WO2024036791A1 - 基于光声效应的体外肿瘤定位装置 - Google Patents

基于光声效应的体外肿瘤定位装置 Download PDF

Info

Publication number
WO2024036791A1
WO2024036791A1 PCT/CN2022/132441 CN2022132441W WO2024036791A1 WO 2024036791 A1 WO2024036791 A1 WO 2024036791A1 CN 2022132441 W CN2022132441 W CN 2022132441W WO 2024036791 A1 WO2024036791 A1 WO 2024036791A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser emitting
base
socket
ball
Prior art date
Application number
PCT/CN2022/132441
Other languages
English (en)
French (fr)
Inventor
马隆波
Original Assignee
马隆波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马隆波 filed Critical 马隆波
Publication of WO2024036791A1 publication Critical patent/WO2024036791A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case

Definitions

  • the invention relates to medical equipment, and specifically provides an in vitro tumor positioning device based on photoacoustic effect.
  • Cancer also known as malignant tumors, is a disease that seriously threatens human life and health.
  • many cancers have no obvious symptoms in the early stages. When symptoms appear and are diagnosed, they are often in the middle and late stages. This not only makes treatment difficult, but also leads to a significant decline in patient survival rates. decline, therefore, early diagnosis of cancer becomes crucial.
  • In vivo fluorescent labeling flow cytometry which has been widely popular in recent years, can detect circulating tumor cells that enter the blood of cancer patients early and provides a new detection method for the early detection of cancer.
  • this method requires intravenous sampling and staining in vitro. When performing tests, the sampling and staining process often affects the physiological environment of cells in vivo, resulting in inaccurate test results.
  • Japanese invention patent application JP2003290126A discloses an in vitro sentinel lymph node detection device based on the photoacoustic effect.
  • the principle of this device is to use a light guide device to guide pulsed light near the diseased tissue that has been pre-injected with dye, and at the same time use a close
  • An ultrasonic detector at the transmitting end of the light guide device detects the ultrasonic signal, and an output device is used to output the presence or absence and density of the dye based on the output signal of the ultrasonic detector.
  • the device only has one light-emitting head. When performing tumor detection, the light-emitting head is in point contact with the patient's skin.
  • the medical staff cannot always make the light-emitting head perpendicular to the patient's skin surface, resulting in inaccurate positioning, that is, The area beneath the skin that led to the discovery of the high-intensity ultrasound signal was not where the tumor was located.
  • Chinese invention patent application CN105286805A also discloses a tumor cell detection and diagnosis device.
  • the device includes a high-frequency pulse laser, an optical coupler and an ultrasonic probe.
  • the optical coupler and the ultrasonic probe are both attached to a skin contact on the device.
  • CN105286805A also has only one laser emitting head (optical coupler). Especially when the skin contactor of this device is moved in the arc area of the human body, it can easily lead to incorrect positioning.
  • the present invention aims to solve the above technical problems, that is, to solve the problem of inaccurate positioning of existing in vitro tumor detection devices.
  • the present invention provides an in vitro tumor positioning device based on the photoacoustic effect.
  • the in vitro tumor positioning device includes:
  • a laser generator which is in contact with the skin of the subject and used to emit laser light into the body of the subject;
  • An ultrasonic probe which is in contact with the skin of the subject and used to detect the ultrasonic signal triggered by the laser emitted into the body of the subject;
  • a signal processor connected to the ultrasonic probe and used to process the signal detected by the ultrasonic probe
  • An analyzer connected to the signal processor, used to determine whether there is a tumor and its location in the body of the subject according to the output result of the signal processor;
  • the laser generator includes a handle and a laser emitting end connected to the handle through a ball and socket structure.
  • a power supply is provided in the handle, and a plurality of laser emitting heads are provided on the laser emitting end.
  • the power supply is connected to the laser emitting end. Bus electrical connection of multiple laser emitter heads.
  • the laser emitting end includes a base, the plurality of laser emitting heads are arranged on the first side of the base, and the base A ball socket is fixedly provided on the second side, and a ball head is fixedly provided at one end of the handle. When assembled, the ball head is accommodated in the ball socket and can rotate freely in the ball socket.
  • the laser emitting end includes a base, the plurality of laser emitting heads are arranged on the first side of the base, and the base A ball head is fixedly provided on the second side, and one end of the handle is fixedly provided
  • the laser generator further includes a return spring set on the outside of the ball head and the ball socket. In a natural state, the return spring Make the handle and the laser emitting end perpendicular to each other.
  • the return spring is made of metal material, one end of which is connected to the power supply, and the other end is connected to the bus of the plurality of laser emitting heads.
  • the return spring includes a spring body and first and second power terminals provided at both ends of the spring body, and the power supply is configured There is a power socket, the base is provided with a transmitter socket, the outside of the spring body is covered with insulating material, the first power terminal is plugged into the power socket, and the second power terminal is connected to the power socket. Connect the transmitter head socket.
  • the base is disk-shaped, and the plurality of laser emitting heads are evenly distributed on the first side of the base in a lattice form.
  • the diameter of the base is in the range of 1-3 cm.
  • each of the laser emitting heads is tilted toward the center point of the first side of the base and is sandwiched between the first side of the base and the center point of the first side of the base.
  • the angles are the same.
  • the in vitro tumor positioning device based on the photoacoustic effect include an ultrasonic probe, a laser generator with a ball-and-socket structure connecting its handle and the laser emitting end, a signal processor and an analyzer, so that even if different medical care The operating methods of the personnel are different.
  • the multiple laser emitting heads on the laser emitting end eventually all vertically contact the skin surface of the subject, thereby avoiding positioning inaccuracies caused by the tilt of the projection direction.
  • the base and a plurality of laser emitters arranged thereon The head can rotate smoothly and freely relative to the handle, ensuring that multiple laser emitting heads all contact the skin surface of the subject and vertically emit laser light.
  • a return spring on the outside of the interconnected ball heads and ball sockets, it can help to stably contact the multiple laser emitting heads on the laser emitting end with the surface of the subject's skin, so that the position of the laser emitting The direction remains unchanged, which greatly improves the reproducibility of test results, allowing medical staff to determine the location and size of tumors more quickly and accurately.
  • the advantages of using metal materials to make the return spring are not only easy operation, good stability and low cost, but also the return spring can be used as a wire connecting the power supply and the laser transmitter head, solving the problem of nowhere to wire the ball-and-socket connection structure and The problem of interference between wiring and ball-and-socket structures.
  • the loop supplying power to the laser transmitter head can be easily connected and disconnected. Medical staff will not get an electric shock even if they touch the energized spring body when using the laser generator for tumor detection.
  • the base in a disk shape and evenly distributing the plurality of laser emitting heads on the first side of the base in the form of a lattice
  • the plurality of laser emitting heads emit multiple laser beams at the same incident distance and uniformly.
  • the incident positions distributed in the lattice are injected into the subject's skin, so that the ultrasonic signals generated by the light-absorbing substances pre-injected into the tissue with tumor lesions are also regular, thus making subsequent ultrasonic signal processing, tumor analysis and imaging work easier. Faster and more accurate.
  • the diameter of the base is 1-3 cm, it is enough to emit multiple laser beams to completely cover various types of early tumors, thereby ensuring that the size of the laser generator is minimized at different locations on the human body. Tumors can be detected and analyzed.
  • each laser emitting head tilting toward the center point of the first side of the base at the same tilt angle, the multiple laser beams emitted by the multiple laser emitting heads continue to converge after entering the body of the subject, so that the skin
  • the greater the intensity of the laser in order to offset the attenuation of the laser during the process of penetrating the subcutaneous tissue, thereby avoiding the insufficient intensity of the laser irradiating the tumor when detecting a tumor far away from the body surface, resulting in a weak reflected ultrasonic signal. problem, ultimately ensuring accurate detection of tumors that are far away from the body surface.
