WO2024033962A1 - トルクセンサの支持構造およびロボット - Google Patents

トルクセンサの支持構造およびロボット Download PDF

Info

Publication number
WO2024033962A1
WO2024033962A1 PCT/JP2022/030250 JP2022030250W WO2024033962A1 WO 2024033962 A1 WO2024033962 A1 WO 2024033962A1 JP 2022030250 W JP2022030250 W JP 2022030250W WO 2024033962 A1 WO2024033962 A1 WO 2024033962A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque sensor
adapter
support structure
base
torque
Prior art date
Application number
PCT/JP2022/030250
Other languages
English (en)
French (fr)
Inventor
チンチェン タン
泰伸 畑田
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/030250 priority Critical patent/WO2024033962A1/ja
Priority to TW112128919A priority patent/TW202406702A/zh
Publication of WO2024033962A1 publication Critical patent/WO2024033962A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present disclosure relates to a support structure for a torque sensor and a robot.
  • a torque sensor that includes at least two sensor sections provided between a first structure and a second structure connected by a third structure.
  • the rigidity of one of the first structure and the second structure near the sensor portion is set higher than the other (see, for example, Patent Document 1).
  • the rigidity of the member that fixes the reduction gear itself may be low.
  • the rigidity of the torque sensor is improved, distortion occurs in the torque sensor due to deformation of the member that fixes the reduction gear. Therefore, there is a need for a torque sensor support structure and a robot that can accurately detect torque even if the rigidity of the member that fixes the reduction gear is low.
  • One aspect of the present disclosure includes an adapter that is disposed between a reduction gear and a first member to which the reduction gear is attached, and that fixes a torque sensor that detects torque around an axis of the reduction gear to the first member.
  • the adapter is a support structure for a torque sensor that suppresses deformation of the first member due to at least one of a force and a moment acting on the torque sensor.
  • FIG. 1 is a partial vertical cross-sectional view showing a robot according to an embodiment of the present disclosure.
  • FIG. 2 is a partially enlarged vertical cross-sectional view illustrating a support structure for a torque sensor in the robot of FIG. 1.
  • FIG. FIG. 2 is an exploded longitudinal cross-sectional view of a reduction gear, a torque sensor, and an O-ring in the robot of FIG. 1.
  • FIG. FIG. 4 is a longitudinal sectional view showing an assembled state of the reducer, torque sensor, and O-ring of FIG. 3;
  • FIG. 5 is an exploded longitudinal cross-sectional view showing the adapter, O-ring, and base assembled into the assembly of FIG. 4;
  • FIG. 3 is a partially enlarged vertical cross-sectional view illustrating the assembly of the torque sensor and the adapter in the torque sensor support structure of FIG. 2;
  • FIG. 7 is a partially enlarged vertical sectional view showing a state in which the torque sensor starts to be fitted into the spigot part of the adapter shown in FIG. 6;
  • FIG. 7 is a partially enlarged vertical sectional view showing a state in which the fitting between the spigot part of the adapter of FIG. 6 and the torque sensor is completed;
  • FIG. 5 is a longitudinal sectional view showing a state in which the adapter, O-ring, and base are assembled to the assembly of FIG. 4;
  • the robot 1 is, for example, a vertically articulated robot. As shown in FIG. 1, the robot 1 includes a base (first member) 2 fixed to an installation surface such as a floor surface. The robot 1 also includes a rotating trunk (second member) 3 that is rotatably supported around the first axis A with respect to the base 2 .
  • the base 2 and the rotating body 3 are made of a lightweight metal material such as an aluminum alloy.
  • the base 2 has a cylindrical shape with openings 2a and 2b opening on both sides in the first axis A direction.
  • the base 2 also includes another opening 2c in a part of the side wall for introducing a filamentous body such as a cable.
  • the base 2 includes a partition wall 2d that partitions the internal space in a direction along the first axis A.
  • a speed reducer 4 is arranged between the base 2 and the rotating body 3 to drive the rotating body 3 to rotate around the first axis (axis) A with respect to the base 2 . Further, a torque sensor 5 and an adapter 6 are fixed between the reducer 4 and the partition wall 2d of the base 2. The torque sensor 5 is disposed between the reducer 4 and the base 2 and detects the torque acting between the reducer 4 and the base 2 around the first axis A.
  • the support structure for the torque sensor 5 fixes the torque sensor 5 to the base 2 with an adapter 6 interposed therebetween.
