WO2024037382A1 - 一种电池管理方法、装置及*** - Google Patents

一种电池管理方法、装置及*** Download PDF

Info

Publication number
WO2024037382A1
WO2024037382A1 PCT/CN2023/111762 CN2023111762W WO2024037382A1 WO 2024037382 A1 WO2024037382 A1 WO 2024037382A1 CN 2023111762 W CN2023111762 W CN 2023111762W WO 2024037382 A1 WO2024037382 A1 WO 2024037382A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
control board
cell
information
status information
Prior art date
Application number
PCT/CN2023/111762
Other languages
English (en)
French (fr)
Inventor
徐平红
杨常青
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024037382A1 publication Critical patent/WO2024037382A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of new energy, and in particular to a battery management method, device and system.
  • the detection rate and accuracy of thermal runaway warning for batteries based on collected signals such as voltage, current, and temperature are not high, and there is often a long transmission delay. It is impossible to provide accurate early warning and alarm for single or multiple cells of battery thermal runaway.
  • the various internal components of the existing battery management system are generally connected through complex wiring harnesses to achieve signal collection and transmission, which not only limits the flexibility of the battery management system, but may also cause the aging of the wiring harness and the disconnection or loosening of connectors. cause safety hazards.
  • the present application provides a battery management method, device and system to provide an efficient and sensitive battery system management device and method.
  • embodiments of the present application provide a battery management method, which can be applied to a main control board or to components in the main control board (such as a processor, a chip, or a chip system, etc.).
  • the method includes :
  • the main control board receives the first battery cell status information from the first slave control board.
  • the first battery cell status information includes the status information of the first battery core managed by the first slave control board or the first slave control board.
  • the first battery core or the first battery core group is managed on the first slave control board.
  • the embodiment of the present application collects the cell status signal from the control board at the cell level and sends the signal to the main control board, realizing small-granularity signal collection at the cell or cell group level, which is beneficial to Monitor the status of batteries or battery packs more accurately, and manage and control them.
  • the first cell status information includes internal cell status information of the first cell or the first cell group collected by a first sensor, and collected by a second sensor. One or more of the external cell status information of the first cell or the first cell group.
  • embodiments of the present application provide a new battery management system architecture, wherein the battery management system architecture includes a first sensor for collecting internal cell status information, and a first sensor for collecting external cell status information.
  • the second sensor wherein, since each slave control board in the embodiment of the present application is used to manage one battery cell or battery cell group, the embodiment of the present application is based on the electricity collected by the first sensor and the second sensor.
  • the existing architecture of managing battery modules from the control board which can only obtain the external status information of the battery module, it has smaller granularity, higher sensitivity and accuracy.
  • the first sensor provided by the embodiment of the present application can also obtain the internal cell status information of the battery or battery pack, compared with the existing solution that can only obtain the external status information of the battery module, the embodiment of the present application obtains
  • the battery cell status information is richer, which enables more accurate monitoring and management of the battery system, improving service life and safety performance.
  • the internal cell status information includes the internal temperature of the cell or cell group, internal gas type, air pressure, gas concentration, voltage, current, potential of the positive electrode piece of the cell, One or more of the potential, electrolyte, internal resistance and stress of the negative electrode piece;
  • the external cell status information includes the external temperature, voltage, current, stress, gas type, air pressure, gas of the cell or cell group One or more of concentration, electrolyte, smoke, and internal resistance.
  • embodiments of the present application provide multi-dimensional internal cell status information and external cell status information.
  • the method further includes:
  • the main control board sends switching instructions to the electronic switch to control the opening or closing of the electronic switch, and the electronic switch is used to control all A battery system managed by the battery management system;
  • the electronic switch includes one or more of a main positive relay, a main negative relay, a main positive metal oxide semiconductor field effect transistor, and a main negative metal oxide semiconductor field effect transistor.
  • the number of electronic switches described in the embodiments of the present application may be one or more.
  • the embodiment of the present application provides a battery management system architecture with an electronic switch, so that the main control board in the battery management system can realize the high-voltage circuit loop of the battery system through the closing or opening of the electronic switch. Connect or disconnect.
  • the method further includes:
  • the main control board receives alarm information sent from the first slave control board, and the alarm information is used to indicate that there is an abnormality in the first cell or one or more cells in the first cell group. ; The main control board sends the control information to the first slave control board according to the alarm information.
  • the embodiment of the present application provides a way to trigger the main control board to send control information to the first slave control board. For example, after obtaining the battery core status information, the first slave control board can process and analyze the battery core status information, and when it is determined that the battery core status information is abnormal, send an alarm message to the main control board, thereby effectively Reduce the processing and analysis overhead of the main control board.
  • the method further includes:
  • the main control board triggers an alarm when it determines that the cell status information received or processed meets the alarm condition; the alarm condition is used to indicate that one or more cell status information received or processed by the main control board exceeds or Lower than the threshold set by the corresponding cell status information.
  • the alarm condition in addition to indicating that one or more cell status information received or processed by the main control board exceeds or falls below a threshold set for the corresponding cell status information, the alarm condition may also be Used to indicate other agreed conditions.
  • the alarm condition can also be used to indicate that the number of cell status information received by the main control board is less than the set threshold number.
  • the alarm condition can also be used Instructing the main control board not to receive cell status information within the threshold time is not limited here.
  • the method further includes:
  • the main control board determines the battery core control information based on the received battery core status information; the main control board sends the battery core main control information to the vehicle controller, so that the vehicle controller controls the battery according to the received battery core status information.
  • the cell master control information controls the output of battery prompt information, and the battery prompt information is used to prompt the status of the battery system managed by the battery management system.
  • the battery reminder information is output in the form of one or more of a sound signal, a light signal, or an electrical signal.
  • the cell master control information includes first information of the battery system managed by the battery management system, and/or second information, where the second information is obtained based on the first information;
  • the first information includes one or more of the following information on the battery system:
  • Internal cell status information Internal cell status information, external cell status information, module status information and sensor status information;
  • the second information includes one or more of the following information on the battery system:
  • the battery prompt information includes the first information, and/or third information, and the third information is obtained based on the first information;
  • the third information includes one or more information in the second information, and/or includes one or more information of the following battery system:
  • Dynamic energy consumption estimated remaining driving range, estimated remaining driving time, and estimated remaining charging time.
  • the battery prompt information may be one or more of a numerical value, a ratio, a maximum value, a minimum value, a difference value, or other agreed expression forms.
  • the embodiment of the present application can enable users to understand the battery and vehicle status more intuitively by processing the cell status information into battery prompt information.
  • embodiments of the present application provide a battery management method, which can be applied to the slave control board or to components in the slave control board (such as a processor, a chip, or a chip system, etc.).
  • the method includes :
  • the first slave control board obtains the first battery cell status information, which includes the status information of the first battery core managed by the first slave control board or the first battery core managed by the first slave control board. Status information of some or all cells in the group; the first slave control board controls the first slave node to send the first cell status information to the first master node; the first slave node receives data from the Control information of the first master node; the first slave control board is used to manage the first battery core or one or more battery cells in the first battery core group according to the control information.
  • the embodiment of the present application collects the cell status signal from the control board at the cell level and sends the signal to the main control board, realizing small-granularity signal collection at the cell or cell group level, which is beneficial to Monitor the status of batteries or battery packs more accurately, and manage and control them.
  • the first cell status information includes internal cell status information of the first cell or the first cell group collected by a first sensor, and collected by a second sensor. One or more of the external cell status information of the first cell or the first cell group.
  • embodiments of the present application provide a new battery management system architecture, wherein the battery management system architecture includes a first sensor for collecting internal cell status information, and a first sensor for collecting external cell status information.
  • the second sensor wherein, since each slave control board in the embodiment of the present application is used to manage one battery cell or battery cell group, the embodiment of the present application is based on the electricity collected by the first sensor and the second sensor.
  • the existing architecture of managing battery modules from the control board which can only obtain the external status information of the battery module, it has smaller granularity, higher sensitivity and accuracy.
  • the first sensor provided by the embodiment of the present application can also obtain the internal cell status information of the battery or battery pack, compared with the existing solution that can only obtain the external status information of the battery module, the embodiment of the present application obtains
  • the battery cell status information is richer, which enables more accurate monitoring and management of the battery system, improving service life and safety performance.
  • the internal cell status information includes the internal temperature of the cell or cell group, internal gas type, air pressure, gas concentration, voltage, current, potential of the positive electrode piece of the cell, One or more of the potential, electrolyte, internal resistance and stress of the negative electrode piece;
  • the external cell status information includes the external temperature, voltage, current, stress, gas type, air pressure, gas of the cell or cell group One or more of concentration, electrolyte, smoke, and internal resistance.
  • embodiments of the present application provide multi-dimensional internal cell status information and external cell status information.
  • the method further includes:
  • the first slave control board determines that the received or processed battery cell status information meets the alarm condition, it reports alarm information to the main control board; the alarm information is used to indicate the first battery cell or the third battery cell.
  • the alarm information is used to indicate the first battery cell or the third battery cell.
  • One or more cells in a cell group are abnormal.
  • a battery management device which may be a main control board, or may be a chip or integrated circuit or chip system for the main control board.
  • the battery management device has the function of realizing the above-mentioned first aspect or various possible implementations based on the first aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the battery management device includes a main control unit and a master node
  • the master node is configured to receive first cell status information from a first slave node, where the first cell status information includes the first cell status information managed by the first slave control board corresponding to the first slave node. Status information or status information of some or all of the cells in the first cell group managed by the first slave control board corresponding to the first slave node;
  • the main control unit is used to control the master node to send control information to the first slave node, and the control information is used for the first slave control board to manage the first battery core or the first battery. core set.
  • the main control unit is configured to control the master node to send control information to the first slave node according to the first cell status information.
  • the main control unit is also used to:
  • the second cell status information includes status information of the second cell managed by the second slave control board corresponding to the second slave node or the first
  • the slave control board manages the status information of some or all of the cells in the second cell group; and controls the master node to send control information to the first slave node according to the second cell status information.
  • a battery management device which may be a slave control board, or may be a chip or integrated circuit or chip system for the slave control board.
  • the device has the function of realizing the above second aspect or various possible implementations based on the second aspect. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the battery management device includes a first slave control unit and a first slave node
  • the first slave control unit obtains first cell status information, and the first cell status information includes status information of the first cell managed by the first slave control board or the first battery cell managed by the first slave control board. Status information of some or all cells in the cell group;
  • the first slave control unit controls the first slave node to send the first cell status information to the first master node
  • the first slave node receives control information from the first master node
  • the first slave control unit is used to manage one or more of the first battery core or the first battery core group according to the control information. Batteries.
  • the first cell status information comes from the first sensor and/or the second sensor;
  • the first sensor is located inside the first battery core or the first battery core group, and the second sensor is located outside the first battery core or the first battery core group.
  • a server device which may be a cloud server, or may be a chip or integrated circuit or chip system for a cloud server.
  • the server device includes a communication unit and a processing unit:
  • the communication unit is configured to receive multiple cell master control information from multiple terminals respectively, and the cell master control information corresponds to multiple cells or multiple cell groups of the terminal;
  • the processing unit is configured to generate a battery control strategy based on one or more of the plurality of cell master control information
  • the communication unit is configured to send the battery control policy to a first terminal among the plurality of terminals.
  • control device which includes a communication unit and a processing unit:
  • the communication unit is used to receive the battery control strategy sent from the server device;
  • the processing unit is configured to complete policy update according to the battery control policy.
  • the control device includes one or more of a slave control board, a main control board, or a relay device; the relay device includes a vehicle control unit (VCU) , wireless gateway T-box (Telematics BOX), wireless access network equipment (such as 4G base station, 5G base station, or future 6G base station, etc.), one or more of the road side unit (road side unit, RSU).
  • VCU vehicle control unit
  • T-box Telematics BOX
  • wireless access network equipment such as 4G base station, 5G base station, or future 6G base station, etc.
  • RSU road side unit
  • control device when the control device is the first slave control board and/or the main control board, the control device can communicate with the server device through a direct link, or communicate with the server device through a relay device. communication.
  • embodiments of the present application provide a battery management device, including at least one processor and an interface circuit.
  • the interface circuit is configured to receive signals from other devices other than the battery management device and transmit them to the processor.
  • the processor or the signal from the processor is sent to other devices other than the battery management device, and the processor is used to implement the above first aspect or various possible methods based on the first aspect through logic circuits or execution of code instructions.
  • the method described in the embodiment; or the processor uses logic circuits or execution code instructions to implement the method described in the second aspect or various possible implementations based on the second aspect. method.
  • the battery management device further includes a memory.
  • the memory may be located external to the device.
  • the memory is used to store programs or code instructions for execution by the at least one processor.
  • embodiments of the present application further provide a battery management system, including a main control board for executing the above first aspect or any possible implementation method based on the first aspect, and a main control board for executing the above second aspect or The first slave control board is based on any possible implementation method of the second aspect.
  • the battery management system may also include other slave control boards, such as a second slave control board.
  • the battery management system includes a main control board and a first slave control board:
  • the first slave control board is used to manage the first battery core or the first battery core group, and is used to send first battery core status information to the main control board, where the first battery core status information includes all Status information of the first battery cell or status information of some or all of the battery cells in the first battery cell group;
  • the main control board is used to send first control information to the first slave control board, and the first control information is used for the first slave control board to manage the first battery core or the first battery. core set.
  • the battery management system further includes a second slave control board
  • the second slave control board is used to manage the second battery core or the second battery core group, and is used to send second battery core status information to the main control board, where the second battery core status information includes the The status information of the second battery cell or the status information of some or all of the battery cells in the second battery cell group.
  • the first cell status information comes from a first sensor and/or a second sensor
  • the first sensor is used to collect and report the internal cell status information of the first cell or the first cell group to the first slave control board;
  • the second sensor is used to collect and report external cell status information of the first cell or the first cell group to the first slave control board.
  • the internal cell status information includes the internal temperature of the cell or cell group, internal gas type, air pressure, gas concentration, voltage, current, potential of the positive electrode of the cell, One or more of the potential, electrolyte, internal resistance and stress of the negative electrode piece;
  • the external status information includes one or more of the external temperature, voltage, current, stress, gas type, air pressure, gas concentration, electrolyte, smoke sense, and internal resistance of the cell or cell group.
  • the first slave control board is electrically connected to the first sensor and/or the second sensor.
  • the first slave control board is electrically connected to the first battery core or the first battery core group.
  • the electrical connection includes one of wire harness connection, flexible circuit board FPC connection, printed circuit board PCB connection, pin pin connection, connector connection, welding connection and connector connection. or more.
  • the battery management system further includes a balancing module located on the first slave control board;
  • the balancing module is configured to perform a balancing operation on at least one cell or cell group managed by the first slave control board when balancing conditions are met;
  • the equilibrium conditions include one or more of the following:
  • the balancing module receives the balancing instruction sent by the slave control unit located on the first slave control board, and the balancing module receives the balancing instruction from the main control board through the slave node located on the first slave control board. , the balancing module determines that a balancing operation needs to be performed based on the obtained first cell status information.
  • the main control board is also used to send switching instructions to an electronic switch to control the opening or closing of the electronic switch.
  • the electronic switch is used to control the battery managed by the battery management system. battery system;
  • the electronic switch includes one or more of a main positive relay, a main negative relay, a main positive metal oxide semiconductor field effect transistor, and a main negative metal oxide semiconductor field effect transistor.
  • the first slave control board is also configured to report alarm information to the main control board through the first alarm module located on the first slave control board, and the alarm information is Indicating that there is an abnormality in the first battery cell or one or more battery cells in the first battery cell group.
  • the main control board is also configured to trigger an alarm through a second alarm module located on the main control board when it is determined that the received or processed cell status information meets the alarm condition.
  • the main control board is also used to send the battery cell master control information to the vehicle controller, and the vehicle controller controls the battery prompt information according to the battery cell master control information.
  • the battery prompt information is used to prompt the status of the battery system managed by the battery management system.
  • the battery reminder information is output in the form of one or more of a sound signal, a light signal, or an electrical signal.
  • the cell master control information includes first information of the battery system managed by the battery management system, and/or second information, and the second information is based on the first information obtained;
  • the first information includes one or more of the following information on the battery system:
  • Internal cell status information Internal cell status information, external cell status information, module status information and sensor status information;
  • the second information includes one or more of the following information on the battery system:
  • the battery prompt information includes the first information, and/or third information, and the third information is obtained based on the first information;
  • the third information includes one or more information in the second information, and/or includes one or more information of the following battery system:
  • Dynamic energy consumption estimated remaining driving range, estimated remaining driving time, and estimated remaining charging time.
  • the battery prompt information may be one or more of a numerical value, a ratio, a maximum value, a minimum value, a difference value, or other agreed expression forms.
  • the main control board is also configured to send the cell master control information to a cloud server and receive a battery control policy from the cloud server.
  • the main control board communicates with the first slave control board and the second slave control board in a wireless manner.
  • the main control board and the slave control board in the battery management system communicate wirelessly, which can effectively eliminate or simplify the complex wiring harness in the battery system, reduce the weight of the system, and eliminate or reduce the number of wiring harnesses. occupy less space, eliminate the safety risks of short circuits due to aging of wire harnesses, detached or loose connectors, and short circuits when being squeezed or impacted, and eliminate or reduce the risk of wires in the battery system. Functional loss caused by beam failure, and even safety risks such as thermal runaway, greatly improve the flexibility of battery system design.
  • the battery management system and the applied battery system can better realize automated production, effectively eliminate artificially introduced risks such as wrong, reverse, missing, loose connectors, etc., and can improve production. efficiency and yield, reducing production costs.
  • the main control board and the electronic switch communicate through wireless or wired means.
  • the wireless communication method includes Bluetooth communication, Zigbee, wireless fidelity, infrared, radio frequency, near field communication, ultra-wideband technology, wireless local area network, 60GHz wireless communication technology, visible light communication technology, automatic One or more networking technologies.
  • embodiments of the present application further provide a chip system, including a processor.
  • the processor is coupled to a memory.
  • the memory is used to store programs or instructions.
  • the chip system implements the above-mentioned first aspect. In one aspect, it is based on the method described in each possible implementation manner of the first aspect; or, in the second aspect, it is based on the method described in each possible implementation manner of the second aspect.
  • the memory may be located within the chip system or outside the chip system.
  • the processor includes one or more.
  • embodiments of the present application further provide a computer-readable storage medium, which includes instructions that, when run on a computer, cause the computer to execute the above-mentioned first aspect or the various possible implementations based on the first aspect.
  • embodiments of the present application further provide a computer program product that, when run on a computer, causes the computer to execute the method described in the above first aspect or in each possible implementation based on the first aspect; or , the second aspect or the method described in each possible implementation manner based on the second aspect.
  • Figure 1 is a schematic diagram of a possible battery structure provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of a battery management system provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the internal structure of a master-slave board provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a second battery management system provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of the first battery management method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a third battery management system provided by an embodiment of the present application.
  • Figure 8 is a schematic flow chart of the second battery management method provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a fourth battery management system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of the fifth battery management system provided by the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a sixth battery management system provided by an embodiment of the present application.
  • Figure 12 is a schematic flow chart of the third battery management method provided by the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of the seventh battery management system provided by the embodiment of the present application.
  • Figure 14 is a schematic flow chart of the fourth battery management method provided by the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an eighth battery management system provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of the ninth battery management system provided by the embodiment of the present application.
  • Figure 17 is a schematic flow chart of the fifth battery management method provided by the embodiment of the present application.
  • Figure 18 is a schematic structural diagram of a tenth battery management system provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of an eleventh battery management system provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of a twelfth battery management system provided by an embodiment of the present application.
  • Figure 21 is a schematic diagram of the first battery management device provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of a second battery management device provided by an embodiment of the present application.
  • Battery management system is used to protect the safe use of the battery pack. During the charging and discharging process of the battery pack, it ensures safety while extending the service life of the battery pack.
  • the battery management system provides battery management functions, which include but are not limited to monitoring the status of the battery (for example, battery voltage, current, temperature, and deformation), calculating the battery's charge level and capacity, and controlling battery charging, discharging, and communication. Function.
  • the battery management system is equipped with a main control board (also called a main controller, master control, main board or battery control unit, etc.) and multiple slave control boards (also called slave controller, slave control, slave board). or battery slave control unit, etc.).
  • the slave control board is used to control the corresponding battery according to the control instructions;
  • the main control board is the brain of the battery management system, used to make decisions and generate corresponding control instructions, thereby guiding the slave control board to perform corresponding operations (charging, discharging, powering off, etc. ).
  • the device when the battery system and the device where the battery management system is located are started, the device receives the start signal and starts. At the same time, the device enables the battery system and the battery management system, and the battery management system receives the start signal and starts. start up.
  • Wired communication is a communication method, generally referring to wired telecommunications between communication modules, that is, a method of transmitting information using tangible media such as metal wires and optical fibers.
  • Light or electrical signals can represent sounds, text, images, etc.
  • Wireless communication is a communication method, which generally refers to transmission and communication between communication modules without propagation through conductors or cables. It generally includes long-distance wireless communication technology and short-distance wireless communication technology.
  • the wireless communication technology applied in the embodiments of the present application can, for example, adopt short-range wireless communication technology, including the communication parties transmitting information through radio waves, and the transmission distance is within a short range (for example, within a hundred meters).
  • It can be called short-distance wireless communication, including but not limited to Bluetooth (bluetooth) technology, ZigBee, wireless fidelity (Wi-Fi) technology, infrared, radio frequency, near field communication (NFC) technology , ultra-wideband technology, wireless LAN, 60GHz wireless communication technology, visible light communication technology, ad hoc network technology, Wi-Fi Aware technology, general short-range communication technology, short-range wireless communication technology standardized by the Star Flash Alliance, etc.
  • Short-distance wireless communication can have a large number of applications in various aspects such as file transfer, remote control, screen projection, and perception of peripheral devices (such as smart cars, smart terminal equipment, smart home equipment, and smart manufacturing equipment, etc.).
  • the data transmission communication protocols used for wireless communication include but are not limited to the following:
  • Synchronous serial interface protocol SSI Serial Interface
  • UART Universal Asynchronous Receiver/Transmitter
  • I2C Inter-Integrated Circuit
  • I2S Inter -Integrated Circuit Sound
  • Control LAN CAN Bus Controller Area Network
  • Bluetooth A radio technology that supports short-distance communication between devices, enabling wireless information exchange between many devices including mobile phones, wireless headsets, laptops, related peripherals, etc.
  • the use of "Bluetooth” technology can effectively simplify the communication between mobile communication terminal devices, and can also successfully simplify the communication between the device and the Internet, thereby making data transmission faster and more efficient and broadening the path for wireless communication.
  • Wireless fidelity technology wireless fidelity, Wi-Fi: also known as wireless local area networks (WLAN) direct connection or Wi-Fi Direct, is one of the Wi-Fi protocol clusters that enables devices to easily communicate with each other. Connect each other without the need for intermediary wireless access points. Its uses range from web browsing to file transfers and communicating with multiple devices simultaneously, taking full advantage of Wi-Fi's speed. Devices that comply with this standard can be easily interconnected, even if they are from different manufacturers.
  • WLAN wireless local area networks
  • Wi-Fi Aware technology responsible for the sensing and discovery part of Wi-Fi technology, it can help Wi-Fi devices perceive surrounding services, such as surrounding devices, and then achieve point-to-point communication between two devices in close proximity through Wi-Fi Aware (Peer to Peer, P2P) message interaction. Because WIFI-Aware can sense surrounding devices, it can implement a variety of functions, such as sensing nearby people and establishing connections to add friends, play the same game, etc.; or discover surrounding devices to enable photo sharing or Location sharing and more; or securely sending files to a printer without being connected to a network (such as cellular or wireless), and more.
