), sealing materials, adhesives, pressure-sensitive adhesives, conformal coating agents, electrical and electronic potting agents, packing, O-rings, and belts. Can be mentioned. More specific examples include high voltage thick film resistors, hybrid IC circuit elements, HICs, electrical insulation parts, semiconducting parts, conductive parts, modules, printed circuits, ceramic substrates, diodes, transistors, and bonding wires.
  • buffer materials such as optical fibers for optical communication, transformer high voltage circuits, printed circuit boards, high voltage transformers with variable resistance parts, electrical insulation parts, solar cells (crystalline silicon solar cells, amorphous silicon solar cells, CI (G)S solar cells, perovskite solar cells, organic thin film solar cells, dye-sensitized solar cells, GaAs solar cells, etc.), potting materials for flyback transformers for TVs, heavy electrical parts, light electrical parts, back sealing of solar cells. Examples include sealing materials for circuits and boards of electrical and electronic equipment.
  • resist materials include peripheral members of semiconductors and conductors. More specific examples include photomasks, photoresists, semiconductor surface protection tapes, dicing tapes, die bonding tapes, die bonding materials, interlayer insulation materials (buildup materials), photosensitive dry film resists, and liquid photosensitive resin materials. , interporter materials, package substrate materials, solder resists, semiconductor sealing resins, underfill materials, side fill materials, printed circuit board materials, and modifiers for these materials.
  • Examples of further suitable applications include components that allow light (ultraviolet, visible, infrared, X-ray, laser, etc.) to pass through.
  • Examples include display peripheral members and UV ink for 3D printing. More specific examples include flat panel displays and their sealing materials; peripheral materials for liquid crystal display devices (light guide plates, prism sheets, polarizing plates, retardation plates, viewing angle correction films, front glass protective films in the liquid crystal display field) (polarizer protective film or adhesive, adhesive or filler between panels or films, liquid crystal film, etc.); encapsulant for color PDP (plasma display), antireflection film, optical correction film, front glass protective film or adhesives, adhesives or fillers between panels or films; molding materials for light-emitting elements used in light-emitting diode display devices, encapsulants for light-emitting diodes (LEDs), protective films or adhesives for front glass, panels or Adhesives or fillers between films; light guide plates, prism sheets, polarizing plates, retardation viewing angle correction films, polar
  • One embodiment of the present invention may include the following configuration.
  • a (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule, and an epoxy compound and/or an oxetane compound A cured product obtained by curing a curable composition containing (B), a photoradical initiator (C), and an epoxy curing agent (D), and having a film thickness of 200 ⁇ m or less.
  • R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • the (meth)acrylic polymer (A) has an average of 0.8 to 1 group represented by the general formula (1) per molecule at one end of the molecule (meth)
  • ⁇ 4> The cured product according to any one of ⁇ 1> to ⁇ 3>, wherein the epoxy compound and/or oxetane compound (B) is an aromatic epoxy compound.
  • ⁇ 5> The cured product according to any one of ⁇ 1> to ⁇ 4>, wherein the epoxy curing agent (D) is an amine compound.
  • the epoxy curing agent (D) is an amine compound.
  • An article comprising the cured product according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> A printed wiring board coated with the cured product according to any one of ⁇ 1> to ⁇ 5>.
  • the film thickness of the cured product obtained by curing is 200 ⁇ m or less, A method of relieving internal stress in the cured product.
  • -OC(O)C(R 1 ) CH 2 (1) (In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
  • an oxygen-nitrogen mixed gas was introduced into the gas phase of the reaction vessel.
  • the reaction solution was heated and stirred for several hours while maintaining the system temperature at about 80 to about 90° C. to bring the polymerization catalyst into contact with oxygen.
  • Acetonitrile and unreacted monomers were removed by devolatilization under reduced pressure to obtain a (meth)acrylic polymer.
  • the obtained (meth)acrylic polymer was colored dark green.
  • the (meth)acrylic polymer obtained in the polymerization step was diluted with butyl acetate (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer).
  • a filter aid was added to the diluted solution, heat treated, and filtered.
  • Adsorbents (Kyoward(R) 700SEN and Kyoward(R) 500SH) were added to the filtrate and filtered again to obtain a clear liquid. This clear liquid was concentrated to obtain an almost colorless and transparent purified product.
  • (Acryloyl group introduction step) The (meth)acrylic polymer obtained as a purified product was dissolved in N,N-dimethylacetamide (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer). Potassium acrylate (approximately 2 molar equivalents relative to the Br group at the end of the polymer), a heat stabilizer (4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl), and an adsorbent (Kyoward). (registered trademark) 700SEN) was added thereto, and the mixture was heated and stirred at about 70°C for several hours.
  • the number average molecular weight of the (meth)acrylic polymer (A-1) was approximately 23,000, and the molecular weight distribution was 1.1.
  • the average number of acryloyl groups introduced into the polymer was about 1.9 per molecule.
  • the number of functional groups introduced per molecule of the (meth)acrylic polymer was calculated based on the concentration analysis by 1 H-NMR and the number average molecular weight determined by GPC.
  • 1 H-NMR was measured using Bruker ASX-400 at 23° C. using deuterated chloroform as a solvent. The same applies to Synthesis Examples 2 and 3.
  • the reaction solution was heated and stirred for several hours while maintaining the system temperature at about 80 to about 90° C. to bring the polymerization catalyst into contact with oxygen.
  • Acetonitrile and unreacted monomers were removed by devolatilization under reduced pressure to obtain a (meth)acrylic polymer.
  • the (meth)acrylic polymer was colored dark green.
  • the (meth)acrylic polymer obtained in the polymerization step was diluted with butyl acetate (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer).
  • a filter aid was added to the diluted solution, heat treated, and filtered.
  • Adsorbents (Kyoward(R) 700SEN and Kyoward(R) 500SH) were added to the filtrate and filtered again to obtain a clear liquid. This clear liquid was concentrated to obtain an almost colorless and transparent purified product.
  • (Acryloyl group introduction step) The (meth)acrylic polymer obtained as a purified product was dissolved in N,N-dimethylacetamide (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer). Potassium acrylate (approximately 2 molar equivalents relative to the terminal Br group of the (meth)acrylic polymer), a heat stabilizer (4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl), and An adsorbent (Kyoward (registered trademark) 700SEN) was added, and the mixture was heated and stirred at about 70°C for several hours.
  • the number average molecular weight of the (meth)acrylic polymer (A-2) was approximately 16,000, and the molecular weight distribution was 1.1.
  • the average number of acryloyl groups introduced into the polymer was about 1.9 per molecule.
  • n-butyl acrylate During the dropwise addition of n-butyl acrylate, 0.68 parts by weight of pentamethyldiethylenetriamine was added in portions. When the polymerization reaction rate reaches 96%, acetonitrile and unreacted monomers are removed by devolatilization at 80°C, and a polyester having a bromine group at one end with a number average molecular weight of 11,800 and a molecular weight distribution of 1.08 is produced. (n-butyl acrylate) (polymer (P-1)) was obtained.
  • polymer (P-1) 100 parts by weight of polymer (P-1)
  • a filter aid Radiolite 900, manufactured by Showa Kagaku Kogyo Co., Ltd.
  • methylcyclohexane 100 parts by weight of methylcyclohexane
  • the (meth)acrylic polymer (A-3) had a number average molecular weight of 12,200 and a molecular weight distribution of 1.18.
  • the average number of acryloyl groups introduced into the (meth)acrylic polymer (A-3) was 0.87 per molecule.
  • Samples for physical property evaluation were prepared by the following method.
  • Each component blended into the curable composition is as follows.
  • Example 1 The aluminum base material cut above was exposed to the atmosphere using a UV irradiation device (manufactured by Fusion UV System, model: LIGHT HAMMER 6, light source: mercury lamp, peak illuminance: 250 mW/cm 2 , integrated light amount: 2,000 mJ/cm 2 ). irradiated with UV light at the bottom. Next, the mixture was heated in an oven at 120° C. for 60 minutes, and then sufficiently cooled to obtain a cured product.
  • a UV irradiation device manufactured by Fusion UV System, model: LIGHT HAMMER 6, light source: mercury lamp, peak illuminance: 250 mW/cm 2 , integrated light amount: 2,000 mJ/cm 2 .
  • Examples 3 to 6, Comparative Examples 4 to 7 The aluminum base material cut above was heated in an oven at 80° C. for 20 minutes. Next, after irradiating with UV light under the same conditions as in Example 1, heating was performed in an oven at 120° C. for 60 minutes, and the product was sufficiently cooled to obtain a cured product.
  • Example 2 Comparative Examples 2 and 3
  • the aluminum base material cut above was irradiated with UV light in the atmosphere using a UV irradiation device (peak illuminance: 250 mW/cm 2 , cumulative light amount: 2,000 mJ/cm 2 ).
  • Example 1 had a lower internal stress. That is, it was confirmed that the cured product according to one embodiment of the present invention alleviates the internal stress of the cured product. Furthermore, from Comparative Example 1, it was confirmed that the smaller the sample thickness, the larger the internal stress.
  • Example 2 and Comparative Example 3 when comparing Example 2 and Comparative Example 3 with a sample thickness of 90 ⁇ m, it was confirmed that the internal stress of Example 2 was reduced. Further, Comparative Example 2, in which the sample thickness was more than 200 ⁇ m, had an internal stress at the same level as Comparative Example 3, which had a sample thickness of 193 ⁇ m. That is, it was confirmed that when the sample thickness exceeded 200 ⁇ m, the internal stress did not decrease even when the (meth)acrylic polymer (A) was added. Therefore, it was suggested that when the film thickness of the cured product is 200 ⁇ m or less, the addition of the (meth)acrylic polymer (A) relieves the internal stress of the cured product and improves the impact resistance of the cured product. .
  • test piece for three-point bending test The curable composition was poured into a Teflon (registered trademark) mold having a width of 10 mm, a length of 100 mm, and a depth of 2 mm, and heated in an oven at 80° C. for 20 minutes. Next, UV light was irradiated in the atmosphere using a UV irradiation device (peak illuminance: 250 mW/cm 2 , cumulative light amount: 2,000 mJ/cm 2 ). Thereafter, a test piece for a three-point bending test was obtained by heating at 150° C. for 60 minutes in an oven.
  • a Teflon registered trademark
  • Table 8 shows the compositions of Reference Examples 1 to 3 and Comparative Example 8, and the evaluation results of the three-point bending test.
  • Table 8 shows that Reference Examples 1 to 3 are superior to Comparative Example 8 in flexural modulus, maximum stress, and strain at break. Among them, it can be seen that a cured product using a (meth)acrylic polymer having a group represented by the above general formula (1) at one end of the molecule (Reference Example 3) exhibits more excellent physical properties.
  • the bending elastic modulus, maximum point stress, and breaking point strain are calculated using calculation formulas that take into account the film thickness of the sample, and such calculation methods are common in the technical field. Therefore, it is thought that comparable calculation results can be obtained even when measuring samples with different film thicknesses.
  • the film thickness is about 2 mm, but even when the film thickness is 200 ⁇ m or less, calculation results comparable to those when the film thickness is about 2 mm can be obtained. It is presumed that the reference example is superior to the comparative example in flexural modulus, maximum stress, and strain at break.
  • One embodiment of the present invention can be utilized in the field of cured products.

Abstract

The purpose of the present invention is to provide a cured product having excellent impact resistance. A cured product according to one mode of the present invention is obtained by curing a curable composition containing a (meth)acrylic polymer (A) having, at terminals of the molecule, a group represented by general formula (1) at an average number of at least 0.8 per molecule, an epoxy compound and/or an oxetane compound (B), a photo-radical initiator (C), and an epoxy curing agent (D), and has a thickness of 200 μm or less. (1): -OC(O)C(R1)=CH2 (in the formula, R1 represents a hydrogen atom or an organic group having 1-20 carbon atoms.)

