WO2024038737A1 - Polyimide, polyimide solution, coating material, and formation material - Google Patents

Polyimide, polyimide solution, coating material, and formation material Download PDF

Info

Publication number
WO2024038737A1
WO2024038737A1 PCT/JP2023/027166 JP2023027166W WO2024038737A1 WO 2024038737 A1 WO2024038737 A1 WO 2024038737A1 JP 2023027166 W JP2023027166 W JP 2023027166W WO 2024038737 A1 WO2024038737 A1 WO 2024038737A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
polyimide
diamine component
less
acid component
Prior art date
Application number
PCT/JP2023/027166
Other languages
French (fr)
Japanese (ja)
Inventor
丈人 小倉
Original Assignee
Jfeケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社 filed Critical Jfeケミカル株式会社
Priority to KR1020237041748A priority Critical patent/KR20240024797A/en
Priority to CN202380012401.6A priority patent/CN117897431A/en
Publication of WO2024038737A1 publication Critical patent/WO2024038737A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to polyimides, polyimide solutions, coating materials, and molding materials.
  • Polyimide (polyimide resin) has properties such as not only excellent heat resistance but also chemical resistance, radiation resistance, electrical insulation, and excellent mechanical properties. Therefore, polyimide is known as a material used for flexible printed wiring circuit boards, insulating coating paints, heat-resistant molding materials, and the like.
  • polyimides are synthesized, for example, as described in Patent Document 1. That is, first, in an aprotic polar organic solvent such as N-methyl-2-pyrrolidone, an aromatic tetracarboxylic dianhydride such as 3,3',4,4'-biphenyltetracarboxylic dianhydride and , and an aromatic diamine such as 1,4-phenylenediamine to obtain polyamic acid (polyamic acid), which is a precursor of polyimide. Thereafter, this polyamic acid is heated at 250° C. to 400° C. to proceed with dehydration and cyclization (imidization), thereby obtaining polyimide.
  • an aprotic polar organic solvent such as N-methyl-2-pyrrolidone
  • aromatic tetracarboxylic dianhydride such as 3,3',4,4'-biphenyltetracarboxylic dianhydride and , and an aromatic diamine such as 1,4-phenylenediamine
  • polyimide material Most industrially used polyimides dissolve in organic solvents in the polyamic acid state, but in the polyimide state, they gel or precipitate immediately after synthesis or after being left for about a day, and do not dissolve. becomes insoluble. Therefore, in order to obtain a material containing polyimide (polyimide material), it is common to apply a solution of polyamic acid, volatilize and remove the solvent, and then heat to imidize the material. However, since condensed water is generated during the process of imidizing polyamic acid, voids may occur in the polyimide material. Furthermore, the polyimide material may shrink and its thickness may change.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a polyimide that has excellent solubility in solvents (does not cause gelation or precipitation). Furthermore, another object of the present invention is to provide a polyimide solution, a coating material, and a molding material containing the above polyimide.
  • the present invention provides the following [1] to [9].
  • [2] Contains more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride and a diamine component containing 20.0 to 80.0 mol% of Compound A and 20.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane.
  • Polyimide made by polymerizing and.
  • [4] Contains more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride
  • the acid component 15.0 to 80.0 mol% of Compound A described below, 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and 2,4 - A polyimide obtained by polymerizing a diamine component containing more than 0.0 mol% and less than 30.0 mol% of diaminotoluene.
  • [6] Contains more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride and 15.0 to 80.0 mol% of Compound A, which will be described later, 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and 4,4 A polyimide obtained by polymerizing a diamine component containing more than 0.0 mol% and less than 30.0 mol% of '-oxydianiline and/or 3,4'-oxydianiline.
  • a polyimide having excellent solubility in solvents can be provided. If a solution containing such a polyimide (polyimide solution) is used, since imidization has already progressed, the generation of voids etc. can be suppressed in the resulting polyimide material. That is, a polyimide material having an arbitrary shape can be obtained by simply applying a polyimide solution and volatilizing off the solvent. Furthermore, the mechanical strength and thermal properties are comparable.
  • polyimide First to sixth embodiments of the polyimide (polyimide resin) of the present invention will be described in detail below.
  • the polyimide of the first embodiment contains an acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 20.0 to 80.0 mol% of compound A, which will be described later, and 2,2-biphenyltetracarboxylic dianhydride.
  • a diamine component containing 20.0 to 80.0 mol% of bis-[4-(4-aminophenoxy)phenyl]propane is polymerized.
  • the acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the content of BPDA is preferably 90.0 mol% or more, more preferably 95.0 mol% or more, and even more preferably 100.0 mol%, for the reason that both strength and solubility are achieved.
  • the diamine component contains compound A represented by the following formula (A).
  • R 1 , R 2 , R 3 and R 4 in the above formula (A) are each independently a methyl group or an ethyl group.
  • Examples of compound A include 4,4'-methylenebis(2-ethyl-6-methylaniline) (MED) represented by formula (3) described later, and 4,4'-methylenebis(2-ethyl-6-methylaniline) (MED) represented by formula (4) described later.
  • Preferred examples include '-methylenebis(2,6-dimethylaniline) (MMD) and 4,4'-methylenebis(2,6-diethylaniline) (EED) represented by formula (5) described below.
  • the content of compound A is 20.0 to 80.0 mol%, preferably 23.0 to 77.0 mol%, and 25.0 to 75 mol%, for the reason of achieving both strength and solubility. .0 mol% is more preferable.
  • the diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
  • BAPP 2,2-bis-[4-(4-aminophenoxy)phenyl]propane
  • the content of BAPP is 20.0 to 80.0 mol%, preferably 23.0 to 77.0 mol%, and 25.0 to 75.0 mol%, in order to achieve both strength and solubility. 0 mol% is more preferable.
  • the polyimide of the second embodiment contains more than 70.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and less than 100.0 mol% and more than 0.0 mol% of pyromellitic dianhydride.
  • An acid component containing less than .0 mol%, and 20.0 to 80.0 mol% of compound A and 20.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane. It is obtained by polymerizing a diamine component.
  • the acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the content of BPDA is more than 70.0 mol% and less than 100.0 mol%, preferably 73.0 to 97.0 mol%, and 75.0 to 75.0 mol%, in order to achieve both strength and solubility. 90.0 mol% is more preferable.
  • the acid component further contains pyromellitic dianhydride (PMDA).
  • PMDA pyromellitic dianhydride
  • the content of PMDA is more than 0.0 mol% and less than 30.0 mol%, preferably 3.0 to 27.0 mol%, and 10.0 to 27.0 mol%, in order to achieve both strength and solubility. 27.0 mol% is more preferable.
  • the diamine component contains compound A.
  • the content of compound A is 20.0 to 80.0 mol%, preferably 23.0 to 77.0 mol%, and 25.0 to 75 mol%, in order to achieve both strength and solubility. .0 mol% is more preferable.
  • the diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
  • BAPP 2,2-bis-[4-(4-aminophenoxy)phenyl]propane
  • the content of BAPP is 20.0 to 80.0 mol%, preferably 23.0 to 77.0 mol%, and 25.0 to 75.0 mol%, in order to achieve both strength and solubility. 0 mol% is more preferable.
  • the polyimide of the third embodiment contains an acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 15.0 to 80.0 mol% of compound A, 2,2-bis- A diamine component containing 15.0 to 80.0 mol% of [4-(4-aminophenoxy)phenyl]propane and more than 0.0 mol% but less than 30.0 mol% of 2,4-diaminotoluene. .
  • the acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the content of BPDA is preferably 90.0 mol% or more, more preferably 95.0 mol% or more, and even more preferably 100.0 mol%, for the reason that both strength and solubility are achieved.
  • the diamine component contains compound A.
  • the content of compound A is 15.0 to 80.0 mol%, preferably 20.0 to 70.0 mol%, and 20.0 to 60 mol%, in order to achieve both strength and solubility. .0 mol% is more preferable.
  • the diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
  • BAPP 2,2-bis-[4-(4-aminophenoxy)phenyl]propane
  • the content of BAPP is 15.0 to 80.0 mol%, preferably 20.0 to 70.0 mol%, and 25.0 to 60.0 mol%, in order to achieve both strength and solubility. 0 mol% is more preferable.
  • the diamine component further contains 2,4-diaminotoluene (DAT).
  • DAT 2,4-diaminotoluene
  • the content of DAT is more than 0.0 mol% and less than 30.0 mol%, preferably 5.0 to 28.0 mol%, and 10.0 to 28.0 mol%, in order to achieve both strength and solubility. 27.0 mol% is more preferable.
  • the polyimide of the fourth embodiment contains more than 70.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and less than 100.0 mol% and more than 0.0 mol% of pyromellitic dianhydride.
  • An acid component containing less than .0 mol%, 15.0 to 80.0 mol% of compound A, 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and A diamine component containing more than 0.0 mol% and less than 30.0 mol% of 2,4-diaminotoluene.
  • the acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the content of BPDA is more than 70.0 mol% and less than 100.0 mol%, preferably 73.0 to 97.0 mol%, and 75.0 to 75.0 mol%, in order to achieve both strength and solubility. 90.0 mol% is more preferable.
  • the acid component further contains pyromellitic dianhydride (PMDA).
  • PMDA pyromellitic dianhydride
  • the content of PMDA is more than 0.0 mol% and less than 30.0 mol%, preferably 3.0 to 27.0 mol%, and 10.0 to 27.0 mol%, in order to achieve both strength and solubility. 25.0 mol% is more preferable.
  • the diamine component contains compound A.
  • the content of compound A is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 22.0 to 45 mol%, for the reason of achieving both strength and solubility. .0 mol% is more preferable.
  • the diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
  • BAPP 2,2-bis-[4-(4-aminophenoxy)phenyl]propane
  • the content of BAPP is 15.0 to 80.0 mol%, preferably 25.0 to 60.0 mol%, and 30.0 to 55.0 mol%, for the purpose of achieving both strength and solubility. 0 mol% is more preferable.
  • the diamine component further contains 2,4-diaminotoluene (DAT).
  • DAT 2,4-diaminotoluene
  • the content of DAT is more than 0.0 mol% and less than 30.0 mol%, preferably 5.0 to 28.0 mol%, and 10.0 to 28.0 mol%, in order to achieve both strength and solubility. 27.0 mol% is more preferable.
  • the polyimide of the fifth embodiment contains an acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 15.0 to 80.0 mol% of compound A, 2,2-bis- 15.0 to 80.0 mol% of [4-(4-aminophenoxy)phenyl]propane and more than 0.0 mol% of 4,4'-oxydianiline and/or 3,4'-oxydianiline to 30.0 mol%
  • a diamine component containing less than % of the diamine component is polymerized.
  • the acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the content of BPDA is preferably 90.0 mol% or more, more preferably 95.0 mol% or more, and even more preferably 100.0 mol%, for the reason that both strength and solubility are achieved.
  • the diamine component contains compound A.
  • the content of compound A is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 23.0 to 52 mol%, for the reason of achieving both strength and solubility. % is more preferable.
  • the diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
  • BAPP 2,2-bis-[4-(4-aminophenoxy)phenyl]propane
  • the content of BAPP is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 23.0 to 52.0 mol%, for the purpose of achieving both strength and solubility. 0 mol% is more preferable.
  • the diamine component further contains 4,4'-oxydianiline (ODA) and/or 3,4'-oxydianiline (DAPE).
  • ODA 4,4'-oxydianiline
  • DAPE 3,4'-oxydianiline
  • the total content of ODA and DAPE is more than 0.0 mol% and less than 30.0 mol%, preferably 5.0 to 28.0 mol%, and 10 .0 to 27.0 mol% is more preferable.
  • the polyimide of the sixth embodiment contains more than 70.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and less than 100.0 mol% and more than 0.0 mol% of pyromellitic dianhydride.
  • An acid component containing less than .0 mol%, 15.0 to 80.0 mol% of compound A, 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and and a diamine component containing more than 0.0 mol% and less than 30.0 mol% of 4,4'-oxydianiline and/or 3,4'-oxydianiline.
  • the acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the content of BPDA is more than 70.0 mol% and less than 100.0 mol%, preferably 73.0 to 97.0 mol%, and 75.0 to 75.0 mol%, in order to achieve both strength and solubility. 90.0 mol% is more preferable.
  • the acid component further contains pyromellitic dianhydride (PMDA).
  • PMDA pyromellitic dianhydride
  • the content of PMDA is more than 0.0 mol% and less than 30.0 mol%, preferably 3.0 to 27.0 mol%, and 10.0 to 27.0 mol%, in order to achieve both strength and solubility. 25.0 mol% is more preferable.