  • the included angle 80-85°, it is possible to ensure that the multiple laser beams can still completely cover the entire tumor even if they continue to converge during the oblique injection into the subject's body, and to ensure that the convergence
  • the degree is enough to provide sufficient intensity of laser irradiation for tumors far away from the body surface, so that the tumor can be diagnosed completely, clearly and accurately.
  • Figure 1 is a system architecture diagram of the in vitro tumor positioning device based on the photoacoustic effect of the present invention
  • Figure 2 is a schematic structural diagram of the laser generator of the in vitro tumor positioning device based on the photoacoustic effect of the present invention
  • FIG. 3 is a side cross-sectional structural view of the base of the laser generator shown in FIG. 2 .
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the light-absorbing material is irradiated with a short pulse laser, and the molecules of the light-absorbing material absorb photons.
  • the electrons of the light-absorbing material molecules transition from a low energy level to a high energy level and are in an excited state.
  • the electrons in the excited state are extremely unstable and can move from The transition from a higher energy level to a lower energy level simultaneously releases energy in the form of light or heat.
  • Choosing a laser with an appropriate wavelength as the excitation source can maximize the efficiency of converting the absorbed photon energy into thermal energy. Usually more than 90% of the light energy can be converted into thermal energy.
  • the light-absorbing material converts light energy into heat energy and the local temperature increases and expands, thus generating pressure waves.
  • the pressure waves are ultrasonic signals. This is the so-called photoacoustic effect.
  • the energy conversion process of the photoacoustic effect is "light energy” - "thermal energy” - "mechanical energy”.
  • both the diseased tissue and the surrounding non-diseased tissue can absorb laser energy
  • the ultrasonic signal generated by the diseased tissue after absorbing the light wave energy is obviously different from the background acoustic signal generated by the non-diseased tissue
  • the ultrasonic wave characteristics generated by the diseased tissue after absorbing the laser can be predicted in advance. Obtained in in vitro experiments.
  • all light-absorbing materials can absorb light waves of a specific pulse frequency and produce vibrations (sound waves) of a specific pulse frequency
  • the radiation can be absorbed by pre-adding light-absorbing materials with better light-absorbing properties such as nanocarbon and gold nanorods into the tissue.
  • photoacoustic imaging technology can combine the advantages of high selectivity in pure optical tissue imaging and deep penetration characteristics in pure ultrasonic tissue imaging, avoiding the influence of light scattering in principle and breaking through high-resolution optical imaging. With a "soft limit" of only 1 mm in depth, it can even achieve deep in vivo tissue imaging of 50 mm, ultimately obtaining high-resolution and high-contrast tissue images.
  • the in vitro tumor positioning device 200 includes a laser generator 1, an ultrasonic probe 2, a signal processor 3 and an analyzer. 4.
  • the laser generator 1 includes a handle 7 and a laser emitting end 9 connected to the handle 7 through a ball and socket structure.
  • the handle 7 is provided with a power supply 71, and the laser emitting end 9 is provided with multiple laser emitters for emitting lasers.
  • Head 91, the power supply 71 is connected to the bus of the plurality of laser emitting heads 91 to power them.
  • the medical staff holds the handle 7 of the laser generator 1 and makes the plurality of laser emitting heads 91 of the laser emitting end 9 contact the subject. the person’s skin. If the laser emitting end 9 is not flat against the skin surface of the subject - that is, the plurality of laser emitting heads 91 are not all in contact with the skin surface of the subject, the laser emitting end 9 can face each other because it is connected to the handle 7 through a ball and socket structure.
  • the handle 7 rotates freely and changes its orientation
  • the plurality of laser emitting heads 91 all contact the skin surface of the subject, thereby obtaining a stable reaction force of the skin - that is, the support force. , so that the laser emitting end 9 and the plurality of laser emitting heads 91 disposed thereon no longer rotate.
  • the position of the multiple laser emitting heads 91 relative to the patient's skin will not be affected, so that the multiple laser emitting heads 91 will always fit vertically.
  • the subject's skin emits laser light.
  • the laser When the laser irradiates the light-absorbing substance previously injected into the tissue where the tumor has occurred, it is absorbed by the light-absorbing substance, and the light-absorbing substance emits ultrasonic waves.
  • the ultrasonic probe 2 is placed flatly on the skin near the laser emitting end 9 to receive ultrasonic signals, and transmits the ultrasonic signals to the signal processor 3 through lines.
  • the signal processor 3 processes the ultrasonic signal and outputs the processing results to the analyzer 4.
  • the analyzer 4 determines whether there is a tumor in the body of the subject and the location and shape of the tumor based on the output results.
  • the signal processor 3 detects all received ultrasonic signals in order to remove interference sound waves and background sound waves, extracts the target ultrasonic wave, and assigns a proportional gain to it; the analyzer 4 analyzes the gain and assigned ultrasonic signals. and compare and output the analysis results in the form of voice or image.
  • the extracorporeal tumor positioning device 200 By making the extracorporeal tumor positioning device 200 based on the photoacoustic effect include an ultrasonic probe 2, a laser generator 1 whose handle 7 is connected to the laser emitting end 9 by a ball-and-socket structure, a signal processor 3 and an analyzer 4, even if different medical staff The operation method is different.
  • the plurality of laser emitting heads 91 on the laser emitting end 9 will also all vertically contact the skin surface of the subject, thereby avoiding positioning inaccuracy caused by the tilt of the projection direction.
  • the laser emitting end 9 also includes a base 92 and a ball socket 93.
  • a plurality of laser emitting heads 91 are provided on the first side of the base 92 (the right side in Figure 2), and the ball socket 93 is fixedly provided on On the second side of the base 92 (the left side in Figure 2).
  • the plurality of laser emitting heads 91 may be snap-connected, clamped or threaded on the first side of the base 92, for example.
  • the handle 7 also includes a handle body 72 fixedly provided at one end thereof and a ball head 73 fixedly provided at its other end.
  • the fixed arrangement mentioned in this application refers to connection through welding, riveting or threaded connection, or through integral injection molding or casting. After assembly, the ball head 73 is received in the ball socket 93 and can rotate freely relative to the ball socket 93 .
  • the medical staff When using the laser generator 1, the medical staff holds the handle body 72 and makes the plurality of laser emitting heads 91 contact the surface of the subject's skin. With the help of the ball head 73 and the ball socket 93, the base 92 and the The plurality of laser emitting heads 91 can rotate freely relative to the handle body 72, so that they can finally be flat against the skin surface of the subject.
  • the base 92 and the plurality of laser emitting heads 91 disposed thereon can rotate smoothly and freely relative to the handle 7 , ensuring that multiple All laser emitting heads 91 contact the skin surface of the subject and vertically emit laser light.
  • the laser emitting end 9 includes a plurality of laser emitting heads for emitting laser, a base and a ball head, and the plurality of laser emitting heads are arranged on the first part of the base.
  • the ball head is fixedly arranged on the second side of the base;
  • the handle 7 includes a power supply, a ball socket fixedly arranged at one end thereof, and a handle body fixedly arranged at its other end. After assembly, the ball head is accommodated in the ball socket. and can rotate freely relative to the ball socket.
  • a plurality of laser emitter heads can also be snap-fitted, clamped or screwed onto the first side of the base, for example.
  • the base and the multiple laser emitting heads mounted on it can also rotate smoothly and freely relative to the handle, thereby ensuring that the multiple laser emitting heads can all Contact the subject's skin surface and emit the laser vertically.
  • This structural adjustment does not deviate from the principle of the present invention, and therefore will also fall within the protection scope of the present invention.
  • the laser generator 1 further includes a return spring 8 , which is sized and shaped to be sleeved on the outside of the ball head 73 and the ball socket 93 and between the handle 7 and the laser emitting end 9 relative to each other.
  • a return spring 8 is squeezed to cause deformation.
  • the elastic force generated by the return spring 8 in turn acts on the ball head 73 and the ball socket 93 to rotate relative to each other, thereby causing the handle 7 and the laser to emit.
  • the terminals 9 return to a mutually perpendicular state.
  • the handle 7 and the laser emitting end 9 are vertical relative to each other under the constraints of the return spring 8 .
