WO2024037511A1 - 交叉链路干扰处理方法、设备及可读存储介质 - Google Patents

交叉链路干扰处理方法、设备及可读存储介质 Download PDF

Info

Publication number
WO2024037511A1
WO2024037511A1 PCT/CN2023/113009 CN2023113009W WO2024037511A1 WO 2024037511 A1 WO2024037511 A1 WO 2024037511A1 CN 2023113009 W CN2023113009 W CN 2023113009W WO 2024037511 A1 WO2024037511 A1 WO 2024037511A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
network device
terminal
measurement result
message
Prior art date
Application number
PCT/CN2023/113009
Other languages
English (en)
French (fr)
Inventor
李娜
潘学明
王理惠
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024037511A1 publication Critical patent/WO2024037511A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a cross-link interference processing method, equipment and readable storage medium.
  • base station 2 (the next Generation Node B 2, gNB 2) performs downlink transmission to user equipment 2 (User Equipment 2, UE 2).
  • gNB 1 schedules UE 1 for uplink transmission, causing UE 1 to transmit Interference to UE 2's reception is called UE-to-UE CLI.
  • CLI between subbands will also be caused because adjacent subbands adopt different transmission directions (uplink or downlink).
  • the filled part with vertical lines represents downlink resources
  • the filled part with horizontal lines represents uplink resources.
  • gNB performs downlink transmission on subband 1 to UE 2.
  • gNB schedules UE 1 to perform uplink transmission on subband 2, causing UE
  • the interference caused by the transmission of 2 to the reception of UE1 is called inter-subband CLI (inter-subband CLI).
  • Embodiments of the present application provide a cross-link interference processing method, equipment, and a readable storage medium, which can effectively deal with the problem of cross-link interference.
  • a cross-link interference processing method including:
  • the first network device allocates first resources, and the first resources are used for the first terminal to transmit uplink signals or to schedule the first terminal to receive downlink signals;
  • the first network device sends a first message to the second network device, where the first message includes resource identification information of the first resource;
  • the first network device receives a second message from the second network device, where the second message includes a first measurement result or resource identification information of a second resource;
  • the first network device performs an interference processing operation according to the second message
  • the first terminal is a terminal belonging to the first network device
  • the first measurement result is obtained by performing cross-link interference CLI measurement on the first resource by the second network device or the second terminal.
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold among the first measurement results
  • the second terminal is a terminal belonging to the second network device.
  • a cross-link interference processing method including:
  • the second network device receives a first message from the first network device.
  • the first message contains resource identification information of the first resource.
  • the first resource is allocated by the first network device and is used for the first terminal. Transmit uplink signals or schedule downlink reception by the first terminal;
  • the second network device triggers the second network device or the second terminal to perform CLI measurement on the first resource
  • the second network device receives a first measurement result from the second terminal, where the first measurement result is a measurement result obtained by performing a CLI measurement on the first resource by the second network device or the second terminal. ;
  • the second network device sends a second message to the first network device, where the second message includes the first measurement result or the resource identification information of the second resource;
  • the first terminal is a terminal belonging to the first network device
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold in the first measurement result
  • the second terminal is a terminal belonging to the first network device. at the terminal of the second network device.
  • a cross-link interference processing device including:
  • An allocation module configured to allocate first resources, the first resources being used for the first terminal to transmit uplink signals or to schedule the first terminal to receive downlink signals;
  • a first sending module configured to send a first message to the second network device, where the first message contains resource identification information of the first resource
  • a first receiving module configured to receive a second message from the second network device, where the second message contains the first measurement result or the resource identification information of the second resource;
  • An execution module configured to execute interference processing operations according to the second message
  • the first terminal is a terminal belonging to the cross-link interference processing device
  • the first measurement result is a measurement obtained by performing CLI measurement on the first resource by the second network device or the second terminal.
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold among the first measurement results
  • the second terminal is a terminal belonging to the second network device.
  • a cross-link interference processing device including:
  • a second receiving module configured to receive a first message from a first network device, where the first message contains resource identification information of the first resource, and the first resource is allocated by the first network device, for The first terminal transmits uplink signals or schedules the first terminal to receive downlink signals;
  • a triggering module configured to trigger the cross-link interference processing device or the second terminal to perform processing on the first resource.
  • a third receiving module configured to receive a first measurement result from the second terminal, where the first measurement result is obtained by performing CLI measurement on the first resource by the cross-link interference processing device or the second terminal. measurement results;
  • a second sending module configured to send a second message to the first network device, where the second message contains the first measurement result or the resource identification information of the second resource;
  • the first terminal is a terminal belonging to the first network device
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold in the first measurement result
  • the second terminal is a terminal belonging to the first network device. at the terminal of the cross-link interference processing device.
  • a network device in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor. The steps of the method as described in the first aspect or the second aspect.
  • a network device including a processor and a communication interface, wherein:
  • the processor is used by the first network device to allocate a first resource, and the first resource is used by the first terminal to transmit an uplink signal;
  • the communication interface is used for the first network device to send a first message to the second network device, where the first message contains resource identification information of the first resource;
  • the communication interface is used for the first network device to receive a second message from the second network device, where the second message contains a first measurement result or resource identification information of a second resource;
  • the processor is configured for the first network device to perform an interference processing operation according to the second message
  • the first terminal is a terminal belonging to the first network device
  • the first measurement result is a measurement result obtained by a second terminal performing CLI measurement on the first resource
  • the second resource is the The resource corresponding to the measurement result that satisfies the preset threshold in the first measurement result
  • the second terminal is a terminal belonging to the second network device.
  • the communication interface is used by the second network device to receive a first message from the first network device, where the first message includes the resource identification information of the first resource.
  • the first resource is allocated by the first network device and is used for the first terminal to transmit uplink signals;
  • the processor is used by the second network device to trigger the second terminal to perform CLI measurement on the first resource
  • the communication interface is used for the second network device to receive a first measurement result from the second terminal, where the first measurement result is a measurement result obtained by the second terminal performing CLI measurement on the first resource;
  • the communication interface is used by the second network device to send a second message to the first network device, where the second message contains the first measurement result or the resource identification information of the second resource;
  • the first terminal is a terminal belonging to the first network device
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold in the first measurement result
  • the second terminal is a terminal belonging to the first network device. at the terminal of the second network device.
  • a seventh aspect provides a communication system, including: a first network device, a first terminal belonging to the first network device, a second network device, a second terminal belonging to the second network device, where The first network device described above is available
  • the second network device may be used to perform the steps of the method as described in the second aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. steps, or steps to implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method as described in the first aspect
  • the first network device allocates a first resource for the first terminal to transmit uplink signals or schedules the first terminal to receive downlink signals, and sends the resource identification information of the first resource to the second network through the first message.
  • the second network device triggers the CLI measurement of the first resource by the second network device or the second terminal, and then the second network device sends the first measurement result to the first network device through the second message, or sends the first measurement
  • the resource identification information of the second resource corresponding to the measurement result that meets the preset threshold in the results is sent to the first network device, and the first network device performs interference processing operations based on this information; in this way, through the communication between the first network device and the second network device Interaction between the first network device and the second network device realizes interference processing for CLI.
  • interference coordination is achieved while saving the overhead of exchange information.
  • Figure 1a is a schematic diagram of the UE-to-UE CLI scenario
  • Figure 1b is a schematic diagram of the inter-subband CLI scenario
  • Figure 1c is a schematic diagram of measurement resources in a UE-to-UE interference measurement scenario
  • Figure 2 is one of the flow diagrams of the cross-link interference processing method provided by the embodiment of the present application.
  • FIG. 3 is the second schematic flowchart of the cross-link interference processing method provided by the embodiment of the present application.
  • Figure 4 is one of the structural schematic diagrams of the cross-link interference processing device provided by the embodiment of the present application.
  • Figure 5 is the second structural schematic diagram of the cross-link interference processing device provided by the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • the architecture of a wireless communication system applicable to the embodiments of the present application can be shown in Figure 1a.
  • the wireless communication system includes two network devices (for example, gNB1 and gNB2 in Figure 1a), and terminals belonging to each network device. It can be understood that the number of terminals belonging to each network device may be one or more.
  • the terminal can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer ( ultra-mobile personal computer (UMPC), mobile Internet device (MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices (Wearable Device), Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers , PC), teller machines or self-service machines and other terminal-side devices, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets , smart anklets, etc.), smart wristbands, smart clothing, etc.
  • UMPC ultra-mobile personal computer
  • Network equipment may include access network equipment, where the access network equipment may also be called radio access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • Access network equipment may include base stations, Wireless Local Area Networks (WLAN) access points or WiFi nodes, etc.
  • WLAN Wireless Local Area Networks
  • the base stations may be called Node B, Evolved Node B (eNB), access point, base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (Extended Service Set, ESS), home B-node, home evolved B-node, transmission and reception point (Transmission Reception Point, TRP) or some other suitable term in the field.
  • eNB Evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B-node home evolved B-node
  • transmission and reception point Transmission Reception Point
  • frequency division duplex Frequency Division Duplex
  • TDD time division duplex
  • a flexible duplex method (non-overlapping subband full duplex, SBFD) is: full duplex on the network side, that is, at the same time, uplink transmission and downlink transmission can be performed simultaneously at different frequency domain locations.
  • a certain guard band (Guard Band) can be left between frequency domain positions corresponding to different transmission directions (corresponding to duplex sub-bands); terminal side half-duplex, that is, consistent with TDD, can only For uplink transmission or downlink transmission, both cannot be performed at the same time. It can be understood that in this full-duplex mode on the network side and half-duplex on the terminal side, the uplink transmission and downlink transmission on the network side at the same time can only be for different terminals.
  • Figure 1b shows a schematic diagram of the above-mentioned flexible duplex mode.
  • the network side semi-statically divides the frequency domain of a single carrier or bandwidth part BWP into three duplex sub-bands within a part of the downlink symbols.
  • the two sides of the carrier are downlink duplex sub-bands.
  • UE1 and UE2 perform uplink transmission and downlink reception respectively.
  • TDD duplex mode When NR cells are deployed on asymmetric spectrum, TDD duplex mode is generally used.
  • TDD-UL-DL-ConfigCommon can be configured in the cell public parameters to indicate the TDD frame structure information, including the TDD frame period, the number of complete downlink/uplink slots included in a single frame period, in addition to the complete downlink/uplink slots. The number of additional downstream/upstream symbols included, etc.
  • RRC signaling can also be used to independently configure TDD-UL-DL-ConfigDedicated for each UE, which is used to further modify the uplink and downlink of one or more Slots within a single frame period based on TDD-UL-DL-ConfigCommon.
  • Symbol configuration (that is, the initial value of the uplink and downlink Symbol configuration of the Slot is specified by TDD-UL-DL-ConfigCommon, and then further modified by TDD-UL-DL-ConfigDedicated. This modification only applies to the UE receiving this RRC signaling), but The modification here is only limited to further indicating the Flexible symbol in the Slot (that is, the transmission direction is not clear, and it can be determined later as needed whether it is used for downlink transmission or uplink transmission) as downlink (DownLink, DL)/uplink ( UpLink, UL) symbol, the DL/UL symbol in the Slot cannot be modified to other directions.
  • TDD-UL-DL-ConfigCommon and/or TDD-UL-DL-ConfigDedicated are optional configurations. Since these configuration information can only be configured/modified semi-statically based on the information of the RRC layer, a single TDD frame determined by these configuration information Each Symbol within the cycle (combined with its configured transmission direction) is called Semi-static DL/UL/flexible symbol in the following. Symbol can be further abstracted into time domain units, which can correspond to time slots (Slots), symbols (Symbols), etc., then a single TDD frame period can contain multiple Semi-static DL/UL/flexible times based on the above configuration information. domain unit.
  • each Slot/Symbol in each radio frame of the NR cell can be understood as Semi- static flexible slot/symbol, or abstracted as Semi-static flexible time domain unit.
  • the base station can also indicate the time slot format SFI through dynamic signaling group common DCI (such as DCI 2-0).