Description

硬化物、硬化物を備える物品および硬化物の内部応力を緩和する方法Cured product, article including cured product, and method for relieving internal stress of cured product
 本発明は、硬化物、硬化物を備える物品および硬化物の内部応力を緩和する方法に関する。 The present invention relates to a cured product, an article including the cured product, and a method for relieving internal stress in the cured product.
 (メタ)アクリル系重合体およびエポキシ化合物を含有する硬化性組成物が、従来技術として知られている(例えば、特許文献1)。 A curable composition containing a (meth)acrylic polymer and an epoxy compound is known as a prior art (for example, Patent Document 1).
日本国特開2009-227955号公報Japanese Patent Application Publication No. 2009-227955
 しかしながら、上述のような従来技術は、耐衝撃性に優れる硬化物を実現する観点からさらなる改善の余地があった。 However, the above-mentioned conventional techniques have room for further improvement from the viewpoint of realizing a cured product with excellent impact resistance.
 本発明の一態様は、耐衝撃性に優れる硬化物を提供することを目的とする。 One aspect of the present invention aims to provide a cured product with excellent impact resistance.
 本発明の一態様に係る硬化物は、
 1分子当たり平均して0.8個以上の一般式(1)で表される基を分子の末端に有する(メタ)アクリル系重合体(A)と、
 エポキシ化合物および/またはオキセタン化合物(B)と、
 光ラジカル開始剤(C)と、
 エポキシ硬化剤(D)と、を含有する硬化性組成物を、硬化してなり、
 膜厚が200μm以下である。
-OC(O)C(R)=CH   (1)
 (式中、Rは、水素原子または炭素数1~20の有機基を表す。)
 また、本発明の一態様に係る硬化物の内部応力を緩和する方法は、
 1分子当たり平均して0.8個以上の一般式(1)で表される基を分子の末端に有する(メタ)アクリル系重合体(A)と、エポキシ化合物および/またはオキセタン化合物(B)と、光ラジカル開始剤(C)と、エポキシ硬化剤(D)と、を含有する硬化性組成物を、硬化する工程を有し、
 硬化して得られた硬化物の膜厚が200μm以下である。
-OC(O)C(R)=CH   (1)
 (式中、Rは、水素原子または炭素数1~20の有機基を表す。)
The cured product according to one embodiment of the present invention is
A (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule;
An epoxy compound and/or an oxetane compound (B),
a photoradical initiator (C);
A curable composition containing an epoxy curing agent (D) is cured,
The film thickness is 200 μm or less.
-OC(O)C(R 1 )=CH 2 (1)
(In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
Further, a method for relieving internal stress of a cured product according to one embodiment of the present invention includes:
A (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule, and an epoxy compound and/or an oxetane compound (B) , a photoradical initiator (C), and an epoxy curing agent (D).
The film thickness of the cured product obtained by curing is 200 μm or less.
-OC(O)C(R 1 )=CH 2 (1)
(In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
 本発明の一態様によれば、耐衝撃性に優れる硬化物を実現できる。 According to one aspect of the present invention, a cured product with excellent impact resistance can be achieved.
実施例1、2および比較例1~3に係る硬化物の内部応力と厚みとの関係を示す図である。FIG. 3 is a diagram showing the relationship between internal stress and thickness of cured products according to Examples 1 and 2 and Comparative Examples 1 to 3. 実施例3~6および比較例4~7に係る硬化物の内部応力と厚みとの関係を示す図である。FIG. 7 is a diagram showing the relationship between internal stress and thickness of cured products according to Examples 3 to 6 and Comparative Examples 4 to 7.
 以下、本発明の実施の形態の一例について詳細に説明するが、本発明はこれらに限定されない。本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。本明細書において、「(メタ)アクリル」とは、「アクリル」および/または「メタクリル」を意味する。 Hereinafter, an example of an embodiment of the present invention will be described in detail, but the present invention is not limited thereto. Unless otherwise specified herein, the numerical range "A to B" means "A or more and B or less". As used herein, "(meth)acrylic" means "acrylic" and/or "methacrylic".
 〔1.硬化物〕
 従来、エポキシ化合物を含有する硬化性組成物は、硬化過程および/または冷却過程で収縮し、大きな内部応力が発生する。その内部応力が要因となり、硬化性組成物を硬化させて得られる硬化物は、物理的な衝撃および/または冷却衝撃によって割れやすいという課題があった。
[1. Cured product]
Conventionally, curable compositions containing epoxy compounds contract during the curing and/or cooling process, generating large internal stress. Due to the internal stress, the cured product obtained by curing the curable composition has a problem in that it is easily broken by physical impact and/or cooling impact.
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、硬化性組成物に(メタ)アクリル系重合体(A)を添加することによって、得られる硬化物の内部応力を緩和させることができ、その結果、当該硬化物の耐衝撃性を向上させ得ることを初めて見出した。 Therefore, as a result of extensive research in order to solve the above problems, the present inventors discovered that by adding a (meth)acrylic polymer (A) to a curable composition, the internal stress of the cured product obtained was It has been discovered for the first time that the impact resistance of the cured product can be improved as a result.
 本発明の一実施形態に係る硬化物は、(メタ)アクリル系重合体(A)、エポキシ化合物および/またはオキセタン化合物(B)、光ラジカル開始剤(C)、およびエポキシ硬化剤(D)を含有する硬化性組成物を硬化してなる。硬化させる方法としては、光硬化および/または熱硬化が挙げられる。 The cured product according to one embodiment of the present invention contains a (meth)acrylic polymer (A), an epoxy compound and/or an oxetane compound (B), a photoradical initiator (C), and an epoxy curing agent (D). It is obtained by curing the curable composition contained therein. Examples of the curing method include photocuring and/or thermal curing.
 光硬化としては特に限定されないが、光ラジカル硬化が挙げられる。光ラジカル硬化は、活性エネルギー線(UVまたは電子線など)を照射することで開始される硬化である。活性エネルギー線源は、光ラジカル開始剤(C)の性質に応じて適宜選択できる。活性エネルギー線源の例としては、高圧水銀灯、低圧水銀灯、LED、電子線照射装置、ハロゲンランプ、発光ダイオード、半導体レーザーが挙げられる。 Photocuring is not particularly limited, but includes photoradical curing. Photo-radical curing is curing initiated by irradiation with active energy rays (UV or electron beams, etc.). The source of active energy rays can be appropriately selected depending on the properties of the photoradical initiator (C). Examples of active energy ray sources include high pressure mercury lamps, low pressure mercury lamps, LEDs, electron beam irradiators, halogen lamps, light emitting diodes, and semiconductor lasers.
 熱硬化は、加熱によって開始される硬化である。熱硬化温度は、エポキシ化合物および/またはオキセタン化合物(B)、エポキシ硬化剤(D)、ならびに他の添加物の種類により、適宜設定される。熱硬化温度は、15~300℃が好ましく、15℃~250℃がより好ましい。上記の温度範囲であれば、熱による硬化物の劣化を防ぐことができる。熱硬化には、加熱炉、オーブン、加熱コンベアなどが使用できる。 Thermal curing is curing initiated by heating. The thermosetting temperature is appropriately set depending on the types of the epoxy compound and/or oxetane compound (B), the epoxy curing agent (D), and other additives. The thermosetting temperature is preferably 15 to 300°C, more preferably 15 to 250°C. Within the above temperature range, deterioration of the cured product due to heat can be prevented. For thermal curing, a heating furnace, an oven, a heating conveyor, etc. can be used.
 硬化物の膜厚の上限値は、200μm以下であり、好ましくは150μm以下であり、より好ましくは100μm以下であり、さらに好ましくは50μm以下である。硬化物の膜厚が200μm以下であれば、硬化性組成物に(メタ)アクリル系重合体(A)を添加することによって、得られる硬化物の内部応力を緩和させ、耐衝撃性を向上させることができる。硬化物の膜厚の下限値は耐衝撃性の観点から、例えば、5μm以上である。 The upper limit of the film thickness of the cured product is 200 μm or less, preferably 150 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less. If the film thickness of the cured product is 200 μm or less, by adding a (meth)acrylic polymer (A) to the curable composition, the internal stress of the resulting cured product is alleviated and the impact resistance is improved. be able to. The lower limit of the film thickness of the cured product is, for example, 5 μm or more from the viewpoint of impact resistance.
 本発明の一態様としては、(メタ)アクリル系重合体(A)と、エポキシ化合物および/またはオキセタン化合物(B)と、光ラジカル開始剤(C)と、エポキシ硬化剤(D)と、を含有する硬化性組成物を、硬化する工程を有し、硬化して得られた硬化物の膜厚が200μm以下である、前記硬化物の内部応力を緩和する方法も包含される。 One embodiment of the present invention includes a (meth)acrylic polymer (A), an epoxy compound and/or an oxetane compound (B), a photoradical initiator (C), and an epoxy curing agent (D). Also included is a method for relaxing the internal stress of the cured product, which includes a step of curing the curable composition contained therein, and the film thickness of the cured product obtained by curing is 200 μm or less.
 〔1-1.(メタ)アクリル系重合体(A)〕
 (メタ)アクリル系重合体(A)は、1分子当たり平均して0.8個以上の一般式(1)で表される基を分子の末端に有する。
-OC(O)C(R)=CH   (1)
 (式中、Rは、水素原子または炭素数1~20の有機基を表す。)
 Rとしては、-H、-CH、-CHCH、-(CHCH(nは2~19の整数を表す)、-C(フェニル基)、-CHOH、-CN等が挙げられる。反応性の観点から、Rは、-Hまたは-CHが好ましい。すなわち、一般式(1)で表される基は(メタ)アクリロイル基であることが好ましい。
[1-1. (meth)acrylic polymer (A)]
The (meth)acrylic polymer (A) has an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule.
-OC(O)C(R 1 )=CH 2 (1)
(In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
R 1 is -H, -CH 3 , -CH 2 CH 3 , -(CH 2 ) n CH 3 (n represents an integer from 2 to 19), -C 6 H 5 (phenyl group), -CH Examples include 2OH , -CN, and the like. From the viewpoint of reactivity, R 1 is preferably -H or -CH 3 . That is, it is preferable that the group represented by general formula (1) is a (meth)acryloyl group.
 (メタ)アクリル系重合体(A)の1分子当たりの一般式(1)で表される基の数は、硬化性向上の観点から、好ましくは0.85個以上であり、1個以上であってもよく、1.5個以上であってもよい。一方、硬化物の柔軟性の観点から、一般式(1)で表される基の数は、好ましくは2.0個以下であり、より好ましくは2.0個未満である。 The number of groups represented by general formula (1) per molecule of the (meth)acrylic polymer (A) is preferably 0.85 or more, and 1 or more, from the viewpoint of improving curability. The number may be 1.5 or more. On the other hand, from the viewpoint of flexibility of the cured product, the number of groups represented by general formula (1) is preferably 2.0 or less, more preferably less than 2.0.
 また、(メタ)アクリル系重合体(A)は、一般式(1)で表される基を分子の一方の末端に有することが好ましい。この場合、(メタ)アクリル系重合体(A)の1分子当たりの一般式(1)で表される基の数は、硬化性向上の観点から、好ましくは0.8個以上であり、より好ましくは0.85以上である。一方、硬化物の柔軟性の観点から、好ましくは1.0個以下であり、より好ましくは1.0未満である。 Furthermore, the (meth)acrylic polymer (A) preferably has a group represented by general formula (1) at one end of the molecule. In this case, the number of groups represented by general formula (1) per molecule of the (meth)acrylic polymer (A) is preferably 0.8 or more, and more preferably Preferably it is 0.85 or more. On the other hand, from the viewpoint of flexibility of the cured product, the number is preferably 1.0 or less, and more preferably less than 1.0.
 (メタ)アクリル系重合体(A)の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した場合に、好ましくは3,000~100,000であり、より好ましくは10,000~90,000であり、さらに好ましくは30,000~80,000である。数平均分子量が3,000以上であれば、硬化物の柔軟性およびゴム弾性を十分に得ることができる。数平均分子量が100,000以下であれば、重合体の粘度を抑えることができ、取扱いが容易である。本明細書において、GPC測定は、移動相としてクロロホルムを用い、測定はポリスチレンゲルカラムにて行い、数平均分子量等はポリスチレン換算で求めることができる。 The number average molecular weight of the (meth)acrylic polymer (A) is preferably 3,000 to 100,000, more preferably 10,000 to 90, when measured by gel permeation chromatography (GPC). ,000, more preferably 30,000 to 80,000. When the number average molecular weight is 3,000 or more, sufficient flexibility and rubber elasticity can be obtained from the cured product. When the number average molecular weight is 100,000 or less, the viscosity of the polymer can be suppressed and handling is easy. In the present specification, GPC measurements are performed using chloroform as a mobile phase using a polystyrene gel column, and the number average molecular weight and the like can be determined in terms of polystyrene.
 (メタ)アクリル系重合体(A)の主鎖を構成する(メタ)アクリル系モノマーは、特に限定されない。(メタ)アクリル系モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステルが挙げられる。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等が挙げられる。これらは、単独で用いてもよいし、複数種類を共重合させてもよい。 The (meth)acrylic monomer that constitutes the main chain of the (meth)acrylic polymer (A) is not particularly limited. Examples of the (meth)acrylic monomer include (meth)acrylic acid and (meth)acrylic ester. (Meth)acrylate esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and (meth)acrylate. ) Isobutyl acrylate, tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, (meth) ) n-octyl acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate , benzyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, (meth)acrylate ) Stearyl acrylate, glycidyl (meth)acrylate, 2-aminoethyl (meth)acrylate, γ-(methacryloyloxypropyl)trimethoxysilane, ethylene oxide adduct of (meth)acrylic acid, tri(meth)acrylate Fluoromethyl, 2-trifluoromethylethyl (meth)acrylate, 2-perfluoroethylethyl (meth)acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth)acrylate, (meth)acrylic acid 2-perfluoroethyl, perfluoromethyl (meth)acrylate, diperfluoromethylmethyl (meth)acrylate, 2-perfluoromethyl-2-perfluoroethylmethyl (meth)acrylate, (meth)acrylic acid 2 -perfluorohexylethyl, 2-perfluorodecylethyl (meth)acrylate, 2-perfluorohexadecylethyl (meth)acrylate, and the like. These may be used alone, or multiple types may be copolymerized.
 (メタ)アクリル系重合体(A)は、炭素数1~3のアルコキシ基を有する(メタ)アクリル酸エステルに由来する繰り返し単位を有することが好ましい。炭素数1~3のアルコキシ基を有する(メタ)アクリル酸エステルモノマーとしては、例えば、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチルが挙げられる。(メタ)アクリル系重合体(A)は、炭素数1~3のアルコキシ基を有する(メタ)アクリル酸エステルに由来する繰り返し単位を、全繰り返し単位中に1~35重量%有することが好ましい。 The (meth)acrylic polymer (A) preferably has a repeating unit derived from a (meth)acrylic acid ester having an alkoxy group having 1 to 3 carbon atoms. Examples of the (meth)acrylic acid ester monomer having an alkoxy group having 1 to 3 carbon atoms include 2-methoxyethyl (meth)acrylate and 3-methoxybutyl (meth)acrylate. The (meth)acrylic polymer (A) preferably has 1 to 35% by weight of repeating units derived from a (meth)acrylic acid ester having an alkoxy group having 1 to 3 carbon atoms in the total repeating units.
 (メタ)アクリル系重合体(A)は、炭素数3~5のアルキル基を有する(メタ)アクリル酸エステル、炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルおよび炭素数1~3のアルコキシ基を有する(メタ)アクリル酸エステルの重合体(A1)であることが好ましい。(メタ)アクリル系重合体(A1)の主鎖を構成するモノマーとしては、特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸-n-ペンチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチルが挙げられる。 The (meth)acrylic polymer (A) includes a (meth)acrylic ester having an alkyl group having 3 to 5 carbon atoms, a (meth)acrylic ester having an alkyl group having 1 to 2 carbon atoms, and a (meth)acrylic ester having an alkyl group having 1 to 2 carbon atoms. A polymer (A1) of (meth)acrylic acid ester having 3 alkoxy groups is preferable. The monomers constituting the main chain of the (meth)acrylic polymer (A1) are not particularly limited, but examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, Isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, n-pentyl (meth)acrylate, 2-methoxy (meth)acrylate Examples include ethyl and 3-methoxybutyl (meth)acrylate.
 (メタ)アクリル系重合体(A1)は、炭素数3~5のアルキル基を有するアクリル酸エステル、炭素数1~2のアルキル基を有するアクリル酸エステルおよび炭素数1~3のアルコキシ基を有するアクリル酸エステル由来の繰り返し単位を、(メタ)アクリル系重合体(A1)を構成する全繰り返し単位の80重量%以上有することが好ましく、90重量%以上有することがより好ましく、95重量%以上有することがさらに好ましく、上限は100重量%以下が好ましい。 The (meth)acrylic polymer (A1) has an acrylic ester having an alkyl group having 3 to 5 carbon atoms, an acrylic ester having an alkyl group having 1 to 2 carbon atoms, and an alkoxy group having 1 to 3 carbon atoms. It is preferable that the repeating unit derived from acrylic acid ester is 80% by weight or more, more preferably 90% by weight or more, and 95% by weight or more of the total repeating units constituting the (meth)acrylic polymer (A1). More preferably, the upper limit is 100% by weight or less.
 (メタ)アクリル系重合体(A1)を構成する、炭素数3~5のアルキル基を有する(メタ)アクリル酸エステルモノマーおよび炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルモノマーおよび炭素数1~3のアルコキシ基を有する(メタ)アクリル酸エステルモノマーの比率(炭素数3~5のアルキル基を有する(メタ)アクリル酸エステルモノマー/炭素数1~2のアルキル基を有する(メタ)アクリル酸エステルモノマー/炭素数1~3のアルコキシ基を有する(メタ)アクリル酸エステルモノマー)は、80~15/19~50/1~35が好ましい。 A (meth)acrylic ester monomer having an alkyl group having 3 to 5 carbon atoms and a (meth)acrylic ester monomer having an alkyl group having 1 to 2 carbon atoms constituting the (meth)acrylic polymer (A1); Ratio of (meth)acrylic acid ester monomer having an alkoxy group having 1 to 3 carbon atoms ((meth)acrylic ester monomer having an alkyl group having 3 to 5 carbon atoms/(meth)acrylic acid ester monomer having an alkyl group having 1 to 2 carbon atoms ) Acrylic acid ester monomer/(meth)acrylic acid ester monomer having an alkoxy group having 1 to 3 carbon atoms) is preferably 80 to 15/19 to 50/1 to 35.
 (メタ)アクリル系重合体(A)の分子量分布は、好ましくは1.8以下であり、より好ましくは1.7以下であり、さらに好ましくは1.6以下であり、よりさらに好ましくは1.5以下であり、特に好ましくは1.4以下であり、最も好ましくは1.3以下である。分子量分布の理論上の下限は、1である。前記分子量分布は、GPCで測定した重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)である。分子量分布が1.8以下であれば、得られる硬化物の機械物性のコントロールが容易である。 The molecular weight distribution of the (meth)acrylic polymer (A) is preferably 1.8 or less, more preferably 1.7 or less, still more preferably 1.6 or less, even more preferably 1. It is 5 or less, particularly preferably 1.4 or less, and most preferably 1.3 or less. The theoretical lower limit of the molecular weight distribution is 1. The molecular weight distribution is the ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) measured by GPC. When the molecular weight distribution is 1.8 or less, the mechanical properties of the resulting cured product can be easily controlled.
 (メタ)アクリル系重合体(A)の重合法は、特に限定されないが、例えば、特開2005-232419公報、特開2006-291073公報、特開2016-88944公報に記載の重合法が挙げられる。(メタ)アクリル系重合体(A)の末端に一般式(1)で表される基を導入する方法としては、例えば、特開2016-88944公報の段落〔0081〕~〔0087〕に記載の方法が挙げられる。 The polymerization method for the (meth)acrylic polymer (A) is not particularly limited, but examples thereof include the polymerization methods described in JP-A No. 2005-232419, JP-A No. 2006-291073, and JP-A No. 2016-88944. . As a method for introducing a group represented by general formula (1) to the terminal of the (meth)acrylic polymer (A), for example, the method described in paragraphs [0081] to [0087] of JP-A-2016-88944 is There are several methods.
 〔1-2.エポキシ化合物および/またはオキセタン化合物(B)〕
 前記硬化性組成物は、エポキシ化合物および/またはオキセタン化合物(B)を含有している。エポキシ化合物およびオキセタン化合物は、硬化物の強度を向上させる役割を果たす。オキセタン化合物は、硬化性組成物の粘度を下げて作業性を改良する役割をも果たす。エポキシ化合物および/またはオキセタン化合物(B)は、1種類のみを用いてもよいし、2種類以上を併用してもよい。
[1-2. Epoxy compound and/or oxetane compound (B)]
The curable composition contains an epoxy compound and/or an oxetane compound (B). The epoxy compound and the oxetane compound play a role in improving the strength of the cured product. The oxetane compound also plays the role of lowering the viscosity of the curable composition and improving workability. The epoxy compound and/or oxetane compound (B) may be used alone or in combination of two or more.
 (エポキシ化合物)
 エポキシ化合物は、エポキシ基を有している化合物を一般に表す。エポキシ化合物の例としては、芳香族エポキシ化合物、脂環式エポキシ化合物が挙げられる。硬化物の硬度を高める観点からは、芳香族エポキシ化合物が好ましい。
(epoxy compound)
Epoxy compound generally refers to a compound having an epoxy group. Examples of epoxy compounds include aromatic epoxy compounds and alicyclic epoxy compounds. From the viewpoint of increasing the hardness of the cured product, aromatic epoxy compounds are preferred.
 さらに、エポキシ化合物は、ラジカル反応性基を有することが好ましい。このようなエポキシ化合物は、(メタ)アクリル系重合体の(メタ)アクリロイル系官能基との間に架橋を形成する。そのため、溶剤への溶出性が低い強靭な硬化物が得られる。ラジカル反応性基の例としては、アクリロイル基、メタクリロイル基、アリル基が挙げられる。ラジカル反応性基を有するエポキシ化合物は、日本化薬株式会社、DIC株式会社、昭和電工マテリアルズ株式会社などから入手できる。 Furthermore, it is preferable that the epoxy compound has a radically reactive group. Such an epoxy compound forms a crosslink with the (meth)acryloyl functional group of the (meth)acrylic polymer. Therefore, a tough cured product with low elution into solvents can be obtained. Examples of radically reactive groups include acryloyl, methacryloyl, and allyl groups. Epoxy compounds having radically reactive groups are available from Nippon Kayaku Co., Ltd., DIC Corporation, Showa Denko Materials Co., Ltd., and the like.
 芳香族エポキシ化合物の具体例としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、水添型ビスフェノールA型エポキシ化合物、水添型ビスフェノールF型エポキシ化合物が挙げられる。芳香族エポキシ化合物の一例として、2,2-ビス(4-グリシジルオキシフェニル)プロパンが挙げられる。 Specific examples of aromatic epoxy compounds include bisphenol A epoxy compounds, bisphenol F epoxy compounds, bisphenol AD epoxy compounds, hydrogenated bisphenol A epoxy compounds, and hydrogenated bisphenol F epoxy compounds. An example of an aromatic epoxy compound is 2,2-bis(4-glycidyloxyphenyl)propane.
 脂環式エポキシ化合物の例としては、シクロヘキセンオキシド基、トリシクロデセンオキシド基、シクロペンテンオキシド基などを有する化合物が挙げられる。より具体的な脂環式エポキシ化合物の例としては、ビニルシクロヘキセンジエポキシド、ビニルシクロヘキセンモノエポキシド、3,4-エポキシシクロへキシルメチル-3,4-エポキシシクロへキサンカーボキシレート、2-(3,4-エポキシシクロへキシル5,5-スピロ-3,4-エポキシ)シクロヘキサン-m-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、ビス(3,4-エポキシシクロヘキシルメチレン)アジペートが挙げられる。 Examples of alicyclic epoxy compounds include compounds having a cyclohexene oxide group, a tricyclodecene oxide group, a cyclopentene oxide group, and the like. More specific examples of alicyclic epoxy compounds include vinylcyclohexene diepoxide, vinylcyclohexene monoepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, 2-(3, Examples include 4-epoxycyclohexyl 5,5-spiro-3,4-epoxy)cyclohexane-m-dioxane, bis(3,4-epoxycyclohexyl) adipate, and bis(3,4-epoxycyclohexylmethylene) adipate.
 (オキセタン化合物)