  • a network such as cellular or wireless
  • Battery is a power supply composed of at least one battery cell or battery module.
  • the battery cell is the smallest unit of the battery and also the electrical energy storage unit.
  • a battery module is formed.
  • the battery structures in the embodiments of the present application can have a variety of structures, and are not limited to the following three types:
  • Battery structure 1 As shown in (a) in Figure 1, a battery can include a battery module, and a battery module can include At least one battery cell.
  • Battery structure 2 As shown in (b) of Figure 1 , a battery may include multiple battery modules, and each battery module may include at least one battery cell.
  • Battery structure 3 As shown in (c) in Figure 1, a battery may include one cell.
  • embodiments of the present application may include multiple batteries, for example, including a first battery and a second battery.
  • the first battery is used to power the first control device
  • the second battery is used to power the first control device.
  • the second control device provides power.
  • the battery information reported by the first node to the second node mainly refers to the battery information of the first battery.
  • the embodiment of the present application may also include a third battery.
  • the second node is decoupled from the second control device in power supply mode
  • the third battery is the third battery. The two nodes provide independent power supply.
  • the battery management system provided by the embodiments of the present application and the battery management method using the battery management system provided by the present application are introduced in detail below.
  • the battery management system provided by the embodiment of the present application can be applied to scenarios of detecting and managing batteries. For example, it can be used in new energy vehicles or energy storage systems.
  • the battery management system in the embodiment of the present application may include a main control board 100 , multiple slave control boards 200 , and multiple cells or cell groups 300 .
  • the plurality of slave control boards may include a first slave control board 210, a second slave control board 220, a third slave control board 230, etc.
  • the first slave control board is taken as an example to describe the battery management system. Introduction from the dashboard.
  • the first slave control board is used to manage the first battery core or the first battery core group, and is used to send first battery core status information to the main control board, where the first battery core status information includes the first battery core status information.
  • the first slave control board is electrically connected to the first battery core or the first battery core group.
  • the electrical connection described in the embodiment of the present application includes one or more of wire harness connection, flexible circuit board FPC connection, printed circuit board PCB connection, pin pin connection, connector connection, welding connection and connector connection. .
  • the main control board is used to send first control information to the first slave control board, and the first control information is used for the first slave control board to manage the first battery core or the first battery. core set.
  • the first control information may be a sampling instruction, an equalization instruction, a driving instruction, a control instruction that controls the operating mode of the first slave control board, or other agreed instructions.
  • the operating mode described in the embodiment of the present application may be a working mode, a low power consumption mode, a sleep mode and other preset modes.
  • the working mode is a continuous normal working mode, and one or more devices in the battery management system continue to perform preset functions.
  • the low-power mode performs preset functions periodically and intermittently; for example, the working cycle of the low-power mode is set to be longer than the working cycle of the working mode to achieve lower power consumption. part of the function.
  • Sleep mode is the mode that stops working. Generally speaking, when the battery system where the battery management system is located or the device is in a low power consumption mode or stops running, the battery management system starts a low power consumption mode or a sleep mode.
  • the devices or modules in the battery management system described in the embodiments of the present application can work in different modes at the same time.
  • the main control board in the battery management system is in a low power consumption mode
  • the first slave The control panel is in working mode.
  • the battery management system in the embodiment of the present application includes multiple slave control boards. Therefore, the main control board can also receive control information sent from other slave control boards.
  • the main control board receives the second cell status information from the second slave node, and the second cell status information includes the second cell status information managed by the second slave control board corresponding to the second slave node. status information or status information of some or all of the cells in the second cell group managed by the second slave control board; controlling the master node to send control to the second slave node according to the second cell status information information.
  • the battery management system includes a main control board and slave control boards 1 to 2.
  • the main control board can be deployed with a master node and a main control unit, and the main control unit and The master node can be connected through the internal line 1 on the main control board.
  • the slave control board 1 can be deployed with a slave node 1 and a slave control unit 1.
  • the slave control unit 1 and the slave node 1 can be connected through the internal line 2 on the slave control board 1.
  • the slave control board 2 can be deployed with a slave control board 1. Node 2 and slave control unit 2, the slave control unit 2 and the slave node 2 can be connected through the internal line 2 on the slave control board 2.
  • the first slave control unit is used to obtain the first cell status information, control the first slave node to send the first cell status information to the master node, and is also used to, according to the control information, Managing the first battery cell or one or more battery cells in the first battery cell group.
  • the first slave node is used to receive control information from the master node.
  • the master node is used to receive the first cell status information from the first slave node.
  • the main control unit is used to control the master node to send control information to the first slave node, and the control information is used for the first slave control board to manage the first battery core or the first battery. core set.
  • communication transmission between the main control board and the slave control board can be carried out in a wired or wireless manner.
  • the communication transmission can be performed through the wired line connected between the main control board and the slave control board.
  • the main control board can communicate with the internal wireless transmission module of the slave control board based on the internal wireless transmission module.
  • the slave node deployed on the slave control board may be a wireless transmission module, and there may be one or more wireless transmission methods based on the wireless transmission module.
  • the slave node can load the wireless transmission mode through a deployed software program.
  • the slave node can load the wireless transmission mode of narrow pulse transmission through an internally deployed software program to realize wireless transmission to the main control board.
  • the master node deployed on the main control board may be a wireless transmission module, used to receive the cell status information sent by the slave node through wireless transmission, and send control information to the slave node.
  • the battery management system includes a main control board and four slave control boards, namely slave control boards 1 to 4.
  • the main control board communicates wirelessly with slave control boards 1 to 3.
  • the main control board and slave control board 4 perform wired transmission, and slave control board 1 is used to manage battery cell 1, slave control board 2 is used to manage battery core 2, slave control board 3 is used to manage battery core 3, and slave control board 4 It is used to manage the battery core group 1, where a battery core group is composed of multiple batteries, and the slave control board is electrically connected to the corresponding battery core or battery core group through a wiring harness.
  • the battery management system described in the embodiment of the present application can be installed on a terminal device, and the terminal device includes but is not limited to a vehicle.
  • the vehicle includes a body and a cabin.
  • the interior of the cabin includes a cabin system 510 located in front of the main driving position and the passenger position.
  • the body includes a battery system 520 located at the front of the vehicle and a battery management system 530 for managing the battery system.
  • the cockpit system 510 also includes a cockpit controller 511, a vehicle display screen 512, a vehicle audio 513, etc.
  • the battery management system 530 can exchange information with the cockpit system 510 through a connection line with the cockpit system 510 .
  • the first slave control board obtains the first battery cell status information.
  • the first cell status information includes status information of the first cell managed by the first slave control board or status information of some or all of the cells in the first cell group managed by the first slave control board.
  • the first battery cell status information can be obtained through the collection chip deployed on the first slave control board.
  • the collection chip described in the embodiment of this application can be deployed together with the first slave node on the first slave control board.
  • the collection chip is located inside the first node, or the first node also has the function of collecting battery information.
  • the positional relationship between the first node and the collection chip can be flexibly designed, enriching the construction method of the battery system and making it more flexible.
  • the first slave control board controls to send the first battery cell status information to the main control board.
  • this step may send the first cell status information to the master node deployed on the main control board based on the first slave node deployed on the first slave control board.
  • the main control board receives the first cell status information from the first slave control board.
  • this step may be based on the master node deployed on the main control board, receiving the first cell status information sent from the first slave node deployed on the first slave control board.
  • the main control board sends control information to the first slave control board based on the first battery cell status information.
  • control information is used for the first slave control board to manage the first battery core or the first battery core group.
  • the main control unit deployed on the main control board may determine the control information based on the first cell status information, and then the main control unit may communicate the control information with the main control unit.
  • the line connected by the node is sent to the master node, so that the master node sends the control information to the first slave node on the first slave control board.
  • the first slave control board receives control information from the main control board.
  • this step may receive the control information sent from the master node on the main control board through the first slave node deployed on the first slave control board.
  • the first slave control board manages the first battery cell or one or more battery cells in the first battery core group according to the control information.
  • this step can send the control information to the first slave node through the first slave node on the first slave control board through the connection line between the first slave node and the first slave control unit.
  • the first slave control unit manages the first battery core or one or more battery cells in the first battery core group based on the control information.
  • embodiments of this application also provide several system architectures that are modified and optimized based on the system architecture shown in Figure 2, and are not limited to the following nine:
  • the battery management system also includes a first sensor and/or a second sensor.
  • the first sensor is a first sensor used to collect the internal battery status information of a battery cell or battery group, and report the collected internal battery status information to the corresponding slave control board; the second sensor , a second sensor used to collect external status information of the battery core or battery core group, and report the collected external battery core status information to the corresponding slave control board.
  • the internal cell status information includes the internal temperature of the cell or cell group, internal gas type, air pressure, gas concentration, voltage, current, the potential of the positive electrode piece of the cell, the potential of the negative electrode piece of the cell, electrolysis One or more of fluid, internal resistance, and stress.
  • the external status information includes one or more of the external temperature, voltage, current, stress, gas type, air pressure, gas concentration, electrolyte, smoke sense, and internal resistance of the cell or cell group.
  • the first sensor and/or the second sensor in the embodiment of the present application may be electrically connected to the slave control board in the battery management system.
  • the battery management system includes a main control board and slave control boards 1 and 2.
  • the slave control board 1 is electrically connected to the first sensor 1 and the second sensor 1 through a wire harness.
  • the first sensor 1 is placed inside the battery core 1 and is used to collect the internal battery status information of the battery core 1 and report the collected internal battery status information of the battery core 1 to the slave control board 1.
  • the second sensor 1 is placed outside the battery core 1 and is used to collect the external battery core status information of the battery core 1 and report the collected external battery core status information of the battery core 1 to the slave control board 1; the slave control board 1
  • the board 2 is connected to the first sensor 2 and the second sensor 2 through a flexible circuit board.
  • the first sensor 2 is placed inside the battery core 2 and is used to collect the internal battery status information of the battery core 2 and collect the collected information.
  • the internal cell status information of the battery core 2 is reported to the slave control board 2.
  • the second sensor 2 is placed outside the battery core 2 for collecting the external battery core status information of the battery core 2, and the collected The external battery core status information of the battery core 2 is reported to the slave control board 2 .
  • the first sensor collects the internal cell status information of the first cell and reports it to the first slave control board.
  • the internal cell status information includes the internal temperature of the cell or cell group, internal gas type, air pressure, gas concentration, voltage, current, the potential of the positive electrode piece of the cell, the potential of the negative electrode piece of the cell, electrolysis One or more of fluid, internal resistance, and stress.
  • the first sensor may send the collected internal cell status information of the first cell to the first slave node through the connection line with the first slave node.
  • the first slave node may also obtain the internal status information of the first battery core by communicating with the first slave node.
  • the connection line between the control units is sent to the first slave control unit, so that the first slave control unit processes the internal cell status information of the first cell.
  • the first slave control unit The unit can filter the received internal status information of the first battery core, thereby obtaining the internal battery status information that needs to be uploaded to the main control board; for another example, the first slave control unit can filter the received first battery core status information.
  • the internal status information of the battery core and the external status information of the first battery core are integrated, thereby transmitting the integrated battery status information to the main control board as a whole.
  • the first sensor can directly send the collected internal cell status information of the first cell to the first slave control unit through the connection line with the first slave control unit. unit.
  • the second sensor collects the external cell status information of the first cell and reports it to the first slave control board.
  • the external cell status information includes one or more of the external temperature, voltage, current, stress, gas type, air pressure, gas concentration, electrolyte, smoke sense, and internal resistance of the cell or cell group.
  • the second sensor when a first slave node and a first slave control unit are deployed on the first slave control board, and the second sensor is connected to the first slave node deployed on the first slave control board. When connected, the second sensor may send the collected external cell status information of the first cell to the first slave node through the connection line with the first slave node.
  • the first slave node may also obtain the external status information of the first battery core by communicating with the first slave node.
  • the connection line between the control units is sent to the first slave control unit, so that the first slave control unit processes the external battery core status information of the first battery core.
  • the first slave control unit The unit can filter the received external status information of the first battery core, thereby obtaining the external battery status information that needs to be uploaded to the main control board; for another example, the first slave control unit can filter the received first battery core status information.
  • the external status information of the battery core and the internal status information of the first battery core are integrated, thereby transmitting the integrated battery status information to the main control board as a whole.
  • the second sensor can directly send the collected external cell status information of the first cell to the first slave control unit through the connection line with the first slave control unit. unit.
  • the first slave control board obtains the first battery cell status information.
  • the first cell status information includes internal cell status information and/or external cell status information of the first cell.
  • the first slave control board sends the first battery cell status information to the main control board.
  • the first slave node in the first slave control board after receiving the first cell status information reported from the sensor, the first slave node in the first slave control board directly sends the first cell status information to the main control board.
  • the master node on the board After receiving the first cell status information reported from the sensor, the first slave node in the first slave control board directly sends the first cell status information to the main control board.
  • the master node on the board After receiving the first cell status information reported from the sensor, the first slave node in the first slave control board directly sends the first cell status information to the main control board.
  • the first slave node in the first slave control board after receiving the first cell status information reported from the sensor, the first slave node in the first slave control board sends the first cell status information to the first slave control board.
  • the first slave control unit in the board then receives the analyzed and processed first cell status information sent from the first slave control unit, and finally sends the first cell status information to the main control board. .
  • the first slave control unit in the first slave control board after receiving the first cell status information reported from the sensor, the first slave control unit in the first slave control board directly sends the first cell status information to the first.
  • the first slave node in the slave control board may analyze and process the first cell status information, and send the analyzed and processed first cell status information to the main control board.
  • the main control board receives the first cell status information from the first slave control board.
  • this step may receive the first cell status information sent from the first slave node on the first slave control board through the master node on the main control board.
  • the main control board sends control information to the first slave control board based on the first battery core status information.
  • this step can send the received first cell status information to the main control unit on the first slave control board through the master node on the main control board, and the main control unit is based on the The first cell status information determines the control information and sends the control information to the master node.
  • the master node After receiving the control information, the master node sends the control information to the first slave control board. the first slave node on.
  • the first slave control board receives control information from the main control board.
  • this step may receive the control information sent from the master node on the main control board through the first slave node on the first slave control board.
  • the first slave control board manages the first battery core or one or more battery cells in the first battery core group according to the control information.
  • this step can send the control information to the first slave node through the first slave node on the first slave control board through the connection line between the first slave node and the first slave control unit.
  • the first slave control unit manages the first battery core or one or more battery cells in the first battery core group based on the control information.
  • the battery management system may also include a balancing module located on the slave control board.
  • the battery management system includes a main control board and slave control boards 1 and 2.
  • the slave control board 1 includes a balancing module 1
  • the slave control board 2 includes a balancing module 2.
  • the battery management system can perform balancing management through the balancing module 1 and the balancing module 2 .
  • the consistency of the battery cells will deteriorate, such as inconsistent internal resistance of the battery, inconsistent battery voltage, etc., which will seriously affect the performance and safety of the battery system.
  • the embodiment of the present application can perform the following two balancing operations based on the balancing module:
  • Balancing operation 1 The balancing module receives balancing instructions from the main control board through the slave node on the slave control board, and performs balancing operations.
  • the first slave control unit in the first slave control board also has the function of balancing management
  • the first slave control unit in the first slave control board After receiving the balancing instruction from the main control board, the slave node sends the balancing instruction to the first slave control unit through the line connected between the first slave node and the first slave control unit, so that The first slave control unit is caused to execute the equalization instruction.
  • the first slave control unit may also send the execution result of the balancing instruction to the main control board through the first slave node.
  • the first slave control board includes a first slave control unit and a first slave node
  • it also includes a balancing module where the balancing module is used to perform balancing management
  • the first slave control board in the first slave control board After receiving the first equalization instruction from the main control board, the slave node sends the first equalization instruction to the first slave node through the line connected between the first slave node and the first slave control unit.
  • Control unit, the first slave control unit processes and analyzes the first equalization instruction to obtain a second equalization instruction, and then sends the signal to the said first slave control unit through the line connected between the first slave control unit and the equalization module.
  • the balancing module sends the second balancing instruction, thereby causing the balancing module to perform balancing management.
  • the first slave control board includes a first slave control unit and a first slave node, it also includes a balancing module, where the balancing module is used to perform balancing management, then the first slave control board in the first slave control board After receiving the balancing instruction from the main control board, the slave node sends the balancing instruction to the first slave control unit through the line connected between the first slave node and the first slave control unit.
  • the first slave control unit directly sends the balance instruction to the balance module through the line connected between the first slave control unit and the balance module, so that the balance module performs balance management.
  • Balancing operation 2 The balancing module receives cell status information from other slave control boards through the slave node on the slave control board, and performs a balancing operation.
  • the battery management system includes slave control boards 1 to 3.
  • the slave control boards 1 to 3 can transmit cell status information to each other, and the slave control units corresponding to the slave control boards 1 to 3 also have balancing functions.
  • the management function for example, the slave control board 1 can receive the cell status information 2 sent from the slave control board 2 through its own slave node 1. After the cell status information 3 is sent from the slave control board 3, the battery status information 2 and the battery status information 3 are sent to the slave control unit 1 through the line connected between the slave node 1 and its own slave control unit 1 .
  • the slave control unit 1 determines the balancing instruction based on the battery core status information 1, the battery core status information 2 and the battery core status information 3 collected by itself, and performs balancing management based on the balancing instruction. In addition, After executing the balancing instruction, the slave control unit 1 may also send the execution result of the balancing instruction to the main control board through the slave node 1 .
  • the battery management system includes slave control boards 1 to 3.
  • the slave control boards 1 to 3 can transmit cell status information to each other, and the slave control boards 1 to 3 respectively include a first slave control unit and a third slave control unit.
  • the slave control board 1 also includes a balancing module.
  • the slave control board 1 can receive the cell status information 2 sent from the slave control board 2 through its own slave node 1. After the cell status information 3 sent from the slave control board 3, it will The cell status information 2 and the cell status information 3 are sent to the slave control unit 1 through the line connected between the slave node 1 and its own slave control unit 1 .
  • the slave control unit 1 determines the balancing instruction based on the cell status information 1, the cell status information 2 and the cell status information 3 collected by itself, and then balances the slave control unit 1 with itself.
  • the lines connected between the modules 1 send the balancing instructions to the balancing module 1, so that the balancing module 1 performs balancing management.
  • the battery management system can also include electronic switches.
  • the battery management system may also include one or more electronic switches.
  • the electronic switches are used to receive switching instructions from the main control board and execute the switching instructions.
  • the switch instruction is used to control the opening or closing of the electronic switch, thereby controlling the battery system managed by the battery management system through the electronic switch.
  • the electronic switch can communicate with the main control board wirelessly and/or wiredly.
  • the electronic switch described in the embodiment of the present application includes one or more of a main positive relay, a main negative relay, a main positive metal oxide semiconductor field effect transistor, and a main negative metal oxide semiconductor field effect transistor.
  • the electronic switch can complete the matching closing or opening function when the battery system or device where the battery management system is located is running normally, running at low power consumption, or stopping running, and can switch the high voltage of the battery system to a closed or open state.
  • the information is sent to the battery management main control board.
  • the battery management system may also include a first alarm module located on the first slave control board.
  • the first alarm module is used to report alarm information to the main control board.
  • the alarm information is used to indicate one or more of the first battery cores managed by the first slave control board or the first battery core group. There is an abnormality in the battery core.
  • the battery cell abnormalities described in the embodiments of the present application may include battery core temperature that is too high or too low, battery core voltage that is too high or too low, and other results that the first slave control board can handle by itself.
  • the battery management system includes a slave control board 1 and a slave control board 2.
  • the slave control board 1 is configured to contain the first alarm module 1
  • the slave control board 2 is configured to Contains the first alarm module 2.
  • the first alarm module 1 reports to the master The control board sends an alarm signal 1.
  • the first alarm module 2 sends an alarm signal 2 to the main control board, so that after the main control board receives the alarm signal from the slave control board 1 and/or the slave control board 2, it determines the subsequent execution steps according to the corresponding alarm signal. .
  • the first slave control board obtains the first battery cell status information.
  • this step may be that the first slave node deployed on the first slave control board obtains the first cell status information.
  • the first slave control board determines that the alarm condition is met based on the first cell status information, and sends an alarm signal to the main control board through the first alarm module.
  • the alarm signal may include all first cell status information obtained from the first slave control board, or the alarm signal may include cells with abnormality in the first cell status information. status information.
  • the alarm condition may refer to abnormality of part or all of the cell status information in the first cell status information. For example, there is cell status information higher or lower than the normal threshold range.
  • the type and quantity are not limited here. .
  • the first slave control unit deployed on the first slave control board can determine whether an alarm condition is met based on the first battery cell status information, and when the alarm condition is met, the first slave control unit passes The connection line with the first alarm module deployed on the first slave control board sends an alarm instruction to the first alarm module, so that the first alarm module sends an alarm signal to the main control board.
  • the first slave control unit in the first slave control board also has an alarm function
  • the first slave control unit can be co-located with the first alarm module
  • the first slave control board After the first slave control board determines that the alarm condition is met based on the first cell status information, it sends a signal to the master node on the main control board through the first slave node in the first slave control board.
  • the main control board receives the alarm signal.
  • the main control board may receive an alarm signal sent from the first slave node in the first slave control board based on the master node on the main control board.
  • the main control board determines whether to trigger an alarm based on the alarm signal.
  • this step can send the control information alarm signal to the main control unit through the main node on the main control board through the connection line between the main node and the main control unit, so that the main control unit
  • the slave control unit determines whether to trigger an alarm based on the alarm signal.
  • the main control board determines that an alarm needs to be triggered based on the alarm signal, the alarm can be issued by one or more of sound signals, light signals or electrical signals.
  • the main control board when the battery management system is used in a vehicle, in the embodiment of the present application, when the main control board needs to trigger an alarm, it can provide a voice alarm prompt through the vehicle audio system shown in Figure 5 above, or provide an alarm through the vehicle display screen shown in Figure 5 above. hint.
  • the main control board in the embodiment of the present application can also generate control instructions based on the alarm signal, thereby timely and effectively solving abnormalities in the battery system and improving the safety of the battery system.
  • the main control board in the battery management system receives an alarm signal or determines that the alarm conditions are met, it can control one or more of the total negative or total positron switches to disconnect to cut off the high-voltage circuit. Turning on the current of the battery system is conducive to stopping the battery system from continuing to charge, eliminating or reducing the probability of thermal runaway of the battery system to ensure the safety of the battery system.
  • the first slave control board can also configure a communication priority for the alarm signal.
  • the main control board can set the communication priority for the control instruction when sending the control instruction corresponding to the alarm signal according to the communication priority of the received alarm signal, thereby better ensuring that the alarm information and control instructions are timely. send.
  • the battery management system may also include a second alarm module located on the main control board.
  • the second alarm module is configured to trigger an alarm when it is determined that the received or processed cell status information meets the alarm condition.
  • the alarm condition may refer to an abnormality in the battery system, such as overcharging, over-discharging, excessive current, too high or too low temperature of a single cell or battery system, excessive battery voltage difference, voltage, temperature, current and other signals.
  • Battery abnormal conditions such as excessive change rate, and other battery system abnormal conditions are also included. The type and quantity are not limited here.
  • the main control board in the battery management system is configured to include a second alarm module.
  • the main control unit deployed in the main control board can determine the received cell status signal sent by the master node, or the main control unit can determine based on the cell status signal sent by the main node.
