WO2024037182A1 - 电子变压器及其三相四线电源*** - Google Patents

电子变压器及其三相四线电源*** Download PDF

Info

Publication number
WO2024037182A1
WO2024037182A1 PCT/CN2023/101967 CN2023101967W WO2024037182A1 WO 2024037182 A1 WO2024037182 A1 WO 2024037182A1 CN 2023101967 W CN2023101967 W CN 2023101967W WO 2024037182 A1 WO2024037182 A1 WO 2024037182A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
rectifier
phase power
coupled
phase
Prior art date
Application number
PCT/CN2023/101967
Other languages
English (en)
French (fr)
Inventor
陈思维
郭文皓
Original Assignee
台达电子工业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台达电子工业股份有限公司 filed Critical 台达电子工业股份有限公司
Publication of WO2024037182A1 publication Critical patent/WO2024037182A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/068Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode mounted on a transformer

Definitions

  • the present disclosure relates to an electronic transformer, and in particular to an electronic transformer and its three-phase four-wire power supply system.
  • An electronic transformer or coil transformer is a device that combines power electronic conversion technology and high-frequency power conversion technology based on the principle of electromagnetic induction to convert electrical energy with one power characteristic into electrical energy with another power characteristic.
  • existing coil-type transformers have shortcomings such as high heat consumption, high power consumption, difficulty in installation, low efficiency, and inconvenient transportation.
  • the industry is committed to developing a miniaturized electronic transformer that can replace the existing coil transformer.
  • One aspect of the disclosure is an electronic transformer, including a first forward rectifier, a second forward rectifier, a third forward rectifier and a reverse rectifier.
  • the first forward rectifier is coupled between a first-phase power supply and a first output terminal;
  • the second forward rectifier is coupled between a second-phase power supply and the first output terminal;
  • the third forward rectifier is coupled between a second-phase power supply and the first output terminal.
  • the forward rectifier is coupled between a third-phase power supply and the first output terminal; and the reverse rectifier is coupled between a neutral line and a second output terminal; wherein the first forward rectifier, the second The forward rectifier and the third forward rectifier are configured to perform half-wave rectification on the first phase power supply, the second phase power supply and the third phase power supply to generate a rectified first phase power supply, a rectified third phase power supply.
  • the two-phase power supply and the rectified third-phase power supply, and the rectified first-phase power supply, the rectified second-phase power supply, and the rectified third-phase power supply are superimposed on the first output end, so as to as the output voltage of the electronic transformer.
  • a three-phase four-wire power supply system including a power supply, a load and the electronic transformer as described above.
  • the power supply is configured to provide a first phase power supply, a second phase power supply and a third phase power supply and includes a neutral wire; and the electronic transformer is coupled to Between the power supply and the load, it is configured to convert the first phase power, the second phase power and the third phase power into an output voltage to the load.
  • the electronic transformer and its three-phase four-wire power supply system of the present disclosure perform half-wave rectification on the three-phase power supply through three forward rectifiers to generate distributed and balanced output current at the first output end.
  • the return current generated by the load is rectified by the reverse rectifier and then returned to the power supply through the neutral line, so that a complete current loop is formed between the power supply, the electronic transformer and the load, and the forward output current and the reverse return current are
  • the operation is symmetrical and balanced, which improves the operating efficiency of the three-phase four-wire power system. Therefore, the present disclosure solves the problem of certain components quickly becoming damaged due to unbalanced current distribution.
  • the present disclosure does not need to be configured into a three-phase three-wire structure for use in subsequent-stage products.
  • the electronic voltage converter of the present disclosure is more streamlined in design than a traditional electronic transformer.
  • the disclosed electronic transformer and its three-phase four-wire power supply system have the following advantages: (1) stable output voltage; (2) distributed balanced output current; (3) streamlined circuit design, smaller layout area and cost ; and (4) the operating temperature is stable and does not increase over time.
  • Figure 1 is a schematic diagram of a three-phase four-wire power supply system
  • Figure 2 is a waveform diagram of the three-phase input voltage and three node voltages of the electronic transformer in Figure 1;
  • Figure 3 is a waveform diagram of the output current at the first output end of the electronic transformer of Figure 1;
  • Figure 4 is a schematic diagram of a three-phase four-wire power supply system according to an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of an electronic transformer according to an embodiment of the present disclosure.
  • Figure 6 is an output voltage waveform diagram of the electronic transformer shown in Figure 5;
  • Figure 7 is an output current waveform diagram of the electronic transformer shown in Figure 5;
  • Figure 8 is a temperature change diagram of the electronic transformer shown in Figure 5 under operating conditions of 100% load and 150% load;
  • Figure 9 is a schematic diagram of an electronic transformer according to an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of an electronic transformer according to an embodiment of the present disclosure.
  • Figure 11 is a schematic layout diagram of the electronic transformer and three-phase four-wire power system shown in Figure 10.
  • Embodiments of the present disclosure are discussed in detail below. However, it will be appreciated that embodiments provide many Applicable concepts that can be implemented in a wide variety of specific contexts.
  • FIG. 1 is a schematic diagram of a three-phase four-wire power supply system (hereinafter referred to as the system) 1.
  • System 1 includes a power supply VS, an electronic transformer 10 and a load LD.
  • the power supply VS transmits the three-phase power R, S, and T to the electronic transformer 10 through three live wires respectively.
  • the electronic transformer 10 rectifies the first phase power supply R, the second phase power supply S and the third phase power supply T through three bridge rectifiers respectively to supply power to the load LD.
  • the electronic transformer 10 includes a bridge transformer circuit at the front stage and a six-phase inverter at the rear stage.
  • the bridge transformer circuit is used to rectify and convert the first phase power supply R, the second phase power supply S, and the third phase power supply T; after the nodes L1, L2, and L3 , the six-phase inverter performs secondary rectification; the capacitor 15 is connected between the first output terminal OUT1 and the second output terminal OUT2 to store energy and filter the rectified voltage to smooth (i.e., filter) the voltage is supplied to the load LD.
  • the design of the bridge transformer circuit causes unbalanced voltage distribution.
  • the two bridge rectifiers receiving the first phase power supply R and the second phase power supply S are both connected to the node L1; the bridge rectifier receiving the third phase power supply T is connected to the node L2; and the neutral line N is directly connected. to node L3. Therefore, the conversion voltage from the first-phase power supply R and the second-phase power supply S is simultaneously transmitted to the six-phase inverter through the node L1; the conversion voltage from the third-phase power supply T is transmitted to the six-phase inverter through the node L2; and The neutral wire N is connected to the six-phase inverter through node L3, however the power supply VS does not provide any energy to the neutral wire N.
  • FIG. 2 is a voltage waveform diagram of the three-phase power supplies R, S, T and nodes L1, L2, and L3 of the electronic transformer 10 of FIG. 1 .
  • the three-phase power sources R, S, and T are AC voltages of equal magnitude, frequency, and phase difference of 120 degrees.
  • the line voltage may be, for example, 380 volts, and the phase voltage may be, for example, 220 volts, but is not limited thereto. Since the converted voltages from the first-phase power supply R and the second-phase power supply S are transmitted through the node L1 at the same time, the node L1 carries twice as much current stress. Since the converted voltage from the third phase power supply T is delivered through node L2, node L2 carries normal current stress. Since the power supply VS does not provide energy to the neutral line N, the voltage at node L3 is Reverse voltage from load LD. As can be seen from Figure 2, the voltages and currents distributed at nodes L1, L2, and L3 are unbalanced.