 オキセタン化合物の例としては、3-エチル-3-ヒドロキシメチルオキセタン、3-(メタ)アリルオキシメチル-3-エチルオキセタン、(3-エチル-3-オキセタニルメトキシ)メチルベンゼン、4-フルオロ-〔1-(3-エチル-3-オキセタニルメトキシ)メチル〕ベンゼン、4-メトキシ-〔1-(3-エチル-3-オキセタニルメトキシ)メチル〕ベンゼン、〔1-(3-エチル-3-オキセタニルメトキシ)エチル〕フェニルエーテル、イソブトキシメチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニルオキシエチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニル(3-エチル-3-オキセタニルメチル)エーテル、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、エチルジエチレングリコール(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンタジエン(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルオキシエチル(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルエチル(3-エチル-3-オキセタニルメチル)エーテル、テトラヒドロフルフリル(3-エチル-3-オキセタニルメチル)エーテル、テトラブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、2-テトラブロモフェノキシエチル(3-エチル-3-オキセタニルメチル)エーテル、トリブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、2-トリブロモフェノキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシプロピル(3-エチル-3-オキセタニルメチル)エーテル、ブトキシエチル(3-エチル-3-オキセタニルメチル)エーテル、ペンタクロロフェニル(3-エチル-3-オキセタニルメチル)エーテル、ペンタブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、ボルニル(3-エチル-3-オキセタニルメチル)エーテル、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,4-ビス〔(3-エチル-3-オキセタニルメトシキ)メチル〕ベンゼン、1,2-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕エタン、1,2-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレンビス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕ブタン、1,6-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕ヘキサン、ポリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、EO変性ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、PO変性ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、EO変性水添ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、PO変性水添ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、EO変性ビスフェノールFビス(3-エチル-3-オキセタニルメチル)エーテル、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールトリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールヘキサキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールヘキサキス(3-エチル-3-オキセタニルメチル)エーテル、ジトリメチロールプロパンテトラキス(3-エチル-3-オキセタニルメチル)エーテルが挙げられる。
(Oxetane compound)
Examples of oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 3-(meth)allyloxymethyl-3-ethyloxetane, (3-ethyl-3-oxetanylmethoxy)methylbenzene, 4-fluoro-[1 -(3-ethyl-3-oxetanylmethoxy)methyl]benzene, 4-methoxy-[1-(3-ethyl-3-oxetanylmethoxy)methyl]benzene, [1-(3-ethyl-3-oxetanylmethoxy)ethyl ] Phenyl ether, isobutoxymethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyloxyethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyl (3-ethyl-3-oxetanylmethyl) ether, 2 -Ethylhexyl (3-ethyl-3-oxetanylmethyl) ether, ethyldiethylene glycol (3-ethyl-3-oxetanylmethyl) ether, dicyclopentadiene (3-ethyl-3-oxetanylmethyl) ether, dicyclopentenyloxyethyl (3 -ethyl-3-oxetanylmethyl) ether, dicyclopentenylethyl (3-ethyl-3-oxetanylmethyl) ether, tetrahydrofurfuryl (3-ethyl-3-oxetanylmethyl) ether, tetrabromophenyl (3-ethyl-3) -oxetanylmethyl) ether, 2-tetrabromophenoxyethyl (3-ethyl-3-oxetanylmethyl) ether, tribromophenyl (3-ethyl-3-oxetanylmethyl) ether, 2-tribromophenoxyethyl (3-ethyl- 3-oxetanylmethyl) ether, 2-hydroxyethyl (3-ethyl-3-oxetanylmethyl) ether, 2-hydroxypropyl (3-ethyl-3-oxetanylmethyl) ether, butoxyethyl (3-ethyl-3-oxetanylmethyl) ether ) ether, pentachlorophenyl (3-ethyl-3-oxetanylmethyl) ether, pentabromophenyl (3-ethyl-3-oxetanylmethyl) ether, bornyl (3-ethyl-3-oxetanylmethyl) ether, 3,7-bis (3-oxetanyl)-5-oxanonane, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, 1,2-bis[(3-ethyl-3-oxetanylmethoxy)methyl ] Ethane, 1,2-bis[(3-ethyl-3-oxetanylmethoxy)methyl]propane, ethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, dicyclopentenyl bis(3-ethyl-3-oxetanyl) methyl) ether, triethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, tricyclodecanediyl dimethylene bis(3-ethyl-3- oxetanylmethyl) ether, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]butane, 1,6-bis[(3-ethyl-3-oxetanylmethoxy)methyl]hexane, polyethylene glycol bis(3 -ethyl-3-oxetanylmethyl) ether, EO-modified bisphenol A bis(3-ethyl-3-oxetanylmethyl) ether, PO-modified bisphenol A bis(3-ethyl-3-oxetanylmethyl) ether, EO-modified hydrogenated bisphenol A Bis(3-ethyl-3-oxetanylmethyl) ether, PO modified hydrogenated bisphenol A bis(3-ethyl-3-oxetanylmethyl) ether, EO modified bisphenol F bis(3-ethyl-3-oxetanylmethyl) ether, tri Methylolpropane tris(3-ethyl-3-oxetanylmethyl) ether, pentaerythritol tris(3-ethyl-3-oxetanylmethyl) ether, pentaerythritol tetrakis(3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol hexakis (3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol pentakis (3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether, caprolactone-modified dipentaerythritol Examples include hexakis (3-ethyl-3-oxetanylmethyl) ether and ditrimethylolpropane tetrakis (3-ethyl-3-oxetanylmethyl) ether.
 硬化性組成物における(メタ)アクリル系重合体(A)とエポキシ化合物および/またはオキセタン化合物(B)の重量比は、1:99~50:50が好ましく、2:98~40:60がより好ましく、3:97~30:70がさらに好ましい。両者の配合比が上記の範囲内であれば、硬化物に充分な強度および伸びを与えられる。 The weight ratio of the (meth)acrylic polymer (A) to the epoxy compound and/or oxetane compound (B) in the curable composition is preferably 1:99 to 50:50, more preferably 2:98 to 40:60. Preferably, 3:97 to 30:70 is more preferable. If the blending ratio of both is within the above range, sufficient strength and elongation can be imparted to the cured product.
 〔1-3.光ラジカル開始剤(C)〕
 前記硬化性組成物は、光ラジカル開始剤(C)を含有している。光ラジカル重合開始剤(C)は、光照射(UV照射など)をトリガーとして、硬化性組成物を硬化させる役割を果たす。光ラジカル重合開始剤(C)は、1種類のみを用いてもよいし、2種類以上を併用してもよい。
[1-3. Photoradical initiator (C)]
The curable composition contains a photoradical initiator (C). The photoradical polymerization initiator (C) plays a role of curing the curable composition using light irradiation (UV irradiation, etc.) as a trigger. Only one type of photoradical polymerization initiator (C) may be used, or two or more types may be used in combination.
 光ラジカル重合開始剤(C)の例としては、アセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-メチルアセトフェノン、3-ペンチルアセトフェノン、2,2-ジエトキシアセトフェノン、4-メトキシアセトフェン、3-ブロモアセトフェノン、4-アリルアセトフェノン、p-ジアセチルベンゼン、3-メトキシベンゾフェノン、4-メチルベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4-クロロ-4’-ベンジルベンゾフェノン、3-クロロキサントーン、3,9-ジクロロキサントーン、3-クロロ-8-ノニルキサントーン、ベンゾイル、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4-ジメチルアミノフェニル)ケトン、ベンジルメトキシケタール、2-クロロチオキサントーン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)ブタン-1-オン)が挙げられる。 Examples of the photoradical polymerization initiator (C) include acetophenone, propiophenone, benzophenone, xanthol, fluorein, benzaldehyde, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-methylacetophenone, and 3-pentyl. Acetophenone, 2,2-diethoxyacetophenone, 4-methoxyacetophenone, 3-bromoacetophenone, 4-allylacetophenone, p-diacetylbenzene, 3-methoxybenzophenone, 4-methylbenzophenone, 4-chlorobenzophenone, 4,4' -dimethoxybenzophenone, 4-chloro-4'-benzylbenzophenone, 3-chloroxanthone, 3,9-dichloroxanthone, 3-chloro-8-nonylxanthone, benzoyl, benzoin methyl ether, benzoin butyl ether, bis(4 -dimethylaminophenyl)ketone, benzylmethoxyketal, 2-chlorothioxanthone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4 -morpholinophenyl)-butanone-1,2-(dimethylamino)-2-(4-methylbenzyl)-1-(4-morpholinophenyl)butan-1-one).
 光ラジカル重合開始剤(C)のさらなる例としては、アシルホスフィンオキサイド系光重合開始剤も挙げられる。アシルホスフィンオキサイド系光重合開始剤は、UV照射時の深部硬化性に優れるため好ましい。アシルホスフィンオキサイド系光重合開始剤の例としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、ビス(2,6-ジメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-イソブチルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-イソブチルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-フェニルホスフィンオキサイドが挙げられる。これらの中では、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、およびビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイドが好ましい。 Further examples of the radical photopolymerization initiator (C) include acylphosphine oxide photopolymerization initiators. Acyl phosphine oxide photopolymerization initiators are preferable because they have excellent deep curing properties upon UV irradiation. Examples of acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,6-dimethoxy benzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,6-dimethylbenzoyl)-phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-isobutylphosphine oxide, bis(2,6-dimethylbenzoyl)-isobutylphosphine oxide, -dimethoxybenzoyl)-isobutylphosphine oxide and bis(2,6-dimethoxybenzoyl)-phenylphosphine oxide. Among these are 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, and bis(2,6-dimethoxybenzoyl)-2,4, 4-trimethyl-pentylphosphine oxide is preferred.
 上述した光ラジカル重合開始剤(C)の中でも、反応性が高いことから、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドが好ましい。 Among the photoradical polymerization initiators (C) mentioned above, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2, 2-dimethoxy-1,2-diphenylethan-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide are preferred.
 光ラジカル開始剤(C)の配合量は、(メタ)アクリル系重合体(A)およびエポキシ化合物および/またはオキセタン化合物(B)の合計重量を100重量部として、0.01重量部~5重量部が好ましく、深部硬化性と硬化物の光透過性を両立させる観点から、0.05重量部~1重量部がより好ましい。 The compounding amount of the photoradical initiator (C) is 0.01 parts by weight to 5 parts by weight, based on 100 parts by weight of the total weight of the (meth)acrylic polymer (A) and the epoxy compound and/or oxetane compound (B). 1 part by weight, and more preferably 0.05 part by weight to 1 part by weight from the viewpoint of achieving both deep curability and light transmittance of the cured product.
 〔1-4.エポキシ硬化剤(D)〕
 前記硬化性組成物は、エポキシ硬化剤(D)を含有している。エポキシ硬化剤(D)は、従来公知のものを広く使用できる。エポキシ硬化剤(D)の例としては、アミン系硬化剤、イミダゾール系硬化剤、酸無水物系硬化剤、光カチオン重合開始剤が挙げられる。エポキシ硬化剤(D)は、1種類のみを用いてもよいし、2種類以上を併用してもよい。
[1-4. Epoxy curing agent (D)]
The curable composition contains an epoxy curing agent (D). As the epoxy curing agent (D), a wide variety of conventionally known ones can be used. Examples of the epoxy curing agent (D) include amine curing agents, imidazole curing agents, acid anhydride curing agents, and photocationic polymerization initiators. Only one type of epoxy curing agent (D) may be used, or two or more types may be used in combination.
 アミン系硬化剤としてはアミン化合物を使用でき、アミン化合物の例としては、脂肪族アミン(ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、ジエチルアミノプロピルアミン、ヘキサメチレンジアミン、メチルペンタメチレンジアミン、トリメチルヘキサメチレンジアミン、グアニジン、オレイルアミンなど);脂環族アミン(メンセンジアミン、イソホロンジアミン、ノルボルナンジアミン、ピペリジン、N,N’-ジメチルピペラジン、N-アミノエチルピペラジン、1,2-ジアミノシクロヘキサン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、ポリシクロヘキシルポリアミン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)など);エーテル結合を有するアミン(3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン(ATU)、モルホリン、N-メチルモルホリン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン、ポリオキシエチレンジアミンなど);水酸基含有アミン(ジエタノールアミン、トリエタノールアミンなど);芳香族アミン(トリス-2,4,6-ジメチルアミノメチルフェノールなど);アミノシラン(γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(2-(2-アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニルアミノメチルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミンなど;ケチミン型シラン(N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミンなど)が挙げられる。 Amine compounds can be used as the amine curing agent, and examples of amine compounds include aliphatic amines (diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, diethylaminopropylamine, hexamethylenediamine, methylpentamethylenediamine, trimethylhexamine). methylenediamine, guanidine, oleylamine, etc.); alicyclic amines (mensendiamine, isophoronediamine, norbornanediamine, piperidine, N,N'-dimethylpiperazine, N-aminoethylpiperazine, 1,2-diaminocyclohexane, bis(4 -amino-3-methylcyclohexyl)methane, bis(4-aminocyclohexyl)methane, polycyclohexylpolyamine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), etc.); amines having an ether bond ( 3,9-bis(3-aminopropyl)-2,4,8,10-tetraoxaspiro[5,5]undecane (ATU), morpholine, N-methylmorpholine, polyoxypropylene diamine, polyoxypropylene triamine, Polyoxyethylenediamine, etc.); Hydroxyl-containing amines (diethanolamine, triethanolamine, etc.); Aromatic amines (tris-2,4,6-dimethylaminomethylphenol, etc.); Aminosilanes (γ-aminopropyltrimethoxysilane, γ-amino Propyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-(2- Aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)aminopropyltriethoxysilane, γ-(2-aminoethyl)aminopropylmethyldiethoxysilane, γ-(2-aminoethyl)aminopropyltriiso Propoxysilane, γ-(2-(2-aminoethyl)aminoethyl)aminopropyltrimethoxysilane, γ-(6-aminohexyl)aminopropyltrimethoxysilane, 3-(N-ethylamino)-2-methylpropyl Trimethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, N -Phenyl-γ-aminopropyltrimethoxysilane, N-phenylaminomethyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane, N-(3- triethoxysilylpropyl)-4,5-dihydroimidazole, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane Methoxysilane, N,N'-bis[3-(trimethoxysilyl)propyl]ethylenediamine, etc.; Ketimine-type silane (N-(1,3-dimethylbutylidene)-3-(triethoxysilyl)-1-propanamine) etc.).
 イミダゾール系硬化剤の例としては、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが挙げられる。エポキシ化合物と上述したイミダゾール化合物との付加体も、イミダゾール系硬化剤の例である。 Examples of imidazole curing agents include 2-phenylimidazole, 2-ethyl-4(5)-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2- Phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')] -ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl -4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. An adduct of an epoxy compound and the above-mentioned imidazole compound is also an example of an imidazole curing agent.
 酸無水物系硬化剤の例としては、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、ドデシル無水コハク酸が挙げられる。 Examples of acid anhydride curing agents include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and dodecyl. Examples include succinic anhydride.
 光カチオン開始剤の例としては、スルホニウム塩、ヨードニウム塩、ジアゾニウム塩、アンモニウム塩、ピリジニウム塩、ホスニウム塩、オキソニウム塩、キノリニウム塩などのオニウム塩系光酸発生剤、スルホン酸誘導体、ジアゾメタン類、カルボン酸エステル類、鉄アレーン錯体等が挙げられる。光カチオン開始剤のより具体的な例については、特開2012-144693公報の段落〔0074〕~〔0079〕に記載のものが挙げられる。 Examples of photocationic initiators include onium salt-based photoacid generators such as sulfonium salts, iodonium salts, diazonium salts, ammonium salts, pyridinium salts, phosnium salts, oxonium salts, and quinolinium salts, sulfonic acid derivatives, diazomethanes, and carboxylic acid generators. Examples include acid esters and iron arene complexes. More specific examples of photocationic initiators include those described in paragraphs [0074] to [0079] of JP-A No. 2012-144693.
 エポキシ硬化剤(D)のさらなる例としては、ポリアミドアミン類(ダイマー酸とポリアミン(ジエチレントリアミン、トリエチレンテトラミンなど)とを反応させて得られるポリアミド、ダイマー酸以外のポリカルボン酸とポリアミンを反応させて得られるポリアミドなど);ジシアンジアミド;変性アミン(アミンにエポキシ化合物を反応させて得られるエポキシ変性アミン、アミンにホルマリンまたはフェノール化合物を反応させて得られるマンニッヒ変性アミン、マイケル付加変性アミン、ケチミンなど)が挙げられる。 Further examples of the epoxy curing agent (D) include polyamide amines (polyamides obtained by reacting dimer acid with polyamines (diethylenetriamine, triethylenetetramine, etc.), and polyamides obtained by reacting polycarboxylic acids other than dimer acid with polyamines). Dicyandiamide; Modified amines (epoxy-modified amines obtained by reacting amines with epoxy compounds, Mannich-modified amines obtained by reacting amines with formalin or phenol compounds, Michael addition-modified amines, ketimine, etc.) Can be mentioned.
 エポキシ化合物および/またはオキセタン化合物(B)の硬化性の観点から、エポキシ硬化剤(D)としては、アミン系硬化剤が好ましい。さらに、硬化性組成物の貯蔵安定性の観点も考慮すると、エポキシ硬化剤(D)としては、三級アミン化合物が好ましい。 From the viewpoint of curability of the epoxy compound and/or oxetane compound (B), an amine curing agent is preferable as the epoxy curing agent (D). Furthermore, considering the storage stability of the curable composition, a tertiary amine compound is preferable as the epoxy curing agent (D).
 エポキシ硬化剤(D)の配合量は、エポキシ化合物および/またはオキセタン化合物(B)の重量を100重量部として、1重量部から200重量部が好ましく、5重量部から100重量部がより好ましい。エポキシ硬化剤(D)の配合量が上記の範囲であれば、硬化性組成物の硬化性を高め、硬化物からの成分溶出性を低減できる。 The blending amount of the epoxy curing agent (D) is preferably 1 to 200 parts by weight, more preferably 5 to 100 parts by weight, based on 100 parts by weight of the epoxy compound and/or oxetane compound (B). When the amount of the epoxy curing agent (D) is within the above range, the curability of the curable composition can be improved and the component elution from the cured product can be reduced.
 また、前記硬化性組成物において、エポキシ化合物および/またはオキセタン化合物(B)ならびにエポキシ硬化剤(D)として、両者の混合物を使用してもよい。このような混合物としては、例えば、紫外線硬化性エポキシ樹脂(TB3114、スリーボンド社製)を使用することができる。 Furthermore, in the curable composition, a mixture of the epoxy compound and/or oxetane compound (B) and the epoxy curing agent (D) may be used. As such a mixture, for example, an ultraviolet curable epoxy resin (TB3114, manufactured by ThreeBond) can be used.
 〔1-5.感光性樹脂(F)〕
 前記硬化性組成物は、感光性樹脂(F)を含んでいてもよい。硬化性組成物が感光性樹脂(F)を含む場合、ソルダーレジストとしてプリント配線基板上に塗工でき、硬化物によってコーティングされたプリント配線基板を得ることができる。
[1-5. Photosensitive resin (F)]
The curable composition may contain a photosensitive resin (F). When the curable composition contains the photosensitive resin (F), it can be applied as a solder resist onto a printed wiring board, and a printed wiring board coated with the cured product can be obtained.
 感光性樹脂(F)としては特に限定されないが、例えば、カルボキシル基を含有している感光性樹脂、またはフェノール性水酸基を含有している感光性樹脂等を使用することができる。このような感光性樹脂は、アルカリ可溶性樹脂と称することもできる。現像性に優れる観点から、カルボキシル基を含有している感光性樹脂が好ましい。また、感光性の観点から、カルボキシル基の他に、分子内にエチレン性不飽和基を有していてもよい。カルボキシル基を含有している感光性樹脂としてより具体的には、例えば、遊離のカルボキシル基を含有し、感光性の不飽和二重結合を1個以上有する樹脂が挙げられる。カルボキシル基含有感光性樹脂として、例えば、多塩基酸変性エポキシ(メタ)アクリレート樹脂等の多塩基酸変性ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂を挙げることができる。多塩基酸変性ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂は、1分子中にエポキシ基を2個以上有する多官能エポキシ樹脂のエポキシ基の少なくとも一部に、ラジカル重合性不飽和モノカルボン酸を反応させることにより、ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂を得て、該樹脂に生成した水酸基に多塩基酸および/または多塩基酸無水物を反応させて得られる。 The photosensitive resin (F) is not particularly limited, but for example, a photosensitive resin containing a carboxyl group or a photosensitive resin containing a phenolic hydroxyl group can be used. Such photosensitive resins can also be referred to as alkali-soluble resins. From the viewpoint of excellent developability, photosensitive resins containing carboxyl groups are preferred. Further, from the viewpoint of photosensitivity, the molecule may have an ethylenically unsaturated group in addition to the carboxyl group. More specifically, examples of the photosensitive resin containing a carboxyl group include a resin containing a free carboxyl group and having one or more photosensitive unsaturated double bonds. Examples of carboxyl group-containing photosensitive resins include polybasic acid-modified radically polymerizable unsaturated monocarboxylated epoxy resins such as polybasic acid-modified epoxy (meth)acrylate resins. A polybasic acid-modified radically polymerizable unsaturated monocarboxylic oxidized epoxy resin is produced by reacting a radically polymerizable unsaturated monocarboxylic acid with at least a portion of the epoxy groups of a polyfunctional epoxy resin having two or more epoxy groups in one molecule. By doing so, a radically polymerizable unsaturated monocarboxylated epoxy resin is obtained, and the hydroxyl groups generated in the resin are reacted with a polybasic acid and/or a polybasic acid anhydride.
 多官能エポキシ樹脂は、2官能以上のエポキシ樹脂であれば、化学構造は特に限定されない。多官能エポキシ樹脂のエポキシ当量は特に限定されないが、その上限値は、2000が好ましく、1500がより好ましく、1000がさらに好ましく、500が特に好ましい。一方で、エポキシ当量の下限値は、100が好ましく、200が特に好ましい。多官能エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、シリコーン変性エポキシ樹脂等のゴム変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂等のフェノールノボラック型エポキシ樹脂、о-クレゾールノボラック型等のクレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、ビスフェノール変性ノボラック型エポキシ樹脂、多官能変性ノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物型エポキシ樹脂等を挙げることができる。また、これらのエポキシ樹脂にBr、Cl等のハロゲン原子を導入したエポキシ樹脂を使用してもよい。これらは、単独で使用してもよく、2種以上を併用してもよい。 The chemical structure of the polyfunctional epoxy resin is not particularly limited as long as it is a bifunctional or more functional epoxy resin. The epoxy equivalent of the polyfunctional epoxy resin is not particularly limited, but its upper limit is preferably 2,000, more preferably 1,500, even more preferably 1,000, and particularly preferably 500. On the other hand, the lower limit of the epoxy equivalent is preferably 100, particularly preferably 200. Examples of polyfunctional epoxy resins include biphenyl-type epoxy resins, naphthalene-type epoxy resins, dicyclopentadiene-type epoxy resins, rubber-modified epoxy resins such as silicone-modified epoxy resins, ε-caprolactone-modified epoxy resins, bisphenol A-type epoxy resins, Phenol novolak type epoxy resins such as bisphenol F type epoxy resin and bisphenol AD type epoxy resin, cresol novolac type epoxy resin such as о-cresol novolak type, bisphenol A novolac type epoxy resin, cycloaliphatic epoxy resin, glycidyl ester type epoxy resin , glycidylamine type epoxy resin, heterocyclic epoxy resin, bisphenol modified novolac type epoxy resin, polyfunctional modified novolac type epoxy resin, condensate type epoxy resin of phenols and aromatic aldehyde having a phenolic hydroxyl group, etc. Can be done. Furthermore, epoxy resins obtained by introducing halogen atoms such as Br and Cl into these epoxy resins may also be used. These may be used alone or in combination of two or more.
