WO2024036441A1 - Apparatus, method and computer storage medium for product detection - Google Patents

Apparatus, method and computer storage medium for product detection Download PDF

Info

Publication number
WO2024036441A1
WO2024036441A1 PCT/CN2022/112540 CN2022112540W WO2024036441A1 WO 2024036441 A1 WO2024036441 A1 WO 2024036441A1 CN 2022112540 W CN2022112540 W CN 2022112540W WO 2024036441 A1 WO2024036441 A1 WO 2024036441A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
electronic device
current
industrial robot
range
Prior art date
Application number
PCT/CN2022/112540
Other languages
French (fr)
Inventor
Yin TIAN
Xuan Cao
Weijin ZHU
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2022/112540 priority Critical patent/WO2024036441A1/en
Publication of WO2024036441A1 publication Critical patent/WO2024036441A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • G01R31/69Testing of releasable connections, e.g. of terminals mounted on a printed circuit board of terminals at the end of a cable or a wire harness; of plugs; of sockets, e.g. wall sockets or power sockets in appliances

Definitions

  • Embodiments of the present disclosure generally relate to the field of product detection, and in particular, to an apparatus, method and computer storage media for product detection.
  • the requirements for the versatility and precision of electronic products are increasing, and the qualified electronic products are required to have higher reliability and durability. For this reason, before the manufactured electronic products formally leave the factory, a series of tests need to be carried out under certain conditions to detect whether the manufactured electronic products work normally and the degree of wear of hardware components assembled in the manufactured electronic products. As a result, the qualified and defective products are sorted for a large number of manufactured electronic products to ensure the delivery quality of electronic products.
  • an electronic product realizes more functions through fewer interfaces.
  • an electronic product is provided with a multi-function interface, comprising functions such as charging from an external power source to the electronic product, data transmission between the electronic product and outside devices, and display output between the electronic product and the outside devices.
  • the reliability and durability for example, deformation, charging quality, data transmission quality, etc. .
  • example embodiments of the present disclosure provide an apparatus, method and computer storage media for product detection.
  • a detecting apparatus comprising an industrial robot and a detecting unit.
  • the industrial robot is configured to move a connector with a plug suitable for an electronic device under test, to plug into the electronic device or unplug from the electronic device.
  • the detecting unit is coupled to the industrial robot and configured to detect a current passing through the connector.
  • the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved, enabling a prominent improvement of the production cycle. Meanwhile, since the accurate product detection can be achieved, the damage to electronic devices due to the collision and friction during the plugging and unplugging between the connector and the electronic device can be further reduced.
  • the movement of the connector and a force applied to the connector by the industrial robot are controlled based on the current.
  • the plugging state between the connector and the electronic device can be reflected by the values of the current passing through the connector, the plugging states can be determined rapidly and accurately. Further, since the plugging states can be determined rapidly and accurately, the movement of the connector with respect to the electronic device can be adjusted timely based on the determined plugging states, enabling more accurate product detection at a lower cost in a more effective way.
  • the detecting apparatus further comprises a computing unit coupled to the industrial robot and the detecting unit, wherein the computing unit is configured to determine a plugging state between the connector and the electronic device based on the current and adjust an instruction transmitted to the industrial robot based on the plugging state, so as to control the movement of the connector and the force applied to the connector.
  • the movement of the connector with respect to the electronic device can be adjusted further accurately based on the different plugging states.
  • the computing unit is configured to determine that the connector is not plugged into the electronic device in response to determining the current is within a first range.
  • the state that the connector is pulled out from the electronic device can be determined based on the current, and can be further used to analyze the rate of the qualified electronic devices and the rate of the defective electronic devices.
  • the computing unit is configured to determine that the connector is plugged into the electronic device in response to determining the current is within a second range.
  • the state that the connector is inserted into the electronic device can be determined based on the current, and can be further used to analyze the rate of the qualified electronic devices and the rate of the defective electronic devices.
  • the computing unit is further configured to: determine that the plug of the connector is partially plugged into the interface of the electronic device in response to determining the current is within a first sub-range among the second range; determine that the plug of the connector is fully plugged into the interface of the electronic device in response to determining the current is within a second sub-range among the second range; or determine that the plug of the connector is plugged into a position beyond the interface of the electronic device in response to determining the current is within a third sub-range among the second range.
  • the computing unit adjusts the instruction transmitted to the industrial robot based on a combination of the determinations of at least two plugging states.
  • the movements of the connector with respect to the electronic device can be determined as a whole by accumulating a certain number of plugging states to avoid certain errors, enabling the analysis and the determination of the rate of the qualified electronic devices and the rate of the defective electronic devices be further refined.
  • the instruction comprises predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot.
  • the industrial robot comprises a clamp configured to clamp at least the connector; a manipulator configured to move the connector such that the connector is plugged into the electronic device or unplugged from the electronic device; a force sensor coupled to the clamp and the manipulator to detect the force applied to the connector by the industrial robot; and a controller configured to control the movement of the connector and the force applied to the connector by the industrial robot.
  • the detecting unit comprises: a current transformer coupled to the connector; and a data acquisition module coupled to the current transformer and configured to identify the value of the current passing through the current transformer.
  • the current passing the connector can be amplified by the current transformer and converted into a form which is appropriate for the computing unit to process by the data acquisition module, enabling a more efficient analysis of the plugging states.
  • the connector comprises: a power cord coupled to the detecting unit to allow the detecting unit to detect the current in the power cord; and a plug coupled to a charger, the charger being configured to supply power to the electronic device.
  • a method comprises: moving, by an industrial robot, a connector with a plug suitable for an electronic device under test, to plug into the electronic device or unplug from the electronic device; and detecting, by a detecting unit, a current passing through the connector.
  • the movement of the connector and a force applied to the connector by the industrial robot are controlled based on the current.
  • the method further comprises: determining, by a computing unit, a plugging state between the connector and the electronic device based on the current; and adjusting, by the computing unit, an instruction transmitted to the industrial robot based on the plugging state, so as to control the movement of the connector and the force applied to the connector.
  • the method further comprises: determining, by the computing unit, that the plug is not plugged into the electronic device in response to determining the current is in a first range.
  • the method further comprises: determining, by the computing unit, that the plug is plugged into the electronic device in response to determining the current is within a second range.
  • the method further comprises: determining that the plug is partially plugged into the electronic device in response to determining the current is within a first sub-range among the second range; determining that the plug is fully plugged into the electronic device in response to determining the current is within a second sub-range among the second range; or determining that the plug is plugged into a position beyond the electronic device in response to determining the current is within a third sub-range among the second range.
  • the method further comprises: adjusting, by the computing unit, the instruction transmitted to the industrial robot, based on a combination of the determinations of at least two plugging states.
  • a computer-readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to perform the method according to the second aspect of the present disclosure.
  • FIG. 1 illustrates an example detecting apparatus in which embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates exemplary value ranges of the current in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates a schematic diagram illustrating the specific structure of the industrial robot in accordance with some embodiments of the present disclosure
  • FIG. 4 illustrates a schematic diagram further illustrating the specific structure of the detecting unit in accordance with some embodiments of the present disclosure
  • FIG. 5 illustrates schematic diagram further illustrating the specific structure of the connector in accordance with some embodiments of the present disclosure
  • FIG. 6 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure.
  • FIG. 7 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” .
  • the term “based on” is to be read as “at least in part based on” .
  • the term “some embodiments” and “an embodiment” are to be read as “at least some embodiments” .
  • the term “another embodiment” is to be read as “at least one other embodiment” .
  • the terms “first” , “second” , and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as “best” , “lowest” , “highest” , “minimum” , “maximum” , or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • the term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” .
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on” .
  • the term “being operable to” is to mean a function, an action, a motion or a state that can be achieved by an operation induced by a user or an external mechanism.
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” .
  • the term “another embodiment” is to be read as “at least one other embodiment” .
  • the reliability and durability of the interfaces of the manufactured electronic product are required to be tested before the manufactured electronic products leave the factory.
  • the interface is detected manually, for example, an operator has to manually repeat the process of plugging the connector into the interface and unplugging it from the interface for many times, generally with holding the connector by one hand and holding the electronic product by the other hand. After repeatedly plugging and unplugging for a certain number of times, the operator may visually observe whether the appearance of the interface is deformed or damaged, or specific testing equipment may be utilized to inspect the functionality of the interface, such as charging functionality, data transmission functionality, identification functionality, etc., to determine whether the relevant functionality still works normally, or to determine to which degree the interface wears out.
  • Embodiments of the present disclosure provide a solution to solve the problems above and/or one or more of other potential problems.
  • This solution enables the industrial robot moving the connector to plug into the electronic device or unplug from the electronic device, while the detecting unit detecting the current passing through the connector.
  • the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved, enabling a prominent improvement of the production cycle.