  • the diamine component contains compound A.
  • the content of compound A is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 22.0 to 55 mol%, in order to achieve both strength and solubility. .0 mol% is more preferable.
  • the diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
  • BAPP 2,2-bis-[4-(4-aminophenoxy)phenyl]propane
  • the content of BAPP is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 23.0 to 55.0 mol%, in order to achieve both strength and solubility. 0 mol% is more preferable.
  • the diamine component further contains 4,4'-oxydianiline (ODA) and/or 3,4'-oxydianiline (DAPE).
  • ODA 4,4'-oxydianiline
  • DAPE 3,4'-oxydianiline
  • the total content of ODA and DAPE is more than 0.0 mol% and less than 30.0 mol%, preferably 5.0 to 28.0 mol%, and 10 .0 to 27.0 mol% is more preferable.
  • This production method is generally a method in which the above-mentioned diamine component and acid component are polymerized (dehydration condensation) in a solvent to obtain the above-mentioned polyimide (first to sixth embodiments).
  • the diamine component is as described above.
  • the diamine component further includes aromatic diamines such as 1,4-phenylenediamine; aliphatic diamines such as 1,2-diaminoethane, 1,3-diaminopropane, 1,5-diaminopentane, and 1,6-hexanediamine.
  • Diamines; generally known polyvalent amines; etc. may also be used. These may be used alone or in combination of two or more.
  • the acid component is as described above.
  • the acid component further includes aromatic tetracarboxylic dianhydrides such as 4,4'-oxydiphthalic dianhydride (ODPA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA).
  • aromatic tetracarboxylic dianhydrides such as 4,4'-oxydiphthalic dianhydride (ODPA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA).
  • aliphatic tetracarboxylic dianhydrides such as cyclohexane tetracarboxylic dianhydride; etc. may be used. These may be used alone or in combination of two or more.
  • a diamine component and an acid component blended in an appropriate molar ratio are reacted in a solvent to obtain a polyamic acid. That is, a solution containing polyamic acid (polyamic acid solution) is obtained.
  • the reaction temperature is preferably 30 to 70°C, more preferably 40 to 60°C.
  • the reaction time is preferably 1 to 36 hours, more preferably 6 to 30 hours.
  • the reaction is carried out, for example, under atmospheric pressure.
  • polyamic acid solution a solution containing polyimide (polyimide solution) is obtained.
  • the temperature (heating temperature) at which the polyamic acid (polyamic acid solution) is heated is not particularly limited as long as the temperature is selected so that the azeotropic solvent can be distilled off, but 140 to 220°C is preferable, and 160 to 200°C is preferable. More preferred.
  • the holding time (heating time) at this heating temperature is preferably 0.5 to 10 hours, more preferably 2 to 7 hours. Further, temperature control may be performed in an inert gas blowing environment or a reduced pressure environment as necessary.
  • a container equipped with various cooling devices such as a Dean-Stark trap or a condenser. After that, a desired polyimide solution may be obtained while removing moisture generated as imidization progresses.
  • the molar ratio between the acid component and the diamine component may be arbitrarily set depending on the viscosity of the polyimide solution used for coating, and is preferably 0.90 to 1.10. Preferably, 0.95 to 1.05 is more preferable.
  • the molecular structure of polyimide is not particularly limited.
  • random copolymers, alternating copolymers, block copolymers, etc. can be exemplified depending on the polymerization conditions.
  • the weight average molecular weight of the obtained polyimide is preferably 1,500 or more.
  • this molecular weight is preferably 200,000 or less.
  • problems with stirring equipment can be suppressed.
  • the solvent used in this production method it is preferable to use a polar organic solvent because the obtained polyimide exhibits sufficient solubility.
  • a polar organic solvent for example, benzene, toluene, xylene, etc.
  • the polyimide solution has fluidity suitable for coating and is a uniform and transparent solution free of precipitates.
  • amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone are preferable.
  • the solid content concentration of the polyimide solution is not particularly limited, and is appropriately set depending on the desired viscosity, etc., and is, for example, 5 to 50% by mass.
  • the viscosity of the polyimide solution may be set as appropriate within a range that allows the polyimide solution to be stirred and mixed or transported using a pump, and that does not cause any inconvenience in coating.
  • the viscosity at 25° C. is preferably 0.3 to 200 Pa ⁇ s.
  • a dehydrating agent and an imidization catalyst may be added to the solvent in order to promote imidization.
  • the dehydrating agent any commonly known dehydrating agent may be used, and examples thereof include acid anhydrides such as acetic anhydride and oxalic anhydride; ⁇ -valerolactone; and the like.
  • the imidization catalyst any commonly known catalyst may be used, and examples thereof include tertiary amines such as isoquinoline, ⁇ -picoline, and pyridine.
  • a plurality of dehydrating agents and imidization catalysts may be used in combination.
  • a crosslinking agent for the purpose of modifying the main chain of the polyimide and imparting various properties to the extent that the mechanical properties and electrical properties of the obtained polyimide are not impaired.
  • the crosslinking agent any commonly known ones may be used, such as oxazolines, melamines, isocyanates, aziridines, benzoxazines, bismaleimides, etc., and multiple types may be used in combination. You may.
  • a viscosity stabilizer may be added within a range that does not impair the mechanical properties, electrical properties, etc. of the resulting polyimide.
  • a polyimide film is also a molding material containing polyimide, and depending on the thickness, it can be handled as a film, sheet, panel, etc. It may also be applied to seamless cylindrical tubes, belts, and molded parts using molds.
  • a polyimide film can be used, for example, as a heat-resistant molding material in fields such as flexible printed circuits (FPC), chip-on-film (COF), and electronic circuit boards for tape automated bonding (TAB).
  • FPC flexible printed circuits
  • COF chip-on-film
  • TAB tape automated bonding
  • the conditions for obtaining a polyimide film from a polyimide solution may vary depending on the composition of the polyimide, the type of solvent, the substrate to be coated, etc., but any known method can be used, and there are no particular restrictions. Not done.
  • a cured polyimide film can be obtained by coating a polyimide solution onto a base material and then drying it.
  • the substrate is not eroded by the solvent of the polyimide solution.
  • the base material includes, for example, glass; wood; stone; triacetate cellulose (TAC), polyethylene terephthalate (PET), diacetyl cellulose, acetate butyrate cellulose, polyether sulfone, acrylic resin, polyurethane. Examples include resins such as polyester, polycarbonate, polysulfone, polyether, trimethylpentene, polyetherketone, and (meth)acrylonitrile; rubber; metals such as SUS and copper; and the like.
  • TAC triacetate cellulose
  • PET polyethylene terephthalate
  • diacetyl cellulose acetate butyrate cellulose
  • polyether sulfone acrylic resin
  • polyurethane examples include resins such as polyester, polycarbonate, polysulfone, polyether, trimethylpentene, polyetherketone, and (meth)acrylonitrile; rubber; metals such as SUS and copper; and the like.
  • any commonly known method may be used, for example, a roll coating method, a gravure coating method, a slide coating method, a spray method, a dipping method, a screen printing method, a spray method, etc. may be adopted as appropriate.
  • a roll coating method a gravure coating method, a slide coating method, a spray method, a dipping method, a screen printing method, a spray method, etc.
  • a spray method a dipping method
  • a screen printing method a spray method, etc.
  • any commonly known method may be used, and examples thereof include methods using hot air drying, a far-infrared heating furnace, a ceramic heater, a muffle furnace, etc., and a plurality of methods may be combined.
  • the drying temperature is set, for example, according to the boiling point of the solvent. It may be set in consideration of the glass transition point of the polyimide and the base material.
  • imide ring closure has already progressed due to heating of the solvent carried out in the present production method. Therefore, in order to form a cured film, it is sufficient to simply volatilize and remove the solvent after coating the polyimide solution. By setting the time and pressure appropriately, a cured film can be obtained even under conditions below the boiling point of the solvent.
  • the resulting cured polyimide film does not require the dehydration condensation process required for general polyimides, and therefore does not suffer from curing shrinkage that is characteristic of polyimides. Therefore, steps required for conventional polyimide, such as fixing and stretching the ends of the intermediate film, can be omitted.
  • a filler may be added to the polyimide solution for the purpose of improving various properties of the cured film.
  • any commonly known filler may be used. Examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and carbon black. May be used in combination. Further, a conductive component, a coloring component, an adhesion imparting component, etc. may coexist in these.
  • additives such as a mold release agent, an antifoaming agent, a leveling agent, an ion trapper, a polymerization inhibitor, an antioxidant, a viscosity modifier, and an antistatic agent may be added as necessary.
  • the polyimide film can be used for conventionally known polyimide applications. For example, it is used in electronic devices such as displays, touch panels, projectors, printers, earphones, speakers, and antennas.
  • the base material may be selected on the premise that it will be installed in these electronic devices.
  • the resulting polyimide has good mechanical properties as well as excellent physical properties such as heat resistance and hardness, so it can be used as a binder for carbon fibers, glass fibers, metal nanowires, etc. can. Since the heating load can be reduced, it can be applied to electrodes of secondary batteries whose base material is metal foil. It does not cause curing shrinkage and is dimensionally stable, so it can be applied to porous materials with internal voids.
  • Polyimide membranes can be made into cylindrical shapes and used as tubes and belts. A polyimide film obtained by ensuring film thickness accuracy, applying it smoothly, and drying it can also be peeled off and handled as a film, sheet, panel, etc.
  • Polyimide membranes can be expected to have sufficient durability against solvents with low polarity and moisture, so they can also be used in applications that require water resistance and chemical resistance. Furthermore, by applying this property, a solid substance (powder) of polyimide can be obtained by precipitating polyimide while mixing with a poor solvent such as alcohol, and washing and drying as necessary.
  • ⁇ Preparation of polyimide membrane 15 g of the obtained polyimide solution (within 1 day after synthesis) was applied to a glass plate using a bar coater, and heated at 100°C for 30 minutes, 150°C for 30 minutes, 200°C for 90 minutes, and 220°C for 30 minutes. The mixture was heated for a minute to obtain a polyimide film with a thickness of about 50 ⁇ m.
  • the obtained polyimide film was tested under the following conditions to determine the glass transition temperature (unit: °C), linear thermal expansion coefficient (unit: ppm/K), and thermal decomposition temperature (unit: °C). The results are shown in Table 1 below.
  • Examples 2 to 25 and Comparative Examples 1 to 7> A polyimide solution was prepared and evaluated in the same manner as in Example 1 using the diamine component and acid component shown in Table 1 below in the amounts shown in Table 1 below. The results are shown in Table 1 below.
  • polyimide films were created under the same conditions as ⁇ Creation of polyimide film>> using samples stored at room temperature for two months after production, and mechanical strength and thermal properties were measured. The results are shown in Table 2 below. Even after storage for February, almost the same results as those immediately after synthesis were obtained.
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride represented by the following formula (1)
  • PMDA Pyromellitic dianhydride represented by the following formula (2)
  • MED The following formula ( 3) 4,4'-methylenebis(2-ethyl-6-methylaniline)
  • MMD 4,4'-methylenebis(2,6-dimethylaniline) represented by the following formula (4)
  • EED 4,4'-methylenebis(2,6-diethylaniline) represented by the following formula (5)
  • MDA 4,4'-methylene dianiline represented by the following formula (6)
  • BAPP 2,2-bis-[4-(4-aminophenoxy)phenyl]propane represented by the following formula (7)
  • DAT 2,4-diaminotoluene represented by the following formula (8)
  • ODA 4,4'-oxydianiline represented by the following formula (9)
  • DAPE 3,4'- represented by the following formula (10)