 ラジカル重合性不飽和モノカルボン酸は、特に限定されず、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸、チグリン酸、アンゲリカ酸等を挙げることができる。これらのうち、入手容易性の点から、(メタ)アクリル酸が好ましい。これらは単独で使用してもよく、2種以上を併用してもよい。ラジカル重合性不飽和モノカルボン酸が、多官能エポキシ樹脂のエポキシ基と反応することで、エポキシ樹脂に感光性の不飽和二重結合が導入されて、エポキシ樹脂に感光性が付与される。 The radically polymerizable unsaturated monocarboxylic acid is not particularly limited, and examples thereof include (meth)acrylic acid, crotonic acid, cinnamic acid, tiglic acid, and angelic acid. Among these, (meth)acrylic acid is preferred from the viewpoint of easy availability. These may be used alone or in combination of two or more. When the radically polymerizable unsaturated monocarboxylic acid reacts with the epoxy group of the polyfunctional epoxy resin, a photosensitive unsaturated double bond is introduced into the epoxy resin, thereby imparting photosensitivity to the epoxy resin.
 多官能エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応方法は、特に限定されず、例えば、多官能エポキシ樹脂とラジカル重合性不飽和モノカルボン酸とを適当な希釈剤(例えば、不活性な有機溶剤)中で加熱する方法が挙げられる。 The reaction method of the polyfunctional epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is not particularly limited. An example of this method is heating in an organic solvent).
 多官能エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応によってラジカル重合性不飽和モノカルボン酸化エポキシ樹脂に生成した水酸基に、多塩基酸および/または多塩基酸無水物が反応することで、感光性の不飽和二重結合が導入された樹脂に、さらに遊離のカルボキシル基が導入される。これにより、樹脂にアルカリ現像性が付与される。多塩基酸、多塩基酸無水物は、特に限定されず、飽和、不飽和のいずれも使用することができる。多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、クエン酸、フタル酸、フタル酸誘導体(例えば、テトラヒドロフタル酸、3-メチルテトラヒドロフタル酸、4-メチルテトラヒドロフタル酸、3-エチルテトラヒドロフタル酸、4-エチルテトラヒドロフタル酸、ヘキサヒドロフタル酸、3-メチルヘキサヒドロフタル酸、4-メチルヘキサヒドロフタル酸、3-エチルヘキサヒドロフタル酸、4-エチルヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、メチルヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸)、トリメリット酸、ピロメリット酸およびジグリコール酸等が挙げられる。また、多塩基酸無水物としては、上記した多塩基酸の無水物が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。 When the polybasic acid and/or polybasic acid anhydride reacts with the hydroxyl group generated in the radically polymerizable unsaturated monocarboxylated epoxy resin by the reaction between the polyfunctional epoxy resin and the radically polymerizable unsaturated monocarboxylic acid, A free carboxyl group is further introduced into the resin into which the photosensitive unsaturated double bond has been introduced. This imparts alkaline developability to the resin. The polybasic acid and polybasic acid anhydride are not particularly limited, and both saturated and unsaturated types can be used. Examples of polybasic acids include succinic acid, maleic acid, adipic acid, citric acid, phthalic acid, and phthalic acid derivatives (e.g., tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methyltetrahydrophthalic acid, 3-ethyl Tetrahydrophthalic acid, 4-ethyltetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 3-ethylhexahydrophthalic acid, 4-ethylhexahydrophthalic acid, methyltetrahydrophthalic acid Examples include phthalic acid, methylhexahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid), trimellitic acid, pyromellitic acid, and diglycolic acid. Further, examples of the polybasic acid anhydride include anhydrides of the above-mentioned polybasic acids. These may be used alone or in combination of two or more.
 ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂と多塩基酸および/または多塩基酸無水物との反応方法は、特に限定されず、例えば、ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂と多塩基酸および/または多塩基酸無水物とを適当な希釈剤(例えば、不活性な有機溶剤)中で加熱する方法が挙げられる。 The method for reacting the radically polymerizable unsaturated monocarboxylated epoxy resin with the polybasic acid and/or polybasic acid anhydride is not particularly limited. A method of heating the mixture and/or polybasic acid anhydride in a suitable diluent (for example, an inert organic solvent) can be mentioned.
 必要に応じて、上記多塩基酸変性ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂のカルボキシル基の一部に、さらに、1つ以上のラジカル重合性不飽和基とエポキシ基とを有する化合物(例えば、グリシジル化合物)を反応させて、樹脂の側鎖にラジカル重合性不飽和基をさらに導入することで、感光性をさらに向上させたカルボキシル基含有感光性樹脂を使用してもよい。 If necessary, a compound having one or more radically polymerizable unsaturated groups and an epoxy group (for example, A carboxyl group-containing photosensitive resin whose photosensitivity is further improved by further introducing a radically polymerizable unsaturated group into the side chain of the resin by reacting a glycidyl compound) may also be used.
 感光性をさらに向上させたカルボキシル基含有感光性樹脂は、多塩基酸変性ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂へのグリシジル化合物の付加反応によって、ラジカル重合性不飽和基が多塩基酸変性ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂骨格の側鎖に結合するため、光重合反応性、すなわち、光硬化性がより向上し、より優れた感光特性を発揮する。グリシジル化合物としては、例えば、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、ペンタエリスリトールトリアクリレートモノグリシジルエーテル、ペンタエリスリトールトリメタクリレートモノグリシジルエーテル等が挙げられる。これらは、単独で使用してもよく、2種以上を併用してもよい。 The carboxyl group-containing photosensitive resin with further improved photosensitivity is produced by adding a glycidyl compound to a polybasic acid-modified radically polymerizable unsaturated monocarboxylated epoxy resin, so that the radically polymerizable unsaturated group becomes a polybasic acid-modified radical. Since it is bonded to the side chain of the polymerizable unsaturated monocarboxylated epoxy resin skeleton, the photopolymerization reactivity, that is, the photocurability is further improved, and more excellent photosensitive characteristics are exhibited. Examples of the glycidyl compound include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, pentaerythritol triacrylate monoglycidyl ether, and pentaerythritol trimethacrylate monoglycidyl ether. These may be used alone or in combination of two or more.
 カルボキシル基含有感光性樹脂の酸価は、特に限定されないが、その下限値は、確実なアルカリ現像性を得る点から、30mgKOH/gが好ましく、40mgKOH/gが特に好ましい。一方で、カルボキシル基含有感光性樹脂の酸価の上限値は、アルカリ現像液による露光部(光硬化部)の溶解を防止する点から、200mgKOH/gが好ましく、光硬化物の耐湿性と絶縁信頼性の低下を確実に防止する点から、150mgKOH/gが特に好ましい。 The acid value of the carboxyl group-containing photosensitive resin is not particularly limited, but its lower limit is preferably 30 mgKOH/g, particularly preferably 40 mgKOH/g, from the viewpoint of obtaining reliable alkali developability. On the other hand, the upper limit of the acid value of the carboxyl group-containing photosensitive resin is preferably 200 mgKOH/g from the viewpoint of preventing dissolution of the exposed area (photocured area) by an alkaline developer, and improves the moisture resistance and insulation of the photocured product. From the viewpoint of reliably preventing a decrease in reliability, 150 mgKOH/g is particularly preferable.
 カルボキシル基含有感光性樹脂の質量平均分子量(Mw)は、特に限定されないが、その下限値は、光硬化物の強靭性および指触乾燥性の点から、6000が好ましく、7000がより好ましく、8000が特に好ましい。一方で、カルボキシル基含有感光性樹脂の質量平均分子量(Mw)の上限値は、アルカリ現像性の低下を確実に防止する点から、200000が好ましく、100000がより好ましく、50000が特に好ましい。なお、質量平均分子量(Mw)は、GPC測定により測定した分子量を意味する。 The mass average molecular weight (Mw) of the carboxyl group-containing photosensitive resin is not particularly limited, but the lower limit thereof is preferably 6,000, more preferably 7,000, and more preferably 8,000 from the viewpoint of toughness and dryness to the touch of the photocured product. is particularly preferred. On the other hand, the upper limit of the mass average molecular weight (Mw) of the carboxyl group-containing photosensitive resin is preferably 200,000, more preferably 100,000, and particularly preferably 50,000 from the viewpoint of reliably preventing a decrease in alkali developability. In addition, the mass average molecular weight (Mw) means the molecular weight measured by GPC measurement.
 〔1-6.その他の添加剤〕
 本発明の一実施形態に係る硬化性組成物は、上述した(A)~(F)に加えて、目的に応じて種々の添加剤を含んでいてもよい。そのような添加剤としては、重合性のモノマーおよび/またはオリゴマー、充填剤、微小中空粒子、可塑剤、溶剤、チクソ性付与剤(垂れ防止剤)、酸化防止剤(老化防止剤)、相溶化剤、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、消泡剤、発泡剤、防蟻剤、防かび剤、紫外線吸収剤、光安定剤等が挙げられる。
[1-6. Other additives]
In addition to the above-mentioned (A) to (F), the curable composition according to one embodiment of the present invention may contain various additives depending on the purpose. Such additives include polymerizable monomers and/or oligomers, fillers, microhollow particles, plasticizers, solvents, thixotropic agents (anti-sagging agents), antioxidants (anti-aging agents), compatibilizers, etc. agent, hardening modifier, radical inhibitor, metal deactivator, ozone deterioration inhibitor, phosphorus peroxide decomposer, lubricant, pigment, antifoaming agent, foaming agent, termiticide, fungicide, ultraviolet rays Examples include absorbers and light stabilizers.
 前記添加剤の具体例は、特開2006-274085号公報の〔0110〕~〔0124〕、特開2006-291073号公報の段落〔0134〕~〔0151〕、特開2007-308692号公報の段落〔0232〕~〔0235〕、国際公開第05/116134号の段落〔0089〕~〔0093〕、特公平4-69659号公報、特公平7-108928号公報、特開昭63-254149号公報、特開昭64-22904号公報、特開2001-72854号公報等に記載されている。 Specific examples of the additives include paragraphs [0110] to [0124] of JP-A No. 2006-274085, paragraphs [0134] to [0151] of JP-A No. 2006-291073, and paragraphs of JP-A No. 2007-308692. [0232] to [0235], paragraphs [0089] to [0093] of International Publication No. 05/116134, Japanese Patent Publication No. 4-69659, Japanese Patent Publication No. 7-108928, Japanese Patent Publication No. 63-254149, It is described in JP-A-64-22904, JP-A-2001-72854, etc.
 (反応性希釈剤)
 本発明の一実施形態に係る硬化性組成物は、必要に応じてさらに反応性希釈剤を含んでいてもよい。硬化性組成物を硬化させる方法として光硬化を行う場合、当該硬化性組成物が反応性希釈剤を含むことにより、光硬化を十分にして、耐酸性、耐アルカリ性などを有する硬化物を得ることができる。
(Reactive diluent)
The curable composition according to one embodiment of the present invention may further contain a reactive diluent, if necessary. When photocuring is performed as a method of curing a curable composition, the curable composition contains a reactive diluent to ensure sufficient photocuring and obtain a cured product having acid resistance, alkali resistance, etc. Can be done.
 反応性希釈剤としては特に限定されないが、光重合性モノマーであり、1分子当たり少なくとも1つ、好ましくは1分子当たり少なくとも2つの重合性二重結合を有する化合物を使用することができる。前記化合物としては、例えば、単官能の(メタ)アクリレートモノマー、2官能の(メタ)アクリレートモノマー、3官能以上の(メタ)アクリレートモノマー等が挙げられる。 Although the reactive diluent is not particularly limited, it is possible to use a compound that is a photopolymerizable monomer and has at least one polymerizable double bond per molecule, preferably at least two polymerizable double bonds per molecule. Examples of the compound include monofunctional (meth)acrylate monomers, bifunctional (meth)acrylate monomers, trifunctional or more functional (meth)acrylate monomers, and the like.
 (シリカ)
 本発明の一実施形態に係る硬化性組成物は、必要に応じてさらにシリカを含んでもよい。シリカを含むことにより、アルカリ現像性、塗膜外観等の基本諸特性を損なうことなく、はんだ耐熱性と熱衝撃耐性とに優れた硬化物を得ることができる。シリカとしては例えば、主表面および端面を持つ鱗片状シリカおよび/または球状(例えば、真球状)シリカを使用することができる。ここで、表面および端面を持つ鱗片状シリカは、大粒子のシリカを粉砕して形成した不定形シリカ粉末とは異なり、薄片状のシリカである。また、複数の鱗片状シリカが、相互に連結された、薄膜状の連結集合体となっている。すなわち、一次粒子である鱗片状シリカが、複数連結されて、薄膜状の連結集合体が形成されている。一方、球状シリカは、大粒子のシリカを粉砕して形成した不定形シリカ粉末とは異なり、外観形状が球状(例えば、真球状)となっている。球状シリカは、例えば、一次粒子の集合体である。なお、当該シリカは疎水化処理等の表面処理はされていない。したがって、下記のマット化剤として使用できるシリカとは異なる。
(silica)
The curable composition according to one embodiment of the present invention may further contain silica if necessary. By containing silica, a cured product with excellent solder heat resistance and thermal shock resistance can be obtained without impairing basic properties such as alkali developability and coating appearance. As the silica, for example, scaly silica and/or spherical (for example, true spherical) silica having a main surface and end surfaces can be used. Here, the scaly silica having a surface and an end face is a flaky silica, unlike an amorphous silica powder formed by crushing large particles of silica. Further, a plurality of flaky silica particles are interconnected to form a thin film-like connected aggregate. That is, a plurality of flaky silica particles, which are primary particles, are connected to form a thin film-like connected aggregate. On the other hand, spherical silica has a spherical external shape (for example, a true spherical shape), unlike amorphous silica powder formed by pulverizing large particles of silica. Spherical silica is, for example, an aggregate of primary particles. Note that the silica has not been subjected to surface treatment such as hydrophobic treatment. Therefore, it is different from silica, which can be used as a matting agent described below.
 (無機フィラー)
 本発明の一実施形態に係る硬化性組成物は、さらに無機フィラーを含んでもよい。無機フィラーを含むことにより、はんだ耐熱性を向上させることができる。無機フィラーとしては特に限定されないが、例えば、タルク、硫酸バリウム、アルミナ、水酸化アルミニウム、マイカ、主表面および端面を持つ鱗片状シリカおよび球状シリカ以外のシリカ等を挙げることができる。
(Inorganic filler)
The curable composition according to one embodiment of the present invention may further contain an inorganic filler. By including an inorganic filler, solder heat resistance can be improved. Examples of the inorganic filler include, but are not limited to, talc, barium sulfate, alumina, aluminum hydroxide, mica, silica other than flaky silica and spherical silica having a main surface and end faces, and the like.
 (マット化剤)
 本発明の一実施形態に係る硬化性組成物は、さらにマット化剤を含んでもよい。マット化剤を含むことにより、アルカリ現像性、塗膜外観等の基本諸特性を損なうことなく、光沢性を低減させつつ、はんだ耐熱性と熱衝撃耐性とに優れた硬化物を得ることができる。また、マット化剤を含むことにより、塗膜の表面形状が凸凹となって粗面化(マット化)されることで、光沢度が低下し、艶消し外観を得ることができる。
(matting agent)
The curable composition according to one embodiment of the present invention may further include a matting agent. By including a matting agent, it is possible to obtain a cured product with excellent soldering heat resistance and thermal shock resistance while reducing glossiness without impairing basic properties such as alkali developability and coating appearance. . Further, by including the matting agent, the surface shape of the coating film becomes uneven and roughened (mattized), thereby reducing glossiness and providing a matte appearance.
 マット化剤には、無機系マット化剤と有機系マット化剤がある。無機系マット化剤としては、疎水性化合物等による疎水化処理等の表面処理がされている球状シリカ;表面が疎水性化合物等による疎水化処理がされていない親水性の多孔性シリカ;酸化マグネシウム、酸化カルシウム、酸化亜鉛等の球状の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の球状の金属炭酸塩;球状の炭化珪素;クレー粒子等を挙げることができる。有機系マット化剤としては、例えば、ウレタン樹脂、フェノール樹脂、シリコン樹脂、フッ素樹脂、ポリアミド、ポリプロピレン等のポリオレフィン等を挙げることができる。 Matting agents include inorganic matting agents and organic matting agents. Examples of inorganic matting agents include: spherical silica whose surface has been treated with a hydrophobic compound, etc.; hydrophilic porous silica whose surface has not been subjected to a hydrophobic treatment with a hydrophobic compound, etc.; magnesium oxide , spherical metal oxides such as calcium oxide and zinc oxide; spherical metal carbonates such as calcium carbonate and magnesium carbonate; spherical silicon carbide; and clay particles. Examples of the organic matting agent include polyolefins such as urethane resins, phenol resins, silicone resins, fluororesins, polyamides, and polypropylene.
 (熱硬化性成分)
 本発明の一実施形態に係る硬化性組成物は、熱硬化性成分を含んでいてもよい。熱硬化性成分としては特に限定されないが、アミン樹脂、ブロックイソシアネート化合物、シクロカーボネート化合物、多官能エポキシ化合物、多官能オキセタン化合物、エピスルフィド樹脂、メラミン誘導体などが挙げられる。熱硬化性成分は、1種を単独用いてもよく、2種以上を組み合わせて用いてもよい。
(thermosetting component)
The curable composition according to one embodiment of the present invention may contain a thermosetting component. The thermosetting component is not particularly limited, but includes amine resins, blocked isocyanate compounds, cyclocarbonate compounds, polyfunctional epoxy compounds, polyfunctional oxetane compounds, episulfide resins, melamine derivatives, and the like. The thermosetting components may be used alone or in combination of two or more.
 (有機酸)
 本発明の一実施形態に係る硬化性組成物は、有機酸を含んでいてもよい。有機酸を含むことにより、乾燥塗膜の接触角を一定の値に調整しやすいため、溶解した感光性樹脂組成物中に含まれる成分が現像液底部に沈殿しなくなり、その結果、現像工程における現像液の汚染や沈殿物による現像装置の目詰まりを抑制することができる点で有効である。有機酸としては特に限定されないが、カルボン酸類、亜リン酸のモノまたはジエステル類、リン酸のモノまたはジエステル類等が挙げられる。有機酸は芳香環を有さないことが好ましい。芳香環を有さない有機酸を配合することにより、有機酸自体の光吸収性が抑制され、相対的に感光成分の光反応性が向上し、優れた解像性を得ることができる。
(organic acid)
The curable composition according to one embodiment of the present invention may contain an organic acid. By containing an organic acid, the contact angle of the dried coating film can be easily adjusted to a constant value, so the components contained in the dissolved photosensitive resin composition will not precipitate at the bottom of the developer, and as a result, the This is effective in that it can suppress contamination of the developer and clogging of the developing device due to sediment. The organic acid is not particularly limited, but includes carboxylic acids, mono- or diesters of phosphorous acid, mono- or diesters of phosphoric acid, and the like. Preferably, the organic acid does not have an aromatic ring. By blending an organic acid that does not have an aromatic ring, the light absorption of the organic acid itself is suppressed, the photoreactivity of the photosensitive component is relatively improved, and excellent resolution can be obtained.
 (分散剤)
 本発明の一実施形態に係る硬化性組成物は、分散剤を含んでいてもよい。分散剤を含むことにより、硬化性組成物の分散性、沈殿性を改善することができる。分散剤としては、例えば、DISPERBYK-191(ビックケミー・ジャパン社製)が挙げられる。
(dispersant)
The curable composition according to one embodiment of the present invention may contain a dispersant. By including a dispersant, the dispersibility and settling properties of the curable composition can be improved. Examples of the dispersant include DISPERBYK-191 (manufactured by BYK Chemie Japan).
 (光重合禁止剤)
 本発明の一実施形態に係る硬化性組成物は、光重合禁止剤を含んでいてもよい。光重合禁止剤を添加することで、露光による硬化性組成物内部でおこるラジカル重合の内、重合禁止剤の種類およびその添加量に応じた一定量のラジカル重合を抑制できる。
(Photopolymerization inhibitor)
The curable composition according to one embodiment of the present invention may contain a photopolymerization inhibitor. By adding a photopolymerization inhibitor, a certain amount of radical polymerization that occurs inside the curable composition due to exposure to light can be suppressed depending on the type of polymerization inhibitor and the amount added.
 (熱硬化触媒)
 本発明の一実施形態に係る硬化性組成物は、熱硬化触媒を含んでいてもよい。熱硬化触媒としては、例えば、イミダゾール誘導体、アミン化合物、ヒドラジン化合物、リン化合物、S-トリアジン誘導体等が挙げられる。
(Thermosetting catalyst)
The curable composition according to one embodiment of the present invention may include a thermosetting catalyst. Examples of the thermosetting catalyst include imidazole derivatives, amine compounds, hydrazine compounds, phosphorus compounds, and S-triazine derivatives.
 (熱重合禁止剤)
 本発明の一実施形態に係る硬化性組成物は、熱重合禁止剤を含んでいてもよい。熱重合禁止剤を含むことにより、硬化性組成物の熱的な重合または経時的な重合を防止することができる。
(Thermal polymerization inhibitor)
The curable composition according to one embodiment of the present invention may contain a thermal polymerization inhibitor. By including a thermal polymerization inhibitor, thermal polymerization or polymerization over time of the curable composition can be prevented.
 (連鎖移動剤)
 本発明の一実施形態に係る硬化性組成物は、連鎖移動剤を含んでいてもよい。連鎖移動剤を含むことにより、硬化性組成物の感度を向上させることができる。連鎖移動剤としては公知のものを使用することができ、例えば、Nフェニルグリシン類、フェノキシ酢酸類、チオフェノキシ酢酸類、メルカプトチアゾール等が挙げられる。
(Chain transfer agent)
The curable composition according to one embodiment of the present invention may contain a chain transfer agent. By including a chain transfer agent, the sensitivity of the curable composition can be improved. Known chain transfer agents can be used, such as N-phenylglycines, phenoxyacetic acids, thiophenoxyacetic acids, mercaptothiazole, and the like.
 (有機溶剤)
 本発明の一実施形態に係る硬化性組成物は、有機溶剤を含んでいてもよい。有機溶剤としては特に限定されないが、ケトン類、芳香族炭化水素類、グリコールエーテル類、エステル類、脂肪族炭化水素類、石油系溶剤等が挙げられる。これらの溶剤は、単独用いてもよく、二種類以上を組み合わせて用いてもよい。
(Organic solvent)
The curable composition according to one embodiment of the present invention may contain an organic solvent. Examples of the organic solvent include, but are not particularly limited to, ketones, aromatic hydrocarbons, glycol ethers, esters, aliphatic hydrocarbons, petroleum solvents, and the like. These solvents may be used alone or in combination of two or more.
 (硬化剤)
 本発明の一実施形態に係る硬化性組成物は、硬化剤を含んでいてもよい。硬化剤としては、フェノール樹脂、ポリカルボン酸およびその酸無水物、シアネートエステル樹脂、活性エステル樹脂、マレイミド化合物、脂環式オレフィン重合体等が挙げられる。硬化剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(hardening agent)