  • the medical staff holds the handle 72 of the handle 7 and the plurality of laser emitting heads 91 on the laser emitting end 9 are in contact with the surface of the subject's skin.
  • the handle 7 and the laser emitting end 9 are The force directions are different and rotate relative to each other.
  • the return spring 8 exerts elastic force on the ball head 73 and the ball socket 93 after deformation.
  • the laser emitting end 9 is simultaneously subject to the reaction force of the skin, the elastic force of the return spring 8 and the force of the handle 7 , the mutual images of the three forces can easily form a force balance triangle (the very small gravity is not considered here), so that the multiple laser emitting heads 91 on the laser emitting end 9 can stably contact the surface of the subject's skin Perform tumor testing.
  • a return spring 8 can also be set on the outside of the interconnected ball head and ball socket.
  • the laser emitting end forms a force-balanced triangle to help multiple lasers on the laser emitting end.
  • the transmitter head stably contacts the surface of the subject's skin to detect tumors.
  • a return spring 8 By arranging a return spring 8 on the outside of the interconnected ball heads and ball sockets, it can help to stably contact the multiple laser emitting heads 91 on the laser emitting end 9 against the surface of the subject's skin, so that the position of the laser emitting laser can be adjusted accordingly.
  • the direction remains unchanged, which greatly improves the reproducibility of test results, allowing medical staff to determine the location and size of tumors more quickly and accurately.
  • the return spring 8 is made of metal material, one end of which is connected to the power supply 71 and the other end is connected to the bus of the plurality of laser emitting heads 91 .
  • the metal material here is preferably high carbon steel or alloy steel.
  • the power supply 71 includes a power socket 711, and a cavity is provided in the handle body 72 so that the power supply 71 is disposed therein and the power socket 711 is exposed outside the cavity.
  • the power supply 71 can be, for example, a battery or an external power supply, and can deliver current to the outside through the power socket 711 .
  • the base 92 is provided with a transmitter head socket (not shown in the drawing), and the transmitter head socket is connected to a bus (not shown in the figure) of a plurality of laser transmitter heads 91 .
  • the return spring 8 includes a spring body 81 and first power terminals 82 and second power terminals 83 provided at both ends of the spring body 81 .
  • the spring body 81 undergoes elastic deformation when it is squeezed by the ball head 73 and the ball socket 93 to produce elastic forces of opposite directions and equal magnitude to the two, and is covered with an insulating material on the outside.
  • the insulating material may be an insulating paint layer, for example. or insulating rubber layer.
  • the first power terminal 82 is used for plugging into the power socket 711 (in Figure 2, for the convenience of observation, the first power terminal 82 is not inserted into the power socket 711), and the second power terminal 83 is used for connecting with the transmitter head.
  • the socket is plugged in (not shown in the drawing).
  • the current is transmitted from the power supply 71 to the multi-purpose power supply through the power socket 711, the first power terminal 82, the spring body 81, the second power terminal 83 and the bus.
  • a plurality of laser emitting heads 91 are energized and emit lasers to the skin of the person to be detected.
  • the base 92 is disk-shaped, and a plurality of laser emitting heads 91 are evenly distributed on the first side of the base 92 in a lattice form.
  • the base 92 is connected to a laser emitting head 91 on a first side.
  • a plurality of laser emitting heads 91 are evenly distributed on the first side of the base 92 in a lattice form, for the convenience of observation, only three laser heads are shown in FIGS. 1 and 2 Emitting head 3 and only one laser emitting head 91 is shown in FIG. 3 , and the change in the number of laser emitting heads 91 in the drawing is not intended to limit the number of laser emitting heads 91 in any embodiment of the present invention.
  • FIG. 1 the change in the number of laser emitting heads 91 in the drawing is not intended to limit the number of laser emitting heads 91 in any embodiment of the present invention.
  • the base 92 is hypothetically cut open along the central axis in order to observe in detail the internal structure of the base 92 and the installation of the laser emitting head 91 .
  • the base 92 includes a front cover 921 located on the first side of the base 92 and a front cover 921 located on the first side of the base 92 .
  • the front cover 921 is provided with a larger circular groove facing the rear cover 922, and is also provided with a plurality of transmitting head through holes (only one of which is shown in the drawing) connected with the circular groove so as to facilitate Multiple laser emitting heads 91 are installed.
  • the outer diameter of the back cover 922 is the same as that of the front cover 921, and a bus through hole is provided in the middle position.
  • the plurality of laser emitting heads 91 are generally cylindrical in shape with the same size. Each laser emitting head 91 passes through an emitting head through hole and the length of the front end exposed outside the first side of the base 92 is equal. Each laser emitting head The rear ends of the laser emitter heads 91 are located in the circular groove and cannot enter the transmitter head through hole due to their large diameter. Therefore, multiple laser transmitter heads 91 can be clamped and fixed by pressing the front cover 921 and the back cover 922 together.
  • the front ends of the plurality of laser emitting heads 91 can emit lasers, and the rear ends are connected to the bus through wires (the wires and bus are not shown in the drawings).
  • the bus is located in the bus through hole in the middle of the back cover 922 and faces outward. Extend to connect with the second electrical terminal 83 of the return spring 8 .
  • the disc-shaped base 92 can form surface contact with the subject's skin. Specifically, the front ends of the plurality of laser emitting heads 91 on the first side of the disc-shaped base 92 can be in contact with the subject's skin at the same time. Therefore, The multiple laser beams they emit have the same incident distance to the skin; multiple laser emitting heads 91 are evenly distributed on the first side of the base 92 in a lattice form, so that the multiple laser beams they emit are incident in a uniform lattice distribution. The location enters the skin of the person being tested.
  • the plurality of laser emitting heads 91 can emit multiple laser beams at the same incident distance and The evenly distributed incident positions are injected into the skin of the subject, so that the ultrasonic signals generated by the light-absorbing substances pre-injected into the tissue with tumor lesions are also regular, thus making subsequent ultrasonic signal processing, tumor analysis and imaging work easier. More quickly and accurately.
  • the diameter R of the base 92 shown in this figure is preferably 20 millimeters - that is, 2 centimeters, but this is not limiting.
  • the diameter R of the base 92 is In the 1 cm to 3 cm range, most early-stage tumors are smaller than this size.
  • the orientation of the multiple emitting head through holes is set so that each laser emitting head 91 installed in the through hole is inclined toward the center point of the first side of the base 92 and the inclination angle is the same, that is, each laser emitting head 91 has the same inclination angle.
  • the angle between the center line of the head 91 and the first side of the base 92 is the same.
  • each laser emitting head 91 By inclining each laser emitting head 91 toward the center point of the first side of the base 92 at the same tilt angle, the multiple laser beams emitted by the multiple laser emitting heads 91 continue to converge after entering the body of the person to be detected, so that the skin
  • the greater the intensity of the laser in order to offset the attenuation of the laser during the process of penetrating the subcutaneous tissue, thereby avoiding the problem that when detecting tumors far away from the body surface, the intensity of the laser irradiating the tumor is insufficient and the reflected ultrasonic signal is weak. problem, ultimately ensuring accurate detection of tumors that are far away from the body surface.
  • the included angle between the center line of the laser emitting head 91 and the first side of the base 92 is 83°, this is not limiting. In the preferred embodiment of the present invention, the included angle is 80°. ° to 85°. By setting the included angle to 80-85°, it is possible to ensure that the multiple laser beams can still completely cover the entire tumor even though they continue to converge during the oblique injection into the patient's body, and to ensure that the degree of convergence is sufficient for Tumors far away from the body surface are provided with sufficient intensity of laser irradiation, so that the tumor can be diagnosed completely, clearly and accurately.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种基于光声效应的体外肿瘤定位装置(200),解决现有体外肿瘤检测装置定位不准的问题。体外肿瘤定位装置(200)包括与被检测者的皮肤接触并且用于将激光发射到被检测者体内的激光发生器(1)、与皮肤接触并且用于检测激光触发的超声波信号的超声波探头(2)、与超声波探头(2)相连并且用于处理超声波信号的信号处理器(3)以及与信号处理器(3)相连并且用于确定是否存在肿瘤及其位置的分析仪(4),激光发生器(1)包括手柄(7)以及与手柄(7)通过球窝结构相连的激光发射端(9),手柄(7)中设置有电源(71),激光发射端(9)上设置有多个激光发射头(91),电源(71)与多个激光发射头(91)的总线电连接。激光发射端(9)能保证激光发射头(91)的投射方向始终垂直于皮肤,从而避免因投射方向倾斜而导致的定位不准。

