WO2024038537A1 - Light source unit, illumination unit, exposure device, and exposure method - Google Patents

Light source unit, illumination unit, exposure device, and exposure method Download PDF

Info

Publication number
WO2024038537A1
WO2024038537A1 PCT/JP2022/031212 JP2022031212W WO2024038537A1 WO 2024038537 A1 WO2024038537 A1 WO 2024038537A1 JP 2022031212 W JP2022031212 W JP 2022031212W WO 2024038537 A1 WO2024038537 A1 WO 2024038537A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
substrate
source unit
heat sink
unit according
Prior art date
Application number
PCT/JP2022/031212
Other languages
French (fr)
Japanese (ja)
Inventor
吉田亮平
鈴木智也
櫻井友紀也
犬童真成
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2022/031212 priority Critical patent/WO2024038537A1/en
Publication of WO2024038537A1 publication Critical patent/WO2024038537A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • It relates to a light source unit, a lighting unit, an exposure device, and an exposure method.
  • liquid crystal display panels have been widely used as display elements for personal computers, televisions, etc.
  • a liquid crystal display panel is manufactured by forming a circuit pattern of thin film transistors on a plate (glass substrate) using a photolithography method.
  • an exposure apparatus is used that projects and exposes an original pattern formed on a mask onto a photoresist layer on a plate via a projection optical system.
  • the light source unit includes a substrate having a first surface and a second surface facing each other, and a plurality of light source elements two-dimensionally arranged on the first surface of the substrate.
  • a heat sink the substrate has at least one recess formed in a portion of the second surface that faces the range in which the plurality of light source elements are arranged in a plan view
  • the heat sink includes: The substrate has a through hole, and the substrate and the heat sink are fixed by a fixing member that is inserted through the through hole and fitted into the recess.
  • the illumination unit includes the light source unit and an illumination optical system that guides the light emitted from the light source unit to the irradiated object.
  • the illumination unit includes a plurality of the above-mentioned light source units and a combining optical element that combines the light emitted from the plurality of light source units, and the combined light emitted from the combining optical element.
  • an illumination optical system that guides the light to the irradiated object.
  • an exposure apparatus includes the illumination unit described above and a projection optical system that projects a pattern image of a mask illuminated by the illumination unit onto a photosensitive substrate.
  • an exposure method is an exposure method using the above-mentioned exposure apparatus, comprising illuminating a mask with the illumination unit and projecting a pattern image of the mask using the projection optical system. and projecting onto a photosensitive substrate.
  • configurations of the embodiments described below may be modified as appropriate, and at least a portion thereof may be replaced with other components.
  • the configuration elements whose arrangement is not particularly limited are not limited to the arrangement disclosed in the embodiments, but can be arranged at a position where the function can be achieved.
  • FIG. 1 is a schematic diagram showing the configuration of an exposure apparatus according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the lighting unit.
  • 3(A) is a front view of the first and second light source arrays
  • FIG. 3(B) is a sectional view taken along the line AA in FIG. 3(A).
  • FIG. 4 is a rear view of the board.
  • FIG. 5 is a perspective view showing a heat sink and a first light source array.
  • FIG. 6 is a perspective view showing the ⁇ Z1 side surface of the heat sink.
  • FIG. 7(A) is a front view showing the heat sink and the first light source array
  • FIG. 7(B) is a sectional view taken along the line AA in FIG. 7(A).
  • FIG. 7(A) is a front view showing the heat sink and the first light source array
  • FIG. 7(B) is a sectional view taken along the line AA in FIG. 7(A).
  • FIG. 8 is a diagram for explaining the first and second enlarging optical systems.
  • 9(A) is a front view showing a heat sink and a light source array according to a comparative example
  • FIG. 9(B) is a sectional view taken along the line AA in FIG. 9(A).
  • FIG. 10 is a diagram showing the measurement results of the surface temperature of the substrate.
  • FIG. 11 is a sectional view for explaining a modification.
  • FIG. 1 is a diagram schematically showing the configuration of an exposure apparatus 10 according to an embodiment.
  • the exposure apparatus 10 drives the mask MSK and the glass substrate (hereinafter referred to as "plate") P in the same direction and at the same speed relative to the projection optical system PL, thereby transferring the pattern formed on the mask MSK to the plate P.
  • This is a scanning stepper (scanner) that transfers images onto the image.
  • the plate P is a rectangular glass substrate used, for example, in a liquid crystal display device (flat panel display), and has at least one side length or diagonal length of 500 mm or more.
  • the direction in which the mask MSK and plate P are driven during scanning exposure is the X-axis direction
  • the direction in the horizontal plane perpendicular to this is the Y-axis direction, which is perpendicular to the X-axis and the Y-axis.
  • the direction of rotation is defined as the Z-axis direction
  • the directions of rotation (tilt) around the X-axis, Y-axis, and Z-axis are defined as ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the exposure apparatus 10 includes an illumination system IOP, a mask stage MST holding a mask MSK, a projection optical system PL, a body 70 supporting these, a substrate stage PST holding a plate P, a control system for these, and the like.
  • the control system centrally controls each component of the exposure apparatus 10.
  • the body 70 includes a base (vibration isolator) 71, columns 72A, 72B, an optical surface plate 73, a support 74, and a slide guide 75.
  • the base (vibration isolation table) 71 is placed on the floor F, isolates vibrations from the floor F, and supports the columns 72A, 72B, etc.
  • Columns 72A and 72B each have a frame shape, and column 72A is arranged inside column 72B.
  • the optical surface plate 73 has a flat plate shape and is fixed to the ceiling of the column 72A.
  • the support body 74 is supported on the ceiling of the column 72B via a slide guide 75.
  • Slide guide 75 includes an air ball lifter and a positioning mechanism, and positions support body 74 (that is, mask stage MST, which will be described later) at an appropriate position in the X-axis direction with respect to optical surface plate 73.
  • the illumination system IOP is arranged above the body 70.
  • the illumination system IOP irradiates the mask MSK with illumination light IL.
  • the detailed configuration of the illumination system IOP will be described later.
  • Mask stage MST is supported by support body 74.
  • a mask MSK having a pattern surface (lower surface in FIG. 1) on which a circuit pattern is formed is fixed to the mask stage MST by, for example, vacuum suction (or electrostatic suction).
  • Mask stage MST is driven with a predetermined stroke in the scanning direction (X-axis direction) by a drive system including, for example, a linear motor, and is also slightly driven in the non-scanning direction (Y-axis direction and ⁇ z direction).
  • Positional information (including rotational information in the ⁇ z direction) of mask stage MST in the XY plane is measured by an interferometer system.
  • the interferometer system irradiates a length measurement beam onto a movable mirror (or mirror-finished reflective surface (not shown)) provided at the end of mask stage MST, and receives reflected light from the movable mirror. Measure the position of mask stage MST.
  • the measurement results are supplied to a control device (not shown), and the control device drives mask stage MST via a drive system according to the measurement results of the interferometer system.
  • Projection optical system PL is supported by optical surface plate 73 below mask stage MST (-Z side).
  • the projection optical system PL is configured similarly to the projection optical system disclosed in, for example, U.S. Pat. 7), and forms a rectangular image field whose longitudinal direction is the Y-axis direction.
  • four projection optical units 100 are arranged at predetermined intervals in the Y-axis direction, and the remaining three projection optical units 100 are spaced apart from the four projection optical units 100 on the +X side and at predetermined intervals in the Y-axis direction. It is located in As each of the plurality of projection optical units 100, for example, one that forms an erect normal image with a double-sided telecentric, equal-magnification system is used.
  • the plurality of projection areas of the projection optical units 100 arranged in a staggered manner are collectively referred to as an exposure area.
  • the illumination light IL When the illumination region on the mask MSK is illuminated by the illumination light IL from the illumination system IOP, the illumination light IL that has passed through the mask MSK illuminates the circuit pattern of the mask MSK in the illumination region through the projection optical system PL.
  • a projected image (partially erected image) is formed in an irradiation area (exposure area (conjugate to the illumination area)) on plate P arranged on the image plane side of projection optical system PL.
  • the surface of the plate P is coated with a resist (sensitizer).
  • Mask stage MST and substrate stage PST are driven synchronously, that is, mask MSK is driven in the scanning direction (X-axis direction) with respect to the illumination area (illumination light IL), and plate P is moved into the exposure area (illumination light IL). On the other hand, by driving in the same scanning direction, the plate P is exposed and the pattern of the mask MSK is transferred onto the plate P.
  • the substrate stage PST is arranged on a base (vibration isolation table) 71 below (-Z side) the projection optical system PL.
  • a plate P is held on substrate stage PST via a substrate holder (not shown).
  • Position information in the XY plane of substrate stage PST (including rotation information (yawing amount (rotation amount ⁇ z in the ⁇ z direction), pitching amount (rotation amount ⁇ x in the ⁇ x direction), rolling amount (rotation amount ⁇ y in the ⁇ y direction)) is measured by an interferometer system.
  • the interferometer system irradiates a length measurement beam from an optical surface plate 73 onto a movable mirror (or a mirror-finished reflective surface (not shown)) provided at the end of the substrate stage PST, and collects the reflected light from the movable mirror. By receiving light, the position of substrate stage PST is measured.
  • the measurement results are supplied to a control device (not shown), and the control device drives substrate stage PST according to the measurement results of the interferometer system.
  • the exposure apparatus 10 performs alignment measurement (eg, EGA, etc.) prior to exposure, and uses the results to expose the plate P according to the following procedure.
  • mask stage MST and substrate stage PST are synchronously driven in the X-axis direction.
  • the control device moves (steps) substrate stage PST to a position corresponding to the second shot area.
  • scanning exposure is performed for the second shot area.
  • the control device transfers the pattern of the mask MSK to all shot areas on the plate P by repeating stepping between shot areas of the plate P and scanning exposure for the shot areas.
  • the illumination system IOP includes a plurality of illumination units 90 corresponding to each of the plurality of projection optical units 100 included in the projection optical system PL.
  • FIG. 2 is a diagram schematically showing the configuration of the lighting unit 90.
  • the illumination unit 90 includes a first light source unit OPU1, a second light source unit OPU2, and an illumination optical system 80.
  • the first light source unit OPU1 includes a heat sink 40, a first light source array 20A, and a first enlarging optical system 30A
  • the second light source unit OPU2 includes a heat sink 40, a second light source array 20B, and a second enlarging optical system. system 30B.
  • FIG. 3(A) is a front view schematically showing the configuration of the first light source array 20A and the second light source array 20B
  • FIG. 3(B) is a sectional view taken along the line AA in FIG. 3(A). be.
  • FIG. 3(B) hatching of LED chips 23A and 23B, which will be described later, is omitted.
  • the first light source array 20A includes a substrate 21A and a plurality of (5 ⁇ 5 in FIG. 3A) LEDs (Light Emitting Diodes) two-dimensionally arranged on the substrate 21A.
  • a chip 23A is provided. The number of LED chips 23A may be changed as necessary.
  • the substrate 21A has a first surface 21a and a second surface 21b facing each other, and LED chips 23A are arranged on the first surface 21a.
  • the LED chips 23A are arranged at a pitch P1, and the pitch P1 is the distance between the centers of adjacent LED chips 23A.
  • Each of the plurality of LED chips 23A has a light emitting section 231A, and the peak wavelength of light emitted from the light emitting section 231A is within the range of 380 to 390 nm. That is, the light emitting section 231A is an ultraviolet LED (UV LED). More preferably, the peak wavelength of the light emitted from the light emitting section 231A is 385 nm.
  • the light emitting surface of the light emitting section 231A is square, and the length of one side thereof is a1.
  • the two directions in which the LED chips 23A are arranged are referred to as the X1 direction and the Y1 direction.
  • the X1 direction and the Y1 direction are orthogonal. Further, the direction perpendicular to the X1 direction and the Y1 direction is defined as the Z1 direction.
  • the Z1 direction is approximately parallel to the optical axis of light emitted by the light emitting section 231A.
  • the second light source array 20B includes a substrate 21B and a plurality of (5 ⁇ 5 in FIG. 3A) LED chips 23B two-dimensionally arranged on the substrate 21B.
  • the number of LED chips 23B may be changed as necessary.
  • the substrate 21B also has a first surface 21a and a second surface 21b facing each other, and LED chips 23B are arranged on the first surface 21a.
  • the LED chips 23B are arranged at a pitch P2, and the pitch P2 is the distance between the centers of adjacent LED chips 23B.
  • the arrangement pitch P1 of the LED chips 23A and the arrangement pitch P2 of the LED chips 23B may be the same or different.
  • Each of the plurality of LED chips 23B has a light emitting section 231B, and the peak wavelength of light emitted from the light emitting section 231B is within the range of 360 to 370 nm. That is, the light emitting section 231B is a UV LED. More preferably, the peak wavelength of the light emitted from the light emitting section 231B is 365 nm.
  • the light emitting surface of the light emitting section 231B is square, and the length of one side thereof is a2. The length a2 of one side of the light emitting surface of the light emitting section 231B may be the same as or different from the length a1 of one side of the light emitting surface of the light emitting section 231A.
  • FIG. 4 is a rear view of the substrates 21A and 21B.
  • the substrates 21A and 21B are metal substrates with a thickness of 5 mm or less.
  • the substrates 21A and 21B are preferably made of a material with high thermal conductivity, and may be, for example, a copper substrate.
  • on the second surface 21b of the substrates 21A, 21B opposite to the first surface 21a in a range where a plurality of LED chips 23A, 23B are arranged in plan view.
  • a plurality of recesses 211 (3 ⁇ 3 in FIG. 4) are formed in the opposing portion AR1. In this embodiment, the plurality of recesses 211 are provided at equal intervals in each of the X1 direction and the Y1 direction.
  • the recess 211 does not penetrate the substrates 21A and 21B.
  • the recess 211 is a screw hole, and the boards 21A and 21B can be fixed to the heat sink 40 by engaging the bolt 61 in the recess 211, which will be described in detail later.
  • FIG. 5 is a perspective view showing the heat sink 40 and the first light source array 20A
  • FIG. 6 is a perspective view showing the -Z1 side surface of the heat sink 40
  • FIG. 7(A) is a front view showing the heat sink 40 and the first light source array 20A
  • FIG. 7(B) is a sectional view taken along the line AA in FIG. 7(A). Since the relationship between the second light source array 20B and the heat sink 40 is the same as the relationship between the first light source array 20A and the heat sink 40, the heat sink 40 and the first light source array 20A will be described below.
  • FIG. 5 illustrates, as an example, a case where the first light source array 20A includes 10 ⁇ 14 LED chips 23A. Moreover, in FIG. 7(B), hatching of the LED chip 23A is omitted.
  • first light source arrays 20A are arranged on the heat sink 40.
  • the number of first light source arrays 20A arranged on the heat sink 40 is not limited to three, and may be two or less or four or more. That is, it is sufficient that at least one first light source array 20A is disposed on the heat sink 40.
  • the heat sink 40 has a flow path 402 through which the refrigerant passes, a supply port 41 that supplies the refrigerant to the flow path 402, and an exhaust port 42 that discharges the refrigerant that has passed through the flow path 402. and cools the LED chips 23A included in the first light source array 20A.
  • the refrigerant may be a liquid or a gas, but preferably water.
  • the brightness of light from the light emitting section 231A included in the LED chip 23A decreases as the temperature of the LED chip 23A increases. In other words, the luminous efficiency of the LED chip 23A decreases as the temperature increases.
  • the heat sink 40 has a through hole 401 that penetrates the heat sink 40, as shown in FIGS. 6 and 7(B).
  • the through hole 401 is a stepped through hole whose diameter changes in two steps.
  • a flow path 402 inside the heat sink 40 is formed in a portion where the through hole 401 is not formed.
  • the through hole 401 is provided at a position corresponding to the recess 211 provided in the second surface 21b of the substrate 21A included in the first light source array 20A.
  • a heat conductive member 50 such as Thermal Interface Material (TIM) is provided between the substrate 21A and the heat sink 40.
  • TIM Thermal Interface Material
  • a heat conductive sheet is used as the heat conductive member 50.
  • the thermally conductive member 50 may be thermally conductive grease or the like.
  • the thermally conductive member 50 is provided so as to be in contact with a portion AR1 of the second surface 21b of the substrate 21A that corresponds to at least the range where the LED chips 23A are arranged. Thereby, small gaps and unevenness between the substrate 21A and the heat sink 40 can be filled, and the LED chip 23A can be efficiently cooled by the heat sink 40.
  • the heat sink 40 and the substrate 21A are fixed by bolts 61 that pass through the through holes 401 and engage (fit) into the recesses 211.