  • the speed reducer 4 is formed in a cylindrical shape and is indirectly fixed to the base 2 with an adapter 6 and a torque sensor 5 interposed therebetween. Further, the reducer 4 includes an output section 7 directly fixed to the rotating body 3 and a case 8 indirectly fixed to the base 2.
  • the torque sensor 5 is formed into a disk shape with an outer diameter smaller than that of the reducer 4.
  • the torque sensor 5 includes a ring-shaped first portion 9 disposed radially inward and a ring-shaped second portion 10 disposed radially outward. Further, the torque sensor 5 includes a third portion 11 that connects the first portion 9 and the second portion 10.
  • a sensor such as a strain gauge (not shown) is arranged in the third portion 11 to detect torque based on strain.
  • the sensor may be placed close to either the first portion 9 or the second portion 10, or may be placed equidistant therefrom.
  • the first portion 9 of the torque sensor 5 is provided with a plurality of through holes 9a that penetrate in the thickness direction and are spaced apart in the circumferential direction.
  • the torque sensor 5 also includes a circular recess 5c centered on the first axis A on one end surface 5d of the first portion 9.
  • the case 8 of the reducer 4 includes a convex portion 8b that fits into the concave portion 5c of the torque sensor 5, and an end surface 8c that brings the end surface 5d of the torque sensor 5 into close contact.
  • the convex portion 8b of the case 8 and the concave portion 5c of the torque sensor 5 fit together with a very short fitting length, for example, 1 to 2 mm.
  • the bolt 12 passed through the through hole 9a is fastened to the screw hole 8a with the protrusion 8b fitted into the recess 5c and the end surface 8c in close contact with the end surface 5d.
  • the torque sensor 5 is fixed to the reduction gear 4.
  • a plurality of screw holes 10a penetrating in the thickness direction are provided at intervals in the circumferential direction.
  • the adapter 6 is made of a material that is more rigid than the material that makes up the base 2, such as iron, and is formed into a disk shape that is larger radially outward than the torque sensor 5. Further, the adapter 6 is provided with a plurality of through holes 6a that penetrate in the thickness direction and are spaced apart in the circumferential direction around the first axis A. The adapter 6 is fixed to the torque sensor 5 by fastening the bolt 13 passed through the through hole 6a to the screw hole 10a of the second portion 10.
  • the adapter 6 has an outer diameter that is sufficiently larger than the outer diameter of the torque sensor 5. That is, the adapter 6 extends further radially outward beyond the outer peripheral surface 5a of the torque sensor 5. In the example shown in FIG. 1, the outer diameter of the adapter 6 is equivalent to the outer diameter of the reducer 4.
  • the adapter 6 has a size that covers the entire area of the torque sensor 5 in the radial direction. That is, the adapter 6 has a size that extends inward in the radial direction of the second portion 10 of the torque sensor 5 necessary for fixation. Further, the adapter 6 has a thickness that is sufficiently larger than the thickness of the torque sensor 5. Thereby, the adapter 6 has sufficient rigidity to suppress deformation of the base 2.
  • the adapter 6 includes a first fitting portion 15 that is a circular convex portion that fits into a circular concave portion 14 provided in the base 2 with the first axis A as the center.
  • the adapter 6 also includes a second fitting portion 16 that is a circular recess into which the outer peripheral surface 5a of the torque sensor 5 is fitted.
  • the outer diameter of the convex portion that constitutes the first fitting portion 15 and the inner diameter of the recessed portion that constitutes the second fitting portion 16 are set to be approximately equal.
  • the second fitting portion 16 includes an inner circumferential surface 16a that is disposed radially outward with a gap from the outer circumferential surface 5a of the torque sensor 5. Further, the second fitting portion 16 includes a bottom surface 16b against which the end surface 5b of the second portion 10 of the torque sensor 5 in the thickness direction abuts.
  • the second fitting portion 16 includes a spigot portion 16c that fits only one end of the outer circumferential surface 5a when the end surface 5b of the torque sensor 5 abuts against the bottom surface 16b.
  • the fitting length of the spigot part 16c is set to be slightly larger than the appropriate crushing margin (compression amount) of the O-ring (sealing member) 17, which will be described later, but it is preferably as short as possible.
  • the fitting length of the spigot part 16c is preferably greater than 0.7 mm and 2 mm or less.