  • the accurate product detection can be achieved, the damage to electronic devices due to the collision and friction during the plugging and unplugging between the connector and the electronic device can be further reduced. Principle and implementations of the present disclosure will be described in detail below with reference to FIGS. 1-7.
  • FIG. 1 illustrates an example detecting apparatus 1 in which embodiments of the present disclosure can be implemented.
  • the detecting apparatus 1 may move a connector 10 with respect to an electronic device 20 such that the connector 10 is plugged into the electronic device 20 or unplugged from the electronic device 20, while detecting a current passing through the connector 10.
  • the detecting apparatus 1 may move any suitable number of connectors with respect to any suitable number of electronic devices adapted for implementing implementations of the present disclosure.
  • the term “electronic device” refers to any device having interface (s) to be coupled with connector (s) .
  • the electronic device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, or image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances provided with interface (s) .
  • UE user equipment
  • PDAs personal digital assistants
  • portable computers tablets, wearable devices, internet of things (IoT) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, or image capture devices such as digital cameras, gaming devices, music
  • the term “interface” refers to a component provided in the electronic device, across which the electronic device enables charging functionality, data transmission functionality, identification functionality, etc.
  • Examples of the interface include, but not limited to, Universal Serial Bus (USB) type interfaces including USB 2.0, USB 3.1, USB BC 1.2, USB Type-C, USB PD, etc., Video Graphics Array (VGA) interfaces, Digital Visual Interface (DVI) interfaces, High Definition Multimedia Interface (HDMI) interfaces, Display Port (DP) interfaces, or any other components or configurations.
  • USB 2.0 type interface including USB 2.0, USB 3.1, USB BC 1.2, USB Type-C, USB PD, etc.
  • VGA Video Graphics Array
  • DVI Digital Visual Interface
  • HDMI High Definition Multimedia Interface
  • DP Display Port
  • the term “connector” refers to a coupling device that joins electrical terminations to create an electrical circuit, enabling contact between wires or cables and electronic devices.
  • the connector is adapted to the type, specification, and/or functionality of the interface provided in the electronic device 20.
  • Examples of the connector include, but not limited to, charging type connector, data transmission type connector, display transmission type connector or multifunctional connector, which may be adapted to USB type interfaces including USB 2.0, USB 3.1, USB BC 1.2, USB Type-C, USB PD, etc., VGA interfaces, DVI interfaces, HDMI interfaces, DP interfaces, or any other components or configurations.
  • USB 2.0 USB 2.0
  • USB 3.1 USB BC 1.2
  • USB Type-C USB Type-C
  • USB PD USB Type-C
  • VGA interfaces VGA interfaces
  • DVI interfaces DVI interfaces
  • HDMI interfaces HDMI interfaces
  • DP interfaces or any other components or configurations.
  • the example detecting apparatus 1 comprises an industrial robot 30, a detecting unit 40 and a computing unit 50.
  • the industrial robot 30 is configured to move the connector 10 to plug into the electronic device 20 or unplug from the electronic device 20.
  • the connector 10 is provided with a plug 11, which may be suitable for the electronic device 20, and can be plugged into an interface 21 of the electronic device 20 and unplugged from the interface 21.
  • the plug 11 of the connector 10 is plugged (for example, inserted) into the interface 21 of the electronic device 20 or unplugged (for example, pulled out) from the interface 21 of the electronic device 20 correspondingly.
  • the operations of the the industrial robot 30 may be based on pre-determined configurations in the industrial robot 30, or based on instructions from outside source (for example, a computing unit 50 as after mentioned) .
  • the detecting unit 40 is coupled to the industrial robot 30 and is configured to detect the current passing through the connector 10 when the industrial robot 30 is moving the connector 10 to plug into the electronic device 20 or unplug from the electronic device 20.
  • the industrial robot is configured to move a connector with a plug suitable for an electronic device under test, to plug into the electronic device or unplug from the electronic device.
  • the detecting unit is coupled to the industrial robot and configured to detect a current passing through the connector. For example, the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved, enabling a prominent improvement of the production cycle. Meanwhile, since the accurate product detection can be achieved, the damage to electronic devices due to the collision and friction during the plugging and unplugging between the connector and the electronic device can be further reduced.
  • the computing unit 50 is coupled to the industrial robot 30 and is configured to transmit an instruction to the industrial robot 30 to control the movement of the connector 10 and the force applied to the connector 10.
  • the computing unit 50 is further coupled to the detecting unit 40 and is further configured to determine a plugging state between the connector 10 and the electronic device 20 based on the current of the connector 10 detected by the detecting unit 40.
  • the computing unit 50 may control the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30, based on the current detected by the detecting unit 40.
  • the computing unit 50 may adjust the instruction transmitted to the industrial robot 30 based on the plugging state, so as to control the movement of the connector 10 and the force applied to the connector 10.
  • the plugging state between the connector 10 and the electronic device 20 can be reflected by the values of the current passing through the connector 10, the plugging states can be determined rapidly and accurately. Further, since the plugging states can be determined rapidly and accurately, the movement of the connector 10 with respect to the electronic device 20 can be adjusted timely based on the determined plugging states, enabling more accurate product detection at a lower cost in a more effective way.
  • the plugging state between the connector 10 and the electronic device 20 may be a state that the connector 10 is not plugged into the electronic device 20, or a state that the connector 10 is plugged into the electronic device 20.
  • the plugging state in the case of the state indicating that the connector 10 is plugged into the electronic device 20, depending on relative positions between the plug 11 of the connector 10 and the interface of the electronic device 20, the plugging state may be a state the plug 11 of the connector 10 is partially plugged into the interface 21 of the electronic device 20, a state the plug 11 of the connector 10 is fully plugged into the interface 21 of the electronic device 20, or a state the plug 11 of the connector 10 is plugged into a position beyond the interface 21 of the electronic device 20.
  • different plugging states may correspond to different values of the current passing through the connector 10.
  • the value of the current in the electrical circuit formed between the connector 10 and the electronic device 20 may be different depending on the contact area or contact depth between the connector 10 and the electronic device 20. Accordingly, the different value ranges of the current passing through the connector 10 may indicate different plugging states between the connector 10 and the electronic device 20.
  • FIG. 2 illustrates exemplary value ranges of the current in accordance with some embodiments of the present disclosure.
  • the power charging will start by the charging system consisted of Power Management Unit (PMU) , Central Processing Unit (CPU) and battery within the electronic device 20.
  • PMU Power Management Unit
  • CPU Central Processing Unit
  • the computing unit 50 is configured to determine that the connector 10 is not plugged into the electronic device 20 in response to determining the current is within a first range.
  • the first range indicates the state that the connector 10 is not plugged into the electronic device 20, for example, 0 to 1 mA, as shown in FIG. 2.
  • the state that the connector 10 is pulled out from the electronic device 20 can be determined based on the current, and can be further used to analyze the rate of the qualified electronic devices and the rate of the defective electronic devices.
  • the computing unit 50 is configured to determine that the connector 10 is plugged into the electronic device 20 in response to determining the current is within a second range.
  • the second range indicates the state that the connector 10 is plugged into the electronic device 20, for example, 1 to 550 mA, as shown in FIG. 2.
  • the state that the connector 10 is inserted into the electronic device 20 can be determined based on the current, and can be further used to analyze the rate of the qualified electronic devices and the rate of the defective electronic devices.
  • the computing unit 50 is configured to determine that the plug 11 of the connector 10 is partially plugged into the interface 21 of the electronic device 20 in response to determining the current is within a first sub-range among the second range.
  • the first sub-range indicates the state that the connector 10 is partially plugged into the interface 21 of the electronic device 20, for example, 1 to 450 mA, as shown in FIG. 2.
  • the computing unit 50 is configured to determine that the plug 11 of the connector 10 is fully plugged into the interface 21 of the electronic device 20 in response to determining the current is within a second sub-range among the second range.
  • the second sub-range indicates the state that the plug 11 of the connector 10 is fully plugged into the interface 21 of the electronic device 20, for example, 450 to 500 mA, as shown in FIG. 2.
  • the computing unit 50 is configured to determine that the plug 11 of the connector 10 is plugged into a position beyond the interface 21 of the electronic device 20 in response to determining the current is within a third sub-range among the second range.
  • the third sub-range indicates the state the plug 11 of the connector 10 is plugged into a position beyond the interface 21 of the electronic device 20, for example, 500 to 550 mA, as shown in FIG. 2.
  • more specific states under the state that the connector 10 is inserted into the electronic device 20 can be further determined based on the current, enabling the analysis and the determination of the rate of the qualified electronic devices and the rate of the defective electronic devices be further refined.
  • the number of classifications of the value ranges of the current, the correspondence between the plugging states and value ranges and the magnitude of the values are only for the purpose of illustration without suggesting any limitations to the present disclosure.
  • the number of classifications of the value ranges of the current, the correspondence between the plugging states and value ranges and the magnitude of the values may be different, depending on the type, specification, and/or functionality of the interfaces and/or the connectors.
  • the plurality of value ranges of the current can be non-overlapping or overlapping with each other, depending on the type, specification, and/or functionality of the interfaces and/or the connectors.
  • the computing unit 50 is configured to adjust the instruction transmitted to the industrial robot 30 based on a combination of the determinations of at least two plugging states.
  • the plugging and/or unplugging between the connector 10 and the electronic device 20 may be executed for multiple times in a test.
  • the movements of the industrial robot 30 can be determined as a whole by accumulating a certain number of plugging states to avoid certain errors.
  • the movements of the connector 10 with respect to the electronic device 20 can be determined as a whole by accumulating a certain number of plugging states to avoid certain errors, enabling the analysis and the determination of the rate of the qualified electronic devices and the rate of the defective electronic devices be further refined.
  • the instruction transmitted to the industrial robot 30 from the computing 50 may include predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot 30.
  • the plugging position may indicate relative positions between the plug 11 of the connector 10 and the interface of the electronic device 20 when the industrial robot 30 is actuating the connector 10 with respect to the electronic device 20.
  • the plugging speed may indicate the speed of the movement of the industrial robot 30.