  • the received cell status signal sent by the master node can also be determined through the second alarm module deployed in the main control board, or based on the received master node Whether one or more of the battery core main control information sent by the control unit exceeds the threshold or matches other set conditions, thereby confirming whether an alarm is triggered, and when it is determined that an alarm needs to be triggered, perform an alarm operation; or,
  • the second alarm module in the main control board can be co-located with the main control unit, that is, the main control unit also has the function of the second alarm module.
  • the main control unit can determine whether one or more of the cell status signals sent by the received master node, or the cell master control information obtained by the main control unit based on the cell status signals, exceeds the threshold or other set conditions to confirm whether the alarm is triggered, and perform alarm operations when it is determined that the alarm needs to be triggered.
  • the cell master control information includes first information of the battery system managed by the battery management system, and/or second information, where the second information is calculated or evolved based on the first information.
  • the first information includes one or more of the following information on the battery system:
  • Internal cell status information Internal cell status information, external cell status information, module status information and sensor status information;
  • the second information includes one or more of the following information on the battery system:
  • the first slave control board obtains the first battery cell status information.
  • the first slave control board may obtain the first cell status information based on the first sensor and/or the second sensor.
  • the first slave control board reports the first battery cell status information to the main control board.
  • the first slave control board may report the first cell status information to the master node deployed on the main control board through the first slave node deployed on the first slave control board.
  • the main control board receives the first cell status information from the first slave control board.
  • the main control board may receive the first cell status information sent from the first slave node deployed on the first slave control board through the master node deployed on the main control board.
  • the main control board determines that the alarm condition is met based on the first cell status information, it triggers the second alarm module to perform an alarm operation.
  • the main node in the main control board sends the first cell status information to the main control unit.
  • the main control unit determines whether the alarm condition is met based on the first cell status information and the cell control information obtained according to the first cell status information.
  • the main node in the main control board sends the first cell status information to the main control unit.
  • control unit determines whether the alarm condition is met based on the first cell status information and the cell control information obtained according to the first cell status information, and after the alarm condition is met, Send an alarm instruction to the second alarm module to cause the second alarm module to perform an alarm operation.
  • the main node in the main control board sends the first cell status information to the main control unit.
  • the main control unit and the second alarm module obtain the cell control information based on the first cell status information and send the cell control information to the second alarm module.
  • the second alarm module determines whether the alarm condition is met based on the first cell status information and/or the cell control information, and performs an alarm operation after the alarm condition is met.
  • the second alarm module can alarm by one or more of sound signals, light signals or electrical signals.
  • the battery management system is a battery management system in a vehicle
  • the second alarm module when the second alarm module needs to perform an alarm operation, it can provide a voice alarm prompt through the vehicle audio system shown in Figure 5 above, or provide an alarm prompt through the vehicle display screen shown in Figure 5 above. .
  • the battery management system may also include at least one third sensor.
  • the third sensor is used to receive the sampling instruction from the main control board and execute the sampling instruction. Through the third sensor and the sampling circuit, it periodically collects the status information of the battery system and sends the battery status information to the main control board. System status information.
  • the status information of the battery system can be understood as battery status information at the entire battery system level.
  • the status information of the battery system includes but is not limited to one or more of current, smoke, electrolyte, temperature, air pressure, gas, expansion force, internal resistance, and insulation internal resistance.
  • the third sensor may be configured as a wired communication or/and wireless communication module, and the third sensor may transmit the collected status information of the battery system to the host through wireless communication and/or wired communication. control panel.
  • the battery management system also includes a third sensor 1 and a third sensor 2.
  • the third sensor 1 communicates wirelessly with the main control board, and the third sensor 2 communicates with the main control board. Board wired communication.
  • the third sensor 1 and the third sensor 2 can periodically collect battery status information in the battery management system, or can collect battery status information in the battery management system after receiving a collection instruction sent by the main control board. , and report the collected battery status information to the main control board.
  • the battery management system may also include at least one battery cluster management slave control board.
  • the battery system may be composed of multiple battery clusters, each battery cluster contains multiple battery modules, and each battery module contains multiple cells or cell groups.
  • the main control board in the battery management system can monitor and manage the entire battery system.
  • the battery cluster management slave control board monitors and manages one or more battery clusters, that is, it is used to manage at least one slave control board.
  • the battery cluster slave control board may have a communication function, a processing function, etc., which are not limited here.
  • the battery management system includes a main control board for monitoring and managing the entire battery system, and also includes a battery cluster slave control board 1 and a battery cluster slave control board 2.
  • the battery cluster slave control board 2 Board 1 manages slave control boards 1 to 2
  • the battery cluster slave control board 2 manages slave control boards 3 to 4.
  • the battery system managed by the battery management system may be composed of multiple battery clusters, each battery cluster contains multiple battery modules, and each battery module contains multiple cells or cell groups, wherein the slave control board 1 manages the battery cell 1. After obtaining the battery cell status information 1 of the battery core 1, the battery cluster status information 1 is reported to the battery cluster slave control board 1.
  • the slave control board 2 manages the battery cell 2, After obtaining the cell status information 2 of the cell 2, the cell status information 2 is reported to the battery cluster slave control board 1.
  • the slave control board 3 manages the cell group 1. After obtaining the cell status information 2, After obtaining the cell status information 3 of group 1, the cell status information 3 is reported to the battery cluster slave control board 2.
  • the slave control board 4 manages the cell group 2.
  • the cell status information 4 is reported to the battery cluster slave control board 2.
  • the battery cluster slave control board can report all received cell status information to the main control board, or can process the received cell status information and report the processed cell status information to the main control board. Main control board, etc.
  • S1700 Obtain the managed battery cell status information from the slave control board and report it to the corresponding battery cluster slave control board.
  • the slave control board may obtain the cell status information based on the first sensor and/or the second sensor, and then the slave control board may use the slave node deployed on the slave control board to The cell status information is sent to the battery cluster slave node deployed on the battery cluster slave control board.
  • the battery cluster sends battery cluster status information from the slave control board to the main control board.
  • the battery cluster slave control board may send the cell status information to the master node deployed on the main control board through the battery cluster slave node deployed on the battery cluster slave control board.
  • the battery cluster status information may be the status information of one or more cells received by the battery cluster from the control board, or the battery cluster status information may be the status information of one or more cells received by the battery cluster from the control board. Information obtained after processing one or more cells.
  • the battery cluster slave control board in the embodiment of this application can, after receiving the cell status information sent by all the managed slave control boards, package and integrate all the received cell status information, and send it to The main control board; or, the battery cluster slave control board in the embodiment of the present application can, after receiving the battery status information sent by all the managed slave control boards, detect any abnormalities in all the received battery status information.
  • the battery status information is packaged and integrated and sent to the main control board; or, the battery cluster slave control board can report the battery status information after receiving the battery status information sent from the slave control board.
  • the battery cluster slave control board can, after receiving a cell status information sent from the slave control board, when it is determined that the cell status information is abnormal, The information is reported to the main control board; or, the battery cluster slave control board can periodically report the cell status information received from one or more slave control boards to the main control board.
  • the main control board receives the battery cluster status information from the battery cluster slave control board.
  • the main control board may receive the battery cluster status information sent by the battery cluster slave node deployed on the battery cluster slave control board through the master node deployed on the main control board.
  • the main control board sends control information to the battery cluster slave control board based on the battery cluster status information.
  • the master node on the main control board can send the battery cluster status information to the main control unit on the main control board after receiving the battery cluster status information.
  • the control unit determines the control information based on the battery cluster status information, and sends the control information to the master node, so that the master node sends the control information to the battery cluster slave control board. battery cluster slave node.
  • control information is used for the battery cluster to manage the corresponding battery cluster from the control board.
  • the battery cluster slave control board receives control information from the main control board.
  • the battery cluster slave control board may receive the control information sent from the master node in the main control board through the battery cluster slave node in the battery cluster slave control board.
  • the battery cluster slave control board sends the control information to the slave control board that needs to be controlled.
  • the battery cluster slave control board may send the control information to the slave node on the slave control board that needs to be controlled through the battery cluster slave node in the battery cluster slave control board.
  • the slave control board manages one or more cells in the corresponding battery core or battery core group according to the control information.
  • the slave control board can receive the control information through the slave node on the slave control board, and send the control information to the slave control unit on the slave control board, so that all The slave control unit manages one or more cells in the corresponding cell or cell group based on the control information.
  • the battery management system can also be connected to the vehicle controller.
  • the vehicle controller can control the output of battery prompt information based on the received cell status information or cell master control information.
  • the battery prompt information is used to prompt the battery system managed by the battery management system. state.
  • the main control board in the battery management system can send the received cell status information to the vehicle controller connected to the battery management system, so that the vehicle controller can be based on the
  • the battery status information is described above to obtain the battery prompt information.
  • the main control board in the battery management system can process the received cell status information to obtain the cell master control information, and then send the cell master control information to the battery.
  • the vehicle controller connected to the management system allows the vehicle controller to obtain battery prompt information based on the cell master control information.
  • the battery prompt information may be the cell master control information, or the battery prompt information may be processed cell master control information.
  • the main control board and the vehicle controller in the battery management system are connected and can send signals to each other.
  • the vehicle controller may be connected to a vehicle-mounted display screen.
  • the vehicle controller and the vehicle-mounted display screen are electrically connected and powered by an external power supply.
  • the vehicle control device may output the battery prompt information in the form of one or more of sound signals, light signals, or electrical signals.
  • the vehicle control device in the embodiment of the present application can output the battery prompt information as a sound signal through a speaker; as another example, the vehicle control device in the embodiment of the present application can output an electrical signal such as a picture or video through a display screen.
  • the battery prompt information for another example, the vehicle control device in the embodiment of the present application can output the battery prompt information with a light signal through a signal indicator light; for another example, the vehicle control device in the embodiment of the present application can communicate with non- When equipment such as vehicle audio, mobile phones or other terminals are connected via wireless or wired communication, when the vehicle control device needs to output the battery prompt information, the battery prompt information can be transmitted in the form of audio or wired communication through wireless or wired communication. Pictures, videos, etc. are transmitted to the terminal and presented on the terminal.
  • the battery prompt information can be output as an electrical signal through an APP in a terminal device wirelessly connected to the vehicle control device. For example, on the terminal device The battery prompt information is displayed in the APP display interface.
  • the battery prompt information includes the first information, and/or third information, and the third information is calculated or evolved based on the first information.
  • the first information includes one or more of the following information on the battery system:
  • Internal cell status information Internal cell status information, external cell status information, module status information and sensor status information;
  • the third information includes one or more of the following battery system information:
  • the cell master control information includes one or more of the following:
  • the battery system's state of charge, health state, safety state, electric quantity, power, temperature, voltage, current, internal resistance, insulation state, alarm information, fault information, battery cells or battery cell groups are managed by the battery management system.
  • the battery management system can also be connected to a cloud server.
  • the main control board is also used to directly or indirectly send the battery cell main control information to the cloud server, and manage the battery system according to the battery control strategy generated by the cloud server.
  • the cloud server is configured to update the battery control policy according to the data information sent by multiple terminals, and send it to the first terminal among the multiple terminals, so that the first terminal performs the policy according to the battery control policy. renew.
  • the cloud server can send the updated battery control policy to the main control board in the first terminal through a direct link or a relay device, so that the main control board can control the battery control policy according to the battery control policy.
  • the management policy of the managed battery system is updated; for another example, the cloud server can send the updated battery control policy to the slave control board in the first terminal through a direct link or relay device, so that the The slave control board updates the management policy of the managed cells or cell groups according to the battery control policy; for another example, the cloud server can send the updated battery control policy to the first terminal.
  • the first terminal may be a relay device, so that the relay device sends the battery control policy to the corresponding battery management system or the like.
  • the relay device may be one or more of a vehicle controller, a wireless gateway, a wireless access network device, and a roadside unit.
  • the updating of the battery control strategy described in the embodiments of this application may be to regenerate the battery control strategy, or to adjust the original battery control strategy.
  • the data information may be battery cell master control information of the terminal, and the battery cell master control information corresponds to multiple battery cells or multiple battery cell groups of the terminal.
  • the terminal when the terminal is the first slave control board and/or the main control board, it may communicate with the server device through a direct link, or communicate with the server device through a relay device.
  • the cloud server provided by the embodiments of this application can be based on one or more automated big data computing methods such as artificial intelligence, machine learning, deep learning, neural networks, pattern recognition, statistics, etc., for multiple purposes.
  • the data information of each vehicle is processed to obtain the battery control strategy.
  • the main control board in the battery management system can be connected to the vehicle-mounted T-box and can communicate.
  • the vehicle-mounted T-box can be connected to a remote cloud server through wireless communication methods such as 4G or 5G cellular, or is generally called Over-The-Air Technology (OTA) upgrade.
  • OTA Over-The-Air Technology
  • the cloud server can be connected to the national new energy vehicle big data platform through wireless communication, adjust the battery control strategy based on the vehicle data information in the big data platform, and pass the adjusted battery control strategy through the vehicle T- box is sent to the main control board, so that the main control board manages the battery system based on the battery control strategy.
  • the big data platform described in the embodiments of this application can be one or more of the big data platform of the OEM, the local big data platform, the national big data platform, or other remote big data platforms. Big data platform is not limited here.
  • the vehicle data information in the big data platform can be the battery internal status information, battery external status information, and module status reported by the main control board of the battery management system in each vehicle through the vehicle T-box. Information, the sensor status information of the battery system and other variables obtained through the further evolution of these status information or the calculated battery main control information, etc.
  • the battery management system includes the first sensor and/or the first sensor in the system architecture one.
  • the second sensor also includes the balancing module in the system architecture two, the electronic switch in the system architecture three, the first alarm module in the system architecture four, and the second alarm module in the system architecture five, The third sensor in the system architecture six, etc.
  • “at least one” in the embodiments of this application refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple.
  • ordinal numbers such as "first" and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or priority of multiple objects. Importance.
  • the first information and the second information are only used to distinguish different information, but do not indicate the difference in content, priority, sending order or importance of the two types of information.
  • Figure 21 is a schematic block diagram of the device 2100 provided by the embodiment of the present application, which is used to implement the functions of the main control board or the slave control board in the above method embodiment.
  • the device may be a software module or a system on a chip.
  • the chip may be composed of chips, or may include chips and other discrete devices.
  • the device 2100 includes a processing unit 2101 and a communication unit 2102.
  • the communication unit 2102 is used to communicate with other devices, and may also be called a communication interface, a transceiver unit, an input ⁇ output interface, etc.
  • the above-described device 2100 can be used to implement the functions of the main control board in the above method.
  • the device 2100 can be a main control board, or a chip or circuit configured in the main control board.
  • the processing unit 2101 may be a main control unit in the main control board and may be used to perform the processing related operations of the main control board in the above method embodiment.
  • the communication unit 2102 may be a master node in the main control board and may be used to instruct the above method. Transceiver-related operations of the main control board in the embodiment.
  • the communication unit 2102 is configured to receive first cell status information from the first slave control board, where the first cell status information includes status information of the first battery core managed by the first slave control board or the The status information of some or all of the cells in the first cell group managed by the first slave control board; the processing unit 2101 is configured to send the status information to the first cell through the communication unit 2102 based on the first cell status information.
  • the slave control board sends control information, and the control information is used by the first slave control board to manage the first battery core or the first battery core group.
  • the first cell status information includes internal cell status information of the first cell or the first cell group collected by a first sensor, and collected by a second sensor. One or more of the external cell status information of the first cell or the first cell group.
  • the internal cell status information includes the internal temperature of the cell or cell group, internal gas type, air pressure, gas concentration, voltage, current, potential of the positive electrode piece of the cell, One or more of the potential, electrolyte, internal resistance and stress of the negative electrode piece;
  • the external cell status information includes one or more of the external temperature, voltage, current, stress, gas type, air pressure, gas concentration, electrolyte, smoke sense, and internal resistance of the cell or cell group.
  • the communication unit 2102 is also used to:
  • the electronic switch includes one or more of a main positive relay, a main negative relay, a main positive metal oxide semiconductor field effect transistor, and a main negative metal oxide semiconductor field effect transistor.
  • the communication unit 2102 is also used to:
  • the main control board receives alarm information sent from the first slave control board, and the alarm information is used to indicate that there is an abnormality in the first cell or one or more cells in the first cell group. ;
  • the processing unit 2101 is also used to:
  • the control information is sent to the first slave control board.
  • processing unit 2101 is also used to:
  • the alarm is triggered when it is determined that the received or processed cell status information meets the alarm conditions
  • the alarm condition is used to indicate that one or more battery cell status information received or processed by the main control board exceeds or falls below a threshold set for the corresponding battery cell status information.
  • processing unit 2101 is also used to:
  • the communication unit 2102 is also used to:
  • the above-mentioned device 2100 can be used to implement the functions of the slave control board in the above method embodiments.
  • the device 2100 can be a slave control board, or a chip or circuit configured in the slave control board.
  • the processing unit 2101 may be the first slave control unit in the first slave control board and may be used to perform the processing related operations of the first slave control board in the above method embodiment.
  • the communication unit 2102 may be the first slave control unit in the first slave control board.
  • the first slave node can be used to perform the transceiver related operations of the first slave control board in the above method embodiment.
  • the communication unit 2102 is used to obtain the first battery cell status information.
  • the first battery cell status information includes the status information of the first battery core managed by the first slave control board or the first battery cell managed by the first slave control board. Status information of some or all cells in a cell group; processing unit 2101, used to control the first slave node to send the first cell status information to the first master node; communication unit 2102, also used to receive The control information from the first master node; the processing unit 2101 is also configured to manage the first battery core or one or more battery cells in the first battery core group according to the control information.
  • the first cell status information includes internal cell status information of the first cell or the first cell group collected by a first sensor, and collected by a second sensor. One or more of the external cell status information of the first cell or the first cell group.
  • the internal cell status information includes the internal temperature of the cell or cell group, internal gas type, air pressure, gas concentration, voltage, current, potential of the positive electrode piece of the cell, One or more of the potential, electrolyte, internal resistance and stress of the negative electrode piece;
  • the external cell status information includes one or more of the external temperature, voltage, current, stress, gas type, air pressure, gas concentration, electrolyte, smoke sense, and internal resistance of the cell or cell group.
  • processing unit 2101 is also used to:
  • the alarm information is used to indicate that there is an abnormality in the first battery cell or one or more battery cells in the first battery core group.
  • the above device 2100 can be used to implement the functions of the server device in the above method.
  • the device 2100 can be a cloud server, or a chip or circuit configured in the cloud server.
  • the processing unit 2101 may be used to perform processing-related operations of the cloud server in the above method embodiment, and the communication unit 2102 is used to instruct the cloud server to perform transceiver-related operations in the above method embodiment.
  • the communication unit 2102 is used to receive multiple cell master control information from multiple terminals respectively, and the cell master control information corresponds to multiple cells or multiple cell groups of the terminal;
  • the processing unit 2101 is configured to generate a battery control strategy based on one or more of the plurality of cell master control information;
  • the communication unit 2102 is configured to send the battery control strategy to the plurality of terminals. the first terminal.
  • each functional unit may be integrated into one processor, or may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Figure 22 is a schematic diagram of a device 2200 provided by an embodiment of the present application.
  • the device 2200 can be a control panel, such as a main control board or a slave control board, or a certain component in the control panel, such as a chip or an integrated circuit. wait.
  • the device 2200 may include at least one processor 2202 and a communication interface 2204. Further, optionally, the device may also include at least one memory 2201.
  • bus 2203 can optionally be included. Among them, the memory 2201, the processor 2202 and the communication interface 2204 are connected through the bus 2203.
  • the memory 2201 is used to provide storage space, and data such as operating systems and computer programs can be stored in the storage space.
  • the memory 2201 mentioned in the embodiment of this application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor 2202 is a module that performs arithmetic operations and/or logical operations. Specifically, it can be a central processing unit (CPU), image processing unit, etc. Graphics processing unit (GPU), microprocessor unit (MPU), application specific integrated circuit (ASIC), field programmable gate array (FPGA), complex programmable logic One or a combination of multiple processing modules such as a complex programmable logic device (CPLD), a coprocessor (to assist the central processor in completing corresponding processing and applications), and a microcontroller unit (MCU).
  • CPU central processing unit
  • GPU Graphics processing unit
  • MPU microprocessor unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • coprocessor to assist the central processor in completing corresponding processing and applications
  • MCU microcontroller unit
  • the processor is a general-purpose processor, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • Communication interface 2204 may be used to provide information input or output to the at least one processor. And/or the communication interface can be used to receive data sent from the outside and/or send data to the outside. It can be a wired link interface such as an Ethernet cable, or a wireless link (Wi-Fi, Bluetooth, Universal wireless transmission, vehicle short-distance communication technology, etc.) interface. Optionally, the communication interface 2204 may also include a transmitter (such as a radio frequency transmitter, an antenna, etc.) or a receiver coupled to the interface.
  • a transmitter such as a radio frequency transmitter, an antenna, etc.
  • the above-mentioned device 2200 may be the main control board or a component in the main control board, such as a chip or an integrated circuit, in the above method embodiment.
  • the processor 2202 in the device 2200 is used to read the computer program stored in the memory 2201 and control the main control board to perform the following operations:
  • the first battery cell status information includes the status information of the first battery core managed by the first slave control board or the first battery cell status information managed by the first slave control board. Status information of some or all of the cells in the first cell group; based on the first cell status information, send control information to the first slave control board, where the control information is used for the first slave control board Manage the first battery cell or the first battery cell group.
  • the processor 2202 in the main control board can also be used to read the program in the memory 2201 and execute the method flow executed by the main control board in S600 to S605 as shown in Figure 6; or execute as shown in Figure 6
  • the method flow executed by the main control board in S800 ⁇ S807 shown in Figure 8; or the method flow executed by the main control board in S1200 ⁇ S1203 shown in Figure 12; or the method flow executed by the main control board in S1400 ⁇ S1403 shown in Figure 14 The method flow executed by the main control board; or the method flow executed by the main control board in S1700 to S1706 as shown in Figure 17.
  • the above-mentioned device 2200 may be the slave control board or a component in the slave control board in the above method embodiment, such as a chip or an integrated circuit.
  • the processor 2202 in the device 2200 is used to read the computer program stored in the memory 2201 and control the slave control board to perform the following operations:
  • the first battery core status information which includes the status information of the first battery core managed by the first slave control board or part or all of the first battery core group managed by the first slave control board. Status information of the battery core; controlling the first slave node to send the first battery core status information to the first master node; receiving control information from the first master node;
  • the first battery cell or one or more battery cells in the first battery core group are managed according to the control information.
  • the processor 2202 in the first slave control board can also be used to read the program in the memory 2201 and execute the method flow executed by the first slave control board in S600 to S605 as shown in Figure 6; Or execute the method flow executed by the first slave control board in S800-S807 as shown in Figure 8; or execute the method flow executed by the first slave control board in S1200-S1203 as shown in Figure 12; or execute the method flow executed by the first slave control board in Figure 12
  • the above-mentioned device 2200 may be the server device or a component of the server device in the above method embodiment, such as a chip or an integrated circuit.
  • the processor 2202 in the device 2200 is used to read the computer program stored in the memory 2201 and control the server device to perform the following operations:
  • the processor 2202 in the server device can also be used to read the program in the memory 2201 and execute the method flow executed by the server in S600 to S605 as shown in Figure 6; or execute as shown in Figure 8
  • Embodiments of the present application also provide a computer-readable storage medium, including instructions that, when run on a computer, cause the computer to execute Carry out the method described in the above embodiment.
  • An embodiment of the present application also provides a chip system, which includes at least one processor and an interface circuit. Further optionally, the chip system may also include a memory or an external memory.
  • the processor is configured to execute instructions and/or data interaction through the interface circuit to implement the method in the above method embodiment.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • An embodiment of the present application also provides a computer program product, which includes instructions that, when run on a computer, cause the computer to execute the method described in the above embodiment.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or a co-processor. etc., the various methods, steps and logical block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the methods provided by the embodiments of this application can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, SSD), etc.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池管理方法、装置及***。该方法包括:主控板(100)接收来自第一从控板(210)的第一电芯状态信息,第一电芯状态信息包括第一从控板(210)管理的第一电芯的状态信息或者第一从控板(210)管理的第一电芯组中部分或全部电芯的状态信息;主控板(100)基于第一电芯状态信息,向第一从控板(210)发送控制信息,控制信息用于第一从控板(210)管理第一电芯或第一电芯组。