  • the through hole 6a is provided at a position that matches the screw hole 10a when the outer circumferential surface 5a of the torque sensor 5 is fitted into the second fitting portion 16.
  • the base 2 also includes a plurality of through holes 2e at positions that coincide with the through holes 6a when the first fitting portion 15 of the adapter 6 is fitted into the recess 14.
  • the bolt 13 passed through the through hole 2e of the base 2 and the through hole 6a of the adapter 6 is fastened to the screw hole 10a of the torque sensor 5.
  • the torque sensor 5 and the adapter 6 can be fixed to the base 2 by tightening the bolts 13 together.
  • the outer portion of the adapter 6 that is radially outward than the torque sensor 5 has parallel end surfaces (planes) 6b and 6c perpendicular to the thickness direction on both sides in the thickness direction.
  • the base 2 has an end surface (flat surface) 2f that faces the end surface 6b of the outer portion of the adapter 6 with a gap in the first axis A direction.
  • the end surface (plane) 8c of the case 8 faces the end surface 6c of the outer portion of the adapter 6 with a gap in the first axis A direction.
  • An annular O-ring 18 surrounding the first fitting portion 15 is arranged between the end surface 2f of the base 2 and the end surface 6b of the adapter 6. Further, an O-ring 17 is arranged between the end surface 8c of the case 8 of the reducer 4 and the end surface 6c of the adapter 6.
  • the gap between the flat surface 2f of the base 2 and the flat surface 6b of the adapter 6 has a dimension that allows the O-ring 18 to be crushed with an appropriate crushing margin. Further, the gap between the end surface 8c of the case 8 and the end surface 6c of the adapter 6 has a dimension that allows the O-ring 17 to be crushed with an appropriate crushing margin.
  • the crushing allowance is the difference in wire diameter in the first axis A direction of the O-rings 17 and 18 when they are not crushed and when they are crushed.
  • the O-rings 17 and 18 are crushed with an appropriate crushing amount to seal the gap so that liquid and gas cannot pass therethrough.
  • the O-ring 17 is formed in an annular shape surrounding the torque sensor 5, and has an inner diameter larger than the outer diameter of the outer circumferential surface 5a of the torque sensor 5 when not crushed, as shown in FIG. 4, for example. As shown in FIG. 2, the O-ring 17 has an inner diameter that does not contact or lightly contacts the outer circumferential surface 5a of the torque sensor 5 in the collapsed state.
  • the O-ring 17 seals the gap between the end surfaces 6c and 8c that contact the O-ring 17 from both sides in the first axis A direction.
  • the O-ring 18 seals a gap between the end surfaces 2f and 6b that contact the O-ring 18 from both sides in the first axis A direction.
  • the base 2, the adapter 6, the torque sensor 5, and the reducer 4 are provided with a hollow hole 19 that communicates from the base 2 to the inside of the rotating body 3 in a space that includes the first axis A.
  • a filament (not shown) introduced from the opening 2c of the base 2 can be wired to the rotating trunk 3 side via the hollow hole 19.
  • the support structure of the torque sensor 5 and the operation of the robot 1 according to the present embodiment configured as described above will be explained below.
  • the robot 1 according to this embodiment is assembled as follows.
  • the reducer 4 is arranged with the case 8 facing up and the first axis A being in the vertical direction. Then, the torque sensor 5 is brought close to the reducer 4 from above.
  • the convex portion 8b of the case 8 is fitted into the concave portion 5c of the torque sensor 5, and the end surface 5d of the torque sensor 5 is brought into close contact with the end surface 8c of the case 8.
  • the phase of the through hole 9a of the first portion 9 of the torque sensor 5 is adjusted to the phase of the screw hole 8a of the case 8. Then, as shown in FIG. 4, the bolt 12 passed through the through hole 9a of the first portion 9 of the torque sensor 5 is fastened to the screw hole 8a of the case 8. Thereby, the torque sensor 5 is fixed to the case 8 of the reduction gear 4 in a mutually positioned state in the first axis A direction and the direction perpendicular to the first axis A.
  • an O-ring 17 is placed around the outer periphery of the torque sensor 5 fixed on the reduction gear 4, and placed on the end surface 8c of the case 8 radially outward of the outer circumferential surface 5a.
  • FIG. 5 lower the adapter 6 from above the torque sensor 5, and insert the torque sensor 5 into the second fitting part 16 of the adapter 6, as shown in FIGS. 6 and 7.