Abstract

Provided is a polyimide which exhibits excellent solubility in a solvent. This polyimide is obtained by polymerizing an acid component which contains 3,3',4,4'-biphenyltetracarboxylic dianhydride and a diamine component which contains 20.0-80.0 mol% of a specific compound A and 20.0-80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane.

Description

ポリイミド、ポリイミド溶液、コーティング材料および成形材料Polyimide, polyimide solution, coating materials and molding materials
 本発明は、ポリイミド、ポリイミド溶液、コーティング材料および成形材料に関する。 The present invention relates to polyimides, polyimide solutions, coating materials, and molding materials.
 ポリイミド(ポリイミド樹脂)は、優れた耐熱性のみならず、耐薬品性、耐放射線性、電気絶縁性、優れた機械的性質などの特性を併せ持つ。
 そのため、フレキシブルプリント配線回路用基板、絶縁被覆塗料、耐熱性成形材料などに用いる材料として、ポリイミドが知られている。
Polyimide (polyimide resin) has properties such as not only excellent heat resistance but also chemical resistance, radiation resistance, electrical insulation, and excellent mechanical properties.
Therefore, polyimide is known as a material used for flexible printed wiring circuit boards, insulating coating paints, heat-resistant molding materials, and the like.
 工業的に用いられる構造のポリイミドの多くは、有機溶媒に不溶であり、しかも、ガラス転移温度以上でも溶融しない。このため、通常、ポリイミドそのものを成形加工することは容易ではない。
 一般に、ポリイミドは、例えば、特許文献1に記載されるように、合成される。
 すなわち、まず、N-メチル-2-ピロリドンなどの非プロトン性極性有機溶媒中で、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物と、1,4-フェニレンジアミンなどの芳香族ジアミンとを反応させ、ポリイミドの前駆体であるポリアミド酸(ポリアミック酸)を得る。
 その後、このポリアミド酸を、250℃~400℃で加熱し、脱水および環化(イミド化)を進めることによって、ポリイミドを得る。
Many of the industrially used polyimides are insoluble in organic solvents and do not melt even at temperatures above the glass transition temperature. For this reason, it is usually not easy to mold polyimide itself.
Generally, polyimides are synthesized, for example, as described in Patent Document 1.
That is, first, in an aprotic polar organic solvent such as N-methyl-2-pyrrolidone, an aromatic tetracarboxylic dianhydride such as 3,3',4,4'-biphenyltetracarboxylic dianhydride and , and an aromatic diamine such as 1,4-phenylenediamine to obtain polyamic acid (polyamic acid), which is a precursor of polyimide.
Thereafter, this polyamic acid is heated at 250° C. to 400° C. to proceed with dehydration and cyclization (imidization), thereby obtaining polyimide.
特公昭60-42817号公報Special Publication No. 60-42817
 工業的に用いられる構造のポリイミドの多くは、ポリアミド酸の状態では有機溶媒に溶解するものの、ポリイミドの状態になると、合成直後や1日程度放置したらゲル化したり析出したりして、溶解せず不溶になる。
 このため、ポリイミドを含有する材料(ポリイミド材料)を得るためには、ポリアミド酸の溶液を塗工し、溶媒を揮発除去してから、その後に加熱し、イミド化させることが一般的である。
 しかし、ポリアミド酸をイミド化する過程で縮合水が発生するので、ポリイミド材料にボイドが発生する場合がある。更に、ポリイミド材料が収縮して、厚さ等が変化する場合もある。
Most industrially used polyimides dissolve in organic solvents in the polyamic acid state, but in the polyimide state, they gel or precipitate immediately after synthesis or after being left for about a day, and do not dissolve. becomes insoluble.
Therefore, in order to obtain a material containing polyimide (polyimide material), it is common to apply a solution of polyamic acid, volatilize and remove the solvent, and then heat to imidize the material.
However, since condensed water is generated during the process of imidizing polyamic acid, voids may occur in the polyimide material. Furthermore, the polyimide material may shrink and its thickness may change.
 本発明は、以上の点を鑑みてなされたものであり、溶媒に対する溶解性に優れる(ゲル化や析出が生じない)ポリイミドを提供することを目的とする。
 更に、本発明は、上記ポリイミドを含有するポリイミド溶液、コーティング材料および成形材料を提供することも目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a polyimide that has excellent solubility in solvents (does not cause gelation or precipitation).
Furthermore, another object of the present invention is to provide a polyimide solution, a coating material, and a molding material containing the above polyimide.
 本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。 As a result of extensive studies, the present inventors have found that the above object can be achieved by adopting the following configuration, and have completed the present invention.
 すなわち、本発明は、以下の[1]~[9]を提供する。
 [1]3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、後述する化合物Aを20.0~80.0mol%および2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを20.0~80.0mol%含有するジアミン成分と、を重合してなるポリイミド。
 [2]3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、後述する化合物Aを20.0~80.0mol%および2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを20.0~80.0mol%含有するジアミン成分と、を重合してなるポリイミド。
 [3]3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、後述する化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%および2,4-ジアミノトルエンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなるポリイミド。
 [4]3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、後述する化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%および2,4-ジアミノトルエンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなるポリイミド。
 [5]3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、後述する化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%ならびに4,4′-オキシジアニリンおよび/または3,4′-オキシジアニリンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなるポリイミド。
 [6]3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、後述する化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%ならびに4,4′-オキシジアニリンおよび/または3,4′-オキシジアニリンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなるポリイミド。
 [7]上記[1]~[6]のいずれかに記載のポリイミドを極性有機溶媒中に5~50質量%含有するポリイミド溶液。
 [8]上記[1]~[6]のいずれかに記載のポリイミドを含有するコーティング材料。
 [9]上記[1]~[6]のいずれかに記載のポリイミドを含有する成形材料。
That is, the present invention provides the following [1] to [9].
[1] An acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride and 20.0 to 80.0 mol% of Compound A described below and 2,2-bis-[4- A polyimide obtained by polymerizing a diamine component containing 20.0 to 80.0 mol% of (4-aminophenoxy)phenyl]propane.
[2] Contains more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride and a diamine component containing 20.0 to 80.0 mol% of Compound A and 20.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane. Polyimide made by polymerizing and.
[3] 15.0 to 80.0 mol% of an acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride and compound A described below, 2,2-bis-[4- A polyimide obtained by polymerizing a diamine component containing 15.0 to 80.0 mol% of (4-aminophenoxy)phenyl]propane and more than 0.0 mol% but less than 30.0 mol% of 2,4-diaminotoluene.
[4] Contains more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride The acid component, 15.0 to 80.0 mol% of Compound A described below, 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and 2,4 - A polyimide obtained by polymerizing a diamine component containing more than 0.0 mol% and less than 30.0 mol% of diaminotoluene.
[5] 15.0 to 80.0 mol% of an acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride and Compound A described below, 2,2-bis-[4- Contains 15.0 to 80.0 mol% of (4-aminophenoxy)phenyl]propane and more than 0.0 mol% but less than 30.0 mol% of 4,4'-oxydianiline and/or 3,4'-oxydianiline A polyimide made by polymerizing a diamine component.
[6] Contains more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride and 15.0 to 80.0 mol% of Compound A, which will be described later, 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and 4,4 A polyimide obtained by polymerizing a diamine component containing more than 0.0 mol% and less than 30.0 mol% of '-oxydianiline and/or 3,4'-oxydianiline.
[7] A polyimide solution containing 5 to 50% by mass of the polyimide according to any one of [1] to [6] above in a polar organic solvent.
[8] A coating material containing the polyimide according to any one of [1] to [6] above.
[9] A molding material containing the polyimide according to any one of [1] to [6] above.
 本発明によれば、溶媒に対する溶解性に優れるポリイミドを提供できる。
 このようなポリイミドを含有する溶液(ポリイミド溶液)を用いれば、すでにイミド化が進行しているため、得られるポリイミド材料において、ボイド等の発生を抑制できる。
 すなわち、ポリイミド溶液を塗工し、溶媒を揮発除去するだけで、任意形状のポリイミド材料が得られる。また、機械強度や熱特性も遜色ないものとなる。
According to the present invention, a polyimide having excellent solubility in solvents can be provided.
If a solution containing such a polyimide (polyimide solution) is used, since imidization has already progressed, the generation of voids etc. can be suppressed in the resulting polyimide material.
That is, a polyimide material having an arbitrary shape can be obtained by simply applying a polyimide solution and volatilizing off the solvent. Furthermore, the mechanical strength and thermal properties are comparable.
[ポリイミド]
 本発明のポリイミド(ポリイミド樹脂)について、第1~第6実施形態を、以下に詳細に説明する。以下に説明する第1~第6実施形態のポリイミドは、溶媒(例えば、後述する極性有機溶媒)に対して優れた溶解性を示す。
[Polyimide]
First to sixth embodiments of the polyimide (polyimide resin) of the present invention will be described in detail below. The polyimides of the first to sixth embodiments described below exhibit excellent solubility in solvents (eg, polar organic solvents described below).
 〈第1実施形態〉
 第1実施形態のポリイミドは、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、後述する化合物Aを20.0~80.0mol%および2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを20.0~80.0mol%含有するジアミン成分と、を重合してなる。
<First embodiment>
The polyimide of the first embodiment contains an acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 20.0 to 80.0 mol% of compound A, which will be described later, and 2,2-biphenyltetracarboxylic dianhydride. A diamine component containing 20.0 to 80.0 mol% of bis-[4-(4-aminophenoxy)phenyl]propane is polymerized.
 《酸成分》
 酸成分は、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物(BPDA)を含有する。
 酸成分中、BPDAの含有量は、強度と溶解性とを両立させるという理由から、90.0mol%以上が好ましく、95.0mol%以上がより好ましく、100.0mol%が更に好ましい。
《Acid component》
The acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
In the acid component, the content of BPDA is preferably 90.0 mol% or more, more preferably 95.0 mol% or more, and even more preferably 100.0 mol%, for the reason that both strength and solubility are achieved.