  • the plugging times may indicate the times of the industrial robot 30 plugging the connector 10 into the electronic device 20 or unplugging the connector 10 from the electronic device 20.
  • the plugging force may indicate the force applied to the connector 10 by the industrial robot 30, so as to plug the connector 10 into the electronic device 20 or unplug the connector 10 from the electronic device 20 with appropriately matching the plugging position, the plugging speed, the plugging times, etc.
  • the waiting time may indicate a time interval of each movement of the industrial robot 30, or the duration of each group of tests. It is to be understood that the number, type, and definitions of the instructions and parameters are only for the purpose of illustration without suggesting any limitations to the present disclosure. In other word, the number, type, and definitions of the instructions and parameters may be added, deleted, modified, or adjusted appropriately by those skilled in the art. According to example embodiments described above, the movement of the connector 10 with respect to the electronic device 20 can be more accurate.
  • FIG. 3 is a schematic diagram further illustrating the specific structure of the industrial robot 30 in accordance with some embodiments of the present disclosure.
  • the industrial robot 30 may further include a clamp 31, a manipulator 32, a force sensor 33 and a controller 34.
  • the industrial robot 30 may be a multi-axis robot which allows a precise control of the manipulator 32 to complete desire actions.
  • the industrial robot 30 may slide along a guide rail (not shown) to increase the working range.
  • the clamp 31 may be configured to clamp at least the connector 10.
  • the clamp 31 may be adapted to the connector 10, providing an appropriate force to firmly stabilize the connector 10, such that the connector 10 will not fall off from the clamp 31 while will not be damaged due to an excessive force, during the movement of the industrial robot 30.
  • the manipulator 32 may be configured to actuate the connector 10 such that the connector 10 is plugged into the electronic device 20 or unplugged from the electronic device 20.
  • the manipulator 32 may flexibly move the connector 10 to a predetermined plugging position, at a predetermined plugging speed, by predetermined plugging times, under a predetermined plugging force.
  • the manipulator 32 may not move the connector 10 during the waiting time, after which the manipulator 32 conduct the movement of the connector 10 again.
  • the force sensor 33 may be coupled to the clamp 31 and the manipulator 32 to detect the force applied to the connector 10 by the industrial robot 30. In some embodiments, the force sensor 33 may feed the detected force back to the computing unit 50, in real time or intermittently, such that the computing unit 50 can determine the status of the industrial robot 30.
  • the controller 34 may be configured to control the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30.
  • the controller 34 may control the manipulator 32, based on the instruction comprising predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot 30.
  • the computing unit 50 is configured to control the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30, further based on the force detected by the force sensor 33. Further, in some embodiments, the computing unit 50 is configured to adjust the instruction transmitted to the industrial robot 30, further based on the force detected by the force sensor 33.
  • the connector 10 can be appropriately moved with respect to the electronic device 20 in a more effective and accurate way.
  • FIG. 4 is a schematic diagram further illustrating the specific structure of the detecting unit 40 in accordance with some embodiments of the present disclosure.
  • the detecting unit 40 may further include a current transformer 41 and a data acquisition module 42.
  • the current transformer 41 may be coupled to the connector 10.
  • the current transformer 41 is used to adjust (for example, shrink) the current in the connector 10 to a certain extent to generate a current value that is appropriate for the computing unit 50 to process.
  • the current transformer 41 may be connected in series with the connector 10, so as to detect the current of the connector 10 while protecting the electrical circuit formed between the connector 10 and the electronic device 20.
  • the data acquisition module 42 may be coupled to the current transformer 41 and configured to identify the value of the current passing through the current transformer 41. In some embodiments, the data acquisition module 42 may convert the amplified current value acquired from the current transformer 41 into an analog form that is appropriately processed by the computing unit 50, based on which the computing unit 50 may determine the plugging state between the connector 10 and the electronic device 20.
  • the current passing the connector 10 can be amplified by the current transformer 41 and converted into a form which is appropriate for the computing unit 50 to process by the data acquisition module 42, enabling a more efficient analysis of the plugging states.
  • FIG. 5 is a schematic diagram further illustrating the specific structure of the connector 10 in accordance with some embodiments of the present disclosure.
  • the connector 10 may include a plug 11, a power cord 12 and a second connector 13.
  • the plug 11 may be suitable for the electronic device 20, and can be plugged into the interface 21 of the electronic device 20 and unplugged from the interface 21.
  • the power cord 12 may be coupled to the detecting unit 40 to allow the detecting unit 40 to detect the current in the power cord 12.
  • the power cord 12 may be the cable via which the power is supplied to the electronic device 20, for example, a live wire.
  • the power cord 12 may be the Volt Current Condenser (VCC) line, generally colored red in practice.
  • VCC Volt Current Condenser
  • the analysis of the plugging states can be more accurate and efficient.
  • the second connector 13 may be coupled to a charger 60, wherein the charger 60 may be configured to supply power to the electronic device 20.
  • the charger 60 may supply rated voltage suitable for the electronic device 20.
  • the charger 60 may supply various voltages depending on the test requirements for the connector 10 and the electronic device 20.
  • the connector 10 may further include other cords 14, 15 or 16 for other purpose (for example, for data transmission such as the D-line and the D+ line, or for grounding such as the GND line) , which will not described in detail for brevity.
  • the industrial robot 30 can move the connector 10 to plug into the electronic device 20 or unplug from the electronic device 20, while the detecting unit 40 detecting the current passing through the connector 10.
  • the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved, enabling a prominent improvement of the production cycle.
  • the accurate product detection can be achieved, the damage to electronic devices due to the collision and friction during the plugging and unplugging between the connector and the electronic device can be further reduced.
  • FIG. 6 illustrates a flowchart of an example method 600 in accordance with some embodiments of the present disclosure.
  • the method 600 can be performed at the detecting apparatus 1 as shown in FIG. 1. It is to be understood that the method 600 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the method 600 may be implemented in combination with the components described above.
  • the industrial robot 30 moves the connector 10 to plug into the electronic device 20 or unplug from the electronic device 20.
  • the detecting unit 40 detects the current passing through the connector 10 during the movement of the block 610.
  • the computing unit 50 controls the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30 based on the current detected by the detecting unit 40 at the block 620.
  • the computing unit 50 determines the plugging state between the connector 10 and the electronic device 20 based on the current detected at the block 620.
  • the computing unit 50 further adjusts the instruction transmitted to the industrial robot 30 based on the plugging state, so as to control the movement of the connector 10 and the force applied to the connector 10.
  • the computing unit 50 determines that the connector 10 is not plugged into the electronic device 20 in response to determining the current is within a first range.
  • the computing unit 50 determines that the connector 10 is plugged into the electronic device 20 in response to determining the current is within a second range.
  • the computing unit 50 determines that the plug 11 of the connector 10 is partially plugged into the interface 21 of the electronic device 20 in response to determining the current is within a first sub-range among the second range. In some embodiments, the computing unit 50 is configured to determine that the plug 11 of the connector 10 is fully plugged into the interface 21 of the electronic device 20 in response to determining the current is within a second sub-range among the second range. In some embodiments, the computing unit 50 is configured to determine that the plug 11 of the connector 10 is plugged into a position beyond the interface 21 of the electronic device 20 in response to determining the current is within a third sub-range among the second range.
  • the computing unit 50 adjusts the instruction transmitted to the industrial robot 30 based on a combination of the determinations of at least two plugging states.
  • the instruction transmitted to the industrial robot 30 from the computing 50 comprises predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot 30.
  • the industrial robot 30 clamps at least the connector 10 by the clamp 31, which is adapted to the connector 10, providing an appropriate force to stabilize the connector 10.
  • the industrial robot 30 moves the connector 10 by the manipulator 32, such that the connector 10 is plugged into the electronic device 20 or unplugged from the electronic device 20.
  • the industrial robot 30 detects the force applied to the connector 10, by the force sensor 33, which may feed the detected force back to the computing unit 50.
  • the industrial robot 30 controls the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30 by the controller 34 which control the manipulator 32, based on the instructions transmitted from the computing unit 50.
  • the computing unit 50 controls the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30 and adjust the instruction transmitted to the industrial robot 30, further based on the force detected by the force sensor 33.
  • the detecting unit 40 amplifies the current in the connector 10 to a certain extent to generate a current value by the current transformer 41.
  • the detecting unit 40 identifies the value of the current passing through the current transformer 41 by the data acquisition module 42, which convert the amplified current value acquired from the current transformer 41 into an analog form that is transmitted to the computing unit 50.
  • the detecting unit 40 detects the current in the power cord 12 which is provided in the connector 10.
  • the charger 60 supplies power to the electronic device 20 via the second connector 13, the power cord 12, and the connector 11, respectively, during the test for the electronic device 20.
  • FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure.
  • the device 700 can be considered as a further example implementation of the detecting apparatus 1 as shown in FIG. 1. Accordingly, the device 700 can be implemented at or as at least a part of the detecting apparatus 1.
  • the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a suitable transmitter (TX) and receiver (RX) 740 coupled to the processor 710, and a communication interface coupled to the TX/RX 740.
  • the memory 710 stores at least a part of a program 730.
  • the program 730 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 1 to 6.
  • the embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware.
  • the processor 710 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 710 and memory 720 may form processing means 750 adapted to implement various embodiments of the present disclosure.
  • the memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700.
  • the processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIG. 5 and/or FIG. 6.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A detecting apparatus, method and computer storage media for communication. Said method enable an industrial robot (30) moving a connector (10) to plug into an electronic device (20) or unplug from the electronic device (20), while a detecting unit (40) detecting the current passing through the connector (10). Said method enable rapidly and effectively determining the plugging states between the connector (10) and the electronic device (20), and thus the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved.