  • the outer peripheral surface 5a of the torque sensor 5 is fitted into the spigot part 16c near the bottom surface 16b of the second fitting part 16.
  • the fitting length of the torque sensor 5 to the spigot part 16c is set to be slightly larger than the appropriate crushing allowance of the O-ring 17. Therefore, as shown in FIG. 7, fitting of the torque sensor 5 to the spigot part 16c starts before the adapter 6 contacts the O-ring 17.
  • the outer peripheral surface 5a of the torque sensor 5 is fitted into the spigot part 16c.
  • the O-ring 17 is crushed with an appropriate crushing margin. In this state, the phases of the through hole 6a of the adapter 6 and the screw hole 10a of the torque sensor 5 are aligned.
  • the O-ring 18 is placed on the radially outer plane 6b of the first fitting portion 15 of the adapter 6. Then, as shown in FIG. 5, the base 2 which has been turned upside down is brought close to the adapter 6 from above, and the first fitting part 15 of the adapter 6 is fitted into the recess 14 of the base 2.
  • the torque sensor 5 and the adapter 6 are fixed to the base 2 by tightening them together. Then, the torque sensor 5, the adapter 6, and the base 2 are fixed in a mutually positioned state in the first axis A direction and the direction orthogonal to the first axis A.
  • the torque sensor 5 and the adapter 6 and the adapter 6 and the base 2 can be fixed at the same distance in the radial direction. Compared to the case where the fixed distances differ in the radial direction, the torque sensor 5 can be made less susceptible to the influence of moments generated around an axis perpendicular to the first axis A.
  • the gaps between the case 8 and the adapter 6 and between the base 2 and the adapter 6 become equal to the dimensions obtained by crushing the O-rings 17 and 18 with an appropriate crushing allowance.
  • the gap between the case 8 of the reducer 4 and the adapter 6 is sealed over the entire circumference by the O-ring 17 radially outward of the torque sensor 5.
  • the gap between the base 2 and the adapter 6 is also sealed over the entire circumference by an O-ring 18 radially outward of the first fitting portion 15 of the adapter 6.
  • the torque sensor 5 is fixed to the base 2 with the adapter 6 interposed.
  • the adapter 6 is made of a material that is more rigid than the base 2. Furthermore, the adapter 6 is thick and has a shape that extends not only to the second portion 10 of the torque sensor 5 to which it is fixed, but also to the outside and outside in the radial direction.
  • the adapter 6 has sufficiently high rigidity, and deformation of the base 2 at the bottom surface of the recess 14 to which the adapter 6 is fixed can be sufficiently suppressed. That is, deformation of the base 2 due to force or torque applied to the torque sensor 5 from the speed reducer 4 side can be suppressed, and detection accuracy by the torque sensor 5 can be improved.
  • the fitting between the outer peripheral surface 5a of the torque sensor 5 and the adapter 6 is achieved by the spigot part 16c having a sufficiently small fitting length.
  • the gap between the case 8 of the reducer 4 and the adapter 6 was sealed with an O-ring 17 on the radially outer side of the torque sensor 5. Thereby, liquid that has entered from the outside via the gap between the base 2 and the rotating body 3 can be prevented from entering the torque sensor 5 side.
  • the gap between the adapter 6 and the base 2 was also sealed with an O-ring 18. Thereby, liquid that has entered from the outside via the gap between the base 2 and the rotating body 3 can be prevented from entering further inward in the radial direction than the adapter 6.
  • Another method of preventing liquid from entering through the gap between the base 2 and the rotating body 3 is to seal the cylindrical gap between the speed reducer 4 and the base 2. According to this, one O-ring is sufficient.
  • the O-ring 17 is crushed between the planes 6c and 8c perpendicular to the first axis A. Thereby, during the operation of fitting the first fitting part 15 of the adapter 6 into the recess 14 of the base 2, the sliding resistance of the O-ring 17 does not act. Therefore, the operator can easily recognize the start of fitting by touch, and can properly assemble the parts.
  • the O-ring 17 is crushed by being compressed in the direction of the axis A between the case 8 and the adapter 6 on the radially outer side of the torque sensor 5.
  • the crushed O-ring 17 does not come into contact with the outer circumferential surface 5a of the torque sensor 5, or only contacts it lightly.
  • the force or moment that passes through the O-ring 17 does not have to act on the torque sensor 5. This can prevent the torque sensor 5 from detecting the force or moment acting on the torque sensor 5 via the O-ring 17 as torque.