 《ジアミン成分》
 ジアミン成分は、下記式(A)で表される化合物Aを含有する。
《Diamine component》
The diamine component contains compound A represented by the following formula (A).
 上記式(A)中のR、R、RおよびRは、それぞれ独立に、メチル基またはエチル基である。 R 1 , R 2 , R 3 and R 4 in the above formula (A) are each independently a methyl group or an ethyl group.
 化合物Aとしては、例えば、後述する式(3)で表される4,4′-メチレンビス(2-エチル-6-メチルアニリン)(MED)、後述する式(4)で表される4,4′-メチレンビス(2,6-ジメチルアニリン)(MMD)、および、後述する式(5)で表される4,4′-メチレンビス(2,6-ジエチルアニリン)(EED)が好適に挙げられる。 Examples of compound A include 4,4'-methylenebis(2-ethyl-6-methylaniline) (MED) represented by formula (3) described later, and 4,4'-methylenebis(2-ethyl-6-methylaniline) (MED) represented by formula (4) described later. Preferred examples include '-methylenebis(2,6-dimethylaniline) (MMD) and 4,4'-methylenebis(2,6-diethylaniline) (EED) represented by formula (5) described below.
 ジアミン成分中、化合物Aの含有量は、強度と溶解性とを両立させるという理由から、20.0~80.0mol%であり、23.0~77.0mol%が好ましく、25.0~75.0mol%がより好ましい。 In the diamine component, the content of compound A is 20.0 to 80.0 mol%, preferably 23.0 to 77.0 mol%, and 25.0 to 75 mol%, for the reason of achieving both strength and solubility. .0 mol% is more preferable.
 ジアミン成分は、更に、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を含有する。
 ジアミン成分中、BAPPの含有量は、強度と溶解性とを両立させるという理由から、20.0~80.0mol%であり、23.0~77.0mol%が好ましく、25.0~75.0mol%がより好ましい。
The diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
In the diamine component, the content of BAPP is 20.0 to 80.0 mol%, preferably 23.0 to 77.0 mol%, and 25.0 to 75.0 mol%, in order to achieve both strength and solubility. 0 mol% is more preferable.
 〈第2実施形態〉
 第2実施形態のポリイミドは、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、化合物Aを20.0~80.0mol%および2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを20.0~80.0mol%含有するジアミン成分と、を重合してなる。
<Second embodiment>
The polyimide of the second embodiment contains more than 70.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and less than 100.0 mol% and more than 0.0 mol% of pyromellitic dianhydride. An acid component containing less than .0 mol%, and 20.0 to 80.0 mol% of compound A and 20.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane. It is obtained by polymerizing a diamine component.
 《酸成分》
 酸成分は、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物(BPDA)を含有する。
 酸成分中、BPDAの含有量は、強度と溶解性とを両立させるという理由から、70.0mol%超100.0mol%未満であり、73.0~97.0mol%が好ましく、75.0~90.0mol%がより好ましい。
《Acid component》
The acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
In the acid component, the content of BPDA is more than 70.0 mol% and less than 100.0 mol%, preferably 73.0 to 97.0 mol%, and 75.0 to 75.0 mol%, in order to achieve both strength and solubility. 90.0 mol% is more preferable.
 酸成分は、更に、ピロメリット酸二無水物(PMDA)を含有する。
 酸成分中、PMDAの含有量は、強度と溶解性とを両立させるという理由から、0.0mol%超30.0mol%未満であり、3.0~27.0mol%が好ましく、10.0~27.0mol%がより好ましい。
The acid component further contains pyromellitic dianhydride (PMDA).
In the acid component, the content of PMDA is more than 0.0 mol% and less than 30.0 mol%, preferably 3.0 to 27.0 mol%, and 10.0 to 27.0 mol%, in order to achieve both strength and solubility. 27.0 mol% is more preferable.
 《ジアミン成分》
 ジアミン成分は、化合物Aを含有する。
 ジアミン成分中、化合物Aの含有量は、強度と溶解性とを両立させるという理由から、20.0~80.0mol%であり、23.0~77.0mol%が好ましく、25.0~75.0mol%がより好ましい。
《Diamine component》
The diamine component contains compound A.
In the diamine component, the content of compound A is 20.0 to 80.0 mol%, preferably 23.0 to 77.0 mol%, and 25.0 to 75 mol%, in order to achieve both strength and solubility. .0 mol% is more preferable.
 ジアミン成分は、更に、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を含有する。
 ジアミン成分中、BAPPの含有量は、強度と溶解性とを両立させるという理由から、20.0~80.0mol%であり、23.0~77.0mol%が好ましく、25.0~75.0mol%がより好ましい。
The diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
In the diamine component, the content of BAPP is 20.0 to 80.0 mol%, preferably 23.0 to 77.0 mol%, and 25.0 to 75.0 mol%, in order to achieve both strength and solubility. 0 mol% is more preferable.
 〈第3実施形態〉
 第3実施形態のポリイミドは、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%および2,4-ジアミノトルエンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなる。
<Third embodiment>
The polyimide of the third embodiment contains an acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 15.0 to 80.0 mol% of compound A, 2,2-bis- A diamine component containing 15.0 to 80.0 mol% of [4-(4-aminophenoxy)phenyl]propane and more than 0.0 mol% but less than 30.0 mol% of 2,4-diaminotoluene. .
 《酸成分》
 酸成分は、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物(BPDA)を含有する。
 酸成分中、BPDAの含有量は、強度と溶解性とを両立させるという理由から、90.0mol%以上が好ましく、95.0mol%以上がより好ましく、100.0mol%が更に好ましい。
《Acid component》
The acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
In the acid component, the content of BPDA is preferably 90.0 mol% or more, more preferably 95.0 mol% or more, and even more preferably 100.0 mol%, for the reason that both strength and solubility are achieved.
 《ジアミン成分》
 ジアミン成分は、化合物Aを含有する。
 ジアミン成分中、化合物Aの含有量は、強度と溶解性とを両立させるという理由から、15.0~80.0mol%であり、20.0~70.0mol%が好ましく、20.0~60.0mol%がより好ましい。
《Diamine component》
The diamine component contains compound A.
In the diamine component, the content of compound A is 15.0 to 80.0 mol%, preferably 20.0 to 70.0 mol%, and 20.0 to 60 mol%, in order to achieve both strength and solubility. .0 mol% is more preferable.
 ジアミン成分は、更に、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を含有する。
 ジアミン成分中、BAPPの含有量は、強度と溶解性とを両立させるという理由から、15.0~80.0mol%であり、20.0~70.0mol%が好ましく、25.0~60.0mol%がより好ましい。
The diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
In the diamine component, the content of BAPP is 15.0 to 80.0 mol%, preferably 20.0 to 70.0 mol%, and 25.0 to 60.0 mol%, in order to achieve both strength and solubility. 0 mol% is more preferable.
 ジアミン成分は、更に、2,4-ジアミノトルエン(DAT)を含有する。
 ジアミン成分中、DATの含有量は、強度と溶解性とを両立させるという理由から、0.0mol%超30.0mol%未満であり、5.0~28.0mol%が好ましく、10.0~27.0mol%がより好ましい。
The diamine component further contains 2,4-diaminotoluene (DAT).
In the diamine component, the content of DAT is more than 0.0 mol% and less than 30.0 mol%, preferably 5.0 to 28.0 mol%, and 10.0 to 28.0 mol%, in order to achieve both strength and solubility. 27.0 mol% is more preferable.
 〈第4実施形態〉
 第4実施形態のポリイミドは、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%および2,4-ジアミノトルエンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなる。
<Fourth embodiment>
The polyimide of the fourth embodiment contains more than 70.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and less than 100.0 mol% and more than 0.0 mol% of pyromellitic dianhydride. An acid component containing less than .0 mol%, 15.0 to 80.0 mol% of compound A, 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and A diamine component containing more than 0.0 mol% and less than 30.0 mol% of 2,4-diaminotoluene.
 《酸成分》
 酸成分は、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物(BPDA)を含有する。
 酸成分中、BPDAの含有量は、強度と溶解性とを両立させるという理由から、70.0mol%超100.0mol%未満であり、73.0~97.0mol%が好ましく、75.0~90.0mol%がより好ましい。
《Acid component》
The acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
In the acid component, the content of BPDA is more than 70.0 mol% and less than 100.0 mol%, preferably 73.0 to 97.0 mol%, and 75.0 to 75.0 mol%, in order to achieve both strength and solubility. 90.0 mol% is more preferable.
 酸成分は、更に、ピロメリット酸二無水物(PMDA)を含有する。
 酸成分中、PMDAの含有量は、強度と溶解性とを両立させるという理由から、0.0mol%超30.0mol%未満であり、3.0~27.0mol%が好ましく、10.0~25.0mol%がより好ましい。
The acid component further contains pyromellitic dianhydride (PMDA).
In the acid component, the content of PMDA is more than 0.0 mol% and less than 30.0 mol%, preferably 3.0 to 27.0 mol%, and 10.0 to 27.0 mol%, in order to achieve both strength and solubility. 25.0 mol% is more preferable.
 《ジアミン成分》
 ジアミン成分は、化合物Aを含有する。
 ジアミン成分中、化合物Aの含有量は、強度と溶解性とを両立させるという理由から、15.0~80.0mol%であり、20.0~60.0mol%が好ましく、22.0~45.0mol%がより好ましい。
《Diamine component》
The diamine component contains compound A.
In the diamine component, the content of compound A is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 22.0 to 45 mol%, for the reason of achieving both strength and solubility. .0 mol% is more preferable.
 ジアミン成分は、更に、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を含有する。
 ジアミン成分中、BAPPの含有量は、強度と溶解性とを両立させるという理由から、15.0~80.0mol%であり、25.0~60.0mol%が好ましく、30.0~55.0mol%がより好ましい。
The diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
In the diamine component, the content of BAPP is 15.0 to 80.0 mol%, preferably 25.0 to 60.0 mol%, and 30.0 to 55.0 mol%, for the purpose of achieving both strength and solubility. 0 mol% is more preferable.
 ジアミン成分は、更に、2,4-ジアミノトルエン(DAT)を含有する。
 ジアミン成分中、DATの含有量は、強度と溶解性とを両立させるという理由から、0.0mol%超30.0mol%未満であり、5.0~28.0mol%が好ましく、10.0~27.0mol%がより好ましい。
The diamine component further contains 2,4-diaminotoluene (DAT).
In the diamine component, the content of DAT is more than 0.0 mol% and less than 30.0 mol%, preferably 5.0 to 28.0 mol%, and 10.0 to 28.0 mol%, in order to achieve both strength and solubility. 27.0 mol% is more preferable.
 〈第5実施形態〉
 第5実施形態のポリイミドは、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%ならびに4,4′-オキシジアニリンおよび/または3,4′-オキシジアニリンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなる。
<Fifth embodiment>
The polyimide of the fifth embodiment contains an acid component containing 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 15.0 to 80.0 mol% of compound A, 2,2-bis- 15.0 to 80.0 mol% of [4-(4-aminophenoxy)phenyl]propane and more than 0.0 mol% of 4,4'-oxydianiline and/or 3,4'-oxydianiline to 30.0 mol% A diamine component containing less than % of the diamine component is polymerized.