  • Dynamic SFI can only indicate the Semi-static flexible symbol to be DL/UL/flexible, but cannot change the Semi-static DL /UL symbol transmission direction.
  • adjacent cells can be configured with different TDD configurations, or different UEs within a cell have different TDD configurations or instructions. Therefore, there will be gNB-to-gNB interference between neighboring cells (gNB1 is transmitting downlink while gNB 2 is receiving uplink. For gNB 2, it will receive interference from gNB 1) or UE-to-UE interference (UE1 is transmitting in the downlink). While transmitting in the uplink, UE2 is receiving in the downlink. For UE2, it will receive interference from UE1).
  • UE-to-UE interference measurement needs to be performed.
  • An example is shown in Figure 1c.
  • UE1 performs PUSCH transmission based on the scheduling of gNB1, while UE 2 performs interference based on the triggering of gNB2.
  • the interference measurement resource (IMR) of UE 2 is all the physical resources of UE 1 for PUSCH transmission, or part of the physical resources (for example, UE 2 is shown by filling in the figure)
  • the IMR is part of the physical resources used by UE 1 for PUSCH transmission).
  • Existing interference measurement quantities mainly include reference signal received power (Sounding Reference Signal based Reference Signal Received Power, SRS based RSRP) based on the detection reference signal, or received signal strength indication (Received Signal Strength Indication, RSSI), etc.
  • an embodiment of the present application provides a cross-link interference processing method.
  • the execution subject of the method is the first network device.
  • the method includes:
  • Step 201 The first network device allocates a first resource, and the first resource is used for the first terminal to transmit uplink signals or to schedule the first terminal to receive downlink signals;
  • Step 202 The first network device sends a first message to the second network device, where the first message contains resource identification information of the first resource;
  • Step 203 The first network device receives a second message from the second network device.
  • the second message contains the first measurement result.
  • Step 204 The first network device performs an interference processing operation according to the second message
  • the first terminal is a terminal belonging to the first network device
  • the first measurement result is the measurement result obtained by the second network device or the second terminal performing CLI measurement on the first resource
  • the second resource is the first measurement result that satisfies The resource corresponding to the measurement result of the preset threshold value
  • the second terminal is a terminal belonging to the second network device.
  • the first network device allocates a first resource for the first terminal to transmit uplink signals or schedules the first terminal to receive downlink signals, and sends the resource identification information of the first resource to the second network through the first message.
  • the second network device triggers the CLI measurement of the first resource by the second network device or the second terminal, and then the second network device sends the first measurement result to the first network device through the second message, or sends the first measurement
  • the resource identification information of the second resource corresponding to the measurement result that meets the preset threshold in the results is sent to the first network device, and the first network device performs interference processing operations based on this information; in this way, through the communication between the first network device and the second network device
  • the interaction between the first network device and the second network device realizes interference processing for CLI.
  • the first network device and the second network device only exchange measurement results or only exchange resource identification information that meets certain requirements, interference coordination is achieved while saving interactions between network devices. information overhead.
  • the above-mentioned second network device is not equal to the first network device, or the relationship between the first network device and the second network device includes at least one of the following:
  • Inter-cell, inter-site gNB-gNB Inter-cell inter-site gNB-gNB
  • Inter-cell co-site inter-sector gNB-gNB Inter-cell co-site inter-sector gNB-gNB
  • the above-mentioned first network device allocates the first resource. Specifically, it may allocate one or more resources, and the specific number may depend on the number of first terminals belonging to the first network device;
  • the above-mentioned first terminal transmits uplink signals on the first resource.
  • the uplink signals may include but are not limited to physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) signals, physical uplink control channel (Physical Uplink Control Channel, PUCCH) signals, detection One or more of the Sounding Reference Signal (SRS), Physical Random Access Channel (PRACH) signal, and other uplink signals;
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • the above-mentioned first measurement result is specifically the measurement result obtained by the second terminal performing CLI measurement on all resources in the first resource, that is, the second message contains the first measurement result. Specifically, it means that the second network device will all The CLI measurement result corresponding to the first resource is sent to the first network device. It should be noted that the corresponding relationship between the measurement results and the measurement resources (i.e., the first resource) can be known based on all the measurement results.
  • the mapping relationship between the measurement results and the corresponding measurement resources is determined between the two network devices, and can be a One correspondence, that is, resource 0, resource 1, resource 2...corresponds to measurement result 0, measurement result 1, measurement result 2..., or it can be in reverse order, or it can be other values pre-agreed between the two network devices. order. In this way, all the measurement results only need to be sent to the first network device, and the first network device can learn the CLI situation corresponding to each previously allocated first resource, and then perform targeted interference processing.
  • the above-mentioned second resources are resources corresponding to the measurement results that meet the preset threshold in the first measurement results. It can be understood that the second resources are essentially at least part of the first resources allocated by the first network device, that is, the second network Equipment based on The CLI measurement results of the second terminal feed back the resources corresponding to the measurement results that meet the preset threshold as second resources to the first network device. In this way, only a part of the resources with a relatively large CLI are fed back to the first network device, and the first network targets These resources are targeted for interference processing.
  • the preset threshold may be predefined or configured by the network device.
  • a first threshold may be set. If the measurement result is greater than the If a threshold is set, the corresponding resource is classified as the second resource; for another example, when the above CLI measurement result is the signal-to-noise and interference ratio (SINR), a second threshold can be set. If the measurement If the result is less than the second threshold, the corresponding resource is classified as the second resource.
  • the CLI measurement results of each measurement resource include multiple indicators, such as RSSI and CQI
  • the above CLI measurement results that meet the preset threshold can be that each indicator meets its own preset threshold or at least one indicator meets its corresponding preset threshold. The embodiments of this application do not limit the specific setting of the preset threshold.
  • the first resource is used by the first terminal to transmit uplink signals, and the corresponding first measurement result is the measurement result obtained by the second terminal performing CLI measurement on the first resource, it can mainly be used to solve the problem of UE-to-UE. interference coordination;
  • the first resource is used to schedule downlink reception of the first terminal and the corresponding first measurement result is the measurement result obtained by the second network device performing CLI measurement on the first resource
  • it can mainly be used to solve gNB-to-gNB interference coordination.
  • the second network device performs CLI measurement, so there is no need to receive the measurement result of the second terminal.
  • the interaction between the first network device and the second network device is implemented through an interface or Over-the-Air Technology (OTA).
  • OTA Over-the-Air Technology
  • the interface may be an X2 interface, an Xn interface, or an S1 interface.
  • the resource identification information includes one or more of the following:
  • Time domain information specifically embodied in one or more of the following:
  • Symbol, sub-slot index(es) and/or number of symbols which can be one or more symbols, such as the last or multiple symbols in a slot;
  • the first uplink resource can also be identified by periodicity, that is, the first uplink resource reappears at a certain period, for example, the radio frame (10ms) length is the periodicity;
  • Frequency domain information which is embodied in one or more of the following:
  • Frequency domain position such as PRB index(es), or subcarrier position, etc.
  • PRB index(es) such as PRB index(es)
  • subcarrier position such as SRS
  • Power information such as the energy per resource element (EPRE) of uplink signal transmission or the total transmission power
  • Sequence information such as SRS sequence index, or preamble sequence index, etc.
  • Spatial information such as spatial relation information, or Transmission Configuration Indicator state (TCI state) or Quasi co-location type D (Quasi co-location-D, QCL-D), or Beam information, etc.;
  • TCI state Transmission Configuration Indicator state
  • QCL-D Quasi co-location type D
  • Beam information etc.
  • Resource index or resource number can correspond to one or more resources.
  • one resource index or resource number corresponds to a group of resource identifiers of first resources.
  • the second network device reports to the first network device When notifying the first resource, the number of the first resource may be directly sent. It can be understood that when the first network device sends the resource identification information of the first resource to the second network device, it not only sends the resource ID, but also sends specific information such as the time and frequency domain, so that the second network device can allow the second terminal to use these information. Perform CLI measurements on resources.
  • the second network device feeds back the measurement results to the first network device, it can only send the resource ID and does not need to send information such as time and frequency domain, because this information is sent by the first network device to the second network device.
  • the device can know the specific resource information only through the resource ID.
  • the resource identification information is common to the above-mentioned first resource and second resource (because the second resource is part of the first resource and is essentially the first resource, that is, the purpose allocated by the first network device. resources for transmitting uplink signals to the first terminal), so that the specific communication resources can be obtained through the above resource identification information.
  • the first message also contains one or more of the following:
  • Information about the serving cell of the first terminal such as Physical Cell Identifier (PCI), Cell Global Identifier (CGI), E-UTRAN Cell Global Identifier (E-UTRAN Cell Global Identifier, ECGI) or NR-Cell Global Identifier (NR-CGI); the information of the serving cell is mainly to identify different serving cells;
  • PCI Physical Cell Identifier
  • CGI Cell Global Identifier
  • E-UTRAN Cell Global Identifier E-UTRAN Cell Global Identifier
  • ECGI E-UTRAN Cell Global Identifier
  • NR-CGI NR-Cell Global Identifier
  • ABS information is for interference coordination. If the second network device schedules the second terminal on the ABS, it can avoid interference from the first network device.
  • the first network device when the second message contains the first measurement result, performs an interference processing operation according to the second message, including:
  • the first network device determines a second measurement result that meets the preset threshold from the first measurement result
  • the first network device receives from the second network device the measurement results obtained by the second terminal's CLI measurement of all the first resources, and then filters out part of the measurement results from the first measurement results according to the preset threshold. , that is, the second measurement result.
  • the second measurement result may be a measurement result that can reflect a relatively large CLI.
  • the first network device determines the target resource based on the resource identification information of the first resource corresponding to the second measurement result
  • the first network device determines the resource identification information of the corresponding first resource based on the filtered second measurement result, and determines the target resource based on the determined resource identification information. It can be understood that the first terminal is in The CLI generated by transmitting uplink signals on this target resource is relatively large.
  • the first network device determines the target terminal in the first terminal according to the target resource
  • the first network device determines the target resources and selects them from all resources belonging to the first network device.
  • the target terminal is determined among the first terminals, that is, the terminal that produces a larger CLI when transmitting uplink signals on the target resource is determined.
  • the first network device performs interference processing operations on the target terminal.
  • the first network device performs interference processing operations on the determined target terminal.
  • the target terminal is one or more terminals that have been scheduled on the target resource.
  • the first network device can determine a A terminal set includes all determined target terminals, and the first network device performs an interference processing operation on at least some terminals in the terminal set.
  • the first network device can also reduce the CLI by stopping the uplink transmission of some of the terminals.
  • the first network device when the second message contains the resource identification information of the second resource, performs an interference processing operation according to the second message, including:
  • the first network device determines the target terminal in the first terminal according to the resource identification information of the second resource
  • the first network device directly According to the resource identification information of the first resource, the target terminal is determined from all the first terminals belonging to the first network device, and the first terminal that uses the second resource to transmit the uplink signal is determined as the target terminal.
  • the first network device performs interference processing operations on the target terminal.
  • the first network device performs interference processing operations on the determined target terminal.
  • the target terminal is one or more terminals that have been scheduled on the target resource.
  • the first network device can determine a A terminal set includes all determined target terminals, and the first network device performs an interference processing operation on at least some terminals in the terminal set.
  • performing interference processing operations includes:
  • the second network device performs downlink transmission, based on the target terminal, perform one or more of the following:
  • the first network device Stop or reduce the scheduling of terminal transmission of uplink signals; optionally, the first network device only performs the above-mentioned operation of reducing or avoiding scheduling during the time period when the second network device has downlink transmission.
  • the scheduling terminal transmits uplink signals, it adopts a different spatial relationship from the historical scheduling.
  • the historical scheduling specifically refers to the scheduling performed by the first network device at the location corresponding to the above-mentioned measurement resource (specifically, the above-mentioned second resource);
  • the first network device sends an interference coordination request message to the second network device.