Description

基于光声效应的体外肿瘤定位装置 技术领域
本发明涉及医疗器械,具体提供一种基于光声效应的体外肿瘤定位装置。
背景技术
癌症也称为恶性肿瘤,是严重威胁人类生命健康的疾病,实践中很多癌症早期并没有明显症状,等出现症状再去诊断时往往就是中晚期,不仅导致治疗困难,而且导致患者生存率大幅度下降,所以,癌症早期诊断就变得至关重要。
近年来广泛流行的活体荧光标记流式细胞仪能够检测癌症患者早期进入血液中的循环肿瘤细胞,对癌症的早发现提供了一个新的检测方式,但是,该方法需要静脉取样在体外染色后再进行检测,取样染色过程往往会影响细胞在活体内的生理环境,从而导致检测结果不准确。
作为另一种方式,日本发明专利申请JP2003290126A公开了一种基于光声效应的前哨***体外检测装置,该装置的原理是:利用光导装置在预先注入染料的病变组织附近引导脉冲光,同时用靠近光导装置发射端的超声波检测器检测超声波信号,并且用输出装置根据超声波检测器的输出信号来输出染料的存在或不存在以及密度。但是,该装置只有一个光发射头,在进行肿瘤检测时,该光发射头与患者皮肤是点接触,导致医务人员无法使光发射头与患者皮肤表面始终垂直,从而导致定位不准,即,导致发现高强超声波信号的皮肤下方并不是肿瘤所在位置。
此外,中国发明专利申请CN105286805A也公开了一种肿瘤细胞检测诊断装置,该装置包括高频脉冲激光器、光耦合器以及超声探头,所述光耦合器与所述超声探头一起都贴在一个皮肤接触器上。与JP2003290126A类似,CN105286805A也只有一个激光发射头(光耦合器),特别是当用该装置的皮肤接触器在人体弧形区域移动时,很容易导致错误定位。
相应地,本领域需要一种新的检测装置来解决现有体外肿瘤检测装置定位不准的问题。
发明内容
本发明旨在解决上述技术问题,即,解决现有体外肿瘤检测装置定位不准的问题。
为此目的,本发明提供一种基于光声效应的体外肿瘤定位装置,所述体外肿瘤定位装置包括:
激光发生器,其与被检测者的皮肤接触,用于将激光发射到被检测者体内;
超声波探头,其与被检测者的皮肤接触,用于检测发射到被检测者体内的激光所触发的超声波信号;
信号处理器,其与所述超声波探头相连,用于处理所述超声波探头检测到的信号;以及
分析仪,其与所述信号处理器相连,用于根据所述信号处理器的输出结果来确定被检测者体内是否存在肿瘤及其位置;
所述激光发生器包括手柄以及与所述手柄通过球窝结构相连的激光发射端,所述手柄中设置有电源,所述激光发射端上设置有多个激光发射头,所述电源与所述多个激光发射头的总线电连接。
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,所述激光发射端包括基座,所述多个激光发射头设置在所述基座的第一侧上,所述基座的第二侧上固定设置有球窝,所述手柄的一端固定设置有球头,在组装好的情况下,所述球头容纳在所述球窝内并且能在所述球窝内自由转动。
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,所述激光发射端包括基座,所述多个激光发射头设置在所述基座的第一侧上,所述基座的第二侧上固定设置有球头,所述手柄的一端固定设置
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,有球窝,在组装好的情况下,所述球头容纳在所述球窝内并且能在所述球窝内自由转动。
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,所述激光发生器还包括套设在所述球头和所述球窝外侧的复位弹簧,在自然状态下,所述复位弹簧使所述手柄与所述激光发射端彼此垂直。
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,所述复位弹簧由金属材料制成,其一端与所述电源连接,另一端与所述多个激光发射头的总线连接。
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,所述复位弹簧包括弹簧主体以及设置在所述弹簧主体的两端的第一接电端子和第二接电端子,所述电源设置有电源插座,所述基座设置有发射头插座,所述弹簧主体的外部包覆有绝缘材料,所述第一接电端子与所述电源插座插接,所述第二接电端子与所述发射头插座插接。
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,所述基座为圆盘形,所述多个激光发射头以点阵形式均匀分布在所述基座的第一侧上。
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,所述基座的直径在1-3厘米的范围内。
在上述基于光声效应的体外肿瘤定位装置的优选技术方案中,每个所述激光发射头都向所述基座的第一侧的中心点倾斜并且与所述基座的第一侧的夹角角度都相同。
在采用上述技术方案的情况下,通过使基于光声效应的体外肿瘤定位装置包括超声波探头、由球窝结构连接其手柄与激光发射端的激光发生器、信号处理器和分析仪,使得即使不同医护人员的操作手法有所不同,激光发射端上的多个激光发射头最终也全部垂直接触被检测者皮肤表面,从而避免因投射方向倾斜而导致的定位不准。
进一步地,通过在基座上固定设置球窝并且在手柄上固定设置球头或者在基座上固定设置球头并且在手柄上固定设置球窝,基座以及设置在其上的多个激光发射头可相对于手柄平稳并自由地转动,确保多个激光发射头全部接触被检测者的皮肤表面并且垂直射入激光。
进一步地,通过在相互连接的球头和球窝外侧套设复位弹簧,可以帮助将激光发射端上的多个激光发射头稳定地抵接在被检测者皮肤的表 面,使发射激光的位置和方向保持不变,极大程度地提高了检测结果的可重现性,使得医护人员能够更加快速准确地确定肿瘤的位置和大小。
进一步地,使用金属材料制作复位弹簧的优势不仅在于操作方便、稳定性好并且造价低廉,还在于能将复位弹簧用作连接电源与激光发射头的导线,解决了球窝连接结构无处布线和布线与球窝结构相互干涉的难题。
进一步地,通过将第一接电端子连接电源插座、将第二接电端子连接发射头插座并且将弹簧主体的外部包覆绝缘体,能够方便地接通和断开为激光发射头供电的回路并且医护人员在使用激光发生器进行肿瘤检测时即使触碰到处于通电状态的弹簧主体也不会触电。