Description

APPARATUS, METHOD AND COMPUTER STORAGE MEDIUM FOR PRODUCT DETECTION FIELD
Embodiments of the present disclosure generally relate to the field of product detection, and in particular, to an apparatus, method and computer storage media for product detection.
BACKGROUND
In the consumer electronics manufacturing industry, the requirements for the versatility and precision of electronic products are increasing, and the qualified electronic products are required to have higher reliability and durability. For this reason, before the manufactured electronic products formally leave the factory, a series of tests need to be carried out under certain conditions to detect whether the manufactured electronic products work normally and the degree of wear of hardware components assembled in the manufactured electronic products. As a result, the qualified and defective products are sorted for a large number of manufactured electronic products to ensure the delivery quality of electronic products.
As the integration of various components of an electronic product increases, there is a trend that the electronic product realizes more functions through fewer interfaces. For instance, an electronic product is provided with a multi-function interface, comprising functions such as charging from an external power source to the electronic product, data transmission between the electronic product and outside devices, and display output between the electronic product and the outside devices.
In a series of tests for the manufactured electronic products before leaving the factory, the reliability and durability (for example, deformation, charging quality, data transmission quality, etc. ) of the interfaces are also included.
SUMMARY
In general, example embodiments of the present disclosure provide an apparatus, method and computer storage media for product detection.
In a first aspect, there is provided a detecting apparatus. The detecting apparatus comprises an industrial robot and a detecting unit. The industrial robot is configured to move a connector with a plug suitable for an electronic device under test, to plug into the electronic device or unplug from the electronic device. The detecting unit is coupled to the industrial robot and configured to detect a current passing through the connector.
According to example embodiment of the present disclosure, for example, the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved, enabling a prominent improvement of the production cycle. Meanwhile, since the accurate product detection can be achieved, the damage to electronic devices due to the collision and friction during the plugging and unplugging between the connector and the electronic device can be further reduced.
In some example embodiments, the movement of the connector and a force applied to the connector by the industrial robot are controlled based on the current.
According to example embodiment of the present disclosure, since the plugging state between the connector and the electronic device can be reflected by the values of the current passing through the connector, the plugging states can be determined rapidly and accurately. Further, since the plugging states can be determined rapidly and accurately, the movement of the connector with respect to the electronic device can be adjusted timely based on the determined plugging states, enabling more accurate product detection at a lower cost in a more effective way.
In some example embodiments, the detecting apparatus further comprises a computing unit coupled to the industrial robot and the detecting unit, wherein the computing unit is configured to determine a plugging state between the connector and the electronic device based on the current and adjust an instruction transmitted to the industrial robot based on the plugging state, so as to control the movement of the connector and the force applied to the connector. With these embodiments, the movement of the connector with respect to the electronic device can be adjusted further accurately based on the different plugging states.
In some example embodiments, the computing unit is configured to determine that the connector is not plugged into the electronic device in response to determining the current is within a first range. With these embodiments, the state that the connector is pulled out from the electronic device can be determined based on the current, and can be further  used to analyze the rate of the qualified electronic devices and the rate of the defective electronic devices.
In some example embodiments, the computing unit is configured to determine that the connector is plugged into the electronic device in response to determining the current is within a second range. With these embodiments, the state that the connector is inserted into the electronic device can be determined based on the current, and can be further used to analyze the rate of the qualified electronic devices and the rate of the defective electronic devices.
In some example embodiments, the computing unit is further configured to: determine that the plug of the connector is partially plugged into the interface of the electronic device in response to determining the current is within a first sub-range among the second range; determine that the plug of the connector is fully plugged into the interface of the electronic device in response to determining the current is within a second sub-range among the second range; or determine that the plug of the connector is plugged into a position beyond the interface of the electronic device in response to determining the current is within a third sub-range among the second range. With these embodiments, more specific states under the state that the connector is inserted into the electronic device can be further determined based on the current, enabling the analysis and the determination of the rate of the qualified electronic devices and the rate of the defective electronic devices be further refined.
In some example embodiments, the computing unit adjusts the instruction transmitted to the industrial robot based on a combination of the determinations of at least two plugging states. With these embodiments, the movements of the connector with respect to the electronic device can be determined as a whole by accumulating a certain number of plugging states to avoid certain errors, enabling the analysis and the determination of the rate of the qualified electronic devices and the rate of the defective electronic devices be further refined.
In some example embodiments, the instruction comprises predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot. With these embodiments, the movement of the connector with respect to the electronic device can be more accurate.
In some example embodiments, the industrial robot comprises a clamp configured to clamp at least the connector; a manipulator configured to move the connector such that the connector is plugged into the electronic device or unplugged from the electronic device; a force sensor coupled to the clamp and the manipulator to detect the force applied to the connector by the industrial robot; and a controller configured to control the movement of the connector and the force applied to the connector by the industrial robot. With these embodiments, the connector can be appropriately moved with respect to the electronic device in a more effective and accurate way.
In some example embodiments, the detecting unit comprises: a current transformer coupled to the connector; and a data acquisition module coupled to the current transformer and configured to identify the value of the current passing through the current transformer. With these embodiments, the current passing the connector can be amplified by the current transformer and converted into a form which is appropriate for the computing unit to process by the data acquisition module, enabling a more efficient analysis of the plugging states.
In some example embodiments, the connector comprises: a power cord coupled to the detecting unit to allow the detecting unit to detect the current in the power cord; and a plug coupled to a charger, the charger being configured to supply power to the electronic device. With these embodiments, since the current substantially passes through the power cord within the connector, the analysis of the plugging states can be more accurate and efficient.
In a second aspect, there is provided a method. The method comprises: moving, by an industrial robot, a connector with a plug suitable for an electronic device under test, to plug into the electronic device or unplug from the electronic device; and detecting, by a detecting unit, a current passing through the connector.
In some example embodiments, the movement of the connector and a force applied to the connector by the industrial robot are controlled based on the current.
In some example embodiments, the method further comprises: determining, by a computing unit, a plugging state between the connector and the electronic device based on the current; and adjusting, by the computing unit, an instruction transmitted to the industrial robot based on the plugging state, so as to control the movement of the connector and the force applied to the connector.
In some example embodiments, the method further comprises: determining, by the computing unit, that the plug is not plugged into the electronic device in response to determining the current is in a first range.
In some example embodiments, the method further comprises: determining, by the computing unit, that the plug is plugged into the electronic device in response to determining the current is within a second range.
In some example embodiments, the method further comprises: determining that the plug is partially plugged into the electronic device in response to determining the current is within a first sub-range among the second range; determining that the plug is fully plugged into the electronic device in response to determining the current is within a second sub-range among the second range; or determining that the plug is plugged into a position beyond the electronic device in response to determining the current is within a third sub-range among the second range.
In some example embodiments, the method further comprises: adjusting, by the computing unit, the instruction transmitted to the industrial robot, based on a combination of the determinations of at least two plugging states.
In a third aspect, there is provided a computer-readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to perform the method according to the second aspect of the present disclosure.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
FIG. 1 illustrates an example detecting apparatus in which embodiments of the present disclosure can be implemented;
FIG. 2 illustrates exemplary value ranges of the current in accordance with some embodiments of the present disclosure;
FIG. 3 illustrates a schematic diagram illustrating the specific structure of the industrial robot in accordance with some embodiments of the present disclosure;
FIG. 4 illustrates a schematic diagram further illustrating the specific structure of the detecting unit in accordance with some embodiments of the present disclosure;
FIG. 5 illustrates schematic diagram further illustrating the specific structure of the connector in accordance with some embodiments of the present disclosure;
FIG. 6 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure; and
FIG. 7 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” . The term “based on” is to be read as “at least in part based on” . The term “some embodiments” and “an embodiment” are to be read as “at least some embodiments” . The term “another embodiment” is to be read as “at least one other embodiment” . The terms  “first” , “second” , and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as “best” , “lowest” , “highest” , “minimum” , “maximum” , or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
The term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” . The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on” . The term “being operable to” is to mean a function, an action, a motion or a state that can be achieved by an operation induced by a user or an external mechanism. The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” .
Unless specified or limited otherwise, the terms “mounted, ” “connected, ” “supported, ” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Furthermore, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings. In the description below, like reference numerals and labels are used to describe the same, similar or corresponding parts in the figures. Other definitions, explicit and implicit, may be included below.
As described above, the reliability and durability of the interfaces of the manufactured electronic product are required to be tested before the manufactured electronic products leave the factory. In a case where the interface is detected manually, for example, an operator has to manually repeat the process of plugging the connector into the interface and unplugging it from the interface for many times, generally with holding the connector by one hand and holding the electronic product by the other hand. After repeatedly plugging and unplugging for a certain number of times, the operator may visually observe whether the appearance of the interface is deformed or damaged, or specific testing equipment may be utilized to inspect the functionality of the interface, such as charging functionality, data transmission functionality, identification functionality, etc.,  to determine whether the relevant functionality still works normally, or to determine to which degree the interface wears out.
In the above-mentioned manual detection, several problems need to be solved. For example, the frequency and force of the operator’s plugging and unplugging of the connector and the interface are not fixed, and the test conditions cannot be precisely controlled, which not only leads to a low detection accuracy rate of defective electronic products, but also risks unnecessary damage to the interface. On the other hand, the manual detection still raises some problems such as high labor cost, low work efficiency, poor robustness, etc. Therefore, how to detect the components of the manufactured electronic products in a more efficient and reliable manner remains an unsolved problem.