  • the interference coordination request message contains the expected uplink and downlink configuration (Intended UL-DL Configuration), and/or the expected coordination information (Intended coordination information) .
  • the desired coordination information may specifically be the desired uplink subframe (Intended UL subframe(s)).
  • the second network device adopts a separate architecture of a central unit (CU) and a distributed unit (DU),
  • the first network device sends the first message to the second network device, including: the first network device sends the first message to the CU of the second network device;
  • the first network device receiving the second message from the second network device includes: the first network device receiving the second message from the CU of the second network device.
  • an embodiment of the present application provides a cross-link interference processing method.
  • the method is executed by a second network device.
  • the method includes:
  • Step 301 The second network device receives a first message from the first network device.
  • the first message contains resource identification information of the first resource.
  • the first resource is allocated by the first network device and used for the first terminal to transmit uplink signals or schedule.
  • the first terminal receives downlink;
  • Step 302 The second network device triggers the second network device or the second terminal to perform CLI measurement on the first resource
  • Step 303 The second network device receives the first measurement result from the second terminal.
  • the first measurement result is the measurement result obtained by performing CLI measurement on the first resource by the second network device or the second terminal;
  • Step 304 The second network device sends a second message to the first network device, where the second message contains the first measurement result or the resource identification information of the second resource;
  • the first terminal is a terminal belonging to the first network device
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold in the first measurement result
  • the second terminal is a terminal belonging to the second network device.
  • the first network device allocates a first resource for the first terminal to transmit uplink signals or schedules the first terminal to receive downlink signals, and sends the resource identification information of the first resource to the second network through the first message.
  • the second network device triggers the CLI measurement of the first resource by the second network device or the second terminal, and then the second network device sends the first measurement result to the first network device through the second message, or sends the first measurement
  • the resource identification information of the second resource corresponding to the measurement result that meets the preset threshold in the results is sent to the first network device, and the first network device performs interference processing operations based on this information; in this way, through the communication between the first network device and the second network device
  • the interaction between the first network device and the second network device realizes interference processing for CLI.
  • the first network device and the second network device only exchange measurement results or only exchange resource identification information that meets certain requirements, interference coordination is achieved while saving interactions between network devices. information overhead.
  • the above-mentioned second network device is not equal to the first network device, or the relationship between the first network device and the second network device includes at least one of the following:
  • Inter-cell, inter-site gNB-gNB Inter-cell inter-site gNB-gNB
  • Inter-cell co-site inter-sector gNB-gNB Inter-cell co-site inter-sector gNB-gNB
  • the above-mentioned first network device allocates the first resource. Specifically, it may allocate one or more resources, and the specific number may depend on the number of first terminals belonging to the first network device;
  • the above-mentioned first terminal transmits an uplink signal on the first resource.
  • the uplink signal may include but is not limited to one or more of a PUSCH signal, a PUCCH signal, an SRS, a PRACH signal, and other uplink signals;
  • the above-mentioned first measurement result is specifically the measurement result obtained by the second terminal performing CLI measurement on all resources in the first resource, that is, the second message contains the first measurement result. Specifically, it means that the second network device will all The CLI measurement result corresponding to the first resource is sent to the first network device.
  • the corresponding relationship between the measurement results and the measurement resources i.e., the first resource
  • the mapping relationship between the measurement results and the corresponding measurement resources is determined between the two network devices, and can be a One correspondence, that is, resource 0, resource 1, resource 2...
  • measurement result 1 Corresponding to measurement result 0, measurement result 1, measurement result 2..., or it can be in reverse order, or it can be other order pre-agreed between the two network devices. In this way, all the measurement results only need to be sent to the first network device, and the first network device can learn the CLI situation corresponding to each previously allocated first resource, and then perform targeted interference processing.
  • the above-mentioned second resources are resources corresponding to the measurement results that meet the preset threshold in the first measurement results. It can be understood that the second resources are essentially at least part of the first resources allocated by the first network device, that is, the second network According to the CLI measurement results of the second terminal, the device feeds back the resources corresponding to the measurement results that meet the preset threshold as the second resources to the first network device. In this way, only a part of the resources with a relatively large CLI is fed back to the first network device.
  • the network performs targeted interference processing for this part of resources.
  • the preset threshold can be predefined or configured by the network device.
  • a first threshold can be set. If the measurement result is greater than the first threshold, the corresponding resources are assigned to is the second resource; for another example, when the above-mentioned CLI measurement result is SINR, a second threshold can be set. If the measurement result is less than the second threshold, the corresponding resource is classified as the second resource.
  • the CLI measurement results of each measurement resource include multiple indicators, such as RSSI and CQI, the above CLI measurement results that meet the preset threshold can be that each indicator meets its own preset threshold or at least one indicator meets its corresponding preset threshold. The embodiments of this application do not limit the specific setting of the preset threshold.
  • the first resource is used by the first terminal to transmit uplink signals, and the corresponding first measurement result is the measurement result obtained by the second terminal performing CLI measurement on the first resource, it can mainly be used to solve the problem of UE-to-UE. interference coordination;
  • the first resource is used to schedule downlink reception of the first terminal and the corresponding first measurement result is the measurement result obtained by the second network device performing CLI measurement on the first resource
  • it can mainly be used to solve gNB-to-gNB interference coordination.
  • the second network device performs CLI measurement, so there is no need to receive the measurement result of the second terminal.
  • the interaction between the first network device and the second network device is implemented through an interface or OTA.
  • the interface can be an X2 interface, an Xn interface, an S1 interface, an NG interface or a lu interface, etc. This application implements This example does not specifically limit this.
  • the resource identification information includes one or more of the following:
  • Time domain information specifically embodied in one or more of the following:
  • Symbol, sub-slot index(es) and/or number of symbols which can be one or more symbols, such as the last or multiple symbols in a slot;
  • the first uplink resource can also be identified by periodicity, that is, the first uplink resource reappears at a certain period, for example, the radio frame (10ms) is the periodicity;
  • Frequency domain information which is embodied in one or more of the following:
  • Frequency domain position such as PRB index(es), or subcarrier position, etc.
  • PRB index(es) such as PRB index(es)
  • subcarrier position such as SRS
  • Power information such as uplink signal transmission EPRE or total power, etc.
  • Sequence information such as SRS sequence index, or preamble sequence index, etc.
  • Spatial information such as spatial correlation information, or TCI state or QCL-D or beam information
  • Resource index or resource number can correspond to one or more resources.
  • one resource index or resource number corresponds to a group of resource identifiers of first resources.
  • the second network device reports to the first network device When notifying the first resource, the number of the first resource is directly sent. It can be understood that when the first network device sends the resource identification information of the first resource to the second network device, it not only sends the resource ID, but also sends specific information such as the time and frequency domain, so that the second network device can allow the second terminal to use these information. Perform CLI measurements on resources.
  • the second network device feeds back the measurement results to the first network device, it can only send the resource ID and does not need to send information such as time and frequency domain, because this information is sent by the first network device to the second network device.
  • the device can know the specific resource information only through the resource ID.
  • the resource identification information is common to the above-mentioned first resource and second resource (because the second resource is part of the first resource and is essentially the first resource, that is, the purpose allocated by the first network device. resources for transmitting uplink signals to the first terminal), so that the specific communication resources can be obtained through the above resource identification information.
  • the first message also contains one or more of the following:
  • the information of the serving cell of the first terminal such as PCI, CGI, ECGI or NR-CGI; the information of the serving cell is mainly to identify different serving cells;
  • the ABS information is for interference coordination. If the second network device schedules the second terminal on the ABS, it can avoid interference from the first network device.
  • the second network device triggers the second terminal to perform CLI measurement and reporting.
  • Specific measurement methods include but are not limited to one or more of the following:
  • (1) RSRP measurement The second terminal performs RSRP measurement on the first resource. For example, when the first terminal on the first resource sends an SRS signal, SRS-based RSRP is measured; another example is when the first terminal on the first resource sends a signal of SRS. When the signal sent by the terminal is PRACH, preamble-based RSRP is measured;
  • the second terminal performs interference measurement on the first resource, and combines it with the signal measurement results measured on other resources (such as CSI-RS) to jointly process and calculate CQI;
  • the second terminal performs interference measurement on the first uplink resource, and combines the signal measurement results measured on other resources (such as CSI-RS) to jointly process and calculate SINR;
  • the second network device notifies the second terminal of the information for performing one or more of the above measurements.
  • Source which includes some or all of the first resource, where:
  • the second network device notifies the second terminal of the measurement resources before triggering the second terminal to perform measurement, or
  • the second network device triggers the second terminal to perform CLI measurement, it directly indicates the physical resources (time domain, frequency domain and/or sequence information) that interfere with the measurement;
  • the second terminal reports the CLI measurement result to the second base station, and the measurement result is at least one of the above measurement quantities;
  • the second terminal also reports interference measurement resource information used for interference measurement to the second base station.
  • the second network device when the second message contains resource identification information of the second resource, the second network device sends the second message to the first network device, including:
  • the second network device determines the second measurement result that meets the preset threshold from the first measurement result
  • the second network device receives the measurement results obtained by the second terminal's CLI measurement of all the first resources, and then filters out part of the measurement results from the first measurement results according to the preset threshold, that is, the second measurement result.
  • the second measurement result may be a measurement result that can reflect a relatively large CLI.
  • the second network device determines the second resource based on the resource identification information corresponding to the second measurement result
  • the second network device determines the resource identification information of the corresponding first resource based on the filtered second measurement result, and determines the second resource based on the determined resource identification information, which can be understood as the first terminal
  • the CLI generated by transmitting the uplink signal on the second resource is relatively large.
  • the second network device sends the resource identification information of the second resource to the first network device through the second message.
  • the method further includes:
  • the second network device receives an interference coordination request message from the first network device, and the interference coordination request message includes the desired uplink and downlink configuration and/or the desired coordination information.
  • an interference processing operation performed by the first network device is that the first network device sends an interference coordination request message to the second network device, and the interference coordination request message contains the desired uplink and downlink configuration (Intended UL-DL). Configuration), and/or, desired coordination information (Intended coordination information).
  • the desired coordination information may specifically be the desired uplink subframe (Intended UL subframe(s)).
  • the second network device adopts a CU and DU separation architecture
  • the second network device receives the second network device from the first network device, including: the CU of the second network device receives the first message from the first network device; and the CU of the second network device sends the first message to the DU of the second network device. ;
  • the second network device triggers the second terminal to perform CLI measurement on the first resource, including: the DU of the second network device triggers the second terminal to perform CLI measurement on the first resource;
  • the second network device receives the first measurement result from the second terminal, including: the DU of the second network device receives the first measurement result from the second terminal; and the DU of the second network device sends the first measurement result to the CU of the second network device. ;
  • the second network device sends the second message to the first network device, including: the CU of the second network device sends the second message to the first network device.
  • the execution subject may be a cross-link interference processing device.
  • the cross-link interference processing method performed by the cross-link interference processing apparatus is used as an example to illustrate the cross-link interference processing apparatus provided by the embodiment of the present application.
  • an embodiment of the present application provides a cross-link interference processing device 400, which includes:
  • Allocation module 401 configured to allocate first resources, where the first resources are used for the first terminal to transmit uplink signals or to schedule the first terminal to receive downlink signals;
  • the first sending module 402 is configured to send a first message to the second network device, where the first message contains the resource identification information of the first resource;
  • the first receiving module 403 is configured to receive a second message from the second network device, where the second message contains the first measurement result or the resource identification information of the second resource;
  • Execution module 404 configured to perform interference processing operations according to the second message
  • the first terminal is a terminal belonging to the cross-link interference processing device
  • the first measurement result is a measurement obtained by performing CLI measurement on the first resource by the second network device or the second terminal.
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold among the first measurement results
  • the second terminal is a terminal belonging to the second network device.
  • the resource identification information includes one or more of the following:
  • Resource index or resource number.
  • the first message also includes one or more of the following:
  • the execution module is specifically configured to:
  • the target terminal is one or more terminals that have been scheduled on the target resource.