  • FIG. 3 is a current waveform diagram at the first output terminal OUT1 of the electronic transformer 10 of FIG. 1 .
  • the currents I31, I32, and I33 are the currents flowing from the nodes L1, L2, and L3 to the output terminal OUT1 through the diodes respectively.
  • the current I31 is generated according to the conversion voltage of the first phase power supply R and the second phase power supply S, so it has a two-phase sawtooth wave
  • the current I32 is generated according to the conversion voltage of the third phase power supply T. , so it has a one-phase sawtooth wave
  • the current I33 is generated according to the conversion voltage of the neutral line N, so it is maintained at zero current without any one-phase sawtooth wave.
  • the electronic transformer 10 has a problem of current imbalance in operation.
  • specific components used to generate the current I31 generate heat and increase in temperature because they encounter large currents more frequently, causing the specific components to be damaged faster than other components.
  • the electronic transformer 10 in FIG. 1 needs to be configured with many electronic components, so it requires a larger layout area.
  • FIG. 4 is a schematic diagram of a three-phase four-wire power supply system 4 according to an embodiment of the present disclosure.
  • the three-phase four-wire power supply system 4 includes a power supply VS, an electronic transformer 40 and a load LD.
  • the electronic transformer 40 is coupled between the power supply VS and the load LD, and is used to receive and rectify and convert the first phase power R, the second phase power S and the third phase power T from the power supply VS, and store them through the capacitor. It can supply power to the load LD after filtering.
  • the electronic transformer 40 includes a first forward rectifier 41 , a second forward rectifier 42 , a third forward rectifier 43 , a reverse rectifier 44 and a capacitor 45 .
  • the first forward rectifier 41 is coupled between the first phase power supply R of the power supply VS and the first output terminal OUT1;
  • the second forward rectifier 42 is coupled between the second phase power supply S and the first phase power supply S of the power supply VS. between the output terminal OUT1;
  • the third forward rectifier 43 is coupled between the third phase power supply T of the power supply VS and the first output terminal OUT1;
  • the reverse rectifier 44 is coupled between the neutral line N and the neutral line N of the power supply VS. between the second output terminal OUT2.
  • the capacitor 45 is connected between the first output terminal OUT1 and the second output terminal OUT2.
  • the second output terminal OUT2 is grounded.
  • the first forward rectifier 41 , the second forward rectifier 42 and the third forward rectifier 43 are configured to perform half-wave rectification on the first phase power supply R, the second phase power supply S and the third phase power supply T respectively.
  • Generate rectified first-phase power supply R', rectified second-phase power supply S' and rectified third-phase power supply T', and convert the rectified first-phase power supply R', rectified second-phase power supply S' and the rectified third-phase power supply T' are superimposed on the first output terminal OUT1.
  • Capacitor 45 is used for smoothing (i.e., filtering wave) is superimposed on the voltage at the first output terminal OUT1 to be used as the output voltage Vdc and provided to the load LD.
  • the electronic transformer 40 and its three-phase four-wire power supply system 4 of the present disclosure solve the problem that certain components are quickly damaged because they encounter large currents more frequently (ie, unbalanced current distribution).
  • the return current Ire generated in the load LD further flows into the electronic transformer 40 through the second output terminal OUT2.
  • the reverse rectifier 44 is configured to perform half-wave rectification on the return current Ire to generate a rectified return current Ire', which is transmitted back to the power supply VS through the neutral line N.
  • the electronic transformer 40 performs half-wave conversion on the first phase power supply R, the second phase power supply S, and the third phase power supply T through the first forward rectifier 41, the second forward rectifier 42, and the third forward rectifier 43 respectively. Rectify, and superimpose the rectified first-phase power supply R', the rectified second-phase power supply S' and the rectified third-phase power supply T' at the first output terminal OUT1, and then smooth them through the capacitor 45 (i.e., Filter) The voltage superimposed on the first output terminal OUT1 is used as the output voltage Vdc and is provided to the load LD.
  • the reverse rectifier 44 performs half-wave rectification on the return current Ire generated by the load LD, and transmits the rectified return current Ire' through the neutral line N back to the power supply VS.
  • the three-phase power supplies R, S, and T generated by the power supply VS are rectified respectively by the three forward rectifiers 41, 42, and 43 of the electronic transformer 40, and then collected into the output current Iout through the first output terminal OUT1. And flows into the load LD; then, the return current Ire generated by the load LD is rectified by the reverse rectifier 44 of the electronic transformer 40, and then returns to the power supply VS through the neutral line N.
  • a complete current loop is formed between the power supply VS, the electronic transformer 40 and the load LD, and the operation of the forward output current Iout and the reverse return current Ire is symmetrical and balanced, which can improve the three-phase four-wire Operating efficiency of power system 4.
  • FIG. 5 is a schematic diagram of an electronic transformer 50 according to an embodiment of the present disclosure.
  • the electronic transformer 50 can be used in the three-phase four-wire power supply system 4 of FIG. 4 and replaces the electronic transformer 40 .
  • the electronic transformer 50 includes a first forward rectifier 51 , a second forward rectifier 52 , a third forward rectifier 53 , a reverse rectifier 54 and a capacitor 55 .
  • the first forward rectifier 51 includes diodes D1 and D2; the second forward rectifier 52 includes diodes D3 and D4; the third forward rectifier 53 includes diodes D5 and D6; and the reverse rectifier 54 includes diodes D7 and D8.
  • each rectifier 51, 52, 53, 54 includes two diodes connected in parallel (for example, the diodes D1 and D2 in the rectifier 51 are connected in parallel).
  • the cathode of each diode D1 and D2 in the first forward rectifier 51 is coupled to the first phase power supply R; the cathode of each diode D3 and D4 in the second forward rectifier 52 is coupled to the second phase power supply S; the third forward rectifier 52 has a cathode coupled to the second phase power supply S.
  • each diode D5 and D6 in the rectifier 53 are coupled to the third-phase power supply T; and each of the diodes D1, D2, D3, The anodes of D4, D5 and D6 are coupled to the first output terminal OUT1.
  • the anode of each diode D7 and D8 in the flyback rectifier 54 is coupled to the neutral line N, and the cathode of each diode D7 and D8 in the flyback rectifier 54 is coupled to the second output terminal OUT2.
  • the capacitor 55 is connected between the first output terminal OUT1 and the second output terminal OUT2.
  • each rectifier 51, 52, 53, 54 has K identical diodes D1, D2,..., DK, then the total current I_TOTAL of these K diodes D1, D2,..., DK after being connected in parallel is
  • the power P_TOTAL and total resistance R_TOTAL can be used with the following functions (1), (2),
  • the currents I_D1, I_D2,..., I_DK flowing through the diodes D1, D2,...DK respectively are all I_D
  • the resistivities of the diodes D1, D2,..., DK are all R_D.
  • the total power P_TOTAL is inversely proportional to the number of diodes K (because the total current remains unchanged). In other words, the total power loss of the rectifier will decrease as the number K of diodes connected in parallel increases.
  • the two currents corresponding to the number K of 5 and 6 have a difference of 3%.
  • the decline is no longer significant.
  • the number K of diodes connected in parallel in each rectifier 51 , 52 , 53 , 54 may be 2 to 5.
  • the electronic transformer 40 shown in FIG. 4 is configured with fewer electronic components. components, so the layout area can be saved.
  • each of the diodes D1, D2, D3, D4, D5, D6, D7, D8 is a PN junction diode or a high-speed rectifier diode.
  • FIG. 6 is a waveform diagram of the output voltage Vdc of the electronic transformer 50 shown in FIG. 5 .