Embodiments of the present disclosure provide a solution to solve the problems above and/or one or more of other potential problems. This solution enables the industrial robot moving the connector to plug into the electronic device or unplug from the electronic device, while the detecting unit detecting the current passing through the connector. For example, the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved, enabling a prominent improvement of the production cycle. Meanwhile, since the accurate product detection can be achieved, the damage to electronic devices due to the collision and friction during the plugging and unplugging between the connector and the electronic device can be further reduced. Principle and implementations of the present disclosure will be described in detail below with reference to FIGS. 1-7.
FIG. 1 illustrates an example detecting apparatus 1 in which embodiments of the present disclosure can be implemented. The detecting apparatus 1 may move a connector 10 with respect to an electronic device 20 such that the connector 10 is plugged into the electronic device 20 or unplugged from the electronic device 20, while detecting a current passing through the connector 10. It is to be understood that the number of connectors, electronic devices and/or detecting apparatus and any other units/components herein is only for the purpose of illustration without suggesting any limitations to the present disclosure. The detecting apparatus 1 may move any suitable number of connectors with respect to any suitable number of electronic devices adapted for implementing implementations of the present disclosure.
As used herein, the term “electronic device” refers to any device having interface (s)  to be coupled with connector (s) . Examples of the electronic device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, or image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances provided with interface (s) . For the purpose of discussion, in the following, some embodiments will be described with reference to UE as an example of the electronic device 20.
As used herein, the term “interface” refers to a component provided in the electronic device, across which the electronic device enables charging functionality, data transmission functionality, identification functionality, etc. Examples of the interface include, but not limited to, Universal Serial Bus (USB) type interfaces including USB 2.0, USB 3.1, USB BC 1.2, USB Type-C, USB PD, etc., Video Graphics Array (VGA) interfaces, Digital Visual Interface (DVI) interfaces, High Definition Multimedia Interface (HDMI) interfaces, Display Port (DP) interfaces, or any other components or configurations. For the purpose of discussion, in the following, some embodiments will be described with reference to USB 2.0 type interface as an example of the interface provided in the electronic device 20.
As used herein, the term “connector” refers to a coupling device that joins electrical terminations to create an electrical circuit, enabling contact between wires or cables and electronic devices. The connector is adapted to the type, specification, and/or functionality of the interface provided in the electronic device 20. Examples of the connector include, but not limited to, charging type connector, data transmission type connector, display transmission type connector or multifunctional connector, which may be adapted to USB type interfaces including USB 2.0, USB 3.1, USB BC 1.2, USB Type-C, USB PD, etc., VGA interfaces, DVI interfaces, HDMI interfaces, DP interfaces, or any other components or configurations. For the purpose of discussion, in the following, some embodiments will be described with reference to a connector which is adapted to at least USB 2.0 type interface and is capable of charging, data transmission and display transmission, as an example of the interface provided in the electronic device 20.
In one embodiment, as shown in FIG. 1, the example detecting apparatus 1  comprises an industrial robot 30, a detecting unit 40 and a computing unit 50.
The industrial robot 30 is configured to move the connector 10 to plug into the electronic device 20 or unplug from the electronic device 20. The connector 10 is provided with a plug 11, which may be suitable for the electronic device 20, and can be plugged into an interface 21 of the electronic device 20 and unplugged from the interface 21. During the movement of the connector 10 being plugging into the electronic device 20 or unplugging from the electronic device 20, the plug 11 of the connector 10 is plugged (for example, inserted) into the interface 21 of the electronic device 20 or unplugged (for example, pulled out) from the interface 21 of the electronic device 20 correspondingly.
In some embodiments, the operations of the the industrial robot 30 (for example, the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30) may be based on pre-determined configurations in the industrial robot 30, or based on instructions from outside source (for example, a computing unit 50 as after mentioned) .
In the case the plug 11 is plugged into the interface 21, an electrical circuit is formed between the connector 10 and the electronic device 20, and a corresponding current will pass through the connector 10.
The detecting unit 40 is coupled to the industrial robot 30 and is configured to detect the current passing through the connector 10 when the industrial robot 30 is moving the connector 10 to plug into the electronic device 20 or unplug from the electronic device 20.
According to example embodiments described above, the industrial robot is configured to move a connector with a plug suitable for an electronic device under test, to plug into the electronic device or unplug from the electronic device. The detecting unit is coupled to the industrial robot and configured to detect a current passing through the connector. For example, the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved, enabling a prominent improvement of the production cycle. Meanwhile, since the accurate product detection can be achieved, the damage to electronic devices due to the collision and friction during the plugging and unplugging between the connector and the electronic device can be further reduced.
The computing unit 50 is coupled to the industrial robot 30 and is configured to  transmit an instruction to the industrial robot 30 to control the movement of the connector 10 and the force applied to the connector 10. The computing unit 50 is further coupled to the detecting unit 40 and is further configured to determine a plugging state between the connector 10 and the electronic device 20 based on the current of the connector 10 detected by the detecting unit 40.
In some embodiments, the computing unit 50 may control the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30, based on the current detected by the detecting unit 40.
In some embodiments, the computing unit 50 may adjust the instruction transmitted to the industrial robot 30 based on the plugging state, so as to control the movement of the connector 10 and the force applied to the connector 10.
According to example embodiments described above, since the plugging state between the connector 10 and the electronic device 20 can be reflected by the values of the current passing through the connector 10, the plugging states can be determined rapidly and accurately. Further, since the plugging states can be determined rapidly and accurately, the movement of the connector 10 with respect to the electronic device 20 can be adjusted timely based on the determined plugging states, enabling more accurate product detection at a lower cost in a more effective way.
In some embodiments, depending on whether the connector 10 is plugged into the electronic device 20, the plugging state between the connector 10 and the electronic device 20 may be a state that the connector 10 is not plugged into the electronic device 20, or a state that the connector 10 is plugged into the electronic device 20. In some embodiments, in the case of the state indicating that the connector 10 is plugged into the electronic device 20, depending on relative positions between the plug 11 of the connector 10 and the interface of the electronic device 20, the plugging state may be a state the plug 11 of the connector 10 is partially plugged into the interface 21 of the electronic device 20, a state the plug 11 of the connector 10 is fully plugged into the interface 21 of the electronic device 20, or a state the plug 11 of the connector 10 is plugged into a position beyond the interface 21 of the electronic device 20.
Further, in some embodiments, different plugging states may correspond to different values of the current passing through the connector 10. In other words, depending on the contact area or contact depth between the connector 10 and the electronic  device 20, the value of the current in the electrical circuit formed between the connector 10 and the electronic device 20 may be different. Accordingly, the different value ranges of the current passing through the connector 10 may indicate different plugging states between the connector 10 and the electronic device 20.
FIG. 2 illustrates exemplary value ranges of the current in accordance with some embodiments of the present disclosure.
For example, when a voltage of 5V is provided to the electronic device 20 via the connector 10, the power charging will start by the charging system consisted of Power Management Unit (PMU) , Central Processing Unit (CPU) and battery within the electronic device 20.
In some embodiments, the computing unit 50 is configured to determine that the connector 10 is not plugged into the electronic device 20 in response to determining the current is within a first range. The first range indicates the state that the connector 10 is not plugged into the electronic device 20, for example, 0 to 1 mA, as shown in FIG. 2. According to example embodiments described above, the state that the connector 10 is pulled out from the electronic device 20 can be determined based on the current, and can be further used to analyze the rate of the qualified electronic devices and the rate of the defective electronic devices.
In some embodiments, the computing unit 50 is configured to determine that the connector 10 is plugged into the electronic device 20 in response to determining the current is within a second range. The second range indicates the state that the connector 10 is plugged into the electronic device 20, for example, 1 to 550 mA, as shown in FIG. 2. According to example embodiments described above, the state that the connector 10 is inserted into the electronic device 20 can be determined based on the current, and can be further used to analyze the rate of the qualified electronic devices and the rate of the defective electronic devices.
Further, in some embodiments, the computing unit 50 is configured to determine that the plug 11 of the connector 10 is partially plugged into the interface 21 of the electronic device 20 in response to determining the current is within a first sub-range among the second range. The first sub-range indicates the state that the connector 10 is partially plugged into the interface 21 of the electronic device 20, for example, 1 to 450 mA, as shown in FIG. 2. In some embodiments, the computing unit 50 is configured to  determine that the plug 11 of the connector 10 is fully plugged into the interface 21 of the electronic device 20 in response to determining the current is within a second sub-range among the second range. The second sub-range indicates the state that the plug 11 of the connector 10 is fully plugged into the interface 21 of the electronic device 20, for example, 450 to 500 mA, as shown in FIG. 2. In some embodiments, the computing unit 50 is configured to determine that the plug 11 of the connector 10 is plugged into a position beyond the interface 21 of the electronic device 20 in response to determining the current is within a third sub-range among the second range. The third sub-range indicates the state the plug 11 of the connector 10 is plugged into a position beyond the interface 21 of the electronic device 20, for example, 500 to 550 mA, as shown in FIG. 2.
According to example embodiments described above, more specific states under the state that the connector 10 is inserted into the electronic device 20 can be further determined based on the current, enabling the analysis and the determination of the rate of the qualified electronic devices and the rate of the defective electronic devices be further refined.
It is to be understood that the number of classifications of the value ranges of the current, the correspondence between the plugging states and value ranges and the magnitude of the values are only for the purpose of illustration without suggesting any limitations to the present disclosure. In other words, the number of classifications of the value ranges of the current, the correspondence between the plugging states and value ranges and the magnitude of the values may be different, depending on the type, specification, and/or functionality of the interfaces and/or the connectors. In addition, the plurality of value ranges of the current can be non-overlapping or overlapping with each other, depending on the type, specification, and/or functionality of the interfaces and/or the connectors.
In some embodiments, the computing unit 50 is configured to adjust the instruction transmitted to the industrial robot 30 based on a combination of the determinations of at least two plugging states. In some instances, the plugging and/or unplugging between the connector 10 and the electronic device 20 may be executed for multiple times in a test. The movements of the industrial robot 30 can be determined as a whole by accumulating a certain number of plugging states to avoid certain errors.
According to example embodiments described above, the movements of the  connector 10 with respect to the electronic device 20 can be determined as a whole by accumulating a certain number of plugging states to avoid certain errors, enabling the analysis and the determination of the rate of the qualified electronic devices and the rate of the defective electronic devices be further refined.
