WO2024036943A1 - 一种虚拟服装的管理***及相关方法 - Google Patents

一种虚拟服装的管理***及相关方法 Download PDF

Info

Publication number
WO2024036943A1
WO2024036943A1 PCT/CN2023/081782 CN2023081782W WO2024036943A1 WO 2024036943 A1 WO2024036943 A1 WO 2024036943A1 CN 2023081782 W CN2023081782 W CN 2023081782W WO 2024036943 A1 WO2024036943 A1 WO 2024036943A1
Authority
WO
WIPO (PCT)
Prior art keywords
clothing
virtual
model
parameters
physical simulation
Prior art date
Application number
PCT/CN2023/081782
Other languages
English (en)
French (fr)
Inventor
单卫华
李润
杨剑平
Original Assignee
华为云计算技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211520465.0A external-priority patent/CN117670461A/zh
Application filed by 华为云计算技术有限公司 filed Critical 华为云计算技术有限公司
Publication of WO2024036943A1 publication Critical patent/WO2024036943A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]

Definitions

  • the present application relates to the field of computer technology, and in particular to a virtual clothing management system, a virtual clothing management method, a computing device cluster, a computer-readable storage medium, and a computer program product.
  • the virtual fitting system is a digital technology application that allows you to change clothes and see the effect without taking off your clothes.
  • the sales platform can present the merchant's online store to consumers.
  • the online store can present to consumers virtual clothing (also called digital clothing) corresponding to the real clothing sold by the merchant.
  • Virtual clothing is a media resource that uses computer technology to simulate clothing fabrics.
  • the media resource can usually be an image or video.
  • online stores can facilitate consumers to understand real clothing, such as the style, color, pattern and other information of real clothing.
  • online stores can also support consumers in customizing clothing. Based on this, online stores can also present virtual clothing designed by consumers to consumers.
  • Online stores support virtual fitting. Users can select at least one virtual garment from the online store, such as virtual garments corresponding to real garments sold in the online store, or virtual garments designed by consumers. Through the virtual fitting system, virtual garments can be simulated. The effect of wearing the real clothing is combined with the effect of wearing the real clothing, and then the effect of wearing the real clothing is presented to the consumer.
  • the effects presented by the virtual fitting system are mainly visual effects, and the information provided to consumers is relatively limited, making it difficult to help consumers make decisions about purchasing or customizing clothing.
  • This application provides a virtual clothing management system.
  • the system can provide more reference information for consumers' consumption decisions in the clothing online sales process.
  • it can provide designers with more reference information in the clothing online design process. Provide more reference information for design decisions and enhance user experience.
  • This application also provides a virtual clothing management method, a computing device cluster, a computer-readable storage medium, and a computer program product corresponding to the system.
  • this application provides a virtual clothing management system, which includes a parameter management module and a physical simulation module.
  • the parameter management module is used to obtain the clothing parameters of the virtual clothing and the biological model.
  • the virtual clothing corresponds to the real clothing
  • the biological model is obtained by modeling the biological body.
  • the physical simulation module is used to obtain the clothing parameters of the virtual clothing. and biological model, build a physical simulation model, and determine the real clothing pattern based on the physical simulation model. Used for biological pressure to determine the comfort of real clothing based on pressure.
  • This system is based on the clothing parameters of virtual clothing and the biological model, and fits the mechanical interaction between real clothing and living organisms through physical simulation, thereby determining the comfort of real clothing based on the pressure of real clothing on the living body.
  • it can provide more reference information for consumers’ consumption decisions in the online clothing sales process; on the other hand, it can provide more reference information for designers’ design decisions in the online clothing design process, especially It provides rich information to non-professional designers in the custom clothing business who have no knowledge of clothing design but have design inspiration, assist them in completing auxiliary design, and enhance the user experience.
  • the physical simulation module can use a finite element model or a particle spring model to construct a physical simulation model based on the clothing parameters of the virtual clothing and the biological model.
  • the system builds a physical simulation model based on the finite element model or the particle spring model, so that the pressure of real clothing on the living body can be accurately determined, thus improving the accuracy of the comfort of real clothing.
  • the parameter management module can also obtain the movement mode configured by the user. According to the movement mode, the parameter management module obtains from the organism's model library the behavior of the organism in at least one posture corresponding to the movement mode.
  • the physical simulation module can construct at least one physical simulation model based on the clothing parameters of the virtual clothing and the biological model of the biological body in at least one posture, and determine the biological body in at least one posture based on the at least one physical simulation model. The stress that real clothing exerts on living organisms.
  • the system can select the biological model of the corresponding posture according to the movement mode configured by the user, thereby constructing a physical simulation model in the corresponding posture, and then determining the pressure in the corresponding posture, thus further improving the accuracy of the physical simulation model.
  • the parameter management module can present at least one virtual garment corresponding to at least one real garment to the user, and obtain clothing parameters of the virtual garment selected by the user from the at least one virtual garment.
  • This system can be applied to clothing sales scenarios. By presenting virtual clothing to consumers, it can obtain the clothing parameters selected by the user, so as to provide reference for consumers in subsequent decisions to purchase clothing.
  • the parameter management module can receive clothing parameters of virtual clothing configured by the user. This system can be applied to clothing design scenarios by receiving clothing parameters configured by the designer to provide reference information for the designer's subsequent design decisions.
  • the parameter management module can also receive updated clothing parameters configured by the user based on comfort.
  • the physical simulation module can also update the physical simulation model based on the updated clothing parameters and biological model.
  • the physical simulation model updates the pressure of the real clothing on the living body, and updates the comfort of the real clothing based on the updated pressure.
  • This system is applied in clothing design scenarios, allowing designers to update clothing parameters based on clothing comfort, thereby updating the physical simulation model to update the comfort of real clothing. In this way, it can assist designers in designing more comfortable clothing.
  • the parameter management module can also return the clothing parameters of the virtual clothing to the management client, so that the management client provides the clothing parameters of the virtual clothing to the clothing production system.
  • This system can provide a consumer-oriented closed-loop clothing design-production system, providing the clothing parameters determined by the designer directly to the clothing production system, so that the clothing production system can produce corresponding real clothing based on the clothing parameters, speeding up the production cycle of clothing products.
  • the clothing parameters of the virtual clothing may include one of size, style or fabric. or more.
  • the system can obtain various clothing parameters to improve the accuracy of the physical simulation model to better manage virtual clothing.
  • the system could provide users with updated recommendations based on the comfort of real clothing. For example, when the size comfort of real clothing is poor, the user can be advised to set a larger update amplitude for the size. In this way, the efficiency of users updating clothing parameters can be improved, thereby improving user experience.
  • the system can also obtain a scene template and fuse the visual rendering of the organism wearing virtual clothing with the scene template to obtain a fusion rendering.
  • the system can intuitively display the actual situation of organisms wearing virtual clothing in different scenarios, thereby enhancing the fitting effect.
  • this application provides a virtual clothing management method.
  • the methods include:
  • the virtual clothing corresponds to the real clothing
  • the biological model is obtained by modeling the biological body
  • a physical simulation model is constructed, the pressure of the real clothing acting on the biological body is determined based on the physical simulation model, and the pressure of the real clothing is determined based on the pressure.
  • constructing a physical simulation model based on the clothing parameters of the virtual clothing and the biological model includes:
  • the physical simulation model is constructed using a finite element model or a particle spring model.
  • the method further includes:
  • the acquisition of organism model includes:
  • the movement mode obtain a biological model of the biological body in at least one pose corresponding to the movement pattern from a model library of the biological body;
  • Constructing a physical simulation model based on the clothing parameters of the virtual clothing and the biological model, and determining the pressure of the real clothing on the biological body based on the physical simulation model includes:
  • obtaining clothing parameters of virtual clothing includes:
  • obtaining clothing parameters of virtual clothing includes:
  • the method further includes:
  • the physical simulation model is updated, and the pressure of the real clothing acting on the biological body is updated based on the updated physical simulation model.
  • the pressure updates the comfort level of the real garment.
  • the method further includes:
  • the clothing parameters of the virtual clothing are returned to the management client, so that the management client provides the clothing parameters of the virtual clothing to the clothing production system.
  • the clothing parameters of the virtual clothing include one or more of size, style, or fabric.
  • this application provides a computing device cluster.
  • the cluster of computing devices includes at least one computing device including at least one processor and at least one memory.
  • the at least one processor and the at least one memory communicate with each other.
  • the at least one processor is configured to execute instructions stored in the at least one memory, so that the computing device or the computing device cluster executes the virtual clothing management method as described in the second aspect or any implementation of the second aspect.
  • the present application provides a computer-readable storage medium that stores instructions instructing a computing device or a cluster of computing devices to execute the above second aspect or any one of the second aspects. Implement the virtual clothing management method described in the manner.
  • the present application provides a computer program product containing instructions that, when run on a computing device or a cluster of computing devices, causes the computing device or a cluster of computing devices to execute the above second aspect or any one of the second aspects. Implement the virtual clothing management method described in the manner.
  • Figure 1 is a schematic architectural diagram of a virtual clothing management system provided by an embodiment of the present application.
  • Figure 2 is an interactive flow chart of a virtual clothing management method provided by an embodiment of the present application
  • Figure 3 is a schematic flow chart of a virtual clothing management method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a mass point spring model provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of physical simulation of virtual clothing provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a computing device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a computing device cluster provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another computing device cluster provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another computing device cluster provided by an embodiment of the present application.
  • first and second in the embodiments of this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • Comfort in clothing-related fields, refers to an indicator for evaluating clothing from a subjective or objective perspective. Based on, Comfort can include subjective comfort and objective comfort. Among them, subjective comfort can be evaluated by the wearer's own experience of the clothing. Objective comfort can be determined based on breathability, thermal insulation, or pressure acting on the wearer (such as humans, pets, etc.).
  • Physical simulation refers to representing an object as a series of particles, then conducting force analysis on the particles, constructing a physical simulation model, and using numerical methods to solve the physical equations corresponding to the physical simulation model to obtain the position and velocity of the particles changing with time.
  • the industry provides a virtual fitting system to provide reference for consumers to make decisions about purchasing clothing, or for designers (including professional designers or non-professional designers).
  • Professional designers among whom consumers of customized clothing business can be regarded as non-professional designers) provide reference for decision-making in designing clothing.
  • the virtual fitting system can present the wearer (for example, the consumer himself or designated by the designer) wearing the specified virtual clothing. The effect of the actual clothing corresponding to the clothing.
  • the effects presented by the virtual fitting system are mainly visual effects, and the information provided to consumers is relatively limited, making it difficult to help consumers make decisions about purchasing clothing or designers designing clothing.
  • the virtual clothing management system may be a software system, and the software system may be deployed in a computing device cluster.