  • the output voltage is still relatively stable and has advantages over the traditional electronic transformer after two-stage rectification by selecting a suitable energy storage filter capacitor 55.
  • FIG. 7 is a waveform diagram of the output current Iout of the electronic transformer 50 shown in FIG. 5 , in which the currents I71, I72, and I73 are the currents output by the forward rectifiers 51, 52, and 53 respectively.
  • the currents I71, I72, and I73 are gathered at the first output terminal OUT1 to form the output current Iout of the electronic transformer 50. It can be seen from FIG. 7 that because the three-phase power supplies R, S, and T are balanced and half-wave rectified by the forward rectifiers 51, 52, and 53, balanced distribution of currents I71, I72, and I73 can be generated. Therefore, the electronic transformer 50 of the present disclosure solves the problem that certain components are quickly damaged because they encounter large currents more frequently (ie, unbalanced current distribution).
  • FIG. 8 is a temperature change diagram of the electronic transformer 50 shown in FIG. 5 under operating conditions of 100% load and 150% load, in which curves 81 and 82 respectively correspond to the temperature changes of 100% load and 150% load.
  • the temperature of the electronic transformer 50 can be maintained at a specific temperature. range (e.g. 71 degrees Celsius to 77 degrees Celsius) without gradually increasing over time.
  • the temperature of the electronic transformer 50 can be maintained within a specific range (eg, 78 degrees Celsius to 84 degrees Celsius) without gradually increasing over time. Therefore, the electronic transformer 50 of the present disclosure has the advantage that the temperature is stable and does not increase over time.
  • test conditions and results of the electronic transformer 50 can be summarized in Table 2 below.
  • FIG. 9 is a schematic diagram of an electronic transformer 90 according to an embodiment of the disclosure.
  • Electronic transformer 90 can It is used in the three-phase four-wire power supply system 4 of Figure 4 and replaces the electronic transformer 40.
  • the electronic transformer 90 includes a first forward rectifier 91 , a second forward rectifier 92 , a third forward rectifier 93 , a reverse rectifier 94 and a capacitor 95 .
  • the first forward rectifier 91 includes a diode D91;
  • the second forward rectifier 92 includes a diode D92;
  • the third forward rectifier 93 includes a diode D93; and the reverse rectifier 94 includes diodes D94, D95, and D96.
  • the ratio of the number of diodes included in a forward rectifier and a reverse rectifier is 1:3. That is, the first forward rectifier, the second forward rectifier and the third forward rectifier each include K diodes connected in parallel, and the reverse rectifier includes 3 groups of K diodes connected in parallel.
  • the forward rectifier 91 (or 92, 93) includes one diode D91 (or D92, D93), and the reverse rectifier 94 includes three diodes D94, D95, D96, so the ratio of the number of diodes is 1:3.
  • the number of diodes included in the three forward rectifiers 91, 92, and 93 is equal to the number of diodes included in the one reverse rectifier 94 (i.e., the three reverse-biased diodes).
  • Biased diodes D94, D95, D96 are equal to the number of diodes included in the three forward rectifiers 91, 92, and 93 (i.e., the three forward-biased diodes D91, D92, D93).
  • the average current flowing through the three forward diodes D94, D95, and D96 is (1/3)*Iout, and the average current flowing through the three reverse diodes D94, D95, and D96 The currents are (1/3)*Ire respectively. Therefore, the output current Iout is balancedly distributed among the three forward-biased diodes D94, D95, and D96, and the return current Ire is also balancedly distributed among the three reverse-biased diodes D94, D95, and D96. This solves the problem that specific components encounter more frequently.
  • the operating temperature of the electronic transformer 90 can be made more stable to avoid the problem that certain components will be damaged quickly due to large current (ie, unbalanced current distribution).
  • the forward rectifiers 91 , 92 , and 93 each include two diodes connected in parallel, and the reverse rectifier 94 includes six diodes connected in parallel, and so on.
  • FIG. 10 is a schematic diagram of an electronic transformer 99 according to an embodiment of the present disclosure.
  • Electronic transformers 99 and 90 include the same components, and the connection relationships between the components are also the same.
  • the difference between electronic transformers 99 and 90 is that diodes D91 and D94, D92 and D95, D93 and D96 are arranged adjacently.
  • diodes D91 and D94, D92 and D95, D93 and D96 are arranged adjacently.
  • the magnitude and direction of the forward current (1/3)*Iout and the reverse current (1/3)*Ire are opposite and equal.
  • a forward diode and a reverse diode pole When the tubes and their lines are arranged adjacently, they form a differential pair, which can improve the energy transmission efficiency of the three-phase power supply.
  • FIG. 11 is a schematic layout diagram of the electronic transformer 99 and the three-phase four-wire power supply system 11 shown in FIG. 10 .
  • the three-phase four-wire power supply system 11 includes a circuit board 110 formed on the XY plane; the circuit board 110 includes a first surface SF1 and a second surface SF2.
  • the live wires of the two-phase power supply S and the third-phase power supply T (not shown) and the load LD are arranged on the first surface SF1, and the diode D94 of the reverse rectifier 94 (the diodes D95 and D96 are not shown) and the neutral wire N are arranged on the first surface SF1. on the second surface SF2.
  • a first through hole 111 is formed in the circuit board 110, extends along the Z direction, and is configured to connect the power supply VS and the neutral line N.
  • a second through hole 112 is formed in the circuit board 110, extends along the Z direction, and is configured to connect the load LD and the neutral line N.
  • a connector can be provided on the circuit board 110 to connect to the power supply VS, and another connector can be provided on the circuit board 110 to connect to the load LD, so the power supply VS and the load LD can be external devices. .
  • the projection of the live wires and forward diodes (including D91, D92, D93) disposed on the first surface SF1 for transmitting the three-phase power R, S, and T on the XY plane are the same as those disposed on the second surface
  • the projections of the neutral line N of SF2 and the reverse diodes (including D94, D95, and D96) on the XY plane overlap with each other.
  • the area of the current loop CL is approximately the thickness of the circuit board 110 along the Z direction and the line length of the neutral line N (or live wire) along the X direction, so that the area of the current loop CL is approximately the minimum value, so that Minimize the electromagnetic radiation (ie energy loss) generated by the current loop CL.
  • the circuit board 110 when the circuit board 110 is a multi-layer board (for example, four layers, six layers or more), at least one of the live wires and the neutral wire N used to transmit the three-phase power supplies R, S, T One can be formed on the inner layer of the circuit board 110, which can further reduce the area of the current loop CL, or electromagnetic shielding can be achieved through the surface layer of the circuit board 110 to reduce the generation of the current loop CL. electromagnetic radiation (i.e. energy loss).
  • electromagnetic radiation i.e. energy loss
  • the electronic transformer and its three-phase four-wire power supply system of the present disclosure perform half-wave rectification of the three-phase power supply through three forward rectifiers to generate a distributed and balanced output current at the first output end. Therefore, the present disclosure solves the problem of certain components being damaged quickly because they encounter large currents more frequently (ie, unbalanced current distribution).
  • the return current generated by the load is rectified by the reverse rectifier and then returned to the power supply through the neutral line, so that a complete current loop is formed between the power supply, the electronic transformer and the load, and the forward output current and the reverse return current are
  • the operation is symmetrical and balanced, which improves the operating efficiency of the three-phase four-wire power system.
  • the disclosed electronic transformer and its three-phase four-wire power supply system have the following advantages: (1) stable output voltage; (2) distributed balanced output current; (3) streamlined circuit design, smaller layout area and cost ; and (4) the operating temperature is stable and does not increase over time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ac-Ac Conversion (AREA)
  • Rectifiers (AREA)