The curable composition according to one embodiment of the present invention may contain a curing agent. Examples of the curing agent include phenol resins, polycarboxylic acids and their acid anhydrides, cyanate ester resins, active ester resins, maleimide compounds, alicyclic olefin polymers, and the like. One type of curing agent may be used alone, or two or more types may be used in combination.
 (着色剤)
 本発明の一実施形態に係る硬化性組成物は、着色剤を含んでいてもよい。着色剤としては特に限定されないが、顔料、染料、色素などが挙げられる。
(colorant)
The curable composition according to one embodiment of the present invention may contain a colorant. Colorants include, but are not limited to, pigments, dyes, pigments, and the like.
 (光重合性モノマー)
 本発明の一実施形態に係る硬化性組成物は、光重合性モノマーを含んでいてもよい。光重合性モノマーは、エチレン性不飽和二重結合を有するモノマーであってもよい。光重合性モノマーとしては、例えば、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
(Photopolymerizable monomer)
The curable composition according to one embodiment of the present invention may contain a photopolymerizable monomer. The photopolymerizable monomer may be a monomer having an ethylenically unsaturated double bond. Examples of the photopolymerizable monomer include polyester (meth)acrylate, polyether (meth)acrylate, urethane (meth)acrylate, carbonate (meth)acrylate, and epoxy (meth)acrylate.
 (熱硬化性樹脂)
 本発明の一実施形態に係る硬化性組成物は、熱硬化性樹脂を含んでいてもよい。熱硬化性樹脂としては特に限定されないが、例えば、アミノ樹脂、マレイミド化合物、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、エピスルフィド樹脂等が挙げられる。
(thermosetting resin)
The curable composition according to one embodiment of the present invention may contain a thermosetting resin. Thermosetting resins are not particularly limited, but include, for example, amino resins, maleimide compounds, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, episulfide resins, and the like.
 (増感剤)
 本発明の一実施形態に係る硬化性組成物は、増感剤を含んでいてもよい。増感剤はアントラセン化合物であってもよく、市販品を使用することができる。市販品としては、例えば、川崎化成工業株式会社製のUVS-107(分子量 410)、UVS-581(分子量 434)等が挙げられる。
(sensitizer)
The curable composition according to one embodiment of the present invention may contain a sensitizer. The sensitizer may be an anthracene compound, and commercially available products can be used. Commercially available products include, for example, UVS-107 (molecular weight 410) and UVS-581 (molecular weight 434) manufactured by Kawasaki Chemical Industries, Ltd.
 (シランカップリング剤)
 本発明の一実施形態に係る硬化性組成物は、シランカップリング剤を含んでいてもよい。シランカップリング剤としては例えば、イミダゾール環を有するシランカップリング剤を使用することができる。
(Silane coupling agent)
The curable composition according to one embodiment of the present invention may contain a silane coupling agent. As the silane coupling agent, for example, a silane coupling agent having an imidazole ring can be used.
 (エラストマー)
 本発明の一実施形態に係る硬化性組成物は、エラストマーを含んでいてもよい。エラストマーを含むことにより、弾性率を低くすることができるので、硬化時の応力を緩和し、クラック耐性をより向上させることができる。エラストマーとしては特に限定されないが、例えば、ポリエステル系エラストマー、スチレン系エラストマー、ポリウレタン系エラストマー、ポリエステルウレタン系エラストマー、ポリアミド系エラストマー、ポリエステルアミド系エラストマー、アクリル系エラストマー、オレフィン系エラストマー、シリコーン系エラストマー等が挙げられる。また、種々の骨格を有するエポキシ樹脂の一部または全部のエポキシ基を両末端カルボン酸変性型ブタジエン-アクリロニトリルゴムで変性した樹脂なども使用することができる。さらにはエポキシ含有ポリブタジエン系エラストマー、アクリル含有ポリブタジエン系エラストマー、水酸基含有ポリブタジエン系エラストマー、水酸基含有イソプレン系エラストマー、ブロック共重合体等も使用することができる。
(elastomer)
The curable composition according to one embodiment of the present invention may include an elastomer. By including an elastomer, the elastic modulus can be lowered, so stress during curing can be relaxed and crack resistance can be further improved. The elastomer is not particularly limited, but examples include polyester elastomer, styrene elastomer, polyurethane elastomer, polyester urethane elastomer, polyamide elastomer, polyesteramide elastomer, acrylic elastomer, olefin elastomer, silicone elastomer, etc. It will be done. Furthermore, resins in which part or all of the epoxy groups of epoxy resins having various skeletons are modified with carboxylic acid-modified butadiene-acrylonitrile rubber at both ends can also be used. Furthermore, epoxy-containing polybutadiene elastomers, acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers, block copolymers, etc. can also be used.
 (光重合開始助剤)
 本発明の一実施形態に係る硬化性組成物は、光ラジカル開始剤(C)と併用して光重合開始助剤を含んでいてもよい。光重合開始助剤としては特に限定されないが、例えば、ベンゾイン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、およびキサントン化合物等が挙げられる。
(Photopolymerization initiation aid)
The curable composition according to one embodiment of the present invention may contain a photopolymerization initiation aid in combination with the photoradical initiator (C). Although the photopolymerization initiation aid is not particularly limited, examples thereof include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds.
 〔2.硬化物を備えた物品〕
 本発明の一実施形態に係る硬化物を備えた物品としては、特に限定されないが、例えば、硬化性組成物を基材等に塗工し、その後、硬化させて得られる物品であってもよい。このような物品としては、例えば、ソルダーレジストによってコーティングされたプリント配線基板が挙げられる。また、硬化性組成物を基材等に塗工する手段としては公知の方法を使用でき、例えば、スクリーン印刷、バーコータ、スプレー塗工、アプリケータ、ブレードコータ、ナイフコータ、ロールコータ、グラビアコータ等を挙げることができる。
[2. Article with cured product]
The article including the cured product according to an embodiment of the present invention is not particularly limited, but may be an article obtained by, for example, coating a curable composition on a base material, etc., and then curing it. . Examples of such articles include printed wiring boards coated with solder resist. Additionally, known methods can be used to apply the curable composition to the substrate, such as screen printing, bar coater, spray coating, applicator, blade coater, knife coater, roll coater, gravure coater, etc. can be mentioned.
 〔3.用途〕
 本発明の一実施形態に係る硬化物は、電気絶縁性が良好であるので、電気・電子部品、レジスト材料などに好適に用いられる。しかし、これらの用途には限定されず、種々の用途で使用できる。
[3. Use]
Since the cured product according to one embodiment of the present invention has good electrical insulation, it can be suitably used for electrical/electronic parts, resist materials, and the like. However, it is not limited to these uses, and can be used in various other uses.
 電気・電子部品の例としては、電気絶縁材(電線・ケーブル用絶縁被覆材など)、シール材、接着剤、粘着剤、コンフォーマルコーティング剤、電気電子用ポッティング剤、パッキン、Oリング、ベルトが挙げられる。より具体的な例を挙げると、高電圧用厚膜抵抗器、ハイブリッドICの回路素子、HIC、電気絶縁部品、半導電部品、導電部品、モジュール、印刷回路、セラミック基板、ダイオード、トランジスタもしくはボンディングワイヤーのバッファー材、光通信用オプティカルファイバーなどのコーティング材、トランス高圧回路、プリント基板、可変抵抗部付き高電圧用トランス、電気絶縁部品、太陽電池(結晶性シリコン太陽電池、非結晶シリコン太陽電池、CI(G)S太陽電池、ペロブスカイト太陽電池、有機薄膜太陽電池、色素増感太陽電池、GaAs太陽電池など)、テレビ用フライバックトランスなどのポッティング材、重電部品、弱電部品、太陽電池の裏面封止材、電気・電子機器の回路や基板などのシーリング材が挙げられる。 Examples of electrical/electronic parts include electrical insulation materials (insulating coating materials for wires and cables, etc.), sealing materials, adhesives, pressure-sensitive adhesives, conformal coating agents, electrical and electronic potting agents, packing, O-rings, and belts. Can be mentioned. More specific examples include high voltage thick film resistors, hybrid IC circuit elements, HICs, electrical insulation parts, semiconducting parts, conductive parts, modules, printed circuits, ceramic substrates, diodes, transistors, and bonding wires. buffer materials, coating materials such as optical fibers for optical communication, transformer high voltage circuits, printed circuit boards, high voltage transformers with variable resistance parts, electrical insulation parts, solar cells (crystalline silicon solar cells, amorphous silicon solar cells, CI (G)S solar cells, perovskite solar cells, organic thin film solar cells, dye-sensitized solar cells, GaAs solar cells, etc.), potting materials for flyback transformers for TVs, heavy electrical parts, light electrical parts, back sealing of solar cells. Examples include sealing materials for circuits and boards of electrical and electronic equipment.
 レジスト材料の例としては、半導体および導体の周辺部材が挙げられる。より具体的な例としては、フォトマスク、フォトレジスト、半導体表面保護テープ、ダイシングテープ、ダイボンディングテープ、ダイボンディング材料、層間絶縁材料(ビルドアップ材料)、感光性ドライフィルムレジスト、液状感光性樹脂材料、インターポーター材料、パッケージ基板材料、ソルダーレジスト、半導体封止用樹脂、アンダーフィル材、サイドフィル材、プリント基板材料、これら材料の改質剤が挙げられる。 Examples of resist materials include peripheral members of semiconductors and conductors. More specific examples include photomasks, photoresists, semiconductor surface protection tapes, dicing tapes, die bonding tapes, die bonding materials, interlayer insulation materials (buildup materials), photosensitive dry film resists, and liquid photosensitive resin materials. , interporter materials, package substrate materials, solder resists, semiconductor sealing resins, underfill materials, side fill materials, printed circuit board materials, and modifiers for these materials.
 さらなる好適な用途の例としては、光(紫外線、可視光線、赤外線、X線、レーザーなど)を通過させる部品が挙げられる。例えば、ディスプレイ周辺部材、3D印刷用UVインクが挙げられる。より具体的な例としては、フラットパネルディスプレイおよびその封止材;液晶表示装置周辺材料(液晶ディスプレイ分野における導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、前面ガラスの保護フィルム、偏光子保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤、液晶用フィルムなど);カラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、前面ガラスの保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤;発光ダイオード表示装置に使用される発光素子のモールド材、発光ダイオード(LED)の封止材、前面ガラスの保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤;プラズマアドレス液晶(PALC)ディスプレイにおける導光板、プリズムシート、偏向板、位相差板視野角補正フィルム、偏光子保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤;有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤;有機TFT(有機薄膜トランジスタ)ディスプレイにおける保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤;フィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤;電子ペーパーにおける保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤;タッチパネル、携帯電話のディスプレイ、カーナビのディスプレイの保護フィルムまたは接着剤、パネルまたはフィルム間の接着剤または充填剤;上記の表示装置の周辺材料が挙げられる。 Examples of further suitable applications include components that allow light (ultraviolet, visible, infrared, X-ray, laser, etc.) to pass through. Examples include display peripheral members and UV ink for 3D printing. More specific examples include flat panel displays and their sealing materials; peripheral materials for liquid crystal display devices (light guide plates, prism sheets, polarizing plates, retardation plates, viewing angle correction films, front glass protective films in the liquid crystal display field) (polarizer protective film or adhesive, adhesive or filler between panels or films, liquid crystal film, etc.); encapsulant for color PDP (plasma display), antireflection film, optical correction film, front glass protective film or adhesives, adhesives or fillers between panels or films; molding materials for light-emitting elements used in light-emitting diode display devices, encapsulants for light-emitting diodes (LEDs), protective films or adhesives for front glass, panels or Adhesives or fillers between films; light guide plates, prism sheets, polarizing plates, retardation viewing angle correction films, polarizer protective films or adhesives in plasma addressed liquid crystal (PALC) displays; adhesives or fillers between panels or films; Filler; protective film or adhesive for front glass in organic EL (electroluminescent) displays, adhesive or filler between panels or films; protective film or adhesive in organic TFT (organic thin film transistor) displays, between panels or films Adhesives or fillers; various film substrates in field emission displays (FED), protective films or adhesives for front glass, adhesives or fillers between panels or films; protective films or adhesives in electronic paper, between panels or films adhesives or fillers; protective films or adhesives for touch panels, mobile phone displays, and car navigation displays; adhesives or fillers between panels or films; peripheral materials for the above-mentioned display devices.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.
 本発明の一実施形態は、以下の構成を含んでいてもよい。
<1>1分子当たり平均して0.8個以上の一般式(1)で表される基を分子の末端に有する(メタ)アクリル系重合体(A)と、エポキシ化合物および/またはオキセタン化合物(B)と、光ラジカル開始剤(C)と、エポキシ硬化剤(D)と、を含有する硬化性組成物を、硬化してなり、膜厚が200μm以下である硬化物。
-OC(O)C(R)=CH   (1)
 (式中、Rは、水素原子または炭素数1~20の有機基を表す。)
<2>前記硬化性組成物が、さらに感光性樹脂(F)を含有する、<1>に記載の硬化物。
<3>前記(メタ)アクリル系重合体(A)が、1分子当たり平均して0.8~1個の一般式(1)で表される基を分子の一方の末端に有する(メタ)アクリル系重合体である、<1>または<2>に記載の硬化物。
<4>前記エポキシ化合物および/またはオキセタン化合物(B)が芳香族エポキシ化合物である、<1>~<3>のいずれか1つに記載の硬化物。
<5>前記エポキシ硬化剤(D)が、アミン化合物である、<1>~<4>のいずれか1つに記載の硬化物。
<6><1>~<5>のいずれか1つに記載の硬化物を備えた、物品。
<7><1>~<5>のいずれか1つに記載の硬化物によってコーティングされた、プリント配線基板。
<8>1分子当たり平均して0.8個以上の一般式(1)で表される基を分子の末端に有する(メタ)アクリル系重合体(A)と、エポキシ化合物および/またはオキセタン化合物(B)と、光ラジカル開始剤(C)と、エポキシ硬化剤(D)と、を含有する硬化性組成物を、硬化する工程を有し、
 硬化して得られた硬化物の膜厚が200μm以下である、
 前記硬化物の内部応力を緩和する方法。
-OC(O)C(R)=CH   (1)
 (式中、Rは、水素原子または炭素数1~20の有機基を表す。)
One embodiment of the present invention may include the following configuration.
<1> A (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule, and an epoxy compound and/or an oxetane compound A cured product obtained by curing a curable composition containing (B), a photoradical initiator (C), and an epoxy curing agent (D), and having a film thickness of 200 μm or less.
-OC(O)C(R 1 )=CH 2 (1)
(In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
<2> The cured product according to <1>, wherein the curable composition further contains a photosensitive resin (F).
<3> The (meth)acrylic polymer (A) has an average of 0.8 to 1 group represented by the general formula (1) per molecule at one end of the molecule (meth) The cured product according to <1> or <2>, which is an acrylic polymer.
<4> The cured product according to any one of <1> to <3>, wherein the epoxy compound and/or oxetane compound (B) is an aromatic epoxy compound.
<5> The cured product according to any one of <1> to <4>, wherein the epoxy curing agent (D) is an amine compound.
<6> An article comprising the cured product according to any one of <1> to <5>.
<7> A printed wiring board coated with the cured product according to any one of <1> to <5>.
<8> A (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule, and an epoxy compound and/or an oxetane compound (B), a photoradical initiator (C), and an epoxy curing agent (D).
The film thickness of the cured product obtained by curing is 200 μm or less,
A method of relieving internal stress in the cured product.
-OC(O)C(R 1 )=CH 2 (1)
(In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
 以下に、本発明の具体的な実施例を示す。ただし、本発明は、下記実施例に限定されるものではない。 Specific examples of the present invention are shown below. However, the present invention is not limited to the following examples.
 〔合成例1:(メタ)アクリル系重合体(A-1)の合成〕
 (重合工程)
 100重量部のアクリル酸n-ブチルを用意し、脱酸素した。攪拌機付ステンレス製反応容器の内部を脱酸素し、0.42重量部の臭化第一銅、20重量部のアクリル酸n-ブチルを加え、加熱攪拌した。8.8重量部のアセトニトリル、1.8重量部のジエチル2,5-ジブロモアジペート(開始剤)を加えて混合した。混合液の温度を約80℃に調節した後、0.018重量部のペンタメチルジエチレントリアミンを加え、重合反応を開始させた。残る80重量部のアクリル酸n-ブチルを逐次加えて、重合反応を進めた。重合反応の途中で、適宜ペンタメチルジエチレントリアミンを追加で加え、重合速度を調節した。重合工程を通して使用したペンタメチルジエチレントリアミンの総量は、0.17重量部であった。重合工程においては、重合熱により系内が過熱されるのを防ぎ、系内温度は約80~約90℃に調節した。重合反応率が約95%以上となった時点で、反応容器の気相部に酸素-窒素混合ガスを導入した。系内温度を約80~約90℃に保ちながら、反応液を数時間加熱攪拌して、重合触媒と酸素とを接触させた。アセトニトリルおよび未反応のモノマーを減圧脱揮して除去し、(メタ)アクリル系重合体を得た。得られた(メタ)アクリル系重合体は、濃緑色に着色していた。
[Synthesis Example 1: Synthesis of (meth)acrylic polymer (A-1)]
(Polymerization process)
100 parts by weight of n-butyl acrylate was prepared and deoxidized. The inside of a stainless steel reaction vessel equipped with a stirrer was deoxidized, 0.42 parts by weight of cuprous bromide and 20 parts by weight of n-butyl acrylate were added, and the mixture was heated and stirred. 8.8 parts by weight of acetonitrile and 1.8 parts by weight of diethyl 2,5-dibromoadipate (initiator) were added and mixed. After adjusting the temperature of the mixed solution to about 80° C., 0.018 parts by weight of pentamethyldiethylenetriamine was added to initiate the polymerization reaction. The remaining 80 parts by weight of n-butyl acrylate was successively added to advance the polymerization reaction. During the polymerization reaction, additional pentamethyldiethylenetriamine was appropriately added to adjust the polymerization rate. The total amount of pentamethyldiethylenetriamine used throughout the polymerization process was 0.17 parts by weight. In the polymerization step, the system temperature was adjusted to about 80 to about 90° C. to prevent the system from being overheated due to polymerization heat. When the polymerization reaction rate reached about 95% or more, an oxygen-nitrogen mixed gas was introduced into the gas phase of the reaction vessel. The reaction solution was heated and stirred for several hours while maintaining the system temperature at about 80 to about 90° C. to bring the polymerization catalyst into contact with oxygen. Acetonitrile and unreacted monomers were removed by devolatilization under reduced pressure to obtain a (meth)acrylic polymer. The obtained (meth)acrylic polymer was colored dark green.
 (精製工程)
 重合工程で得られた(メタ)アクリル系重合体を、酢酸ブチル((メタ)アクリル系重合体100重量部に対して約100重量部)で希釈した。希釈液に濾過助剤を加えて加熱処理し、濾過した。濾液に吸着剤(キョーワード(登録商標)700SENおよびキョーワード(登録商標)500SH)を加えて再度濾過し、清澄な液体を得た。この清澄な液体を濃縮し、ほぼ無色透明の精製物を得た。
(purification process)
The (meth)acrylic polymer obtained in the polymerization step was diluted with butyl acetate (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer). A filter aid was added to the diluted solution, heat treated, and filtered. Adsorbents (Kyoward(R) 700SEN and Kyoward(R) 500SH) were added to the filtrate and filtered again to obtain a clear liquid. This clear liquid was concentrated to obtain an almost colorless and transparent purified product.
 (アクリロイル基導入工程)
 精製物として得られた(メタ)アクリル系重合体をN,N-ジメチルアセトアミド((メタ)アクリル系重合体100重量部に対して約100重量部)に溶解させた。アクリル酸カリウム(重合体末端のBr基に対して約2モル当量)、熱安定剤(4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-n-オキシル)、および吸着剤(キョーワード(登録商標)700SEN)を加え、約70℃にて数時間加熱攪拌した。N,N-ジメチルアセトアミドを減圧留去した後、酢酸ブチル((メタ)アクリル系重合体重合体100重量部に対して約100重量部)で再度希釈し、濾過助剤を加えて固形分を濾別した。濾液を濃縮し、末端にアクリロイル基を有する(メタ)アクリル系重合体(A-1)を得た。(メタ)アクリル系重合体(A-1)は褐色に着色していた。
(Acryloyl group introduction step)
The (meth)acrylic polymer obtained as a purified product was dissolved in N,N-dimethylacetamide (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer). Potassium acrylate (approximately 2 molar equivalents relative to the Br group at the end of the polymer), a heat stabilizer (4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl), and an adsorbent (Kyoward). (registered trademark) 700SEN) was added thereto, and the mixture was heated and stirred at about 70°C for several hours. After distilling off N,N-dimethylacetamide under reduced pressure, it was diluted again with butyl acetate (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer), and a filter aid was added to filter out the solid content. Separated. The filtrate was concentrated to obtain a (meth)acrylic polymer (A-1) having an acryloyl group at the end. The (meth)acrylic polymer (A-1) was colored brown.
 (メタ)アクリル系重合体(A-1)の、数平均分子量は約23,000であり、分子量分布は1.1であった。重合体に導入されたアクリロイル基の数は、1分子あたり平均で約1.9個であった。 The number average molecular weight of the (meth)acrylic polymer (A-1) was approximately 23,000, and the molecular weight distribution was 1.1. The average number of acryloyl groups introduced into the polymer was about 1.9 per molecule.
 (メタ)アクリル系重合体1分子当たりに導入された官能基数は、H-NMRによる濃度分析、および、GPCにより求まる数平均分子量を基に算出した。H-NMRはBruker製ASX-400を使用し、溶媒として重クロロホルムを用いて23℃にて測定した。合成例2および3についても同様である。 The number of functional groups introduced per molecule of the (meth)acrylic polymer was calculated based on the concentration analysis by 1 H-NMR and the number average molecular weight determined by GPC. 1 H-NMR was measured using Bruker ASX-400 at 23° C. using deuterated chloroform as a solvent. The same applies to Synthesis Examples 2 and 3.
 〔合成例2:(メタ)アクリル系重合体(A-2)の合成〕
 (重合工程)
 アクリル酸n-ブチル25重量部、アクリル酸エチル46重量部、アクリル酸2-メトキシエチル29重量部の混合物を用意し、脱酸素した。攪拌機付ステンレス製反応容器の内部を脱酸素し、0.47重量部の臭化第一銅、20重量部の上記の混合物を加え、加熱攪拌した。8.3重量部のアセトニトリル、2.6重量部のジエチル2,5-ジブロモアジペート(開始剤)を加えて混合した。混合液の温度を約80℃に調節した後、0.018重量部のペンタメチルジエチレントリアミンを加え、重合反応を開始させた。残る80重量部の上記混合物を逐次加えて、重合反応を進めた。重合反応の途中で、適宜ペンタメチルジエチレントリアミンを追加で加え、重合速度を調節した。重合工程を通して使用したペンタメチルジエチレントリアミンの総量は、0.15重量部であった。重合工程においては、重合熱により系内が過熱されるのを防ぎ、系内温度は約80~約90℃に調節した。重合反応率が約95%以上となった時点で、反応容器の気相部に酸素-窒素混合ガスを導入した。系内温度を約80~約90℃に保ちながら、反応液を数時間加熱攪拌して、重合触媒と酸素とを接触させた。アセトニトリルおよび未反応のモノマーを減圧脱揮して除去し、(メタ)アクリル系重合体を得た。(メタ)アクリル系重合体は、濃緑色に着色していた。
[Synthesis Example 2: Synthesis of (meth)acrylic polymer (A-2)]
(Polymerization process)