  • the bolt 61 passes through the heat conductive member 50.
  • the length of the bolt 61 is set to such a length that it passes through the heat conduction member 50 and allows the heat sink 40 and the heat conduction member 50 and the substrate 21A and the heat conduction member 50 to come into close contact with each other. Thereby, the heat sink 40 can cool the LED chip 23A more efficiently.
  • the heat conductive member 50 is provided corresponding to each first light source array 20A, but for example, one sheet-like heat conductive member 50 is provided for three first light source arrays 20A. It may be provided.
  • FIG. 8 is a diagram for explaining the first enlarging optical system 30A and the second enlarging optical system 30B that are included in the first light source unit OPU1 and the second light source unit OPU2, respectively.
  • the first enlarging optical system 30A is an enlarging optical system for forming an enlarged image of the light emitting portion 231A of each LED chip 23A on a predetermined plane PP.
  • the first magnifying optical system 30A includes a plurality of lens sections 31A arranged to correspond to the arrangement of the LED chips 23A.
  • Each of the lens sections 31A is a double-sided telecentric optical system that enlarges and projects the light emitting section 231A at a magnification M1 equal to or greater than (array pitch P1 of LED chips 23B)/(length a1 of one side of the light emitting surface of the light emitting section 231A).
  • M1 magnification
  • FIG. 8 for clarity of the drawing, only four LED chips 23A (23B) lined up in a row along the Y1 direction are shown.
  • the second enlarging optical system 30B is an enlarging optical system for forming an enlarged image of the light emitting portion 231B of each LED chip 23B on a predetermined plane PP.
  • the second magnifying optical system 30B includes a plurality of lens sections 31B arranged to correspond to the arrangement of the LED chips 23B.
  • Each lens section 31B is a double-sided telecentric optical system that enlarges and projects the light emitting section 231B at a magnification M2 equal to or greater than (array pitch P2 of the LED chips 23A)/(length a2 of one side of the light emitting surface of the light emitting section 231B). .
  • each of the lens sections 31A and 31B includes four plano-convex lenses, but the invention is not limited to this.
  • the lens sections 31A and 31B include two biconvex lenses. Alternatively, it may include three biconvex lenses.
  • the lens portions 31A and 31B may include, for example, a plano-convex lens and a biconvex lens.
  • the illumination optical system 80 includes a first condensing optical system (first optical system) 81A that includes a first dichroic mirror DM1, and a second condensing optical system (second optical system). (optical system) 81B, a second dichroic mirror DM2, an imaging optical system 83, a fly's eye lens FEL, and a condenser optical system 84.
  • the first condensing optical system 81A forms a pupil of an enlarged image of the light emitting section 231A formed by the first enlarging optical system 30A. That is, the rear focal position of the first condensing optical system 81A is the position of the pupil.
  • the first condensing optical system 81A includes a first dichroic mirror DM1 in the middle of the optical path, and reflects at least a portion of the light having a peak wavelength of 385 nm. As a result, the light beam enters the second dichroic mirror DM2.
  • the first condensing optical system 81A may be configured without the first dichroic mirror DM1, and in that case, the arrangement of the first light source unit OPU1 and each lens of the first condensing optical system 81A may be changed. The arrangement may be appropriately adjusted so that the light beam is incident on the second dichroic mirror DM2. Further, the first condensing optical system 81A may be composed of one lens, or may be composed of a lens group including a plurality of lenses.
  • the second condensing optical system 81B forms a pupil of an enlarged image of the light emitting section 231B formed by the second enlarging optical system 30B. That is, the rear focal position of the second condensing optical system 81B is the position of the pupil.
  • the second condensing optical system 81B may be composed of one lens, or may be composed of a lens group including a plurality of lenses.
  • the second dichroic mirror DM2 transmits at least part of the light with a peak wavelength of 385 nm and reflects at least part of the light with a peak wavelength of 365 nm. Thereby, a composite image is formed in which the pupil image formed by the first condensing optical system 81A and the pupil image formed by the second condensing optical system 81B are superimposed.
  • the second dichroic mirror DM2 superimposes the pupil image formed by the first condensing optical system 81A and the pupil image formed by the second condensing optical system 81B to create a composite image. form. That is, the second dichroic mirror DM2 is arranged at a position that is the rear focal position of the first condensing optical system 81A and the rear focal position of the second condensing optical system 81B. Thereby, the second dichroic mirror DM2 is illuminated by Koehler illumination with the light emitted from the first light source unit OPU1 and the light emitted from the second light source unit OPU2.
  • the first condensing optical system 81A and the second condensing optical system 81B respectively attach the image of the first light source unit OPU1 and the second condensing optical system to the second dichroic mirror DM2. It may be configured to perform critical illumination to form an image of the light source unit OPU2.
  • the illumination unit 90 includes a detector DT10 for monitoring light with a peak wavelength of 385 nm, a detector DT20 for monitoring light with a peak wavelength of 365 nm, and a detector DT20 for monitoring light with a peak wavelength of 385 nm and light with a peak wavelength of 365 nm.
  • a detector DT30 is provided for the detection.
  • the detector DT10 detects the illuminance of the light with a peak wavelength of 385 nm reflected by the first dichroic mirror DM1.
  • the detector DT20 detects the illuminance of the light having a peak wavelength of 365 nm reflected by the second dichroic mirror DM2.
  • the detector DT30 detects the illuminance of the 385 nm light unintentionally reflected by the second dichroic mirror DM2 and the illuminance of the 365 nm light unintentionally transmitted by the second dichroic mirror DM2.
  • the detection results of the detectors DT10 to DT30 are output to a control device (not shown), and the control device outputs the LED chips 23A of the first light source unit OPU1 and the second light source unit OPU2, respectively, based on the detection results of the detectors DT10 to DT30. and controls the value of the current supplied to 23B.
  • the imaging optical system 83 is a double-sided telecentric optical system that projects the composite image synthesized by the second dichroic mirror DM2 at the same magnification onto the incident end of the fly's eye lens FEL. Note that the imaging optical system 83 may reduce and project the composite image synthesized by the second dichroic mirror DM2 onto the incident end of the fly's eye lens FEL.
  • the fly's eye lens FEL is constructed by densely arranging a large number of lens elements each having, for example, positive refractive power, vertically and horizontally so that their optical axes are parallel to the reference optical axis AX.
  • Each lens element constituting the fly's eye lens FEL has a rectangular cross section similar to the shape of the illumination field to be formed on the mask MSK (and thus the shape of the exposure area to be formed on the plate P).
  • the light beam incident on the fly's eye lens FEL is wavefront-divided by a large number of lens elements, and one light source image is formed at or near the rear focal plane (output surface) of each lens element. That is, a substantial surface light source, ie, a secondary light source, consisting of a large number of light source images is formed at or near the rear focal plane (output surface) of the fly's eye lens FEL.
  • a light beam from a secondary light source formed at or near the rear focal plane (output surface) of the fly's eye lens FEL enters an aperture stop 85 arranged near it.
  • the rear focal plane (output surface) of the fly's eye lens FEL and the first light source array 20A and the second light source array 20B are optically conjugate.
  • the aperture stop 85 is arranged at a position that is optically approximately conjugate with the entrance pupil plane of the projection optical system PL, and has a variable aperture for defining the range that contributes to the illumination of the secondary light source.
  • the aperture stop 85 changes the aperture diameter of the variable aperture to determine the ⁇ value (the aperture of the secondary light source image on the pupil plane of the projection optical system relative to the aperture diameter of the pupil plane of the projection optical system), which determines the illumination condition. ratio) to the desired value.
  • the light from the secondary light source passes through the aperture diaphragm 85 and, after being condensed by the condenser optical system 84, illuminates the mask MSK in which a predetermined pattern is formed in a superimposed manner.
  • the wavelengths of the light emitted by the first light source unit OPU1 and the second light source unit OPU2 are not limited to those described above, and the first light source unit OPU1 and the second light source unit OPU2 may be The light source unit OPU1 and the second light source unit OPU2 may be configured.
  • the first light source unit OPU1 may emit light with a peak wavelength of 405 nm
  • the second light source unit OPU2 may emit light with a peak wavelength of 385 nm.
  • the first light source unit OPU1 may emit light with a peak wavelength of 395 nm
  • the second light source unit OPU2 may emit light with a peak wavelength of 385 nm.
  • the combination of the wavelength of the light emitted from the first light source unit OPU1 and the wavelength of the light emitted from the second light source unit OPU2 is not limited to these examples. Note that if the combination of the wavelength of the light emitted by the first light source unit OPU1 and the wavelength of the light emitted by the second light source unit OPU2 is a combination other than that of the first embodiment, dichroic dichroic may be used as appropriate depending on the wavelength used. It is preferable to change the material of the mirror.
  • the temperature of the substrate was determined when the heat sink and the substrate were fixed by the method according to the embodiment and when the heat sink and the substrate were fixed by the method according to the comparative example.
  • the number of LED chips arranged in the light source array was 5 ⁇ 5.
  • FIG. 9(A) is a front view showing a heat sink 1040 and a light source array 1020 according to a comparative example
  • FIG. 9(B) is a sectional view taken along the line AA in FIG. 9(A).
  • Each light source array 1020 includes a substrate 1021 and a plurality of LED chips 23A.
  • the number of LED chips 23A provided on the substrate 1021 and the arrangement pitch are the same as those of the first light source array 20A.
  • the heat sink 1040 according to the comparative example includes a through hole 1401 and a fixing block 45.
  • Fixed block 45 is fixed to heat sink 1040 with bolts 46. Further, a screw hole is formed at the end of the fixed block 45 on the +Z1 side.
  • Through holes are provided in the substrate 1021 at four locations outside the area where the plurality of LED chips 23A are arranged.
  • the board 1021 is fixed to the heat sink 1040 by inserting the bolt 60 into the through hole from the +Z1 side and engaging the screw hole formed at the end of the fixing block 45 on the +Z1 side.
  • the other configurations are the same as those in the embodiment, so detailed description will be omitted.
  • FIG. 10 is a diagram showing the measurement results.
  • the horizontal axis in FIG. 10 indicates each board, and the "left” is the board placed on the -Y1 side, the “center” is the board placed in the center, and the “right” is the board placed on the +Y1 side. "Average” indicates the average value for all substrates.
  • the vertical axis in FIG. 10 indicates the temperature determined from the measurement value of the thermistor 25.
  • the surface temperature of the substrate was lower than that using the method according to the comparative example. It was done. That is, it was confirmed that the fixing method according to the embodiment has a higher cooling effect on the LED chip 23A than the fixing method according to the comparative example. This is considered to be due to the following reasons.
  • the board 1021 is fixed to the heat sink 1040 at four locations outside the range where the plurality of LED chips 23A are arranged. , the adhesion between the heat conductive member 50, the substrate 1021, and the heat sink 1040 becomes insufficient.
  • the fixing method according to the embodiment since the substrate 21A can be fixed to the heat sink 40 at nine locations within the range where the LED chips 23A are arranged, the warping of the board 21A in the range where the LED chips 23A are arranged can be avoided. Deflection can be suppressed, and the adhesion between the heat conductive member 50, the substrate 21A, and the heat sink 40 can be improved. As a result, it is thought that the fixing method according to the embodiment has a higher cooling effect on the LED chip 23A than the fixing method according to the comparative example.
  • the comparison can be made. It has been confirmed that the LED 23A can be cooled more efficiently than when the substrate 1021 and the heat sink 1040 are fixed by providing a mechanism for fixing the substrate 1021 and the heat sink 1040 outside the range where the LED chips 23A are arranged as in the example. Ta.
  • the first light source unit OPU1 includes a substrate 21A having a first surface 21a and a second surface 21b facing each other, and
  • the device includes LED chips 23A arranged two-dimensionally, a heat sink 40, and a heat conductive member 50 provided between the substrate 21A and the heat sink 40.
  • the substrate 21A has a plurality of recesses 211 in a portion AR1 of the second surface 21b that faces the range where the LED chips 23A are arranged in a plan view
  • the heat sink 40 has a through hole 401, which is connected to the substrate 21A.
  • the heat sink 40 is fixed to the heat sink 40 with a bolt 61 that passes through the through hole 401 and fits into the recess 211 .
  • the substrate 21A and the heat sink 40 are fixed outside the area where the LED chips 23A are arranged, warpage and deflection of the substrate 21A in the area where the LED chips 23A are arranged can be suppressed. Therefore, the adhesion between the heat conductive member 50, the substrate 21A, and the heat sink 40 can be improved. Therefore, the LED chip 23A can be efficiently cooled. Thereby, it is possible to suppress a decrease in the brightness of the light emitted from the light emitting section 231A due to a rise in the temperature of the LED chip 23A.
  • the recess 211 is a screw hole. Therefore, the board 21A and the heat sink 40 can be easily fixed using the bolts 61.
  • a plurality of recesses 211 are formed in the portion AR1 facing the range in which the LED chips 23A are arranged, and a plurality of through holes 401 are formed corresponding to the plurality of recesses 211.
  • the board 21A and the heat sink 40 can be fixed at multiple locations, so the board 21A and the heat conductive member 50 and the heat conductive member 50 and the heat sink 40 can be brought into close contact with each other, and the LED chip 23A can be fixed more efficiently. Can be cooled.
  • the plurality of recesses 211 and through holes 401 are formed at equal intervals. This makes it possible to equalize the force acting on the board 21A from the bolts 61, so that distortion, deflection, etc. of the board 21A can be suppressed.
  • the recess 211 does not penetrate the substrate 21A. This can prevent the bolt 61 from coming into contact with the LED chip 23A.
  • the substrate 21A is a metal substrate. Therefore, the recess 211 can be easily formed.
  • the heat conduction member 50 was provided between the heat sink 40 and the substrate 21A, but the heat conduction member 50 may be omitted. That is, the heat sink 40 and the substrate 21A may be fixed with the bolts 61 so that the heat sink 40 and the substrate 21A are in direct contact with each other. Even in this case, the LED chip 23A can be cooled, and the brightness of the light emitted by the light emitting part 231A of the LED chip 23A can be prevented from decreasing due to a rise in the temperature of the LED chip 23A.
  • the recess 211 is a screw hole, but it is not limited to this.
  • the recess 211 may be a hole without a thread groove.
  • a fixing member that fits into the recess 211 may be used, and the fixing member may be fixed to the substrate 21A by soldering or adhesive.
  • a plurality of recesses 211 are provided, and at least one recess 211 is provided in a portion of the second surface 21b of the substrate 21A that corresponds to a portion where the LED chips 23A are arranged. It is sufficient if it is formed. Further, the number of recesses 211 is not limited to the above embodiment, and may be 8 or less, or 10 or more.
  • the recesses 211 are provided at equal intervals in each of the X1 direction and the Y1 direction, but they may be provided at irregular intervals.
  • the through hole 401 of the heat sink 40 may be formed at a position corresponding to the position of the recess 211.
  • the heat sink 40 had the flow path 402 through which the refrigerant flows inside, but the heat sink 40 is not limited to this.
  • the heat sink 40 may be, for example, a fin type heat sink.
  • a control unit CTR for controlling the LED chips 23A may be arranged on the surface of the heat sink 40 opposite to the surface on which the substrates 21A are arranged.
  • the control unit CTR can be cooled by the heat sink 40, there is no need to separately provide a mechanism for cooling the control unit CTR, and the configuration of the first light source unit OPU1 can be simplified.
  • the illumination unit 90 includes the first light source unit OPU1, the second light source unit OPU2, and the illumination optical system 80 including the second dichroic mirror DM2. It is not limited.
  • the lighting unit 90 may include only one of the first light source unit OPU1 and the second light source unit OPU2.
  • the illumination optical system 80 can have any configuration as long as it can guide the light emitted from the first light source unit OPU1 or the second light source unit OPU2 to the mask MSK.
  • Exposure device 20A First light source array 20B Second light source array 21A, 21B Substrate 21a First surface 21b Second surface 23A, 23B LED chip 30A First magnifying optical system 30B Second magnifying optical system 31A, 31B Lens section 40 Heat sink 50 Thermal conduction member 61 Bolt 211 Recesses 231A, 231B Light emitting section 401 Through hole 80 Illumination optical system 90 Illumination unit 100 Projection optical unit CTR Control section DM2 Second dichroic mirror MSK Mask OPU1 First light source unit OPU2 Second light source unit P Glass substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)