  • the computing device cluster executes the program code of the software system to execute the virtual clothing management method of the embodiment of the present application.
  • the virtual clothing management system may also be a hardware system. When the hardware system is running, it executes the virtual clothing management method according to the embodiment of the present application.
  • the hardware system may be a cluster of computing devices with management capabilities for virtual garments. For the convenience of description, the following uses a virtual clothing management system as an example of a software system.
  • the virtual clothing management system includes a parameter management module and a physical simulation module.
  • the parameter management module is used to obtain the clothing parameters of the virtual clothing and the organism model obtained by modeling the organism (such as a human body model or an animal body model), and the physical simulation module is used to construct a model based on the clothing parameters of the virtual clothing and the organism model.
  • the physical simulation model determines the pressure of the real clothing corresponding to the virtual clothing on the living body based on the physical simulation model, and determines the comfort of the real clothing based on the pressure.
  • This system is based on the clothing parameters of virtual clothing and the biological model, and fits the mechanical interaction between real clothing and living organisms through physical simulation, thereby determining the comfort of real clothing based on the pressure of real clothing on the living body.
  • it can provide more reference information for consumers’ consumption decisions in the online clothing sales process; on the other hand, it can provide more reference information for designers’ design decisions in the online clothing design process, especially It provides rich information to non-professional designers in the custom clothing business who have no knowledge of clothing design but have design inspiration, assist them in completing auxiliary design, and enhance the user experience.
  • the virtual clothing management system 100 is deployed in a computing device cluster.
  • Clusters of computing devices can be connected to terminals.
  • Terminals include but are not limited to smartphones, computers, augmented reality (AR) devices or virtual reality (VR) devices.
  • a management client 200 is deployed on the terminal, and users (such as consumers or designers) can manage The client 200 logs in to the virtual clothing management system 100 to realize interactive physical simulation fitting.
  • the virtual clothing management system 100 includes a parameter management module 102 and a physical simulation module 104.
  • the parameter management module 102 is used to obtain the clothing parameters of the virtual clothing and the biological model.
  • the physical simulation module 104 constructs a physical simulation model based on the clothing parameters of the virtual clothing and the biological model, and determines the pressure of the real clothing on the biological body based on the physical simulation model. , based on this pressure, the comfort of the real garment is determined.
  • the virtual clothing management system 100 also integrates a model library 106.
  • the model library 106 is used to save biological models corresponding to living organisms, such as human body models or animal body models. Based on this, the model library 106 can also be called a biological model.
  • Asset library In order to ensure privacy and security, the model library 106 may be a private asset library managed by users (such as consumers or designers).
  • the private asset library stores biological models obtained by users through laser scanning, or biological models obtained based on techniques such as generating 3D images from 2-dimensional (2D) images.
  • the virtual clothing management system 100 may also support clothing design functions such as customized clothing. Based on this, the virtual clothing management system 100 can also integrate the virtual clothing asset library 108 .
  • the virtual clothing asset library 108 may include one or more of a design template library and a custom template library. Among them, the user (such as a designer) can directly use the clothing templates in the design template library, or perform further design based on the clothing templates in the design template library. In some embodiments, users can also design new clothing styles by themselves and obtain customized clothing templates, which can be saved in a custom template library.
  • the virtual clothing management system 100 may include a fitting scene asset library 109 .
  • the fitting scene asset library 109 is used to generate clothing wearing scenes required by consumers.
  • the fitting scene asset library 109 may also include one or more of a scene template library and a custom scene library.
  • the scene template library is used to collect basic scene templates, such as offices during the day, squares at dusk, and bars at night.
  • the custom scene library supports the composite splicing of basic scene templates to obtain customized scene templates, or the latest artificial intelligence (AI) generation technology to generate customized scene templates.
  • scene templates can usually be stored in image or video format.
  • the consumer inputs a text description
  • the custom scene library can automatically generate the corresponding scene template through AI generation technology based on the text description.
  • the custom scene library can automatically generate corresponding 3D scenes based on the environment and lighting conditions in the text description.
  • embodiments of the present application can also provide a consumer-oriented closed-loop clothing design-production system.
  • the parameter management module 102 is also used to receive updated clothing parameters configured by the user according to the comfort level.
  • the physical simulation module 104 is also configured to update the physical simulation model according to the updated clothing parameters and the biological model, and update the pressure of the real clothing on the biological body based on the updated physical simulation model. Pressure updates the comfort of real clothing.
  • the parameter management module 102 is also configured to return updated clothing parameters of the virtual clothing to the management client 200, so that the management client 200 provides the updated clothing parameters to the clothing production system 300.
  • the clothing production system 300 can produce corresponding real clothing according to the updated clothing parameters of the virtual clothing.
  • the parameter management module 102 may not perform the above parameter updating step, and the physical simulation module 104 may not perform the physical simulation model updating step.
  • the clothing parameters of the virtual clothing are clothing parameters configured by the user, the comfort level meets the requirements. If the comfort level is greater than or equal to the threshold, the parameter management module 102 may not perform the above parameter update step, and the physical simulation module 104 may not Steps to perform physical simulation model updates.
  • the management client 200 provides the clothing parameters of the virtual clothing (including updated clothing parameters), it can be implemented based on the product management system 400. Specifically, the management client 200 can log in to the commodity management system 400 to trigger the clothing production operation. Correspondingly, the commodity management system 400 may, in response to the clothing production operation, issue the clothing parameters of the virtual clothing or the updated clothing parameters to the clothing production system 300, so that the clothing production system 300 can make the clothing production system 300 use the clothing parameters of the virtual clothing or the updated clothing. parameters to produce corresponding real clothing.
  • the virtual clothing management method according to the embodiment of the present application will be introduced from the perspectives of the virtual clothing management system 100, the management client 200, the clothing production system 300, and the product management system 400.
  • the method includes the following steps:
  • S202 The virtual clothing management system 100 obtains clothing parameters of the virtual clothing.
  • Virtual clothing also called digital clothing, refers to the digital representation of real clothing.
  • virtual clothing can be a media resource that uses computer technology to simulate clothing fabrics.
  • the format of the media resource includes but is not limited to images or videos.
  • the image may include a 2D image or a 3D image.
  • Virtual clothing can usually be generated through clothing design software.
  • Clothing parameters can include one or more of size, style, or fabric.
  • size is used to characterize the size of clothing.
  • sizes can be represented by different indicators.
  • measurements may include one or more of shoulder width, sleeve length, sleeve circumference, chest circumference, and dress length.
  • the size may include one or more indicators of waist circumference, hip circumference, thigh circumference, trouser leg circumference, and trouser length.
  • the size may include one or more indicators of waist circumference, hip circumference, and skirt length.
  • the size can also be classified by different size levels.
  • the size can include large (large, marked as “L”), medium (medium, marked as “M”), small (small, marked as “S”) level.
  • Style is used to characterize the form of clothing.
  • style can include various styles such as suits, cheongsams, sportswear, and casual wear.
  • Fabric is used to characterize the type of material used in clothing.
  • fabric can include any one of cotton, linen, and chemical fibers.
  • the virtual clothing management system 100 may present at least one virtual clothing corresponding to at least one real clothing to the user, and then obtain clothing parameters of the virtual clothing selected by the user from the at least one virtual clothing.
  • the clothing parameters of the virtual clothing selected by the user can be: L, sportswear, cotton.
  • some clothing parameters can be set by merchants by default without user selection.
  • the merchant sets the fabric as cotton by default, the style as sportswear, and the user can choose the size as S, M, or L. In some cases, merchants can also default to one size fits all.
  • the virtual clothing management system 100 can present a parameter configuration interface to the user, and then the virtual clothing management system 100 can receive the clothing parameters of the virtual clothing configured by the user through the above parameter configuration interface.
  • the virtual clothing management system 100 can also present parameter configuration suggestions to the user.
  • the parameter configuration suggestions can be parameters recommended based on the relevant attributes of organisms such as human bodies and animals.
  • the user can combine parameter configurations with It is recommended to configure the clothing parameters of virtual clothing. For example, the user can directly configure the clothing parameters of the virtual clothing to the recommended parameters, or fine-tune the recommended parameters and configure the parameters of the virtual clothing to the fine-tuned parameters.
  • the virtual clothing management system 100 can also support the user to set the sports mode.
  • the exercise mode may include any one or more of walking mode, running mode, squatting mode, and dancing mode.
  • the virtual clothing The management system 100 also supports setting the movement speed and movement range in the movement mode. For example, the user can make fine adjustments based on the default speed or default amplitude of the exercise mode, thereby setting the speed or amplitude of exercise in the exercise mode.
  • the virtual clothing management system 100 can also support users to set fitting scenes.
  • setting the fitting scene may include one or more of environmental parameter setting and lighting parameter setting.
  • Environmental parameters are used to characterize the environment. For example, environmental parameters can be set to one or more of cafes, streets, squares, sports venues, and dance studios.
  • Lighting settings are used to set the lighting conditions at the corresponding time, such as in the morning, Light conditions at noon or evening.
  • S204 The virtual clothing management system 100 obtains the biological model.
  • the virtual clothing management system 100 can maintain a corresponding model library 106 for each user, and the model library 106 stores biological body models corresponding to the biological bodies set by the user.
  • the biological entity set by the user may include the user himself.
  • the biological entities set by the user may also include other biological entities in the user's group (such as family, company).
  • family such as family, company
  • other living entities may be the user's family members, including but not limited to spouses, children, and pets (such as cats or dogs).
  • the user can perform laser scanning on the living body in advance, and the virtual clothing management system 100 stores the living body model generated by laser scanning. Similarly, the user can also upload a 2D image of the living body, and the virtual clothing management system 100 can generate a 3D living body model based on the 2D image of the living body through AI generation technology. It should be noted that the user can perform laser scanning when the living body is in different postures, or upload 2D images of the living body in different postures for model generation.
  • the model library 106 can store the biological body in different postures. time organism model.
  • the virtual clothing management system 100 may obtain the biological model of the member selected by the user.
  • the virtual clothing management system 100 can obtain a biological model of the biological body in at least one posture corresponding to the movement mode. For example, when the exercise mode is set to the squat mode, the virtual clothing management system 100 can obtain the biological model of the biological body in standing, half-squatting, and full-squatting postures.
  • the virtual clothing management system 100 can obtain the biological model in different poses.
  • S202 and S204 can be executed in parallel or sequentially in a set order.
  • the virtual clothing management system 100 can also execute S204 first and then execute S202, which is not limited in the embodiment of the present application.
  • the virtual clothing management system 100 constructs a physical simulation model based on the clothing parameters of the virtual clothing and the biological model.
  • the virtual clothing management system 100 determines the pressure of real clothing on the living body based on the physical simulation model.