A mixture of 25 parts by weight of n-butyl acrylate, 46 parts by weight of ethyl acrylate, and 29 parts by weight of 2-methoxyethyl acrylate was prepared and deoxidized. The inside of a stainless steel reaction vessel equipped with a stirrer was deoxidized, and 0.47 parts by weight of cuprous bromide and 20 parts by weight of the above mixture were added, followed by heating and stirring. 8.3 parts by weight of acetonitrile and 2.6 parts by weight of diethyl 2,5-dibromoadipate (initiator) were added and mixed. After adjusting the temperature of the mixed solution to about 80° C., 0.018 parts by weight of pentamethyldiethylenetriamine was added to initiate the polymerization reaction. The remaining 80 parts by weight of the above mixture was successively added to advance the polymerization reaction. During the polymerization reaction, additional pentamethyldiethylenetriamine was appropriately added to adjust the polymerization rate. The total amount of pentamethyldiethylenetriamine used throughout the polymerization process was 0.15 parts by weight. In the polymerization step, the system temperature was adjusted to about 80 to about 90° C. to prevent the system from being overheated due to polymerization heat. When the polymerization reaction rate reached about 95% or more, an oxygen-nitrogen mixed gas was introduced into the gas phase of the reaction vessel. The reaction solution was heated and stirred for several hours while maintaining the system temperature at about 80 to about 90° C. to bring the polymerization catalyst into contact with oxygen. Acetonitrile and unreacted monomers were removed by devolatilization under reduced pressure to obtain a (meth)acrylic polymer. The (meth)acrylic polymer was colored dark green.
 (精製工程)
 重合工程で得られた(メタ)アクリル系重合体を、酢酸ブチル((メタ)アクリル系重合体100重量部に対して約100重量部)で希釈した。希釈液に濾過助剤を加えて加熱処理し、濾過した。濾液に吸着剤(キョーワード(登録商標)700SENおよびキョーワード(登録商標)500SH)を加えて再度濾過し、清澄な液体を得た。この清澄な液体を濃縮し、ほぼ無色透明の精製物を得た。
(purification process)
The (meth)acrylic polymer obtained in the polymerization step was diluted with butyl acetate (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer). A filter aid was added to the diluted solution, heat treated, and filtered. Adsorbents (Kyoward(R) 700SEN and Kyoward(R) 500SH) were added to the filtrate and filtered again to obtain a clear liquid. This clear liquid was concentrated to obtain an almost colorless and transparent purified product.
 (アクリロイル基導入工程)
 精製物として得られた(メタ)アクリル系重合体をN,N-ジメチルアセトアミド((メタ)アクリル系重合体100重量部に対して約100重量部)に溶解させた。アクリル酸カリウム((メタ)アクリル系重合体末端のBr基に対して約2モル当量)、熱安定剤(4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-n-オキシル)、および吸着剤(キョーワード(登録商標)700SEN)を加え、約70℃にて数時間加熱攪拌した。N,N-ジメチルアセトアミドを減圧留去した後、酢酸ブチル(重合体に対して約100重量部)で再度希釈し、濾過助剤を加えて固形分を濾別した。濾液を濃縮し、末端にアクリロイル基を有する(メタ)アクリル系重合体(A-2)を得た。(メタ)アクリル系重合体(A-2)は褐色に着色していた。
(Acryloyl group introduction step)
The (meth)acrylic polymer obtained as a purified product was dissolved in N,N-dimethylacetamide (approximately 100 parts by weight per 100 parts by weight of the (meth)acrylic polymer). Potassium acrylate (approximately 2 molar equivalents relative to the terminal Br group of the (meth)acrylic polymer), a heat stabilizer (4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl), and An adsorbent (Kyoward (registered trademark) 700SEN) was added, and the mixture was heated and stirred at about 70°C for several hours. After N,N-dimethylacetamide was distilled off under reduced pressure, the mixture was again diluted with butyl acetate (approximately 100 parts by weight based on the polymer), a filter aid was added, and the solid content was filtered out. The filtrate was concentrated to obtain a (meth)acrylic polymer (A-2) having an acryloyl group at the end. The (meth)acrylic polymer (A-2) was colored brown.
 (メタ)アクリル系重合体(A-2)の、数平均分子量は約16,000であり、分子量分布は1.1であった。重合体に導入されたアクリロイル基の数は、1分子あたり平均で約1.9個であった。 The number average molecular weight of the (meth)acrylic polymer (A-2) was approximately 16,000, and the molecular weight distribution was 1.1. The average number of acryloyl groups introduced into the polymer was about 1.9 per molecule.
 〔合成例3:(メタ)アクリル系重合体(A-3)の合成〕
 (重合工程)
 攪拌機付き反応槽に臭化第一銅4.2重量部、アセトニトリル44重量部を加え、窒素雰囲気下で、70℃で15分間攪拌した。これに、アクリル酸n-ブチル100重量部、2-ブロモブチル酸エチル9.5重量部を添加し、攪拌混合した。ペンタメチルジエチレントリアミン0.17重量部を添加し、重合反応を開始させた。80℃で攪拌しながら、アクリル酸n-ブチル400重量部を連続的に滴下した。アクリル酸n-ブチルの滴下途中、ペンタメチルジエチレントリアミン0.68重量部を分割添加した。重合反応率が96%に達した時点で、アセトニトリルおよび未反応のモノマーを80℃で脱揮して除去し、数平均分子量11,800、分子量分布1.08の片末端に臭素基を有するポリ(アクリル酸n-ブチル)(重合体(P-1))を得た。
[Synthesis Example 3: Synthesis of (meth)acrylic polymer (A-3)]
(Polymerization process)
4.2 parts by weight of cuprous bromide and 44 parts by weight of acetonitrile were added to a reaction tank equipped with a stirrer, and the mixture was stirred at 70° C. for 15 minutes under a nitrogen atmosphere. To this, 100 parts by weight of n-butyl acrylate and 9.5 parts by weight of ethyl 2-bromobutyrate were added and mixed with stirring. 0.17 parts by weight of pentamethyldiethylenetriamine was added to initiate the polymerization reaction. While stirring at 80° C., 400 parts by weight of n-butyl acrylate was continuously added dropwise. During the dropwise addition of n-butyl acrylate, 0.68 parts by weight of pentamethyldiethylenetriamine was added in portions. When the polymerization reaction rate reaches 96%, acetonitrile and unreacted monomers are removed by devolatilization at 80°C, and a polyester having a bromine group at one end with a number average molecular weight of 11,800 and a molecular weight distribution of 1.08 is produced. (n-butyl acrylate) (polymer (P-1)) was obtained.
 重合体(P-1)100重量部に対して、濾過助剤2重量部(ラヂオライト900、昭和化学工業(株)製)、メチルシクロヘキサン100重量部を加えて、窒素雰囲気下で80℃にて攪拌し、固形分を濾別することにより、重合体(P-1)のメチルシクロヘキサン溶液を得た。 To 100 parts by weight of polymer (P-1), 2 parts by weight of a filter aid (Radiolite 900, manufactured by Showa Kagaku Kogyo Co., Ltd.) and 100 parts by weight of methylcyclohexane were added, and the mixture was heated to 80°C under a nitrogen atmosphere. A methylcyclohexane solution of polymer (P-1) was obtained by stirring and filtering off the solid content.
 (精製工程)
 重合体(P-1)100重量部に対して、吸着剤4重量部(キョーワード(登録商標)500SH 2重量部/キョーワード(登録商標)700SL 2重量部:共に協和化学(株)製)を、重合体(P-1)のメチルシクロヘキサン溶液に加え、酸素・窒素混合ガス雰囲気下で80℃にて攪拌した。不溶分を除去し、重合体溶液を濃縮することで、数平均分子量11,800、分子量分布1.08の片末端に臭素基を有するポリ(アクリル酸n-ブチル)(重合体(P-2))を得た。
(purification process)
For 100 parts by weight of polymer (P-1), 4 parts by weight of adsorbent (Kyoward (registered trademark) 500SH 2 parts by weight/Kyoward (registered trademark) 700SL 2 parts by weight: both manufactured by Kyowa Kagaku Co., Ltd.) was added to a methylcyclohexane solution of polymer (P-1), and the mixture was stirred at 80°C under an oxygen/nitrogen mixed gas atmosphere. By removing insoluble matter and concentrating the polymer solution, poly(n-butyl acrylate) (polymer (P-2 )) was obtained.
 (アクリロイル基導入工程)
 重合体(P-2)100重量部をN,N-ジメチルアセトアミド100重量部に溶解し、アクリル酸カリウム(1.87重量部、浅田化学工業(株)製)、ヒドロキノンモノメチルエーテル0.01重量部を加え、70℃で8時間加熱攪拌した。反応終了時の重合体は、数平均分子量11,900、分子量分布は1.08であった。反応混合物から、100℃にて4時間減圧下でN,N-ジメチルアセトアミドを留去して、片末端にアクリロイル基を有するポリ(アクリル酸n-ブチル)の粗生成物を得た。この粗生成物100重量部を100重量部のメチルシクロヘキサンで溶解させ、不溶分を除去し、重合体溶液から、80℃にて4時間減圧下で溶媒を留去して、片末端にアクリロイル基を有するポリ(アクリル酸n-ブチル)((メタ)アクリル系重合体(A-3))を得た。(メタ)アクリル系重合体(A-3)の数平均分子量は12,200、分子量分布は1.18であった。(メタ)アクリル系重合体(A-3)に導入されたアクリロイル基の数は、1分子あたり平均で0.87個であった。
(Acryloyl group introduction step)
100 parts by weight of polymer (P-2) was dissolved in 100 parts by weight of N,N-dimethylacetamide, and potassium acrylate (1.87 parts by weight, manufactured by Asada Chemical Industry Co., Ltd.) and 0.01 part by weight of hydroquinone monomethyl ether were added. The mixture was heated and stirred at 70°C for 8 hours. The polymer at the end of the reaction had a number average molecular weight of 11,900 and a molecular weight distribution of 1.08. N,N-dimethylacetamide was distilled off from the reaction mixture under reduced pressure at 100° C. for 4 hours to obtain a crude product of poly(n-butyl acrylate) having an acryloyl group at one end. 100 parts by weight of this crude product was dissolved in 100 parts by weight of methylcyclohexane, insoluble matter was removed, and the solvent was distilled off from the polymer solution under reduced pressure at 80°C for 4 hours. A poly(n-butyl acrylate) ((meth)acrylic polymer (A-3)) having the following was obtained. The (meth)acrylic polymer (A-3) had a number average molecular weight of 12,200 and a molecular weight distribution of 1.18. The average number of acryloyl groups introduced into the (meth)acrylic polymer (A-3) was 0.87 per molecule.
 〔評価用サンプルの作製〕
 以下の方法により、物性評価用のサンプルを作製した。
[Preparation of evaluation sample]
Samples for physical property evaluation were prepared by the following method.
 〔1.硬化性組成物の調製〕
 下記表1~7に記載の組成で各成分をディスポカップに加え、スパチュラで攪拌した。その後、自転・公転ミキサー(あわとり練太郎、株式会社シンキー製)を用いて、1600rpm×1.5分間の攪拌、および2200rpm×3分間の脱泡を施した。このようにして、硬化性組成物を得た。
[1. Preparation of curable composition]
Each component was added to a disposable cup according to the composition shown in Tables 1 to 7 below, and stirred with a spatula. Thereafter, stirring was performed at 1600 rpm for 1.5 minutes and defoaming was performed at 2200 rpm for 3 minutes using a rotation/revolution mixer (Awatori Rentaro, manufactured by Shinky Co., Ltd.). In this way, a curable composition was obtained.
 硬化性組成物に配合した各成分は、下記の通りである。
●(メタ)アクリル系重合体(A)
・(メタ)アクリル系重合体(A-1):合成例1で得たもの
・(メタ)アクリル系重合体(A-2):合成例2で得たもの
・(メタ)アクリル系重合体(A-3):合成例3で得たもの
●エポキシ化合物(B)
・2,2-ビス(4-グリシジルオキシフェニル)プロパン(jER-828、三菱ケミカル株式会社製)
・メタクリル酸グリシジル(GMA、東京化成工業株式会社製)
●光ラジカル開始剤(C)
・2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(Omnirad1173、IGM
 Resins B.V.製)
・ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(Ominirad819、IGM Resins B.V.製)
●エポキシ硬化剤(D)
・トリス-2,4,6-ジメチルアミノメチルフェノール(Ancamine K54、EVONIK製)
●感光性樹脂(F)
・多塩基酸変性エポキシアクリレート樹脂(KAYARAD ZAR-2000、日本化薬株式会社製)
●エポキシ化合物(B)およびエポキシ硬化剤(D)の混合物
・紫外線硬化性エポキシ樹脂(TB3114、スリーボンド社製)
 〔2.硬化物の作製〕
 縦25mm、横100mm、厚さ100μmのアルミ基材の表面において、縦方向の両端(横100mmの2辺)に、縦2.5mm、横100mm、厚さ80μmのマスキングテープ1~4枚をアルミ基材に重ね合うように貼りつけ、スペーサーとした。マスキングテープ間(20mm)に硬化性組成物をガラス棒によって均一に塗布した。その後、マスキングテープを剥がし、アルミ基材を横幅が50mmの長さになるように切断した。
Each component blended into the curable composition is as follows.
●(Meth)acrylic polymer (A)
・(Meth)acrylic polymer (A-1): Obtained in Synthesis Example 1 ・(Meth)acrylic polymer (A-2): Obtained in Synthesis Example 2 ・(Meth)acrylic polymer (A-3): Epoxy compound (B) obtained in Synthesis Example 3
・2,2-bis(4-glycidyloxyphenyl)propane (jER-828, manufactured by Mitsubishi Chemical Corporation)
・Glycidyl methacrylate (GMA, manufactured by Tokyo Chemical Industry Co., Ltd.)
●Photoradical initiator (C)
・2-Hydroxy-2-methyl-1-phenyl-propan-1-one (Omnirad1173, IGM
Made by Resins BV)
・Bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide (Ominirad819, manufactured by IGM Resins BV)
●Epoxy curing agent (D)
・Tris-2,4,6-dimethylaminomethylphenol (Ancamine K54, manufactured by EVONIK)
●Photosensitive resin (F)
・Polybasic acid-modified epoxy acrylate resin (KAYARAD ZAR-2000, manufactured by Nippon Kayaku Co., Ltd.)
●Mixture of epoxy compound (B) and epoxy curing agent (D)/UV curable epoxy resin (TB3114, manufactured by ThreeBond)
[2. Preparation of cured product]
On the surface of an aluminum base material that is 25 mm long, 100 mm wide, and 100 μm thick, place 1 to 4 pieces of aluminum masking tape 2.5 mm long, 100 mm wide, and 80 μm thick on both vertical ends (two sides of 100 mm wide). They were attached to the base material so that they overlapped to form a spacer. The curable composition was uniformly applied between the masking tapes (20 mm) using a glass rod. Thereafter, the masking tape was peeled off, and the aluminum base material was cut into a length having a width of 50 mm.
 〔実施例1〕
 上記で切断されたアルミ基材をUV照射装置(フュージョンUVシステム製、機種:LIGHT HAMMER 6、光源:水銀灯ランプ、ピーク照度:250mW/cm、積算光量:2,000mJ/cm)にて大気下でUV光を照射した。次に、オーブンにて120℃で60分間の加熱を行った後、十分に冷却させ、硬化物を得た。
[Example 1]
The aluminum base material cut above was exposed to the atmosphere using a UV irradiation device (manufactured by Fusion UV System, model: LIGHT HAMMER 6, light source: mercury lamp, peak illuminance: 250 mW/cm 2 , integrated light amount: 2,000 mJ/cm 2 ). irradiated with UV light at the bottom. Next, the mixture was heated in an oven at 120° C. for 60 minutes, and then sufficiently cooled to obtain a cured product.
 〔実施例3~6、比較例4~7〕
 上記で切断されたアルミ基材をオーブンにて80℃で20分間の加熱を行った。次に、実施例1と同じ条件でUV光を照射した後、オーブンにて120℃で60分間の加熱を行い、十分に冷却させ、硬化物を得た。
[Examples 3 to 6, Comparative Examples 4 to 7]
The aluminum base material cut above was heated in an oven at 80° C. for 20 minutes. Next, after irradiating with UV light under the same conditions as in Example 1, heating was performed in an oven at 120° C. for 60 minutes, and the product was sufficiently cooled to obtain a cured product.
 〔比較例1〕
 上記で切断されたアルミ基材をオーブンにて120℃で60分間の加熱を行った後、十分に冷却させ、硬化物を得た。
[Comparative example 1]
The aluminum base material cut above was heated in an oven at 120° C. for 60 minutes, and then sufficiently cooled to obtain a cured product.
 〔実施例2、比較例2、3〕
 上記で切断されたアルミ基材をUV照射装置(ピーク照度:250mW/cm、積算光量:2,000mJ/cm)にて大気下でUV光を照射した。
[Example 2, Comparative Examples 2 and 3]
The aluminum base material cut above was irradiated with UV light in the atmosphere using a UV irradiation device (peak illuminance: 250 mW/cm 2 , cumulative light amount: 2,000 mJ/cm 2 ).
 〔3.内部応力の計算〕
 内部応力は、井上・小畠の式により算出した。井上・小畠の式については、高分子論文集,1990,47,559を参照されたい。硬化物の厚みは、マイクロメータを用いて硬化物とアルミ基材とを合わせた厚みを測定し、アルミ基材の厚みを引くことによって算出した。反り量は、物差しを用いて測定した。アルミの弾性率は68.6GPaとした。
[3. Calculation of internal stress]
Internal stress was calculated using the Inoue-Kobata formula. For the Inoue-Obatake equation, please refer to Kobunshi Ronshu, 1990, 47, 559. The thickness of the cured product was calculated by measuring the combined thickness of the cured product and the aluminum base material using a micrometer, and subtracting the thickness of the aluminum base material. The amount of warpage was measured using a ruler. The elastic modulus of aluminum was 68.6 GPa.
 〔4.評価結果〕
 実施例1~6および比較例1~7の組成および評価結果を表1~7に示す。また、硬化物の内部応力と厚みとの関係を図1および2に示す。
[4. Evaluation results〕
The compositions and evaluation results of Examples 1 to 6 and Comparative Examples 1 to 7 are shown in Tables 1 to 7. Furthermore, the relationship between internal stress and thickness of the cured product is shown in FIGS. 1 and 2.
Figure JPOXMLDOC01-appb-T000001
 表1および図1から、実施例1と、比較例1のサンプル厚み36μmおよび139μmとを比較すると、実施例1は内部応力が低下していた。すなわち、本発明の一実施形態に係る硬化物であれば、硬化物の内部応力が緩和することが確認された。また、比較例1から、サンプル厚みが小さいほど、内部応力が大きくなることが確認された。
Figure JPOXMLDOC01-appb-T000001
From Table 1 and FIG. 1, when comparing Example 1 and Comparative Example 1 with sample thicknesses of 36 μm and 139 μm, Example 1 had a lower internal stress. That is, it was confirmed that the cured product according to one embodiment of the present invention alleviates the internal stress of the cured product. Furthermore, from Comparative Example 1, it was confirmed that the smaller the sample thickness, the larger the internal stress.
Figure JPOXMLDOC01-appb-T000002
 表2および図1から、実施例2と、比較例3のサンプル厚み90μmとを比較すると、実施例2の内部応力が低下していることが確認された。また、サンプル厚みが200μm超の比較例2は、比較例3のサンプル厚み193μmと同等レベルの内部応力であった。すなわち、サンプル厚みが200μm超では、(メタ)アクリル系重合体(A)を添加した場合にも内部応力が低下しないことが確認された。したがって、硬化物の膜厚が200μm以下の場合に、(メタ)アクリル系重合体(A)の添加によって硬化物の内部応力が緩和し、硬化物の耐衝撃性が向上することが示唆された。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000002
From Table 2 and FIG. 1, when comparing Example 2 and Comparative Example 3 with a sample thickness of 90 μm, it was confirmed that the internal stress of Example 2 was reduced. Further, Comparative Example 2, in which the sample thickness was more than 200 μm, had an internal stress at the same level as Comparative Example 3, which had a sample thickness of 193 μm. That is, it was confirmed that when the sample thickness exceeded 200 μm, the internal stress did not decrease even when the (meth)acrylic polymer (A) was added. Therefore, it was suggested that when the film thickness of the cured product is 200 μm or less, the addition of the (meth)acrylic polymer (A) relieves the internal stress of the cured product and improves the impact resistance of the cured product. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表3~7および図2から、実施例3~6と、比較例7のサンプル厚み200μm以下のサンプルとを比較すると、(メタ)アクリル系重合体(A)の添加によって内部応力が低下することが確認された。一方で、比較例4~6と比較例7との比較から、サンプル厚みが200μm超の場合には、(メタ)アクリル系重合体(A)を添加した場合にも内部応力は同等であり、緩和されないことが確認された。なお、図2中の点線は、比較例7の内部応力について指数近似を行った結果を示す。
Figure JPOXMLDOC01-appb-T000007
From Tables 3 to 7 and Figure 2, when comparing Examples 3 to 6 with the sample of Comparative Example 7 with a sample thickness of 200 μm or less, it is found that the internal stress is reduced by the addition of the (meth)acrylic polymer (A). was confirmed. On the other hand, from a comparison of Comparative Examples 4 to 6 and Comparative Example 7, when the sample thickness is over 200 μm, the internal stress is the same even when the (meth)acrylic polymer (A) is added, It has been confirmed that there will be no mitigation. Note that the dotted line in FIG. 2 indicates the result of exponential approximation for the internal stress of Comparative Example 7.
 〔5.三点曲げ試験〕
 [5-1.硬化性組成物の調製]
 下記表8に記載の各成分を使用して、上記〔1.硬化性組成物の調製〕と同じ方法で硬化性組成物を得た。
[5. Three-point bending test]
[5-1. Preparation of curable composition]
Using each component listed in Table 8 below, the above [1. A curable composition was obtained in the same manner as in [Preparation of curable composition].
 [5-2.三点曲げ試験用の試験片の作製]
 幅10mm、長さ100mm、深さ2mmのテフロン(登録商標)製型枠に、硬化性組成物を流し込み、オーブンにて80℃で20分間の加熱を行った。次に、UV照射装置(ピーク照度:250mW/cm、積算光量:2,000mJ/cm)にて大気下でUV光を照射した。その後、オーブンにて150℃で60分間の加熱を行うことにより、三点曲げ試験用の試験片を得た。
[5-2. Preparation of test piece for three-point bending test]
The curable composition was poured into a Teflon (registered trademark) mold having a width of 10 mm, a length of 100 mm, and a depth of 2 mm, and heated in an oven at 80° C. for 20 minutes. Next, UV light was irradiated in the atmosphere using a UV irradiation device (peak illuminance: 250 mW/cm 2 , cumulative light amount: 2,000 mJ/cm 2 ). Thereafter, a test piece for a three-point bending test was obtained by heating at 150° C. for 60 minutes in an oven.
 [5-3.三点曲げ試験]
 上記試験片を曲げ試験機に供して、曲げ弾性率、最大点応力、破断点歪みを測定した。なお、測定にはオートグラフ(AGX、株式会社島津製作所製)を使用した。測定温度:23℃、試験速度:2mm/min、圧子半径:5mm、支点半径:2mm、支点間距離:32mmとした。
[5-3. Three-point bending test]
The above test piece was subjected to a bending tester, and the bending elastic modulus, maximum point stress, and breaking point strain were measured. Note that an Autograph (AGX, manufactured by Shimadzu Corporation) was used for the measurement. Measurement temperature: 23° C., test speed: 2 mm/min, indenter radius: 5 mm, fulcrum radius: 2 mm, distance between fulcrums: 32 mm.
 [5-4.評価結果]
 参考例1~3および比較例8の組成、および三点曲げ試験の評価結果を表8に示す。
[5-4. Evaluation results]
Table 8 shows the compositions of Reference Examples 1 to 3 and Comparative Example 8, and the evaluation results of the three-point bending test.
Figure JPOXMLDOC01-appb-T000008
 表8より、参考例1~3は比較例8と比べて、曲げ弾性率、最大点応力、および破断点歪みに優れることがわかる。なかでも、上記一般式(1)で表される基を分子の片末端に有する(メタ)アクリル系重合体を用いた硬化物(参考例3)は、より優れた物性を示すことがわかる。ここで、曲げ弾性率、最大点応力、および破断点歪みの算出は、サンプルの膜厚を考慮した計算式によって行われており、このような算出方法は当該技術分野では一般的である。そのため、異なる膜厚のサンプルで測定した場合でも、同程度の算出結果が得られると考えられる。したがって、参考例1~3および比較例8は膜厚が2mm程度であるが、膜厚が200μm以下の場合であっても、膜厚が2mm程度の場合と同程度の算出結果が得られ、参考例は比較例と比べて曲げ弾性率、最大点応力、および破断点歪みに優れると推測される。
Figure JPOXMLDOC01-appb-T000008
Table 8 shows that Reference Examples 1 to 3 are superior to Comparative Example 8 in flexural modulus, maximum stress, and strain at break. Among them, it can be seen that a cured product using a (meth)acrylic polymer having a group represented by the above general formula (1) at one end of the molecule (Reference Example 3) exhibits more excellent physical properties. Here, the bending elastic modulus, maximum point stress, and breaking point strain are calculated using calculation formulas that take into account the film thickness of the sample, and such calculation methods are common in the technical field. Therefore, it is thought that comparable calculation results can be obtained even when measuring samples with different film thicknesses. Therefore, in Reference Examples 1 to 3 and Comparative Example 8, the film thickness is about 2 mm, but even when the film thickness is 200 μm or less, calculation results comparable to those when the film thickness is about 2 mm can be obtained. It is presumed that the reference example is superior to the comparative example in flexural modulus, maximum stress, and strain at break.
 本発明の一態様は、硬化物の分野で利用できる。 One embodiment of the present invention can be utilized in the field of cured products.