Description

一种电池管理方法、装置及***
相关申请的交叉引用
本申请要求在2022年08月17日提交中国专利局、申请号为202210988834.2、申请名称为“一种电池管理方法、装置及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源领域,尤其涉及一种电池管理方法、装置及***。
背景技术
随着新能源技术的发展,汽车电动化越来越普及,为了能够有效防控新能源汽车的电池发生热失控,对于新能源汽车的电池管理显得尤为重要。
而目前作为管理电池安全和寿命的电池管理***,基于采集到的电压、电流和温度等信号,对电池进行热失控预警的检出率和准确率不高,经常存在较长的传输时延,无法对电池热失控的单个或多个电芯进行精准预警和报警。此外,现有的电池管理***内部各器件之间一般通过复杂的线束进行连接,来实现信号采集和传递,不仅限制了电池管理***的灵活度,还可能由于线束老化,接插件脱落或松动等原因产生安全隐患。
综上,目前亟需一种高效灵敏的电池管理方法。
发明内容
本申请提供一种电池管理方法、装置及***,用以提供一种高效灵敏的电池***管理装置及方法。
第一方面,本申请实施例提供一种电池管理方法,该方法可以应用于主控板,也可以应用于主控板中的部件(例如处理器、芯片、或芯片***等),该方法包括:
主控板接收来自第一从控板的第一电芯状态信息,所述第一电芯状态信息包括所述第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或全部电芯的状态信息;所述主控板基于所述第一电芯状态信息,向所述第一从控板发送控制信息,所述控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
通过上述方法,本申请实施例通过电芯级从控板采集到电芯状态信号,并将信号发送给主控板,实现了电芯或者电芯组级小颗粒度级的信号采集,有利于更加精准的监测电芯或者电芯组的状态,并进行管理和控制。
在一种可能的实现方式中,所述第一电芯状态信息包括通过第一传感器采集的所述第一电芯或所述第一电芯组的内部电芯状态信息,通过第二传感器采集的所述第一电芯或所述第一电芯组的外部电芯状态信息中的一种或多种。
通过上述方法,本申请实施例提供了一种新的电池管理***架构,其中,该电池管理***架构中包括用于采集内部电芯状态信息的第一传感器,以及用于采集外部电芯状态信息的第二传感器,其中,由于本申请实施例每个从控板用于管理一个电芯或电芯组,因此,本申请实施例基于所述第一传感器以及所述第二传感器采集到的电芯状态信息,相比于现有从控板管理电池模组的架构,仅能获取到电池模组的外部状态信息来说,具有更小的颗粒度,更高的灵敏度以及精确度,此外,由于本申请实施例提供的第一传感器还能获取到电池或电池组的内部电芯状态信息,相比于现有仅能获取到电池模组的外部状态信息的方案,本申请实施例获取到的电芯状态信息更加丰富,从而能够对电池***实现更加精准的监测和管理,提升使用寿命和安全性能。
在一种可能的实现方式中,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个;所述外部电芯状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
通过上述方法,本申请实施例提供了多维度的内部电芯状态信息,以及外部电芯状态信息。
在一种可能的实现方式中,所述方法还包括:
所述主控板向电子开关发送开关指令以控制所述电子开关的打开或闭合,所述电子开关用于控制所 述电池管理***所管理的电池***;所述电子开关包括主正继电器、主负继电器、主正金属氧化物半导体场效应晶体管以及主负金属氧化物半导体场效应晶体管中的一个或多个。
其中,本申请实施例所述的电子开关的数量可以为一个或多个。
通过上述方法,本申请实施例提供了一种带有电子开关的电池管理***架构,从而可以使电池管理***中的主控板通过所述电子开关的闭合或断开实现电池***高压电路回路的连接或断开。
在一种可能的实现方式中,所述方法还包括:
所述主控板接收来自所述第一从控板发送的报警信息,所述报警信息用于指示所述第一电芯或者所述第一电芯组中的一个或多个电芯存在异常;所述主控板根据所述报警信息,向所述第一从控板发送所述控制信息。
通过上述方法,本申请实施例提供了一种触发主控板向第一从控板发送控制信息的方式。例如,第一从控板在获取到电芯状态信息后,可以对所述电芯状态信息进行处理分析,在确定所述电芯状态信息存在异常时,向主控板发送报警信息,从而有效降低主控板的处理分析开销。
在一种可能的实现方式中,所述方法还包括:
所述主控板在确定接收或者处理得到的电芯状态信息满足报警条件时触发报警;所述报警条件用于指示所述主控板接收或者处理得到的一个或多个电芯状态信息超过或者低于对应电芯状态信息设定的阈值。
在该实施方式中,所述报警条件除了用于指示所述主控板接收或者处理得到的一个或多个电芯状态信息超过或者低于对应电芯状态信息设定的阈值之外,还可以用于指示其他约定的条件,例如,所述报警条件还可以用于指示所述主控板接收到的电芯状态信息的数量小于设定的阈值数量,再例如,所述报警条件还可以用于指示所述主控板在阈值时间内未接收到电芯状态信息等,在此并不进行限定。
在一种可能的实现方式中,所述方法还包括:
所述主控板根据接收到的电芯状态信息确定电芯主控信息;所述主控板将所述电芯主控信息发送给整车控制器,以使所述整车控制器根据所述电芯主控信息控制电池提示信息的输出,所述电池提示信息用于提示所述电池管理***所管理的电池***的状态。
在该实施方式中,所述电池提示信息以声音信号、光信号或电信号中的一个或多个的方式输出。
所述电芯主控信息包括所述电池管理***所管理的电池***的第一信息,和/或第二信息,所述第二信息是基于所述第一信息得到的;
所述第一信息包括下列所述电池***中的一个或多个信息:
内部电芯状态信息、外部电芯状态信息、模组状态信息以及传感状态信息;
所述第二信息包括下列所述电池***中的一个或多个信息:
荷电状态、健康状态、安全状态、电量指示、功率、最高单体电芯温度、最低单体电芯温度、最高单体电芯电压、最低单体电芯电压、总电流、绝缘状态、报警信息、故障信息以及电子开关状态。
所述电池提示信息包括所述第一信息,和/或第三信息,所述第三信息是基于所述第一信息得到的;
所述第三信息包括所述第二信息中的一个或多个信息,和/或,包括下列所述电池***的一个或多个信息:
动态能耗、预计剩余可行驶里程、预计剩余可行驶时间、预计剩余充电时间。
在该实施方式中,所述电池提示信息可以是数值、比值、最大值、最小值、差值中的一个或者多个,或者其他约定的表现形式。
通过上述方法,本申请实施例通过将电芯状态信息处理为电池提示信息,能够使用户更加直观的了解电池和整车状态。
第二方面,本申请实施例提供一种电池管理方法,该方法可以应用于从控板,也可以应用于从控板中的部件(例如处理器、芯片、或芯片***等),该方法包括:
第一从控板获取第一电芯状态信息,所述第一电芯状态信息包括第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或所有电芯的状态信息;所述第一从控板控制所述第一从节点向第一主节点发送所述第一电芯状态信息;所述第一从节点接收来自所述第一主节点的控制信息;所述第一从控板,用于根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
通过上述方法,本申请实施例通过电芯级从控板采集到电芯状态信号,并将信号发送给主控板,实现了电芯或者电芯组级小颗粒度级的信号采集,有利于更加精准的监测电芯或者电芯组的状态,并进行管理和控制。
在一种可能的实现方式中,所述第一电芯状态信息包括通过第一传感器采集的所述第一电芯或所述第一电芯组的内部电芯状态信息,通过第二传感器采集的所述第一电芯或所述第一电芯组的外部电芯状态信息中的一种或多种。
通过上述方法,本申请实施例提供了一种新的电池管理***架构,其中,该电池管理***架构中包括用于采集内部电芯状态信息的第一传感器,以及用于采集外部电芯状态信息的第二传感器,其中,由于本申请实施例每个从控板用于管理一个电芯或电芯组,因此,本申请实施例基于所述第一传感器以及所述第二传感器采集到的电芯状态信息,相比于现有从控板管理电池模组的架构,仅能获取到电池模组的外部状态信息来说,具有更小的颗粒度,更高的灵敏度以及精确度,此外,由于本申请实施例提供的第一传感器还能获取到电池或电池组的内部电芯状态信息,相比于现有仅能获取到电池模组的外部状态信息的方案,本申请实施例获取到的电芯状态信息更加丰富,从而能够对电池***实现更加精准的监测和管理,提升使用寿命和安全性能。
在一种可能的实现方式中,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个;所述外部电芯状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
通过上述方法,本申请实施例提供了多维度的内部电芯状态信息,以及外部电芯状态信息。
在一种可能的实现方式中,所述方法还包括:
所述第一从控板在确定接收或者处理得到的电芯状态信息满足报警条件时,向所述主控板上报报警信息;所述报警信息用于指示所述第一电芯或者所述第一电芯组中的一个或多个电芯存在异常。
第三方面,本申请实施例提供一种电池管理装置,该装置可以是主控板,还可以是用于主控板的芯片或集成电路或芯片***。该电池管理装置具有实现上述第一方面或基于第一方面的各可能的实施方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,所述电池管理装置包括主控单元以及主节点;
所述主节点,用于接收来自第一从节点的第一电芯状态信息,所述第一电芯状态信息包括所述第一从节点对应的第一从控板管理的第一电芯的状态信息或者所述第一从节点对应的第一从控板管理的第一电芯组中部分或全部电芯的状态信息;
所述主控单元,用于控制所述主节点向所述第一从节点发送控制信息,所述控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
在一种可能的实施方式中,所述主控单元用于根据所述第一电芯状态信息控制所述主节点向所述第一从节点发送控制信息。
在一种可能的实施方式中,所述主控单元还用于:
接收来自第二从节点的第二电芯状态信息,所述第二电芯状态信息包括所述第二从节点对应的第二从控板管理的第二电芯的状态信息或者所述第一从控板管理的第二电芯组中部分或全部电芯的状态信息;根据所述第二电芯状态信息控制所述主节点向所述第一从节点发送控制信息。
第四方面,本申请实施例提供一种电池管理装置,该装置可以是从控板,还可以是用于从控板的芯片或集成电路或芯片***。该装置具有实现上述第二方面或基于第二方面的各可能的实施方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,所述电池管理装置包括第一从控单元以及第一从节点;
所述第一从控单元获取第一电芯状态信息,所述第一电芯状态信息包括第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或所有电芯的状态信息;
所述第一从控单元控制所述第一从节点向第一主节点发送所述第一电芯状态信息;
所述第一从节点接收来自所述第一主节点的控制信息;
所述第一从控单元,用于根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个 电芯。
在一种可能的实施方式中,所述第一电芯状态信息来自第一传感器和/或第二传感器;
其中,所述第一传感器位于所述第一电芯或所述第一电芯组的内部,所述第二传感器位于所述第一电芯或所述第一电芯组的外部。
第五方面,本申请实施例提供一种服务器装置,该装置可以是云端服务器,还可以是用于云端服务器的芯片或集成电路或芯片***。
在一种可能的实施方式中,所述服务器装置包含通信单元以及处理单元:
所述通信单元用于接收分别来自多个终端的多个电芯主控信息,所述电芯主控信息对应所述终端的多个电芯或多个电芯组;
所述处理单元用于根据所述多个电芯主控信息中的一个或多个,生成电池控制策略;
所述通信单元用于将所述电池控制策略发送给所述多个终端中的第一终端。
第六方面,本申请实施例提供一种控制设备,该控制设备包含通信单元以及处理单元:
所述通信单元,用于接收来自服务器装置发送的电池控制策略;
所述处理单元,用于根据所述电池控制策略完成策略更新。
在一种可能的实施方式中,所述控制设备包括从控板、主控板,或者中继设备中的一个或者多个;所述中继设备包括整车控制器(vehicle control unit,VCU),无线网关T-box(Telematics BOX),无线接入网设备(例如4G基站,5G基站,或未来的6G基站等),路侧单元(road side unit,RSU)中的一个或者多个。
在该实施方式中,当所述控制设备是第一从控板和/或主控板时,所述控制设备可以通过直接链路和服务器装置进行通信,或,通过中继设备和服务器装置进行通信。
第七方面,本申请实施例提供一种电池管理装置,包括至少一个处理器和接口电路,所述接口电路用于接收来自所述电池管理装置之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述电池管理装置之外的其它装置,所述处理器通过逻辑电路或执行代码指令用于实现上述第一方面或基于第一方面的各可能的实施方式中所述的方法;或所述处理器通过逻辑电路或执行代码指令用于实现上述第二方面或基于第二方面的各可能的实施方式中所述的方法第二方面中所述的方法。
可选的,所述电池管理装置还包含存储器。或者,该存储器可以位于该装置之外。其中,所述存储器用于存储程序或代码指令,以供所述至少一个处理器执行。
第八方面,本申请实施例还提供一种电池管理***,包括用于执行上述第一方面或基于第一方面的任一可能的实现方法的主控板,和用于执行上述第二方面或基于第二方面的任一可能的实现方法的第一从控板。此外,所述电池管理***还可以包括其他从控板,例如第二从控板等。
在一种可能的实施方式中,所述电池管理***,包括主控板以及第一从控板:
所述第一从控板,用于管理第一电芯或者第一电芯组,并且,用于向所述主控板发送第一电芯状态信息,所述第一电芯状态信息包括所述第一电芯的状态信息或者所述第一电芯组中部分或全部电芯的状态信息;
所述主控板,用于向所述第一从控板发送第一控制信息,所述第一控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
在一种可能的实施方式中,所述电池管理***还包括第二从控板;
所述第二从控板,用于管理第二电芯或者第二电芯组,并且,用于向所述主控板发送第二电芯状态信息,所述第二电芯状态信息包括所述第二电芯的状态信息或者所述第二电芯组中部分或全部电芯的状态信息。
在一种可能的实施方式中,所述第一电芯状态信息来自第一传感器和/或第二传感器;
所述第一传感器,用于采集并向所述第一从控板上报所述第一电芯或所述第一电芯组的内部电芯状态信息;
所述第二传感器,用于采集并向所述第一从控板上报所述第一电芯或所述第一电芯组的外部电芯状态信息。
在一种可能的实施方式中,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个;
所述外部状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
在一种可能的实施方式中,所述第一从控板与所述第一传感器和/或所述第二传感器电性连接。
在一种可能的实施方式中,所述第一从控板与所述第一电芯或所述第一电芯组电性连接。
在一种可能的实施方式中,所述电性连接包括线束连接、柔性电路板FPC连接、印刷电路板PCB连接、针引脚PIN连接、接插件连接、焊接连接以及连接器连接中的一种或多种。
在一种可能的实施方式中,所述电池管理***还包括位于所述第一从控板的均衡模块;
所述均衡模块,用于在满足均衡条件时,对所述第一从控板管理的至少一个电芯或电芯组执行均衡操作;
所述均衡条件包括下列中的一个或多个:
所述均衡模块接收到位于所述第一从控板的从控单元发送的均衡指令,所述均衡模块通过位于所述第一从控板的从节点接收到来自所述主控板的均衡指令,所述均衡模块基于获取到的所述第一电芯状态信息确定需要执行均衡操作。
在一种可能的实施方式中,所述主控板,还用于向电子开关发送开关指令以控制所述电子开关的打开或闭合,所述电子开关用于控制所述电池管理***所管理的电池***;
所述电子开关包括主正继电器、主负继电器、主正金属氧化物半导体场效应晶体管以及主负金属氧化物半导体场效应晶体管中的一个或多个。
在一种可能的实施方式中,所述第一从控板还用于通过位于所述第一从控板上的第一报警模块,向所述主控板上报报警信息,所述报警信息用于指示所述第一电芯或者所述第一电芯组中的一个或多个电芯存在异常。
在一种可能的实施方式中,所述主控板还用于通过位于所述主控板上的第二报警模块,在确定接收或者处理得到的电芯状态信息满足报警条件时触发报警。
在一种可能的实施方式中,所述主控板,还用于将电芯主控信息发送给整车控制器,所述整车控制器根据所述电芯主控信息控制电池提示信息的输出,所述电池提示信息用于提示所述电池管理***所管理的电池***的状态。
在一种可能的实施方式中,所述电池提示信息以声音信号、光信号或电信号中的一个或多个的方式输出。
在一种可能的实施方式中,所述电芯主控信息包括所述电池管理***所管理的电池***的第一信息,和/或第二信息,所述第二信息是基于所述第一信息得到的;
所述第一信息包括下列所述电池***中的一个或多个信息:
内部电芯状态信息、外部电芯状态信息、模组状态信息以及传感状态信息;
所述第二信息包括下列所述电池***中的一个或多个信息:
荷电状态、健康状态、安全状态、电量指示、功率、最高单体电芯温度、最低单体电芯温度、最高单体电芯电压、最低单体电芯电压、总电流、绝缘状态、报警信息、故障信息以及电子开关状态。
在一种可能的实施方式中,所述电池提示信息包括所述第一信息,和/或第三信息,所述第三信息是基于所述第一信息得到的;
所述第三信息包括所述第二信息中的一个或多个信息,和/或,包括下列所述电池***的一个或多个信息:
动态能耗、预计剩余可行驶里程、预计剩余可行驶时间、预计剩余充电时间。
在一种可能的实施方式中,所述电池提示信息可以是数值、比值、最大值、最小值、差值中的一个或者多个,或者其他约定的表现形式。
在一种可能的实施方式中,所述主控板还用于向云端服务器发送所述电芯主控信息,并接收来自所述云端服务器的电池控制策略。
在一种可能的实施方式中,所述主控板与所述第一从控板、所述第二从控板之间通过无线方式进行通信。
通过该实施方式,电池管理***中的主控板与从控板之间以无线的方式进行通信,能够有效消除或者简化了电池***内复杂的线束,减少了***的重量,取消或者减少了线束占用的空间,消除由于线束老化、接插件脱落或者松动、在受挤压或撞击时有发生短路的安全风险,消除或者减少电池***因为线 束失效导致的功能损失,甚至发生热失控等安全风险,大大提升电池***设计的灵活度。
此外,基于无线通信的模型,所述电池管理***和应用的电池***能够更好的实现自动化生产按照,有效消除人为引入的接插件接错、接反、漏接、松动等风险,可以提升生产效率和良品率,降低生产成本。
在一种可能的实施方式中,所述主控板与所述电子开关之间通过无线或有线方式进行通信。
在一种可能的实施方式中,所述无线通信方式包括蓝牙通信、紫蜂、无线保真、红外、射频、近场通信、超宽带技术、无线局域网、60GHz无线通信技术、可见光通信技术、自组网技术中一种或者多种。
第九方面,本申请实施例还提供一种芯片***,包括处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该芯片***实现上述第一方面或基于第一方面的各可能的实施方式中所述的方法;或,第二方面或基于第二方面的各可能的实施方式中所述的方法。该存储器可以位于该芯片***之内,也可以位于该芯片***之外。且该处理器包括一个或多个。
第十方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面或基于第一方面的各可能的实施方式中所述的方法;或,第二方面或基于第二方面的各可能的实施方式中所述的方法。
第十一方面,本申请实施例还提供一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或基于第一方面的各可能的实施方式中所述的方法;或,第二方面或基于第二方面的各可能的实施方式中所述的方法。
应理解,上述第三方面至第十方面的技术效果,请参见上述第一方面以及第二方面中对应的技术效果描述,这里不再赘述。
附图说明
图1为本申请实施例提供的一种可能的电池构造示意图;
图2为本申请实施例提供的一种电池管理***架构示意图;
图3为本申请实施例提供的一种主从板的内部构造示意图;
图4为本申请实施例提供的第二种电池管理***构造示意图;
图5为本申请实施例提供的一种车辆构造示意图;
图6为本申请实施例提供的第一种电池管理方法的流程示意图;
图7为本申请实施例提供的第三种电池管理***构造示意图;
图8为本申请实施例提供的第二种电池管理方法的流程示意图;
图9为本申请实施例提供的第四种电池管理***构造示意图;
图10为本申请实施例提供的第五种电池管理***构造示意图;
图11为本申请实施例提供的第六种电池管理***构造示意图;
图12为本申请实施例提供的第三种电池管理方法的流程示意图;
图13为本申请实施例提供的第七种电池管理***构造示意图;
图14为本申请实施例提供的第四种电池管理方法的流程示意图;
图15为本申请实施例提供的第八种电池管理***构造示意图;
图16为本申请实施例提供的第九种电池管理***构造示意图;
图17为本申请实施例提供的第五种电池管理方法的流程示意图;
图18为本申请实施例提供的第十种电池管理***构造示意图;
图19为本申请实施例提供的第十一种电池管理***构造示意图;
图20为本申请实施例提供的第十二种电池管理***构造示意图;
图21为本申请实施例提供的第一种电池管理装置示意图;
图22为本申请实施例提供的第二种电池管理装置示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)电池管理***(battery management system,BMS),用于保护电池组的安全使用,在电池组充放电使用过程中,保障安全的同时,延长电池组的使用寿命。电池管理***提供了电池管理功能,电池管理功能包括但不限于监控电池的状态(例如,电池的电压、电流、温度和形变)、计算电池的充电水平和容量、控制电池的充电、放电和通信功能。
其中,电池管理***中设置了主控板(也可以称作主控制器、主控、主板或电池控制单元等)和多个从控板(也可以称作从控制器、从控、从板或电池从控单元等)。从控板用于根据控制指令控制对应的电池;主控板为电池管理***的大脑,用于进行决策,生成相应的控制指令,从而指导从控板执行相应操作(充电、放电、断电等)。
作为一种示例,当所述电池管理***所在的电池***及设备启动时,设备接收到启动信号并进行启动,同时,设备使能电池***和电池管理***,电池管理***收到启动信号并进行启动。
2)有线通信(wire communication),是一种通信方式,一般是指通信模块间的有线电信,即利用金属导线、光纤等有形媒质传送信息的方式。光或电信号可以代表声音、文字、图像等。
3)无线通信(Wireless communication),是一种通信方式,一般是指通信模块间不经由导体或缆线传播进行的传输通讯,一般包括长距离无线通信技术和短距离无线通信技术等。
其中,本申请实施例中所应用的无线通信技术,例如可以是采用短距离无线通信技术,包括通信双方通过无线电波传输信息、并且传输距离在较短的范围内(例如百米以内),都可以称为短距离无线通信,包括但是不限于是蓝牙(bluetooth)技术、紫蜂、无线保真(wireless fidelity,Wi-Fi)技术、红外、射频、近场通讯(near field communication,NFC)技术、超宽带技术、无线局域网、60GHz无线通信技术、可见光通信技术、自组网技术、Wi-Fi Aware技术、通用短距通信技术、星闪联盟规范的短距离无线通信技术等。短距离无线通信可以在文件传输、远程控制、投屏、周围设备(例如智能汽车、智能终端设备、智能家居设备和智能制造设备等)的感知等各方面有大量应用。
其中,进行无线通信采用的数据传输通信协议包括并不限于下述几种:
同步串行接口协议SSI(Synchronous Serial Interface)、异步收发传输协议UART(Universal Asynchronous Receiver/Transmitter)、两线式异步串行总线协议I2C(Inter-Integrated Circuit)、集成电路内置音频总线I2S协议(Inter-Integrated Circuit Sound)、控制局域网CAN总线(Controller Area Network)等。
下面列举几种短距离无线通信技术的示例。
蓝牙:一种支持设备短距离通信的无线电技术,能在包括移动电话、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网之间的通信,从而使得数据传输变得更加迅速高效,为无线通信拓宽道路。
无线保真技术(wireless fidelity,Wi-Fi):又称为无线局域网(wireless local area networks,WLAN)直连或Wi-Fi Direct,是Wi-Fi协议簇中的一个,使设备之间能够轻松连接彼此而不再需要中介性质的无线接入点。其使用范围从网页浏览到文件传输,以及同时与多个设备进行通信,能够充分发挥Wi-Fi的速度优势。符合此标准的设备即使来自不同的生产厂商,亦可实现轻松互联。
Wi-Fi Aware技术:在Wi-Fi技术中负责感知和发现部分,能够帮助Wi-Fi设备感知周边的服务,比如,周边的设备,进而通过Wi-Fi Aware实现近距离的两个设备的点对点(Peer to Peer,P2P)消息交互。由于WIFI-Aware可以感知周围的设备,所以可实现多种功能,比如,感知的附近的人并建立连接,进而加好友、玩同一款游戏等等;或者,发现周围的设备,实现照片分享或地点分享等等;或者,无需接入网络(比如蜂窝或无线),就可以向打印机安全地发送文件,等等。
需要说明的是,除了上面列举的短距离无线通信技术之外,现有的其它短距离无线通信技术,或者,随着通信技术的演进,未来可能出现的其他的短距离无线通信技术,也可以适用于本申请实施例。