Abstract

一种电子变压器及其三相四线电源***,所述电子变压器包含第一顺向整流器、第二顺向整流器、第三顺向整流器及逆向整流器。第一顺向整流器耦接于第一相电源与第一输出端之间。第二顺向整流器耦接于第二相电源与第一输出端之间。第三顺向整流器耦接于第三相电源与第一输出端之间。逆向整流器耦接于中性线与第二输出端之间。第一顺向整流器、第二顺向整流器和第三顺向整流器配置以对第一相电源、第二相电源和第三相电源进行半波整流以产生整流后的第一至第三相电源,并将整流后的第一至第三相电源叠加在第一输出端,以作为电子变压器的输出电压。

Description

电子变压器及其三相四线电源*** 技术领域
本揭示涉及一种电子变压器,尤其涉及一种电子变压器及其三相四线电源***。
背景技术
电子变压器或线圈式变压器是一种结合电力电子变换技术与基于电磁感应原理的高频电能变换技术,实现将一种电力特征的电能变换为另一种电力特征的电能的设备。然而,在三相交流电压转换至直流电压方面,现有线圈式变压器具有高耗热、高耗电、安装困难、效率低、及运输不便等缺点。有鉴于此,业界正致力于开发一种可取代现有线圈式变压器的小型化电子变压器。
发明内容
本揭示的一方面是指一种电子变压器,包含一第一顺向整流器、一第二顺向整流器、一第三顺向整流器以及一逆向整流器。该第一顺向整流器耦接于一第一相电源与一第一输出端之间;该第二顺向整流器耦接于一第二相电源与该第一输出端之间;该第三顺向整流器耦接于一第三相电源与该第一输出端之间;以及该逆向整流器,耦接一中性线与一第二输出端之间;其中该第一顺向整流器、该第二顺向整流器和该第三顺向整流器配置以对该第一相电源、该第二相电源和该第三相电源进行半波整流以产生一整流后的第一相电源、一整流后的第二相电源和一整流后的第三相电源,并将该整流后的第一相电源、该整流后的第二相电源和该整流后的第三相电源叠加在该第一输出端,以作为该电子变压器的输出电压。
本揭示的另一方面是指一种三相四线电源***,包含一电源供应器、一负载以及如上所述的电子变压器。该电源供应器配置以提供一第一相电源、一第二相电源和一第三相电源,并包含一中性线;以及该电子变压器耦接于 该电源供应器与该负载之间,配置以将该第一相电源、该第二相电源和该第三相电源转换为一输出电压至该负载。
本揭示的电子变压器及其三相四线电源***通过三个顺向整流器分别对三相电源进行半波整流,以在第一输出端产生分配平衡的输出电流。此外,负载产生的回返电流通过逆向整流器整流后,通过中性线回返到电源供应器,使得电源供应器、电子变压器与负载之间构成了完整的电流回路,且顺向输出电流和逆向回返电流的操作是对称且平衡的,如此可提高三相四线电源***的操作效率。因此,本揭示解决了因为电流分配不平衡而导致特定元件很快就损坏的问题。再者,本揭示不需为了后级产品使用而配置成三相三线结构,本揭示的电子电压器相较于传统电子变压器的设计更为精简。本揭示的电子变压器及其三相四线电源***具备了以下优势:(1)稳定的输出电压;(2)分配平衡的输出电流;(3)精简的电路设计、较小的布局面积与成本;以及(4)操作温度稳定且不随时间积累而攀升。
附图说明
图1为三相四线电源***的示意图;
图2为图1的电子变压器的三相输入电压和三个节点电压波形图;
图3为图1的电子变压器在第一输出端的输出电流波形图;
图4为依据本揭示实施例的三相四线电源***的示意图;
图5为依据本揭示实施例的电子变压器的示意图;
图6为图5所示的电子变压器的输出电压波形图;
图7为图5所示的电子变压器的输出电流波形图;
图8为图5所示的电子变压器在100%负载和150%负载的操作条件下的温度变化图;
图9为依据本揭示实施例的电子变压器的示意图;
图10为依据本揭示实施例的电子变压器的示意图;
图11为图10所示的电子变压器和三相四线电源***的布局示意图。
具体实施方式
以下仔细讨论本揭示的实施例。然而,可以理解的是,实施例提供许多 可应用的概念,其可实施于各式各样的特定内容中。
图1为三相四线电源***(以下简称***)1的示意图。***1包含电源供应器VS、电子变压器10以及负载LD。电源供应器VS分别通过三条火线传送三相电源R、S、T至电子变压器10。电子变压器10通过三个桥式整流器分别对第一相电源R、第二相电源S和第三相电源T进行整流,以对负载LD供电。电子变压器10包含前级的桥式变压电路和后级的六相逆变器。在操作上,在节点L1、L2、L3之前,桥式变压电路用以对第一相电源R、第二相电源S和第三相电源T进行整流转换;在节点L1、L2、L3之后,六相逆变器进行二次整流;电容15连接于第一输出端OUT1与第二输出端OUT2之间,用以储能并滤波整流后的电压,以将平滑化(即,滤波)后的电压提供至负载LD。
然而,在电子变压器10中,桥式变压电路的设计引起了电压分配不平衡的现象。具体而言,接收第一相电源R和第二相电源S的二个桥式整流器皆连接到节点L1;接收第三相电源T的桥式整流器连接到节点L2;且中性线N直接连接到节点L3。因此,来自第一相电源R和第二相电源S的转换电压同时通过节点L1传递到六相逆变器;来自第三相电源T的转换电压通过节点L2传递到六相逆变器;且中性线N通过节点L3连接到六相逆变器,然而电源供应器VS无提供任何能量到中性线N。当分配不平衡的电压传递到六相逆变器进行整流时,会产生不平衡的电流。随着电子变压器10的操作时间不断地流逝,特定元件(例如连接到节点L1的二极管)因为较频繁地遭遇到大电流而发热,导致特定元件比其他元件更快损坏。此外,电力***中三相电源R、S、T的接线可能不会按照顺序配接,因此遭遇大电流发热元件并非固定,造成日后产品故障排除的难度。
图2为图1的电子变压器10的三相电源R、S、T和节点L1、L2、L3的电压波形图。三相电源R、S、T为大小相等、频率相同且相位互差120度的交流电压,其线电压可以例如是380伏特,相电压可以例如是220伏特,但不限于此。由于来自第一相电源R和第二相电源S的转换电压是同时通过节点L1来传递,因此节点L1承载多一倍的电流应力。由于来自第三相电源T的转换电压是通过节点L2来传递,因此节点L2承载正常的电流应力。由于电源供应器VS无提供能量到中性线N,故节点L3的电压是 来自于负载LD的逆向电压。由图2可看出,分配在节点L1、L2、L3的电压和电流是不平衡的。
图3为图1的电子变压器10在第一输出端OUT1的电流波形图。电流I31、I32、I33分别是从节点L1、L2、L3经过二极管流到输出端OUT1的电流。在第一输出端OUT1,电流I31是根据第一相电源R和第二相电源S的转换电压所产生的,因此具有两相锯齿波;电流I32是根据第三相电源T的转换电压所产生的,因此具有一相锯齿波;而电流I33是根据中性线N的转换电压所产生的,因此均维持在零电流而不具有任何一相锯齿波。由上述可知,电子变压器10在操作上存有电流不平衡的问题。在长期使用电子变压器10的情况下,用于产生电流I31的特定元件因为较频繁地遭遇到大电流而发热升温,导致特定元件比其他元件更快损坏。此外,图1的电子变压器10需配置较多的电子元件,故需要较大的布局面积。