Claims (8)

  1.  1分子当たり平均して0.8個以上の一般式(1)で表される基を分子の末端に有する(メタ)アクリル系重合体(A)と、
     エポキシ化合物および/またはオキセタン化合物(B)と、
     光ラジカル開始剤(C)と、
     エポキシ硬化剤(D)と、を含有する硬化性組成物を、硬化してなり、
     膜厚が200μm以下である硬化物。
    -OC(O)C(R)=CH   (1)
     (式中、Rは、水素原子または炭素数1~20の有機基を表す。)
    A (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule;
    An epoxy compound and/or an oxetane compound (B),
    a photoradical initiator (C);
    A curable composition containing an epoxy curing agent (D) is cured,
    A cured product with a film thickness of 200 μm or less.
    -OC(O)C(R 1 )=CH 2 (1)
    (In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
  2.  前記硬化性組成物が、さらに感光性樹脂(F)を含有する、請求項1に記載の硬化物。 The cured product according to claim 1, wherein the curable composition further contains a photosensitive resin (F).
  3.  前記(メタ)アクリル系重合体(A)が、1分子当たり平均して0.8~1個の一般式(1)で表される基を分子の一方の末端に有する(メタ)アクリル系重合体である、請求項1に記載の硬化物。 The (meth)acrylic polymer (A) has an average of 0.8 to 1 group represented by the general formula (1) per molecule at one end of the molecule. The cured product according to claim 1, which is a combination.
  4.  前記エポキシ化合物および/またはオキセタン化合物(B)が芳香族エポキシ化合物である、請求項1に記載の硬化物。 The cured product according to claim 1, wherein the epoxy compound and/or oxetane compound (B) is an aromatic epoxy compound.
  5.  前記エポキシ硬化剤(D)が、アミン化合物である、請求項1に記載の硬化物。 The cured product according to claim 1, wherein the epoxy curing agent (D) is an amine compound.
  6.  請求項1~5のいずれか1項に記載の硬化物を備えた、物品。 An article comprising the cured product according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか1項に記載の硬化物によってコーティングされた、プリント配線基板。 A printed wiring board coated with the cured product according to any one of claims 1 to 5.
  8.  1分子当たり平均して0.8個以上の一般式(1)で表される基を分子の末端に有する(メタ)アクリル系重合体(A)と、エポキシ化合物および/またはオキセタン化合物(B)と、光ラジカル開始剤(C)と、エポキシ硬化剤(D)と、を含有する硬化性組成物を、硬化する工程を有し、
     硬化して得られた硬化物の膜厚が200μm以下である、
     前記硬化物の内部応力を緩和する方法。
    -OC(O)C(R)=CH   (1)
     (式中、Rは、水素原子または炭素数1~20の有機基を表す。)
    A (meth)acrylic polymer (A) having an average of 0.8 or more groups represented by the general formula (1) per molecule at the end of the molecule, and an epoxy compound and/or an oxetane compound (B) , a photoradical initiator (C), and an epoxy curing agent (D).
    The film thickness of the cured product obtained by curing is 200 μm or less,
    A method of relieving internal stress in the cured product.
    -OC(O)C(R 1 )=CH 2 (1)
    (In the formula, R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
PCT/JP2023/028212 2022-08-16 2023-08-02 Cured product, article provided with cured product, and method for lessening internal stress of cured product WO2024038761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022129631 2022-08-16
JP2022-129631 2022-08-16