  • the living body wears the real clothing corresponding to the virtual clothing, the size is too small or the living body moves, which can cause the clothing to stretch and cause the clothing to deform.
  • the real clothing can be hindered by the living body in the process of restoring its own shape, thereby producing effects. pressure on organisms.
  • the virtual clothing management system 100 can perform physical simulation based on the clothing parameters of the virtual clothing and the living body model.
  • the physical simulation model predicts the force exerted by real clothing on living organisms (such as living organisms in motion), thereby providing a basis for comfort evaluation of real clothing.
  • the virtual clothing management system 100 can, based on the clothing parameters of the virtual clothing and the biological model,
  • the physical simulation model is constructed using a finite element model (FEM) or a mass-spring model.
  • FEM finite element model
  • the physical simulation model can be represented by an equation or a system of equations.
  • the finite element model divides the calculation domain into a limited number of non-overlapping units.
  • some appropriate nodes are selected as interpolation points for the solution function.
  • the force acting on each unit is equivalent to the nodes.
  • the particle spring model refers to the use of Newton's laws of motion to simulate the deformation of an object.
  • the mass point spring model includes several virtual mass points, which are connected by massless springs with non-zero natural lengths.
  • the springs may include one or more of the structural springs (structural springs), shear springs (shear springs), and bend springs (bend springs) shown in Figure 4. These three springs are used to interact with structural forces respectively. Calculations related to (tensile or compressive), shear or bending forces.
  • the cloth of virtual clothing can be characterized by a series of clothing particles (i.e., mass points) with mass.
  • the key to building a physical simulation model based on the particle spring model is to express the shape of the cloth with a differential equation through mechanical theory based on the physical properties of the cloth, such as at least one material property such as mass, hardness, and elasticity.
  • the distribution of clothing particles is a regular grid distribution.
  • the cloth of the real clothing can deform, and the cloth is hindered by the organism in the process of restoring its deformation.
  • the part of the cloth in contact with the living body can generate pressure that acts on the living body.
  • the virtual clothing management system 100 can analyze the stress of each clothing particle to predict the pressure on the living body at the part where the cloth is in contact with the living body.
  • the forces experienced by clothing particles can be divided into internal forces and external forces.
  • the internal force may include the elastic force and damping force of the spring
  • the external force may include gravity.
  • the elastic force of the spring includes at least one of structural force, shear force and bending force.
  • the mass point spring model uses structural springs to simulate lateral structural forces. The lateral structural forces are used to prevent large tensile and compressive deformations of the fabric in the lateral direction. Shear springs are used to simulate oblique shear forces. The oblique shear forces are used to To prevent the fabric from producing large tensile and compressive deformations in the diagonal direction, bending springs are used to simulate bending forces.
  • the bending springs are usually connected to spaced clothing particles and are used to prevent excessive bending when the fabric bends and deforms, thus preventing the corners of the fabric from collapsing.
  • the elastic force includes the elastic force of adjacent clothing particles.
  • the elastic force of the spring follows Hooke's law.
  • the elastic force of a spring between a clothing particle and adjacent clothing particles can be expressed as:
  • X i and X j represent the positions of clothing particles i and j
  • l 0 is the natural length of the spring
  • k s is the elastic coefficient.
  • l 0 can be calculated based on the size and number of clothing particles
  • k s can be obtained by searching the material properties of the corresponding material based on the fabric.
  • the damping force of the spring is proportional to the component of the relative velocity of the clothing particles in the direction of the spring, which can be expressed as:
  • V i and V j represent the speed of clothing particles i and j
  • k d is the damping coefficient. Similar to k s , k d can be obtained by looking up the material properties of the corresponding material based on the fabric.
  • Each clothing particle is considered to have the same mass (denoted as m), which is equal to the total mass of the real clothing corresponding to the virtual clothing (denoted as M) divided by the number of clothing particles.
  • the gravity acting on each particle is a constant, specifically mg.
  • g is the acceleration of gravity.
  • the virtual clothing management system 100 can construct the following second-order differential equation:
  • X t and V t represent the position and speed of the clothing particles at the current time step
  • X t+h and V t+h represent the position and speed of the clothing particles at the next time step
  • h represents a time step
  • a living body such as the human body is a rigid body, and the rigid body does not deform. Therefore, the interaction between the living body and the clothing is set so that the clothing cannot penetrate the human body, that is, the clothing particles attached to the skin of the living body are set to The normal velocity of the skin surface is 0.
  • the virtual clothing management system 100 can iterate to the above formula based on X t+h and V t+h to determine the force of the clothing particles at the next time step.
  • the virtual clothing management system 100 can determine the component of the force exerted by the clothing particles in the normal direction of the living body's skin. Considering that the effects of the forces are mutual, the virtual clothing management system 100 can determine the components as the components between the living body and the clothing particles. The pressure exerted on the contact location.
  • the living body and the real clothing may include at least one contact point.
  • the pressure of the real clothing on the living body can be characterized by the pressure on the contact position between the living body and at least one clothing particle.
  • the pressure of the real clothing on the living body can be Characterization of stresses experienced by real garments on different parts of the organism.
  • the virtual clothing management system 100 obtains the biological model of the biological body in at least one posture corresponding to the movement mode, for example, the biological body model corresponding to the biological body at different times during the movement process, the virtual clothing The clothing management system 100 can construct at least one physical simulation model based on the current clothing parameters of the virtual clothing and the biological model of the biological body in at least one posture. Next, the virtual clothing management system 100 may determine the pressure exerted by the real clothing on the living body in at least one posture based on at least one physical simulation model.
  • the virtual clothing management system 100 determines the comfort level of the real clothing based on the pressure.
  • the virtual clothing management system 100 can determine the comfort level of real clothing based on the pressure and the mapping relationship between pressure and comfort level.
  • the mapping relationship between pressure and comfort can be obtained based on statistical analysis of historical data. Taking living organisms as an example of the human body, Table 1 shows the mapping relationship between the pressure on the human body and the comfort level of real clothing, as follows:
  • Table 1 The pressure range of the human body in different states and different comfort levels
  • the virtual clothing management system 100 can determine the actual clothing according to the movement state of the human body, the pressure on different parts of the human body, and the comfortable pressure range and maximum tolerable pressure limit of different parts of the human body in the corresponding movement state in Table 1. Comfort.
  • the comfort of real clothing can be expressed qualitatively or quantitatively.
  • the comfort level of real clothing can include different comfort levels such as comfortable, average, uncomfortable, etc.
  • the comfort of real clothing can be represented by a comfort score. The higher the comfort score, the more comfortable it is.
  • the virtual clothing management system 100 can determine the comfortable pressure range and the maximum tolerable pressure limit for different parts of the body according to the movement state of the human body, and then compare the pressure of each part with the real clothing and the above pressure range and the maximum tolerable pressure. Comparison is made to determine the comfort score of each part, and then a weighted operation is performed based on the comfort score of each part to obtain the overall comfort of the real garment.
  • the virtual clothing management system 100 can usually model the motion process of a time period, the virtual clothing management system 100 can divide the time period into multiple time steps and perform modeling based on the multiple time steps respectively. As shown in Figure 3, the virtual clothing management system 100 can perform physical simulation calculations, specifically calculating the position and speed of clothing particles, and then determining the pressure of the clothing particles acting on the living body, and then the virtual clothing management system 100 determines the pressure based on the pressure. Comfort. Then, at the next time step, the virtual clothing management system 100 performs physical simulation calculations based on the biological model in the corresponding pose and clothing parameters such as fabrics (different fabrics can correspond to different elastic coefficients and damping coefficients) to obtain the positions of the clothing particles. and speed, thereby determining the pressure exerted by the clothing particles on the organism, and determining the comfort level of the next time step based on the pressure. The virtual clothing management system 100 can determine the final comfort level based on the comfort level of real clothing at each time step.
  • the virtual clothing management system 100 can perform physical simulation calculations, specifically calculating the position and
  • the virtual clothing management system 100 when the virtual clothing management system 100 also obtains the scene template, the virtual clothing management system 100 can also fuse the visual effect diagram of the living body wearing the virtual clothing with the scene template. For example, the virtual clothing management system 100 can use the rendering method to use the scene template as the background of the visual effect picture of the living body wearing the virtual clothing to obtain the fusion effect picture.
  • S212 The virtual clothing management system 100 returns the comfort level of the real clothing to the management client 200.
  • execute S214 When the comfort level of the real clothing is less than the threshold, execute S214; when the comfort level of the real clothing is greater than or equal to the threshold, execute S216.
  • the virtual clothing management system 100 can also return the fusion rendering to the management client 200, so that the management client 200 can present the fusion rendering and the real garment to the user. comfort, thus providing users with rich information.
  • the management client 200 receives the updated clothing parameters configured by the user according to the comfort level, and then executes S202 to S212.
  • the virtual clothing management system 100 can return the comfort level of the real clothing to the management client 200. In this way, the user can view the comfort level of the real clothing corresponding to the virtual clothing, and then make subsequent decisions based on the comfort level.
  • users can decide whether to purchase real clothing corresponding to the virtual clothing based on the comfort level. For example, when the comfort level of real clothing is greater than or equal to the threshold, the user can decide to purchase the real clothing corresponding to the virtual clothing. It should be noted that users can also combine other factors, such as price, style and other factors, to comprehensively decide whether to purchase the real clothing corresponding to the virtual clothing.
  • the user can decide whether to update the clothing parameters of the virtual clothing based on the comfort level. For example, when the comfort level of the real clothing is less than a threshold, the user can update the clothing parameters of the virtual clothing, and then the management client 200 can perform S214, specifically receiving the updated clothing parameters.
  • the virtual clothing management system 100 can based on the updated clothing. parameters, re-execute S202 to S212.
  • the virtual clothing management system 100 can cyclically execute the process of parameter configuration, physical simulation, and comfort evaluation until the comfort level of the real clothing corresponding to the virtual clothing reaches a threshold. When the comfort level of the real clothing is greater than or equal to the threshold, S216 may be executed.
  • the user can determine at least one of the updated size or fabric based on the difference between the comfort level of the real clothing and the threshold, and determine the update range of the corresponding clothing parameters. For example, when the gap between the comfort level and the threshold is large, the user can mainly update the size, for example, set a larger update range for the size. For another example, when the gap between the comfort level and the threshold is small, the user can try to update the fabric, such as changing to a more elastic fabric. It should be noted that when the gap between comfort and threshold is small, the user can also fine-tune the size.
  • the virtual clothing management system 100 can update the physical simulation model based on the updated clothing parameters and the biological model, and then update the pressure of the real clothing on the biological body based on the updated physical simulation model, and then update the pressure of the real clothing on the biological body based on the updated physical simulation model.
  • the pressure updates the comfort of real clothing.
  • S216 The management client 200 logs into the product management system 400 and presents the product management interface to the user.
  • the product management interface is used to manage clothing products.