  • the execution module when the second message contains the resource identification information of the second resource, the execution module is specifically configured to:
  • the target terminal is one or more terminals that have been scheduled on the target resource.
  • the execution module is specifically used for one or more of the following:
  • the scheduling terminal When the scheduling terminal transmits uplink signals, it adopts a different spatial relationship from the historical scheduling;
  • the interference coordination request message includes desired uplink and downlink configurations and/or desired coordination information.
  • an embodiment of the present application provides a cross-link interference processing device 500, which includes:
  • the second receiving module 501 is configured to receive a first message from the first network device.
  • the first message contains the resource identification information of the first resource.
  • the first resource is allocated by the first network device. Use Transmitting uplink signals to the first terminal or scheduling downlink reception by the first terminal;
  • Trigger module 502 configured to trigger the cross-link interference processing device or the second terminal to perform CLI measurement on the first resource
  • the third receiving module 503 is configured to receive a first measurement result from the second terminal, where the first measurement result is a CLI measurement of the first resource by the cross-link interference processing device or the second terminal. the measurement results obtained;
  • the second sending module 504 is configured to send a second message to the first network device, where the second message contains the first measurement result or the resource identification information of the second resource;
  • the first terminal is a terminal belonging to the first network device
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold in the first measurement result
  • the second terminal is a terminal belonging to the first network device. at the terminal of the cross-link interference processing device.
  • the resource identification information includes one or more of the following:
  • Resource index or resource number.
  • the first message includes one or more of the following:
  • the second sending module when the second message contains the resource identification information of the second resource, is specifically configured to:
  • the device further includes:
  • the fourth receiving module is configured to receive an interference coordination request message from the first network device, where the interference coordination request message contains desired uplink and downlink configurations and/or desired coordination information.
  • the cross-link interference processing device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the cross-link interference processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figures 2 to 3, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 600, which includes a processor 601 and a memory 602.
  • the memory 602 stores programs or instructions that can be run on the processor 601, for example.
  • the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each step of the above cross-link interference processing method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network device, when the program or instruction is executed by the processor 601, each step of the above cross-link interference processing method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • An embodiment of the present application also provides a network device, including a processor and a communication interface, wherein:
  • the processor is used by the first network device to allocate a first resource, and the first resource is used for the first terminal to transmit an uplink signal or to schedule the first terminal to receive downlink;
  • the communication interface is used for the first network device to send a first message to the second network device, where the first message contains resource identification information of the first resource;
  • the communication interface is used for the first network device to receive a second message from the second network device, where the second message contains a first measurement result or resource identification information of a second resource;
  • the processor is configured for the first network device to perform an interference processing operation according to the second message
  • the first terminal is a terminal belonging to the first network device
  • the first measurement result is a measurement result obtained by performing CLI measurement on the first resource by the second network device or the second terminal
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold among the first measurement results
  • the second terminal is a terminal belonging to the second network device.
  • the communication interface is used by the second network device to receive a first message from the first network device, where the first message includes the resource identification information of the first resource.
  • the first resource is allocated by the first network device and is used for the first terminal to transmit uplink signals or to schedule the first terminal to receive downlink signals;
  • the processor is configured for the second network device to trigger the second network device or the second terminal to perform CLI measurement on the first resource
  • the communication interface is used for the second network device to receive a first measurement result from the second terminal.
  • the measurement result is a measurement result obtained by performing CLI measurement on the first resource by the second network device or the second terminal;
  • the communication interface is used by the second network device to send a second message to the first network device, where the second message contains the first measurement result or the resource identification information of the second resource;
  • the first terminal is a terminal belonging to the first network device
  • the second resource is a resource corresponding to a measurement result that satisfies a preset threshold in the first measurement result
  • the second terminal is a terminal belonging to the first network device. at the terminal of the second network device.
  • This network equipment embodiment corresponds to the above-mentioned network equipment method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network equipment embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network device.
  • the network device 700 includes: an antenna 71 , a radio frequency device 72 , a baseband device 73 , a processor 74 and a memory 75 .
  • the antenna 71 is connected to the radio frequency device 72 .
  • the radio frequency device 72 receives information through the antenna 71 and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72.
  • the radio frequency device 72 processes the received information and then sends it out through the antenna 71.
  • the method performed by the network device in the above embodiment can be implemented in the baseband device 73, which includes a baseband processor.
  • the baseband device 73 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network device may also include a network interface 76, such as a common public radio interface (CPRI).