进一步地,通过将基座设置为圆盘形并且将多个激光发射头以点阵形式均匀分布在基座的第一侧上,多个激光发射头将多束激光以相同的入射距离和均匀点阵分布的入射位置射入被检测者皮肤,使预先注入发生肿瘤病变的组织中的吸光物质所产生的超声波信号也有规律可循,从而使后续的超声波信号处理和肿瘤分析及成像工作变得更快速和准确。
进一步地,通过将基座的直径大小设置为1-3厘米,足以使发射的多束激光完全覆盖各种类型的早期肿瘤,从而在激光发生器尺寸最小化的基础上保证对人体不同位置的肿瘤都能进行检测和分析。
进一步地,通过使每个激光发射头都向基座的第一侧的中心点倾斜并且倾斜角度都相同,多个激光发射头发出的多束激光在进入待检测者体内之后不断汇聚,使得皮肤下面越深处激光强度越大,以便对冲激光在穿透皮下组织过程中的衰减,从而避免在检测距离体表较远的肿瘤时照射肿瘤的激光强度不够,导致其反射的超声波信号较弱的问题,最终能够确保准确地检测距离体表较远的肿瘤。
进一步地,通过将夹角角度设置为80-85°,既能保证多束激光在倾斜射入待检测者体内的过程中不断产生汇聚的情况下仍能完全覆盖整个肿瘤,又能保证该汇聚程度足以为距离体表较远的肿瘤提供足够强度的激光照射,从而能够最终完整、清晰并且准确地诊断出肿瘤的情况。
附图说明
下面结合附图来描述本发明的优选实施方式,附图中:
图1是本发明的基于光声效应的体外肿瘤定位装置的***架构图;
图2是本发明的基于光声效应的体外肿瘤定位装置的激光发生器的结构示意图;
图3是图2所示激光发生器的基座的侧剖结构图。
附图标记列表
1、激光发生器;2、超声波探头;3、信号处理器;4、分析仪;7、手柄;71、电源;711、电源插座;72、柄体;73、球头;8、复位弹簧;81、弹簧主体;82、第一接电端子;83、第二接电端子;9、激光发射端;91、激光发射头;92、基座;921、前盖;922、后盖;93球窝;200、基于光声效应的体外肿瘤定位装置。
具体实施方式
下面参照附图来描述本申请的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。例如,虽然本实施方式是结合圆盘形基座进行介绍的,但是这并非用于限制本申请的保护范围,在不偏离本申请原理的条件下,本领域技术人员可以根据具体应用场景来调整基座的形状,例如,基座可以设置成三角形盘和矩形盘的形式。
需要说明的是,在本申请的描述中,术语“上”、“下”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请中的具体含义。
首先介绍本发明的体外肿瘤定位装置的工作原理-光声效应。用短脉冲激光照射吸光物质,吸光物质的分子吸收光子,当满足一定的条件时,吸光物质分子的电子从低能级跃迁到高能级而处于激发态,处于激发态的电子极不稳定而可以从高能级向低能级跃迁同时以光或热量的形式释放能量。选择合适波长的激光作为激发源,可以使吸收的光子的能量转化为热能的效率最大,通常可以将90%以上的光能转化为热能。吸光物质将光能转化成热能而局部温度升高并且膨胀,因而产生压力波,该压力波就是超声波信号,这就是所谓的光声效应。简单地说,光声效应的能量转化过程就是“光能”-“热能”-“机械能”。
近年来根据光声效应发展出一种非入侵且非电离式的新型生物医学成像技术-光声成像技术。当脉冲激光照射到生物组织中时,组织的光吸收域产生超声波信号。生物组织产生的超声波信号携带了其光吸收特征信息,通过探测、处理和分析超声波信号能重建出组织中的光吸收分布图像,这就是所说的光声成像技术。虽然病变组织和周围非病变组织都可以吸收激光的能量,但是病变组织吸收光波能量后产生的超声波信号明显不同于非病变组织产生的背景声波信号,并且病变组织吸收激光后产生的超声波特征可预先在体外实验中获取。另外,虽然一切吸光物质都能吸收特定脉冲频率的光波而产生特定脉冲频率的震动(声波),但是通过在组织中预先加入纳米碳、金纳米棒等吸光性能更好的吸光物质便能够将射入的激光几乎全部吸收并且因此产生的超声波信号强度更大并且更清晰,从而使利用光声成像技术进行肿瘤形态学、肿瘤代谢的诊断以及***示踪和成像的效果变得更加准确和可靠。综上所述,光声成像技术能够将纯光学组织成像中高选择特性和纯超声组织成像中深穿透特性的优点进行结合,从原理上避开光散射的影响并且突破了高分辨率光学成像深度只有1毫米的“软极限”,甚至可以实现50mm的深层活体内组织成像,最终得到高分辨率和高对比度的组织图像。
首先参阅图1和图2对本发明的实施方式进行描述。为了解决现有体外肿瘤检测装置定位不准的问题,如图1所示,本发明的基于光声效应的体外肿瘤定位装置200包括激光发生器1、超声波探头2、信号处理器3和分析仪4。如图2所示,激光发生器1包括手柄7以及与手柄7通 过球窝结构相连的激光发射端9,手柄7中设置有电源71,激光发射端9设置有用于发射激光的多个激光发射头91,电源71与多个激光发射头91的总线连接以便为它们供电。
接下来继续参阅图1和图2来描述基于光声效应的体外肿瘤定位装置200的使用过程。在使用体外肿瘤定位装置200确定被检测者体内是否有肿瘤以及肿瘤的位置和形状时,医护人员手握激光发生器1的手柄7并且使激光发射端9的多个激光发射头91接触被检测者的皮肤。若激光发射端9没有平贴被检测者的皮肤表面-即多个激光发射头91并没有全部接触被检测者的皮肤表面,激光发射端9因为与手柄7通过球窝结构相连接而可相对于手柄7自由转动并改变朝向,在激光发射端9转动成平贴在被检测者皮肤表面上时因多个激光发射头91全部接触被检测者皮肤表面而得到皮肤稳定的反作用力-即支撑力,使得激光发射端9以及设置于其上的多个激光发射头91不再转动。这样一来,即使不同医护人员操作体外肿瘤定位装置200的手法有所不同,也不会影响多个激光发射头91相对于待检测者皮肤的位置,使多个激光发射头91始终垂直贴合被检测者的皮肤发射激光。激光照射到预先注入发生肿瘤病变的组织中的吸光物质时被其吸收,吸光物质因此发出超声波。超声波探头2平贴在激光发射端9附近的皮肤上接收超声波信号,并且通过线路将该超声波信号传输到信号处理器3。信号处理器3对超声波信号进行处理并且将处理结果输出到分析仪4,分析仪4根据输出结果确定被检测者体内是否存在肿瘤以及肿瘤的位置和形状。更具体地,信号处理器3将接收到的所有超声波信号进行检波以便去除干扰声波和背景声波、提取目标超声波并且将其成比例增益后赋值;分析仪4将增益和赋值后的超声波信号进行分析和比对并且以语音或图像等形式输出分析结果。
通过使基于光声效应的体外肿瘤定位装置200包括超声波探头2、由球窝结构连接其手柄7与激光发射端9的激光发生器1、信号处理器3和分析仪4,使得即使不同医护人员的操作手法有所不同,激光发射端9上的多个激光发射头91也会全部垂直接触被检测者皮肤表面,从而避免因投射方向倾斜而导致的定位不准。