  • the product management interface is used to sell real clothes corresponding to virtual clothes to consumers, or to produce real clothes corresponding to virtual clothes designed by designers, and then deliver the real clothes to customers (such as consumers).
  • the management client 200 receives the product production operation triggered by the user through the product management interface, and submits a clothing production request to the product management system 400.
  • the user can trigger the product production operation through the production control of the product management interface.
  • the management client 200 can respond to the product production operation triggered by the user, package the clothing parameters of the virtual clothing into a product production request, and then submit the product production request to the product management system 200 .
  • the clothing parameters carried in the product production request may be clothing parameters when the comfort level is greater than or equal to the threshold. In some embodiments, the clothing parameters may be updated clothing parameters.
  • S220 The commodity management system 400 issues the clothing parameters of the virtual clothing to the clothing production system 300.
  • the clothing production system 300 produces corresponding real clothing according to the clothing parameters of the virtual clothing.
  • the above-mentioned S216 to S220 are optional steps in the embodiment of the present application, and the above-mentioned S216 to S220 may not be executed when executing the virtual clothing management method in the embodiment of the present application.
  • the management client 200 may directly send a request to the clothing production company.
  • the clothing parameters of the virtual clothing below the system 300 can be used so that the clothing production system 300 can produce corresponding real clothing based on the clothing parameters of the virtual clothing.
  • the above S214 to S222 may not be executed.
  • embodiments of the present application provide a virtual clothing management method.
  • This method introduces physical simulation to perform real-time physical simulation modeling based on the clothing parameters of the virtual clothing and the biological model. Through the physical simulation model obtained through modeling, the pressure of the real clothing corresponding to the virtual clothing on the biological body is predicted, and then According to the pressure Accurately assess the comfort of real clothing. In this way, users can be provided with a wealth of information, thereby providing a reference for subsequent clothing purchase or clothing design decisions.
  • the interactive clothing design experience can promote the clothing design to not only focus on the appearance and form, but also use physical simulation to model the clothing form in the movement mode, strengthen the fitting effect, and output the comfort of real clothing, assisting Designers (for example, consumers of customization services) complete clothing design and enhance user experience. Furthermore, this method can realize a closed loop of clothing design and clothing production. Consumers can quickly transmit the clothing parameters of the designed virtual clothing to the clothing production system for production through the commodity management system. The produced clothing can be quickly delivered to For consumers, the transaction cycle is shortened and transaction efficiency is improved.
  • the embodiment of the present application also provides a virtual clothing management system 100 as described above.
  • the virtual clothing management system 100 will be introduced below with reference to the accompanying drawings.
  • the system 100 includes:
  • the parameter management module 102 is used to obtain the clothing parameters of the virtual clothing and the biological model, where the virtual clothing corresponds to the real clothing, and the biological model is obtained by modeling the biological body;
  • the physical simulation module 104 is used to construct a physical simulation model based on the clothing parameters of the virtual clothing and the biological model, determine the pressure of the real clothing on the biological body based on the physical simulation model, and determine the comfort of the real clothing based on the pressure.
  • the above-mentioned parameter management module 102 and physical simulation module 104 can be implemented by hardware, or can be implemented by software.
  • the parameter management module 102 is used as an example below.
  • the parameter management module 102 may be an application program running on a computing device, such as a computing engine.
  • the application can be provided to users as a virtualized service.
  • Virtualization services can include virtual machine (VM) services, bare metal server (BMS) services, and container (container) services.
  • the VM service can be a service that uses virtualization technology to virtualize a virtual machine (VM) resource pool on multiple physical hosts (such as computing devices) to provide users with VMs for use on demand.
  • the BMS service is a service that virtualizes BMS resource pools on multiple physical hosts to provide users with BMS on demand.
  • Container service is a service that virtualizes container resource pools on multiple physical hosts to provide users with containers on demand.
  • VM is a simulated virtual computer, that is, a logical computer.
  • BMS is an elastically scalable high-performance computing service. Its computing performance is the same as that of traditional physical machines, and it has the characteristics of safe physical isolation.
  • Containers are a kernel virtualization technology that can provide lightweight virtualization to isolate user space, processes and resources. It should be understood that the VM service, BMS service and container service in the above virtualization services are only specific examples. In actual applications, the virtualization service can also be other lightweight or heavyweight virtualization services, which are not discussed here. Specific limitations.
  • the parameter management module 102 may include at least one computing device, such as a server.
  • the parameter management module 102 may also be a device implemented using an application-specific integrated circuit (ASIC) or a programmable logic device (PLD).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be implemented by a complex programmable logical device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • CPLD complex programmable logical device
  • FPGA field-programmable gate array
  • GAL general array logic
  • the physical simulation module 104 is specifically used to:
  • the finite element model or the particle spring model is used to construct the physical simulation model.
  • the parameter management module 102 is also used to:
  • the parameter management module 102 is specifically used for:
  • the movement mode obtain the organism model of the organism in at least one posture corresponding to the movement mode from the organism's model library;
  • the physical simulation module 104 is specifically used for:
  • the parameter management module 102 is specifically used to:
  • the parameter management module 102 is specifically used to:
  • the parameter management module 102 is also used to:
  • the physical simulation module 104 is also used to:
  • the physical simulation model is updated, the pressure of the real clothing acting on the organism is updated based on the updated physical simulation model, and the comfort level of the real clothing is updated based on the updated pressure.
  • the parameter management module 102 is also used to:
  • the clothing parameters of the virtual clothing include one or more of size, style, or fabric.
  • computing device 600 includes: bus 602, processor 604, memory 606, and communication interface 608.
  • the processor 604, the memory 606 and the communication interface 608 communicate through the bus 602.
  • Computing device 600 may be a server or a terminal device. It should be understood that this application does not limit the number of processors and memories in the computing device 600.
  • the bus 602 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one line is used in Figure 6, but it does not mean that there is only one bus or one type of bus.
  • Bus 602 may include a path that carries information between various components of computing device 600 (eg, memory 606, processor 604, communications interface 608).
  • the processor 604 may include a central processing unit (CPU), a graphics processor (graphics processor) Any one or more of processors such as a processing unit (GPU), a microprocessor (MP), or a digital signal processor (DSP).
  • CPU central processing unit
  • graphics processor graphics processor
  • Any one or more of processors such as a processing unit (GPU), a microprocessor (MP), or a digital signal processor (DSP).
  • Memory 606 may include volatile memory, such as random access memory (RAM).
  • the processor 604 may also include non-volatile memory, such as read-only memory (ROM), flash memory, hard disk drive (HDD) or solid state drive (SSD). drive, SSD).
  • ROM read-only memory
  • HDD hard disk drive
  • SSD solid state drive
  • the memory 606 stores executable program code, and the processor 604 executes the executable program code to implement the aforementioned virtual clothing management method. Specifically, the memory 606 stores instructions for the virtual clothing management system 100 to execute the virtual clothing management method.
  • the communication interface 608 uses transceiver modules such as, but not limited to, network interface cards and transceivers to implement communication between the computing device 600 and other devices or communication networks.
  • An embodiment of the present application also provides a computing device cluster.
  • the computing device cluster includes at least one computing device.
  • the computing device may be a server, such as a central server, an edge server, or a local server in a local data center.
  • the computing device may also be a terminal device such as a desktop computer, a laptop computer, or a smartphone.
  • the computing device cluster includes at least one computing device 600 .
  • the memory 606 of one or more computing devices 600 in the computing device cluster may store the instructions of the same virtual clothing management system 100 for executing the virtual clothing management method.
  • one or more computing devices 600 in the computing device cluster may also be used to execute part of the instructions used by the virtual garment management system 100 to execute the virtual garment management method.
  • a combination of one or more computing devices 600 may jointly execute the instructions of the virtual clothing management system 100 for performing the virtual clothing management method.
  • the memory 606 in different computing devices 600 in the computing device cluster may store different instructions for executing part of the functions of the virtual clothing management system 100 .
  • Figure 8 shows a possible implementation.
  • two computing devices 600A and 600B are connected through a communication interface 608 .
  • Instructions for performing the functions of parameter management module 102 are stored on memory in computing device 600A.
  • Stored on memory in computing device 600B are instructions for performing the functions of physics simulation module 104 .
  • the memories 606 of the computing devices 600A and 600B jointly store instructions for the virtual clothing management system 100 to execute the virtual clothing management method.
  • connection method between computing device clusters shown in Figure 8 can be based on the fact that the virtual clothing management method provided by this application needs to obtain the clothing parameters of the virtual clothing and the biological model, so as to build the model and determine the pressure. Therefore, it is considered that the functions implemented by the parameter management module 102 are executed by the computing device 600A, and the functions implemented by the physical simulation module 104 are executed by the computing device 600B.
  • computing device 600A shown in FIG. 8 may also be performed by multiple computing devices 600.
  • the functions of computing device 600B may also be performed by multiple computing devices 600 .
  • one or more computing devices in a cluster of computing devices may be connected through a network.
  • the network may be a wide area network or a local area network, etc.
  • Figure 9 shows a possible implementation. As shown in Figure 9, two computing devices 600C and 600D are connected through a network. Specifically, through communication interfaces in various computing devices port to connect to the network.
  • the memory 606 in the computing device 600C stores instructions for performing the functions of the parameter management module 102 .
  • instructions for performing the functions of the physical simulation module 104 are stored in the memory 606 in the computing device 600D.
  • connection method between the computing device clusters shown in Figure 9 can be based on the fact that the virtual clothing management method provided by this application needs to obtain the clothing parameters of the virtual clothing and the biological model, so as to build the model and determine the pressure. Therefore, it is considered that the functions implemented by the parameter management module 102 are executed by the computing device 600C, and the functions implemented by the physical simulation module 104 are executed by the computing device 600D. It should be understood that the functions of the computing device 600C shown in FIG. 9 may also be performed by multiple computing devices 600. Likewise, the functions of computing device 600D may also be performed by multiple computing devices 600.
  • An embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that a computing device can store or a data storage device such as a data center that contains one or more available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, solid state drive), etc.
  • the computer-readable storage medium includes instructions that instruct the computing device to execute the above-mentioned management system applied to virtual clothing for performing the management method of virtual clothing.
  • An embodiment of the present application also provides a computer program product containing instructions.
  • the computer program product may be a software or program product containing instructions capable of running on a computing device or stored in any available medium.
  • the computer program product is run on at least one computing device, at least one computing device is caused to execute the above-mentioned management method of virtual clothing.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请提供了一种虚拟服装的管理***,包括:参数管理模块和物理仿真模块。具体地,参数管理模块用于获取虚拟服装的服装参数以及生物体模型,物理仿真模块用于根据虚拟服装的服装参数以及生物体模型,构建物理仿真模型,基于物理仿真模型确定真实服装作用于生物体的压力,根据压力确定所述真实服装的舒适度。该***一方面可以在服装线上销售环节为消费者的消费决策提供更多的参考信息,另一方面可以在服装线上设计环节为设计者的设计决策提供更多的参考信息,增强用户体验。