  • a network interface 76 such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network device 700 in the embodiment of the present application also includes: instructions or programs stored in the memory 75 and executable on the processor 74.
  • the processor 74 calls the instructions or programs in the memory 75 to execute the steps shown in FIG. 4 or 5. It shows the execution method of each module and achieves the same technical effect. To avoid duplication, it will not be repeated here.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • a program or instructions stored on the readable storage medium.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above cross-link interference processing method.
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above cross-link interference processing.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • An embodiment of the present application also provides a communication system, including: a first network device, a first terminal belonging to the first network device, a second network device, a second terminal belonging to the second network device,
  • the first network device may be configured to perform the steps of the method on the first network device side
  • the second network device may be configured to perform the steps of the method on the second network device side.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种交叉链路干扰处理方法、设备及可读存储介质,属于通信技术领域,该方法包括:第一网络设备分配第一资源用于第一终端传输上行信号或者调度第一终端下行接收;第一网络设备向第二网络设备发送第一消息,第一消息中包含第一资源的资源标识信息;第二网络设备触发第二网络设备或者第二终端对第一资源进行CLI测量;第一网络设备从第二网络设备接收第二消息,第二消息中包含第一测量结果或者第二资源的资源标识信息;其中,第一测量结果是第二网络设备或者第二终端对第一资源进行CLI测量得到的测量结果,第二资源是第一测量结果中满足预设阈值的测量结果对应的资源。

Description

交叉链路干扰处理方法、设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年8月19日在中国提交的中国专利申请No.202211001533.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种交叉链路干扰处理方法、设备及可读存储介质。
背景技术
在动态时分复用(Time Division Duplex,TDD)***中,由于相邻小区在同一时刻采用不同的传输方向(上行或下行),会造成小区之间的交叉链路干扰(cross-link interference,CLI)。如图1a所示,基站2(the next Generation Node B 2,gNB 2)进行下行传输给用户设备2(User Equipment 2,UE 2),同时gNB 1调度UE 1进行上行传输,造成UE 1的发送对UE 2接收的干扰,称为UE-to-UE CLI。
或者在子带全双工(subband full duplex)***中,由于相邻的subband采用不同的传输方向(上行或下行)也会造成subband之间的CLI。如图1b所示,其中竖线填充部分表示下行资源,横线填充部分表示上行资源,gNB在subband 1上进行下行传输给UE 2,同时gNB调度UE 1在subband 2上进行上行传输,造成UE 2的发送对UE1接收的干扰,称为子带间CLI(inter-subband CLI)。
目前缺少一种能够有效的交叉链路干扰处理方法。
发明内容
本申请实施例提供一种交叉链路干扰处理方法、设备及可读存储介质,能够有效处理交叉链路干扰的问题。
第一方面,提供了一种交叉链路干扰处理方法,包括:
第一网络设备分配第一资源,所述第一资源用于第一终端传输上行信号或者调度第一终端下行接收;
所述第一网络设备向第二网络设备发送第一消息,所述第一消息中包含所述第一资源的资源标识信息;
所述第一网络设备从所述第二网络设备接收第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
所述第一网络设备根据所述第二消息,执行干扰处理操作;
其中,所述第一终端是归属于所述第一网络设备的终端,所述第一测量结果是所述第二网络设备或者第二终端对所述第一资源进行交叉链路干扰CLI测量得到的测量结果,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
第二方面,提供了一种交叉链路干扰处理方法,包括:
第二网络设备从第一网络设备接收第一消息,所述第一消息中包含所述第一资源的资源标识信息,所述第一资源由所述第一网络设备分配,用于第一终端传输上行信号或者调度第一终端下行接收;
所述第二网络设备触发所述第二网络设备或者第二终端对所述第一资源进行CLI测量;
所述第二网络设备从所述第二终端接收第一测量结果,所述第一测量结果是所述第二网络设备或者所述第二终端对所述第一资源进行CLI测量得到的测量结果;
所述第二网络设备向所述第一网络设备发送第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
其中,所述第一终端是归属于所述第一网络设备的终端,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
第三方面,提供了一种交叉链路干扰处理装置,包括:
分配模块,用于分配第一资源,所述第一资源用于第一终端传输上行信号或者调度第一终端下行接收;
第一发送模块,用于向第二网络设备发送第一消息,所述第一消息中包含所述第一资源的资源标识信息;
第一接收模块,用于从所述第二网络设备接收第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
执行模块,用于根据所述第二消息,执行干扰处理操作;
其中,所述第一终端是归属于所述交叉链路干扰处理装置的终端,所述第一测量结果是所述第二网络设备或者第二终端对所述第一资源进行CLI测量得到的测量结果,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
第四方面,提供了一种交叉链路干扰处理装置,包括:
第二接收模块,用于从第一网络设备接收第一消息,所述第一消息中包含所述第一资源的资源标识信息,所述第一资源由所述第一网络设备分配,用于第一终端传输上行信号或者调度第一终端下行接收;
触发模块,用于触发所述交叉链路干扰处理装置或者第二终端对所述第一资源进行 CLI测量;
第三接收模块,用于从所述第二终端接收第一测量结果,所述第一测量结果是所述交叉链路干扰处理装置或者所述第二终端对所述第一资源进行CLI测量得到的测量结果;
第二发送模块,用于向所述第一网络设备发送第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
其中,所述第一终端是归属于所述第一网络设备的终端,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述交叉链路干扰处理装置的终端。
第五方面,提供了一种网络设备,该网络设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种网络设备,包括处理器及通信接口,其中,
在所述网络设备为第一网络设备的情况下,所述处理器用于第一网络设备分配第一资源,所述第一资源用于第一终端传输上行信号;
所述通信接口用于所述第一网络设备向第二网络设备发送第一消息,所述第一消息中包含所述第一资源的资源标识信息;
所述通信接口用于所述第一网络设备从所述第二网络设备接收第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
所述处理器用于所述第一网络设备根据所述第二消息,执行干扰处理操作;
其中,所述第一终端是归属于所述第一网络设备的终端,所述第一测量结果是第二终端对所述第一资源进行CLI测量得到的测量结果,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
在所述网络设备为第二网络设备的情况下,所述通信接口用于第二网络设备从第一网络设备接收第一消息,所述第一消息中包含所述第一资源的资源标识信息,所述第一资源由所述第一网络设备分配,用于第一终端传输上行信号;
所述处理器用于所述第二网络设备触发第二终端对所述第一资源进行CLI测量;
所述通信接口用于所述第二网络设备从所述第二终端接收第一测量结果,所述第一测量结果是所述第二终端对所述第一资源进行CLI测量得到的测量结果;
所述通信接口用于所述第二网络设备向所述第一网络设备发送第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
其中,所述第一终端是归属于所述第一网络设备的终端,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
第七方面,提供了一种通信***,包括:第一网络设备,归属于所述第一网络设备的第一终端,第二网络设备,归属于所述第二网络设备的第二终端,所述第一网络设备可用 于执行如第一方面所述的方法的步骤,所述第二网络设备可用于执行如第二方面所述的方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,第一网络设备分配用于第一终端传输上行信号或者调度第一终端下行接收的第一资源,并通过第一消息将第一资源的资源标识信息发送给第二网络设备,由第二网络设备触发第二网络设备或者第二终端对第一资源的CLI测量,然后第二网络设备通过第二消息将第一测量结果发送给第一网络设备,或者将第一测量结果中满足预设阈值的测量结果对应的第二资源的资源标识信息发送给第一网络设备,由第一网络设备根据这些信息执行干扰处理操作;这样通过第一网络设备与第二网络设备之间的交互,实现针对CLI的干扰处理,同时由于第一网络设备与第二网络设备之间只交互测量结果或者只交互资源标识信息,在实现干扰协调的同时节省交互信息开销。
附图说明
图1a是UE-to-UE CLI场景示意图;
图1b是inter-subband CLI场景示意图;
图1c是UE-to-UE干扰测量场景中的测量资源示意图;
图2是本申请实施例提供的交叉链路干扰处理方法的流程示意图之一;
图3是本申请实施例提供的交叉链路干扰处理方法的流程示意图之二;
图4是本申请实施例提供的交叉链路干扰处理装置的结构示意图之一;
图5是本申请实施例提供的交叉链路干扰处理装置的结构示意图之二;
图6是本申请实施例提供的通信设备的结构示意图;
图7是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施 例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
本申请实施例可应用的一种无线通信***的架构可以如图1a所示。无线通信***包括两个网络设备(例如图1a中的gNB1和gNB2),以及归属于各网络设备的终端,可以理解的是,归属于各网络设备的终端的数量可以是一个或多个。其中,终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端的具体类型。网络设备可以包括接入网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set, ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
为更好理解本申请的技术方案,首先对以下内容进行介绍:
灵活双工(Flexible duplex)
在部署传统的蜂窝网络时,基于可用的频谱,以及业务特性等,可采用频分双工(Frequency Division Duplex,FDD)或时分双工(Time Division Duplex,TDD)双工方式。当采用FDD时,上行传输和下行传输位于不同的频点上,两者互不干扰,可同时进行。当采用TDD时,上行传输和下行传输位于同一个频点上,采用时分的方式交错进行。两种双工方式各有优缺点。
为了更灵活地利用有限的频谱资源,以动态地匹配业务需求,提升资源利用效率,以及数据传输的上行覆盖、时延等性能,提出了灵活的双工方式。一种灵活双工方式(non-overlapping subband full duplex,SBFD)为:网络侧全双工,即在同一时刻,上行传输和下行传输可在不同的频域位置同时进行,为避免上下行之间的干扰,可在对应不同传输方向的频域位置(对应双工子带)之间留出一定的防护带(Guard Band);终端侧半双工,即与TDD一致,在同一时刻,只能作上行传输或下行传输,两者不可同时进行。可以理解的是,在这种网络侧全双工,终端侧半双工的方式下,网络侧在同一时刻的上行传输和下行传输只能针对不同的终端。
例如图1b给出了上述灵活双工方式的示意图,网络侧在一部分下行符号内,将单个载波或带宽部分BWP的频域半静态划分为三个双工子带,其中载波两侧为下行双工子带,中央为上行双工子带,以减少对相邻载波造成的干扰。在第三个时隙内,UE1和UE2分别作上行发送和下行接收。
TDD pattern
当NR小区部署在非对称频谱上时,一般采用TDD双工方式。此时可以在小区公共参数中配置TDD-UL-DL-ConfigCommon,以指示TDD帧结构信息,包括TDD帧周期,单个帧周期内包含的完整下行/上行Slot数目,在完整下行/上行Slot之外额外包含的下行/上行Symbol数目等。可选地,还可以针对各个UE采用RRC信令独立配置TDD-UL-DL-ConfigDedicated,用于在TDD-UL-DL-ConfigCommon的基础上进一步修改单个帧周期内一个或多个Slot的上下行Symbol配置(即Slot的上下行Symbol配置的初始值由TDD-UL-DL-ConfigCommon规定,然后由TDD-UL-DL-ConfigDedicated进一步修改,此修改仅应用于接收此RRC信令的UE),但这里的修改仅局限于将Slot内的Flexible symbol(即未明确传输方向,后续可根据需要再确定是用于下行传输还是上行传输)进一步指示为下行链路(DownLink,DL)/上行链路(UpLink,UL)symbol,不能将Slot内的DL/UL symbol修改为其它方向。
上述TDD-UL-DL-ConfigCommon和/或TDD-UL-DL-ConfigDedicated为可选配置,由于这些配置信息只能基于RRC层的信息半静态配置/修改,所以由这些配置信息确定的单个TDD帧周期内各个Symbol(结合为其配置的传输方向),在下文中称之为Semi-static DL/UL/flexible symbol。可以将symbol进一步抽象为时域单元,时域单元可对应时隙(Slot)、符号(Symbol)等,则单个TDD帧周期内可基于上述配置信息包含多个Semi-static DL/UL/flexible时域单元。
当未配置上述TDD-UL-DL-ConfigCommon和TDD-UL-DL-ConfigDedicated时,不存在明确的TDD帧周期的概念,此时NR小区各个无线帧内的各个Slot/Symbol都可以理解为Semi-static flexible slot/symbol,或者抽象为Semi-static flexible时域单元。