继续参阅图2,激光发射端9还包括基座92和球窝93,多个激光发 射头91设置在基座92的第一侧上(图2中的右侧),球窝93固定设置在基座92的第二侧上(图2中的左侧)。具体地,多个激光发射头91可以例如卡扣连接、夹持或螺纹连接在基座92的第一侧上。手柄7还包括固定设置在其一端的柄体72和固定设置在其另一端的球头73。本申请所说的固定设置是指例如通过焊接、铆接或螺纹连接等方式连接或者通过一体注塑或铸造成型。组装好后,球头73容纳在球窝93内并且可相对于球窝93自由转动。
在使用激光发生器1时,医护人员手握柄体72并且使多个激光发射头91接触被检测者皮肤的表面,在球头73和球窝93的帮助下,基座92以及设置在其上的多个激光发射头91可相对于柄体72自由转动,从而最终平贴在被检测者皮肤表面。
通过在基座92上固定设置球窝93并且在手柄7上固定设置球头73,基座92以及设置在其上的多个激光发射头91可相对于手柄7平稳并自由地转动,确保多个激光发射头91全部接触被检测者的皮肤表面并且垂直射入激光。
在一种可替换实施方式(附图中未示出)中,激光发射端9包括用于发射激光的多个激光发射头、基座和球头,多个激光发射头设置在基座的第一侧上,球头固定设置在基座的第二侧上;手柄7包括电源、固定设置在其一端的球窝以及固定设置在其另一端的柄体,组装好之后球头容纳在球窝内并可相对于球窝自由转动。多个激光发射头同样可以例如卡扣连接、夹持或螺纹连接在基座的第一侧上。通过在基座上固定设置球头并且在手柄上固定设置球窝,基座以及设置在其上的多个激光发射头同样可相对于手柄平稳并自由地转动,从而确保多个激光发射头全部接触被检测者的皮肤表面并且垂直射入激光。这种结构上的调整并未偏离本发明的原理,因此也将落入本发明的保护范围。
继续参阅图2,进一步优选地,激光发生器1还包括复位弹簧8,复位弹簧8的大小和形状设置成套设在球头73和球窝93外侧并且在手柄7和激光发射端9相对于彼此不垂直时球头73和球窝93挤压复位弹簧8使其发生形变,复位弹簧8产生的弹力反过来作用于球头73和球窝93使两者相对转动,从而使手柄7和激光发射端9恢复相互垂直状态。
在激光发生器1处于自然状态下-即激光发射端9并未接触被检测者皮肤时,手柄7和激光发射端9在复位弹簧8的约束下相对于彼此垂直。在使用激光发生器1进行检测时,医护人员手握手柄7的柄体72并且激光发射端9上的多个激光发射头91抵接被检测者皮肤的表面,手柄7和激光发射端9因受力方向不同而相对于彼此发生转动,复位弹簧8变形后对球头73和球窝93施加弹力;激光发射端9因此同时受到皮肤的反作用力、复位弹簧8的弹力和手柄7的作用力,三个力相互影像很容易形成受力平衡三角形(在此不考虑数值很小的重力),以便将激光发射端9上的多个激光发射头91稳定地抵接在被检测者皮肤的表面进行肿瘤检测。
对于上述基座上固定设置球头并且在手柄上固定设置球窝的可替换实施方式,同样可以在相互连接的球头和球窝外侧套设复位弹簧8。在激光发生器1的使用过程中,手柄7和激光发射端9彼此不垂直时也会受到复位弹簧的弹力作用,激光发射端形成受力平衡三角形,以便帮助将激光发射端上的多个激光发射头稳定地抵接在被检测者皮肤的表面进行肿瘤检测。
通过在相互连接的球头和球窝外侧套设复位弹簧8,可以帮助将激光发射端9上的多个激光发射头91稳定地抵接在被检测者皮肤的表面,使发射激光的位置和方向保持不变,极大程度地提高了检测结果的可重现性,使得医护人员能够更加快速准确地确定肿瘤的位置和大小。
进一步,复位弹簧8由金属材料制成,其一端与电源71连接,另一端与多个激光发射头91的总线连接,在此所说的金属材料优选地为高碳钢或合金钢。使用金属材料制作复位弹簧8的优势不仅在于操作方便、稳定性好并且造价低廉,还在于将复位弹簧8用作连接电源71与多个激光发射头91的总线的导线解决了球窝连接结构无处布线和布线与球窝结构相互干涉的难题。
继续参阅图2来描述更优选的实施方式。电源71包括电源插座711,柄体72内设置有空腔以便将电源71设置在其中并且使电源插座711露在空腔外面。电源71例如可以为电池或外部接入电源,并且可以通过电源插座711向外输送电流。基座92设置有发射头插座(附图中未示出), 发射头插座与多个激光发射头91的总线(图中未显示)进行连接。复位弹簧8包括弹簧主体81以及设置在弹簧主体81两端的第一接电端子82和第二接电端子83。弹簧主体81在受球头73和球窝93挤压时发生弹性形变而对两者产生方向相反且大小相等的弹力,并且其外部包覆有绝缘材料,所述绝缘材料例如可以为绝缘涂料层或绝缘橡胶层。第一接电端子82用来与电源插座711进行插接(在图2中为了便于观察,并未将第一接电端子82***电源插座711),第二接电端子83用来与发射头插座进行插接(附图中未示出)。在第一接电端子82和第二接电端子83都插接之后,电流从电源71通过电源插座711、第一接电端子82、弹簧主体81、第二接电端子83和总线输送到多个激光发射头91,多个激光发射头91通电后向待检测者的皮肤发射激光。
通过将第一接电端子82连接电源插座711、将第二接电端子83连接发射头插座并且将弹簧主体81的外部包覆有绝缘体,能够方便地接通和断开为多个激光发射头91供电的回路,并且医护人员在使用激光发生器1进行肿瘤检测时即使触碰到处于通电状态的弹簧主体81也不会触电。
优选地,基座92为圆盘形,多个激光发射头91以点阵形式均匀分布在基座92的第一侧上。
下面参阅图3,基座92在第一侧连接有激光发射头91。虽然在本发明的优选实施方式中多个激光发射头91以点阵形式均匀分布在基座92的第一侧上,但是为了便于观察,在图1和图2中仅示出了三个激光发射头3并且在图3中仅示出了一个激光发射头91,附图中激光发射头91数量的变化并非旨在限制本发明的任何实施方式中激光发射头91的数量。在图3中假想将基座92沿中轴线剖开以便详细观察基座92的内部结构以及激光发射头91的安装情况,基座92包括位于基座92第一侧的前盖921和位于其第二侧的后盖922。前盖921在面对后盖922处设置有尺寸较大的圆形凹槽,还设置有与圆形凹槽连通的多个发射头通孔(附图中仅示出了其中的一个)以便安装多个激光发射头91。后盖922的外径与前盖921相同,并且在中间位置设置有总线通孔。多个激光发射头91为大小相同的大致圆柱状,每个激光发射头91都穿过一个发射头通孔并且前端露在基座92的第一侧外面的长度都相等,每个激光发射头91 的后端都位于圆形凹槽内并且因直径较大而不能进入发射头通孔,因此将前盖921与后盖922压合可以夹持固定多个激光发射头91。多个激光发射头91的前端可以发射激光并且后端都通过导线与总线相连接(附图中未示出所述导线和总线),总线位于后盖922中间位置的总线通孔中并且向外延伸以便与复位弹簧8的第二接电端子83连接。