Abstract

The purpose of the present invention is to, by inhibiting warpage or bending of a substrate on which light source elements are arranged, improve adhesion between the substrate and a heat sink and increase cooling efficiency. This light source unit comprises: a substrate (21A) that has a first surface and a second surface that are opposite each other; a plurality of light source elements (20A) that are two-dimensionally arranged on the first surface of the substrate (21A); and a heat sink (40). The substrate (21A) has at least one recess formed in a portion of the second surface opposing a range in which the plurality of light source elements (20A) are arranged in a plan view. The heat sink (40) has a through hole (401). The substrate (21A) and the heat sink (40) are fixed together by a fixing member (61) that is inserted through the through hole (401) and is fitted into the recess.

Description

光源ユニット、照明ユニット、露光装置、及び露光方法Light source unit, lighting unit, exposure device, and exposure method
 光源ユニット、照明ユニット、露光装置、及び露光方法に関する。 It relates to a light source unit, a lighting unit, an exposure device, and an exposure method.
 近年、パソコンやテレビ等の表示素子として、液晶表示パネルが多用されている。液晶表示パネルは、プレート(ガラス基板)上にフォトリソグラフィの手法で薄膜トランジスタの回路パターンを形成することによって製造される。このフォトリソグラフィ工程のための装置として、マスク上に形成された原画パターンを、投影光学系を介してプレート上のフォトレジスト層に投影露光する露光装置が用いられている。 In recent years, liquid crystal display panels have been widely used as display elements for personal computers, televisions, etc. A liquid crystal display panel is manufactured by forming a circuit pattern of thin film transistors on a plate (glass substrate) using a photolithography method. As an apparatus for this photolithography process, an exposure apparatus is used that projects and exposes an original pattern formed on a mask onto a photoresist layer on a plate via a projection optical system.
 上述の露光装置を含む様々な光学装置において、発光ダイオードを用いた光源を使用することが提案されている(例えば、特許文献1)。 It has been proposed to use a light source using a light emitting diode in various optical devices including the above-mentioned exposure device (for example, Patent Document 1).
特開2006-201476号公報Japanese Patent Application Publication No. 2006-201476
 第1の開示の態様によれば、光源ユニットは、互いに対向する第1面と第2面とを有する基板と、前記基板の前記第1面上に2次元配列された複数の光源素子と、ヒートシンクと、を備え、前記基板は、前記第2面のうち、平面視において前記複数の光源素子が配列された範囲に対向する部分に形成された少なくとも1つの凹部を有し、前記ヒートシンクは、貫通孔を有し、前記基板と前記ヒートシンクとは、前記貫通孔を挿通するとともに前記凹部に嵌合する固定部材で固定されている。 According to the first aspect of the disclosure, the light source unit includes a substrate having a first surface and a second surface facing each other, and a plurality of light source elements two-dimensionally arranged on the first surface of the substrate. a heat sink, the substrate has at least one recess formed in a portion of the second surface that faces the range in which the plurality of light source elements are arranged in a plan view, and the heat sink includes: The substrate has a through hole, and the substrate and the heat sink are fixed by a fixing member that is inserted through the through hole and fitted into the recess.
 第2の開示の態様によれば、照明ユニットは、上記光源ユニットと、前記光源ユニットから出射された光を被照射体に導く照明光学系と、を備える。 According to the second aspect of the disclosure, the illumination unit includes the light source unit and an illumination optical system that guides the light emitted from the light source unit to the irradiated object.
 第3の開示の態様によれば、照明ユニットは、複数の上記光源ユニットと、複数の前記光源ユニットから出射された光を合成する合成光学素子を含み、前記合成光学素子から出射された合成光を被照射体に導く照明光学系と、を備える。 According to a third aspect of the disclosure, the illumination unit includes a plurality of the above-mentioned light source units and a combining optical element that combines the light emitted from the plurality of light source units, and the combined light emitted from the combining optical element. an illumination optical system that guides the light to the irradiated object.
 第4の開示の態様によれば、露光装置は、上記照明ユニットと、前記照明ユニットにより照明されるマスクのパターン像を感光性基板上に投影する投影光学系と、を備える。 According to a fourth aspect of the disclosure, an exposure apparatus includes the illumination unit described above and a projection optical system that projects a pattern image of a mask illuminated by the illumination unit onto a photosensitive substrate.
 第5の開示の態様によれば、露光方法は、上記露光装置を用いた露光方法であって、前記照明ユニットによりマスクを照明することと、前記投影光学系を用いて前記マスクのパターン像を感光性基板へ投影することと、を含む。 According to a fifth aspect of the disclosure, an exposure method is an exposure method using the above-mentioned exposure apparatus, comprising illuminating a mask with the illumination unit and projecting a pattern image of the mask using the projection optical system. and projecting onto a photosensitive substrate.
 なお、後述の実施形態の構成を適宜改良しても良く、また、少なくとも一部を他の構成物に代替させても良い。更に、その配置について特に限定のない構成要件は、実施形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 Note that the configurations of the embodiments described below may be modified as appropriate, and at least a portion thereof may be replaced with other components. Further, the configuration elements whose arrangement is not particularly limited are not limited to the arrangement disclosed in the embodiments, but can be arranged at a position where the function can be achieved.
図1は、実施形態に係る露光装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of an exposure apparatus according to an embodiment. 図2は、照明ユニットの構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of the lighting unit. 図3(A)は、第1及び第2光源アレイの正面図であり、図3(B)は、図3(A)のA-A線断面図である。3(A) is a front view of the first and second light source arrays, and FIG. 3(B) is a sectional view taken along the line AA in FIG. 3(A). 図4は、基板の背面図である。FIG. 4 is a rear view of the board. 図5は、ヒートシンクと第1光源アレイとを示す斜視図である。FIG. 5 is a perspective view showing a heat sink and a first light source array. 図6は、ヒートシンクの-Z1側の面を示す斜視図である。FIG. 6 is a perspective view showing the −Z1 side surface of the heat sink. 図7(A)は、ヒートシンクと第1光源アレイとを示す正面図であり、図7(B)は、図7(A)のA-A線断面図であるFIG. 7(A) is a front view showing the heat sink and the first light source array, and FIG. 7(B) is a sectional view taken along the line AA in FIG. 7(A). 図8は、第1及び第2拡大光学系について説明するための図である。FIG. 8 is a diagram for explaining the first and second enlarging optical systems. 図9(A)は、比較例に係るヒートシンク及び光源アレイを示す正面図であり、図9(B)は、図9(A)のA-A線断面図である。9(A) is a front view showing a heat sink and a light source array according to a comparative example, and FIG. 9(B) is a sectional view taken along the line AA in FIG. 9(A). 図10は、基板の表面温度の計測結果を示す図である。FIG. 10 is a diagram showing the measurement results of the surface temperature of the substrate. 図11は、変形例について説明するための断面図である。FIG. 11 is a sectional view for explaining a modification.
 一実施形態に係る露光装置10について、図1~図8に基づいて説明する。 An exposure apparatus 10 according to one embodiment will be described based on FIGS. 1 to 8.
(露光装置の構成)
 まず、図1を用いて一実施形態に係る露光装置10の構成について説明する。図1は、一実施形態に係る露光装置10の構成を概略的に示す図である。
(Configuration of exposure device)
First, the configuration of an exposure apparatus 10 according to an embodiment will be described using FIG. 1. FIG. 1 is a diagram schematically showing the configuration of an exposure apparatus 10 according to an embodiment.
 露光装置10は、マスクMSKとガラス基板(以下、「プレート」と呼ぶ)Pとを投影光学系PLに対して同一方向に同一速度で駆動することで、マスクMSKに形成されたパターンをプレートP上に転写するスキャニング・ステッパ(スキャナ)である。プレートPは、例えば液晶表示装置(フラットパネルディスプレイ)に用いられる矩形のガラス基板であり、少なくとも一辺の長さ又は対角長が500mm以上である。 The exposure apparatus 10 drives the mask MSK and the glass substrate (hereinafter referred to as "plate") P in the same direction and at the same speed relative to the projection optical system PL, thereby transferring the pattern formed on the mask MSK to the plate P. This is a scanning stepper (scanner) that transfers images onto the image. The plate P is a rectangular glass substrate used, for example, in a liquid crystal display device (flat panel display), and has at least one side length or diagonal length of 500 mm or more.
 以下においては、走査露光の際にマスクMSK及びプレートPが駆動される方向(走査方向)をX軸方向とし、これに直交する水平面内での方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向とする。 In the following, the direction in which the mask MSK and plate P are driven during scanning exposure (scanning direction) is the X-axis direction, and the direction in the horizontal plane perpendicular to this is the Y-axis direction, which is perpendicular to the X-axis and the Y-axis. The direction of rotation is defined as the Z-axis direction, and the directions of rotation (tilt) around the X-axis, Y-axis, and Z-axis are defined as θx, θy, and θz directions, respectively.
 露光装置10は、照明系IOP、マスクMSKを保持するマスクステージMST、投影光学系PL、これらを支持するボディ70、プレートPを保持する基板ステージPST、及びこれらの制御系等を備える。制御系は、露光装置10の構成各部を統括制御する。 The exposure apparatus 10 includes an illumination system IOP, a mask stage MST holding a mask MSK, a projection optical system PL, a body 70 supporting these, a substrate stage PST holding a plate P, a control system for these, and the like. The control system centrally controls each component of the exposure apparatus 10.
 ボディ70は、ベース(防振台)71、コラム72A,72B、光学定盤73、支持体74、及びスライドガイド75を備える。ベース(防振台)71は、床F上に配置され、床Fからの振動を除振してコラム72A,72B等を支持する。コラム72A,72Bはそれぞれ枠体形状を有し、コラム72Bの内側にコラム72Aが配置されている。光学定盤73は、平板形状を有し、コラム72Aの天井部に固定されている。支持体74は、コラム72Bの天井部にスライドガイド75を介して支持されている。スライドガイド75は、エアボールリフタと位置決め機構とを備え、支持体74(すなわち後述するマスクステージMST)を光学定盤73に対してX軸方向の適当な位置に位置決めする。 The body 70 includes a base (vibration isolator) 71, columns 72A, 72B, an optical surface plate 73, a support 74, and a slide guide 75. The base (vibration isolation table) 71 is placed on the floor F, isolates vibrations from the floor F, and supports the columns 72A, 72B, etc. Columns 72A and 72B each have a frame shape, and column 72A is arranged inside column 72B. The optical surface plate 73 has a flat plate shape and is fixed to the ceiling of the column 72A. The support body 74 is supported on the ceiling of the column 72B via a slide guide 75. Slide guide 75 includes an air ball lifter and a positioning mechanism, and positions support body 74 (that is, mask stage MST, which will be described later) at an appropriate position in the X-axis direction with respect to optical surface plate 73.
 照明系IOPは、ボディ70の上方に配置されている。照明系IOPは、照明光ILをマスクMSKに照射する。照明系IOPの詳細な構成については、後述する。 The illumination system IOP is arranged above the body 70. The illumination system IOP irradiates the mask MSK with illumination light IL. The detailed configuration of the illumination system IOP will be described later.
 マスクステージMSTは、支持体74に支持されている。マスクステージMSTには、回路パターンが形成されたパターン面(図1における下面)を有するマスクMSKが、例えば真空吸着(あるいは静電吸着)により固定されている。マスクステージMSTは、例えばリニアモーターを含む駆動系により走査方向(X軸方向)に所定のストロークで駆動されるとともに、非走査方向(Y軸方向及びθz方向)に微少駆動される。 Mask stage MST is supported by support body 74. A mask MSK having a pattern surface (lower surface in FIG. 1) on which a circuit pattern is formed is fixed to the mask stage MST by, for example, vacuum suction (or electrostatic suction). Mask stage MST is driven with a predetermined stroke in the scanning direction (X-axis direction) by a drive system including, for example, a linear motor, and is also slightly driven in the non-scanning direction (Y-axis direction and θz direction).
 マスクステージMSTのXY平面内の位置情報(θz方向の回転情報を含む)は、干渉計システムにより計測される。干渉計システムは、マスクステージMSTの端部に設けられた移動鏡(又は鏡面加工された反射面(不図示))に測長ビームを照射し、移動鏡からの反射光を受光することにより、マスクステージMSTの位置を計測する。その計測結果は制御装置(不図示)に供給され、制御装置は、干渉計システムの計測結果に従って、駆動系を介してマスクステージMSTを駆動する。 Positional information (including rotational information in the θz direction) of mask stage MST in the XY plane is measured by an interferometer system. The interferometer system irradiates a length measurement beam onto a movable mirror (or mirror-finished reflective surface (not shown)) provided at the end of mask stage MST, and receives reflected light from the movable mirror. Measure the position of mask stage MST. The measurement results are supplied to a control device (not shown), and the control device drives mask stage MST via a drive system according to the measurement results of the interferometer system.