图4为依据本揭示实施例的三相四线电源***4的示意图。三相四线电源***4包含电源供应器VS、电子变压器40以及负载LD。电子变压器40耦接于电源供应器VS与负载LD之间,用以从电源供应器VS接收并对第一相电源R、第二相电源S和第三相电源T进行整流转换,经电容储能并滤波后对负载LD供电。
在结构上,电子变压器40包含第一顺向整流器41、第二顺向整流器42、第三顺向整流器43、逆向整流器44以及电容45。第一顺向整流器41耦接于电源供应器VS的第一相电源R与第一输出端OUT1之间;第二顺向整流器42耦接于电源供应器VS的第二相电源S与第一输出端OUT1之间;第三顺向整流器43耦接于电源供应器VS的第三相电源T与第一输出端OUT1之间;以及逆向整流器44耦接电源供应器VS的中性线N与第二输出端OUT2之间。电容45连接于第一输出端OUT1与第二输出端OUT2之间。第二输出端OUT2为接地。
在操作上,第一顺向整流器41、第二顺向整流器42和第三顺向整流器43配置以分别对第一相电源R、第二相电源S和第三相电源T进行半波整流以产生整流后的第一相电源R’、整流后的第二相电源S’和整流后的第三相电源T’,并将整流后的第一相电源R’、整流后的第二相电源S’和整流后的第三相电源T’叠加在第一输出端OUT1。电容45用以平滑化(即,滤 波)叠加在第一输出端OUT1的电压,以作为输出电压Vdc并提供至负载LD。因为第一顺向整流器41、第二顺向整流器42和第三顺向整流器43分别对第一相电源R、第二相电源S和第三相电源T进行半波整流,所以电流分配是平衡的。因此,本揭示的电子变压器40及其三相四线电源***4解决了特定元件因为较频繁地遭遇到大电流(即,电流分配不平衡)导致特定元件很快就损坏的问题。
接着,在负载LD接收输出电压Vdc后,于负载LD产生的回返电流Ire进一步通过第二输出端OUT2流入电子变压器40。逆向整流器44配置以对回返电流Ire进行半波整流以产生整流后的回返电流Ire’,并通过中性线N传送回电源供应器VS。
简单来说,电子变压器40通过第一顺向整流器41、第二顺向整流器42和第三顺向整流器43分别对第一相电源R、第二相电源S和第三相电源T进行半波整流,并将整流后的第一相电源R’、整流后的第二相电源S’和整流后的第三相电源T’叠加在第一输出端OUT1,再通过电容45平滑化(即,滤波)叠加在第一输出端OUT1的电压,以作为输出电压Vdc并提供至负载LD。接着,逆向整流器44对负载LD产生的回返电流Ire进行半波整流,并通过中性线N传送整流后的回返电流Ire’回电源供应器VS。
换一角度而言,电源供应器VS产生的三相电源R、S、T分别通过电子变压器40的三个顺向整流器41、42、43整流后,通过第一输出端OUT1汇集为输出电流Iout而流入负载LD;接着,负载LD产生的回返电流Ire通过电子变压器40的逆向整流器44整流后,通过中性线N回返到电源供应器VS。如此一来,电源供应器VS、电子变压器40与负载LD之间构成了完整的电流回路,且顺向输出电流Iout和逆向回返电流Ire的操作是对称且平衡的,如此可提高三相四线电源***4的操作效率。
图5为依据本揭示实施例的电子变压器50的示意图。电子变压器50可用于图4的三相四线电源***4,并取代电子变压器40。在结构上,电子变压器50包含第一顺向整流器51、第二顺向整流器52、第三顺向整流器53、逆向整流器54以及电容55。第一顺向整流器51包含二极管D1、D2;第二顺向整流器52包含二极管D3、D4;第三顺向整流器53包含二极管D5、D6;且逆向整流器54包含二极管D7、D8。
于本实施例中,每一整流器51、52、53、54包含两个并联连接的二极管(例如整流器51中的二极管D1、D2为并联连接)。第一顺向整流器51中每一二极管D1、D2的阴极耦接第一相电源R;第二顺向整流器52中每一二极管D3、D4的阴极耦接第二相电源S;第三顺向整流器53中每一二极管D5、D6的阴极耦接第三相电源T;且第一顺向整流器51、第二顺向整流器52及第三顺向整流器53中每一二极管D1、D2、D3、D4、D5、D6的阳极耦接第一输出端OUT1。逆向整流器54中每一二极管D7、D8的阳极耦接中性线N,且逆向整流器54中每一二极管D7、D8的阴极耦接第二输出端OUT2。电容55连接于第一输出端OUT1与第二输出端OUT2之间。电子变压器50与40的操作方式类似,于此不赘述。
值得注意的是,若每一整流器51、52、53、54具有K个相同的二极管D1、D2、…、DK,则这K个二极管D1、D2、…、DK并联后的总电流I_TOTAL、总功率P_TOTAL和总电阻R_TOTAL可用如下函数(1)、(2)、
(3)表示(其中「*」代表乘号):
I_TOTAL=I_D1+I_D2+…+I_DK=K*I_D                            (1)
P_TOTAL=I_TOTAL2*R_TOTAL                                    (2)
其中分别流经二极管D1、D2、…DK的电流I_D1、I_D2、…、I_DK均为I_D,二极管D1、D2、…、DK的电阻率均为R_D。在每一整流器中,根据函数(1)、(2)、(3)可知,总功率P_TOTAL反比于二极管的个数K(因总电流维持不变)。也就是说,整流器的损失总功率会随着二极管并联的个数K增加而下降。
K个二极管并联后流经每一个二极管的电流大小可由如下表格1表示。
根据表格1可知,个数K为5和6所对应的两个电流相差3%,电流的 下降幅度已不显著。综合考量电子变压器50的功耗和布局面积等规格,于一些实施例中,每一整流器51、52、53、54内并联连接的二极管个数K可以是2至5个。此外,相较于图1所示的电子变压器10配置了较多的电子元件(即,三个桥式整流器、六相逆变器),图4所示的电子变压器40配置了较少的电子元件,故可节省布局面积。
于一实施例中,每一二极管D1、D2、D3、D4、D5、D6、D7、D8是PN接面二极管或高速整流二极管。
图6为图5所示的电子变压器50的输出电压Vdc波形图。在平衡电压电流的架构下,选取适合的储能滤波电容55对于传统电子变压器经过两级整流而言,输出电压仍相对稳定且具备优势。