In some embodiments, the instruction transmitted to the industrial robot 30 from the computing 50 may include predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot 30. The plugging position may indicate relative positions between the plug 11 of the connector 10 and the interface of the electronic device 20 when the industrial robot 30 is actuating the connector 10 with respect to the electronic device 20. The plugging speed may indicate the speed of the movement of the industrial robot 30. The plugging times may indicate the times of the industrial robot 30 plugging the connector 10 into the electronic device 20 or unplugging the connector 10 from the electronic device 20. The plugging force may indicate the force applied to the connector 10 by the industrial robot 30, so as to plug the connector 10 into the electronic device 20 or unplug the connector 10 from the electronic device 20 with appropriately matching the plugging position, the plugging speed, the plugging times, etc. The waiting time may indicate a time interval of each movement of the industrial robot 30, or the duration of each group of tests. It is to be understood that the number, type, and definitions of the instructions and parameters are only for the purpose of illustration without suggesting any limitations to the present disclosure. In other word, the number, type, and definitions of the instructions and parameters may be added, deleted, modified, or adjusted appropriately by those skilled in the art. According to example embodiments described above, the movement of the connector 10 with respect to the electronic device 20 can be more accurate.
FIG. 3 is a schematic diagram further illustrating the specific structure of the industrial robot 30 in accordance with some embodiments of the present disclosure.
In some embodiments, as shown in FIG. 3, the industrial robot 30 may further include a clamp 31, a manipulator 32, a force sensor 33 and a controller 34. The industrial robot 30 may be a multi-axis robot which allows a precise control of the manipulator 32 to complete desire actions. In further embodiments, the industrial robot 30 may slide along a guide rail (not shown) to increase the working range.
The clamp 31 may be configured to clamp at least the connector 10. The clamp  31 may be adapted to the connector 10, providing an appropriate force to firmly stabilize the connector 10, such that the connector 10 will not fall off from the clamp 31 while will not be damaged due to an excessive force, during the movement of the industrial robot 30.
The manipulator 32 may be configured to actuate the connector 10 such that the connector 10 is plugged into the electronic device 20 or unplugged from the electronic device 20. For example, the manipulator 32 may flexibly move the connector 10 to a predetermined plugging position, at a predetermined plugging speed, by predetermined plugging times, under a predetermined plugging force. Alternatively, the manipulator 32 may not move the connector 10 during the waiting time, after which the manipulator 32 conduct the movement of the connector 10 again.
The force sensor 33 may be coupled to the clamp 31 and the manipulator 32 to detect the force applied to the connector 10 by the industrial robot 30. In some embodiments, the force sensor 33 may feed the detected force back to the computing unit 50, in real time or intermittently, such that the computing unit 50 can determine the status of the industrial robot 30.
The controller 34 may be configured to control the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30. In some embodiments, the controller 34 may control the manipulator 32, based on the instruction comprising predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot 30.
In some embodiments, the computing unit 50 is configured to control the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30, further based on the force detected by the force sensor 33. Further, in some embodiments, the computing unit 50 is configured to adjust the instruction transmitted to the industrial robot 30, further based on the force detected by the force sensor 33.
According to example embodiments described above, the connector 10 can be appropriately moved with respect to the electronic device 20 in a more effective and accurate way.
FIG. 4 is a schematic diagram further illustrating the specific structure of the detecting unit 40 in accordance with some embodiments of the present disclosure.
In some embodiments, the detecting unit 40 may further include a current transformer 41 and a data acquisition module 42.
The current transformer 41 may be coupled to the connector 10. In some embodiments, the current transformer 41 is used to adjust (for example, shrink) the current in the connector 10 to a certain extent to generate a current value that is appropriate for the computing unit 50 to process. In some embodiments, the current transformer 41 may be connected in series with the connector 10, so as to detect the current of the connector 10 while protecting the electrical circuit formed between the connector 10 and the electronic device 20.
The data acquisition module 42 may be coupled to the current transformer 41 and configured to identify the value of the current passing through the current transformer 41. In some embodiments, the data acquisition module 42 may convert the amplified current value acquired from the current transformer 41 into an analog form that is appropriately processed by the computing unit 50, based on which the computing unit 50 may determine the plugging state between the connector 10 and the electronic device 20.
According to example embodiments described above, the current passing the connector 10 can be amplified by the current transformer 41 and converted into a form which is appropriate for the computing unit 50 to process by the data acquisition module 42, enabling a more efficient analysis of the plugging states.
FIG. 5 is a schematic diagram further illustrating the specific structure of the connector 10 in accordance with some embodiments of the present disclosure.
In some embodiments, the connector 10 may include a plug 11, a power cord 12 and a second connector 13.
The plug 11 may be suitable for the electronic device 20, and can be plugged into the interface 21 of the electronic device 20 and unplugged from the interface 21.
The power cord 12 may be coupled to the detecting unit 40 to allow the detecting unit 40 to detect the current in the power cord 12. In some embodiments, the power cord 12 may be the cable via which the power is supplied to the electronic device 20, for example, a live wire. In the case of the connector 10 adapted to the USB 2.0 type, the power cord 12 may be the Volt Current Condenser (VCC) line, generally colored red in practice.
According to example embodiments described above, since the current substantially passes through the power cord 12 within the connector 10, the analysis of the plugging states can be more accurate and efficient.
The second connector 13 may be coupled to a charger 60, wherein the charger 60 may be configured to supply power to the electronic device 20. In some embodiments, the charger 60 may supply rated voltage suitable for the electronic device 20. In some instances, the charger 60 may supply various voltages depending on the test requirements for the connector 10 and the electronic device 20.
As shown in FIG. 5, the connector 10 may further include  other cords  14, 15 or 16 for other purpose (for example, for data transmission such as the D-line and the D+ line, or for grounding such as the GND line) , which will not described in detail for brevity.
According to the embodiments of the present disclosure, the industrial robot 30 can move the connector 10 to plug into the electronic device 20 or unplug from the electronic device 20, while the detecting unit 40 detecting the current passing through the connector 10. For example, the labor and material costs can be saved, and the detection efficiency of defective products can be effectively improved, enabling a prominent improvement of the production cycle. Meanwhile, since the accurate product detection can be achieved, the damage to electronic devices due to the collision and friction during the plugging and unplugging between the connector and the electronic device can be further reduced.
FIG. 6 illustrates a flowchart of an example method 600 in accordance with some embodiments of the present disclosure. The method 600 can be performed at the detecting apparatus 1 as shown in FIG. 1. It is to be understood that the method 600 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard. The method 600 may be implemented in combination with the components described above.
At block 610, the industrial robot 30 moves the connector 10 to plug into the electronic device 20 or unplug from the electronic device 20.
At block 620, the detecting unit 40 detects the current passing through the connector 10 during the movement of the block 610.
At block 630, the computing unit 50 controls the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30 based on the current detected by the detecting unit 40 at the block 620.
In some embodiments, the computing unit 50 determines the plugging state between the connector 10 and the electronic device 20 based on the current detected at the  block 620.
In some embodiments, the computing unit 50 further adjusts the instruction transmitted to the industrial robot 30 based on the plugging state, so as to control the movement of the connector 10 and the force applied to the connector 10.
In some embodiments, the computing unit 50 determines that the connector 10 is not plugged into the electronic device 20 in response to determining the current is within a first range.
In some embodiments, the computing unit 50 determines that the connector 10 is plugged into the electronic device 20 in response to determining the current is within a second range.
Further, in some embodiments, the computing unit 50 determines that the plug 11 of the connector 10 is partially plugged into the interface 21 of the electronic device 20 in response to determining the current is within a first sub-range among the second range. In some embodiments, the computing unit 50 is configured to determine that the plug 11 of the connector 10 is fully plugged into the interface 21 of the electronic device 20 in response to determining the current is within a second sub-range among the second range. In some embodiments, the computing unit 50 is configured to determine that the plug 11 of the connector 10 is plugged into a position beyond the interface 21 of the electronic device 20 in response to determining the current is within a third sub-range among the second range.
In some embodiments, the computing unit 50 adjusts the instruction transmitted to the industrial robot 30 based on a combination of the determinations of at least two plugging states.
In some embodiments, the instruction transmitted to the industrial robot 30 from the computing 50 comprises predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot 30.
In some embodiments, the industrial robot 30 clamps at least the connector 10 by the clamp 31, which is adapted to the connector 10, providing an appropriate force to stabilize the connector 10.
In some embodiments, the industrial robot 30 moves the connector 10 by the manipulator 32, such that the connector 10 is plugged into the electronic device 20 or  unplugged from the electronic device 20.
In some embodiments, the industrial robot 30 detects the force applied to the connector 10, by the force sensor 33, which may feed the detected force back to the computing unit 50.
In some embodiments, the industrial robot 30 controls the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30 by the controller 34 which control the manipulator 32, based on the instructions transmitted from the computing unit 50.
In some embodiments, the computing unit 50 controls the movement of the connector 10 and the force applied to the connector 10 by the industrial robot 30 and adjust the instruction transmitted to the industrial robot 30, further based on the force detected by the force sensor 33.
In some embodiments, the detecting unit 40 amplifies the current in the connector 10 to a certain extent to generate a current value by the current transformer 41.
In some embodiments, the detecting unit 40 identifies the value of the current passing through the current transformer 41 by the data acquisition module 42, which convert the amplified current value acquired from the current transformer 41 into an analog form that is transmitted to the computing unit 50.
In some embodiments, the detecting unit 40 detects the current in the power cord 12 which is provided in the connector 10.
In some embodiments, the charger 60 supplies power to the electronic device 20 via the second connector 13, the power cord 12, and the connector 11, respectively, during the test for the electronic device 20.
FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure. The device 700 can be considered as a further example implementation of the detecting apparatus 1 as shown in FIG. 1. Accordingly, the device 700 can be implemented at or as at least a part of the detecting apparatus 1.
As shown, the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a suitable transmitter (TX) and receiver (RX) 740 coupled to the processor 710, and a communication interface coupled to the TX/RX 740. The memory 710 stores  at least a part of a program 730.
The program 730 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 1 to 6. The embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware. The processor 710 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 710 and memory 720 may form processing means 750 adapted to implement various embodiments of the present disclosure.
The memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700. The processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIG. 5 and/or FIG. 6. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be  understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (20)