 投影光学系PLは、マスクステージMSTの下方(-Z側)において、光学定盤73に支持されている。投影光学系PLは、例えば米国特許第5,729,331号明細書に開示された投影光学系と同様に構成され、マスクMSKのパターン像の投影領域が例えば千鳥状に配置された複数(例えば7)の投影光学ユニット100(マルチレンズ投影光学ユニット)を含み、Y軸方向を長手方向とする矩形形状のイメージフィールドを形成する。ここでは、4つの投影光学ユニット100がY軸方向に所定間隔で配置され、残りの3つの投影光学ユニット100が、4つの投影光学ユニット100から+X側に離間して、Y軸方向に所定間隔で配置されている。複数の投影光学ユニット100のそれぞれとして、例えば両側テレセントリックな等倍系で正立正像を形成するものが用いられる。なお、千鳥状に配置された投影光学ユニット100の複数の投影領域をまとめて露光領域と呼ぶ。 Projection optical system PL is supported by optical surface plate 73 below mask stage MST (-Z side). The projection optical system PL is configured similarly to the projection optical system disclosed in, for example, U.S. Pat. 7), and forms a rectangular image field whose longitudinal direction is the Y-axis direction. Here, four projection optical units 100 are arranged at predetermined intervals in the Y-axis direction, and the remaining three projection optical units 100 are spaced apart from the four projection optical units 100 on the +X side and at predetermined intervals in the Y-axis direction. It is located in As each of the plurality of projection optical units 100, for example, one that forms an erect normal image with a double-sided telecentric, equal-magnification system is used. Note that the plurality of projection areas of the projection optical units 100 arranged in a staggered manner are collectively referred to as an exposure area.
 照明系IOPからの照明光ILによってマスクMSK上の照明領域が照明されると、マスクMSKを透過した照明光ILにより、投影光学系PLを介して、その照明領域内のマスクMSKの回路パターンの投影像(部分正立像)が、投影光学系PLの像面側に配置されるプレートP上の照射領域(露光領域(照明領域に共役))に形成される。ここで、プレートPの表面にはレジスト(感応剤)が塗布されている。マスクステージMSTと基板ステージPSTとを同期駆動する、すなわちマスクMSKを照明領域(照明光IL)に対して走査方向(X軸方向)に駆動するとともに、プレートPを露光領域(照明光IL)に対して同じ走査方向に駆動することで、プレートPが露光されてプレートP上にマスクMSKのパターンが転写される。 When the illumination region on the mask MSK is illuminated by the illumination light IL from the illumination system IOP, the illumination light IL that has passed through the mask MSK illuminates the circuit pattern of the mask MSK in the illumination region through the projection optical system PL. A projected image (partially erected image) is formed in an irradiation area (exposure area (conjugate to the illumination area)) on plate P arranged on the image plane side of projection optical system PL. Here, the surface of the plate P is coated with a resist (sensitizer). Mask stage MST and substrate stage PST are driven synchronously, that is, mask MSK is driven in the scanning direction (X-axis direction) with respect to the illumination area (illumination light IL), and plate P is moved into the exposure area (illumination light IL). On the other hand, by driving in the same scanning direction, the plate P is exposed and the pattern of the mask MSK is transferred onto the plate P.
 基板ステージPSTは、投影光学系PLの下方(-Z側)のベース(防振台)71上に配置されている。基板ステージPST上に、プレートPが、基板ホルダ(不図示)を介して保持されている。 The substrate stage PST is arranged on a base (vibration isolation table) 71 below (-Z side) the projection optical system PL. A plate P is held on substrate stage PST via a substrate holder (not shown).
 基板ステージPSTのXY平面内の位置情報(回転情報(ヨーイング量(θz方向の回転量θz)、ピッチング量(θx方向の回転量θx)、ローリング量(θy方向の回転量θy))を含む)は、干渉計システムによって計測される。干渉計システムは、光学定盤73から基板ステージPSTの端部に設けられた移動鏡(又は鏡面加工された反射面(不図示))に測長ビームを照射し、移動鏡からの反射光を受光することにより、基板ステージPSTの位置を計測する。その計測結果は制御装置(不図示)に供給され、制御装置は、干渉計システムの計測結果に従って基板ステージPSTを駆動する。 Position information in the XY plane of substrate stage PST (including rotation information (yawing amount (rotation amount θz in the θz direction), pitching amount (rotation amount θx in the θx direction), rolling amount (rotation amount θy in the θy direction))) is measured by an interferometer system. The interferometer system irradiates a length measurement beam from an optical surface plate 73 onto a movable mirror (or a mirror-finished reflective surface (not shown)) provided at the end of the substrate stage PST, and collects the reflected light from the movable mirror. By receiving light, the position of substrate stage PST is measured. The measurement results are supplied to a control device (not shown), and the control device drives substrate stage PST according to the measurement results of the interferometer system.
 露光装置10では、露光に先立ってアライメント計測(例えば、EGA等)を行い、その結果を用いて、以下の手順で、プレートPを露光する。まず、制御装置の指示に従い、マスクステージMST及び基板ステージPSTをX軸方向に同期駆動する。これにより、プレートP上の1つめのショット領域への走査露光を行う。1つめのショット領域に対する走査露光が終了すると、制御装置は、基板ステージPSTを2つめのショット領域に対応する位置へ移動(ステッピング)する。そして、2つめのショット領域に対する走査露光を行う。制御装置は、同様に、プレートPのショット領域間のステッピングとショット領域に対する走査露光とを繰り返して、プレートP上の全てのショット領域にマスクMSKのパターンを転写する。 The exposure apparatus 10 performs alignment measurement (eg, EGA, etc.) prior to exposure, and uses the results to expose the plate P according to the following procedure. First, according to instructions from a control device, mask stage MST and substrate stage PST are synchronously driven in the X-axis direction. As a result, the first shot area on the plate P is scanned and exposed. When the scanning exposure for the first shot area is completed, the control device moves (steps) substrate stage PST to a position corresponding to the second shot area. Then, scanning exposure is performed for the second shot area. Similarly, the control device transfers the pattern of the mask MSK to all shot areas on the plate P by repeating stepping between shot areas of the plate P and scanning exposure for the shot areas.
(照明系IOPの構成)
 次に、本実施形態における照明系IOPの構成について説明する。照明系IOPは、投影光学系PLが備える複数の投影光学ユニット100それぞれに対応する複数の照明ユニット90を備える。図2は、照明ユニット90の構成を概略的に示す図である。
(Configuration of lighting system IOP)
Next, the configuration of the illumination system IOP in this embodiment will be described. The illumination system IOP includes a plurality of illumination units 90 corresponding to each of the plurality of projection optical units 100 included in the projection optical system PL. FIG. 2 is a diagram schematically showing the configuration of the lighting unit 90.
 照明ユニット90は、第1光源ユニットOPU1と、第2光源ユニットOPU2と、照明光学系80と、を備える。 The illumination unit 90 includes a first light source unit OPU1, a second light source unit OPU2, and an illumination optical system 80.
(光源ユニットの構成)
 第1光源ユニットOPU1は、ヒートシンク40と、第1光源アレイ20Aと、第1拡大光学系30Aとを備え、第2光源ユニットOPU2は、ヒートシンク40と、第2光源アレイ20Bと、第2拡大光学系30Bとを備える。
(Configuration of light source unit)
The first light source unit OPU1 includes a heat sink 40, a first light source array 20A, and a first enlarging optical system 30A, and the second light source unit OPU2 includes a heat sink 40, a second light source array 20B, and a second enlarging optical system. system 30B.
 図3(A)は、第1光源アレイ20A及び第2光源アレイ20Bの構成を概略的に示す正面図であり、図3(B)は、図3(A)のA-A線断面図である。なお、図3(B)では、後述するLEDチップ23A,23Bのハッチングを省略している。 3(A) is a front view schematically showing the configuration of the first light source array 20A and the second light source array 20B, and FIG. 3(B) is a sectional view taken along the line AA in FIG. 3(A). be. In addition, in FIG. 3(B), hatching of LED chips 23A and 23B, which will be described later, is omitted.
 図3(A)に示すように、第1光源アレイ20Aは、基板21Aと、基板21A上に2次元配列された複数(図3(A)では、5×5)のLED(Light Emitting Diode)チップ23Aを備える。LEDチップ23Aの個数は必要に応じて適宜変更してもよい。 As shown in FIG. 3A, the first light source array 20A includes a substrate 21A and a plurality of (5×5 in FIG. 3A) LEDs (Light Emitting Diodes) two-dimensionally arranged on the substrate 21A. A chip 23A is provided. The number of LED chips 23A may be changed as necessary.
 基板21Aは、互いに対向する第1面21aと第2面21bとを有し、第1面21a上にLEDチップ23Aが配列されている。LEDチップ23Aは、ピッチP1で配列されており、ピッチP1は、隣り合うLEDチップ23Aの中心間の距離である。 The substrate 21A has a first surface 21a and a second surface 21b facing each other, and LED chips 23A are arranged on the first surface 21a. The LED chips 23A are arranged at a pitch P1, and the pitch P1 is the distance between the centers of adjacent LED chips 23A.
 複数のLEDチップ23Aは各々、発光部231Aを有し、当該発光部231Aから出射する光のピーク波長は380~390nmの範囲内にある。すなわち、発光部231Aは、紫外線LED(UV LED)である。発光部231Aから出射する光のピーク波長は385nmであることがより好ましい。発光部231Aの発光面は正方形であり、その一辺の長さはa1である。なお、以後の説明において、LEDチップ23Aが配列された2方向を、X1方向及びY1方向とする。X1方向とY1方向とは直交している。また、X1方向及びY1方向に直交する方向をZ1方向とする。Z1方向は、発光部231Aが出射する光の光軸と略平行である。 Each of the plurality of LED chips 23A has a light emitting section 231A, and the peak wavelength of light emitted from the light emitting section 231A is within the range of 380 to 390 nm. That is, the light emitting section 231A is an ultraviolet LED (UV LED). More preferably, the peak wavelength of the light emitted from the light emitting section 231A is 385 nm. The light emitting surface of the light emitting section 231A is square, and the length of one side thereof is a1. In the following description, the two directions in which the LED chips 23A are arranged are referred to as the X1 direction and the Y1 direction. The X1 direction and the Y1 direction are orthogonal. Further, the direction perpendicular to the X1 direction and the Y1 direction is defined as the Z1 direction. The Z1 direction is approximately parallel to the optical axis of light emitted by the light emitting section 231A.
 第2光源アレイ20Bは、基板21Bと、基板21B上に2次元配列された複数(図3(A)では、5×5)のLEDチップ23Bを備える。LEDチップ23Bの個数は必要に応じて適宜変更してもよい。基板21Bも、互いに対向する第1面21aと第2面21bとを有し、第1面21a上にLEDチップ23Bが配列されている。LEDチップ23Bは、ピッチP2で配列されており、ピッチP2は、隣り合うLEDチップ23Bの中心間の距離である。LEDチップ23Aの配列ピッチP1と、LEDチップ23Bの配列ピッチP2とは、同一でもよいし、異なっていてもよい。 The second light source array 20B includes a substrate 21B and a plurality of (5×5 in FIG. 3A) LED chips 23B two-dimensionally arranged on the substrate 21B. The number of LED chips 23B may be changed as necessary. The substrate 21B also has a first surface 21a and a second surface 21b facing each other, and LED chips 23B are arranged on the first surface 21a. The LED chips 23B are arranged at a pitch P2, and the pitch P2 is the distance between the centers of adjacent LED chips 23B. The arrangement pitch P1 of the LED chips 23A and the arrangement pitch P2 of the LED chips 23B may be the same or different.
 複数のLEDチップ23Bは各々、発光部231Bを有し、当該発光部231Bから出射する光のピーク波長は360~370nmの範囲内にある。すなわち、発光部231Bは、UV LEDである。発光部231Bから出射する光のピーク波長は365nmであることがより好ましい。発光部231Bの発光面は正方形であり、その一辺の長さはa2である。発光部231Bの発光面の一辺の長さa2は、発光部231Aの発光面の一辺の長さa1と同一でもよいし、異なっていてもよい。 Each of the plurality of LED chips 23B has a light emitting section 231B, and the peak wavelength of light emitted from the light emitting section 231B is within the range of 360 to 370 nm. That is, the light emitting section 231B is a UV LED. More preferably, the peak wavelength of the light emitted from the light emitting section 231B is 365 nm. The light emitting surface of the light emitting section 231B is square, and the length of one side thereof is a2. The length a2 of one side of the light emitting surface of the light emitting section 231B may be the same as or different from the length a1 of one side of the light emitting surface of the light emitting section 231A.
 図4は、基板21A,21Bの背面図である。基板21A,21Bは、厚みが5mm以下の金属基板である。基板21A,21Bは、熱伝導率の高い材料であることが好ましく、例えば、銅基板であってよい。図3(B)及び図4に示すように、基板21A,21Bの第1面21aとは反対側の第2面21bのうち、平面視において複数のLEDチップ23A,23Bが配列された範囲に対向する部分AR1には、複数の凹部211(図4では、3×3)が形成されている。本実施形態では、複数の凹部211は、X1方向及びY1方向の各々において、等間隔に設けられている。 FIG. 4 is a rear view of the substrates 21A and 21B. The substrates 21A and 21B are metal substrates with a thickness of 5 mm or less. The substrates 21A and 21B are preferably made of a material with high thermal conductivity, and may be, for example, a copper substrate. As shown in FIGS. 3(B) and 4, on the second surface 21b of the substrates 21A, 21B opposite to the first surface 21a, in a range where a plurality of LED chips 23A, 23B are arranged in plan view. A plurality of recesses 211 (3×3 in FIG. 4) are formed in the opposing portion AR1. In this embodiment, the plurality of recesses 211 are provided at equal intervals in each of the X1 direction and the Y1 direction.