图7为图5所示的电子变压器50的输出电流Iout波形图,其中电流I71、I72、I73分别为在顺向整流器51、52、53输出的电流。电流I71、I72、I73在第一输出端OUT1汇集而形成了电子变压器50的输出电流Iout。由图7可看出,因为三相电源R、S、T平衡地通过顺向整流器51、52、53进行半波整流,所以能够产生平衡分配的电流I71、I72、I73。因此,本揭示的电子变压器50解决了特定元件因为较频繁地遭遇到大电流(即,电流分配不平衡)导致特定元件很快就损坏的问题。
图8为图5所示的电子变压器50在100%负载和150%负载的操作条件下的温度变化图,其中曲线81、82分别对应100%负载和150%负载的温度变化。由图8可看出,除了在上电初期的瞬间增温到最大温度,随着操作时间不断地流逝,在满载(100%负载)的操作条件下,电子变压器50的温度均可保持在特定范围(例如摄氏71度至77度)内而不随时间逐渐升高。此外,在过载(150%负载)的操作条件下,电子变压器50的温度可保持在特定范围(例如摄氏78度至84度)内而不随时间逐渐升高。因此,本揭示的电子变压器50具有温度稳定且不随时间积累而攀升的优势。
电子变压器50的测试条件和结果可归纳为如下表格2。
图9为依据本揭示实施例的电子变压器90的示意图。电子变压器90可 用于图4的三相四线电源***4,并取代电子变压器40。在结构上,电子变压器90包含第一顺向整流器91、第二顺向整流器92、第三顺向整流器93、逆向整流器94以及电容95。第一顺向整流器91包含二极管D91;第二顺向整流器92包含二极管D92;第三顺向整流器93包含二极管D93;且逆向整流器94包含二极管D94、D95、D96。
于一些实施例中,一个顺向整流器与一个逆向整流器所包含的二极管个数的比例是1:3。意即,第一顺向整流器、第二顺向整流器和第三顺向整流器均包含K个并联连接的二极管,逆向整流器包含3组K个并联连接的二极管。例如,于本实施例中,顺向整流器91(或92、93)包含一个二极管D91(或D92、D93),且逆向整流器94包含三个二极管D94、D95、D96,故二极管个数的比例是1:3。换一角度而言,三个顺向整流器91、92、93包含的二极管个数(即三个顺偏的二极管D91、D92、D93)等于一个逆向整流器94包含的二极管个数(即三个逆偏的二极管D94、D95、D96)。
在图9的结构下,长期来看,流经三个顺向二极管D94、D95、D96的平均电流分别是(1/3)*Iout,且流经三个逆向二极管D94、D95、D96的平均电流分别是(1/3)*Ire。因此,输出电流Iout平衡地分配在三个顺向二极管D94、D95、D96,且回返电流Ire也平衡地分配在三个逆偏的二极管D94、D95、D96,如此解决了特定元件较频繁地遭遇到大电流(即,电流分配不平衡)导致特定元件很快就损坏的问题,故可使电子变压器90的操作温度更加稳定。
根据图5的实施例可知,随着二极管并联的个数K增加,每个二极管电流下降,使得每一二极管的损失下降。因此,于一些实施例中,当二极管并联的个数K为2时,顺向整流器91、92、93分别包含两个并联的二极管,且逆向整流器94包含六个并联的二极管,依此类推。
图10为依据本揭示实施例的电子变压器99的示意图。电子变压器99与90包含了相同的元件,元件之间的连接关系也相同。电子变压器99与90的差异之处在于,二极管D91与D94、D92与D95、D93与D96相邻设置。对于每个顺向和逆向二极管而言,顺向电流(1/3)*Iout和逆向电流(1/3)*Ire的大小和方向是相反且相等的,当一个顺向二极管和一个逆向二极 管及其线路相邻设置时,即构成了一组差动对(Differential pair),如此可提高三相电源的能量传输效率。
图11为图10所示的电子变压器99和三相四线电源***11的布局示意图。三相四线电源***11包含一电路板110,形成于XY平面;电路板110包含一第一表面SF1以及一第二表面SF2。在结构上,电源供应器VS、顺向整流器91的二极管D91(其中顺向整流器92、93的二极管D92、D93未示出)、用于传递第一相电源R的火线(其中用于传递第二相电源S和第三相电源T的火线未示出)和负载LD设置于第一表面SF1上,逆向整流器94的二极管D94(其中二极管D95、D96未示出)和中性线N设置于第二表面SF2上。一第一通孔111形成于电路板110中,沿Z方向延伸,配置以连接电源供应器VS和中性线N。一第二通孔112形成于电路板110中,沿Z方向延伸,配置以连接负载LD和中性线N。于一实施例中,一连接器可设置于电路板110以连接电源供应器VS,且另一连接器可设置于电路板110以连接负载LD,故电源供应器VS和负载LD可为外接装置。
在图11的结构下,顺向二极管D91产生的顺向电流(1/3)*Iout通过火线提供给负载LD后,负载LD产生的逆向电流(1/3)*Ire提供给逆向二极管D94,再通过中性线N回返到电源供应器VS。如此一来,电源供应器VS、电子变压器99与负载LD之间构成了完整的电流回路CL,且顺向输出电流和逆向回返电流的操作是对称且平衡的,如此可提高三相四线电源***11的操作效率。
于一实施例中,设置于第一表面SF1的用于传递三相电源R、S、T的火线以及顺向二极管(包含D91、D92、D93)在XY平面上的投影与设置于第二表面SF2的中性线N以及逆向二极管(包含D94、D95、D96)在XY平面上的投影相互交叠。在此结构下,电流回路CL的面积近似于电路板110沿Z方向上的厚度与中性线N(或火线)沿X方向上的线路长度,使得电流回路CL的面积近似于最小值,以最小化电流回路CL产生的电磁辐射(即能量损耗)。于其他实施例中,当电路板110为多层板时(例如四层、六层或更多层数),用于传递三相电源R、S、T的火线和中性线N中的至少一者可形成于电路板110的内层,如此可进一步减小电流回路CL的面积,也可通过电路板110的表层来实现电磁屏蔽以降低电流回路CL产生 的电磁辐射(即能量损耗)。
综上所述,本揭示的电子变压器及其三相四线电源***通过三个顺向整流器分别对三相电源进行半波整流,以在第一输出端产生分配平衡的输出电流。因此,本揭示解决了特定元件因为较频繁地遭遇到大电流(即,电流分配不平衡)导致特定元件很快就损坏的问题。此外,负载产生的回返电流通过逆向整流器整流后,通过中性线回返到电源供应器,使得电源供应器、电子变压器与负载之间构成了完整的电流回路,且顺向输出电流和逆向回返电流的操作是对称且平衡的,如此可提高三相四线电源***的操作效率。本揭示的电子变压器及其三相四线电源***具备了以下优势:(1)稳定的输出电压;(2)分配平衡的输出电流;(3)精简的电路设计、较小的布局面积与成本;以及(4)操作温度稳定且不随时间积累而攀升。
虽然本揭示已以实施例揭示如上,任何所属技术领域中技术人员,在不脱离本揭示的精神和范围内,当可作些许的更改与润饰,故本揭示的保护范围当视后附的申请权利要求所界定的为准。