 《酸成分》
 酸成分は、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物(BPDA)を含有する。
 酸成分中、BPDAの含有量は、強度と溶解性とを両立させるという理由から、90.0mol%以上が好ましく、95.0mol%以上がより好ましく、100.0mol%が更に好ましい。
《Acid component》
The acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
In the acid component, the content of BPDA is preferably 90.0 mol% or more, more preferably 95.0 mol% or more, and even more preferably 100.0 mol%, for the reason that both strength and solubility are achieved.
 《ジアミン成分》
 ジアミン成分は、化合物Aを含有する。
 ジアミン成分中、化合物Aの含有量は、強度と溶解性とを両立させるという理由から、15.0~80.0mol%であり、20.0~60.0mol%が好ましく、23.0~52mol%がより好ましい。
《Diamine component》
The diamine component contains compound A.
In the diamine component, the content of compound A is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 23.0 to 52 mol%, for the reason of achieving both strength and solubility. % is more preferable.
 ジアミン成分は、更に、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を含有する。
 ジアミン成分中、BAPPの含有量は、強度と溶解性とを両立させるという理由から、15.0~80.0mol%であり、20.0~60.0mol%が好ましく、23.0~52.0mol%がより好ましい。
The diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
In the diamine component, the content of BAPP is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 23.0 to 52.0 mol%, for the purpose of achieving both strength and solubility. 0 mol% is more preferable.
 ジアミン成分は、更に、4,4′-オキシジアニリン(ODA)および/または3,4′-オキシジアニリン(DAPE)を含有する。
 ジアミン成分中、ODAおよびDAPEの合計含有量は、強度と溶解性とを両立させるという理由から、0.0mol%超30.0mol%未満であり、5.0~28.0mol%が好ましく、10.0~27.0mol%がより好ましい。
The diamine component further contains 4,4'-oxydianiline (ODA) and/or 3,4'-oxydianiline (DAPE).
In the diamine component, the total content of ODA and DAPE is more than 0.0 mol% and less than 30.0 mol%, preferably 5.0 to 28.0 mol%, and 10 .0 to 27.0 mol% is more preferable.
 〈第6実施形態〉
 第6実施形態のポリイミドは、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%ならびに4,4′-オキシジアニリンおよび/または3,4′-オキシジアニリンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなる。
<Sixth embodiment>
The polyimide of the sixth embodiment contains more than 70.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and less than 100.0 mol% and more than 0.0 mol% of pyromellitic dianhydride. An acid component containing less than .0 mol%, 15.0 to 80.0 mol% of compound A, 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and and a diamine component containing more than 0.0 mol% and less than 30.0 mol% of 4,4'-oxydianiline and/or 3,4'-oxydianiline.
 《酸成分》
 酸成分は、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物(BPDA)を含有する。
 酸成分中、BPDAの含有量は、強度と溶解性とを両立させるという理由から、70.0mol%超100.0mol%未満であり、73.0~97.0mol%が好ましく、75.0~90.0mol%がより好ましい。
《Acid component》
The acid component contains 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
In the acid component, the content of BPDA is more than 70.0 mol% and less than 100.0 mol%, preferably 73.0 to 97.0 mol%, and 75.0 to 75.0 mol%, in order to achieve both strength and solubility. 90.0 mol% is more preferable.
 酸成分は、更に、ピロメリット酸二無水物(PMDA)を含有する。
 酸成分中、PMDAの含有量は、強度と溶解性とを両立させるという理由から、0.0mol%超30.0mol%未満であり、3.0~27.0mol%が好ましく、10.0~25.0mol%がより好ましい。
The acid component further contains pyromellitic dianhydride (PMDA).
In the acid component, the content of PMDA is more than 0.0 mol% and less than 30.0 mol%, preferably 3.0 to 27.0 mol%, and 10.0 to 27.0 mol%, in order to achieve both strength and solubility. 25.0 mol% is more preferable.
 《ジアミン成分》
 ジアミン成分は、化合物Aを含有する。
 ジアミン成分中、化合物Aの含有量は、強度と溶解性とを両立させるという理由から、15.0~80.0mol%であり、20.0~60.0mol%が好ましく、22.0~55.0mol%がより好ましい。
《Diamine component》
The diamine component contains compound A.
In the diamine component, the content of compound A is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 22.0 to 55 mol%, in order to achieve both strength and solubility. .0 mol% is more preferable.
 ジアミン成分は、更に、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を含有する。
 ジアミン成分中、BAPPの含有量は、強度と溶解性とを両立させるという理由から、15.0~80.0mol%であり、20.0~60.0mol%が好ましく、23.0~55.0mol%がより好ましい。
The diamine component further contains 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP).
In the diamine component, the content of BAPP is 15.0 to 80.0 mol%, preferably 20.0 to 60.0 mol%, and 23.0 to 55.0 mol%, in order to achieve both strength and solubility. 0 mol% is more preferable.
 ジアミン成分は、更に、4,4′-オキシジアニリン(ODA)および/または3,4′-オキシジアニリン(DAPE)を含有する。
 ジアミン成分中、ODAおよびDAPEの合計含有量は、強度と溶解性とを両立させるという理由から、0.0mol%超30.0mol%未満であり、5.0~28.0mol%が好ましく、10.0~27.0mol%がより好ましい。
The diamine component further contains 4,4'-oxydianiline (ODA) and/or 3,4'-oxydianiline (DAPE).
In the diamine component, the total content of ODA and DAPE is more than 0.0 mol% and less than 30.0 mol%, preferably 5.0 to 28.0 mol%, and 10 .0 to 27.0 mol% is more preferable.
[ポリイミドの製造方法およびポリイミド溶液]
 次に、上述した第1~第6実施形態のポリイミドを製造する方法(以下、便宜的に、「本製造方法」ともいう)を説明する。
 以下の説明は、ポリイミドが溶媒に溶解した溶液(ポリイミド溶液)の説明も兼ねる。ポリイミド溶液は、ポリイミドを含有するコーティング材料でもある。
 ポリイミド溶液(コーティング材料)は、電着塗料、絶縁性塗料、耐熱性塗料などとして使用できる。
[Polyimide manufacturing method and polyimide solution]
Next, a method for manufacturing the polyimide of the first to sixth embodiments described above (hereinafter also referred to as "this manufacturing method" for convenience) will be described.
The following description also serves as a description of a solution (polyimide solution) in which polyimide is dissolved in a solvent. Polyimide solution is also a coating material containing polyimide.
Polyimide solutions (coating materials) can be used as electrodeposition paints, insulating paints, heat-resistant paints, etc.
 本製造方法は、概略的には、上述したジアミン成分と酸成分とを溶媒中で重合(脱水縮合)させて、上述したポリイミド(第1~第6実施形態)を得る方法である。 This production method is generally a method in which the above-mentioned diamine component and acid component are polymerized (dehydration condensation) in a solvent to obtain the above-mentioned polyimide (first to sixth embodiments).
 ジアミン成分は、上述したとおりである。
 ジアミン成分としては、更に、1,4-フェニレンジアミンなどの芳香族ジアミン;1,2-ジアミノエタン、1,3-ジアミノプロパン、1,5-ジアミノペンタン、1,6-ヘキサンジアミンなどの脂肪族ジアミン;一般的に公知の多価アミン;等を用いてもよい。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
The diamine component is as described above.
The diamine component further includes aromatic diamines such as 1,4-phenylenediamine; aliphatic diamines such as 1,2-diaminoethane, 1,3-diaminopropane, 1,5-diaminopentane, and 1,6-hexanediamine. Diamines; generally known polyvalent amines; etc. may also be used. These may be used alone or in combination of two or more.
 酸成分は、上述したとおりである。
 酸成分としては、更に、4,4′-オキシジフタル酸二無水物(ODPA)、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物(BTDA)などの芳香族テトラカルボン酸二無水物;シクロヘキサンテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物;等を用いてもよい。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
The acid component is as described above.
The acid component further includes aromatic tetracarboxylic dianhydrides such as 4,4'-oxydiphthalic dianhydride (ODPA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA). aliphatic tetracarboxylic dianhydrides such as cyclohexane tetracarboxylic dianhydride; etc. may be used. These may be used alone or in combination of two or more.
 適量のモル比で配合したジアミン成分と酸成分とを、溶媒中で反応させて、ポリアミド酸を得る。すなわち、ポリアミド酸を含有する溶液(ポリアミド酸溶液)を得る。
 このとき、反応温度は、30~70℃が好ましく、40~60℃がより好ましい。反応時間は、1~36時間が好ましく、6~30時間がより好ましい。反応は、例えば、大気圧下で実施する。
A diamine component and an acid component blended in an appropriate molar ratio are reacted in a solvent to obtain a polyamic acid. That is, a solution containing polyamic acid (polyamic acid solution) is obtained.
At this time, the reaction temperature is preferably 30 to 70°C, more preferably 40 to 60°C. The reaction time is preferably 1 to 36 hours, more preferably 6 to 30 hours. The reaction is carried out, for example, under atmospheric pressure.
 次いで、ポリアミド酸溶液を加熱することにより、ポリアミド酸をイミド化(脱水および環化)する。これにより、ポリイミドを含有する溶液(ポリイミド溶液)が得られる。 Next, by heating the polyamic acid solution, the polyamic acid is imidized (dehydrated and cyclized). Thereby, a solution containing polyimide (polyimide solution) is obtained.
 ポリアミド酸(ポリアミド酸溶液)を加熱する際の温度(加熱温度)は、共沸溶媒を留去できる温度が選定されていれば特に限定されないが、140~220℃が好ましく、160~200℃がより好ましい。
 この加熱温度での保持時間(加熱時間)は、0.5~10時間が好ましく、2~7時間がより好ましい。また、温度管理は、必要に応じて不活性ガス吹き込み環境下や減圧環境下で行なってもよい。
The temperature (heating temperature) at which the polyamic acid (polyamic acid solution) is heated is not particularly limited as long as the temperature is selected so that the azeotropic solvent can be distilled off, but 140 to 220°C is preferable, and 160 to 200°C is preferable. More preferred.
The holding time (heating time) at this heating temperature is preferably 0.5 to 10 hours, more preferably 2 to 7 hours. Further, temperature control may be performed in an inert gas blowing environment or a reduced pressure environment as necessary.
 本製造方法においては、ディーンスターク型トラップやコンデンサなど各種の冷却装置を備える容器を用いることが好ましい。そのうえで、イミド化の進行に応じて生じる水分を除去しながら、所望のポリイミド溶液を得ればよい。 In this production method, it is preferable to use a container equipped with various cooling devices such as a Dean-Stark trap or a condenser. After that, a desired polyimide solution may be obtained while removing moisture generated as imidization progresses.
 酸成分とジアミン成分とのモル比(酸成分/ジアミン成分)は、例えば、塗工して使用されるポリイミド溶液の粘度などに応じて任意に設定してよく、0.90~1.10が好ましく、0.95~1.05がより好ましい。 The molar ratio between the acid component and the diamine component (acid component/diamine component) may be arbitrarily set depending on the viscosity of the polyimide solution used for coating, and is preferably 0.90 to 1.10. Preferably, 0.95 to 1.05 is more preferable.