 図3(B)に示すように、凹部211は、基板21A,21Bを貫通しない。本実施形態では、凹部211はネジ孔になっており、詳細は後述するが、当該凹部211にボルト61を係合させることにより基板21A,21Bをヒートシンク40に固定できるようになっている。 As shown in FIG. 3(B), the recess 211 does not penetrate the substrates 21A and 21B. In this embodiment, the recess 211 is a screw hole, and the boards 21A and 21B can be fixed to the heat sink 40 by engaging the bolt 61 in the recess 211, which will be described in detail later.
 図5は、ヒートシンク40と、第1光源アレイ20Aとを示す斜視図であり、図6は、ヒートシンク40の-Z1側の面を示す斜視図である。また、図7(A)は、ヒートシンク40と、第1光源アレイ20Aとを示す正面図であり、図7(B)は、図7(A)のA-A線断面図である。第2光源アレイ20Bとヒートシンク40との関係は、第1光源アレイ20Aとヒートシンク40との関係と同一であるため、以下ではヒートシンク40と、第1光源アレイ20Aとについて説明する。なお、図5においては、一例として、第1光源アレイ20Aが10×14個のLEDチップ23Aを備える場合について図示している。また、図7(B)において、LEDチップ23Aのハッチングを省略している。 FIG. 5 is a perspective view showing the heat sink 40 and the first light source array 20A, and FIG. 6 is a perspective view showing the -Z1 side surface of the heat sink 40. Further, FIG. 7(A) is a front view showing the heat sink 40 and the first light source array 20A, and FIG. 7(B) is a sectional view taken along the line AA in FIG. 7(A). Since the relationship between the second light source array 20B and the heat sink 40 is the same as the relationship between the first light source array 20A and the heat sink 40, the heat sink 40 and the first light source array 20A will be described below. Note that FIG. 5 illustrates, as an example, a case where the first light source array 20A includes 10×14 LED chips 23A. Moreover, in FIG. 7(B), hatching of the LED chip 23A is omitted.
 例えば図5及び図7(A)に示すように、本実施形態では、ヒートシンク40上に3つの第1光源アレイ20Aが配置されている。なお、ヒートシンク40上に配置される第1光源アレイ20Aの数は、3つに限られるものではなく、2以下であってもよいし4以上であってもよい。すなわち、ヒートシンク40上には、少なくとも1つの第1光源アレイ20Aが配置されていればよい。 For example, as shown in FIGS. 5 and 7(A), in this embodiment, three first light source arrays 20A are arranged on the heat sink 40. Note that the number of first light source arrays 20A arranged on the heat sink 40 is not limited to three, and may be two or less or four or more. That is, it is sufficient that at least one first light source array 20A is disposed on the heat sink 40.
 図6に示すように、ヒートシンク40は、内部に冷媒を通す流路402と、流路402に冷媒を供給する供給口41と、流路402を通過した冷媒を排出する排出口42と、を有し、第1光源アレイ20Aが備えるLEDチップ23Aを冷却する。冷媒は、液体であってもよいし気体であってもよいが、水であることが好ましい。LEDチップ23Aが備える発光部231Aからの光の輝度は、LEDチップ23Aの温度が上昇すると低下する。換言すると、LEDチップ23Aは、温度が上昇すると発光効率が低下する。ヒートシンク40によってLEDチップ23Aを冷却することによって、第1光源アレイ20Aから出射される光の輝度の低下を抑制することができる。 As shown in FIG. 6, the heat sink 40 has a flow path 402 through which the refrigerant passes, a supply port 41 that supplies the refrigerant to the flow path 402, and an exhaust port 42 that discharges the refrigerant that has passed through the flow path 402. and cools the LED chips 23A included in the first light source array 20A. The refrigerant may be a liquid or a gas, but preferably water. The brightness of light from the light emitting section 231A included in the LED chip 23A decreases as the temperature of the LED chip 23A increases. In other words, the luminous efficiency of the LED chip 23A decreases as the temperature increases. By cooling the LED chips 23A with the heat sink 40, it is possible to suppress a decrease in the brightness of the light emitted from the first light source array 20A.
 また、ヒートシンク40は、図6および図7(B)に示すように、ヒートシンク40を貫通する貫通孔401を有する。貫通孔401は、その直径が2段階に変化する段付貫通孔である。ヒートシンク40内部の流路402は、貫通孔401が形成されていない部分に形成されている。また、貫通孔401は、第1光源アレイ20Aが備える基板21Aの第2面21bに設けられた凹部211と対応する位置に設けられている。 Further, the heat sink 40 has a through hole 401 that penetrates the heat sink 40, as shown in FIGS. 6 and 7(B). The through hole 401 is a stepped through hole whose diameter changes in two steps. A flow path 402 inside the heat sink 40 is formed in a portion where the through hole 401 is not formed. Further, the through hole 401 is provided at a position corresponding to the recess 211 provided in the second surface 21b of the substrate 21A included in the first light source array 20A.
 図7(B)に示すように、基板21Aとヒートシンク40との間には、Thermal Interface Material (TIM)等の熱伝導部材50が設けられている。本実施形態では、熱伝導部材50として熱伝導シートを用いている。熱伝導部材50は、熱伝導グリス等でもよい。熱伝導部材50は、基板21Aの第2面21bのうち、少なくともLEDチップ23Aが配列された範囲に対応する部分AR1と接触するように設けられている。これにより、基板21Aとヒートシンク40との間の小さなすきまや凹凸を埋め、ヒートシンク40によりLEDチップ23Aを効率よく冷却できる。 As shown in FIG. 7(B), a heat conductive member 50 such as Thermal Interface Material (TIM) is provided between the substrate 21A and the heat sink 40. In this embodiment, a heat conductive sheet is used as the heat conductive member 50. The thermally conductive member 50 may be thermally conductive grease or the like. The thermally conductive member 50 is provided so as to be in contact with a portion AR1 of the second surface 21b of the substrate 21A that corresponds to at least the range where the LED chips 23A are arranged. Thereby, small gaps and unevenness between the substrate 21A and the heat sink 40 can be filled, and the LED chip 23A can be efficiently cooled by the heat sink 40.
 ヒートシンク40と基板21Aとは、貫通孔401を挿通し、凹部211に係合(嵌合)するボルト61によって固定されている。ボルト61は、熱伝導部材50を貫通している。ボルト61の長さは、熱伝導部材50を貫通し、ヒートシンク40と熱伝導部材50及び基板21Aと熱伝導部材50とが、それぞれ密着するような長さに設定されている。これにより、ヒートシンク40によりLEDチップ23Aをより効率よく冷却できる。なお、本実施形態では、熱伝導部材50が各第1光源アレイ20Aに対応して設けられているが、例えば1枚のシート状の熱伝導部材50を3つの第1光源アレイ20Aに対して設けてもよい。 The heat sink 40 and the substrate 21A are fixed by bolts 61 that pass through the through holes 401 and engage (fit) into the recesses 211. The bolt 61 passes through the heat conductive member 50. The length of the bolt 61 is set to such a length that it passes through the heat conduction member 50 and allows the heat sink 40 and the heat conduction member 50 and the substrate 21A and the heat conduction member 50 to come into close contact with each other. Thereby, the heat sink 40 can cool the LED chip 23A more efficiently. In this embodiment, the heat conductive member 50 is provided corresponding to each first light source array 20A, but for example, one sheet-like heat conductive member 50 is provided for three first light source arrays 20A. It may be provided.
 次に、第1拡大光学系30A及び第2拡大光学系30Bについて説明する。図8は、第1光源ユニットOPU1及び第2光源ユニットOPU2がそれぞれ備える第1拡大光学系30A及び第2拡大光学系30Bについて説明するための図である。 Next, the first enlarging optical system 30A and the second enlarging optical system 30B will be explained. FIG. 8 is a diagram for explaining the first enlarging optical system 30A and the second enlarging optical system 30B that are included in the first light source unit OPU1 and the second light source unit OPU2, respectively.
 図8に示すように、第1拡大光学系30Aは、各LEDチップ23Aの発光部231Aの拡大像を所定面PPにそれぞれ形成するための拡大光学系である。第1拡大光学系30Aは、LEDチップ23Aの配列と対応するように配列された複数のレンズ部31Aを備える。レンズ部31Aは各々、発光部231Aを、(LEDチップ23Bの配列ピッチP1)/(発光部231Aの発光面の一辺の長さa1)以上の倍率M1で拡大投影する両側テレセントリックな光学系である。なお、図8では、図面の明瞭化のために、Y1方向に沿って一列に並んだ4つのLEDチップ23A(23B)だけを示している。 As shown in FIG. 8, the first enlarging optical system 30A is an enlarging optical system for forming an enlarged image of the light emitting portion 231A of each LED chip 23A on a predetermined plane PP. The first magnifying optical system 30A includes a plurality of lens sections 31A arranged to correspond to the arrangement of the LED chips 23A. Each of the lens sections 31A is a double-sided telecentric optical system that enlarges and projects the light emitting section 231A at a magnification M1 equal to or greater than (array pitch P1 of LED chips 23B)/(length a1 of one side of the light emitting surface of the light emitting section 231A). . In addition, in FIG. 8, for clarity of the drawing, only four LED chips 23A (23B) lined up in a row along the Y1 direction are shown.
 第2拡大光学系30Bは、各LEDチップ23Bの発光部231Bの拡大像を所定面PPにそれぞれ形成するための拡大光学系である。第2拡大光学系30Bは、LEDチップ23Bの配列と対応するように配列された複数のレンズ部31Bを備える。レンズ部31Bは各々、発光部231Bを、(LEDチップ23Aの配列ピッチP2)/(発光部231Bの発光面の一辺の長さa2)以上の倍率M2で拡大投影する両側テレセントリックな光学系である。 The second enlarging optical system 30B is an enlarging optical system for forming an enlarged image of the light emitting portion 231B of each LED chip 23B on a predetermined plane PP. The second magnifying optical system 30B includes a plurality of lens sections 31B arranged to correspond to the arrangement of the LED chips 23B. Each lens section 31B is a double-sided telecentric optical system that enlarges and projects the light emitting section 231B at a magnification M2 equal to or greater than (array pitch P2 of the LED chips 23A)/(length a2 of one side of the light emitting surface of the light emitting section 231B). .
 本実施形態では、レンズ部31A,31Bは各々、4枚の平凸レンズを備えているが、これに限定されるものではなく、レンズ部31A,31Bは、例えば2枚の両凸レンズを備えていてもよいし、3枚の両凸レンズを備えていてもよい。また、レンズ部31A,31Bは、例えば、平凸レンズと両凸レンズとを備えていてもよい。 In this embodiment, each of the lens sections 31A and 31B includes four plano-convex lenses, but the invention is not limited to this. For example, the lens sections 31A and 31B include two biconvex lenses. Alternatively, it may include three biconvex lenses. Further, the lens portions 31A and 31B may include, for example, a plano-convex lens and a biconvex lens.
(照明光学系80の構成)
 図2に戻り、照明光学系80は、第1のダイクロイックミラーDM1を含んで構成される第1の集光光学系(第1の光学系)81Aと、第2の集光光学系(第2の光学系)81Bと、第2のダイクロイックミラーDM2と、結像光学系83と、フライアイレンズFELと、コンデンサー光学系84と、を備える。
(Configuration of illumination optical system 80)
Returning to FIG. 2, the illumination optical system 80 includes a first condensing optical system (first optical system) 81A that includes a first dichroic mirror DM1, and a second condensing optical system (second optical system). (optical system) 81B, a second dichroic mirror DM2, an imaging optical system 83, a fly's eye lens FEL, and a condenser optical system 84.
 第1の集光光学系81Aは、第1拡大光学系30Aによって形成される発光部231Aの拡大像の瞳を形成する。すなわち、第1の集光光学系81Aの後側焦点位置が瞳の位置となる。第1の集光光学系81Aは、光路の途中に第1のダイクロイックミラーDM1を有し、ピーク波長385nmの光の少なくとも一部を反射する。これにより、第2のダイクロイックミラーDM2に光束が入射する。なお、第1の集光光学系81Aは、第1のダイクロイックミラーDM1を備えない構成としてもよく、その場合は、第1光源ユニットOPU1の配置と第1の集光光学系81Aの各レンズの配置を適宜調整して第2のダイクロイックミラーDM2に光束が入射するように構成すればよい。また、第1の集光光学系81Aは、1枚のレンズで構成されていてもよいし、複数のレンズを含むレンズ群で構成されていてもよい。 The first condensing optical system 81A forms a pupil of an enlarged image of the light emitting section 231A formed by the first enlarging optical system 30A. That is, the rear focal position of the first condensing optical system 81A is the position of the pupil. The first condensing optical system 81A includes a first dichroic mirror DM1 in the middle of the optical path, and reflects at least a portion of the light having a peak wavelength of 385 nm. As a result, the light beam enters the second dichroic mirror DM2. Note that the first condensing optical system 81A may be configured without the first dichroic mirror DM1, and in that case, the arrangement of the first light source unit OPU1 and each lens of the first condensing optical system 81A may be changed. The arrangement may be appropriately adjusted so that the light beam is incident on the second dichroic mirror DM2. Further, the first condensing optical system 81A may be composed of one lens, or may be composed of a lens group including a plurality of lenses.
 第2の集光光学系81Bは、第2拡大光学系30Bによって形成される発光部231Bの拡大像の瞳を形成する。すなわち、第2の集光光学系81Bの後側焦点位置が瞳の位置となる。第2の集光光学系81Bは、1枚のレンズで構成されていてもよいし、複数枚のレンズを含むレンズ群で構成されていてもよい。 The second condensing optical system 81B forms a pupil of an enlarged image of the light emitting section 231B formed by the second enlarging optical system 30B. That is, the rear focal position of the second condensing optical system 81B is the position of the pupil. The second condensing optical system 81B may be composed of one lens, or may be composed of a lens group including a plurality of lenses.
 第2のダイクロイックミラーDM2は、ピーク波長385nmの光の少なくとも一部を透過し、ピーク波長365nmの光の少なくとも一部を反射する。これにより、第1の集光光学系81Aによって形成された瞳像と、第2の集光光学系81Bによって形成された瞳像とを重ね合わせた合成像が形成される。 The second dichroic mirror DM2 transmits at least part of the light with a peak wavelength of 385 nm and reflects at least part of the light with a peak wavelength of 365 nm. Thereby, a composite image is formed in which the pupil image formed by the first condensing optical system 81A and the pupil image formed by the second condensing optical system 81B are superimposed.