Claims (20)

  1. 一种电子变压器,包含:
    第一顺向整流器,耦接于第一相电源与第一输出端之间;
    第二顺向整流器,耦接于第二相电源与所述第一输出端之间;
    第三顺向整流器,耦接于第三相电源与所述第一输出端之间;以及
    逆向整流器,耦接于中性线与第二输出端之间;
    其中所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器配置以对所述第一相电源、所述第二相电源和所述第三相电源进行半波整流以产生整流后的第一相电源、整流后的第二相电源和整流后的第三相电源,并将所述整流后的第一相电源、所述整流后的第二相电源和所述整流后的第三相电源叠加在所述第一输出端,以作为所述电子变压器的输出电压。
  2. 根据权利要求1所述的电子变压器,还包含:
    电容,耦接于所述第一输出端与所述第二输出端之间,配置以储能并滤波所述输出电压。
  3. 根据权利要求1所述的电子变压器,其中所述输出电压供应至负载以在所述第二输出端产生回返电流;以及所述逆向整流器配置以对所述回返电流进行半波整流以产生整流后的回返电流,并通过所述中性线传送所述整流后的回返电流至电源供应器。
  4. 根据权利要求1所述的电子变压器,其中所述第一顺向整流器、所述第二顺向整流器、所述第三顺向整流器和所述逆向整流器均包含二至五个并联连接的二极管。
  5. 根据权利要求4所述的电子变压器,其中:
    所述第一顺向整流器中每一二极管的阴极耦接所述第一相电源,所述第二顺向整流器中每一二极管的阴极耦接所述第二相电源,所述第三顺向整流器中每一二极管的阴极耦接所述第三相电源,所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器中每一二极管的阳极耦接所述第一输出端,所述逆向整流器中每一二极管的阳极耦接所述中性线,且所述逆向整流器中每一二极管的阴极耦接所述第二输出端。
  6. 根据权利要求1所述的电子变压器,其中所述第一顺向整流器、所述第二顺向整流器、所述第三顺向整流器中的每一者和所述逆向整流器所包 含的二极管个数的比例是1:3。
  7. 根据权利要求6所述的电子变压器,其中所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器中每一二极管分别与所述逆向整流器中每一二极管相邻设置。
  8. 根据权利要求6所述的电子变压器,其中所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器均包含K个并联连接的二极管,所述逆向整流器包含3组K个并联连接的二极管,且K是2至5中的一正整数。
  9. 根据权利要求8所述的电子变压器,其中:
    所述第一顺向整流器中每一二极管的阴极耦接所述第一相电源,所述第二顺向整流器中每一二极管的阴极耦接所述第二相电源,所述第三顺向整流器中每一二极管的阴极耦接所述第三相电源,且所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器中每一二极管的阳极耦接所述第一输出端,所述逆向整流器中每一二极管的阳极耦接所述中性线,且所述逆向整流器中每一二极管的阴极耦接所述第二输出端。
  10. 一种三相四线电源***,包含:
    电源供应器,配置以提供第一相电源、第二相电源和第三相电源,并包含中性线;
    负载;以及
    电子变压器,耦接于所述电源供应器与所述负载之间,包含:
    第一顺向整流器,耦接于所述第一相电源与第一输出端之间;
    第二顺向整流器,耦接于所述第二相电源与所述第一输出端之间;
    第三顺向整流器,耦接于所述第三相电源与所述第一输出端之间;以及
    逆向整流器,耦接所述中性线与第二输出端之间;
    其中所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器配置以对所述第一相电源、所述第二相电源和所述第三相电源进行半波整流以产生整流后的第一相电源、整流后的第二相电源和整流后的第三相电源,并将所述整流后的第一相电源、所述整流后的第二相电源和所述整流后的第三相电源叠加在所述第一输出端,以作为所述电子变压器的一输出电压。
  11. 根据权利要求10所述的三相四线电源***,所述电子变压器还包 含:
    电容,耦接于所述第一输出端与所述第二输出端之间,配置以储能并滤波所述输出电压。
  12. 根据权利要求10所述的三相四线电源***,其中所述输出电压供应至所述负载以在所述第二输出端产生回返电流;以及所述逆向整流器配置以对所述回返电流进行半波整流以产生整流后的回返电流,并通过所述中性线传送所述整流后的回返电流至所述电源供应器。
  13. 根据权利要求10所述的三相四线电源***,其中所述第一顺向整流器、所述第二顺向整流器、所述第三顺向整流器和所述逆向整流器均包含两至五个并联连接的二极管。
  14. 根据权利要求13所述的三相四线电源***,其中:
    所述第一顺向整流器中每一二极管的阴极耦接所述第一相电源,所述第二顺向整流器中每一二极管的阴极耦接所述第二相电源,所述第三顺向整流器中每一二极管的阴极耦接所述第三相电源,所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器中每一二极管的阳极耦接所述第一输出端,所述逆向整流器中每一二极管的阳极耦接所述中性线,且所述逆向整流器中每一二极管的阴极耦接所述第二输出端。
  15. 根据权利要求10所述的三相四线电源***,其中所述第一顺向整流器、所述第二顺向整流器、所述第三顺向整流器中的每一者和所述逆向整流器所包含的二极管个数的比例是1:3。
  16. 根据权利要求15所述的三相四线电源***,其中所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器中每一二极管分别与所述逆向整流器中每一二极管相邻设置。
  17. 根据权利要求15所述的三相四线电源***,其中所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器均包含K个并联连接的二极管,所述逆向整流器包含3组K个并联连接的二极管,且个数K是2至5中的一正整数。
  18. 根据权利要求17所述的三相四线电源***,其中:
    所述第一顺向整流器中每一二极管的阴极耦接所述第一相电源,所述第二顺向整流器中每一二极管的阴极耦接所述第二相电源,所述第三顺向整流 器中每一二极管的阴极耦接所述第三相电源,且所述第一顺向整流器、所述第二顺向整流器和所述第三顺向整流器中每一二极管的阳极耦接所述第一输出端,所述逆向整流器中每一二极管的阳极耦接所述中性线,且所述逆向整流器中每一二极管的阴极耦接所述第二输出端。
  19. 根据权利要求15所述的三相四线电源***,还包含电路板,所述电路板形成于由第一方向和第二方向形成的平面,所述电路板包含:
    第一表面,所述电源供应器、所述第一顺向整流器、所述第二顺向整流器和第三顺向整流器的二极管、用于传递所述第一相电源、所述第二相电源和所述第三相电源的火线和所述负载设置于和第一表面;以及
    第二表面,所述逆向整流器的二极管和所述中性线设置于所述第二表面;
    其中用于传递所述第一相电源、所述第二相电源和所述第三相电源的火线以及所述第一顺向整流器、所述第二顺向整流器和第三顺向整流器的二极管在所述平面上的投影与所述中性线以及所述逆向整流器的二极管在所述平面上的投影相互交叠。
  20. 根据权利要求19所述的三相四线电源***,其中:
    第一通孔,形成于所述电路板中并沿第三方向延伸,配置以连接所述电源供应器和所述中性线;以及
    第二通孔,形成于所述电路板中并沿所述第三方向延伸,配置以连接所述负载和所述中性线。
PCT/CN2023/101967 2022-08-18 2023-06-21 电子变压器及其三相四线电源*** WO2024037182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210991062.8 2022-08-18
CN202210991062.8A CN117639529A (zh) 2022-08-18 2022-08-18 电子变压器及其三相四线电源***