  1. A detecting apparatus (1) comprising:
    an industrial robot (30) configured to move a connector (10) with a plug (11) suitable for an electronic device (20) with an interface (21) , to plug the connector (10) into the electronic device (20) or unplug the connector (10) from the electronic device (20) ; and
    a detecting unit (40) coupled to the industrial robot (30) and configured to detect a current passing through the connector (10) .
  2. The detecting apparatus (1) of claim 1, wherein the movement of the connector (10) and a force applied to the connector (10) by the industrial robot (30) are controlled based on the current.
  3. The detecting apparatus (1) of claim 2, further comprising:
    a computing unit (50) coupled to the industrial robot (30) and the detecting unit (40) , wherein the computing unit (50) is configured to determine a plugging state between the connector (10) and the electronic device (20) based on the current and adjust an instruction transmitted to the industrial robot (30) based on the plugging state, so as to control the movement of the connector (10) and the force applied to the connector (10) .
  4. The detecting apparatus (1) of claim 3, wherein the computing unit (50) is configured to:
    determine that the connector (10) is not plugged into the electronic device (20) in response to determining the current is within a first range.
  5. The detecting apparatus (1) of claim 3, wherein the computing unit (50) is configured to:
    determine that the connector (10) is plugged into the electronic device (20) in response to determining the current is within a second range.
  6. The detecting apparatus (1) of claim 5, wherein the computing unit (50) is further configured to:
    determine that the plug (11) of the connector (10) is partially plugged into the interface (21) of the electronic device (20) in response to determining the current is within a  first sub-range among the second range;
    determine that the plug (11) of the connector (10) is fully plugged into the interface (21) of the electronic device (20) in response to determining the current is within a second sub-range among the second range; or
    determine that the plug (11) of the connector (10) is plugged into a position beyond the interface (21) of the electronic device (20) in response to determining the current is within a third sub-range among the second range.
  7. The detecting apparatus (1) of any of claims 3 to 6, wherein the computing unit (50) adjusts the instruction transmitted to the industrial robot (30) based on a combination of the determinations of at least two plugging states.
  8. The detecting apparatus (1) of claim 3, wherein the instruction comprises predetermined parameters for indicating at least one of a plugging position, a plugging speed, plugging times, a plugging force, and waiting time for the industrial robot (30) .
  9. The detecting apparatus (1) of claim 1, wherein the industrial robot (30) comprises:
    a clamp (31) configured to clamp at least the connector (10) ;
    a manipulator (32) configured to move the connector (10) such that the connector (10) is plugged into the electronic device (20) or unplugged from the electronic device (20) ;
    a force sensor (33) coupled to the clamp (31) and the manipulator (32) to detect the force applied to the connector (10) by the industrial robot (30) ; and
    a controller (34) configured to control the movement of the connector (10) and the force applied to the connector (10) by the industrial robot (30) .
  10. The detecting apparatus (1) of claim 1, wherein the movement of the connector (10) and the force applied to the connector (10) by the industrial robot (30) are controlled further based on the force detected by the force sensor (33) .
  11. The detecting apparatus (1) of claim 1, wherein the detecting unit (40) comprises:
    a current transformer (41) coupled to the connector (10) ; and
    a data acquisition module (42) coupled to the current transformer (41) and  configured to identify the value of the current passing through the current transformer (41) .
  12. The detecting apparatus (1) of claim 1, wherein the connector (10) comprises:
    a power cord (12) coupled to the detecting unit (40) to allow the detecting unit (40) to detect the current in the power cord (12) ; and
    a plug (13) coupled to a charger (60) , the charger (60) being configured to supply power to the electronic device (20) .
  13. A method, comprising:
    moving, by an industrial robot (30) , a connector (10) with a plug (11) suitable for an electronic device (20) under test, to plug into the electronic device (20) or unplug from the electronic device (20) ; and
    detecting, by a detecting unit (40) , a current passing through the connector (10) .
  14. The method of claim 13, wherein the movement of the connector (10) and a force applied to the connector (10) by the industrial robot (30) are controlled based on the current.
  15. The method of claim 14, further comprising:
    determining, by a computing unit (50) , a plugging state between the connector (10) and the electronic device (20) based on the current; and
    adjusting, by the computing unit (50) , an instruction transmitted to the industrial robot (30) based on the plugging state, so as to control the movement of the connector (10) and the force applied to the connector (10) .
  16. The method of claim 15, further comprising:
    determining, by the computing unit (50) , that the plug (11) is not plugged into the electronic device (20) in response to determining the current is in a first range.
  17. The method of claim 16, further comprising:
    determining, by the computing unit (50) , that the plug (11) is plugged into the electronic device (20) in response to determining the current is within a second range.
  18. The method of claim 17, further comprising:
    determining that the plug (11) is partially plugged into the electronic device (20) in response to determining the current is within a first sub-range among the second range;
    determining that the plug (11) is fully plugged into the electronic device (20) in response to determining the current is within a second sub-range among the second range; or
    determining that the plug (11) is plugged into a position beyond the electronic device (20) in response to determining the current is within a third sub-range among the second range.
  19. The method of any of claims 15 to 18, further comprising:
    adjusting, by the computing unit (50) , the instruction transmitted to the industrial robot (30) , based on a combination of the determinations of at least two plugging states.
  20. A computer-readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 13 to 19.
PCT/CN2022/112540 2022-08-15 2022-08-15 Apparatus, method and computer storage medium for product detection WO2024036441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112540 WO2024036441A1 (en) 2022-08-15 2022-08-15 Apparatus, method and computer storage medium for product detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112540 WO2024036441A1 (en) 2022-08-15 2022-08-15 Apparatus, method and computer storage medium for product detection