4)电池,是由至少一个电芯或电池模组组成的供电电源。其中,电芯是电池的最小单位,也是电能存储单元,当多个电芯被同一个外壳框架封装在一起,通过统一的边界与外部进行联系时,这就组成了一个电池模组。
其中,本申请实施例中的电池构造可以有多种,具体并不限于下述3种:
电池构造1:如图1中的(a)所示,一个电池可以包括一个电池模组,一个电池模组中可以包括 至少一个电芯。
电池构造2:如图1中的(b)所示,一个电池可以包括多个电池模组,每个电池模组中可以包括至少一个电芯。
电池构造3:如图1中的(c)所示,一个电池可以包括一个电芯。
作为一种示例,本申请实施例可以包括多个电池,例如,包括第一电池,第二电池,所述第一电池用于为第一控制装置进行供电,所述第二电池用于为第二控制装置进行供电。其中,本申请实施例中第一节点向第二节点上报的电池信息主要指所述第一电池的电池信息。
作为一种示例,本申请实施例在包括第一电池,第二电池的基础上,还可以包括第三电池,此时,第二节点与第二控制装置供电方式解耦,第三电池为第二节点进行独立供电。
通过上述对本申请实施例中涉及的用语介绍,下面对本申请实施例提供的电池管理***以及应用本申请提供的电池管理***进行电池管理的方法进行详细介绍。其中,本申请实施例提供的电池管理***可以应用于对电池进行检测和管理的场景中,例如,可以应用在新能源汽车或者储能***中使用等。
参见图2所示,本申请实施例中的电池管理***可以包括主控板100、多个从控板200,以及多个电芯或电芯组300。其中,多个从控板可以包括第一从控板210,第二从控板220,第三从控板230等,为了方便介绍,以第一从控板为例,对电池管理***中的从控板进行介绍。
所述第一从控板,用于管理第一电芯或者第一电芯组,并且,用于向主控板发送第一电芯状态信息,所述第一电芯状态信息包括所述第一电芯的状态信息或者所述第一电芯组中部分或全部电芯的状态信息。
作为一种示例,所述第一从控板与所述第一电芯或所述第一电芯组电性连接。
其中,本申请实施例所述电性连接包括线束连接、柔性电路板FPC连接、印刷电路板PCB连接、针引脚PIN连接、接插件连接、焊接连接以及连接器连接中的一种或多种。
所述主控板,用于向所述第一从控板发送第一控制信息,所述第一控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
作为一种示例,所述第一控制信息可以为采样指令、均衡指令、驱动指令、或者控制所述第一从控板运行模式的控制指令或者其他约定的指令。
其中,本申请实施例所述运行模式可以是工作模式、低功耗模式、睡眠模式和其他预设的模式。所述工作模式即持续正常工作模式,所述电池管理***中的一个或者多个装置持续的执行预设的功能。所述低功耗模式即周期性地、间断地完成预设的功能;例如,低功耗模式的工作周期被设置成长于工作模式的工作周期,以实现在较低功耗的前提下,提供部分的功能。睡眠模式即停止工作的模式。一般来说,当在电池管理***所在的电池***,或者设备在低功耗模式或者停止运行的状态下,电池管理***启动低功耗模式或者睡眠模式。
此外,在另外一些实施例中,本申请实施例所述的电池管理***中装置或模块可以同时采用不同的模式工作,例如,电池管理***中的主控板处于低功耗模式,第一从控板处于工作模式中。
可以理解的,本申请实施例中的电池管理***包括多个从控板,因此,主控板还可以接收来自其他从控板发送的控制信息。例如,所述主控板接收来自第二从节点的第二电芯状态信息,所述第二电芯状态信息包括所述第二从节点对应的第二从控板管理的第二电芯的状态信息或者所述第二从控板管理的第二电芯组中部分或全部电芯的状态信息;根据所述第二电芯状态信息控制所述主节点向所述第二从节点发送控制信息。
示例性地,如图3所示,假设电池管理***中包括一个主控板,从控板1~2,其中,主控板上可以部署有主节点以及主控单元,所述主控单元与所述主节点可以通过主控板上的内部线路1相连。从控板1可以部署有从节点1以及从控单元1,所述从控单元1与所从节点1可以通过所述从控板1上的内部线路2相连,从控板2可以部署有从节点2以及从控单元2,所述从控单元2与所从节点2可以通过所述从控板2上的内部线路2相连。其中,所述第一从控单元,用于获取第一电芯状态信息,控制所述第一从节点向主节点发送所述第一电芯状态信息,以及还用于根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
所述第一从节点,用于接收来自主节点的控制信息。
所述主节点,用于接收来自第一从节点的第一电芯状态信息。
所述主控单元,用于控制所述主节点向所述第一从节点发送控制信息,所述控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
进一步地,本申请实施例中所述主控板与所述从控板之间可以通过有线或者无线的方式进行通信传输。
作为一种示例,当电池管理***中的主控板与从控板之间通过有线方式进行通信传输时,可以通过主控板与从控板之间相连的有线线路进行通信传输。
当主控板与从控板之间进行无线通信传输时,主控板可以基于内部的无线传输模块与从控板内部的无线传输模块进行通信传输。此时,所述从控板上部署的从节点可以为无线传输模块,基于所述无线传输模块进行无线传输的方式可以有一种或多种。其中,所述从节点可以通过部署的软件程序来实现无线传输方式的加载,例如,所述从节点可以通过内部部署的软件程序加载窄脉冲传输的无线传输方式,实现向主控板的无线传输。同理,所述主控板上部署的主节点可以为无线传输模块,用于通过无线传输方式接收从节点发送的电芯状态信息,以及向所述从节点发送控制信息。
示例性的,如图4所示,假设电池管理***中包括一个主控板,4个从控板,分别为从控板1~4,主控板与从控板1~3进行无线通信,主控板与从控板4进行有线传输,以及从控板1用于管理电芯1,从控板2用于管理电芯2,从控板3用于管理电芯3,从控板4用于管理电芯组1,其中,一个电芯组是由多个电芯组成的,从控板与对应的电芯或者电芯组之间通过线束电性连接。
进一步地,本申请实施例所述的电池管理***可以安装在终端设备上,所述终端设备包括且并不限于车辆。
示例性的,如图5所示,为本申请实施例提供的车辆的俯视图。车辆包括车身和座舱,座舱内部包括位于主驾驶位置与副驾驶位置前方的座舱***510,车身包括位于车头的电池***520以及用于管理电池***的电池管理***530,通过所述电池管理***530管理所述车辆中的电池***,能够更好的保证车辆中的电池***安全运行,并延长所述车辆中的电池***的使用寿命。其中,所述座舱***510还包括座舱控制器511、车载显示屏512、车载音响513等。所述电池管理***530可以通过与所述座舱***510之间的连接线路,与所述座舱***510之间进行信息交互。
如上,简单介绍了本申请实施例涉及的一种应用架构,下面介绍本申请实施例基于所述图1所示的应用架构,执行电池***管理方法时涉及的流程,具体可以参见下述图6:
S600、第一从控板获取第一电芯状态信息。
所述第一电芯状态信息包括所述第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或全部电芯的状态信息。
其中,该步骤可以通过所述第一从控板上部署的采集芯片获取所述第一电芯状态信息。
作为一种示例,本申请实施例所述的采集芯片可以与第一从控板上的第一从节点共同部署,例如,采集芯片位于第一节点内部,或者,第一节点还具有采集电池信息的功能,其中,第一节点与采集芯片之间的位置关系可以进行灵活设计,丰富了电池***的构造方式,灵活性更强。
S601、第一从控板控制向主控板发送第一电芯状态信息。
其中,该步骤可以基于所述第一从控板上部署的第一从节点,将所述第一电芯状态信息发送给所述主控板上部署的主节点。
S602、主控板接收来自第一从控板的第一电芯状态信息。
其中,该步骤可以基于所述主控板上部署的主节点,接收来自所述第一从控板上部署的第一从节点发送的所述第一电芯状态信息。
S603、主控板基于第一电芯状态信息,向第一从控板发送控制信息。
其中,所述控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
其中,该步骤可以通过所述主控板上部署的主控单元基于所述第一电芯状态信息,确定所述控制信息,然后所述主控单元将所述控制信息可以通过与所述主节点连接的线路发送给所述主节点,从而使所述主节点将所述控制信息发送给所述第一从控板上的第一从节点。
S604、第一从控板接收来自主控板的控制信息。
其中,该步骤可以通过所述第一从控板上部署的第一从节点接收来自所述主控板上的主节点发送的所述控制信息。
S605、第一从控板根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
其中,该步骤可以通过所述第一从控板上的第一从节点,将所述控制信息通过所述第一从节点与第一从控单元之间的连接线路发送给所述第一从控单元,从而使所述第一从控单元基于所述控制信息管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
进一步地,本申请实施例还提供了基于上述图2所示的***架构进行变形优化后的几种***架构,具体并不限于下述九种:
***架构一、电池管理***还包括第一传感器和/或第二传感器。
所述第一传感器,用于采集电芯或电芯组内部电芯状态信息的第一传感器,以及将采集到的所述内部电芯状态信息上报给对应的从控板;所述第二传感器,用于采集电芯或电芯组外部状态信息的第二传感器,以及将采集到的所述外部电芯状态信息上报给对应的从控板。
其中,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个。所述外部状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
作为一种示例,本申请实施例中所述第一传感器和/或所述第二传感器可以与电池管理***中的从控板电性连接。
示例性的,如图7所示,电池管理***包括主控板以及从控板1和从控板2,从控板1与第一传感器1以及第二传感器1通过线束电性连接,所述第一传感器1置于电芯1的内部,用于采集电芯1的内部电芯状态信息,以及将采集到的电芯1的内部电芯状态信息上报给所述从控板1,所述第二传感器1置于电芯1的外部,用于采集电芯1的外部电芯状态信息,以及将采集到的电芯1的外部电芯状态信息上报给所述从控板1;从控板2与第一传感器2以及第二传感器2通过柔性电路板连接,所述第一传感器2置于电芯2的内部,用于采集电芯2的内部电芯状态信息,以及将采集到的电芯2的内部电芯状态信息上报给所述从控板2,所述第二传感器2置于电芯2的外部,用于采集电芯2的外部电芯状态信息,以及将采集到的电芯2的外部电芯状态信息上报给所述从控板2。
下面介绍本申请实施例基于所述图7所示的应用架构,执行电池***管理方法时涉及的流程,具体可以参见下述图8:
S800、第一传感器采集第一电芯的内部电芯状态信息,并上报给第一从控板。
其中,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个。
作为一种示例,当所述第一从控板上部署有第一从节点,以及第一从控单元,且所述第一传感器与所述第一从控板上部署的第一从节点电性连接时,所述第一传感器可以将采集到的第一电芯的内部电芯状态信息,通过与所述第一从节点之间的连接线路发送给所述第一从节点。
此外,所述第一从节点在获取到所述第一电芯的内部状态信息之后,所述第一从节点还可以将所述第一电芯的内部状态信息,通过与所述第一从控单元之间的连接线路发送给所述第一从控单元,从而使所述第一从控单元对所述第一电芯的内部电芯状态信息进行处理,例如,所述第一从控单元可以对接收到的第一电芯的内部状态信息进行过滤筛选,从而得到需要上传给主控板的内部电芯状态信息;再例如,所述第一从控单元可以对接收到的第一电芯的内部状态信息以及第一电芯的外部状态信息进行整合,从而将整合后的电芯状态信息整体上传给所述主控板。
作为另一种示例,当所述第一从控板上部署有第一从节点,以及第一从控单元,且所述第一传感器与所述第一从控板上部署的第一从控单元电性连接时,所述第一传感器可以将采集到的第一电芯的内部电芯状态信息,通过与所述第一从控单元之间的连接线路直接发送给所述第一从控单元。
S801、第二传感器采集第一电芯的外部电芯状态信息,并上报给第一从控板。
其中,所述外部电芯状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
作为一种示例,当所述第一从控板上部署有第一从节点,以及第一从控单元,且所述第二传感器与所述第一从控板上部署的第一从节点电性连接时,所述第二传感器可以将采集到的第一电芯的外部电芯状态信息,通过与所述第一从节点之间的连接线路发送给所述第一从节点。
此外,所述第一从节点在获取到所述第一电芯的外部状态信息之后,所述第一从节点还可以将所述第一电芯的外部状态信息,通过与所述第一从控单元之间的连接线路发送给所述第一从控单元,从而使所述第一从控单元对所述第一电芯的外部电芯状态信息进行处理,例如,所述第一从控单元可以对接收到的第一电芯的外部状态信息进行过滤筛选,从而得到需要上传给主控板的外部电芯状态信息;再例如,所述第一从控单元可以对接收到的第一电芯的外部状态信息以及第一电芯的内部状态信息进行整合,从而将整合后的电芯状态信息整体上传给所述主控板。
作为另一种示例,当所述第一从控板上部署有第一从节点,以及第一从控单元,且所述第二传感器与所述第一从控板上部署的第一从控单元电性连接时,所述第二传感器可以将采集到的第一电芯的外部电芯状态信息,通过与所述第一从控单元之间的连接线路直接发送给所述第一从控单元。
S802、第一从控板获取第一电芯状态信息。
其中,所述第一电芯状态信息包括所述第一电芯的内部电芯状态信息和/或外部电芯状态信息。
S803、第一从控板向主控板发送第一电芯状态信息。
作为一种示例,所述第一从控板中的第一从节点,在接收到来自传感器上报的第一电芯状态信息后,直接将所述第一电芯状态信息发送给所述主控板上的主节点。
作为另一种示例,所述第一从控板中的第一从节点,在接收到来自传感器上报的第一电芯状态信息后,将所述第一电芯状态信息发送给第一从控板中的第一从控单元,然后,接收来自所述第一从控单元发送的已分析处理的第一电芯状态信息,最后将所述第一电芯状态信息发送给所述主控板。
作为另一种示例,所述第一从控板中的第一从控单元,在接收到来自传感器上报的第一电芯状态信息后,将所述第一电芯状态信息直接发送给第一从控板中的第一从节点,或者,对所述第一电芯状态信息进行分析处理,以及将分析处理后的第一电芯状态信息发送给所述主控板。
S804、主控板接收来自第一从控板的第一电芯状态信息。
其中,该步骤可以通过所述主控板上的主节点接收来自所述第一从控板上的第一从节点发送的第一电芯状态信息。
S805、所述主控板基于所述第一电芯状态信息,向所述第一从控板发送控制信息。
其中,该步骤可以通过所述主控板上的主节点将接收到的所述第一电芯状态信息发送给所述第一从控板上的主控单元,所述主控单元基于所述第一电芯状态信息确定控制信息,并将所述控制信息发送给所述主节点,所述主节点在接收到所述控制信息后,将所述控制信息发送给所述第一从控板上的第一从节点。
S806、所述第一从控板接收来自所述主控板的控制信息。
其中,该步骤可以通过所述第一从控板上的第一从节点接收来自所述主控板上的主节点发送的所述控制信息。
S807、所述第一从控板根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
其中,该步骤可以通过所述第一从控板上的第一从节点,将所述控制信息通过所述第一从节点与第一从控单元之间的连接线路发送给所述第一从控单元,从而使所述第一从控单元基于所述控制信息管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
***架构二、电池管理***还可以包括位于从控板的均衡模块。
示例性的,如图9所示,电池管理***包括主控板以及从控板1和从控板2,从控板1中包括均衡模块1,从控板2中包括均衡模块2,所述电池管理***可以通过所述均衡模块1以及所述均衡模块2进行均衡管理。其中,由于电池在使用后,会发生电芯一致性变差的问题,如发生电池内阻不一致、电池电压不一致等问题,会严重影响电池***的性能和安全性,而通过所述均衡管理,能够有效减少电芯一致性差异,减少最高单体电芯的电压或者荷电状态,与最低单体电芯的电压或者荷电状态的差异,重新获得良好的电池一致性,提升电池***的性能和安全性。
其中,本申请实施例可以基于所述均衡模块,执行下述两种均衡操作:
均衡操作1:所述均衡模块通过所在从控板上的从节点接收来自主控板的均衡指令,并进行均衡操作。
示例性的,假设上述第一从控板中的第一从控单元还具有均衡管理的功能,则第一从控板中的第一 从节点接收到来自主控板的均衡指令后,将所述均衡指令通过所述第一从节点与所述第一从控单元之间连接的线路,发送给所述第一从控单元,从而使所述第一从控单元执行所述均衡指令。此外,所述第一从控单元在执行所述均衡指令后,还可以将所述均衡指令的执行结果通过所述第一从节点发送给所述主控板。
示例性的,假设上述第一从控板中包括第一从控单元以及第一从节点外,还包括均衡模块,所述均衡模块用于执行均衡管理,则第一从控板中的第一从节点接收到来自主控板的第一均衡指令后,将所述第一均衡指令通过所述第一从节点与所述第一从控单元之间连接的线路,发送给所述第一从控单元,所述第一从控单元对所述第一均衡指令进行处理分析,得到第二均衡指令,然后通过所述第一从控单元与所述均衡模块之间连接的线路,向所述均衡模块发送所述第二均衡指令,从而使所述均衡模块进行均衡管理。
示例性的,假设上述第一从控板中包括第一从控单元以及第一从节点外,还包括均衡模块,所述均衡模块用于执行均衡管理,则第一从控板中的第一从节点接收到来自主控板的均衡指令后,将所述均衡指令通过所述第一从节点与所述第一从控单元之间连接的线路,发送给所述第一从控单元,所述第一从控单元直接通过所述第一从控单元与所述均衡模块之间连接的线路,将所述均衡指令发送给所述均衡模块,从而使所述均衡模块进行均衡管理。
均衡操作2:所述均衡模块通过所在从控板上的从节点接收来自其他从控板的电芯状态信息,并进行均衡操作。
示例性的,假设电池管理***包括从控板1~3,所述从控板1~3之间可以互相传输电芯状态信息,以及从控板1~3分别对应的从控单元还具有均衡管理的功能,例如,从控板1可以通过自身从节点1接收来自从控板2发送的电芯状态信息2,从控板3发送的电芯状态信息3后,将所述电芯状态信息2以及所述电芯状态信息3通过所述从节点1与自身从控单元1之间连接的线路,发送给所述从控单元1。然后,所述从控单元1基于自身采集到的电芯状态信息1,所述电芯状态信息2以及所述电芯状态信息3确定均衡指令,并基于所述均衡指令执行均衡管理,此外,所述从控单元1在执行所述均衡指令后,还可以将所述均衡指令的执行结果通过所述从节点1发送给所述主控板。
示例性的,假设电池管理***包括从控板1~3,所述从控板1~3之间可以互相传输电芯状态信息,以及从控板1~3分别包括第一从控单元以及第一从节点外,还包括均衡模块,例如,从控板1可以通过自身从节点1接收来自从控板2发送的电芯状态信息2,从控板3发送的电芯状态信息3后,将所述电芯状态信息2以及所述电芯状态信息3通过所述从节点1与自身从控单元1之间连接的线路,发送给所述从控单元1。然后,所述从控单元1基于自身采集到的电芯状态信息1,所述电芯状态信息2以及所述电芯状态信息3确定均衡指令,然后通过所述从控单元1与自身的均衡模块1之间连接的线路,向所述均衡模块1发送所述均衡指令,从而使所述均衡模块1进行均衡管理。
***架构三、电池管理***还可以包括电子开关。
进一步地,如图10所示,本申请实施例所述的电池管理***还可以包括一个或者多个电子开关,所述电子开关,用于接收主控板的开关指令,并执行该开关指令,所述开关指令用于控制所述电子开关的打开或闭合,从而通过所述电子开关控制所述电池管理***所管理的电池***。其中,所述电子开关可以与主控板无线和/或有线通信。
其中,本申请实施例所述电子开关包括主正继电器、主负继电器、主正金属氧化物半导体场效应晶体管以及主负金属氧化物半导体场效应晶体管中的一个或多个。
作为一种示例,所述电子开关可以在电池管理***所在的电池***或者设备正常运行、低功耗运行、停止运行时完成匹配的闭合或打开功能,并将电池***高压的闭合或打开的状态信息发送给电池管理主控板。
***架构四、电池管理***还可以包括位于第一从控板的第一报警模块。
所述第一报警模块,用于向主控板上报报警信息,所述报警信息用于指示第一从控板所管理的第一电芯或者所述第一电芯组中的一个或多个电芯存在异常。
其中,本申请实施例所述的电芯异常可以包括电芯温度过高或过低、电芯电压过高或过低等所述第一从控板可以自己处理得到的结果。
示例性的,如图11所示,假设电池管理***包括从控板1与从控板2,所述从控板1被设置为含有第一报警模块1,所述从控板2被设置为含有第一报警模块2。当所述从控板1采集或者计算得到的内部电芯状态信号、外部电芯状态信号中的一个或者多个,超过阈值或者与设定的其他条件时,所述第一报警模块1向主控板发送报警信号1,当所述从控板2采集或者计算得到的内部电芯状态信号、外部电芯状态信号中的一个或者多个,超过阈值或者与设定的其他条件时,所述第一报警模块2向主控板发送报警信号2,使得主控板接收到来自所述从控板1和/或所述从控板2的报警信号后,根据相应的报警信号确定后续执行步骤。
下面介绍本申请实施例基于所述图11所示的应用架构,执行电池***管理方法时涉及的流程,具体可以参见下述图12:
S1200、第一从控板获取第一电芯状态信息。
其中,该步骤可以是所述第一从控板上部署的第一从节点获取所述第一电芯状态信息。
S1201、所述第一从控板基于所述第一电芯状态信息确定满足报警条件,通过第一报警模块向主控板发送报警信号。
其中,所述报警信号中可以包括所述第一从控板获取到的所有第一电芯状态信息,或者,所述报警信号中可以包括所述第一电芯状态信息中存在异常的电芯状态信息。
所述报警条件可以指所述第一电芯状态信息中的部分或者全部电芯状态信息异常,例如,存在高于或者低于正常阈值范围的电芯状态信息,在此并不限定类型和数量。
示例性的,所述第一从控板上部署的第一从控单元可以基于所述第一电芯状态信息确定是否满足报警条件,并在满足报警条件时,所述第一从控单元通过与所述第一从控板上部署的第一报警模块之间的连接线路,向所述第一报警模块发送报警指令,从而使所述第一报警模块向所述主控板发送报警信号。
示例性的,假设上述第一从控板中的第一从控单元还具有报警的功能,例如,所述第一从控单元可以与所述第一报警模块合设,则第一从控板中的所述第一从控板基于所述第一电芯状态信息确定满足报警条件后,通过所述第一从控板中的第一从节点向所述主控板上的主节点发送信号。
S1202、所述主控板接收所述报警信号。
其中,该步骤中所述主控板可以基于所述主控板上的主节点接收来自所述第一从控板中的第一从节点发送的报警信号。
S1203、所述主控板基于所述报警信号确定是否触发报警。
其中,该步骤可以通过所述主控板上的主节点,将所述控制信息报警信号通过所述主节点与主控单元之间的连接线路发送给所述主控单元,从而使所述主从控单元基于所述报警信号确定是否触发报警。
其中,若所述主控板基于所述报警信号确定需要触发报警,可以通过声音信号、光信号或电信号中的一个或多个的方式进行报警,例如,当所述电池管理***为车辆中的电池管理***时,本申请实施例中当所述主控板需要触发报警时,可以通过上述图5所示的车载音响进行语音报警提示,或者通过上述图5所示的车载显示屏进行报警提示。
此外,本申请实施例中所述主控板还可以基于所述报警信号,生成控制指令,从而及时有效的解决电池***存在的异常,提升电池***的安全性。例如,当所述电池管理***中的主控板在接收到报警信号或者确定满足报警条件时,可以控制总负或者总正电子开关中的一个或者多个断开,以实现切断高压回路,断开电池***的电流,有利于停止该电池***继续充电,消除或者减少电池***发生热失控的概率以保障电池***的安全性。
进一步地,本申请实施例中第一从控板还可以为所述报警信号配置通信优先级。对应地,主控板可以根据接收到的报警信号的通信优先级,在发送应对该报警信号的控制指令时,为所述控制指令设置通信优先级,从而更好的确保报警信息和控制指令及时发送。
***架构五、电池管理***还可以包括位于主控板的第二报警模块。
所述第二报警模块,用于在确定接收或者处理得到的电芯状态信息满足报警条件时触发报警。
其中,所述报警条件可以指电池***出现异常,如过充电、过放电、电流过大、单体电芯或者电池***的温度过高或者过低、电池压差过大、电压温度电流等信号的变化率过大等电池异常状态,也包括其他电池***状态异常状态,在此并不限定类型和数量。
示例性的,如图13所示,所述电池管理***中的主控板被设置为含有第二报警模块。其中,本申 请实施例所述主控板确定是否触发报警操作时,可以通过主控板中部署的主控单元确定接收到的主节点发送的电芯状态信号,或者所述主控单元基于所述电芯状态信号得到的电芯主控信息中的一个或者多个,是否超过阈值或者与设定的其他条件,从而确认是否触发报警,并在确定需要触发报警时,向所述第二报警模块发送报警指令,以使所述第二报警模块进行报警操作;或者,还可以通过所述主控板中部署的第二报警模块确定接收到的主节点发送的电芯状态信号,或者基于接收到的主控单元发送的所述电芯主控信息中的一个或者多个,是否超过阈值或者与设定的其他条件,从而确认是否触发报警,并在确定需要触发报警时,进行报警操作;再或者,所述主控板中的所述第二报警模块可以与所述主控单元合设,即所述主控单元还具有所述第二报警模块的功能,本申请实施例在确定是否触发报警操作时,可以通过所述主控单元确定接收到的主节点发送的电芯状态信号,或者所述主控单元基于所述电芯状态信号得到的电芯主控信息中的一个或者多个,是否超过阈值或者与设定的其他条件,从而确认是否触发报警,并在确定需要触发报警时,进行报警操作。
其中,所述电芯主控信息包括所述电池管理***所管理的电池***的第一信息,和/或第二信息,所述第二信息是基于所述第一信息计算或者演变得到的。
所述第一信息包括下列所述电池***中的一个或多个信息:
内部电芯状态信息、外部电芯状态信息、模组状态信息以及传感状态信息;
所述第二信息包括下列所述电池***中的一个或多个信息:
荷电状态、健康状态、安全状态、电量指示、功率、最高单体电芯温度、最低单体电芯温度、最高单体电芯电压、最低单体电芯电压、总电流、绝缘状态、报警信息、故障信息以及电子开关状态。