Publications (1)

Publication Number Publication Date
WO2024037182A1 true WO2024037182A1 (zh) 2024-02-22

Family

ID=84820037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101967 WO2024037182A1 (zh) 2022-08-18 2023-06-21 电子变压器及其三相四线电源***

Country Status (5)

Country Link
US (1) US20240063728A1 (zh)
EP (1) EP4325710A1 (zh)
JP (1) JP2024028166A (zh)
CN (1) CN117639529A (zh)
WO (1) WO2024037182A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731150A (ja) * 1993-07-09 1995-01-31 Shindengen Electric Mfg Co Ltd スイッチング電源装置
CN201409093Y (zh) * 2009-01-06 2010-02-17 青岛四方铁路电气设备有限公司 一种双路桥式全波整流柜
CN103986345A (zh) * 2014-04-30 2014-08-13 上海汇波智能控制设备有限公司 一种单、三相全电压电源转换器
CN104052074A (zh) * 2013-03-14 2014-09-17 雅达电子国际有限公司 在具有失衡负载的单相冗余供电***中减少相电流失衡
CN104993721A (zh) * 2015-06-25 2015-10-21 西安工程大学 三相三倍压整流电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081424A (en) * 1960-01-11 1963-03-12 Ite Circuit Breaker Ltd Semi-conductor rectifier bridge construction
JPS4610331Y1 (zh) * 1965-09-25 1971-04-12
US4924371A (en) * 1989-07-10 1990-05-08 General Electric Company Rectifier circuit provoding compression of the dynamic range of the output voltage
CN101369784B (zh) * 2008-06-24 2011-02-09 何川江 一种电子伺服变压器及伺服***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731150A (ja) * 1993-07-09 1995-01-31 Shindengen Electric Mfg Co Ltd スイッチング電源装置
CN201409093Y (zh) * 2009-01-06 2010-02-17 青岛四方铁路电气设备有限公司 一种双路桥式全波整流柜
CN104052074A (zh) * 2013-03-14 2014-09-17 雅达电子国际有限公司 在具有失衡负载的单相冗余供电***中减少相电流失衡
CN103986345A (zh) * 2014-04-30 2014-08-13 上海汇波智能控制设备有限公司 一种单、三相全电压电源转换器
CN104993721A (zh) * 2015-06-25 2015-10-21 西安工程大学 三相三倍压整流电路

Also Published As

Publication number Publication date
CN117639529A (zh) 2024-03-01
US20240063728A1 (en) 2024-02-22
EP4325710A1 (en) 2024-02-21
JP2024028166A (ja) 2024-03-01

Similar Documents

Publication Publication Date Title
US9425703B2 (en) AC/DC converter circuit for common three-phase AC input voltages and method of operating such converter circuit
Tseng et al. High step-up interleaved forward-flyback boost converter with three-winding coupled inductors
US8488354B2 (en) Eighteen pulse rectification scheme for use with variable frequency drives
US7542316B2 (en) Switching power supply unit
US7375996B2 (en) Reduced rating T-connected autotransformer for converting three phase AC voltages to nine/six phase shifted AC voltages
CN101331671B (zh) 高频调制/解调多相整流装置
US20080165553A1 (en) Eighteen pulse rectification scheme for use with variable frequency drives
CN116938006A (zh) 具有倍压整流脉波倍增电路的串联型36脉波整流器
JP2791291B2 (ja) 高電圧大容量の直流電源装置
WO2024037182A1 (zh) 电子变压器及其三相四线电源***
Lee et al. A robust three-phase active power-factor-correction and harmonic reduction scheme for high power
TWI813418B (zh) 電子變壓器及其三相四線電源系統
EP2888809A1 (en) Rectifying circuit and method for an unbalanced two phase dc grid
US9236811B2 (en) Multiphase transformer rectifier unit
CN114448273A (zh) 一种带双单相半波整流电路的24脉波整流器
WO2024140788A1 (zh) 一种倍压整流电路
Heinemann Analysis and design of a modular, high power converter with high efficiency for electrical power distribution systems
Arvindan et al. Power Quality Analysis Of Six-And Twelve-Pulse Rectifiers As Series Cascaded Topologies Of The Three-Pulse Rectifier
Arvindan et al. Multipulse Diode Rectifiers: Power Quality Perspective Based On Experimental Data
CN210518135U (zh) 一种电源装置及电子设备
CN109067203A (zh) 一种隔离降压型30脉冲变压整流器
Borka et al. The advantage and problem sphere of low-voltage dc energy distribution
SU993406A1 (ru) Преобразователь частоты
SU964912A1 (ru) Трехфазный преобразователь переменного напр жени в посто нное
TW202228376A (zh) 冗餘開關電源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854087

Country of ref document: EP

Kind code of ref document: A1