Description

一种虚拟服装的管理***及相关方法
本申请要求于2022年08月17日提交中国国家知识产权局、申请号为202210987576.6、发明名称为“一种虚拟服装的管理***及相关方法”的中国专利申请的优先权,以及要求于2022年11月30日提交中国国家知识产权局、申请号为202211520465.0、发明名称为“一种虚拟服装的管理***及相关方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,尤其涉及一种虚拟服装的管理***、虚拟服装的管理方法、计算设备集群、计算机可读存储介质、计算机程序产品。
背景技术
随着计算机技术的不断发展,服装行业逐步将设计、销售等环节迁移至线上,以支持消费者通过线上的设计平台定制服装,或者通过线上的销售平台购买服装。为了帮助消费者定制个性化的服装,或者从大量的服装中选择合适的服装,虚拟试衣***应运而生。
虚拟试衣***是实现不脱去身上衣服,实现变装并查看效果的一种数字技术应用。销售平台可以向消费者呈现商家的在线店铺。该在线店铺可以向消费者呈现商家售卖的真实服装对应的虚拟服装(也可以称作数字服装)。虚拟服装是采用计算机技术对服装布料进行仿真制作的媒体资源,该媒体资源通常可以是图像或视频。在线店铺通过呈现上述图像或视频,可以方便消费者了解真实服装,例如是了解真实服装的样式、颜色、图案等信息。进一步地,在线店铺也可以支持消费者定制服装,基于此,在线店铺还可以向消费者呈现消费者设计的虚拟服装。
在线店铺支持虚拟试衣,用户可以从在线店铺中选择至少一件虚拟服装,例如是在线店铺售卖的真实服装所对应的虚拟服装,或者是消费者设计的虚拟服装,通过虚拟试衣***,拟合穿上真实服装的效果,然后向消费者呈现穿上该真实服装的效果。
然而,虚拟试衣***所呈现的效果主要是视觉效果,为消费者提供的信息比较有限,很难为消费者购买或定制服装的决策提供帮助。
发明内容
本申请提供了一种虚拟服装的管理***,该***一方面可以在服装线上销售环节为消费者的消费决策提供更多的参考信息,另一方面可以在服装线上设计环节为设计者的设计决策提供更多的参考信息,增强用户体验。本申请还提供了该***对应的虚拟服装的管理方法、计算设备集群、计算机可读存储介质以及计算机程序产品。
第一方面,本申请提供一种虚拟服装的管理***,该***包括参数管理模块和物理仿真模块。具体地,参数管理模块用于获取虚拟服装的服装参数以及生物体模型,其中,虚拟服装对应真实服装,生物体模型通过对生物体建模得到,物理仿真模块,用于根据虚拟服装的服装参数以及生物体模型,构建物理仿真模型,基于物理仿真模型确定真实服装作 用于生物体的压力,根据压力确定真实服装的舒适度。
该***基于虚拟服装的服装参数以及生物体模型,通过物理仿真拟合真实服装与生物体间的力学交互,从而实现基于真实服装作用于生物体的压力确定真实服装的舒适度。一方面,可以实现在服装线上销售环节为消费者的消费决策提供更多的参考信息;另一方面,可以实现在服装线上设计环节为设计者的设计决策提供更多的参考信息,尤其是为定制服装业务中没有服装设计知识但有着设计灵感的非专业设计师提供丰富的信息,辅助其完成辅助设计,增强了用户体验。
在一些可能的实现方式中,物理仿真模块可以根据虚拟服装的服装参数以及生物体模型,采用有限元模型或质点弹簧模型构建得到物理仿真模型。该***基于有限元模型或质点弹簧模型构建物理仿真模型,从而可以准确地确定真实服装作用于生物体的压力,如此,提升真实服装的舒适度的准确程度。
在一些可能的实现方式中,参数管理模块还可以获取用户配置的运动模式,参数管理模块根据该运动模式,从生物体的模型库中获取生物体在与该运动模式对应的至少一个位姿下的生物体模型,物理仿真模块可以根据虚拟服装的服装参数以及生物体在至少一个位姿下的生物体模型,构建至少一个物理仿真模型,基于至少一个物理仿真模型确定生物体在至少一个位姿下真实服装作用于生物体的压力。
该***可以根据用户配置的运动模式选择相应位姿的生物体模型,从而构建相应位姿下的物理仿真模型,进而确定相应位姿下的压力,如此,进一步提升物理仿真模型的准确度。
在一些可能的实现方式中,参数管理模块可以向用户呈现至少一件真实服装对应的至少一件虚拟服装,获取用户从至少一件虚拟服装中选择的虚拟服装的服装参数。该***可以应用于服装销售场景,通过向消费者呈现虚拟服装,获取用户选择的服装参数,以便后续为消费者购买服装的决策提供参考。
在一些可能的实现方式中,参数管理模块可以接收用户配置的虚拟服装的服装参数。该***可以应用于服装设计场景,通过接收设计者配置的服装参数,以便后续为设计者的设计决策提供参考信息。
在一些可能的实现方式中,参数管理模块还可以接收用户根据舒适度配置的更新后的服装参数,物理仿真模块还可以根据更新后的服装参数以及生物体模型,更新物理仿真模型,基于更新后的物理仿真模型更新真实服装作用于生物体的压力,根据更新后的压力更新真实服装的舒适度。
该***应用于服装设计场景下,可以令设计者基于服装舒适度更新服装参数,从而更新物理仿真模型,以便更新真实服装的舒适度。如此,能够辅助设计者设计出更加舒适的服装。
在一些可能的实现方式中,参数管理模块还可以向管理客户端返回虚拟服装的服装参数,以使管理客户端向服装生产***提供虚拟服装的服装参数。该***可以提供面向消费者的闭环式服装设计-生产***,将设计者确定的服装参数直接提供至服装生产***,以便服装生产***根据服装参数生产相应的真实服装,加快服装产品的生产周期。
在一些可能的实现方式中,虚拟服装的服装参数可以包括尺寸、样式或面料中的一种 或多种。该***可以获取多方面的服装参数,从而提升物理仿真模型的准确度,以便更好地管理虚拟服装。
在一些可能的实现方式中,该***可以根据真实服装的舒适度,向用户提供更新建议。例如,当真实服装的尺寸舒适度较差时,可以建议用户为尺寸设置较大的更新幅度。如此,可以提升用户更新服装参数的效率,从而提升用户体验。
在一些可能的实现方式中,该***还可以获取场景模板,并将生物体穿着虚拟服装的视觉效果图与场景模板融合,获得融合效果图。该***通过向用户呈现融合效果图,可以直观地展示生物体在不同场景下穿着虚拟服装的实际情况,从而强化试衣效果。
第二方面,本申请提供一种虚拟服装的管理方法。所述方法包括:
获取虚拟服装的服装参数以及生物体模型,所述虚拟服装对应真实服装,所述生物体模型通过对生物体建模得到;
根据所述虚拟服装的服装参数以及所述生物体模型,构建物理仿真模型,基于所述物理仿真模型确定所述真实服装作用于所述生物体的压力,根据所述压力确定所述真实服装的舒适度。
在一些可能的实现方式中,所述根据所述虚拟服装的服装参数以及所述生物体模型,构建物理仿真模型,包括:
根据所述虚拟服装的服装参数以及所述生物体模型,采用有限元模型或质点弹簧模型构建得到所述物理仿真模型。
在一些可能的实现方式中,所述方法还包括:
获取用户配置的运动模式;
所述获取生物体模型,包括:
根据所述运动模式,从所述生物体的模型库中获取所述生物体在与所述运动模式对应的至少一个位姿下的生物体模型;
所述根据所述虚拟服装的服装参数以及所述生物体模型,构建物理仿真模型,基于所述物理仿真模型确定所述真实服装作用于所述生物体的压力,包括:
根据所述虚拟服装的服装参数以及所述生物体在所述至少一个位姿下的生物体模型,构建至少一个物理仿真模型,基于所述至少一个物理仿真模型确定所述生物体在所述至少一个位姿下所述真实服装作用于所述生物体的压力。
在一些可能的实现方式中,所述获取虚拟服装的服装参数,包括:
向用户呈现至少一件真实服装对应的至少一件虚拟服装;
获取所述用户从所述至少一件虚拟服装中选择的虚拟服装的服装参数。
在一些可能的实现方式中,所述获取虚拟服装的服装参数,包括:
接收用户配置的虚拟服装的服装参数。
在一些可能的实现方式中,所述方法还包括:
接收所述用户根据所述舒适度配置的更新后的所述服装参数;
根据更新后的所述服装参数以及所述生物体模型,更新所述物理仿真模型,基于更新后的所述物理仿真模型更新所述真实服装作用于所述生物体的压力,根据更新后的所述压力更新所述真实服装的舒适度。
在一些可能的实现方式中,所述方法还包括:
向管理客户端返回所述虚拟服装的所述服装参数,以使所述管理客户端向服装生产***提供所述虚拟服装的所述服装参数。
在一些可能的实现方式中,所述虚拟服装的服装参数包括尺寸、样式或面料中的一种或多种。
第三方面,本申请提供一种计算设备集群。所述计算设备集群包括至少一台计算设备,所述至少一台计算设备包括至少一个处理器和至少一个存储器。所述至少一个处理器、所述至少一个存储器进行相互的通信。所述至少一个处理器用于执行所述至少一个存储器中存储的指令,以使得计算设备或计算设备集群执行如第二方面或第二方面的任一种实现方式所述的虚拟服装的管理方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令指示计算设备或计算设备集群执行上述第二方面或第二方面的任一种实现方式所述的虚拟服装的管理方法。
第五方面,本申请提供了一种包含指令的计算机程序产品,当其在计算设备或计算设备集群上运行时,使得计算设备或计算设备集群执行上述第二方面或第二方面的任一种实现方式所述的虚拟服装的管理方法。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
为了更清楚地说明本申请实施例的技术方法,下面将对实施例中所需使用的附图作以简单地介绍。
图1为本申请实施例提供的一种虚拟服装的管理***的架构示意图;
图2为本申请实施例提供的一种虚拟服装的管理方法的交互流程图;
图3为本申请实施例提供的一种虚拟服装的管理方法的流程示意图;
图4为本申请实施例提供的一种质点弹簧模型的示意图;
图5为本申请实施例提供的一种对虚拟服装进行物理仿真的示意图;
图6为本申请实施例提供的一种计算设备的结构示意图;
图7为本申请实施例提供的一种计算设备集群的结构示意图;
图8为本申请实施例提供的另一种计算设备集群的结构示意图;
图9为本申请实施例提供的又一种计算设备集群的结构示意图。
具体实施方式
本申请实施例中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
首先对本申请实施例中所涉及到的一些技术术语进行介绍。
舒适度,在服装相关领域,是指从主观或客观的角度对服装进行评价的指标。基于此, 舒适度可以包括主观舒适度和客观舒适度。其中,主观舒适度可以由着装者自身对服装的体验感受进行评价。客观舒适度可以根据透气性、保温性或作用于着装者(例如是人、宠物等生物体)的压力确定。
物理仿真,是指对物体用一系列的粒子表示,然后对粒子进行受力分析,构建物理仿真模型,并用数值方法求解物理仿真模型对应的物理方程,获得粒子随时间变化的位置和速度。
针对服装销售迁移至线上平台或者是服装设计迁移至线上平台的场景,业界提供了虚拟试衣***,从而为消费者购买服装的决策提供参考,或者为设计者(包括专业设计师或非专业设计师,其中,定制服装业务的消费者可以视为非专业设计师)设计服装的决策提供参考。例如,消费者选中虚拟服装,或者设计者设计好虚拟服装,并触发虚拟试衣功能时,虚拟试衣***可以呈现着装者(例如是消费者自身或者是由设计者指定)穿上指定的虚拟服装所对应的真实服装的效果。
然而,虚拟试衣***所呈现的效果主要是视觉效果,为消费者提供的信息比较有限,很难为消费者购买服装或设计者设计服装的决策提供帮助。
有鉴于此,本申请提供一种虚拟服装的管理***。该虚拟服装的管理***可以是软件***,该软件***可以部署在计算设备集群中,计算设备集群通过执行软件***的程序代码,以执行本申请实施例的虚拟服装的管理方法。虚拟服装的管理***也可以是硬件***,该硬件***运行时,执行本申请实施例的虚拟服装的管理方法。在一些示例中,该硬件***可以是具有虚拟服装的管理功能的计算设备集群。为了便于描述,下文以虚拟服装的管理***为软件***示例说明。
具体地,虚拟服装的管理***包括参数管理模块和物理仿真模块。其中,参数管理模块用于获取虚拟服装的服装参数以及对生物体建模得到的生物体模型(如人体模型或动物体模型),物理仿真模块用于根据虚拟服装的服装参数以及生物体模型构建物理仿真模型,基于物理仿真模型确定虚拟服装对应的真实服装作用于生物体的压力,根据该压力确定真实服装的舒适度。
该***基于虚拟服装的服装参数以及生物体模型,通过物理仿真拟合真实服装与生物体间的力学交互,从而实现基于真实服装作用于生物体的压力确定真实服装的舒适度。一方面,可以实现在服装线上销售环节为消费者的消费决策提供更多的参考信息;另一方面,可以实现在服装线上设计环节为设计者的设计决策提供更多的参考信息,尤其是为定制服装业务中没有服装设计知识但有着设计灵感的非专业设计师提供丰富的信息,辅助其完成辅助设计,增强了用户体验。
为了使得本申请的技术方案更加清楚、易于理解,下面结合附图对本申请的***架构图进行介绍。
参见图1所示的虚拟服装的管理***的架构示意图,如图1所示,虚拟服装的管理***100部署在计算设备集群中。计算设备集群可以与终端连接。终端包括但不限于智能手机、电脑(computer)、增强现实(augmented reality,AR)设备或虚拟现实(virtual reality,VR)设备。终端上部署有管理客户端200,用户(例如是消费者或设计者)可以通过管理 客户端200登录至虚拟服装的管理***100,从而实现交互式物理仿真试衣。
具体地,虚拟服装的管理***100包括参数管理模块102和物理仿真模块104。参数管理模块102用于获取虚拟服装的服装参数以及生物体模型,物理仿真模块104据虚拟服装的服装参数以及生物体模型,构建物理仿真模型,基于物理仿真模型确定真实服装作用于生物体的压力,根据该压力确定真实服装的舒适度。
其中,虚拟服装的管理***100还集成有模型库106,模型库106用于保存生物体对应的生物体模型,如人体模型或动物体模型,基于此,模型库106也可以称作生物体模型资产库。为了保障隐私安全,模型库106可以是用户(如消费者或设计者)自行管理的私有资产库。私有资产库保存用户通过激光扫描获得的生物体模型,或者是基于2维(2 dimension,2D)图像生成3D图像等技术获取的生物体模型。