圆盘形基座92能够与被检测者皮肤形成面接触,具体来说,圆盘形基座92第一侧上的多个激光发射头91的前端可以同时与被检测者的皮肤接触,因此它们发射的多束激光与皮肤的入射距离相同;多个激光发射头91以点阵形式均匀分布在基座92的第一侧上,使得它们发射的多束激光在以均匀点阵分布的入射位置进入被检测者的皮肤。
通过将基座92设置为圆盘形并且将多个激光发射头91以点阵形式均匀分布在基座92的第一侧上,多个激光发射头91将多束激光以相同的入射距离和均匀点阵分布的入射位置射入被检测者皮肤,使预先注入发生肿瘤病变的组织中的吸光物质所产生的超声波信号也有规律可循,从而使后续的超声波信号处理和肿瘤分析及成像工作变得更快速和准确。
继续参阅图3,该图所示的基座92的直径R优选地为20毫米-即2厘米,但是这并不是限制性的,在本发明的优选实施方式中基座92的直径大小为在1厘米至3厘米的范围内,大部分早期肿瘤都小于该尺寸。通过将基座92的直径大小设置为1-3厘米,足以使发射的多束激光完全覆盖几乎所有早期肿瘤,从而能够对各种早期肿瘤进行检测和分析。
优选地,设置多个发射头通孔的朝向,使安装在通孔中的每个激光发射头91都向基座92的第一侧的中心点倾斜并且倾斜角度都相同,即每个激光发射头91的中心线与基座92的第一侧的夹角角度都相同。通过使每个激光发射头91都向基座92的第一侧的中心点倾斜并且倾斜角度都相同,多个激光发射头91发出的多束激光在进入待检测者体内之后不断汇聚,使得皮肤下面越深处激光强度越大,以便对冲激光在穿透皮下组织过程中的衰减,从而避免在检测距离体表较远的肿瘤时照射肿瘤的激光强度不够而导致其反射的超声波信号较弱的问题,最终能够确保准确地检测距离体表较远的肿瘤。
继续参阅图3,虽然激光发射头91的中心线与基座92的第一侧的夹角为83°,但是这并不是限制性的,在本发明的优选实施方式中该夹角角度在80°至85°的范围内。通过将夹角角度设置为80-85°,既能保证多束激光在倾斜射入待检测者体内的过程中不断产生汇聚的情况下仍能完全覆盖整个肿瘤,又能保证该汇聚程度足以为距离体表较远的肿瘤提供足够强度的激光照射,从而能够最终完整、清晰并且准确地诊断出肿瘤的情况。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
本领域的技术人员能够理解,尽管在此描述的一些实施例包括其它实施例中所包括的某些特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在本申请的权利要求书中,所要求保护的任一实施例都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种基于光声效应的体外肿瘤定位装置,其特征在于,所述体外肿瘤定位装置包括:
    激光发生器,其与被检测者的皮肤接触,用于将激光发射到被检测者体内;
    超声波探头,其与被检测者的皮肤接触,用于检测发射到被检测者体内的激光所触发的超声波信号;
    信号处理器,其与所述超声波探头相连,用于处理所述超声波探头检测到的信号;以及
    分析仪,其与所述信号处理器相连,用于根据所述信号处理器的输出结果来确定被检测者体内是否存在肿瘤及其位置;
    其特征在于,所述激光发生器包括手柄以及与所述手柄通过球窝结构相连的激光发射端,所述手柄中设置有电源,所述激光发射端上设置有多个激光发射头,所述电源与所述多个激光发射头的总线电连接。
  2. 根据权利要求1所述的基于光声效应的体外肿瘤定位装置,其特征在于,所述激光发射端包括基座,所述多个激光发射头设置在所述基座的第一侧上,所述基座的第二侧上固定设置有球窝,所述手柄的一端固定设置有球头,在组装好的情况下,所述球头容纳在所述球窝内并且能在所述球窝内自由转动。
  3. 根据权利要求1所述的基于光声效应的体外肿瘤定位装置,其特征在于,所述激光发射端包括基座,所述多个激光发射头设置在所述基座的第一侧上,所述基座的第二侧上固定设置有球头,所述手柄的一端固定设置有球窝,在组装好的情况下,所述球头容纳在所述球窝内并且能在所述球窝内自由转动。
  4. 根据权利要求2或3所述的基于光声效应的体外肿瘤定位装置,其特征在于,所述激光发生器还包括套设在所述球头和所述球窝外侧的 复位弹簧,在自然状态下,所述复位弹簧使所述手柄与所述激光发射端彼此垂直。
  5. 根据权利要求4所述的基于光声效应的体外肿瘤定位装置,其特征在于,所述复位弹簧由金属材料制成,其一端与所述电源连接,另一端与所述多个激光发射头的总线连接。
  6. 根据权利要求5所述的基于光声效应的体外肿瘤定位装置,其特征在于,所述复位弹簧包括弹簧主体以及设置在所述弹簧主体的两端的第一接电端子和第二接电端子,所述电源设置有电源插座,所述基座设置有发射头插座,所述弹簧主体的外部包覆有绝缘材料,所述第一接电端子与所述电源插座插接,所述第二接电端子与所述发射头插座插接。
  7. 根据权利要求2或3所述的基于光声效应的体外肿瘤定位装置,其特征在于,所述基座为圆盘形,所述多个激光发射头以点阵形式均匀分布在所述基座的第一侧上。
  8. 根据权利要求7所述的基于光声效应的体外肿瘤定位装置,其特征在于,所述基座的直径在1-3厘米的范围内。
  9. 根据权利要求7所述的基于光声效应的体外肿瘤定位装置,其特征在于,每个所述激光发射头都向所述基座的第一侧的中心点倾斜并且与所述基座的第一侧的夹角角度都相同。
  10. 根据权利要求9所述的基于光声效应的体外肿瘤定位装置,其特征在于,所述角度在80-85°的范围内。
PCT/CN2022/132441 2022-08-15 2022-11-17 基于光声效应的体外肿瘤定位装置 WO2024036791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210973795.9 2022-08-15
CN202210973795.9A CN115299994A (zh) 2022-08-15 2022-08-15 基于光声效应的体外肿瘤定位装置