 本実施形態において、第2のダイクロイックミラーDM2は、第1の集光光学系81Aによって形成された瞳像と、第2の集光光学系81Bによって形成された瞳像とを重ね合わせて合成像を形成する。すなわち、第2のダイクロイックミラーDM2は、第1の集光光学系81Aの後側焦点位置であって、第2の集光光学系81Bの後側焦点位置である位置に配置される。これにより、第2のダイクロイックミラーDM2は、第1光源ユニットOPU1から出射した光と、第2光源ユニットOPU2から出射した光と、にケーラー照明される。ケーラー照明することにより、第1の集光光学系81Aによって形成された瞳像の光束の照度変化及び第2の集光光学系81Bによって形成された瞳像の光束の照度変化を小さくすることができる。なお、本実施形態の構成に限定されず、第1の集光光学系81Aと第2の集光光学系81Bとが、それぞれ第2のダイクロイックミラーDM2に第1光源ユニットOPU1の像と第2光源ユニットOPU2の像とを形成するクリティカル照明を行うように構成されてもよい。 In this embodiment, the second dichroic mirror DM2 superimposes the pupil image formed by the first condensing optical system 81A and the pupil image formed by the second condensing optical system 81B to create a composite image. form. That is, the second dichroic mirror DM2 is arranged at a position that is the rear focal position of the first condensing optical system 81A and the rear focal position of the second condensing optical system 81B. Thereby, the second dichroic mirror DM2 is illuminated by Koehler illumination with the light emitted from the first light source unit OPU1 and the light emitted from the second light source unit OPU2. By performing Koehler illumination, it is possible to reduce the change in illuminance of the light flux of the pupil image formed by the first condensing optical system 81A and the change in the illuminance of the light flux of the pupil image formed by the second condensing optical system 81B. can. Note that, without being limited to the configuration of the present embodiment, the first condensing optical system 81A and the second condensing optical system 81B respectively attach the image of the first light source unit OPU1 and the second condensing optical system to the second dichroic mirror DM2. It may be configured to perform critical illumination to form an image of the light source unit OPU2.
 照明ユニット90には、ピーク波長385nmの光をモニタリングするための検出器DT10と、ピーク波長365nmの光をモニタリングするための検出器DT20と、ピーク波長385nmの光とピーク波長365nmの光とをモニタリングするための検出器DT30とが設けられている。 The illumination unit 90 includes a detector DT10 for monitoring light with a peak wavelength of 385 nm, a detector DT20 for monitoring light with a peak wavelength of 365 nm, and a detector DT20 for monitoring light with a peak wavelength of 385 nm and light with a peak wavelength of 365 nm. A detector DT30 is provided for the detection.
 具体的には、検出器DT10は、第1のダイクロイックミラーDM1に反射されたピーク波長385nmの光の照度を検出する。検出器DT20は、第2のダイクロイックミラーDM2に反射されたピーク波長365nmの光の照度を検出する。検出器DT30は、第2のダイクロイックミラーDM2により意図せず反射された385nmの光の照度と、第2のダイクロイックミラーDM2が意図せず透過した365nmの光の照度と、を検出する。 Specifically, the detector DT10 detects the illuminance of the light with a peak wavelength of 385 nm reflected by the first dichroic mirror DM1. The detector DT20 detects the illuminance of the light having a peak wavelength of 365 nm reflected by the second dichroic mirror DM2. The detector DT30 detects the illuminance of the 385 nm light unintentionally reflected by the second dichroic mirror DM2 and the illuminance of the 365 nm light unintentionally transmitted by the second dichroic mirror DM2.
 検出器DT10~DT30の検出結果は不図示の制御装置に出力され、制御装置は検出器DT10~DT30の検出結果に基づいて、第1光源ユニットOPU1及び第2光源ユニットOPU2がそれぞれ備えるLEDチップ23A及び23Bに供給する電流の値等を制御する。 The detection results of the detectors DT10 to DT30 are output to a control device (not shown), and the control device outputs the LED chips 23A of the first light source unit OPU1 and the second light source unit OPU2, respectively, based on the detection results of the detectors DT10 to DT30. and controls the value of the current supplied to 23B.
 結像光学系83は、第2のダイクロイックミラーDM2が合成した合成像をフライアイレンズFELの入射端に等倍投影する両側テレセントリックな光学系である。なお、結像光学系83は、第2のダイクロイックミラーDM2が合成した合成像をフライアイレンズFELの入射端に縮小投影してもよい。 The imaging optical system 83 is a double-sided telecentric optical system that projects the composite image synthesized by the second dichroic mirror DM2 at the same magnification onto the incident end of the fly's eye lens FEL. Note that the imaging optical system 83 may reduce and project the composite image synthesized by the second dichroic mirror DM2 onto the incident end of the fly's eye lens FEL.
 フライアイレンズFELは、たとえば正の屈折力を有する多数のレンズエレメントをその光軸が基準光軸AXと平行になるように縦横に且つ稠密に配列することによって構成されている。フライアイレンズFELを構成する各レンズエレメントは、マスクMSK上において形成すべき照野の形状(ひいてはプレートP上において形成すべき露光領域の形状)と相似な矩形状の断面を有する。 The fly's eye lens FEL is constructed by densely arranging a large number of lens elements each having, for example, positive refractive power, vertically and horizontally so that their optical axes are parallel to the reference optical axis AX. Each lens element constituting the fly's eye lens FEL has a rectangular cross section similar to the shape of the illumination field to be formed on the mask MSK (and thus the shape of the exposure area to be formed on the plate P).
 したがって、フライアイレンズFELに入射した光束は多数のレンズエレメントにより波面分割され、各レンズエレメントの後側焦点面(出射面)またはその近傍には1つの光源像がそれぞれ形成される。すなわち、フライアイレンズFELの後側焦点面(出射面)またはその近傍には、多数の光源像からなる実質的な面光源すなわち二次光源が形成される。フライアイレンズFELの後側焦点面(出射面)またはその近傍に形成された二次光源からの光束は、その近傍に配置された開口絞り85に入射する。なお、本実施形態においてフライアイレンズFELの後側焦点面(出射面)と、第1光源アレイ20A及び第2光源アレイ20Bとは、光学的に共役である。 Therefore, the light beam incident on the fly's eye lens FEL is wavefront-divided by a large number of lens elements, and one light source image is formed at or near the rear focal plane (output surface) of each lens element. That is, a substantial surface light source, ie, a secondary light source, consisting of a large number of light source images is formed at or near the rear focal plane (output surface) of the fly's eye lens FEL. A light beam from a secondary light source formed at or near the rear focal plane (output surface) of the fly's eye lens FEL enters an aperture stop 85 arranged near it. In this embodiment, the rear focal plane (output surface) of the fly's eye lens FEL and the first light source array 20A and the second light source array 20B are optically conjugate.
 開口絞り85は、投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定するための可変開口部を有する。そして、開口絞り85は、可変開口部の開口径を変化させることにより、照明条件を決定するσ値(投影光学系の瞳面の開口径に対するその瞳面上での二次光源像の口径の比)を所望の値に設定する。開口絞り85を介した二次光源からの光は、コンデンサー光学系84の集光作用を受けた後、所定のパターンが形成されたマスクMSKを重畳的に照明する。 The aperture stop 85 is arranged at a position that is optically approximately conjugate with the entrance pupil plane of the projection optical system PL, and has a variable aperture for defining the range that contributes to the illumination of the secondary light source. The aperture stop 85 changes the aperture diameter of the variable aperture to determine the σ value (the aperture of the secondary light source image on the pupil plane of the projection optical system relative to the aperture diameter of the pupil plane of the projection optical system), which determines the illumination condition. ratio) to the desired value. The light from the secondary light source passes through the aperture diaphragm 85 and, after being condensed by the condenser optical system 84, illuminates the mask MSK in which a predetermined pattern is formed in a superimposed manner.
 なお、第1光源ユニットOPU1及び第2光源ユニットOPU2が出射する光の波長は上述したものに限られず、360~440nmの範囲内にピーク波長を有する光を出射するLEDチップを適宜組み合わせて第1光源ユニットOPU1と第2光源ユニットOPU2とを構成してもよい。例えば、第1光源ユニットOPU1がピーク波長405nmの光を出射し、かつ、第2光源ユニットOPU2がピーク波長385nmの光を出射するように構成してもよい。また、第1光源ユニットOPU1がピーク波長395nmの光を出射し、かつ、第2光源ユニットOPU2がピーク波長385nmの光を出射するように構成してもよい。第1光源ユニットOPU1から出射する光の波長と第2光源ユニットOPU2が出射する光の波長の組み合わせは、これらの例示には限られない。なお、第1光源ユニットOPU1が出射する光の波長と第2光源ユニットOPU2が出射する光の波長の組み合わせを、本第1実施形態以外の組み合わせとする場合は、使用する波長に応じて適宜ダイクロイックミラーの材料を変更することが好ましい。 Note that the wavelengths of the light emitted by the first light source unit OPU1 and the second light source unit OPU2 are not limited to those described above, and the first light source unit OPU1 and the second light source unit OPU2 may be The light source unit OPU1 and the second light source unit OPU2 may be configured. For example, the first light source unit OPU1 may emit light with a peak wavelength of 405 nm, and the second light source unit OPU2 may emit light with a peak wavelength of 385 nm. Alternatively, the first light source unit OPU1 may emit light with a peak wavelength of 395 nm, and the second light source unit OPU2 may emit light with a peak wavelength of 385 nm. The combination of the wavelength of the light emitted from the first light source unit OPU1 and the wavelength of the light emitted from the second light source unit OPU2 is not limited to these examples. Note that if the combination of the wavelength of the light emitted by the first light source unit OPU1 and the wavelength of the light emitted by the second light source unit OPU2 is a combination other than that of the first embodiment, dichroic dichroic may be used as appropriate depending on the wavelength used. It is preferable to change the material of the mirror.
(実験)
 実施形態に係る方法でヒートシンクと基板とを固定した場合と、比較例に係る方法でヒートシンクと基板とを固定した場合と、で基板の温度を求めた。ここで、光源アレイに配置されたLEDチップの個数は5×5個とした。
(experiment)
The temperature of the substrate was determined when the heat sink and the substrate were fixed by the method according to the embodiment and when the heat sink and the substrate were fixed by the method according to the comparative example. Here, the number of LED chips arranged in the light source array was 5×5.
(比較例)
 まず、比較例に係る、ヒートシンク1040と基板1021との固定方法について説明する。図9(A)は、比較例に係るヒートシンク1040と光源アレイ1020とを示す正面図であり、図9(B)は、図9(A)のA-A線断面図である。
(Comparative example)
First, a method of fixing the heat sink 1040 and the substrate 1021 according to a comparative example will be described. 9(A) is a front view showing a heat sink 1040 and a light source array 1020 according to a comparative example, and FIG. 9(B) is a sectional view taken along the line AA in FIG. 9(A).
 図9(A)に示すように、比較例においても、ヒートシンク1040上に3つの光源アレイ1020が配置されている。各光源アレイ1020は、基板1021と、複数のLEDチップ23Aとを備える。基板1021上に設けられるLEDチップ23Aの数、及び配列ピッチは、第1光源アレイ20Aと同一である。 As shown in FIG. 9A, also in the comparative example, three light source arrays 1020 are arranged on the heat sink 1040. Each light source array 1020 includes a substrate 1021 and a plurality of LED chips 23A. The number of LED chips 23A provided on the substrate 1021 and the arrangement pitch are the same as those of the first light source array 20A.
 図9(B)に示すように、比較例に係るヒートシンク1040は、貫通孔1401と、固定ブロック45と、を備えている。固定ブロック45は、ボルト46によってヒートシンク1040に固定されている。また、固定ブロック45の+Z1側の端部には、ネジ孔が形成されている。 As shown in FIG. 9(B), the heat sink 1040 according to the comparative example includes a through hole 1401 and a fixing block 45. Fixed block 45 is fixed to heat sink 1040 with bolts 46. Further, a screw hole is formed at the end of the fixed block 45 on the +Z1 side.
 基板1021には、複数のLEDチップ23Aが配列された範囲外の4箇所に貫通孔が設けられている。+Z1側から当該貫通孔にボルト60を挿通し、固定ブロック45の+Z1側の端部に形成されたネジ孔に係合させることで、基板1021がヒートシンク1040に固定される。その他の構成は、実施形態と同一であるため詳細な説明を省略する。 Through holes are provided in the substrate 1021 at four locations outside the area where the plurality of LED chips 23A are arranged. The board 1021 is fixed to the heat sink 1040 by inserting the bolt 60 into the through hole from the +Z1 side and engaging the screw hole formed at the end of the fixing block 45 on the +Z1 side. The other configurations are the same as those in the embodiment, so detailed description will be omitted.
 図9(A)に示すように、基板1021の表面に、サーミスタ25を配置し、基板1021の表面温度を計測した。基板21Aについても同様に、その表面にサーミスタ25を配置し表面温度を計測した。サーミスタ25は、基板21Aと基板1021とにおいて同一の位置に配置した。図10は、計測結果を示す図である。 As shown in FIG. 9(A), a thermistor 25 was placed on the surface of the substrate 1021, and the surface temperature of the substrate 1021 was measured. Similarly, a thermistor 25 was placed on the surface of the substrate 21A to measure the surface temperature. Thermistor 25 was placed at the same position on substrate 21A and substrate 1021. FIG. 10 is a diagram showing the measurement results.