下面介绍本申请实施例基于所述图13所示的应用架构,执行电池***管理方法时涉及的流程,具体可以参见下述图14:
S1400、第一从控板获取第一电芯状态信息。
在该步骤中,所述第一从控板可以基于第一传感器和/或第二传感器,获取所述第一电芯状态信息。
S1401、第一从控板向主控板上报第一电芯状态信息。
在该步骤中,所述第一从控板可以通过所述第一从控板上部署的第一从节点将所述第一电芯状态信息上报给所述主控板上部署的主节点。
S1402,主控板接收来自第一从控板的第一电芯状态信息。
在该步骤中,所述主控板可以通过所述主控板上部署的主节点接收来自所述第一从控板上部署的第一从节点发送的所述第一电芯状态信息。
S1403、所述主控板基于所述第一电芯状态信息确定满足报警条件时,触发第二报警模块进行报警操作。
作为一种示例,当所述第二报警模块与所述主控板中的主控单元合设时,所述主控板中的主节点将所述第一电芯状态信息发送给所述主控单元,从而使所述主控单元基于所述第一电芯状态信息,以及根据所述第一电芯状态信息得到的电芯控制信息,确定是否满足报警条件。
作为另一种示例,当所述第二报警模块与所述主控板中的主控单元分设时,所述主控板中的主节点将所述第一电芯状态信息发送给所述主控单元,从而使所述主控单元基于所述第一电芯状态信息,以及根据所述第一电芯状态信息得到的电芯控制信息,确定是否满足报警条件,并在满足报警条件后,向所述第二报警模块发送报警指令,使所述第二报警模块进行报警操作。
作为另一种示例,当所述第二报警模块与所述主控板中的主控单元分设时,所述主控板中的主节点将所述第一电芯状态信息发送给所述主控单元以及所述第二报警模块,所述主控单元基于所述第一电芯状态信息得到电芯控制信息,并将所述电芯控制信息发送给所述第二报警模块,所述第二报警模块基于所述第一电芯状态信息和/或所述电芯控制信息,确定是否满足报警条件,并在满足报警条件后,进行报警操作。
其中,若所述第二报警模块需要执行报警操作时,可以通过声音信号、光信号或电信号中的一个或多个的方式进行报警,例如,当所述电池管理***为车辆中的电池管理***时,本申请实施例中当所述第二报警模块需要执行报警操作时,可以通过上述图5所示的车载音响进行语音报警提示,或者通过上述图5所示的车载显示屏进行报警提示。
***架构六、电池管理***还可以包括至少一个第三传感器。
所述第三传感器,用于接收主控板的采样指令并执行该采样指令,通过所述第三传感器和采样电路,周期性地采集电池***的状态信息,并向主控板发送所述电池***的状态信息。其中,所述电池***的状态信息可以理解为整个电池***级别的电池状态信息。
作为一种示例,所述电池***的状态信息包括并不限于电流、烟感、电解液、温度、气压、气体、膨胀力、内阻、绝缘内阻中的一个或多个。
其中,所述第三传感器可以被配置成有线通信或者/和无线通信模块,所述第三传感器可以通过无线通信和/或有线通信的方式将采集到的电池***的状态信息传输至所述主控板。
示例性的,如图15所示,所述电池管理***中还包括第三传感器1与第三传感器2,所述第三传感器1与主控板无线通信,所述第三传感器2与主控板有线通信。所述第三传感器1与所述第三传感器2可以周期性的采集电池管理***中的电池状态信息,也可以在接收到主控板发送的采集指令后,采集电池管理***中的电池状态信息,以及将采集到的电池状态信息上报给主控板。
***架构七、电池管理***还可以包括至少一个电池簇管理从控板。
其中,电池***可以由多个电池簇组成,每个电池簇含有多个电池模组,每个电池模组含有多个电芯或者电芯组。电池管理***中的主控板可以监测和管理整个电池***,电池簇管理从控板监测和管理一个或者多个电池簇,即用于管理至少一个从控板。其中,所述电池簇从控板可以具有通信功能,还可以具有处理功能等,在此不进行限定。
示例性的,如图16所示,电池管理***包括一个主控板,用于监测和管理整个电池系,还包括电池簇从控板1与电池簇从控板2,所述电池簇从控板1管理从控板1~2,所述电池簇从控板2管理从控板3~4。
所述电池管理***管理的电池***可以由多个电池簇组成,每个电池簇含有多个电池模组,每个电池模组含有多个电芯或者电芯组,其中,所述从控板1管理电芯1,在获取到电芯1的电芯状态信息1后,将所述电芯状态信息1上报给所述电池簇从控板1,所述从控板2管理电芯2,在获取到电芯2的电芯状态信息2后,将所述电芯状态信息2上报给所述电池簇从控板1,所述从控板3管理电芯组1,在获取到电芯组1的电芯状态信息3后,将所述电芯状态信息3上报给所述电池簇从控板2,所述从控板4管理电芯组2,在获取到电芯组2的电芯状态信息4后,将所述电芯状态信息4上报给所述电池簇从控板2。所述电池簇从控板可以将接收到的所有电芯状态信息上报给所述主控板,也可以对接收到的电芯状态信息进行处理,将处理后的电芯状态信息上报给所述主控板等。
下面介绍本申请实施例基于所述图16所示的应用架构,执行电池***管理方法时涉及的流程,具体可以参见下述图17:
S1700、从控板获取所管理的电芯状态信息,并上报给对应的电池簇从控板。
在该步骤中,所述从控板可以基于第一传感器和/或第二传感器,获取所述电芯状态信息,然后,所述从控板可以通过所述从控板上部署的从节点将所述电芯状态信息发送给所述电池簇从控板上部署的电池簇从节点。
S1701、所述电池簇从控板向主控板发送电池簇状态信息。
在该步骤中,所述电池簇从控板可以通过所述电池簇从控板上部署的电池簇从节点将所述电芯状态信息发送给所述主控板上部署的主节点。
其中,所述电池簇状态信息可以为所述电池簇从控板接收到的一个或多个电芯的状态信息,或者,所述电池簇状态信息可以为所述电池簇从控板对接收到的一个或多个电芯进行处理后得到的信息。
作为一种示例,本申请实施例中所述电池簇从控板可以在接收到管理的所有从控板发送的电芯状态信息后,将接收到的全部电芯状态信息进行打包整合,发送给所述主控板;或者,本申请实施例中所述电池簇从控板可以在接收到管理的所有从控板发送的电芯状态信息后,将接收到的全部电芯状态信息中存在异常的电芯状态信息进行打包整合,发送给所述主控板;或者,所述电池簇从控板可以在接收到一个从控板发送的电芯状态信息后,将所述电芯状态信息上报给所述主控板;或者,所述电池簇从控板可以在接收到一个从控板发送的电芯状态信息后,在确定所述电芯状态信息存在异常时,将所述电芯状态信息上报给所述主控板;或者,所述电池簇从控板可以周期性的,将接收到的一个或多个从控板发送的电芯状态信息上报给所述主控板。
S1702、主控板接收来自所述电池簇从控板的电池簇状态信息。
在该步骤中,所述主控板可以通过所述主控板上部署的主节点接收所述电池簇从控板上部署的电池簇从节点发送的所述电池簇状态信息。
S1703、所述主控板基于所述电池簇状态信息,向所述电池簇从控板发送控制信息。
在该步骤中,所述主控板上的主节点可以在接收到所述电池簇状态信息后,将所述电池簇状态信息发送给所述主控板上的主控单元,由所述主控单元基于所述电池簇状态信息,确定所述控制信息,并将所述控制信息发送给所述主节点,从而使所述主节点将所述控制信息发送给所述电池簇从控板中的电池簇从节点。
其中,所述控制信息用于所述电池簇从控板管理对应的电池簇。
S1704、所述电池簇从控板接收来自所述主控板的控制信息。
在该步骤中,所述电池簇从控板可以通过所述电池簇从控板中的电池簇从节点,接收来自所述主控板中的主节点发送的所述控制信息。
S1705、所述电池簇从控板将所述控制信息发送给需要控制的从控板。
在该步骤中,所述电池簇从控板可以通过所述电池簇从控板中的电池簇从节点将所述控制信息发送给需要控制的从控板上的从节点。
S1706、所述从控板根据所述控制信息,管理对应的电芯或电芯组中的一个或多个电芯。
在该步骤中,所述从控板可以通过所述从控板上的从节点接收所述控制信息,并将所述控制信息发送给所述从控板上的从控单元,从而可以使所述从控单元基于所述控制信息,管理对应的电芯或电芯组中的一个或多个电芯。
***架构八、所述电池管理***还可以连接整车控制器。
其中,所述整车控制器可以根据接收到的电芯状态信息或电芯主控信息,控制电池提示信息的输出,所述电池提示信息用于提示所述电池管理***所管理的电池***的状态。
作为一种示例,所述电池管理***中的主控板可以将接收到的电芯状态信息发送给与所述电池管理***连接的整车控制器,从而可以使所述整车控制器基于所述电芯状态信息得到电池提示信息。
作为另一种示例,所述电池管理***中的主控板可以对接收到的电芯状态信息进行处理,得到电芯主控信息,然后将所述电芯主控信息发送给与所述电池管理***连接的整车控制器,从而可以使所述整车控制器基于所述电芯主控信息得到电池提示信息。其中,所述电池提示信息可以为所述电芯主控信息,或者,所述电池提示信息可以为经过处理后的电芯主控信息。
示例性的,如图18所示,所述电池管理***中的主控板和整车控制器连接并可以互相发送信号。其中,所述整车控制器可以与车载显示屏连接,例如,所述整车控制器与车载显示屏由外部电源电性连接并由外部电源供电。
当本申请实施例所述整车控制装置需要输出电池提示信息时,所述整车控制装置可以以声音信号、光信号或电信号中的一个或多个的方式输出所述电池提示信息。
例如,本申请实施例中的整车控制装置可以通过扬声器以声音信号输出所述电池提示信息;再例如,本申请实施例中的整车控制装置可以通过显示屏以图片或者视频等电信号输出所述电池提示信息;再例如,本申请实施例中的整车控制装置可以通过信号指示灯以光信号输出所述电池提示信息;再例如,本申请实施例中的整车控制装置可以与非车载音响、手机或者其他终端等设备发生无线或者有线通信连接,当所述整车控制装置需要输出所述电池提示信息时,可以通过无线或者有线通信的方式,将所述电池提示信息以音频、图片、视频等形式传送给所述终端,并在终端上呈现可以通过与所述整车控制装置无线连接的终端设备中的APP以电信号输出所述电池提示信息,例如,在所述终端设备的APP显示界面中显示所述电池提示信息。
其中,所述电池提示信息包括所述第一信息,和/或第三信息,所述第三信息是基于所述第一信息计算或演变得到的。
所述第一信息包括下列所述电池***中的一个或多个信息:
内部电芯状态信息、外部电芯状态信息、模组状态信息以及传感状态信息;
所述第三信息包括下列所述电池***中的一个或多个信息:
荷电状态、健康状态、安全状态、电量指示、功率、最高单体电芯温度、最低单体电芯温度、最高 单体电芯电压、最低单体电芯电压、总电流、绝缘状态、报警信息、故障信息以及电子开关状态。
所述电芯主控信息包括下列中的一个或多个:
所述电池管理***所管理的电池***的荷电状态、健康状态、安全状态、电量、功率、温度、电压、电流、内阻、绝缘状态、报警信息、故障信息、电芯或者电芯组内部状态信号、电芯或者电芯组外部状态信号、电池***传感信号、模组状态信号、电子开关状态。
***架构九、所述电池管理***还可以连接云端服务器。
所述主控板还用于直接或间接向云端服务器发送所述电芯主控信息,并根据所述云端服务器生成的电池控制策略进行电池***的管理。
所述云端服务器,用于根据多个终端发送的数据信息,更新电池控制策略,并发送给所述多个终端中的第一终端,以使所述第一终端根据所述电池控制策略进行策略更新。
例如,所述云端服务器可以将更新的电池控制策略通过直接链路或中继设备发送给所述第一终端中的主控板,从而可以使所述主控板根据所述电池控制策略对所管理的电池***的管理策略进行更新;再例如,所述云端服务器可以将更新的电池控制策略通过直接链路或中继设备发送给所述第一终端中的从控板,从而可以使所述从控板根据所述电池控制策略对所管理的电芯或电芯组的管理策略进行更新;再例如,所述云端服务器可以将更新的电池控制策略发送给所述第一终端,此时,所述第一终端可以为中继设备,从而使所述中继设备将所述电池控制策略发送给对应的电池管理***等。其中,所述中继设备可以是整车控制器、无线网关、无线接入网设备以及路侧单元中的一个或者多个。
其中,本申请实施例所述的更新电池控制策略可以是重新生成电池控制策略,或者对原有的电池控制策略进行调整等。
其中,所述数据信息可以为终端的电芯主控信息,所述电芯主控信息对应所述终端的多个电芯或多个电芯组。
进一步地,当所述终端是所述第一从控板和/或主控板时,可以是通过直接链路和服务器装置进行通信,或,通过中继设备和服务器装置进行通信。
作为一种示例,本申请实施例提供的所述云端服务器可以基于人工智能、机器学习、深度学习、神经网络、模式识别、统计学等自动化大数据计算方法中的一种或者多种,对多个车辆的数据信息进行处理,得到电池控制策略。
示例性的,如图19所示,所述电池管理***中的主控板可以与车载T-box连接并可以通信。其中,所述车载T-box可以通过4G或者5G蜂窝等无线通信方式和远程的云端服务器连接,或者一般也叫做空中下载技术(Over-The-Air Technology,OTA)升级。
所述云端服务器可以通过无线通信方式与国家新能源汽车大数据平台连接,基于所述大数据平台中的车辆数据信息,调整所述电池控制策略,以及将调整后的电池控制策略通过车载T-box发送给所述主控板,从而使所述主控板基于所述电池控制策略对所述电池***进行管理。
其中,本申请实施例所述的大数据平台,可以是整车厂的大数据平台、地方性的大数据平台、国家级的大数据平台中的一种或者多种,也可以是其他的远程大数据平台,这里不做限定。此外,所述大数据平台中的车辆数据信息可以是由每辆车辆中电池管理***的主控板通过所述车载T-box上报的电芯内部状态信息、电芯外部状态信息、模组状态信息、电池***的传感状态信息和通过这些状态信息进一步演化得到的其他变量或者及计算得到的电池主控信息等得到的。
需要说明的是,上述几种***架构之间,可以进行整合,得到新的***架构,例如,如图20所示,所述电池管理***包括所述***架构一中的第一传感器和/或第二传感器,还包括所述***架构二中的均衡模块,所述***架构三中的电子开关,所述***架构四中的第一报警模块,所述***架构五中的第二报警模块,所述***架构六中的第三传感器等。
此外,本申请实施例中的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中 a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两种信息的内容、优先级、发送顺序或者重要程度等的不同。
以下结合图21和图22详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。因此,未详细描述的内容可相互参见。
图21是本申请实施例提供的装置2100的示意性框图,用于实现上文方法实施例中主控板或从控板的功能。例如,该装置可以为软件模块或芯片***。所述芯片可以由芯片构成,也可以包括芯片和其他分立器件。该装置2100包括处理单元2101和通信单元2102。通信单元2102用于与其它设备进行通信,还可以称为通信接口、收发单元或输入\输出接口等。
在一些实施例中,上述装置2100可用于实现上文方法中主控板的功能,装置2100可以是主控板,或者配置于主控板中的芯片或电路等。处理单元2101可以是主控板中的主控单元,可用于执行上文方法实施例中主控板的处理相关操作,通信单元2102可以是主控板中的主节点,用于指示上文方法实施例中主控板的收发相关操作。
例如,通信单元2102,用于接收来自第一从控板的第一电芯状态信息,所述第一电芯状态信息包括所述第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或全部电芯的状态信息;处理单元2101,用于基于所述第一电芯状态信息,通过所述通信单元2102向所述第一从控板发送控制信息,所述控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
一种可选的实施方式中,所述第一电芯状态信息包括通过第一传感器采集的所述第一电芯或所述第一电芯组的内部电芯状态信息,通过第二传感器采集的所述第一电芯或所述第一电芯组的外部电芯状态信息中的一种或多种。
一种可选的实施方式中,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个;
所述外部电芯状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
一种可选的实施方式中,所述通信单元2102还用于:
向电子开关发送开关指令以控制所述电子开关的打开或闭合,所述电子开关用于控制所述电池管理***所管理的电池***;
所述电子开关包括主正继电器、主负继电器、主正金属氧化物半导体场效应晶体管以及主负金属氧化物半导体场效应晶体管中的一个或多个。
一种可选的实施方式中,所述通信单元2102还用于:
所述主控板接收来自所述第一从控板发送的报警信息,所述报警信息用于指示所述第一电芯或者所述第一电芯组中的一个或多个电芯存在异常;
所述处理单元2101还用于:
根据所述报警信息,向所述第一从控板发送所述控制信息。
一种可选的实施方式中,所述处理单元2101还用于:
在确定接收或者处理得到的电芯状态信息满足报警条件时触发报警;
所述报警条件用于指示所述主控板接收或者处理得到的一个或多个电芯状态信息超过或者低于对应电芯状态信息设定的阈值。
一种可选的实施方式中,所述处理单元2101还用于:
根据接收到的电芯状态信息确定电芯主控信息;
所述通信单元2102还用于:
将所述电芯主控信息发送给整车控制器,以使所述整车控制器根据所述电芯主控信息控制电池提示信息的输出,所述电池提示信息用于提示所述电池管理***所管理的电池***的状态。
在另一些实施例中,上述装置2100可用于实现上文方法实施例中从控板的功能,装置2100可以是从控板,或者配置于从控板中的芯片或电路等。例如,处理单元2101可以是第一从控板中的第一从控单元,可用于执行上文方法实施例中第一从控板的处理相关操作,通信单元2102可以是第一从控板中 的第一从节点,可用于执行上文方法实施例中第一从控板的收发相关操作。
例如,通信单元2102,用于获取第一电芯状态信息,所述第一电芯状态信息包括第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或所有电芯的状态信息;处理单元2101,用于控制所述第一从节点向第一主节点发送所述第一电芯状态信息;通信单元2102,还用于接收来自所述第一主节点的控制信息;处理单元2101,还用于根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
一种可选的实施方式中,所述第一电芯状态信息包括通过第一传感器采集的所述第一电芯或所述第一电芯组的内部电芯状态信息,通过第二传感器采集的所述第一电芯或所述第一电芯组的外部电芯状态信息中的一种或多种。
一种可选的实施方式中,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个;
所述外部电芯状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
一种可选的实施方式中,所述处理单元2101还用于:
在确定接收或者处理得到的电芯状态信息满足报警条件时,向所述主控板上报报警信息;
所述报警信息用于指示所述第一电芯或者所述第一电芯组中的一个或多个电芯存在异常。
另一些实施例中,上述装置2100可用于实现上文方法中服务器装置的功能,装置2100可以是云端服务器,或者配置于云端服务器中的芯片或电路等。处理单元2101可用于执行上文方法实施例中云端服务器的处理相关操作,通信单元2102用于指示上文方法实施例中云端服务器的收发相关操作。
例如,所述通信单元2102,用于接收分别来自多个终端的多个电芯主控信息,所述电芯主控信息对应所述终端的多个电芯或多个电芯组;所述处理单元2101,用于根据所述多个电芯主控信息中的一个或多个,生成电池控制策略;所述通信单元2102,用于将所述电池控制策略发送给所述多个终端中的第一终端。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请实施例中各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
请参见图22,图22为本申请实施例提供的装置2200的示意图,该装置2200可以为控制面板,例如主控板或从控板,或者控制面板中的某一部件,例如芯片或集成电路等。该装置2200可包括至少一个处理器2202和通信接口2204。进一步,可选的,所述装置还可以包括至少一个存储器2201。更进一步,可选的,还可以包含总线2203。其中,存储器2201、处理器2202和通信接口2204通过总线2203相连。
其中,存储器2201用于提供存储空间,存储空间中可以存储操作***和计算机程序等数据。本申请实施例中提及的存储器2201可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。处理器2202是进行算术运算和/或逻辑运算的模块,具体可以是中央处理器(central processing unit,CPU)、图片处理 器(graphics processing unit,GPU)、微处理器(microprocessor unit,MPU)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程逻辑门阵列(field programmable gate array,FPGA)、复杂可编程逻辑器件(complex programmable logic device,CPLD)、协处理器(协助中央处理器完成相应处理和应用)、微控制单元(microcontroller unit,MCU)等处理模块中的一种或者多种的组合。
需要说明的是,当处理器为通用处理器、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
通信接口2204可以用于为所述至少一个处理器提供信息输入或者输出。和/或所述通信接口可以用于接收外部发送的数据和/或向外部发送数据,可以为包括诸如以太网电缆等的有线链路接口,也可以是无线链路(Wi-Fi、蓝牙、通用无线传输、车载短距通信技术等)接口。可选的,通信接口2204还可以包括与接口耦合的发射器(如射频发射器、天线等),或者接收器等。
在一些实施例中,上述装置2200可以为上文方法实施例中的主控板或者主控板中的部件,例如芯片或者集成电路。该装置2200中的处理器2202用于读取所述存储器2201中存储的计算机程序,控制所述主控板执行以下操作:
接收来自第一从控板的第一电芯状态信息,所述第一电芯状态信息包括所述第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或全部电芯的状态信息;基于所述第一电芯状态信息,向所述第一从控板发送控制信息,所述控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
可选的,该主控板中的处理器2202,还可以用于读取存储器2201中的程序并执行如图6所示的S600~S605中该主控板执行的方法流程;或执行如图8所示的S800~S807中该主控板执行的方法流程;或执行如图12所示的S1200~S1203中该主控板执行的方法流程;或执行如图14所示的S1400~S1403中该主控板执行的方法流程;或执行如图17所示的S1700~S1706中该主控板执行的方法流程。
关于具体细节,可参见上文方法实施例中的记载,在此不再赘述。
在另一些实施例中,上述装置2200可以为上文方法实施例中的从控板或者从控板中的部件,例如芯片或者集成电路。该装置2200中的处理器2202用于读取所述存储器2201中存储的计算机程序,控制所述从控板执行以下操作:
获取第一电芯状态信息,所述第一电芯状态信息包括第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或所有电芯的状态信息;控制所述第一从节点向第一主节点发送所述第一电芯状态信息;接收来自所述第一主节点的控制信息;
根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
可选的,该第一从控板中的处理器2202,还可以用于读取存储器2201中的程序并执行如图6所示的S600~S605中该第一从控板执行的方法流程;或执行如图8所示的S800~S807中该第一从控板执行的方法流程;或执行如图12所示的S1200~S1203中该第一从控板执行的方法流程;或执行如图14所示的S1400~S1403中该第一从控板执行的方法流程;或执行如图17所示的S1700~S1706中该第一从控板执行的方法流程。
在另一些实施例中,上述装置2200可以为上文方法实施例中的服务器装置或者服务器装置中的部件,例如芯片或者集成电路。该装置2200中的处理器2202用于读取所述存储器2201中存储的计算机程序,控制所述服务器装置执行以下操作:
接收分别来自多个终端的多个电芯主控信息,所述电芯主控信息对应所述终端的多个电芯或多个电芯组;根据所述多个电芯主控信息中的一个或多个,生成电池控制策略;将所述电池控制策略发送给所述多个终端中的第一终端。
可选的,该服务器装置中的处理器2202,还可以用于读取存储器2201中的程序并执行如图6所示的S600~S605中该服务器执行的方法流程;或执行如图8所示的S800~S807中该服务器执行的方法流程;或执行如图12所示的S1200~S1203中该服务器执行的方法流程;或执行如图14所示的S1400~S1403中该服务器执行的方法流程;或执行如图17所示的S1700~S1706中该服务器执行的方法流程。
关于具体细节,可参见上文方法实施例中的记载,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执 行上文实施例所描述的方法。
本申请实施例还提供一种芯片***,该芯片***包括至少一个处理器和接口电路。进一步可选的,所述芯片***还可以包括存储器或者外接存储器。所述处理器用于通过所述接口电路执行指令和/或数据的交互,以实现上文方法实施例中的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上文实施例所描述的方法。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、协处理器等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (38)