Publications (1)

Publication Number Publication Date
WO2024036791A1 true WO2024036791A1 (zh) 2024-02-22

Family

ID=83863138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132441 WO2024036791A1 (zh) 2022-08-15 2022-11-17 基于光声效应的体外肿瘤定位装置

Country Status (2)

Country Link
CN (1) CN115299994A (zh)
WO (1) WO2024036791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115299994A (zh) * 2022-08-15 2022-11-08 马隆波 基于光声效应的体外肿瘤定位装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100094134A1 (en) * 2008-10-14 2010-04-15 The University Of Connecticut Method and apparatus for medical imaging using near-infrared optical tomography combined with photoacoustic and ultrasound guidance
CN104936517A (zh) * 2013-03-09 2015-09-23 科纳医药股份有限公司 用于聚焦超声波治疗的换能器、***和制造技术
CN107625520A (zh) * 2017-09-25 2018-01-26 联想(北京)有限公司 体征信号检测电极及智能服饰
CN107713990A (zh) * 2017-10-31 2018-02-23 华南师范大学 一种热声、光声、超声三模态乳腺肿瘤检测装置及方法
CN109171837A (zh) * 2018-09-30 2019-01-11 泗洪县正心医疗技术有限公司 多方向灵活弯曲与锁定的手术装置
CN115299994A (zh) * 2022-08-15 2022-11-08 马隆波 基于光声效应的体外肿瘤定位装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093761A1 (en) * 2007-10-05 2009-04-09 Sliwa John W Medical-procedure assistance device and method with improved optical contrast, and new practitioner-safety, device-fixation, electrode and magnetic treatment and lumen-dilation capabilities
US20150224295A1 (en) * 2012-08-30 2015-08-13 Fusheng Li Therapeutic device against cancer spread and metastasis
CN205286323U (zh) * 2015-09-28 2016-06-08 周辉 一种无创循环肿瘤细胞检测诊断装置
CN106175906A (zh) * 2016-08-03 2016-12-07 内蒙古科技大学 一种原位旋转骨折复位固定器
EP4035559A1 (de) * 2021-01-29 2022-08-03 Zehra Canoglu Klebestreifen, rolle, handroller und verfahren zur selektiven entfernung abgestorbener haarwurzeln

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100094134A1 (en) * 2008-10-14 2010-04-15 The University Of Connecticut Method and apparatus for medical imaging using near-infrared optical tomography combined with photoacoustic and ultrasound guidance
CN104936517A (zh) * 2013-03-09 2015-09-23 科纳医药股份有限公司 用于聚焦超声波治疗的换能器、***和制造技术
CN107625520A (zh) * 2017-09-25 2018-01-26 联想(北京)有限公司 体征信号检测电极及智能服饰
CN107713990A (zh) * 2017-10-31 2018-02-23 华南师范大学 一种热声、光声、超声三模态乳腺肿瘤检测装置及方法
CN109171837A (zh) * 2018-09-30 2019-01-11 泗洪县正心医疗技术有限公司 多方向灵活弯曲与锁定的手术装置
CN115299994A (zh) * 2022-08-15 2022-11-08 马隆波 基于光声效应的体外肿瘤定位装置

Also Published As

Publication number Publication date
CN115299994A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
Viator et al. Clinical testing of a photoacoustic probe for port wine stain depth determination
JP5349839B2 (ja) 生体情報イメージング装置
US9528966B2 (en) Reflection-mode photoacoustic tomography using a flexibly-supported cantilever beam
WO2024036791A1 (zh) 基于光声效应的体外肿瘤定位装置
US10293189B2 (en) Ultrasonic apparatus, a therapeutic system and a method of increasing a workflow
JP4559995B2 (ja) 腫瘍検査装置
US7307258B2 (en) Terahertz system for detecting the burn degree of skin
EP2527815B1 (en) Thermoacoustic imaging with quantitative extraction of an absorption image
JP2013500091A5 (zh)
JP2013500091A (ja) 小動物の光音響イメージング用画像化装置及び画像化方法
US20190150749A1 (en) Optoacoustic probe
US20040092807A1 (en) System and method for cancer detection
KR20150120783A (ko) 진단 치료 겸용 광융합형 초음파기기
JP4897007B2 (ja) テラヘルツ電磁気波を用いた高解像度生体イメージ生成装置、高解像度イメージ生成方法及びこれを用いた内視鏡装置
US20130205903A1 (en) Photoacoustic measuring device and method
US20060100489A1 (en) Method and apparatus for determining tissue viability
CN111281344A (zh) 一种乳腺成像***和乳腺成像方法
CN214073268U (zh) 细胞检测设备
Pramanik et al. Tissue temperature monitoring using thermoacoustic and photoacoustic techniques
Andreev et al. Detection of prostate cancer with optoacoustic tomography: feasibility and modeling
US20170128132A1 (en) Integrated fiber optic probe for performing image-guided laser induced thermal therapy
KR20190004511A (ko) 테라헤르츠 전자기파를 이용한 영상 처리장치
JP2007082658A (ja) 脳循環血流測定装置
CN112691191A (zh) 基于纳米光热制剂的温度光声成像和精准控制方法及***
Oraevsky et al. In vivo testing of laser optoacoustic system for image-guided biopsy of prostate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955561

Country of ref document: EP

Kind code of ref document: A1