 図10の横軸は、各基板を示しており、「左」は、-Y1側に配置された基板、「中央」は、中央に配置された基板、「右」は、+Y1側に配置された基板を示し、「平均」はすべての基板の平均値を示す。図10の縦軸は、サーミスタ25の計測値から求めた温度を示す。 The horizontal axis in FIG. 10 indicates each board, and the "left" is the board placed on the -Y1 side, the "center" is the board placed in the center, and the "right" is the board placed on the +Y1 side. "Average" indicates the average value for all substrates. The vertical axis in FIG. 10 indicates the temperature determined from the measurement value of the thermistor 25.
 図10に示すように、いずれの基板においても、実施形態に係る方法によってヒートシンク40と基板21Aとを固定することで、比較例に係る方法よりも基板の表面温度が低下していることが確認された。すなわち、実施形態に係る固定方法の方が、比較例に係る固定方法よりも、LEDチップ23Aの冷却効果が高いことが確認された。これは、以下の理由によるものと考えられる。比較例に係る固定方法では、複数のLEDチップ23Aが配列された範囲外の4箇所で基板1021をヒートシンク1040に固定するため、基板1021の反りやたわみによって、LEDチップ23Aが配列された範囲において、熱伝導部材50と基板1021及びヒートシンク1040との密着性が不十分となってしまう。一方、実施形態に係る固定方法では、LEDチップ23Aが配列された範囲内の9箇所で基板21Aをヒートシンク40に固定することができるため、LEDチップ23Aが配列された範囲における基板21Aの反りやたわみを抑制することができ、熱伝導部材50と基板21A及びヒートシンク40との密着性を高めることができる。この結果、実施形態に係る固定方法の方が、比較例に係る固定方法よりも、LEDチップ23Aの冷却効果が高くなると考えられる。 As shown in FIG. 10, it was confirmed that in any of the substrates, by fixing the heat sink 40 and the substrate 21A using the method according to the embodiment, the surface temperature of the substrate was lower than that using the method according to the comparative example. It was done. That is, it was confirmed that the fixing method according to the embodiment has a higher cooling effect on the LED chip 23A than the fixing method according to the comparative example. This is considered to be due to the following reasons. In the fixing method according to the comparative example, the board 1021 is fixed to the heat sink 1040 at four locations outside the range where the plurality of LED chips 23A are arranged. , the adhesion between the heat conductive member 50, the substrate 1021, and the heat sink 1040 becomes insufficient. On the other hand, in the fixing method according to the embodiment, since the substrate 21A can be fixed to the heat sink 40 at nine locations within the range where the LED chips 23A are arranged, the warping of the board 21A in the range where the LED chips 23A are arranged can be avoided. Deflection can be suppressed, and the adhesion between the heat conductive member 50, the substrate 21A, and the heat sink 40 can be improved. As a result, it is thought that the fixing method according to the embodiment has a higher cooling effect on the LED chip 23A than the fixing method according to the comparative example.
 このように、基板21Aの第2面21bのうち、LEDチップ23Aが配列された範囲と対応する部分AR1に形成された凹部211を利用して、基板21Aをヒートシンク40に固定することで、比較例のようにLEDチップ23Aが配列された範囲外に基板1021をヒートシンク1040とを固定する機構を設けて基板1021とヒートシンク1040とを固定する場合よりも、LED23Aを効率的に冷却できることが確かめられた。 In this way, by fixing the substrate 21A to the heat sink 40 using the recess 211 formed in the portion AR1 corresponding to the range where the LED chips 23A are arranged on the second surface 21b of the substrate 21A, the comparison can be made. It has been confirmed that the LED 23A can be cooled more efficiently than when the substrate 1021 and the heat sink 1040 are fixed by providing a mechanism for fixing the substrate 1021 and the heat sink 1040 outside the range where the LED chips 23A are arranged as in the example. Ta.
 以上、詳細に説明したように、本実施形態によれば、第1光源ユニットOPU1は、互いに対向する第1面21aと第2面21bとを有する基板21Aと、基板21Aの第1面21a上に2次元配列されたLEDチップ23Aと、ヒートシンク40と、基板21Aとヒートシンク40との間に設けられた熱伝導部材50と、を備える。基板21Aは、第2面21bのうち、平面視においてLEDチップ23Aが配列された範囲に対向する部分AR1に複数の凹部211を有し、ヒートシンク40は、貫通孔401を有し、基板21Aとヒートシンク40とは、貫通孔401を挿通するとともに凹部211に嵌合するボルト61で固定されている。これにより、例えば、LEDチップ23Aが配列された範囲外において、基板21Aとヒートシンク40とを固定する場合と比較して、LEDチップ23Aが配列された範囲における基板21Aの反りやたわみを抑制することができるので、熱伝導部材50と基板21A及びヒートシンク40との密着性を高めることができる。このため、LEDチップ23Aを効率的に冷却することができる。これにより、LEDチップ23Aの温度上昇によって発光部231Aから出射される光の輝度が低下することを抑制することができる。 As described above in detail, according to the present embodiment, the first light source unit OPU1 includes a substrate 21A having a first surface 21a and a second surface 21b facing each other, and The device includes LED chips 23A arranged two-dimensionally, a heat sink 40, and a heat conductive member 50 provided between the substrate 21A and the heat sink 40. The substrate 21A has a plurality of recesses 211 in a portion AR1 of the second surface 21b that faces the range where the LED chips 23A are arranged in a plan view, and the heat sink 40 has a through hole 401, which is connected to the substrate 21A. The heat sink 40 is fixed to the heat sink 40 with a bolt 61 that passes through the through hole 401 and fits into the recess 211 . As a result, for example, compared to the case where the substrate 21A and the heat sink 40 are fixed outside the area where the LED chips 23A are arranged, warpage and deflection of the substrate 21A in the area where the LED chips 23A are arranged can be suppressed. Therefore, the adhesion between the heat conductive member 50, the substrate 21A, and the heat sink 40 can be improved. Therefore, the LED chip 23A can be efficiently cooled. Thereby, it is possible to suppress a decrease in the brightness of the light emitted from the light emitting section 231A due to a rise in the temperature of the LED chip 23A.
 また、本実施形態において、凹部211はネジ孔である。これにより、ボルト61を利用して簡単に基板21Aとヒートシンク40とを固定することができる。 Furthermore, in this embodiment, the recess 211 is a screw hole. Thereby, the board 21A and the heat sink 40 can be easily fixed using the bolts 61.
 また、本実施形態において、凹部211は、LEDチップ23Aが配列された範囲に対向する部分AR1に複数形成され、貫通孔401は、複数の凹部211に対応して複数形成されている。これにより、基板21Aとヒートシンク40とを、複数箇所で固定できるため、基板21Aと熱伝導部材50と、熱伝導部材50とヒートシンク40とを密着させることができ、LEDチップ23Aをより効率的に冷却することができる。 Furthermore, in this embodiment, a plurality of recesses 211 are formed in the portion AR1 facing the range in which the LED chips 23A are arranged, and a plurality of through holes 401 are formed corresponding to the plurality of recesses 211. As a result, the board 21A and the heat sink 40 can be fixed at multiple locations, so the board 21A and the heat conductive member 50 and the heat conductive member 50 and the heat sink 40 can be brought into close contact with each other, and the LED chip 23A can be fixed more efficiently. Can be cooled.
 また、本実施形態において、複数の凹部211及び貫通孔401は、等間隔に形成されている。これにより、ボルト61から基板21Aに作用する力を均等にすることができるため、基板21Aの歪み、たわみ等を抑制することができる。 Furthermore, in this embodiment, the plurality of recesses 211 and through holes 401 are formed at equal intervals. This makes it possible to equalize the force acting on the board 21A from the bolts 61, so that distortion, deflection, etc. of the board 21A can be suppressed.
 また、本実施形態において、凹部211は、基板21Aを貫通していない。これにより、ボルト61がLEDチップ23Aに接触することを防止することができる。 Furthermore, in this embodiment, the recess 211 does not penetrate the substrate 21A. This can prevent the bolt 61 from coming into contact with the LED chip 23A.
 また、本実施形態において、基板21Aは金属基板である。これにより、凹部211を容易に形成することができる。 Furthermore, in this embodiment, the substrate 21A is a metal substrate. Thereby, the recess 211 can be easily formed.
 なお、上記実施形態において、ヒートシンク40と基板21Aとの間には、熱伝導部材50が設けられていたが、熱伝導部材50を省略してもよい。すなわち、ヒートシンク40と基板21Aとが直接接触するようにボルト61によってヒートシンク40と基板21Aとを固定してもよい。このようにしても、LEDチップ23Aを冷却することができ、LEDチップ23Aの発光部231Aが出射する光の輝度が、LEDチップ23Aの温度上昇によって低下することを抑制することができる。 Note that in the above embodiment, the heat conduction member 50 was provided between the heat sink 40 and the substrate 21A, but the heat conduction member 50 may be omitted. That is, the heat sink 40 and the substrate 21A may be fixed with the bolts 61 so that the heat sink 40 and the substrate 21A are in direct contact with each other. Even in this case, the LED chip 23A can be cooled, and the brightness of the light emitted by the light emitting part 231A of the LED chip 23A can be prevented from decreasing due to a rise in the temperature of the LED chip 23A.
 また、上記実施形態において、凹部211はネジ孔であるとしたが、これに限られるものではない。凹部211は、ねじ溝を有さない孔であってもよい。この場合、ボルト61に代えて、凹部211に嵌合する固定部材を使用し、当該固定部材をはんだ付けや接着剤によって基板21Aに固定してもよい。 In addition, in the above embodiment, the recess 211 is a screw hole, but it is not limited to this. The recess 211 may be a hole without a thread groove. In this case, instead of the bolt 61, a fixing member that fits into the recess 211 may be used, and the fixing member may be fixed to the substrate 21A by soldering or adhesive.
 また、上記実施形態において、凹部211を複数設けていたが、凹部211は、基板21Aの第2面21bのうち、LEDチップ23AにLEDチップ23Aが配列された部分と対応する部分に少なくとも1つ形成されていればよい。また、凹部211の数は、上記実施形態に限られるものではなく、8個以下であってもよいし、10個以上であってもよい。 Further, in the above embodiment, a plurality of recesses 211 are provided, and at least one recess 211 is provided in a portion of the second surface 21b of the substrate 21A that corresponds to a portion where the LED chips 23A are arranged. It is sufficient if it is formed. Further, the number of recesses 211 is not limited to the above embodiment, and may be 8 or less, or 10 or more.
 また、上記実施形態において、凹部211は、X1方向及びY1方向のそれぞれにおいて、等間隔に設けられていたが、不規則な間隔で設けられていてもよい。この場合、ヒートシンク40の貫通孔401を、凹部211の位置に対応する位置に形成すればよい。 Furthermore, in the above embodiment, the recesses 211 are provided at equal intervals in each of the X1 direction and the Y1 direction, but they may be provided at irregular intervals. In this case, the through hole 401 of the heat sink 40 may be formed at a position corresponding to the position of the recess 211.
 また、上記実施形態において、ヒートシンク40は、内部に冷媒が流通する流路402を有していたが、これに限られるものではない。ヒートシンク40は、例えば、フィンタイプのヒートシンクであってもよい。 Furthermore, in the above embodiment, the heat sink 40 had the flow path 402 through which the refrigerant flows inside, but the heat sink 40 is not limited to this. The heat sink 40 may be, for example, a fin type heat sink.
 また、上記実施形態において、図11に示すように、ヒートシンク40の基板21Aが配列された面とは反対側の面に、LEDチップ23Aを制御する制御部CTRを配置してもよい。この場合、ヒートシンク40によって制御部CTRを冷却することができるので、制御部CTRを冷却する機構を別途設けなくてもよく、第1光源ユニットOPU1の構成をシンプルにすることができる。また、制御部CTRからLEDチップ23Aに信号を送信するケーブルCBLが長くなることを抑制できる。ケーブルが長くなると信号にノイズがのりやすくなるが、ケーブルを短くできるため、ノイズを低減することができる。第2光源ユニットOPU2についても同様である。 Furthermore, in the above embodiment, as shown in FIG. 11, a control unit CTR for controlling the LED chips 23A may be arranged on the surface of the heat sink 40 opposite to the surface on which the substrates 21A are arranged. In this case, since the control unit CTR can be cooled by the heat sink 40, there is no need to separately provide a mechanism for cooling the control unit CTR, and the configuration of the first light source unit OPU1 can be simplified. Moreover, it is possible to suppress the length of the cable CBL for transmitting a signal from the control unit CTR to the LED chip 23A. Longer cables tend to introduce noise into the signal, but since the cables can be made shorter, noise can be reduced. The same applies to the second light source unit OPU2.
 また、上記実施形態及び変形例では、照明ユニット90は、第1光源ユニットOPU1と、第2光源ユニットOPU2と、第2のダイクロイックミラーDM2を含む照明光学系80と、を備えていたがこれに限られるものではない。例えば、照明ユニット90は、第1光源ユニットOPU1と第2光源ユニットOPU2とのいずれか一方のみを有していてもよい。この場合、照明光学系80は、第1光源ユニットOPU1又は第2光源ユニットOPU2から出射された光をマスクMSKに導くことができれば、任意の構成を有することができる。 Further, in the above embodiment and modification, the illumination unit 90 includes the first light source unit OPU1, the second light source unit OPU2, and the illumination optical system 80 including the second dichroic mirror DM2. It is not limited. For example, the lighting unit 90 may include only one of the first light source unit OPU1 and the second light source unit OPU2. In this case, the illumination optical system 80 can have any configuration as long as it can guide the light emitted from the first light source unit OPU1 or the second light source unit OPU2 to the mask MSK.
 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The embodiments described above are examples of preferred implementations of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.
10 露光装置
20A 第1光源アレイ
20B 第2光源アレイ
21A,21B 基板
21a 第1面
21b 第2面
23A,23B LEDチップ
30A 第1拡大光学系
30B 第2拡大光学系
31A,31B レンズ部
40 ヒートシンク
50 熱伝導部材
61 ボルト
211 凹部
231A,231B 発光部
401 貫通孔
80 照明光学系
90 照明ユニット
100 投影光学ユニット
CTR 制御部
DM2 第2のダイクロイックミラー
MSK マスク
OPU1 第1光源ユニット
OPU2 第2光源ユニット
P ガラス基板
 