另外,基站还可以通过动态信令group common DCI(例如DCI 2-0)指示时隙格式SFI,其中动态SFI仅可以指示Semi-static flexible symbol为DL/UL/flexible,而不能改变Semi-static DL/UL symbol的传输方向。
在动态TDD***中,相邻的小区可以配置不同的TDD配置,或者一个小区内部不同UE有不同的TDD配置或指示。因此会出现相邻小区间gNB到gNB(gNB1在进行下行发送的同时,gNB 2在进行上行接收,对于gNB 2来说,将会收到gNB 1的干扰)或者UE到UE的干扰(UE1在进行上行发送的同时,UE2在进行下行接收,对于UE2来说,将会收到UE1的干扰)。
CLI测量
为了识别出前述UE-to-UE CLI的严重程度,需要进行UE-to-UE干扰测量,一个实例如图1c所示,UE1基于gNB1的调度进行PUSCH传输,同时UE 2基于gNB2的触发进行干扰测量。为了有效的测量UE1发送对UE2的干扰程度,UE 2的干扰测量资源(Interference measurement resource,IMR)是UE 1进行PUSCH发送的全部物理资源,或者部分物理资源(例如图中通过填充示出UE 2的IMR是UE 1进行PUSCH发送的部分物理资源)。现有干扰测量量主要包括基于探测参考信号的参考信号接收功率(Sounding Reference Signal based Reference Signal Received Power,SRS based RSRP),或者接收信号强度指示(Received Signal Strength Indication,RSSI)等。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的交叉链路干扰处理方法进行详细地说明。
参见图2,本申请实施例提供一种交叉链路干扰处理方法,该方法的执行主体为第一网络设备,方法包括:
步骤201:第一网络设备分配第一资源,第一资源用于第一终端传输上行信号或者调度第一终端下行接收;
步骤202:第一网络设备向第二网络设备发送第一消息,第一消息中包含第一资源的资源标识信息;
步骤203:第一网络设备从第二网络设备接收第二消息,第二消息中包含第一测量结 果或者第二资源的资源标识信息;
步骤204:第一网络设备根据第二消息,执行干扰处理操作;
其中,第一终端是归属于第一网络设备的终端,第一测量结果是第二网络设备或者第二终端对第一资源进行CLI测量得到的测量结果,第二资源是第一测量结果中满足预设阈值的测量结果对应的资源,第二终端是归属于第二网络设备的终端。
在本申请实施例中,第一网络设备分配用于第一终端传输上行信号或者调度第一终端下行接收的第一资源,并通过第一消息将第一资源的资源标识信息发送给第二网络设备,由第二网络设备触发第二网络设备或者第二终端对第一资源的CLI测量,然后第二网络设备通过第二消息将第一测量结果发送给第一网络设备,或者将第一测量结果中满足预设阈值的测量结果对应的第二资源的资源标识信息发送给第一网络设备,由第一网络设备根据这些信息执行干扰处理操作;这样通过第一网络设备与第二网络设备之间的交互,实现针对CLI的干扰处理,同时由于第一网络设备与第二网络设备之间只交互测量结果或者只交互满足一定要求的资源标识信息,在实现干扰协调的同时节省网络设备间交互信息开销。
需要说明的是,上述第二网络设备不等于第一网络设备,或者,第一网络设备和第二网络设备的关系包括如下至少一项:
(1)小区间、站点间gNB-gNB(inter-cell inter-site gNB-gNB);
(2)小区间同址扇区间gNB-gNB(inter-cell co-site inter-sector gNB-gNB);
上述第一网络设备分配第一资源,具体可以分配一个或多个资源,具体可以取决于归属于第一网络设备的第一终端的数量;
上述第一终端在第一资源上传输上行信号,该上行信号可以包括但不限于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)信号、物理上行控制信道(Physical Uplink Control Channel,PUCCH)信号、探测参考信号(Sounding Reference Signal,SRS)、物理随机接入信道(Physical Random Access Channel,PRACH)信号、其他上行信号中的一种或多种;
上述第一测量结果具体是第二终端对第一资源中的所有资源进行CLI测量得到的测量结果,即第二消息中包含第一测量结果的情况,具体指的是,第二网络设备将全部第一资源对应的CLI测量结果发送给第一网络设备。需要说明的是,基于全部测量结果能够知道测量结果与测量资源(即第一资源)的对应关系,即对于测量结果以及对应测量资源的映射关系在两个网络设备间是确定的,可以是一一对应,即资源0、资源1、资源2……对应测量结果0、测量结果1、测量结果2……,或者也可以是逆序,又或者也可以是两个网络设备间预先约定好的其他顺序。这样只需将全部的测量结果发送给第一网络设备,第一网络设备即可获知先前分配的每个第一资源对应的CLI情况,进而针对性的进行干扰处理。
上述第二资源是第一测量结果中满足预设阈值的测量结果对应的资源,可以理解的是第二资源实质上是第一网络设备分配的第一资源中的至少部分资源,即第二网络设备根据 第二终端的CLI测量结果,将满足预设阈值的测量结果对应的资源作为第二资源反馈给第一网络设备,这样只反馈CLI比较大的部分资源给第一网络设备,由第一网络针对这部分资源,进行针对性的进行干扰处理。具体地,预设阈值可以是预定义或网络设备配置的,例如上述CLI测量结果为RSRP、RSSI、信道质量指示(Channel quality indicator,CQI)时,可以设置一个第一阈值,如果测量结果大于第一阈值,则将对应的资源归为第二资源;又例如上述CLI测量结果为信号与干扰加噪声比(signal-to-noise and interference ratio,SINR)时,可以设置一个第二阈值,如果测量结果小于第二阈值,则将对应的资源归为第二资源。如果每个测量资源的CLI测量结果包含多个指标,如RSSI和CQI,上述CLI测量结果满足预设阈值可以是每个指标分别满足各自的预设阈值或者至少有一个指标满足其对应的预设阈值。本申请实施例对具体的预设阈值的设置不做限定。
具体地,对于第一资源用于第一终端传输上行信号,相应第一测量结果是第二终端对第一资源进行CLI测量得到的测量结果的情况,主要可以用于解决UE-to-UE的干扰协调;
对于第一资源用于调度第一终端下行接收,相应第一测量结果是第二网络设备对第一资源进行CLI测量得到的测量结果的情况,主要可以用于解决gNB-to-gNB的干扰协调。对于这种情况是第二网络设备进行CLI测量,所以不需要接收第二终端的测量结果。
在一种可能的实施方式中,第一网络设备与第二网络设备之间的交互通过接口或空中下载技术(Over-the-Air Technology,OTA)实现,接口可以为X2接口、Xn接口、S1接口、NG接口或lu接口等,本申请实施例对此不做具体限定。
在一种可能的实施方式中,资源标识信息包括以下一项或者多项:
(1)时域信息,具体体现为如下一种或多种:
(1.1)无线帧号(Radio frame number);
(1.2)Slot和/或subframe index(es),可以是一个或多个slot;
(1.3)Symbol、sub-slot index(es)和/或symbol数目,可以是一个或多个symbol,例如一个slot中的最后一个或多个符号;
(1.4)第一上行资源还可以由周期(periodicity)进行标识,也就是第一上行资源在每隔一定周期重复出现,例如以无线帧(10ms)长为periodicity;
(2)频域信息,具体体现为如下一种或多种:
(2.1)频域位置,如PRB index(es),或子载波位置等,例如如果采用的是梳状结构(comb结构)传输,如SRS,则需要指示comb的位置或index;
(2.2)带宽(Bandwidth,BW);
(2.3)跳频图样;
(2.4)频率偏移(freqDomainShift);
(2.5)子载波间隔(Subcarrier Space,SCS)或SCS和CP;
(3)功率信息,例如上行信号发射每个资源单元的能量(Energy per resource element,EPRE)或总的发送功率等;
(4)序列信息,例如SRS序列index,或preamble序列index等;
(5)空间信息,例如空间关联信息(spatial relation information),或传输配置指示状态(Transmission Configuration Indicator state,TCI state)或者准共址类型D(Quasi co-location-D,QCL-D),或波束(beam)信息等;
(6)资源索引或资源编号,其中一个资源索引或资源编号可以对应一个或多个资源,例如一个资源索引或资源编号对应一组第一资源的资源标识,第二网络设备向第一网络设备通知第一资源时,可以直接发送第一资源的编号。可以理解的是,第一网络设备向第二网络设备发送第一资源的资源标识信息时,不仅发送资源ID,还发送时频域等具体信息,这样第二网络设备能够让第二终端在这些资源上进行CLI测量。而第二网络设备将测量结果反馈给第一网络设备时,可以只发送资源ID,不需要发送时频域等信息,因为这些信息是第一网络设备发送给第二网络设备的,第一网络设备只要通过资源ID就能够知道具体资源信息。
需要说明的是,该资源标识信息对于上述第一资源和第二资源是通用的(因为第二资源是第一资源中的部分资源,本质上也是第一资源,即第一网络设备分配的用于第一终端传输上行信号的资源),这样通过上述资源标识信息即可获知具体的通信资源。
在一种可能的实施方式中,第一消息中还包含以下一项或者多项:
(1)第一终端的服务小区的信息,例如物理小区标识(Physical Cell Identifier,PCI)、小区全球标识符(Cell Global Identifier,CGI)、E-UTRAN小区全局标识(E-UTRAN Cell Global Identifier,ECGI)或NR小区全球标识符(NR-Cell Global Identifier,NR-CGI);服务小区的信息主要是为了标识不同的服务小区;
(2)几乎空白子帧(Almost blank subframe,ABS)的信息。ABS信息是为了干扰协调,第二网络设备如果在ABS上调度第二终端,则可以避免来自第一网络设备的干扰。
在一种可能的实施方式中,在第二消息中包含第一测量结果的情况下,第一网络设备根据第二消息,执行干扰处理操作,包括:
(1)第一网络设备从第一测量结果中确定出满足预设阈值的第二测量结果;
在本申请实施例中,第一网络设备从第二网络设备接收第二终端对全部第一资源进行CLI测量得到的测量结果,然后根据预设阈值,从第一测量结果中筛选出部分测量结果,即第二测量结果。具体地第二测量结果可以是能够反映出CLI比较大的测量结果。
(2)第一网络设备根据第二测量结果对应的第一资源的资源标识信息,确定出目标资源;
在本申请实施例中,第一网络设备根据筛选出的第二测量结果确定出对应的第一资源的资源标识信息,根据确定出的资源标识信息确定出目标资源,可以理解为第一终端在该目标资源上传输上行信号所产生的CLI比较大。
(3)第一网络设备根据目标资源,在第一终端中确定出目标终端;
在本申请实施例中,第一网络设备根据确定出目标资源,从所有归属于第一网络设备 的第一终端中确定出目标终端,即确定出在目标资源上传输上行信号产生较大CLI的终端。
(4)第一网络设备对目标终端执行干扰处理操作。
在本申请实施例中,第一网络设备针对确定出的目标终端进行干扰处理操作,具体地,目标终端为在目标资源上已被调度的一个或多个终端,第一网络设备可以确定出一个终端集合,该集合中包含所有确定出的目标终端,第一网络设备对该终端集合中的至少部分终端进行干扰处理操作。在一些实施场景中,如果是多个终端在目标资源上传输信号产生的CLI较大,第一网络设备停止其中部分终端的上行传输,也可以减少CLI。
在一种可能的实施方式中,在第二消息中包含第二资源的资源标识信息的情况下,第一网络设备根据第二消息,执行干扰处理操作,包括:
(1)第一网络设备根据第二资源的资源标识信息,在第一终端中确定出目标终端;
在本申请实施中,由于第二资源已经是根据满足预设阈值的测量结果而筛选出的资源,即第二资源已经是确定出的与产生较大CLI相关的资源,因此第一网络设备直接根据该第一资源的资源标识信息,从所有归属于第一网络设备的第一终端中确定出目标终端,以及将使用第二资源传输上行信号的第一终端确定为目标终端。
(2)第一网络设备对目标终端执行干扰处理操作。
在本申请实施例中,第一网络设备针对确定出的目标终端进行干扰处理操作,具体地,目标终端为在目标资源上已被调度的一个或多个终端,第一网络设备可以确定出一个终端集合,该集合中包含所有确定出的目标终端,第一网络设备对该终端集合中的至少部分终端进行干扰处理操作。
在一种可能的实施方式中,执行干扰处理操作包括:
在所述第二网络设备执行下行传输的时间段内,基于所述目标终端,执行以下一项或者多项:
(1)停止或减少调度终端传输上行信号;可选地,第一网络设备仅在第二网络设备存在下行传输的时间段内,执行上述减少或避免调度的操作。
(2)减少或降低终端传输上行信号的传输功率;
(3)调度终端传输上行信号时采用与历史调度不同的空间关系,该历史调度具体指第一网络设备在上述测量资源(具体为上述第二资源)对应的位置进行的调度;
(4)第一网络设备向第二网络设备发送干扰协调请求消息,干扰协调请求消息中包含期望的上下行配置(Intended UL-DL Configuration),和/或,期望的协调信息(Intended coordination information)。可选地,期望的协调信息具体可以是期望的上行子帧(Intended UL subframe(s))。
在一种可能的实施方式中,在第二网络设备采用中心单元(central unit,CU)与分布单元(distributed unit,DU)分离架构的情况下,
第一网络设备向第二网络设备发送第一消息,包括:第一网络设备向第二网络设备的CU发送第一消息;
第一网络设备从第二网络设备接收第二消息,包括:第一网络设备从第二网络设备的CU接收第二消息。
参见图3,本申请实施例提供一种交叉链路干扰处理方法,该方法的执行主体为第二网络设备,方法包括:
步骤301:第二网络设备从第一网络设备接收第一消息,第一消息中包含第一资源的资源标识信息,第一资源由第一网络设备分配,用于第一终端传输上行信号或者调度第一终端下行接收;
步骤302:第二网络设备触发第二网络设备或者第二终端对第一资源进行CLI测量;
步骤303:第二网络设备从第二终端接收第一测量结果,第一测量结果是第二网络设备或者第二终端对第一资源进行CLI测量得到的测量结果;
步骤304:第二网络设备向第一网络设备发送第二消息,第二消息中包含第一测量结果或者第二资源的资源标识信息;
其中,第一终端是归属于第一网络设备的终端,第二资源是第一测量结果中满足预设阈值的测量结果对应的资源,第二终端是归属于第二网络设备的终端。
在本申请实施例中,第一网络设备分配用于第一终端传输上行信号或者调度第一终端下行接收的第一资源,并通过第一消息将第一资源的资源标识信息发送给第二网络设备,由第二网络设备触发第二网络设备或者第二终端对第一资源的CLI测量,然后第二网络设备通过第二消息将第一测量结果发送给第一网络设备,或者将第一测量结果中满足预设阈值的测量结果对应的第二资源的资源标识信息发送给第一网络设备,由第一网络设备根据这些信息执行干扰处理操作;这样通过第一网络设备与第二网络设备之间的交互,实现针对CLI的干扰处理,同时由于第一网络设备与第二网络设备之间只交互测量结果或者只交互满足一定要求的资源标识信息,在实现干扰协调的同时节省网络设备间交互信息开销。
需要说明的是,上述第二网络设备不等于第一网络设备,或者,第一网络设备和第二网络设备的关系包括如下至少一项
(1)小区间、站点间gNB-gNB(inter-cell inter-site gNB-gNB);
(2)小区间同址扇区间gNB-gNB(inter-cell co-site inter-sector gNB-gNB);
上述第一网络设备分配第一资源,具体可以分配一个或多个资源,具体可以取决于归属于第一网络设备的第一终端的数量;
上述第一终端在第一资源上传输上行信号,该上行信号可以包括但不限于PUSCH信号、PUCCH信号、SRS、PRACH信号、其他上行信号中的一种或多种;
上述第一测量结果具体是第二终端对第一资源中的所有资源进行CLI测量得到的测量结果,即第二消息中包含第一测量结果的情况,具体指的是,第二网络设备将全部第一资源对应的CLI测量结果发送给第一网络设备。需要说明的是,基于全部测量结果能够知道测量结果与测量资源(即第一资源)的对应关系,即对于测量结果以及对应测量资源的映射关系在两个网络设备间是确定的,可以是一一对应,即资源0、资源1、资源2…… 对应测量结果0、测量结果1、测量结果2……,或者也可以是逆序,又或者也可以是两个网络设备间预先约定好的其他顺序。这样只需将全部的测量结果发送给第一网络设备,第一网络设备即可获知先前分配的每个第一资源对应的CLI情况,进而针对性的进行干扰处理。