 ポリイミドの分子構造は、特に限定されない。例えば、重合条件により、ランダム共重合、交互共重合体、ブロック共重合体などを例示できる。 The molecular structure of polyimide is not particularly limited. For example, random copolymers, alternating copolymers, block copolymers, etc. can be exemplified depending on the polymerization conditions.
 得られるポリイミドの重量平均分子量は、1,500以上が好ましい。分子量がこの範囲であれば、ポリイミド溶液が充分な粘性を示し、所望する膜厚を得やすい。
 一方、この分子量は、20万以下が好ましい。分子量がこの範囲であれば、攪拌設備に不具合を与えることが抑制される。また、溶媒を効率的に除去しやすい。
The weight average molecular weight of the obtained polyimide is preferably 1,500 or more. When the molecular weight is within this range, the polyimide solution exhibits sufficient viscosity and it is easy to obtain a desired film thickness.
On the other hand, this molecular weight is preferably 200,000 or less. When the molecular weight is within this range, problems with stirring equipment can be suppressed. Moreover, it is easy to efficiently remove the solvent.
 本製造方法に使用する溶媒としては、得られるポリイミドが充分な溶解性を示すという理由から、極性有機溶媒を用いることが好ましい。
 溶媒中でポリイミドを得る際には、イミド化によって生成する水分を除去する。そのため、水との共沸作用が知られている公知の助溶剤(例えば、ベンゼン、トルエン、キシレンなど)を共存させ、加熱等により除去することが好ましい。
 また、ポリイミド溶液は、塗工相応の流動性を有し、かつ、析出物の無い均一透明な溶液であることが好ましい。
 これらの観点から、極性有機溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド系溶媒が好ましい。
As the solvent used in this production method, it is preferable to use a polar organic solvent because the obtained polyimide exhibits sufficient solubility.
When polyimide is obtained in a solvent, water generated by imidization is removed. Therefore, it is preferable to coexist with a known co-solvent (for example, benzene, toluene, xylene, etc.) that is known to have an azeotropic effect with water, and to remove it by heating or the like.
Further, it is preferable that the polyimide solution has fluidity suitable for coating and is a uniform and transparent solution free of precipitates.
From these viewpoints, as the polar organic solvent, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone are preferable.
 ポリイミド溶液の固形分濃度は、特に限定されず、所望する粘度などに応じて適宜設定され、例えば、5~50質量%である。 The solid content concentration of the polyimide solution is not particularly limited, and is appropriately set depending on the desired viscosity, etc., and is, for example, 5 to 50% by mass.
 ポリイミド溶液の粘度は、ポリイミド溶液を撹拌混合したり、ポンプを用いて送液したりすることができ、かつ、塗工に不都合の生じない範囲で適宜で設定すればよい。具体的には、25℃での粘度は、0.3~200Pa・sが好ましい。 The viscosity of the polyimide solution may be set as appropriate within a range that allows the polyimide solution to be stirred and mixed or transported using a pump, and that does not cause any inconvenience in coating. Specifically, the viscosity at 25° C. is preferably 0.3 to 200 Pa·s.
 本製造方法においては、イミド化を促進するため、溶媒中に、脱水剤およびイミド化触媒を配合してもよい。
 脱水剤としては、一般公知のものを任意で使用してよく、例えば、無水酢酸、無水シュウ酸などの酸無水物;γ-バレロラクトン;等が挙げられる。
 イミド化触媒としては、一般公知のものを任意で使用してよく、例えば、イソキノリン、β-ピコリン、ピリジンなどの第三級アミン類が挙げられる。
 脱水剤やイミド化触媒は、複数種を混合して使用してもよい。
In this production method, a dehydrating agent and an imidization catalyst may be added to the solvent in order to promote imidization.
As the dehydrating agent, any commonly known dehydrating agent may be used, and examples thereof include acid anhydrides such as acetic anhydride and oxalic anhydride; γ-valerolactone; and the like.
As the imidization catalyst, any commonly known catalyst may be used, and examples thereof include tertiary amines such as isoquinoline, β-picoline, and pyridine.
A plurality of dehydrating agents and imidization catalysts may be used in combination.
 更に、得られるポリイミドの機械特性および電気特性などを損なわない範囲で、ポリイミドの主鎖を修飾して各種特性を付与することを目的として、架橋剤、カップリング剤などを配合してもよい。
 架橋剤としては、一般公知のものを任意で使用してよく、例えば、オキサゾリン類、メラミン類、イソシアネート類、アジリジン類、ベンゾオキサジン類、ビスマレイミド類などが挙げられ、複数種を混合して使用してもよい。
Furthermore, a crosslinking agent, a coupling agent, etc. may be added for the purpose of modifying the main chain of the polyimide and imparting various properties to the extent that the mechanical properties and electrical properties of the obtained polyimide are not impaired.
As the crosslinking agent, any commonly known ones may be used, such as oxazolines, melamines, isocyanates, aziridines, benzoxazines, bismaleimides, etc., and multiple types may be used in combination. You may.
 工業的に使用する観点から、ポリイミド溶液は、重合(脱水縮合)後の状態が2週間以上継続することが好ましく、粘度の変化も伴わないことがより好ましい。
 このため、得られるポリイミドの機械特性および電気特性などを損なわない範囲で、粘度安定剤を配合してもよい。
From the viewpoint of industrial use, it is preferable that the state after polymerization (dehydration condensation) of the polyimide solution continues for two weeks or more, and it is more preferable that there is no change in viscosity.
For this reason, a viscosity stabilizer may be added within a range that does not impair the mechanical properties, electrical properties, etc. of the resulting polyimide.
[ポリイミド膜(成形材料)]
 次に、ポリイミド溶液を用いて得られる硬化膜(ポリイミド膜)を説明する。
 ポリイミド膜は、ポリイミドを含有する成形材料でもあり、厚さに応じて、フィルム、シート、パネルなどとして取り扱うことができる。継ぎ目のない筒状のチューブやベルトや金型を使用した成形部品に応用してもよい。
[Polyimide film (molding material)]
Next, a cured film (polyimide film) obtained using a polyimide solution will be explained.
A polyimide film is also a molding material containing polyimide, and depending on the thickness, it can be handled as a film, sheet, panel, etc. It may also be applied to seamless cylindrical tubes, belts, and molded parts using molds.
 ポリイミド膜を、例えば耐熱性成形材料として、フレキシブルプリント配線回路(FPC)、チップオンフィルム(COF)、テープオートメーテッドボンディング(TAB)用電子回路基板などの分野において使用できる。 A polyimide film can be used, for example, as a heat-resistant molding material in fields such as flexible printed circuits (FPC), chip-on-film (COF), and electronic circuit boards for tape automated bonding (TAB).
 ポリイミド溶液からポリイミド膜を得るための条件は、ポリイミドの組成、溶媒の種類、塗工対象である基材などに応じて変動し得るが、その方法としては、公知の方法を採用でき、特に限定されない。 The conditions for obtaining a polyimide film from a polyimide solution may vary depending on the composition of the polyimide, the type of solvent, the substrate to be coated, etc., but any known method can be used, and there are no particular restrictions. Not done.
 例えば、ポリイミド溶液を、基材上に塗工した後、乾燥することにより、硬化膜であるポリイミド膜が得られる。 For example, a cured polyimide film can be obtained by coating a polyimide solution onto a base material and then drying it.
 基材は、ポリイミド溶液の溶媒に浸食されないことが好ましい。
 具体的には、基材の材料としては、例えば、ガラス;木材;石材;トリアセテートセルロース(TAC)、ポリエチレンテレフタレート(PET)、ジアセチルセルロース、アセテートブチレートセルロース、ポリエーテルサルホン、アクリル系樹脂、ポリウレタン系樹脂、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテル、トリメチルペンテン、ポリエーテルケトン、(メタ)アクリロニトリルなどの樹脂;ゴム;SUS、銅などの金属;等が挙げられる。
 基材が透明性に優れる場合、基材および硬化膜の複合体を透明材料として使用できる。
 基材が有色であれば、基材の意匠性を損なうことなく使用ができる。
Preferably, the substrate is not eroded by the solvent of the polyimide solution.
Specifically, the base material includes, for example, glass; wood; stone; triacetate cellulose (TAC), polyethylene terephthalate (PET), diacetyl cellulose, acetate butyrate cellulose, polyether sulfone, acrylic resin, polyurethane. Examples include resins such as polyester, polycarbonate, polysulfone, polyether, trimethylpentene, polyetherketone, and (meth)acrylonitrile; rubber; metals such as SUS and copper; and the like.
When the substrate has excellent transparency, a composite of the substrate and the cured film can be used as a transparent material.
If the base material is colored, it can be used without impairing the design of the base material.
 塗工方法としては、一般公知のものを任意で使用してよく、例えば、ロールコート法、グラビアコート法、スライドコート法、スプレー法、浸漬法、スクリーン印刷法、スプレー法などを適宜で採用すればよい。 As the coating method, any commonly known method may be used, for example, a roll coating method, a gravure coating method, a slide coating method, a spray method, a dipping method, a screen printing method, a spray method, etc. may be adopted as appropriate. Bye.
 乾燥方法としては、一般公知のものを任意で使用してよく、例えば、熱風乾燥、遠赤外線加熱炉、セラミックヒーター、マッフル炉などを用いた方法が挙げられ、複数の方法を組み合わせてもよい。
 乾燥温度は、例えば、溶媒の沸点に合わせて設定する。ポリイミドや基材のガラス転移点を考慮して設定すればよい。
 上述した本製造方法により得られるポリイミド溶液は、本製造方法において実施する溶媒の加熱によって既にイミド閉環が進行している。このため、硬化膜を形成するためには、ポリイミド溶液を塗工した後に、溶媒を揮発除去するだけでよい。時間や圧力を適宜で設定すれば、溶媒の沸点以下の条件でも硬化膜が得られる。
As the drying method, any commonly known method may be used, and examples thereof include methods using hot air drying, a far-infrared heating furnace, a ceramic heater, a muffle furnace, etc., and a plurality of methods may be combined.
The drying temperature is set, for example, according to the boiling point of the solvent. It may be set in consideration of the glass transition point of the polyimide and the base material.
In the polyimide solution obtained by the present production method described above, imide ring closure has already progressed due to heating of the solvent carried out in the present production method. Therefore, in order to form a cured film, it is sufficient to simply volatilize and remove the solvent after coating the polyimide solution. By setting the time and pressure appropriately, a cured film can be obtained even under conditions below the boiling point of the solvent.
 得られる硬化膜であるポリイミド膜は、一般的なポリイミドに必要とされる脱水縮合の工程が不要であるため、ポリイミドに特有の硬化収縮が起こらない。
 このため、中間フィルムの端部を固定し延伸するなど従来のポリイミドに必要とされる工程を省略できる。
The resulting cured polyimide film does not require the dehydration condensation process required for general polyimides, and therefore does not suffer from curing shrinkage that is characteristic of polyimides.
Therefore, steps required for conventional polyimide, such as fixing and stretching the ends of the intermediate film, can be omitted.
 ポリイミド溶液からポリイミド膜を得るに際して、硬化膜の諸特性を改善する目的で、ポリイミド溶液にフィラーを添加してもよい。
 フィラーとしては、一般公知のものを任意で使用してよく、例えば、シリカ、酸化チタン、アルミナ、窒化ケイ素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母、カーボンブラックなどが挙げられ、複数種を混合して使用してもよい。また、これらには、導電成分、着色成分、接着付与成分などが共存していてもよい。
 そのほか、必要に応じて、離型剤、消泡剤、レベリング剤、イオントラッパー、重合禁止剤、酸化防止剤、粘度調整剤、帯電防止剤などの公知の添加剤を添加してもよい。
When obtaining a polyimide film from a polyimide solution, a filler may be added to the polyimide solution for the purpose of improving various properties of the cured film.