 
10 Exposure device 20A First light source array 20B Second light source array 21A, 21B Substrate 21a First surface 21b Second surface 23A, 23B LED chip 30A First magnifying optical system 30B Second magnifying optical system 31A, 31B Lens section 40 Heat sink 50 Thermal conduction member 61 Bolt 211 Recesses 231A, 231B Light emitting section 401 Through hole 80 Illumination optical system 90 Illumination unit 100 Projection optical unit CTR Control section DM2 Second dichroic mirror MSK Mask OPU1 First light source unit OPU2 Second light source unit P Glass substrate

Claims (19)

  1.  互いに対向する第1面と第2面とを有する基板と、
     前記基板の前記第1面上に2次元配列された複数の光源素子と、
     ヒートシンクと、
    を備え、
     前記基板は、前記第2面のうち、平面視において前記複数の光源素子が配列された範囲に対向する部分に形成された少なくとも1つの凹部を有し、
     前記ヒートシンクは、貫通孔を有し、
     前記基板と前記ヒートシンクとは、前記貫通孔を挿通するとともに前記凹部に嵌合する固定部材で固定されている、
    光源ユニット。
    a substrate having a first surface and a second surface facing each other;
    a plurality of light source elements arranged two-dimensionally on the first surface of the substrate;
    heat sink and
    Equipped with
    The substrate has at least one recess formed in a portion of the second surface that faces the range in which the plurality of light source elements are arranged in a plan view,
    The heat sink has a through hole,
    The substrate and the heat sink are fixed by a fixing member that passes through the through hole and fits into the recess.
    light source unit.
  2.  前記凹部はネジ孔である、
    請求項1に記載の光源ユニット。
    the recess is a screw hole;
    The light source unit according to claim 1.
  3.  前記固定部材はネジである、
    請求項2に記載の光源ユニット。
    the fixing member is a screw;
    The light source unit according to claim 2.
  4.  前記ヒートシンクは、前記ヒートシンクの内部に冷媒を通す流路を有する、
    請求項1から請求項3のいずれか一項に記載の光源ユニット。
    The heat sink has a flow path for passing a refrigerant inside the heat sink,
    The light source unit according to any one of claims 1 to 3.
  5.  前記流路は、前記貫通孔が形成されていない部分に形成されている、
    請求項4に記載の光源ユニット。
    The flow path is formed in a portion where the through hole is not formed.
    The light source unit according to claim 4.
  6.  前記凹部は、前記範囲に対向する部分に複数形成され、
     前記貫通孔は、複数の前記凹部に対応して複数形成されている、
    請求項1から請求項5のいずれか一項に記載の光源ユニット。
    A plurality of the recesses are formed in a portion facing the range,
    A plurality of the through holes are formed corresponding to the plurality of recesses,
    The light source unit according to any one of claims 1 to 5.
  7.  複数の前記凹部と複数の前記貫通孔は、等間隔に形成されている、
    請求項6に記載の光源ユニット。
    The plurality of recesses and the plurality of through holes are formed at equal intervals,
    The light source unit according to claim 6.
  8.  前記凹部は、前記基板を貫通していない、
    請求項1から請求項7のいずれか一項に記載の光源ユニット。
    the recess does not penetrate the substrate;
    The light source unit according to any one of claims 1 to 7.
  9.  前記ヒートシンクと前記基板との間に設けられた熱伝導部材を備える、
    請求項1から請求項8のいずれか一項に記載の光源ユニット。
    comprising a thermally conductive member provided between the heat sink and the substrate;
    The light source unit according to any one of claims 1 to 8.
  10.  前記固定部材は前記熱伝導部材を貫通している、
    請求項9に記載の光源ユニット。
    the fixing member passes through the heat conductive member;
    The light source unit according to claim 9.
  11.  前記基板は金属基板である、
    請求項1から請求項10のいずれか一項に記載の光源ユニット。
    the substrate is a metal substrate;
    The light source unit according to any one of claims 1 to 10.
  12.  前記基板は5mm以下の厚みを有する、
    請求項1から請求項11のいずれか一項に記載の光源ユニット。
    The substrate has a thickness of 5 mm or less,
    The light source unit according to any one of claims 1 to 11.
  13.  前記複数の光源素子は各々、光を射出する発光部を備え、
     前記複数の光源素子の各々の前記発光部の拡大像を形成するレンズを2次元平面上に複数配列したレンズアレイを更に備える、
    請求項1から請求項12のいずれか一項に記載の光源ユニット。
    Each of the plurality of light source elements includes a light emitting part that emits light,
    further comprising a lens array in which a plurality of lenses are arranged on a two-dimensional plane to form an enlarged image of the light emitting part of each of the plurality of light source elements;
    The light source unit according to any one of claims 1 to 12.
  14.  前記ヒートシンクの前記基板が配置された面とは反対側の面に、前記複数の光源素子を制御する制御部が配置されている、
    請求項1から請求項13のいずれか一項に記載の光源ユニット。
    A control unit that controls the plurality of light source elements is disposed on a surface of the heat sink opposite to the surface on which the substrate is disposed.
    The light source unit according to any one of claims 1 to 13.
  15.  請求項1から請求項14のいずれか一項に記載の光源ユニットと、
     前記光源ユニットから出射された光を被照射体に導く照明光学系と、
    を備える照明ユニット。
    The light source unit according to any one of claims 1 to 14,
    an illumination optical system that guides the light emitted from the light source unit to an irradiated object;
    A lighting unit with.
  16.  複数の請求項1から請求項14のいずれか一項に記載の光源ユニットと、
     複数の前記光源ユニットから出射された光を合成する合成光学素子を含み、前記合成光学素子から出射された合成光を被照射体に導く照明光学系と、
    を備える照明ユニット。
    A plurality of light source units according to any one of claims 1 to 14,
    an illumination optical system including a combining optical element that combines light emitted from the plurality of light source units, and guiding the combined light emitted from the combining optical element to an irradiated object;
    A lighting unit with.
  17.  請求項15または請求項16に記載の照明ユニットと、
     前記照明ユニットにより照明されるマスクのパターン像を感光性基板上に投影する投影光学系と、
    を備える露光装置。
    The lighting unit according to claim 15 or 16;
    a projection optical system that projects a pattern image of the mask illuminated by the illumination unit onto a photosensitive substrate;
    An exposure apparatus comprising:
  18.  前記感光性基板は、少なくとも一辺の長さ又は対角長が500mm以上である、
    請求項17に記載の露光装置。
    The photosensitive substrate has at least one side length or diagonal length of 500 mm or more,
    The exposure apparatus according to claim 17.
  19.  請求項17又は請求項18に記載の露光装置を用いた露光方法であって、
     前記照明ユニットによりマスクを照明することと、
     前記投影光学系を用いて前記マスクのパターン像を感光性基板へ投影することと、
    を含む露光方法。
     
    An exposure method using the exposure apparatus according to claim 17 or 18,
    Illuminating the mask with the lighting unit;
    Projecting the pattern image of the mask onto a photosensitive substrate using the projection optical system;
    Exposure methods including.
PCT/JP2022/031212 2022-08-18 2022-08-18 Light source unit, illumination unit, exposure device, and exposure method WO2024038537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031212 WO2024038537A1 (en) 2022-08-18 2022-08-18 Light source unit, illumination unit, exposure device, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031212 WO2024038537A1 (en) 2022-08-18 2022-08-18 Light source unit, illumination unit, exposure device, and exposure method

Publications (1)

Publication Number Publication Date
WO2024038537A1 true WO2024038537A1 (en) 2024-02-22

Family

ID=89941586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031212 WO2024038537A1 (en) 2022-08-18 2022-08-18 Light source unit, illumination unit, exposure device, and exposure method

Country Status (1)

Country Link
WO (1) WO2024038537A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683421B1 (en) * 2001-01-25 2004-01-27 Exfo Photonic Solutions Inc. Addressable semiconductor array light source for localized radiation delivery
WO2014061555A1 (en) * 2012-10-19 2014-04-24 シャープ株式会社 Light-emitting apparatus and structure for attaching light-emitting apparatus to heat sink
JP2016041959A (en) * 2014-08-18 2016-03-31 カシオ計算機株式会社 Fastening structure, projection device with the fastening structure, and fastening method
JP2017048263A (en) * 2015-08-31 2017-03-09 公立大学法人大阪府立大学 Method for producing cured product of photocurable resin composition and light irradiation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683421B1 (en) * 2001-01-25 2004-01-27 Exfo Photonic Solutions Inc. Addressable semiconductor array light source for localized radiation delivery
WO2014061555A1 (en) * 2012-10-19 2014-04-24 シャープ株式会社 Light-emitting apparatus and structure for attaching light-emitting apparatus to heat sink
JP2016041959A (en) * 2014-08-18 2016-03-31 カシオ計算機株式会社 Fastening structure, projection device with the fastening structure, and fastening method
JP2017048263A (en) * 2015-08-31 2017-03-09 公立大学法人大阪府立大学 Method for producing cured product of photocurable resin composition and light irradiation device

Similar Documents

Publication Publication Date Title
TWI531872B (en) Lithographic apparatus, programmable patterning device and lithographic method
CN101086629B (en) Reflecting mirror array for lithography
US20090244510A1 (en) Process and apparatus for the production of collimated uv rays for photolithographic transfer
US6555936B1 (en) Flatmotor device and exposure device
KR100991209B1 (en) Lithographic apparatus
JP2006332077A (en) Light source unit, illumination optical device, exposure device and exposure method
TWI467347B (en) Substrate handling apparatus and lithographic apparatus
CN1573576A (en) Lithographic apparatus and device manufacturing method
JPWO2006080285A1 (en) Exposure apparatus, exposure method, and microdevice manufacturing method
TW200941901A (en) Planar motor and stage using the same
US11320741B2 (en) Light source apparatus, illumination apparatus, exposure apparatus, and method for manufacturing object
WO2002054460A1 (en) Exposure device
WO2011105461A1 (en) Optical projection device for exposure apparatus, exposure apparatus, method for exposure, method for fabricating substrate, mask, and exposed substrate
JP2006234921A (en) Exposure apparatus and exposure method
WO2024038537A1 (en) Light source unit, illumination unit, exposure device, and exposure method
JP2021193429A (en) Light source device for exposure, illumination device, exposure apparatus, and exposure method
JP2006253486A (en) Illuminator, projection aligning method, projection aligner, and process for fabricating microdevice
WO2024038533A1 (en) Light source unit, illumination unit, exposure device, and exposure method
JP2007025085A (en) Exposure device, optical element array and multispot beam generator, and device manufacturing method
WO2024038535A1 (en) Lighting unit, exposure device, and exposure method
WO2024038538A1 (en) Light source unit, illumination unit, exposure device, and exposure method
JP2007093646A (en) Direct drawing device
KR101353810B1 (en) Maskless exposure apparatus and method, and method for manufacturing flat display panel
TW202409743A (en) Light source unit, lighting unit, exposure device, and exposure method
JP2010272640A (en) Lighting apparatus, exposure apparatus and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955711

Country of ref document: EP

Kind code of ref document: A1