在一些可能的实现方式中,虚拟服装的管理***100还可以支持定制服装等服装设计功能。基于此,虚拟服装的管理***100还可以集成虚拟服装资产库108。虚拟服装资产库108可以包括设计模板库和自定义模板库中的一种或多种。其中,用户(例如设计者)可以直接使用设计模板库中的服装模板,或者是在设计模板库中的服装模板的基础上进行进一步设计。在一些实施例中,用户也可以自行设计新的服装样式,获得自定义的服装模板,该服装模板可以保存在自定义模板库中。
进一步地,虚拟服装的管理***100可以包括试衣场景资产库109。试衣场景资产库109用于生成消费者需要的服装穿着场景。类似地,试衣场景资产库109也可以包括场景模板库和自定义场景库中的一种或多种。场景模板库用于收集基本的场景模板,比如白天的办公室、黄昏的广场和夜晚的酒吧。自定义场景库支持采用基本的场景模板复合拼接得到自定义的场景模板,或者采用最新的人工智能(artificial intelligence,AI)生成技术生成自定义的场景模板。其中,场景模板通常可以采用图像或视频格式进行存储。
以基于AI生成技术生成自定义的场景模板示例说明,消费者输入一段文字描述,自定义场景库可以根据文字描述,通过AI生成技术自动生成相应的场景模板。具体地,自定义场景库可以根据文字描述中的环境、光照情况,自动生成相应的3D场景。
需要说明的是,本申请实施例还可以提供面向消费者的闭环式服装设计-生产***。具体实现时,参数管理模块102还用于接收用户根据舒适度配置的更新后的服装参数。物理仿真模块104还用于根据更新后的服装参数以及所述生物体模型,更新所述物理仿真模型,基于更新后的物理仿真模型更新真实服装作用于所述生物体的压力,根据更新后的压力更新真实服装的舒适度。
相应地,参数管理模块102还用于向管理客户端200返回虚拟服装的更新后的服装参数,以使管理客户端200向服装生产***300提供更新后的服装参数。如此,服装生产***300可以根据虚拟服装的更新后的服装参数生产相应的真实服装。
需要说明的是,参数管理模块102也可以不执行上述参数更新的步骤,物理仿真模块104也可以不执行物理仿真模型更新的步骤。例如,虚拟服装的服装参数为用户配置的服装参数时,舒适度即满足要求,如舒适度大于或等于阈值时,参数管理模块102可以不执行上述参数更新的步骤,物理仿真模块104也可以不执行物理仿真模型更新的步骤。
其中,管理客户端200在向服装生产***300提供虚拟服装的服装参数(包括更新后 的服装参数)时,可以基于商品管理***400实现。具体地,管理客户端200可以登录至商品管理***400,触发服装生产操作。相应地,商品管理***400可以响应于服装生产操作,向服装生产***300下发虚拟服装的服装参数或更新后的服装参数,以使服装生产***300根据虚拟服装的服装参数或更新后的服装参数,生产相应的真实服装。
接下来,将从虚拟服装的管理***100、管理客户端200、服装生产***300、商品管理***400的角度,对本申请实施例的虚拟服装的管理方法进行介绍。
参见图2所示的虚拟服装的管理方法的流程图,该方法包括如下步骤:
S202:虚拟服装的管理***100获取虚拟服装的服装参数。
虚拟服装,也称数字服装,是指真实服装的数字化表示。通常情况下,虚拟服装可以是采用计算机技术对服装布料进行仿真制作的媒体资源,该媒体资源的格式包括但不限于图像或视频。其中,图像可以包括2D图像或3D图像。虚拟服装通常可以通过服装设计软件生成。
服装参数可以包括尺寸、样式或面料中的一种或多种。其中,尺寸用于表征服装的大小。针对不同类型的服装,尺寸可以通过不同指标表示。例如,针对上衣,尺寸可以包括肩宽、袖长、袖围、胸围和衣长中的一种或多种指标。又例如,针对裤子,尺寸可以包括腰围、臀围、大腿围、裤脚围、裤长中的一种或多种指标。还例如,针对半裙,尺寸可以包括腰围、臀围、裙长中的一种或多种指标。为了方便描述,尺寸还可以通过不同大小级别分类,例如,尺寸可以包括大(large,记作“L”)、中(medium,记作“M”)、小(small,记作“S”)等级别。样式用于表征服装的形态,例如样式可以包括西装、旗袍、运动装、休闲装等各种样式。面料用于表征服装使用的材料类型,例如面料可以包括棉、麻、化学纤维中的任意一种。
在服装销售场景中,虚拟服装的管理***100可以向用户呈现至少一件真实服装对应的至少一件虚拟服装,然后获取用户从至少一件虚拟服装中选择的虚拟服装的服装参数。例如,用户选择的虚拟服装的服装参数可以为:L、运动装、棉。需要说明的是,在服装销售场景中,一些服装参数可以是商家默认设置的,无需用户选择。例如,商家默认设置面料为棉,样式为运动装,用户可以选择尺寸为S或M或L。在有些情况下,商家还可以默认设置尺寸为均码。
在服装设计场景中,虚拟服装的管理***100可以向用户呈现参数配置界面,然后虚拟服装的管理***100可以接收用户通过上述参数配置界面所配置的虚拟服装的服装参数。为了提高参数配置的可靠度,虚拟服装的管理***100还可以向用户呈现参数配置建议,该参数配置建议可以是根据生物体如人体、动物体相关属性推荐的参数,如此,用户可以结合参数配置建议进行虚拟服装的服装参数配置。例如用户可以直接将虚拟服装的服装参数配置为建议的参数,或者是对建议的参数进行微调,将虚拟服装的参数配置为微调后的参数。
进一步地,参见图3,虚拟服装的管理***100除了支持用户对着装搭配进行设置外,还可以支持用户对运动模式进行设置。其中,运动模式可以包括行走模式、跑步模式、深蹲模式、跳舞模式中的任意一种或多种。进一步地,针对任意一种运动模式,虚拟服装的 管理***100还支持对该运动模式下的运动速度、运动幅度进行设置。例如,用户可以在该运动模式的默认速度或默认幅度的基础上进行微调,从而实现对运动模式下的运动速度或运动幅度的设置。
虚拟服装的管理***100也可以支持用户对试衣场景进行设置。其中,对试衣场景进行设置可以包括环境参数设置、光照参数设置中的一种或多种。环境参数用于表征所处环境,例如环境参数可以设置为咖啡厅、街道、广场、运动场馆、舞蹈教室中的一种或多种,光照设置用于设置相应时刻的光照情况,例如是早晨、中午或者傍晚的光照情况。
S204:虚拟服装的管理***100获取生物体模型。
具体地,虚拟服装的管理***100可以针对每个用户分别维护相应的模型库106,该模型库106存储有用户设置的生物体对应的生物体模型。其中,用户设置的生物体可以包括用户自身。进一步地,用户设置的生物体还可以包括用户所在群组(如家庭、公司)中其他生物体。例如,用户所在群组为家庭时,其他生物体可以是用户的家庭成员,包括但不限于配偶、小孩、宠物(如猫或狗)。
其中,用户可以预先对生物体进行激光扫描,虚拟服装的管理***100存储激光扫描生成的生物体模型。类似地,用户也可以上传生物体的2D图像,虚拟服装的管理***100可以根据生物体的2D图像,通过AI生成技术,生成3D的生物体模型。需要说明的是,用户可以在生物体处于不同位姿时分别进行激光扫描,或者上传生物体在不同位姿时的2D图像进行模型生成,相应地,模型库106可以存储生物体在不同位姿时的生物体模型。
当用户的模型库中存储有多个成员的生物体模型时,虚拟服装的管理***100可以根据用户选择的成员,获取该成员的生物体模型。当用户还设置有运动模式,虚拟服装的管理***100可以获取生物体在与该运动模式对应的至少一个位姿下的生物体模型。例如,运动模式被设置为深蹲模式时,虚拟服装的管理***100可以获取生物体在站立、半蹲、全蹲位姿下的生物体模型。进一步地,当用户设置的运动速度或运动幅度不同,虚拟服装的管理***100可以获取不同位姿下的生物体模型。
需要说明的是,上述S202、S204可以并行执行,也可以按照设定的顺序先后执行,例如,虚拟服装的管理***100也可以先执行S204,然后执行S202,本申请实施例对此不作限定。
S206:虚拟服装的管理***100根据虚拟服装的服装参数以及生物体模型,构建物理仿真模型。
S208:虚拟服装的管理***100基于物理仿真模型确定真实服装作用于生物体的压力。
生物体在穿戴上虚拟服装对应的真实服装后,尺寸偏小或者生物体运动时可以导致服装拉伸进而引起服装形变,真实服装在恢复自身的形状过程中可以受到生物体的阻碍,进而产生作用于生物体的压力。
在线上销售场景或线上设计场景中,用户很难实际测量真实服装作用于生物体的压力,为此,虚拟服装的管理***100可以根据虚拟服装的服装参数、生物体模型进行物理仿真,基于物理仿真模型对真实服装作用于生物体(例如是运动中的生物体)的受力进行预测,进而为真实服装的舒适度评估提供依据。
具体实现时,虚拟服装的管理***100可以根据虚拟服装的服装参数以及生物体模型, 采用有限元模型(finite element model,FEM)或质点弹簧模型(mass-spring model)构建得到物理仿真模型。该物理仿真模型可以通过方程或方程组表示。
其中,有限元模型是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,每个单元上所作用的力等效到节点上,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,例如采用叉值函数来近似代替,然后借助于变分原理或加权余量法,将微分方程离散求解。
质点弹簧模型是指利用牛顿运动定律来模拟物体变形。质点弹簧模型包括若干个虚拟的质点,质点之间用无质量的、自然长度不为零的弹簧连接。其中,弹簧可以包括图4中所示的结构弹簧(structural springs)、剪切弹簧(shear springs)、弯曲弹簧(bend springs)中的一种或多种,这三种弹簧分别用于与结构力(拉伸力或压力)、剪切力或弯折力相关的计算。
为了便于理解,下面以基于质点弹簧模型进行物理仿真示例说明。
在该示例中,如图5所示,虚拟服装的布料可以通过一系列具有质量的服装粒子(即质点)表征。基于质点弹簧模型构建物理仿真模型的关键在于基于布料的物理属性,如质量、硬度和弹性等材料属性的至少一种,通过力学理论,将布料的形状用微分方程表示。
在初始阶段,服装粒子的分布为规则的网格分布。在生物体穿上虚拟服装对应的真实服装后,真实服装的布料可以产生形变,布料在恢复形变的过程中受到生物体的阻碍。布料与生物体接触的部分可以产生作用于生物体的压力。基于此,虚拟服装的管理***100可以分析各个服装粒子的受力情况,以预测布料与生物体接触的部分作用于生物体的压力。
服装粒子受到的力可以分为内力和外力。其中,内力可以包括弹簧的弹性力和阻尼力,外力包括重力。弹簧的弹性力包括结构力、剪切力和弯折力中的至少一种。质点弹簧模型采用结构弹簧模拟横向的结构力,横向的结构力用于阻止布料在横向产生较大的拉压变形,采用剪切弹簧模拟斜向的剪切力,斜向的剪切力用于阻止布料在斜向产生较大的拉压变形,采用弯曲弹簧模拟弯折力,弯曲弹簧通常连接间隔的服装粒子,用于布料发生弯曲形变时,阻止过度弯曲,进而避免布料的边角坍塌。为了便于描述,本实施例以弹性力包括相邻服装粒子的弹性力示例说明。
弹簧的弹性力遵从Hooke定律,一个服装粒子受到与相邻的服装粒子之间弹簧的弹性力可以表示为:
其中,Xi、Xj表示服装粒子i、j的位置,l0为弹簧的自然长度,ks为弹性系数。其中,l0可以根据尺寸、服装粒子的数量计算得到,ks可以根据面料查找相应材料的材料属性得到。
弹簧的阻尼力与服装粒子相对速度在弹簧方向上的分量成正比,可以表示为:
其中,Vi、Vj表示服装粒子i、j的速度,kd为阻尼系数。与ks类似,kd可以根据面料查找相应材料的材料属性得到。
每个服装粒子被认为具有相同的质量(记作m),该质量等于虚拟服装对应的真实服装的总质量(记作M)除以服装粒子的数量。在布料模拟过程中,作用在每个质点的重力是常数,具体为mg。其中,g为重力加速度。
基于牛顿运动定律,虚拟服装的管理***100可以构建如下二阶微分方程:
该二阶微分方程可以改写为如下一阶微分方程:
利用显式欧拉积分求解上述微分方程可以得到:
其中,Xt、Vt表示服装粒子在当前时间步的位置和速度,Xt+h、Vt+h表示服装粒子在下一时间步的位置和速度,h表示一个时间步。
在该示例中,假定人体等生物体为刚体,刚体不发生形变,因此,生物体和服装之间的相互作用设定为服装不能穿透人体,即设置贴在生物体皮肤上的服装粒子在皮肤表面的法向速度为0。
针对与生物体皮肤接触的服装粒子,虚拟服装的管理***100可以根据Xt+h、Vt+h,迭代至上述公式,从而确定上述服装粒子在下一个时间步的受力。虚拟服装的管理***100可以确定服装粒子的受力在生物体皮肤的法向上的分量,考虑到力的作用是相互的,虚拟服装的管理***100可以将上述分量确定为生物体与上述服装粒子接触位置所受到的压力。
生物体与真实服装可以包括至少一个接触点,相应地,真实服装作用于生物体的压力可以通过生物体与至少一个服装粒子接触位置所受到的压力表征,例如真实服装作用于生物体的压力可以通过生物体不同部位受到的真实服装的压力表征。
需要说明的是,当虚拟服装的管理***100获取到生物体在与运动模式对应的至少一个位姿下的生物体模型,例如是生物体在运动过程中不同时刻对应的生物体模型时,虚拟服装的管理***100可以根据虚拟服装的当前服装参数以及生物体在至少一个位姿下的生物体模型,构建至少一个物理仿真模型。接着,虚拟服装的管理***100可以基于至少一个物理仿真模型确定生物体在至少一个位姿下真实服装作用于生物体的压力。
S210:虚拟服装的管理***100根据所述压力确定真实服装的舒适度。
具体地,虚拟服装的管理***100可以根据压力,以及压力与舒适度的映射关系,确定真实服装的舒适度。其中,压力与舒适度的映射关系可以根据历史数据统计分析得到。以生物体为人体示例说明,表1示出了人体受到真实服装的压力与舒适度的映射关系,如下所示:
表1人体在不同状态不同舒适度下的压力范围