  1. 一种电池管理装置,其特征在于,所述电池管理装置包括主控单元以及主节点;
    所述主节点,用于接收来自第一从节点的第一电芯状态信息,所述第一电芯状态信息包括所述第一从节点对应的第一从控板管理的第一电芯的状态信息或者所述第一从节点对应的第一从控板管理的第一电芯组中部分或全部电芯的状态信息;
    所述主控单元,用于控制所述主节点向所述第一从节点发送控制信息,所述控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
  2. 根据权利要求1所述的电池管理装置,其特征在于,所述主控单元用于根据所述第一电芯状态信息控制所述主节点向所述第一从节点发送控制信息。
  3. 一种电池管理装置,其特征在于,所述电池管理装置包括第一从控单元以及第一从节点;
    所述第一从控单元获取第一电芯状态信息,所述第一电芯状态信息包括第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或所有电芯的状态信息;
    所述第一从控单元控制所述第一从节点向主节点发送所述第一电芯状态信息;
    所述第一从节点接收来自主节点的控制信息;
    所述第一从控单元,用于根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
  4. 根据权利要求3所述的电池管理装置,其特征在于,所述第一电芯状态信息来自第一传感器和/或第二传感器;
    其中,所述第一传感器位于所述第一电芯或所述第一电芯组的内部,所述第二传感器位于所述第一电芯或所述第一电芯组的外部。
  5. 一种电池管理***,包括主控板以及第一从控板,其特征在于:
    所述第一从控板,用于管理第一电芯或者第一电芯组,并且,用于向所述主控板发送第一电芯状态信息,所述第一电芯状态信息包括所述第一电芯的状态信息或者所述第一电芯组中部分或全部电芯的状态信息;
    所述主控板,用于向所述第一从控板发送第一控制信息,所述第一控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
  6. 根据权利要求5所述的电池管理***,其特征在于,所述电池管理***还包括第二从控板;
    所述第二从控板,用于管理第二电芯或者第二电芯组,并且,用于向所述主控板发送第二电芯状态信息,所述第二电芯状态信息包括所述第二电芯的状态信息或者所述第二电芯组中部分或全部电芯的状态信息。
  7. 根据权利要求5或6所述的电池管理***,其特征在于,所述第一电芯状态信息来自第一传感器和/或第二传感器;
    所述第一传感器,用于采集并向所述第一从控板上报所述第一电芯或所述第一电芯组的内部电芯状态信息;
    所述第二传感器,用于采集并向所述第一从控板上报所述第一电芯或所述第一电芯组的外部电芯状态信息。
  8. 根据权利要求7所述的电池管理***,其特征在于,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个;
    所述外部状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
  9. 根据权利要求7或8所述的电池管理***,其特征在于,所述第一从控板与所述第一传感器和/或所述第二传感器电性连接。
  10. 根据权利要求5~9中任一项所述的电池管理***,其特征在于,所述第一从控板与所述第一电芯或所述第一电芯组电性连接。
  11. 根据权利要求9或10所述的电池管理***,其特征在于,所述电性连接包括线束连接、柔性电路板FPC连接、印刷电路板PCB连接、针引脚PIN连接、接插件连接、焊接连接以及连接器连接中的一种或多种。
  12. 根据权利要求5~11中任一项所述的电池管理***,其特征在于,所述电池管理***还包括位于所述第一从控板的均衡模块;
    所述均衡模块,用于在满足均衡条件时,对所述第一从控板管理的至少一个电芯或电芯组执行均衡操作;
    所述均衡条件包括下列中的一个或多个:
    所述均衡模块接收到位于所述第一从控板的从控单元发送的均衡指令,所述均衡模块通过位于所述第一从控板的从节点接收到来自所述主控板的均衡指令,所述均衡模块基于获取到的所述第一电芯状态信息确定需要执行均衡操作。
  13. 根据权利要求5~12中任一项所述的电池管理***,其特征在于,所述主控板,还用于向电子开关发送开关指令以控制所述电子开关的打开或闭合,所述电子开关用于控制所述电池管理***所管理的电池***;
    所述电子开关包括主正继电器、主负继电器、主正金属氧化物半导体场效应晶体管以及主负金属氧化物半导体场效应晶体管中的一个或多个。
  14. 根据权利要求5~13中任一项所述的电池管理***,其特征在于,所述第一从控板还用于通过位于所述第一从控板上的第一报警模块,向所述主控板上报报警信息,所述报警信息用于指示所述第一电芯或者所述第一电芯组中的一个或多个电芯存在异常。
  15. 根据权利要求5~14中任一项所述的电池管理***,其特征在于,所述主控板还用于通过位于所述主控板上的第二报警模块,在确定接收或者处理得到的电芯状态信息满足报警条件时触发报警。
  16. 根据权利要求5~15中任一项所述的电池管理***,其特征在于,所述主控板,还用于将电芯主控信息发送给整车控制器,以使所述整车控制器根据所述电芯主控信息控制电池提示信息的输出,所述电池提示信息用于提示所述电池管理***所管理的电池***的状态。
  17. 根据权利要求16所述的电池管理***,其特征在于,所述电芯主控信息包括所述电池管理***所管理的电池***的第一信息,和/或第二信息,所述第二信息是基于所述第一信息得到的;
    所述第一信息包括下列所述电池***中的一个或多个信息:
    内部电芯状态信息、外部电芯状态信息、模组状态信息以及传感状态信息;
    所述第二信息包括下列所述电池***中的一个或多个信息:
    荷电状态、健康状态、安全状态、电量指示、功率、最高单体电芯温度、最低单体电芯温度、最高单体电芯电压、最低单体电芯电压、总电流、绝缘状态、报警信息、故障信息以及电子开关状态。
  18. 根据权利要求17所述的电池管理***,其特征在于,所述电池提示信息以声音信号、光信号或电信号中的一个或多个的方式输出。
  19. 根据权利要求17或18所述的电池管理***,其特征在于,所述电池提示信息包括所述第一信息,和/或第三信息,所述第三信息是基于所述第一信息得到的;
    所述第三信息包括所述第二信息中的一个或多个信息,和/或,包括下列所述电池***的一个或多个信息:
    动态能耗、预计剩余可行驶里程、预计剩余可行驶时间、预计剩余充电时间。
  20. 根据权利要求16~19中任一项所述的电池管理***,其特征在于,所述主控板还用于向云端服务器发送所述电芯主控信息,并接收来自所述云端服务器的电池控制策略。
  21. 根据权利要求6~20中任一项所述的电池管理***,其特征在于,所述主控板与所述第一从控板、所述第二从控板之间通过无线方式进行通信。
  22. 根据权利要求13~21中任一项所述的电池管理***,其特征在于,所述主控板与所述电子开关之间通过无线或有线方式进行通信。
  23. 根据权利要求21或22所述的电池管理***,其特征在于,所述无线通信方式包括蓝牙通信、紫蜂、无线保真、红外、射频、近场通信、超宽带技术、无线局域网、60GHz无线通信技术、可见光通信技术、自组网技术中一种或者多种。
  24. 一种服务器装置,其特征在于,所述服务器装置包含通信单元以及处理单元;
    所述通信单元,用于接收分别来自多个终端的多个电芯主控信息,所述电芯主控信息对应所述终端的多个电芯或多个电芯组;
    所述处理单元,用于根据所述多个电芯主控信息中的一个或多个,生成电池控制策略;
    所述通信单元,用于将所述电池控制策略发送给所述多个终端中的第一终端。
  25. 一种控制设备,其特征在于,所述控制设备包含通信单元以及处理单元;
    所述通信单元,用于接收来自服务器装置发送的电池控制策略;
    所述处理单元,用于根据所述电池控制策略完成策略更新。
  26. 根据权利要求25所述的控制设备,其特征在于,所述控制设备包括从控板、主控板,或者中继设备中的一个或者多个;
    所述中继设备包括整车控制器、无线网关、无线接入网设备以及路侧单元中的一个或者多个。
  27. 一种电池管理方法,其特征在于,所述方法包括:
    主控板接收来自第一从控板的第一电芯状态信息,所述第一电芯状态信息包括所述第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或全部电芯的状态信息;
    所述主控板基于所述第一电芯状态信息,向所述第一从控板发送控制信息,所述控制信息用于所述第一从控板管理所述第一电芯或所述第一电芯组。
  28. 根据权利要求27所述的方法,其特征在于,所述第一电芯状态信息包括通过第一传感器采集的所述第一电芯或所述第一电芯组的内部电芯状态信息,通过第二传感器采集的所述第一电芯或所述第一电芯组的外部电芯状态信息中的一种或多种。
  29. 根据权利要求28所述的方法,其特征在于,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解液、内阻以及应力中的一个或多个;
    所述外部电芯状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
  30. 根据权利要求27~29中任一项所述的方法,其特征在于,所述方法还包括:
    所述主控板向电子开关发送开关指令以控制所述电子开关的打开或闭合,所述电子开关用于控制所述电池管理***所管理的电池***高压电路的断开或者连接;
    所述电子开关包括主正继电器、主负继电器、主正金属氧化物半导体场效应晶体管以及主负金属氧化物半导体场效应晶体管中的一个或多个。
  31. 根据权利要求27~30中任一项所述的方法,其特征在于,所述方法还包括:
    所述主控板接收来自所述第一从控板发送的报警信息,所述报警信息用于指示所述第一电芯或者所述第一电芯组中的一个或多个电芯存在异常;
    所述主控板根据所述报警信息,向所述第一从控板发送所述控制信息。
  32. 根据权利要求27~31中任一项所述的方法,其特征在于,所述方法还包括:
    所述主控板在确定接收或者处理得到的电芯状态信息满足报警条件时触发报警;
    所述报警条件用于指示所述主控板接收或者处理得到的一个或多个电芯状态信息超过或者低于对应电芯状态信息设定的阈值。
  33. 根据权利要求27~32中任一项所述的方法,其特征在于,所述方法还包括:
    所述主控板根据接收到的电芯状态信息确定电芯主控信息;
    所述主控板将所述电芯主控信息发送给整车控制器,以使所述整车控制器根据所述电芯主控信息控制电池提示信息的输出,所述电池提示信息用于提示所述电池管理***所管理的电池***的状态。
  34. 一种电池管理方法,其特征在于,所述方法包括:
    第一从控板获取第一电芯状态信息,所述第一电芯状态信息包括第一从控板管理的第一电芯的状态信息或者所述第一从控板管理的第一电芯组中部分或所有电芯的状态信息;
    所述第一从控板控制所述第一从节点向第一主节点发送所述第一电芯状态信息;
    所述第一从节点接收来自所述第一主节点的控制信息;
    所述第一从控板根据所述控制信息,管理所述第一电芯或所述第一电芯组中的一个或多个电芯。
  35. 根据权利要求34所述的方法,其特征在于,所述第一电芯状态信息包括通过第一传感器采集的所述第一电芯或所述第一电芯组的内部电芯状态信息,通过第二传感器采集的所述第一电芯或所述第一电芯组的外部电芯状态信息中的一种或多种。
  36. 根据权利要求35所述的方法,其特征在于,所述内部电芯状态信息包括电芯或电芯组的内部温度、内部气体种类、气压、气体浓度、电压、电流、电芯正极极片的电位、电芯负极极片的电位、电解 液、内阻以及应力中的一个或多个;
    所述外部电芯状态信息包括电芯或电芯组的外部温度、电压、电流、应力、气体种类、气压、气体浓度、电解液、烟感以及内阻中的一个或多个。
  37. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    所述第一从控板在确定接收或者处理得到的电芯状态信息满足报警条件时,向所述主控板上报报警信息;
    所述报警信息用于指示所述第一电芯或者所述第一电芯组中的一个或多个电芯存在异常。
  38. 一种终端设备,其特征在于,包括程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求27~33中任一所述的方法;或执行如权利要求34~37中任一项。
PCT/CN2023/111762 2022-08-17 2023-08-08 一种电池管理方法、装置及*** WO2024037382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210988834.2 2022-08-17
CN202210988834.2A CN117621913A (zh) 2022-08-17 2022-08-17 一种电池管理方法、装置及***