  • the O-ring 17 is arranged using the outer circumferential surface 5a of the torque sensor 5 as a guide.
  • the surfaces of the case 8 of the reducer 4 and the adapter 6 that crush the O-ring 17 can be made into simple flat surfaces 8c, 6c.
  • processing of the case 8 and the adapter 6 can be facilitated.
  • the O-ring 18 was placed using the first fitting portion 15, which is a convex portion of the adapter 6, as a guide. Thereby, the surfaces of the base 2 and the adapter 6 that crush the O-ring 18 can be made into simple flat surfaces 2f and 6b. Thereby, processing of the base 2 and the adapter 6 can be facilitated.
  • the robot 1 is a vertically articulated robot. Instead, the present invention may be applied to any other form of robot 1.
  • the support structure for the torque sensor 5 provided between the base 2 and the rotating trunk 3 is illustrated. Instead, a similar structure may be adopted as a support structure for a torque sensor disposed between the reducer and the first member of another joint shaft.
  • the torque sensor 5 is fixed between the case 8 and the base 2 of the speed reducer 4.
  • the torque sensor 5 may be fixed between the output section 7 of the speed reducer 4 and the rotating body 3.
  • the base 2, adapter 6, and torque sensor 5 are fixed at the same distance around the first axis A by tightening them together.
  • the base 2 and the adapter 6 may be fixed with a first bolt
  • the adapter 6 and the torque sensor 5 may be fixed with a second bolt.
  • the first bolt and the second bolt may be arranged at the same distance around the first axis A and spaced apart from each other in the circumferential direction.
  • the adapter 6 and the torque sensor 5 can be fixed in advance. Thereby, the torque sensor 5 and the adapter 6 can be managed as a unit.
  • the base 2 and the adapter 6 may be fixed radially outward of the torque sensor 5.
  • the size of the bolts 13 can be increased and the number of bolts 13 can be reduced.
  • O-rings 17 and 18 are used as sealing members, any other sealing member such as a ring-shaped gasket may be used instead. Further, in the present embodiment, the radial positions of the O-rings 17 and 18 are roughly guided by the inner outer circumferential surface 5a or the first fitting portion 15. Alternatively, O-ring grooves may be formed in the adapter 6, the case 8, or the base 2 to define the radial positions of the O-rings 17 and 18.