虚拟服装的管理***100可以根据人体的运动状态、人体的不同部位受到的压力以及表1中人体的不同部位在相应运动状态下感受到舒适的压力范围、最大可承受压力极限,确定真实服装的舒适度。
其中,真实服装的舒适度可以定性表示,也可以定量表示。例如,真实服装的舒适度可以包括舒适、一般、不舒适等不同舒适度级别。又例如,真实服装的舒适度可以通过舒适度评分表示。舒适度评分越高,表明越舒适。
以通过舒适度评分定量表示舒适度为例,对确定舒适度的过程进行说明。虚拟服装的管理***100可根据人体的运动状态确定该运动状态下不同部位感受到舒适的压力范围、最大可承受压力极限,然后将各个部位受到真实服装的压力与上述压力范围、最大可承受压力进行比较,从而确定各个部位的舒适度评分,接着根据各个部位的舒适度评分进行加权运算,获得真实服装整体的舒适度。
考虑到虚拟服装的管理***100通常可以对一个时间段的运动过程进行建模,虚拟服装的管理***100可以将时间段分为多个时间步,基于多个时间步分别进行建模。如图3所示,虚拟服装的管理***100可以进行物理仿真计算,具体是计算服装粒子的位置和速度,进而确定服装粒子作用于生物体的压力,然后虚拟服装的管理***100根据该压力确定舒适度。接着,虚拟服装的管理***100在下一个时间步,基于对应位姿下的生物体模型和服装参数如面料(不同面料可以对应不同弹性系数、阻尼系数),进行物理仿真计算,得到服装粒子的位置和速度,进而确定服装粒子作用用于生物体的压力,并根据压力确定下一个时间步的舒适度。虚拟服装的管理***100可以根据真实服装在各个时间步的舒适度,确定最终的舒适度。
在一些可能的实现方式中,当虚拟服装的管理***100还获取场景模板,则虚拟服装的管理***100还可以将生物体穿着虚拟服装的视觉效果图与场景模板融合。例如,虚拟服装的管理***100可以通过渲染方式,将场景模板作为生物体穿着虚拟服装的视觉效果图的背景,得到融合效果图。
S212:虚拟服装的管理***100向管理客户端200返回真实服装的舒适度。当真实服装的舒适度小于阈值,执行S214;当真实服装的舒适度大于或等于阈值,执行S216。
当虚拟服装的管理***100还生成有融合效果图时,虚拟服装的管理***100还可以向管理客户端200返回该融合效果图,以便于管理客户端200向用户呈现融合效果图以及真实服装的舒适度,从而为用户提供丰富的信息。
S214:管理客户端200接收用户根据舒适度配置的更新后的服装参数,然后再执行S202至S212。
虚拟服装的管理***100可以向管理客户端200返回真实服装的舒适度,如此,用户可以查看虚拟服装对应的真实服装的舒适度,进而根据该舒适度进行后续的决策。
在服装销售场景中,用户可以根据该舒适度决策是否购买该虚拟服装对应的真实服装。例如,真实服装的舒适度大于或等于阈值时,用户可以决策购买该虚拟服装对应的真实服装。需要说明的是,用户还可以结合其他因素,如价格、样式等因素,综合决策是否购买该虚拟服装对应的真实服装。
在服装设计场景中,用户可以根据该舒适度决策是否更新该虚拟服装的服装参数。例如,真实服装的舒适度小于阈值时,用户可以更新虚拟服装的服装参数,然后管理客户端200可以执行S214,具体是接收更新后的服装参数,虚拟服装的管理***100可以基于更新后的服装参数,重新执行S202至S212。虚拟服装的管理***100可以循环执行参数配置、物理仿真、舒适度评估的过程,直至虚拟服装对应的真实服装的舒适度达到阈值。当真实服装的舒适度大于或等于阈值时,可以执行S216。
其中,用户在根据真实服装的舒适度更新虚拟服装的服装参数时,可以根据真实服装的舒适度与阈值的差距确定更新尺寸或面料中的至少一种,并确定相应服装参数的更新幅度。例如,舒适度与阈值差距较大时,用户可以主要更新尺寸,例如为尺寸设置较大的更新幅度。又例如,舒适度与阈值差距较小时,用户可以尝试更新面料,例如更改为更具有弹性的面料。需要说明,舒适度与阈值差距较小的情况下,用户也可以对尺寸进行微调。
相应地,虚拟服装的管理***100可以根据更新后的服装参数以及生物体模型,更新物理仿真模型,然后基于更新后的物理仿真模型更新真实服装作用于所述生物体的压力,接着根据更新后的压力更新真实服装的舒适度。
S216:管理客户端200登录商品管理***400,向用户呈现商品管理界面。
商品管理界面用于对服装商品进行管理。例如,商品管理界面用于向消费者售卖虚拟服装对应的真实服装,或者是按照设计者设计的虚拟服装生产对应的真实服装,进而将真实服装交付给客户(如消费者)。
S218:管理客户端200接收用户通过商品管理界面触发的商品生产操作,向商品管理***400提交服装生产请求。
用户可以通过商品管理界面的生产控件触发商品生产操作,管理客户端200可以响应于用户触发的商品生产操作,将虚拟服装的服装参数打包至商品生产请求,然后向商品管理***200提交商品生产请求。其中,商品生产请求中携带的服装参数可以是舒适度大于或等于阈值时的服装参数。在一些实施例中,服装参数可以是更新后的服装参数。
S220:商品管理***400向服装生产***300下发虚拟服装的服装参数。
S222:服装生产***300根据虚拟服装的服装参数,生产相应的真实服装。
需要说明的是,上述S216至S220为本申请实施例的可选步骤,执行本申请实施例的虚拟服装的管理方法也可以不执行上述S216至S220,例如,管理客户端200可以直接向服装生产***300下方虚拟服装的服装参数,以使服装生产***300根据虚拟服装的服装参数,生产相应的真实服装即可。进一步地,在服装销售场景中,也可以不执行上述S214至S222。
基于上述内容描述,本申请实施例提供一种虚拟服装的管理方法。该方法通过引入物理仿真,以根据虚拟服装的服装参数和生物体模型进行实时地物理仿真建模,通过建模得到的物理仿真模型,预测虚拟服装对应的真实服装作用于生物体的压力,进而根据该压力 准确评估真实服装的舒适度。如此,可以为用户提供丰富的信息,从而为后续的服装购买或服装设计决策提供参考。
其中,交互式的服装设计体验可以促使服装设计不仅仅停留在外观和形式上,还利用物理仿真建模运动模式下的服装形态,强化了试衣效果,并且输出了真实服装的舒适度,辅助设计者(例如是定制业务的消费者)完成服装设计,增强用户体验。进一步地,该方法可以实现服装设计和服装生产的闭环,消费者可以通过商品管理***,将设计好的虚拟服装的服装参数快速传送至服装生产***进行生产,生产好的服装可以快速送达至消费者,缩短了交易周期,提高了交易效率。
基于本申请实施例提供的虚拟服装的管理方法,本申请实施例还提供了一种如前述的虚拟服装的管理***100。下面结合附图对虚拟服装的管理***100进行介绍。
参见图1所示的虚拟服装的管理***100的结构示意图,该***100包括:
参数管理模块102,用于获取虚拟服装的服装参数以及生物体模型,其中,虚拟服装对应真实服装,生物体模型通过对生物体建模得到;
物理仿真模块104,用于根据虚拟服装的服装参数以及生物体模型,构建物理仿真模型,基于物理仿真模型确定真实服装作用于生物体的压力,根据压力确定真实服装的舒适度。
示例性地,上述参数管理模块102、物理仿真模块104可以通过硬件实现,或者可以通过软件实现。为了便于描述,下面以参数管理模块102示例说明。
当通过软件实现时,参数管理模块102可以是运行在计算设备上的应用程序,如计算引擎等。该应用程序可以以虚拟化服务的方式提供给用户使用。虚拟化服务可以包括虚拟机(virtual machine,VM)服务、裸金属服务器(bare metal server,BMS)服务以及容器(container)服务。其中,VM服务可以是通过虚拟化技术在多个物理主机(如计算设备)上虚拟出虚拟机(virtual machine,VM)资源池以为用户按需提供VM进行使用的服务。BMS服务是在多个物理主机上虚拟出BMS资源池以为用户按需提供BMS进行使用的服务。容器服务是在多个物理主机上虚拟出容器资源池以为用户按需提供容器进行使用的服务。VM是模拟出来的一台虚拟的计算机,也即逻辑上的一台计算机。BMS是一种可弹性伸缩的高性能计算服务,计算性能与传统物理机无差别,具有安全物理隔离的特点。容器是一种内核虚拟化技术,可以提供轻量级的虚拟化,以达到隔离用户空间、进程和资源的目的。应理解,上述虚拟化服务中的VM服务、BMS服务以及容器服务仅仅是作为具体的示例,在实际应用中,虚拟化服务还可以是其他轻量级或者重量级的虚拟化服务,此处不作具体限定。
当通过硬件实现时,参数管理模块102中可以包括至少一个计算设备,如服务器等。或者,参数管理模块102也可以是利用专用集成电路(application-specific integrated circuit,ASIC)实现、或可编程逻辑器件(programmable logic device,PLD)实现的设备等。其中,上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD)、现场可编程门阵列(field-programmable gate array,FPGA)、通用阵列逻辑(generic array logic,GAL)或其任意组合实现。
在一些可能的实现方式中,物理仿真模块104具体用于:
根据虚拟服装的服装参数以及生物体模型,采用有限元模型或质点弹簧模型构建得到物理仿真模型。
在一些可能的实现方式中,参数管理模块102还用于:
获取用户配置的运动模式;
参数管理模块102具体用于:
根据运动模式,从生物体的模型库中获取生物体在与运动模式对应的至少一个位姿下的生物体模型;
物理仿真模块104具体用于:
根据虚拟服装的服装参数以及生物体在至少一个位姿下的生物体模型,构建至少一个物理仿真模型,基于至少一个物理仿真模型确定生物体在至少一个位姿下真实服装作用于生物体的压力。
在一些可能的实现方式中,参数管理模块102具体用于:
向用户呈现至少一件真实服装对应的至少一件虚拟服装;
获取用户从至少一件虚拟服装中选择的虚拟服装的服装参数。
在一些可能的实现方式中,参数管理模块102具体用于:
接收用户配置的虚拟服装的服装参数。
在一些可能的实现方式中,参数管理模块102还用于:
接收用户根据舒适度配置的更新后的服装参数;
物理仿真模块104还用于:
根据更新后的服装参数以及生物体模型,更新物理仿真模型,基于更新后的物理仿真模型更新真实服装作用于生物体的压力,根据更新后的压力更新真实服装的舒适度。
在一些可能的实现方式中,参数管理模块102还用于:
向管理客户端返回虚拟服装的服装参数,以使管理客户端向服装生产***提供虚拟服装的服装参数。
在一些可能的实现方式中,虚拟服装的服装参数包括尺寸、样式或面料中的一种或多种。
本申请还提供一种计算设备600。如图6所示,计算设备600包括:总线602、处理器604、存储器606和通信接口608。处理器604、存储器606和通信接口608之间通过总线602通信。计算设备600可以是服务器或终端设备。应理解,本申请不限定计算设备600中的处理器、存储器的个数。
总线602可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。总线602可包括在计算设备600各个部件(例如,存储器606、处理器604、通信接口608)之间传送信息的通路。
处理器604可以包括中央处理器(central processing unit,CPU)、图形处理器(graphics  processing unit,GPU)、微处理器(micro processor,MP)或者数字信号处理器(digital signal processor,DSP)等处理器中的任意一种或多种。
存储器606可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM)。处理器604还可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器,机械硬盘(hard disk drive,HDD)或固态硬盘(solid state drive,SSD)。存储器606中存储有可执行的程序代码,处理器604执行该可执行的程序代码以实现前述虚拟服装的管理方法。具体的,存储器606上存有虚拟服装的管理***100用于执行虚拟服装的管理方法的指令。
通信接口608使用例如但不限于网络接口卡、收发器一类的收发模块,来实现计算设备600与其他设备或通信网络之间的通信。
本申请实施例还提供了一种计算设备集群。该计算设备集群包括至少一台计算设备。该计算设备可以是服务器,例如是中心服务器、边缘服务器,或者是本地数据中心中的本地服务器。在一些实施例中,计算设备也可以是台式机、笔记本电脑或者智能手机等终端设备。
如图7所示,所述计算设备集群包括至少一个计算设备600。计算设备集群中的一个或多个计算设备600中的存储器606中可以存有相同的虚拟服装的管理***100用于执行虚拟服装的管理方法的指令。
在一些可能的实现方式中,该计算设备集群中的一个或多个计算设备600也可以用于执行虚拟服装的管理***100用于执行虚拟服装的管理方法的部分指令。换言之,一个或多个计算设备600的组合可以共同执行虚拟服装的管理***100用于执行虚拟服装的管理方法的指令。
需要说明的是,计算设备集群中的不同的计算设备600中的存储器606可以存储不同的指令,用于执行虚拟服装的管理***100的部分功能。
图8示出了一种可能的实现方式。如图8所示,两个计算设备600A和600B通过通信接口608实现连接。计算设备600A中的存储器上存有用于执行参数管理模块102的功能的指令。计算设备600B中的存储器上存有用于执行物理仿真模块104的功能的指令。换言之,计算设备600A和600B的存储器606共同存储了虚拟服装的管理***100用于执行虚拟服装的管理方法的指令。
图8所示的计算设备集群之间的连接方式可以是考虑到本申请提供的虚拟服装的管理方法需要获取虚拟服装的服装参数以及生物体模型,从而构建模型并确定压力。因此考虑将参数管理模块102实现的功能交由计算设备600A执行,物理仿真模块104实现的功能由计算设备600B执行。
应理解,图8中示出的计算设备600A的功能也可以由多个计算设备600完成。同样,计算设备600B的功能也可以由多个计算设备600完成。
在一些可能的实现方式中,计算设备集群中的一个或多个计算设备可以通过网络连接。其中,所述网络可以是广域网或局域网等等。图9示出了一种可能的实现方式。如图9所示,两个计算设备600C和600D之间通过网络进行连接。具体地,通过各个计算设备中的通信接 口与所述网络进行连接。在这一类可能的实现方式中,计算设备600C中的存储器606中存有执行参数管理模块102的功能的指令。同时,计算设备600D中的存储器606中存有执行物理仿真模块104的功能的指令。
图9所示的计算设备集群之间的连接方式可以是考虑到本申请提供的虚拟服装的管理方法需要获取虚拟服装的服装参数以及生物体模型,从而构建模型并确定压力。因此考虑将参数管理模块102实现的功能交由计算设备600C执行,物理仿真模块104实现的功能由计算设备600D执行。应理解,图9中示出的计算设备600C的功能也可以由多个计算设备600完成。同样,计算设备600D的功能也可以由多个计算设备600完成。
本申请实施例还提供了一种计算机可读存储介质。所述计算机可读存储介质可以是计算设备能够存储的任何可用介质或者是包含一个或多个可用介质的数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。该计算机可读存储介质包括指令,所述指令指示计算设备执行上述应用于虚拟服装的管理***用于执行虚拟服装的管理方法。
本申请实施例还提供了一种包含指令的计算机程序产品。所述计算机程序产品可以是包含指令的,能够运行在计算设备上或被储存在任何可用介质中的软件或程序产品。当所述计算机程序产品在至少一个计算设备上运行时,使得至少一个计算设备执行上述虚拟服装的管理方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的保护范围。