上述第二资源是第一测量结果中满足预设阈值的测量结果对应的资源,可以理解的是第二资源实质上是第一网络设备分配的第一资源中的至少部分资源,即第二网络设备根据第二终端的CLI测量结果,将满足预设阈值的测量结果对应的资源作为第二资源反馈给第一网络设备,这样只反馈CLI比较大的部分资源给第一网络设备,由第一网络针对这部分资源,进行针对性的进行干扰处理。具体地,预设阈值可以是预定义或网络设备配置的,例如上述CLI测量结果为RSRP、RSSI、CQI时,可以设置一个第一阈值,如果测量结果大于第一阈值,则将对应的资源归为第二资源;又例如上述CLI测量结果为SINR时,可以设置一个第二阈值,如果测量结果小于第二阈值,则将对应的资源归为第二资源。如果每个测量资源的CLI测量结果包含多个指标,如RSSI和CQI,上述CLI测量结果满足预设阈值可以是每个指标分别满足各自的预设阈值或者至少有一个指标满足其对应的预设阈值。本申请实施例对具体的预设阈值的设置不做限定。
具体地,对于第一资源用于第一终端传输上行信号,相应第一测量结果是第二终端对第一资源进行CLI测量得到的测量结果的情况,主要可以用于解决UE-to-UE的干扰协调;
对于第一资源用于调度第一终端下行接收,相应第一测量结果是第二网络设备对第一资源进行CLI测量得到的测量结果的情况,主要可以用于解决gNB-to-gNB的干扰协调。对于这种情况是第二网络设备进行CLI测量,所以不需要接收第二终端的测量结果。
在一种可能的实施方式中,第一网络设备与第二网络设备之间的交互通过接口或OTA实现,接口可以为X2接口、Xn接口、S1接口、NG接口或lu接口等,本申请实施例对此不做具体限定。
在一种可能的实施方式中,资源标识信息包括以下一项或者多项:
(1)时域信息,具体体现为如下一种或多种:
(1.1)Radio frame number;
(1.2)Slot和/或subframe index(es),可以是一个或多个slot;
(1.3)Symbol、sub-slot index(es)和/或symbol数目,可以是一个或多个symbol,例如一个slot中的最后一个或多个符号;
(1.4)第一上行资源还可以由periodicity进行标识,也就是第一上行资源在每隔一定周期重复出现,例如以无线帧(10ms)为periodicity;
(2)频域信息,具体体现为如下一种或多种:
(2.1)频域位置,如PRB index(es),或子载波位置等,例如如果采用的是梳状结构(comb结构)传输,如SRS,则需要指示comb的位置或index;
(2.2)带宽(Bandwidth,BW);
(2.3)跳频图样;
(2.4)频率偏移(freqDomainShift);
(2.5)子载波间隔(SCS)或SCS和CP;
(3)功率信息,例如上行信号发射EPRE或总功率等;
(4)序列信息,例如SRS序列index,或preamble序列index等;
(5)空间信息,例如空间关联信息(spatial relation information),或TCI state或者QCL-D或波束信息;
(6)资源索引或资源编号,其中一个资源索引或资源编号可以对应一个或多个资源,例如一个资源索引或资源编号对应一组第一资源的资源标识,第二网络设备向第一网络设备通知第一资源时,直接发送第一资源的编号。可以理解的是,第一网络设备向第二网络设备发送第一资源的资源标识信息时,不仅发送资源ID,还发送时频域等具体信息,这样第二网络设备能够让第二终端在这些资源上进行CLI测量。而第二网络设备将测量结果反馈给第一网络设备时,可以只发送资源ID,不需要发送时频域等信息,因为这些信息是第一网络设备发送给第二网络设备的,第一网络设备只要通过资源ID就能够知道具体资源信息。
需要说明的是,该资源标识信息对于上述第一资源和第二资源是通用的(因为第二资源是第一资源中的部分资源,本质上也是第一资源,即第一网络设备分配的用于第一终端传输上行信号的资源),这样通过上述资源标识信息即可获知具体的通信资源。
在一种可能的实施方式中,第一消息中还包含以下一项或者多项:
(1)第一终端的服务小区的信息,例如PCI、CGI、ECGI或NR-CGI;服务小区的信息主要是为了标识不同的服务小区;
(2)ABS的信息。ABS信息是为了干扰协调,第二网络设备如果在ABS上调度第二终端,则可以避免来自第一网络设备的干扰。
在一种可能的实施方式中,第二网络设备触发第二终端进行CLI测量和上报,具体测量方式包括但不限于如下中的一种或多种:
(1)RSRP测量:第二终端在第一资源上进行RSRP测量,例如当第一资源上的第一终端发送信号为SRS时,测量SRS-based RSRP;又例如当第一资源上的第一终端发送信号为PRACH时,测量preamble-based RSRP;
(2)RSSI测量;第二终端在第一资源上进行RSSI测量,RSSI测量行为与第一资源上第一终端发送的具体信号无关;
(3)CQI测量:第二终端在第一资源上进行干扰测量,并结合在其他资源(如CSI-RS)上测量到的信号测量结果,联合处理计算CQI;
(4)SINR测量:第二终端在第一上行资源上进行干扰测量,并结合其他资源(如CSI-RS)上测量到的信号测量结果,联合处理计算SINR;
在一种可能的实施方式中,第二网络设备告知第二终端进行上述一种或多种测量的资 源,该资源包括第一资源中的部分或全部资源,其中:
(1)第二网络设备在触发第二终端进行测量前,将测量资源告知第二终端,或者
(2)第二网络设备触发第二终端进行CLI测量时,直接指示干扰测量的物理资源(时域、频域和/或序列信息);
在一种可能的实施方式中,第二终端向第二基站上报CLI测量结果,测量结果为上述测量量中的至少一个;
可选的,第二终端还向第二基站上报进行干扰测量所使用的干扰测量资源信息。
在一种可能的实施方式中,在第二消息中包含第二资源的资源标识信息的情况下,第二网络设备向第一网络设备发送第二消息,包括:
(1)第二网络设备从第一测量结果中确定出满足预设阈值的第二测量结果;
在本申请实施例中,第二网络设备接收第二终端对全部第一资源进行CLI测量得到的测量结果,然后根据预设阈值,从第一测量结果中筛选出部分测量结果,即第二测量结果。具体地第二测量结果可以是能够反映出CLI比较大的测量结果。
(2)第二网络设备根据第二测量结果对应的资源标识信息,确定出第二资源;
在本申请实施例中,第二网络设备根据筛选出的第二测量结果确定出对应的第一资源的资源标识信息,根据确定出的资源标识信息确定出第二资源,可以理解为第一终端在该第二资源上传输上行信号所产生的CLI比较大。
(3)第二网络设备通过第二消息向第一网络设备发送第二资源的资源标识信息。
在一种可能的实施方式中,方法还包括:
第二网络设备从第一网络设备接收干扰协调请求消息,干扰协调请求消息中包含期望的上下行配置,和/或,期望的协调信息。
在本申请实施例中,一种第一网络设备执行的干扰处理操作为第一网络设备向第二网络设备发送干扰协调请求消息,干扰协调请求消息中包含期望的上下行配置(Intended UL-DL Configuration),和/或,期望的协调信息(Intended coordination information)。可选地,期望的协调信息具体可以是期望的上行子帧(Intended UL subframe(s))。
在一种可能的实施方式中,在第二网络设备采用CU与DU分离架构的情况下,
第二网络设备从第一网络设备接收第二网络设备,包括:第二网络设备的CU从第一网络设备接收第一消息;第二网络设备的CU向第二网络设备的DU发送第一消息;
第二网络设备触发第二终端对第一资源进行CLI测量,包括:第二网络设备的DU触发第二终端对第一资源进行CLI测量;
第二网络设备从第二终端接收第一测量结果,包括:第二网络设备的DU从第二终端接收第一测量结果;第二网络设备的DU向第二网络设备的CU发送第一测量结果;
第二网络设备向第一网络设备发送第二消息,包括:第二网络设备的CU向第一网络设备发送第二消息。
本申请实施例提供的交叉链路干扰处理方法,执行主体可以为交叉链路干扰处理装置。 本申请实施例中以交叉链路干扰处理装置执行交叉链路干扰处理方法为例,说明本申请实施例提供的交叉链路干扰处理装置。
参见图4,本申请实施例提供一种交叉链路干扰处理装置400,包括:
分配模块401,用于分配第一资源,所述第一资源用于第一终端传输上行信号或者调度第一终端下行接收;
第一发送模块402,用于向第二网络设备发送第一消息,所述第一消息中包含所述第一资源的资源标识信息;
第一接收模块403,用于从所述第二网络设备接收第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
执行模块404,用于根据所述第二消息,执行干扰处理操作;
其中,所述第一终端是归属于所述交叉链路干扰处理装置的终端,所述第一测量结果是所述第二网络设备或者第二终端对所述第一资源进行CLI测量得到的测量结果,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
在一种可能的实施方式中,所述资源标识信息包括以下一项或者多项:
时域信息;
频域信息;
功率信息;
序列信息;
空间信息;
资源索引或资源编号。
在一种可能的实施方式中,所述第一消息中还包含以下一项或者多项:
所述第一终端的服务小区的信息;
ABS的信息。
在一种可能的实施方式中,在所述第二消息中包含第一测量结果的情况下,所述执行模块,具体用于:
从所述第一测量结果中确定出满足预设阈值的第二测量结果;
根据所述第二测量结果对应的所述第一资源的资源标识信息,确定出目标资源;
根据所述目标资源,在第一终端中确定出目标终端;
对所述目标终端执行干扰处理操作;
其中,所述目标终端为在所述目标资源上已被调度的一个或多个终端。
在一种可能的实施方式中,在所述第二消息中包含所述第二资源的资源标识信息的情况下,所述执行模块,具体用于:
根据所述第二资源的资源标识信息,在第一终端中确定出目标终端;
对所述目标终端执行干扰处理操作;
其中,所述目标终端为在所述目标资源上已被调度的一个或多个终端。
在一种可能的实施方式中,所述执行模块,具体用于以下一项或者多项:
停止或减少调度终端传输上行信号;
减少终端传输上行信号的传输功率;
调度终端传输上行信号时采用与历史调度不同的空间关系;
向所述第二网络设备发送干扰协调请求消息,所述干扰协调请求消息中包含期望的上下行配置,和/或,期望的协调信息。
参见图5,本申请实施例提供一种交叉链路干扰处理装置500,包括:
第二接收模块501,用于从第一网络设备接收第一消息,所述第一消息中包含所述第一资源的资源标识信息,所述第一资源由所述第一网络设备分配,用于第一终端传输上行信号或者调度第一终端下行接收;
触发模块502,用于触发所述交叉链路干扰处理装置或者第二终端对所述第一资源进行CLI测量;
第三接收模块503,用于从所述第二终端接收第一测量结果,所述第一测量结果是所述交叉链路干扰处理装置或者所述第二终端对所述第一资源进行CLI测量得到的测量结果;
第二发送模块504,用于向所述第一网络设备发送第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
其中,所述第一终端是归属于所述第一网络设备的终端,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述交叉链路干扰处理装置的终端。
在一种可能的实施方式中,所述资源标识信息包括以下一项或者多项:
时域信息;
频域信息;
功率信息;
序列信息;
空间信息;
资源索引或资源编号。
在一种可能的实施方式中,所述第一消息中包含以下一项或者多项:
所述第一终端的服务小区的信息;
ABS的信息。
在一种可能的实施方式中,在所述第二消息中包含所述第二资源的资源标识信息的情况下,所述第二发送模块,具体用于:
从所述第一测量结果中确定出满足预设阈值的第二测量结果;
根据所述第二测量结果对应的资源标识信息,确定出所述第二资源;
通过所述第二消息向所述第一网络设备发送所述第二资源的资源标识信息。
在一种可能的实施方式中,所述装置还包括:
第四接收模块,用于从所述第一网络设备接收干扰协调请求消息,所述干扰协调请求消息中包含期望的上下行配置,和/或,期望的协调信息。
本申请实施例中的交叉链路干扰处理装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的交叉链路干扰处理装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述交叉链路干扰处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络设备时,该程序或指令被处理器601执行时实现上述交叉链路干扰处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络设备,包括处理器和通信接口,其中,
在所述网络设备为第一网络设备的情况下,所述处理器用于第一网络设备分配第一资源,所述第一资源用于第一终端传输上行信号或者调度第一终端下行接收;
所述通信接口用于所述第一网络设备向第二网络设备发送第一消息,所述第一消息中包含所述第一资源的资源标识信息;
所述通信接口用于所述第一网络设备从所述第二网络设备接收第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
所述处理器用于所述第一网络设备根据所述第二消息,执行干扰处理操作;
其中,所述第一终端是归属于所述第一网络设备的终端,所述第一测量结果是所述第二网络设备或者第二终端对所述第一资源进行CLI测量得到的测量结果,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
在所述网络设备为第二网络设备的情况下,所述通信接口用于第二网络设备从第一网络设备接收第一消息,所述第一消息中包含所述第一资源的资源标识信息,所述第一资源由所述第一网络设备分配,用于第一终端传输上行信号或者调度第一终端下行接收;
所述处理器用于所述第二网络设备触发所述第二网络设备或者第二终端对所述第一资源进行CLI测量;
所述通信接口用于所述第二网络设备从所述第二终端接收第一测量结果,所述第一测 量结果是所述第二网络设备或者所述第二终端对所述第一资源进行CLI测量得到的测量结果;
所述通信接口用于所述第二网络设备向所述第一网络设备发送第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
其中,所述第一终端是归属于所述第一网络设备的终端,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
该网络设备实施例与上述网络设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络设备。如图7所示,该网络设备700包括:天线71、射频装置72、基带装置73、处理器74和存储器75。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
以上实施例中网络设备执行的方法可以在基带装置73中实现,该基带装置73包括基带处理器。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图7所示,其中一个芯片例如为基带处理器,通过总线接口与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络设备操作。
该网络设备还可以包括网络接口76,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络设备700还包括:存储在存储器75上并可在处理器74上运行的指令或程序,处理器74调用存储器75中的指令或程序执行图4或图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述交叉链路干扰处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述交叉链路干扰处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述交叉链路干扰处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,包括:第一网络设备,归属于所述第一网络设备的第一终端,第二网络设备,归属于所述第二网络设备的第二终端,所述第一网络设备可用于执行如上述第一网络设备侧的方法的步骤,所述第二网络设备可用于执行如上述第二网络设备侧的方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (24)

  1. 一种交叉链路干扰处理方法,包括:
    第一网络设备分配第一资源,所述第一资源用于第一终端传输上行信号或者调度第一终端下行接收;
    所述第一网络设备向第二网络设备发送第一消息,所述第一消息中包含所述第一资源的资源标识信息;