  • the side wall of the base 2 is provided with the openings 2c, but since the openings 2c in the sidewall greatly affect the deformation of the base 2, the smaller the size, the fewer the number of the openings 2c. It is preferable.
  • the present disclosure there is an advantage that even if the base 2, which is the first member that fixes the reducer 4, has low rigidity, the torque acting on the base 2 from the reducer 4 can be detected with high accuracy. Further, according to the robot 1 according to the present disclosure, the support structure for the torque sensor 5 that can accurately detect torque allows force control to be performed accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

減速機と減速機を取り付ける第1部材との間に配置され、減速機と第1部材との間に作用するトルクを検出するトルクセンサを、第1部材に固定するアダプタを備え、アダプタが、トルクセンサに作用する力およびモーメントの少なくとも一方による第1部材の変形を抑制するトルクセンサの支持構造である。

Description

トルクセンサの支持構造およびロボット
 本開示は、トルクセンサの支持構造およびロボットに関するものである。
 従来、第3構造体によって連結された第1構造体と第2構造体との間に設けられた少なくとも2つのセンサ部を備えるトルクセンサが知られている。このトルクセンサは、第1構造体と第2構造体のうちセンサ部に近い一方の剛性を他方よりも高く設定している(例えば、特許文献1参照。)。
特開2020-12660号公報
 減速機と減速機を固定する部材との間にトルクセンサを取り付ける場合に、減速機を固定する部材の剛性自体が低い場合がある。この場合には、トルクセンサの剛性を向上しても、減速機を固定する部材の変形を受けてトルクセンサに歪みが発生する。したがって、減速機を固定する部材の剛性が低くてもトルクを精度よく検出することができるトルクセンサの支持構造およびロボットが望まれている。
 本開示の一態様は、減速機と該減速機を取り付ける第1部材との間に配置され、前記減速機の軸線回りのトルクを検出するトルクセンサを、前記第1部材に固定するアダプタを備え、該アダプタが、前記トルクセンサに作用する力およびモーメントの少なくとも一方による前記第1部材の変形を抑制する、トルクセンサの支持構造である。
本開示の一実施形態に係るロボットを示す部分的な縦断面図である。 図1のロボットにおけるトルクセンサの支持構造を説明する部分的な拡大縦断面図である。 図1のロボットにおける減速機、トルクセンサおよびOリングの分解縦断面図である。 図3の減速機、トルクセンサおよびOリングを組み立てた状態を示す縦断面図である。 図4の組立体に組み付けられるアダプタ、Oリングおよびベースを示す分解縦断面図である。 図2のトルクセンサの支持構造において、トルクセンサとアダプタとの組み付けを説明する部分的な拡大縦断面図である。 図6のアダプタのインロー部へのトルクセンサの嵌合開始状態を示す部分的な拡大縦断面図である。 図6のアダプタのインロー部とトルクセンサとの嵌合が完了した状態を示す部分的な拡大縦断面図である。 図4の組立体に、アダプタ、Oリングおよびベースを組み付けた状態を示す縦断面図である。
 以下に、本開示の一実施形態に係るトルクセンサの支持構造およびロボット1について図面を参照して説明する。
 本実施形態に係るロボット1は、例えば、垂直多関節型ロボットである。ロボット1は、図1に示すように、床面等の被設置面に固定されるベース(第1部材)2を備えている。また、ロボット1は、ベース2に対して第1軸線A回りに回転可能に支持される旋回胴(第2部材)3を備えている。
 ベース2および旋回胴3は、例えば、アルミニウム合金等の軽量の金属材料からなっている。ベース2は、第1軸線A方向の両側に開口する開口部2a,2bを有する筒状の形態を有する。また、ベース2は、側壁の一部に、ケーブル等の線条体を導入するための他の開口部2cを備える。ベース2は、内部空間を第1軸線Aに沿う方向に区画する隔壁2dを備える。
 ベース2と旋回胴3との間には、ベース2に対して旋回胴3を第1軸線(軸線)A回りに回転駆動する減速機4が配置されている。また、減速機4とベース2の隔壁2dとの間にはトルクセンサ5およびアダプタ6が固定されている。トルクセンサ5は、減速機4とベース2との間に配置され、減速機4とベース2との間に作用する第1軸線A回りのトルクを検出する。
 本実施形態に係るトルクセンサ5の支持構造は、トルクセンサ5を、アダプタ6を介在させてベース2に固定する。減速機4は、円柱状に形成され、アダプタ6およびトルクセンサ5を介在させて間接的にベース2に固定されている。また、減速機4は、旋回胴3に直接的に固定される出力部7と、ベース2に間接的に固定されるケース8とを備える。