Claims (19)

  1. 一种虚拟服装的管理***,其特征在于,所述***包括:
    参数管理模块,用于获取虚拟服装的服装参数以及生物体模型,所述虚拟服装对应真实服装,所述生物体模型通过对生物体建模得到;
    物理仿真模块,用于根据所述虚拟服装的服装参数以及所述生物体模型,构建物理仿真模型,基于所述物理仿真模型确定所述真实服装作用于所述生物体的压力,根据所述压力确定所述真实服装的舒适度。
  2. 根据权利要求1所述的***,其特征在于,所述物理仿真模块具体用于:
    根据所述虚拟服装的服装参数以及所述生物体模型,采用有限元模型或质点弹簧模型构建得到所述物理仿真模型。
  3. 根据权利要求1或2所述的***,其特征在于,所述参数管理模块还用于:
    获取用户配置的运动模式;
    所述参数管理模块具体用于:
    根据所述运动模式,从所述生物体的模型库中获取所述生物体在与所述运动模式对应的至少一个位姿下的生物体模型;
    所述物理仿真模块具体用于:
    根据所述虚拟服装的服装参数以及所述生物体在所述至少一个位姿下的生物体模型,构建至少一个物理仿真模型,基于所述至少一个物理仿真模型确定所述生物体在所述至少一个位姿下所述真实服装作用于所述生物体的压力。
  4. 根据权利要求1至3任一项所述的***,其特征在于,所述参数管理模块具体用于:
    向用户呈现至少一件真实服装对应的至少一件虚拟服装;
    获取所述用户从所述至少一件虚拟服装中选择的虚拟服装的服装参数。
  5. 根据权利要求1至3任一项所述的***,其特征在于,所述参数管理模块具体用于:
    接收用户配置的虚拟服装的服装参数。
  6. 根据权利要求5所述的***,其特征在于,所述参数管理模块还用于:
    接收所述用户根据所述舒适度配置的更新后的所述服装参数;
    物理仿真模块还用于:
    根据更新后的所述服装参数以及所述生物体模型,更新所述物理仿真模型,基于更新后的所述物理仿真模型更新所述真实服装作用于所述生物体的压力,根据更新后的所述压力更新所述真实服装的舒适度。
  7. 根据权利要求5或6所述的***,其特征在于,所述参数管理模块还用于:
    向管理客户端返回所述虚拟服装的所述服装参数,以使所述管理客户端向服装生产***提供所述虚拟服装的所述服装参数。
  8. 根据权利要求1至7任一项所述的***,其特征在于,所述虚拟服装的服装参数包括尺寸、样式或面料中的一种或多种。
  9. 一种虚拟服装的管理方法,其特征在于,所述方法包括:
    获取虚拟服装的服装参数以及生物体模型,所述虚拟服装对应真实服装,所述生物体模型通过对生物体建模得到;
    根据所述虚拟服装的服装参数以及所述生物体模型,构建物理仿真模型,基于所述物理仿真模型确定所述真实服装作用于所述生物体的压力,根据所述压力确定所述真实服装的舒适度。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述虚拟服装的服装参数以及所述生物体模型,构建物理仿真模型,包括:
    根据所述虚拟服装的服装参数以及所述生物体模型,采用有限元模型或质点弹簧模型构建得到所述物理仿真模型。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    获取用户配置的运动模式;
    所述获取生物体模型,包括:
    根据所述运动模式,从所述生物体的模型库中获取所述生物体在与所述运动模式对应的至少一个位姿下的生物体模型;
    所述根据所述虚拟服装的服装参数以及所述生物体模型,构建物理仿真模型,基于所述物理仿真模型确定所述真实服装作用于所述生物体的压力,包括:
    根据所述虚拟服装的服装参数以及所述生物体在所述至少一个位姿下的生物体模型,构建至少一个物理仿真模型,基于所述至少一个物理仿真模型确定所述生物体在所述至少一个位姿下所述真实服装作用于所述生物体的压力。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述获取虚拟服装的服装参数,包括:
    向用户呈现至少一件真实服装对应的至少一件虚拟服装;
    获取所述用户从所述至少一件虚拟服装中选择的虚拟服装的服装参数。
  13. 根据权利要求9至11任一项所述的方法,其特征在于,所述获取虚拟服装的服装参数,包括:
    接收用户配置的虚拟服装的服装参数。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    接收所述用户根据所述舒适度配置的更新后的所述服装参数;
    根据更新后的所述服装参数以及所述生物体模型,更新所述物理仿真模型,基于更新后的所述物理仿真模型更新所述真实服装作用于所述生物体的压力,根据更新后的所述压力更新所述真实服装的舒适度。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    向管理客户端返回所述虚拟服装的所述服装参数,以使所述管理客户端向服装生产***提供所述虚拟服装的所述服装参数。
  16. 根据权利要求9至15任一项所述的方法,其特征在于,所述虚拟服装的服装参数包括尺寸、样式或面料中的一种或多种。
  17. 一种计算设备集群,其特征在于,所述计算设备集群包括至少一台计算设备,所述至少一台计算设备包括至少一个处理器和至少一个存储器,所述至少一个存储器中存储有计算机可读指令;所述至少一个处理器执行所述计算机可读指令,以使得所述计算设备集群执行如权利要求9至16中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,包括计算机可读指令;所述计算机可读指令用于实现权利要求9至16任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,包括计算机可读指令;所述计算机可读指令用于实现权利要求9至16任一项所述的方法。
PCT/CN2023/081782 2022-08-17 2023-03-16 一种虚拟服装的管理***及相关方法 WO2024036943A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210987576.6 2022-08-17
CN202210987576 2022-08-17
CN202211520465.0 2022-11-30
CN202211520465.0A CN117670461A (zh) 2022-08-17 2022-11-30 一种虚拟服装的管理***及相关方法

Publications (1)

Publication Number Publication Date
WO2024036943A1 true WO2024036943A1 (zh) 2024-02-22

Family

ID=89940519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081782 WO2024036943A1 (zh) 2022-08-17 2023-03-16 一种虚拟服装的管理***及相关方法

Country Status (1)

Country Link
WO (1) WO2024036943A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502399A (zh) * 2016-10-31 2017-03-15 江西服装学院 虚拟试衣方法、装置及***和三维面料材质库建立方法及装置
CN110135959A (zh) * 2019-05-21 2019-08-16 江南大学 一种经编全成形服装定制模型的设计***及应用
CN110580398A (zh) * 2019-09-23 2019-12-17 盾钰(上海)互联网科技有限公司 舒适感仿真方法、服装制作方法、***及介质
CN110737982A (zh) * 2019-10-14 2020-01-31 广东溢达纺织有限公司 虚拟服装试衣报告生成方法、装置、计算机设备
CN113361180A (zh) * 2021-06-30 2021-09-07 西安工程大学 一种运动状态下运动文胸穿着受力状态分析方法
WO2022006683A1 (en) * 2020-07-10 2022-01-13 Wimalasuriya Daya Karunita Tension-map based virtual fitting room systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502399A (zh) * 2016-10-31 2017-03-15 江西服装学院 虚拟试衣方法、装置及***和三维面料材质库建立方法及装置
CN110135959A (zh) * 2019-05-21 2019-08-16 江南大学 一种经编全成形服装定制模型的设计***及应用
CN110580398A (zh) * 2019-09-23 2019-12-17 盾钰(上海)互联网科技有限公司 舒适感仿真方法、服装制作方法、***及介质
CN110737982A (zh) * 2019-10-14 2020-01-31 广东溢达纺织有限公司 虚拟服装试衣报告生成方法、装置、计算机设备
WO2022006683A1 (en) * 2020-07-10 2022-01-13 Wimalasuriya Daya Karunita Tension-map based virtual fitting room systems and methods
CN113361180A (zh) * 2021-06-30 2021-09-07 西安工程大学 一种运动状态下运动文胸穿着受力状态分析方法

Similar Documents

Publication Publication Date Title
US11662829B2 (en) Modification of three-dimensional garments using gestures
US11599937B2 (en) Digital wardrobe
US11393163B2 (en) Method and system for remote clothing selection
US11270373B2 (en) Method system and medium for generating virtual contexts from three dimensional models
JP6857638B2 (ja) ユーザの身体的特徴に基づいた推薦システム
US20170004567A1 (en) System and method for providing modular online product selection, visualization and design services
Shugrina et al. Fab forms: Customizable objects for fabrication with validity and geometry caching
US20200402307A1 (en) System and method for camera based cloth fitting and recommendation
US11830138B2 (en) Predicting secondary motion of multidimentional objects based on local patch features
US20230252551A1 (en) Vehicle identification driven by augmented reality (ar)
KR102429572B1 (ko) 인공지능 기반 사용자 맞춤형 의류 및 스타일링 추천 방법, 장치 및 시스템
US10282883B2 (en) Hierarchy-based character rigging
WO2024036943A1 (zh) 一种虚拟服装的管理***及相关方法
KR20210046926A (ko) 3차원 모델링 및 아바타를 이용한 가상 핏 예측 서비스 제공 시스템
CN117670461A (zh) 一种虚拟服装的管理***及相关方法
WO2022081745A1 (en) Real-time rendering of 3d wearable articles on human bodies for camera-supported computing devices
US10373393B1 (en) Method and system for identification of best fitting footwear
Cao et al. Research on national costume design based on virtual reality technology
JP7023558B1 (ja) 情報処理装置、3dシステム、及び情報処理方法
RU2805003C2 (ru) Способ и система для дистанционного выбора одежды
TWI822476B (zh) 資訊處理設備、資訊處理方法、資訊處理系統以及程式
Liang Dynamics-Inspired Garment Reconstruction and Synthesis for Simulation-Based Virtual Try-On
KR20240096365A (ko) 다수의 사용자가 뉴럴 래디언스 필드 모델을 생성하고 사용할 수 있는 플랫폼
KR20240090299A (ko) 의류 거래를 자동화하기 위한 시스템 및 방법
IT201800007812A1 (it) A 3D visual search and AI-based recommendation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853859

Country of ref document: EP

Kind code of ref document: A1