As the filler, any commonly known filler may be used. Examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and carbon black. May be used in combination. Further, a conductive component, a coloring component, an adhesion imparting component, etc. may coexist in these.
In addition, known additives such as a mold release agent, an antifoaming agent, a leveling agent, an ion trapper, a polymerization inhibitor, an antioxidant, a viscosity modifier, and an antistatic agent may be added as necessary.
 ポリイミド膜は、従来公知のポリイミドの用途に使用できる。
 例えば、ディスプレイ、タッチパネル、プロジェクタ、プリンタ、イヤホン、スピーカー、アンテナなどの電子機器に使用される。これら電子機器への搭載を前提として、基材を選定してもよい。
 得られるポリイミドは、良好な機械特性のほか、耐熱性や硬度などの物理特性にも優れることから、例えば、炭素繊維、ガラス繊維、金属ナノワイヤなどの結着剤(バインダー)にも適用して使用できる。
 加熱の負荷を軽減できるため、基材を金属箔とする二次電池の電極類に適用できる。
 硬化収縮を伴わず、寸法が安定するため、内部に空隙を持つ多孔質材料に適用できる。ポリイミド膜を筒状して、チューブ類やベルト類としても使用できる。
 膜厚精度を確保して平滑に塗工し乾燥することで得られるポリイミド膜は、剥離したうえで、フィルム、シート、パネルなどとして取り扱うこともできる。
The polyimide film can be used for conventionally known polyimide applications.
For example, it is used in electronic devices such as displays, touch panels, projectors, printers, earphones, speakers, and antennas. The base material may be selected on the premise that it will be installed in these electronic devices.
The resulting polyimide has good mechanical properties as well as excellent physical properties such as heat resistance and hardness, so it can be used as a binder for carbon fibers, glass fibers, metal nanowires, etc. can.
Since the heating load can be reduced, it can be applied to electrodes of secondary batteries whose base material is metal foil.
It does not cause curing shrinkage and is dimensionally stable, so it can be applied to porous materials with internal voids. Polyimide membranes can be made into cylindrical shapes and used as tubes and belts.
A polyimide film obtained by ensuring film thickness accuracy, applying it smoothly, and drying it can also be peeled off and handled as a film, sheet, panel, etc.
 ポリイミド膜は、極性の低い溶媒や水分に対しては充分な耐久性が期待できるため、耐水性や耐薬品性などが要求される用途にも使用できる。
 更に、この性質を応用して、アルコール等の貧溶媒と混合しながらポリイミドを沈殿させ、必要に応じて洗浄や乾燥を行なうことによって、ポリイミドの固形物(粉末)を得ることもできる。
Polyimide membranes can be expected to have sufficient durability against solvents with low polarity and moisture, so they can also be used in applications that require water resistance and chemical resistance.
Furthermore, by applying this property, a solid substance (powder) of polyimide can be obtained by precipitating polyimide while mixing with a poor solvent such as alcohol, and washing and drying as necessary.
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。 The present invention will be specifically described below with reference to Examples. However, the present invention is not limited to the embodiments described below.
 〈実施例1〉
 《ポリイミド溶液の調製》
 窒素雰囲気下、N-メチル-2-ピロリドン(NMP)78.77gに、化合物Aとしての4,4′-メチレンビス(2-エチル-6-メチルアニリン)(MED)を7.62g(27.00mmol)、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を3.70g(9.01mmol)、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物(BPDA)を10.60g(36.01mmol)添加し、50℃、大気圧中で24時間撹拌、反応させ、ポリアミド酸溶液を得た。
 得られたポリアミド酸溶液にγ-バレロラクトン(GVL)、ピリジン、トルエンを添加し、170℃で5時間、縮合水を系外へ除去しながら加熱撹拌し、ポリイミド溶液を得た。得られたポリイミド溶液は赤褐色透明であった。
<Example 1>
《Preparation of polyimide solution》
Under a nitrogen atmosphere, 7.62 g (27.00 mmol) of 4,4'-methylenebis(2-ethyl-6-methylaniline) (MED) as compound A was added to 78.77 g of N-methyl-2-pyrrolidone (NMP). ), 3.70 g (9.01 mmol) of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane (BAPP), 3,3',4,4'-biphenyltetracarboxylic dianhydride 10.60 g (36.01 mmol) of (BPDA) was added, and the mixture was stirred and reacted at 50° C. and atmospheric pressure for 24 hours to obtain a polyamic acid solution.
γ-valerolactone (GVL), pyridine, and toluene were added to the obtained polyamic acid solution, and heated and stirred at 170° C. for 5 hours while removing condensed water from the system to obtain a polyimide solution. The obtained polyimide solution was reddish brown and transparent.
 《溶解性》
 得られたポリイミド溶液を、常温、大気圧中で2週間放置した。放置後に良好な溶解性、流動性を示した場合は「Good」を、合成直後または合成後1日以内にゲル化、析出などの異常を生じた場合は「Bad」を下記表1に記載した。「Good」であれば、得られたポリイミド溶液中のポリイミドは、溶媒に対する溶解性に優れると評価できる。
《Solubility》
The obtained polyimide solution was left at room temperature and atmospheric pressure for two weeks. If the product showed good solubility and fluidity after standing, it was marked as "Good", and if abnormalities such as gelation or precipitation occurred immediately after synthesis or within one day after synthesis, it was marked as "Bad" in Table 1 below. . If it is "Good", it can be evaluated that the polyimide in the obtained polyimide solution has excellent solubility in the solvent.
 《ポリイミド膜の作製》
 得られたポリイミド溶液(合成後1日以内のもの)15gを、バーコーターを用いてガラス板に塗布し、100℃で30分間、150℃で30分間、200℃で90分間、220℃で30分間加熱し、約50μm厚のポリイミド膜を得た。
《Preparation of polyimide membrane》
15 g of the obtained polyimide solution (within 1 day after synthesis) was applied to a glass plate using a bar coater, and heated at 100°C for 30 minutes, 150°C for 30 minutes, 200°C for 90 minutes, and 220°C for 30 minutes. The mixture was heated for a minute to obtain a polyimide film with a thickness of about 50 μm.
 《機械強度》
 得られたポリイミド膜について、JIS K 7127:1999(ISO 527-3:1995)に準拠して、以下の条件で引張試験を実施して、引張弾性率(単位:MPa)および引張強さ(単位:MPa)を求めた。結果を下記表1に示す。
 測定装置:島津製作所製AGS-J
 引張速度:102mm/min
 チャック間距離:30mm
《Mechanical strength》
The obtained polyimide film was subjected to a tensile test under the following conditions in accordance with JIS K 7127:1999 (ISO 527-3:1995) to determine the tensile modulus (unit: MPa) and tensile strength (unit: MPa). : MPa) was determined. The results are shown in Table 1 below.
Measuring device: Shimadzu AGS-J
Tensile speed: 102mm/min
Distance between chucks: 30mm
 《熱特性》
 得られたポリイミド膜について、以下の条件で試験を実施して、ガラス転移温度(単位:℃)、線熱膨張係数(単位:ppm/K)および熱分解温度(単位:℃)を求めた。結果を下記表1に示す。
《Thermal properties》
The obtained polyimide film was tested under the following conditions to determine the glass transition temperature (unit: °C), linear thermal expansion coefficient (unit: ppm/K), and thermal decomposition temperature (unit: °C). The results are shown in Table 1 below.
 (ガラス転移温度)
 機器:TAインストルメント製DMA Q800
 昇温速度:3℃/min
 温度範囲:50~450℃
 周波数:1Hz
(Glass-transition temperature)
Equipment: DMA Q800 manufactured by TA Instruments
Temperature increase rate: 3℃/min
Temperature range: 50-450℃
Frequency: 1Hz
 (線熱膨張係数)
 機器:島津製作所TMA-60
 温度範囲:50℃-200℃
 昇温速度:10℃/min
(Coefficient of linear thermal expansion)
Equipment: Shimadzu TMA-60
Temperature range: 50℃-200℃
Temperature increase rate: 10℃/min
 (熱分解温度)
 機器:島津製作所DTG-60
 速度:10℃/min
 熱分解温度:測定チャートから5質量%の減少が生じた温度
(pyrolysis temperature)
Equipment: Shimadzu DTG-60
Speed: 10℃/min
Thermal decomposition temperature: temperature at which 5% reduction in mass occurs from the measurement chart
 〈実施例2~25および比較例1~7〉
 下記表1に示すジアミン成分および酸成分を、下記表1に示す配合量で用いて、実施例1と同様の手順で、ポリイミド溶液を作製し、評価した。結果を下記表1に示す。
<Examples 2 to 25 and Comparative Examples 1 to 7>
A polyimide solution was prepared and evaluated in the same manner as in Example 1 using the diamine component and acid component shown in Table 1 below in the amounts shown in Table 1 below. The results are shown in Table 1 below.
 実施例12および実施例19については、製造後2月室温で保管したサンプルを用いて、《ポリイミド膜の作成》と同じ条件でポリイミド膜を作成し、機械強度および熱特性を測定した。結果を下記表2に示す。2月保管しても、合成直後の結果とほぼ同じ結果を得た。 For Examples 12 and 19, polyimide films were created under the same conditions as <<Creation of polyimide film>> using samples stored at room temperature for two months after production, and mechanical strength and thermal properties were measured. The results are shown in Table 2 below. Even after storage for February, almost the same results as those immediately after synthesis were obtained.
 なお、溶解性が「Bad」であったサンプル(具体的には、比較例1~7)については、ポリアミド酸溶液を再度製造した。いずれのサンプルもゲル化も析出もないことを確認した。得られたポリアミド酸溶液を用いて、《ポリイミド膜の作成》と同じ条件でポリイミド膜を作成し、参考として機械強度および熱特性を測定した。 Note that for the samples whose solubility was "Bad" (specifically, Comparative Examples 1 to 7), polyamic acid solutions were produced again. It was confirmed that there was no gelation or precipitation in any of the samples. Using the obtained polyamic acid solution, a polyimide film was created under the same conditions as <<Creation of polyimide film>>, and its mechanical strength and thermal properties were measured as a reference.
 下記表1に示す各成分は、以下のとおりである。
 BPDA:下記式(1)で表される3,3′,4,4′-ビフェニルテトラカルボン酸二無水物
 PMDA:下記式(2)で表されるピロメリット酸二無水物
 MED:下記式(3)で表される4,4′-メチレンビス(2-エチル-6-メチルアニリン)
 MMD:下記式(4)で表される4,4′-メチレンビス(2,6-ジメチルアニリン)
 EED:下記式(5)で表される4,4′-メチレンビス(2,6-ジエチルアニリン)
 MDA:下記式(6)で表される4,4′-メチレンジアニリン
 BAPP:下記式(7)で表される2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパン
 DAT:下記式(8)で表される2,4-ジアミノトルエン
 ODA:下記式(9)で表される4,4′-オキシジアニリン
 DAPE:下記式(10)で表される3,4′-オキシジアニリン
Each component shown in Table 1 below is as follows.
BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride represented by the following formula (1) PMDA: Pyromellitic dianhydride represented by the following formula (2) MED: The following formula ( 3) 4,4'-methylenebis(2-ethyl-6-methylaniline)
MMD: 4,4'-methylenebis(2,6-dimethylaniline) represented by the following formula (4)
EED: 4,4'-methylenebis(2,6-diethylaniline) represented by the following formula (5)
MDA: 4,4'-methylene dianiline represented by the following formula (6) BAPP: 2,2-bis-[4-(4-aminophenoxy)phenyl]propane represented by the following formula (7) DAT: 2,4-diaminotoluene represented by the following formula (8) ODA: 4,4'-oxydianiline represented by the following formula (9) DAPE: 3,4'- represented by the following formula (10) Oxydianiline


