Publications (1)

Publication Number Publication Date
WO2024038761A1 true WO2024038761A1 (en) 2024-02-22

Family

ID=89941574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028212 WO2024038761A1 (en) 2022-08-16 2023-08-02 Cured product, article provided with cured product, and method for lessening internal stress of cured product

Country Status (1)

Country Link
WO (1) WO2024038761A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092981A1 (en) * 2004-03-26 2005-10-06 Kaneka Corporation Composition curable by both free-radical photocuring and cationic photocuring
WO2007077888A1 (en) * 2005-12-28 2007-07-12 Kaneka Corporation Curable composition
JP2023073098A (en) * 2021-11-15 2023-05-25 株式会社カネカ Curable composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092981A1 (en) * 2004-03-26 2005-10-06 Kaneka Corporation Composition curable by both free-radical photocuring and cationic photocuring
WO2007077888A1 (en) * 2005-12-28 2007-07-12 Kaneka Corporation Curable composition
JP2023073098A (en) * 2021-11-15 2023-05-25 株式会社カネカ Curable composition

Similar Documents

Publication Publication Date Title
JP5242562B2 (en) Radiation curable amino (meth) acrylate
CN101037529B (en) Photosensitive thermosetting resin composition, flattened and resist film coated printed wiring board and method of preparing the same
TWI670341B (en) Monomer composition and curable composition containing the same
JP5617201B2 (en) Photo-curable ink-jet ink
JP6432075B2 (en) Photosensitive resin composition and cured film
CN108409903B (en) Resin, varnish composition, offset printing ink and printed matter
EP3747933B1 (en) Resin composition and cured material of same, adhesive, semiconductor device, and electronic component
WO2015012381A1 (en) Thermosetting resin composition, cured film, substrate with cured film, and electronic component
WO2024038761A1 (en) Cured product, article provided with cured product, and method for lessening internal stress of cured product
JP2023073098A (en) Curable composition
JP2014088567A (en) Photocurable ink for ink-jet
JP6079016B2 (en) Thermosetting inkjet ink and use thereof
JP6814077B2 (en) Curable resin composition
JP6719310B2 (en) (Meth)acrylate compound, method for synthesizing the same and use of the (meth)acrylate compound
CN114585658A (en) Photocurable resin composition for electronic device
TWI808944B (en) Photocurable resin composition, ink and paint
JP7405632B2 (en) Composition, cured product, method for producing cured product
JP2000007993A (en) Active energy ray-curable composition and formation of its film
JP7483417B2 (en) Photosensitive resin composition and cured product thereof
JP2018145415A (en) Curable resin composition for peeling sheet, process base material comprising the same, and method for protecting base material
JP7190294B2 (en) Copolymer, curable resin composition containing the copolymer, and cured product thereof
WO2021112062A1 (en) Alicyclic acrylate compound, alicyclic epoxy acrylate compound, curable composition, and cured article
JPH02113022A (en) Ultraviolet curing type epoxy resin composition
WO2023238925A1 (en) Radical polymerizable composition and polymerized product thereof
JP2010024377A (en) Copolymer and curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854796

Country of ref document: EP

Kind code of ref document: A1