Publications (1)

Publication Number Publication Date
WO2024036441A1 true WO2024036441A1 (en) 2024-02-22

Family

ID=89940313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112540 WO2024036441A1 (en) 2022-08-15 2022-08-15 Apparatus, method and computer storage medium for product detection

Country Status (1)

Country Link
WO (1) WO2024036441A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106335057A (en) * 2016-09-27 2017-01-18 东南大学 Total-space smooth hole insertion control method applied to assembly robot and based on real-time force control
CN106514713A (en) * 2016-10-21 2017-03-22 国网山东省电力公司电力科学研究院 Plug-and-play connector of detection device of substation patrol robot and control method
US20200039069A1 (en) * 2017-04-23 2020-02-06 Franka Emika Gmbh Device and method for the electrical testing of an electrical component
US20200122324A1 (en) * 2017-04-23 2020-04-23 Franka Emika Gmbh Device and method for the electrical testing of an electrical component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106335057A (en) * 2016-09-27 2017-01-18 东南大学 Total-space smooth hole insertion control method applied to assembly robot and based on real-time force control
CN106514713A (en) * 2016-10-21 2017-03-22 国网山东省电力公司电力科学研究院 Plug-and-play connector of detection device of substation patrol robot and control method
US20200039069A1 (en) * 2017-04-23 2020-02-06 Franka Emika Gmbh Device and method for the electrical testing of an electrical component
US20200122324A1 (en) * 2017-04-23 2020-04-23 Franka Emika Gmbh Device and method for the electrical testing of an electrical component

Similar Documents

Publication Publication Date Title
US9996130B2 (en) Method and apparatus for controlling a connection interface
CN109298266B (en) Test system, test method, test apparatus, and storage medium
US20130265076A1 (en) Adapter board and dc power supply test system using same
WO2020057084A1 (en) Display module test platform
CN103698686A (en) Signal testing method and signal testing equipment
CN105548790A (en) USB3.1 Type-C cable automatic testing method and system
US20140188424A1 (en) Fan test device
US20130305088A1 (en) Electronic device and test card thereof
US20130162298A1 (en) Identifying circuit
CN103970628A (en) Automatic detection system and automatic detection method thereof
CN103200423A (en) Delayed detection device of video picture processing system
TW201405145A (en) Test system and method for ports with multi functions
CN101770415A (en) Signal testing device
WO2024036441A1 (en) Apparatus, method and computer storage medium for product detection
CN108074624B (en) Memory card testing apparatus and method, computer device, and storage medium
US8723539B2 (en) Test card for motherboards
CN110502381B (en) Mobile terminal, serial port debugging method thereof and computer readable medium
CN105511997A (en) Tool for testing of USB 3.0 interfaces
CN111474463A (en) Circuit board test system, circuit board test host and circuit board test method
US20200341683A1 (en) Integrated interface and electronic device
CN203479945U (en) Aviation plug port testing apparatus
US20130166937A1 (en) Universal serial bus hub
CN204359820U (en) A kind of cable auxiliary test unit
TWI765421B (en) Product detection device, product detection system and product detection method applied thereto
CN209803254U (en) Touch screen aging test system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955223

Country of ref document: EP

Kind code of ref document: A1