    所述第一网络设备从所述第二网络设备接收第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
    所述第一网络设备根据所述第二消息,执行干扰处理操作;
    其中,所述第一终端是归属于所述第一网络设备的终端,所述第一测量结果是所述第二网络设备或者第二终端对所述第一资源进行交叉链路干扰CLI测量得到的测量结果,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
  2. 根据权利要求1所述的方法,其中,所述资源标识信息包括以下一项或者多项:
    时域信息;
    频域信息;
    功率信息;
    序列信息;
    空间信息;
    资源索引或资源编号。
  3. 根据权利要求1所述的方法,其中,所述第一消息中还包含以下一项或者多项:
    所述第一终端的服务小区的信息;
    几乎空白子帧ABS的信息。
  4. 根据权利要求1所述的方法,其中,在所述第二消息中包含第一测量结果的情况下;
    所述第一网络设备根据所述第二消息,执行干扰处理操作,包括:
    所述第一网络设备从所述第一测量结果中确定出满足预设阈值的第二测量结果;
    所述第一网络设备根据所述第二测量结果对应的所述第一资源的资源标识信息,确定出目标资源;
    所述第一网络设备根据所述目标资源,在第一终端中确定出目标终端;
    所述第一网络设备对所述目标终端执行干扰处理操作;
    其中,所述目标终端为在所述目标资源上已被调度的一个或多个终端。
  5. 根据权利要求1所述的方法,其中,在所述第二消息中包含所述第二资源的资源标识信息的情况下,所述第一网络设备根据所述第二消息,执行干扰处理操作,包括:
    所述第一网络设备根据所述第二资源的资源标识信息,在第一终端中确定出目标终端;
    所述第一网络设备对所述目标终端执行干扰处理操作;
    其中,所述目标终端为在所述目标资源上已被调度的一个或多个终端。
  6. 根据权利要求4或5所述的方法,其中,所述执行干扰处理操作包括以下一项或者多项:
    停止或减少调度终端传输上行信号;
    减少或降低终端传输上行信号的传输功率;
    调度终端传输上行信号时采用与历史调度不同的空间关系;
    向所述第二网络设备发送干扰协调请求消息,所述干扰协调请求消息中包含期望的上下行配置,和/或,期望的协调信息。
  7. 一种交叉链路干扰处理方法,包括:
    第二网络设备从第一网络设备接收第一消息,所述第一消息中包含第一资源的资源标识信息,所述第一资源由所述第一网络设备分配,用于第一终端传输上行信号或者调度第一终端下行接收;
    所述第二网络设备触发所述第二网络设备或者第二终端对所述第一资源进行CLI测量;
    所述第二网络设备从所述第二终端接收第一测量结果,所述第一测量结果是所述第二网络设备或者所述第二终端对所述第一资源进行CLI测量得到的测量结果;
    所述第二网络设备向所述第一网络设备发送第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
    其中,所述第一终端是归属于所述第一网络设备的终端,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
  8. 根据权利要求1所述的方法,其中,所述资源标识信息包括以下一项或者多项:
    时域信息;
    频域信息;
    功率信息;
    序列信息;
    空间信息;
    资源索引或资源编号。
  9. 根据权利要求7所述的方法,其中,所述第一消息中包含以下一项或者多项:
    所述第一终端的服务小区的信息;
    ABS的信息。
  10. 根据权利要求7所述的方法,其中,在所述第二消息中包含所述第二资源的资源标识信息的情况下,所述第二网络设备向所述第一网络设备发送第二消息,包括:
    所述第二网络设备从所述第一测量结果中确定出满足预设阈值的第二测量结果;
    所述第二网络设备根据所述第二测量结果对应的资源标识信息,确定出所述第二资源;
    所述第二网络设备通过所述第二消息向所述第一网络设备发送所述第二资源的资源标识信息。
  11. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述第二网络设备从所述第一网络设备接收干扰协调请求消息,所述干扰协调请求消息中包含期望的上下行配置,和/或,期望的协调信息。
  12. 一种交叉链路干扰处理装置,包括:
    分配模块,用于分配第一资源,所述第一资源用于第一终端传输上行信号或者调度第一终端下行接收;
    第一发送模块,用于向第二网络设备发送第一消息,所述第一消息中包含所述第一资源的资源标识信息;
    第一接收模块,用于从所述第二网络设备接收第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
    执行模块,用于根据所述第二消息,执行干扰处理操作;
    其中,所述第一终端是归属于所述交叉链路干扰处理装置的终端,所述第一测量结果是所述第二网络设备或者第二终端对所述第一资源进行CLI测量得到的测量结果,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述第二网络设备的终端。
  13. 根据权利要求12所述的装置,其中,所述资源标识信息包括以下一项或者多项:
    时域信息;
    频域信息;
    功率信息;
    序列信息;
    空间信息;
    资源索引或资源编号。
  14. 根据权利要求12所述的装置,其中,所述第一消息中还包含以下一项或者多项:
    所述第一终端的服务小区的信息;
    ABS的信息。
  15. 根据权利要求12所述的装置,其中,在所述第二消息中包含第一测量结果的情况下,所述执行模块,具体用于:
    从所述第一测量结果中确定出满足预设阈值的第二测量结果;
    根据所述第二测量结果对应的所述第一资源的资源标识信息,确定出目标资源;
    根据所述目标资源,在第一终端中确定出目标终端;
    对所述目标终端执行干扰处理操作;
    其中,所述目标终端为在所述目标资源上已被调度的一个或多个终端。
  16. 根据权利要求12所述的装置,其中,在所述第二消息中包含所述第二资源的资源标识信息的情况下,所述执行模块,具体用于:
    根据所述第二资源的资源标识信息,在第一终端中确定出目标终端;
    对所述目标终端执行干扰处理操作;
    其中,所述目标终端为在所述目标资源上已被调度的一个或多个终端。
  17. 根据权利要求15或16所述的装置,其中,所述执行模块,具体用于以下一项或者多项:
    停止或减少调度终端传输上行信号;
    减少终端传输上行信号的传输功率;
    调度终端传输上行信号时采用与历史调度不同的空间关系;
    向所述第二网络设备发送干扰协调请求消息,所述干扰协调请求消息中包含期望的上下行配置,和/或,期望的协调信息。
  18. 一种交叉链路干扰处理装置,包括:
    第二接收模块,用于从第一网络设备接收第一消息,所述第一消息中包含第一资源的资源标识信息,所述第一资源由所述第一网络设备分配,用于第一终端传输上行信号或者调度第一终端下行接收;
    触发模块,用于触发所述交叉链路干扰处理装置或者第二终端对所述第一资源进行CLI测量;
    第三接收模块,用于从所述第二终端接收第一测量结果,所述第一测量结果是所述交叉链路干扰处理装置或者所述第二终端对所述第一资源进行CLI测量得到的测量结果;
    第二发送模块,用于向所述第一网络设备发送第二消息,所述第二消息中包含第一测量结果或者第二资源的资源标识信息;
    其中,所述第一终端是归属于所述第一网络设备的终端,所述第二资源是所述第一测量结果中满足预设阈值的测量结果对应的资源,所述第二终端是归属于所述交叉链路干扰处理装置的终端。
  19. 根据权利要求18所述的装置,其中,所述资源标识信息包括以下一项或者多项:
    时域信息;
    频域信息;
    功率信息;
    序列信息;
    空间信息;
    资源索引或资源编号。
  20. 根据权利要求18所述的装置,其中,所述第一消息中包含以下一项或者多项:
    所述第一终端的服务小区的信息;
    ABS的信息。
  21. 根据权利要求18所述的装置,其中,在所述第二消息中包含所述第二资源的资源标识信息的情况下,所述第二发送模块,具体用于:
    从所述第一测量结果中确定出满足预设阈值的第二测量结果;
    根据所述第二测量结果对应的资源标识信息,确定出所述第二资源;
    通过所述第二消息向所述第一网络设备发送所述第二资源的资源标识信息。
  22. 根据权利要求18所述的装置,其中,所述装置还包括:
    第四接收模块,用于从所述第一网络设备接收干扰协调请求消息,所述干扰协调请求消息中包含期望的上下行配置,和/或,期望的协调信息。
  23. 一种网络设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至6任一项所述的交叉链路干扰处理方法的步骤,或者实现如权利要求7至11任一项所述的交叉链路干扰处理方法的步骤。
  24. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至6任一项所述的交叉链路干扰处理方法的步骤,或者实现如权利要求7至11任一项所述的交叉链路干扰处理方法的步骤。
PCT/CN2023/113009 2022-08-19 2023-08-15 交叉链路干扰处理方法、设备及可读存储介质 WO2024037511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211001533.2 2022-08-19
CN202211001533.2A CN117675052A (zh) 2022-08-19 2022-08-19 交叉链路干扰处理方法、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024037511A1 true WO2024037511A1 (zh) 2024-02-22

Family

ID=89940698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113009 WO2024037511A1 (zh) 2022-08-19 2023-08-15 交叉链路干扰处理方法、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN117675052A (zh)
WO (1) WO2024037511A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278119A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 干扰处理方法、基站及终端
WO2020144624A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Cli measurement configuration and reporting
CN111988099A (zh) * 2019-05-23 2020-11-24 海信集团有限公司 一种交叉链路干扰测量的方法、网络侧设备、终端和***
WO2021226824A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Reduced cross-link interference measurements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278119A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 干扰处理方法、基站及终端
WO2020144624A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Cli measurement configuration and reporting
CN111988099A (zh) * 2019-05-23 2020-11-24 海信集团有限公司 一种交叉链路干扰测量的方法、网络侧设备、终端和***
WO2021226824A1 (en) * 2020-05-12 2021-11-18 Qualcomm Incorporated Reduced cross-link interference measurements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Resource management for enhanced duplexing", 3GPP DRAFT; R1-2107365, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038310 *

Also Published As

Publication number Publication date
CN117675052A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US20210058209A1 (en) Communication method and communications apparatus
CN110754043B (zh) 用于新无线电的频率选择性上行链路预编码
KR102578986B1 (ko) 비면허 스펙트럼 상에서 채널 상태 정보 측정 구성 및 보고를 위한 방법 및 장치
CN108112076B (zh) 配置上行信号的方法及装置
TWI759404B (zh) 用於追蹤參考信號配置設計的方法、裝置及電腦可讀取媒體
EP3737022A1 (en) Method, device and equipment for determining quasi co-location information
EP3565296A1 (en) Terminal device, base station device, and communication method
CN110291747A (zh) 用户设备及无线通信方法
CN110392385A (zh) 通信方法及相关设备
EP4185021A1 (en) Method and apparatus for determining transmission power
US10374763B2 (en) Parameter transmission method and device for interference coordination, and interference coordination method and device
US11843447B2 (en) Interference coordination for 5G flight communication
EP3836714B1 (en) Fbe data transmission method, apparatus, and storage medium
WO2024037511A1 (zh) 交叉链路干扰处理方法、设备及可读存储介质
CN112312441B (zh) 一种通信方法和通信装置
KR20180136328A (ko) Dynamic TDD 시스템을 위한 Hybrid 간섭 관리 방법 및 장치
CN112166640B (zh) 用于定向波束传输的网络辅助的波束调度机制
CN110730464B (zh) 交叉链路干扰测量周期配置方法、网络侧设备及用户终端
CN114520987A (zh) Iab节点的冲突处理方法、装置、设备及可读存储介质
EP3346788B1 (en) Resource allocation method and apparatus
WO2024017196A1 (zh) 交叉链路干扰测量及报告方法、设备及可读存储介质
US11626960B2 (en) Enhanced techniques for transmitting indications of channel qualities in multi-subscriber identification module devices
WO2024012493A1 (zh) 波束调整方法、信息交互方法、装置及设备
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2022022621A1 (zh) 一种信息传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854412

Country of ref document: EP

Kind code of ref document: A1