Publications (1)

Publication Number Publication Date
WO2024037382A1 true WO2024037382A1 (zh) 2024-02-22

Family

ID=89940703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111762 WO2024037382A1 (zh) 2022-08-17 2023-08-08 一种电池管理方法、装置及***

Country Status (2)

Country Link
CN (1) CN117621913A (zh)
WO (1) WO2024037382A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207683370U (zh) * 2017-12-08 2018-08-03 延锋伟世通电子科技(南京)有限公司 一种基于菊花链式级联通讯的电动汽车电池管理***
CN209860100U (zh) * 2019-05-28 2019-12-27 北京长城华冠汽车科技股份有限公司 一种电动汽车的电池组件和电动汽车
CN110677445A (zh) * 2018-07-03 2020-01-10 富春 动态分配电池模组的方法和相应的服务器
CN112670606A (zh) * 2020-12-23 2021-04-16 重庆峘能电动车科技有限公司 电池包及电动汽车
DE202021105689U1 (de) * 2021-10-19 2021-11-11 Punit Kumar Dwivedi Intelligentes System zur Verbesserung des Zustands der Batterien von Elektrofahrzeugen durch maschinelles Lernen und künstliche Intelligenz
CN114069782A (zh) * 2021-11-15 2022-02-18 山东盛荣新能源科技有限公司 一种锂电容器的电源控制***及控制方法
CN116600371A (zh) * 2022-02-07 2023-08-15 华为技术有限公司 一种通信方法、装置及***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207683370U (zh) * 2017-12-08 2018-08-03 延锋伟世通电子科技(南京)有限公司 一种基于菊花链式级联通讯的电动汽车电池管理***
CN110677445A (zh) * 2018-07-03 2020-01-10 富春 动态分配电池模组的方法和相应的服务器
CN209860100U (zh) * 2019-05-28 2019-12-27 北京长城华冠汽车科技股份有限公司 一种电动汽车的电池组件和电动汽车
CN112670606A (zh) * 2020-12-23 2021-04-16 重庆峘能电动车科技有限公司 电池包及电动汽车
DE202021105689U1 (de) * 2021-10-19 2021-11-11 Punit Kumar Dwivedi Intelligentes System zur Verbesserung des Zustands der Batterien von Elektrofahrzeugen durch maschinelles Lernen und künstliche Intelligenz
CN114069782A (zh) * 2021-11-15 2022-02-18 山东盛荣新能源科技有限公司 一种锂电容器的电源控制***及控制方法
CN116600371A (zh) * 2022-02-07 2023-08-15 华为技术有限公司 一种通信方法、装置及***

Also Published As

Publication number Publication date
CN117621913A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
EP3648234A1 (en) Wireless battery management apparatus and battery pack including same
US9721447B2 (en) Display of rechargeable battery charge notification
US20230092994A1 (en) Load sharing between wireless earpieces
CN105652124A (zh) 一种基于Labview的汽车电池管理测试***及方法
CN110896158B (zh) 电池管理***、电池管理单元和待管理单元
CN107634277A (zh) 一种基于无线通讯电芯的汽车云端电池管理***
WO2023004562A1 (zh) 充放电交互方法、充放电装置、云端服务器、***及介质
WO2024037382A1 (zh) 一种电池管理方法、装置及***
CN109808498A (zh) 一种基于红外传输的电池***智能控制方法
CN105229553A (zh) 用于在输入连接器和输出连接器之间不加以区分的情况下构造菊花链通信网络的通信终端
US20130110260A1 (en) Control system for electricity transfer device and related systems and methods
WO2020215583A1 (zh) 一种电池组监控***及方法
CN207199787U (zh) 一种基于无线通讯电芯的汽车云端电池管理***
CN114734938A (zh) 一种含有多种储能装置的电量管理方法、装置、车辆及存储介质
KR102433850B1 (ko) Bms 인식 시스템 및 방법
CN207542806U (zh) 一种基于fpga的电池管理***
WO2015126225A1 (ko) 주파수 변조를 이용하여 식별자를 설정하는 배터리 관리 유닛 및 방법
WO2023206494A1 (zh) 电池管理设备、用电装置和电池
CN214098671U (zh) 车辆
WO2023206481A1 (zh) 通信的方法和装置
CN116365068B (zh) 大型分布式储能电池多组态并存通讯控制方法、装置
WO2024139927A1 (zh) 供电连接装置、供电控制方法及相关装置
WO2023206507A1 (zh) 电池管理设备的无线连接控制方法、装置和电池管理设备
US11904723B1 (en) Vehicle to external load charger
CN118269703A (zh) 供电连接装置、供电控制方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854285

Country of ref document: EP

Kind code of ref document: A1