Figure JPOXMLDOC01-appb-T000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-T000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 〈評価結果まとめ〉
 上記表1に示すように、実施例1~25のポリイミドは、溶媒に対する溶解性が良好であった。
 これに対して、比較例1~7のポリイミドは、溶媒に対する溶解性が不十分であった。
<Summary of evaluation results>
As shown in Table 1 above, the polyimides of Examples 1 to 25 had good solubility in solvents.
In contrast, the polyimides of Comparative Examples 1 to 7 had insufficient solubility in solvents.

Claims (9)

  1.  3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、
     下記式(A)で表される化合物Aを20.0~80.0mol%および2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを20.0~80.0mol%含有するジアミン成分と、を重合してなるポリイミド。

     前記式(A)中のR、R、RおよびRは、それぞれ独立に、メチル基またはエチル基である。
    an acid component containing 3,3′,4,4′-biphenyltetracarboxylic dianhydride;
    Contains 20.0 to 80.0 mol% of compound A represented by the following formula (A) and 20.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane. A polyimide made by polymerizing a diamine component.

    R 1 , R 2 , R 3 and R 4 in the formula (A) are each independently a methyl group or an ethyl group.
  2.  3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、
     下記式(A)で表される化合物Aを20.0~80.0mol%および2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを20.0~80.0mol%含有するジアミン成分と、を重合してなるポリイミド。

     前記式(A)中のR、R、RおよびRは、それぞれ独立に、メチル基またはエチル基である。
    An acid component containing more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride. and,
    Contains 20.0 to 80.0 mol% of compound A represented by the following formula (A) and 20.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane. A polyimide made by polymerizing a diamine component.

    R 1 , R 2 , R 3 and R 4 in the formula (A) are each independently a methyl group or an ethyl group.
  3.  3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、
     下記式(A)で表される化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%および2,4-ジアミノトルエンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなるポリイミド。

     前記式(A)中のR、R、RおよびRは、それぞれ独立に、メチル基またはエチル基である。
    an acid component containing 3,3′,4,4′-biphenyltetracarboxylic dianhydride;
    15.0 to 80.0 mol% of compound A represented by the following formula (A), 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and 2 , and a diamine component containing more than 0.0 mol% and less than 30.0 mol% of 4-diaminotoluene.

    R 1 , R 2 , R 3 and R 4 in the formula (A) are each independently a methyl group or an ethyl group.
  4.  3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、
     下記式(A)で表される化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%および2,4-ジアミノトルエンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなるポリイミド。

     前記式(A)中のR、R、RおよびRは、それぞれ独立に、メチル基またはエチル基である。
    An acid component containing more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride. and,
    15.0 to 80.0 mol% of compound A represented by the following formula (A), 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and 2 , and a diamine component containing more than 0.0 mol% and less than 30.0 mol% of 4-diaminotoluene.

    R 1 , R 2 , R 3 and R 4 in the formula (A) are each independently a methyl group or an ethyl group.
  5.  3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を含有する酸成分と、
     下記式(A)で表される化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%ならびに4,4′-オキシジアニリンおよび/または3,4′-オキシジアニリンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなるポリイミド。

     前記式(A)中のR、R、RおよびRは、それぞれ独立に、メチル基またはエチル基である。
    an acid component containing 3,3′,4,4′-biphenyltetracarboxylic dianhydride;
    15.0 to 80.0 mol% of compound A represented by the following formula (A), 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and 4 , 4'-oxydianiline and/or a diamine component containing more than 0.0 mol% and less than 30.0 mol% of 3,4'-oxydianiline.

    R 1 , R 2 , R 3 and R 4 in the formula (A) are each independently a methyl group or an ethyl group.
  6.  3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を70.0mol%超100.0mol%未満およびピロメリット酸二無水物を0.0mol%超30.0mol%未満含有する酸成分と、
     下記式(A)で表される化合物Aを15.0~80.0mol%、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]プロパンを15.0~80.0mol%ならびに4,4′-オキシジアニリンおよび/または3,4′-オキシジアニリンを0.0mol%超30.0mol%未満含有するジアミン成分と、を重合してなるポリイミド。

     前記式(A)中のR、R、RおよびRは、それぞれ独立に、メチル基またはエチル基である。
    An acid component containing more than 70.0 mol% but less than 100.0 mol% of 3,3',4,4'-biphenyltetracarboxylic dianhydride and more than 0.0 mol% and less than 30.0 mol% of pyromellitic dianhydride. and,
    15.0 to 80.0 mol% of compound A represented by the following formula (A), 15.0 to 80.0 mol% of 2,2-bis-[4-(4-aminophenoxy)phenyl]propane, and 4 , 4'-oxydianiline and/or a diamine component containing more than 0.0 mol% and less than 30.0 mol% of 3,4'-oxydianiline.

    R 1 , R 2 , R 3 and R 4 in the formula (A) are each independently a methyl group or an ethyl group.
  7.  請求項1~6のいずれか1項に記載のポリイミドを極性有機溶媒中に5~50質量%含有するポリイミド溶液。 A polyimide solution containing 5 to 50% by mass of the polyimide according to any one of claims 1 to 6 in a polar organic solvent.
  8.  請求項1~6のいずれか1項に記載のポリイミドを含有するコーティング材料。 A coating material containing the polyimide according to any one of claims 1 to 6.
  9.  請求項1~6のいずれか1項に記載のポリイミドを含有する成形材料。 A molding material containing the polyimide according to any one of claims 1 to 6.
PCT/JP2023/027166 2022-08-15 2023-07-25 Polyimide, polyimide solution, coating material, and formation material WO2024038737A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237041748A KR20240024797A (en) 2022-08-15 2023-07-25 Polyimide, polyimide solution, coating material and molding material
CN202380012401.6A CN117897431A (en) 2022-08-15 2023-07-25 Polyimide, polyimide solution, coating material, and molding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022129262 2022-08-15
JP2022-129262 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024038737A1 true WO2024038737A1 (en) 2024-02-22

Family

ID=89941501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027166 WO2024038737A1 (en) 2022-08-15 2023-07-25 Polyimide, polyimide solution, coating material, and formation material

Country Status (3)

Country Link
KR (1) KR20240024797A (en)
CN (1) CN117897431A (en)
WO (1) WO2024038737A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120785A (en) * 1996-10-21 1998-05-12 Sumitomo Bakelite Co Ltd Polyimide resin composition and film adhesive and its production
JPH10231426A (en) * 1997-02-18 1998-09-02 Sumitomo Bakelite Co Ltd Polyimide resin composition
JPH10265760A (en) * 1997-03-24 1998-10-06 Sumitomo Bakelite Co Ltd Film adhesive and its production
JPH10301281A (en) * 1997-02-25 1998-11-13 Toray Ind Inc Precursor composition of photosensitive polyimide
JPH11335652A (en) * 1998-05-22 1999-12-07 Sumitomo Bakelite Co Ltd Film adhesive
JP2002265918A (en) * 2001-03-08 2002-09-18 Sumitomo Bakelite Co Ltd Insulating adhesive
JP2003253125A (en) * 2001-01-31 2003-09-10 Sumitomo Bakelite Co Ltd Insulating resin composition, insulating resin sheet and printed wiring board
JP2003298242A (en) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd Multilayer wiring board, method of manufacturing the same, and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042817A (en) 1983-08-19 1985-03-07 Mitsui Toatsu Chem Inc Method for controlling valence electron of hydrogenated amorphous silicon film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120785A (en) * 1996-10-21 1998-05-12 Sumitomo Bakelite Co Ltd Polyimide resin composition and film adhesive and its production
JPH10231426A (en) * 1997-02-18 1998-09-02 Sumitomo Bakelite Co Ltd Polyimide resin composition
JPH10301281A (en) * 1997-02-25 1998-11-13 Toray Ind Inc Precursor composition of photosensitive polyimide
JPH10265760A (en) * 1997-03-24 1998-10-06 Sumitomo Bakelite Co Ltd Film adhesive and its production
JPH11335652A (en) * 1998-05-22 1999-12-07 Sumitomo Bakelite Co Ltd Film adhesive
JP2003253125A (en) * 2001-01-31 2003-09-10 Sumitomo Bakelite Co Ltd Insulating resin composition, insulating resin sheet and printed wiring board
JP2002265918A (en) * 2001-03-08 2002-09-18 Sumitomo Bakelite Co Ltd Insulating adhesive
JP2003298242A (en) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd Multilayer wiring board, method of manufacturing the same, and semiconductor device

Also Published As

Publication number Publication date
CN117897431A (en) 2024-04-16
KR20240024797A (en) 2024-02-26

Similar Documents

Publication Publication Date Title
TWI589643B (en) Polyamic acid composition, polyamic acid, polyimide composition And Polyimide
JP5804778B2 (en) New polyimide varnish
CN101754856A (en) Multilayer polyimide film, laminate and metal-clad laminate
EP3106487B1 (en) Polyamide acid composition and polyimide composition
KR20130003358A (en) Polyamic acid and polyamic acid solution, polyimide protecive layer, polyimide film
KR20190079944A (en) Polyimide Film for Preparing Flexible Copper Clad Laminate And Flexible Copper Clad Laminate Comprising the Same
KR20120067645A (en) Polyimide film
KR102184617B1 (en) Solvent soluble polyimide copolymer
JP4665373B2 (en) Polyimide film
JP6713784B2 (en) Polyimide, polyimide solution, resin film, polyimide composition, cross-linked polyimide, coverlay film and circuit board
KR101896537B1 (en) Polyimide copolymer, and production method for same
KR102141891B1 (en) Polyimide Film for Preparing Flexible Copper Clad Laminate And Flexible Copper Clad Laminate Comprising the Same
TW201900748A (en) Ultra-thin black polyimine film and preparation method thereof
JP3048703B2 (en) Polyamic acid copolymer and polyimide film comprising the same
JPH0525273A (en) Polyimide film and its production
JP5941429B2 (en) Polyamic acid and polyimide
JPH09227697A (en) Preparation of heat-resistant polyimide film through gel
WO2024038737A1 (en) Polyimide, polyimide solution, coating material, and formation material
KR20160000232A (en) Polyimide film with improved adhesion and chemical resistance properties
JP3989650B2 (en) Polyimide film
JP2023503481A (en) Polyimide film and its manufacturing method
TW202415708A (en) Polyimide, polyimide solution, coating material and molded material
JP2831867B2 (en) Polyamic acid copolymer, polyimide copolymer comprising the same, polyimide film, and methods for producing them
JPH1149857A (en) Production of polyimide excellent in thermal dimensional stability
JP2019214642A (en) Polyimide film for coverlay film, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854773

Country of ref document: EP

Kind code of ref document: A1