 トルクセンサ5は、減速機4よりも外径寸法の小さい円板状に形成されている。トルクセンサ5は、径方向内方に配置されるリング状の第1部分9と径方向外方に配置されるリング状の第2部分10とを備える。また、トルクセンサ5は、第1部分9と第2部分10とを連結する第3部分11を備える。
 第3部分11には歪によりトルクを検出するための図示しない歪ゲージ等のセンサが配置されている。センサは第1部分9または第2部分10のいずれかに近い位置に配置されていてもよいし、等距離に配置されていてもよい。
 トルクセンサ5の第1部分9には、板厚方向に貫通する複数の貫通孔9aが周方向に間隔をあけて設けられている。また、トルクセンサ5は、第1部分9の一端面5dに、第1軸線Aを中心とする円形の凹部5cを備える。
 一方、減速機4のケース8は、トルクセンサ5の凹部5cに嵌合する凸部8bと、トルクセンサ5の端面5dを密着させる端面8cとを備える。ケース8の凸部8bとトルクセンサ5の凹部5cとは、きわめて短い、例えば、1~2mmの嵌合長さで嵌合する。
 凸部8bを凹部5cに嵌合させ、端面8cを端面5dに密着させた状態で、貫通孔9aを通したボルト12をネジ孔8aに締結する。これにより、トルクセンサ5が減速機4に固定される。また、トルクセンサ5の第2部分10には、板厚方向に貫通する複数のネジ孔10aが周方向に間隔をあけて設けられている。
 アダプタ6は、ベース2を構成する材質よりも剛性の高い材質、例えば、鉄等により構成され、トルクセンサ5よりも径方向外方に大きな円板状に形成されている。また、アダプタ6には、板厚方向に貫通する複数の貫通孔6aが第1軸線A回りの周方向に間隔をあけて設けられている。アダプタ6は、貫通孔6aを貫通させたボルト13を第2部分10のネジ孔10aに締結することによりトルクセンサ5に固定される。
 また、アダプタ6は、トルクセンサ5の外径よりも十分に大きな外径寸法を有する。すなわち、アダプタ6は、トルクセンサ5の外周面5aを超えてさらに径方向外方に延びている。図1に示す例では、アダプタ6の外径は減速機4の外径と同等である。
 さらに、アダプタ6は、トルクセンサ5の径方向全域を覆う大きさを有する。
 すなわち、アダプタ6は、固定に必要なトルクセンサ5の第2部分10の径方向内方にも広がる大きさを有する。また、アダプタ6は、トルクセンサ5の厚さよりも十分に大きな厚さ寸法を有する。これにより、アダプタ6は、ベース2の変形を抑制するのに十分な剛性を確保している。
 アダプタ6は、第1軸線Aを中心としてベース2に設けられた円形の凹部14に嵌合する円形の凸部からなる第1嵌合部15を備える。また、アダプタ6は、トルクセンサ5の外周面5aを嵌合させる円形の凹部からなる第2嵌合部16を備える。第1嵌合部15を構成する凸部の外径および第2嵌合部16を構成する凹部の内径は、略同等に設定されている。
 第2嵌合部16は、図2に示すように、トルクセンサ5の外周面5aに対し径方向外方に隙間を空けて配置される内周面16aを備える。また、第2嵌合部16は、トルクセンサ5の第2部分10の厚さ方向の端面5bを突き当てる底面16bを備える。
 第2嵌合部16は、トルクセンサ5の端面5bを底面16bに突き当てたときに、外周面5aの一端部のみを嵌合させるインロー部16cを備える。インロー部16cの嵌合長さは、後述するOリング(シール部材)17の適正な潰し代(圧縮量)よりも若干大きく設定されているが、可能な限り短い方が好ましい。例えば、Oリング17の適正な潰し代が0.7mmである場合、インロー部16cの嵌合長さは、0.7mmよりも大きく2mm以下が好ましい。
 また、貫通孔6aは、第2嵌合部16にトルクセンサ5の外周面5aを嵌合させたときに、ネジ孔10aに一致する位置に設けられている。
 また、ベース2は、凹部14にアダプタ6の第1嵌合部15を嵌合させたときに、貫通孔6aに一致する位置に、複数の貫通孔2eを備えている。
 ベース2の貫通孔2eおよびアダプタ6の貫通孔6aを貫通させたボルト13をトルクセンサ5のネジ孔10aに締結する。これにより、ボルト13による共締めによって、トルクセンサ5およびアダプタ6をベース2に固定することができる。
 トルクセンサ5よりも径方向外方のアダプタ6の外側部分は、厚さ方向の両側に、厚さ方向に直交する平行な端面(平面)6b,6cを有する。ベース2は、アダプタ6の外側部分の端面6bに、第1軸線A方向に隙間を空けて対向する端面(平面)2fを有する。また、ケース8の端面(平面)8cは、アダプタ6の外側部分の端面6cに、第1軸線A方向に隙間を空けて対向している。
 ベース2の端面2fとアダプタ6の端面6bとの間には、第1嵌合部15を取り囲む環状に形成されたOリング18が配置されている。また、減速機4のケース8の端面8cと、アダプタ6の端面6cとの間には、Oリング17が配置されている。
 ベース2の平面2fとアダプタ6の平面6bとの隙間は、Oリング18を適正な潰し代で潰すことができる寸法を有する。また、ケース8の端面8cとアダプタ6の端面6cとの隙間は、Oリング17を適正な潰し代で潰すことができる寸法を有する。
 潰し代は、潰されていないときと潰されたときのOリング17,18の第1軸線A方向の線径の差分である。Oリング17,18は、適正な潰し代で潰されることにより、液体および気体を通過させないように隙間を密封する。
 Oリング17は、トルクセンサ5を取り囲む環状に形成され、例えば、図4に示すように、潰れていない状態で、トルクセンサ5の外周面5aの外径寸法以上の内径寸法を有する。Oリング17は、図2に示すように、潰れた状態で、トルクセンサ5の外周面5aに接触しないか軽く接触する内径寸法になる。
 これにより、Oリング17は、Oリング17に第1軸線A方向の両側から接触する端面6c,8cとの間において隙間を密封する。Oリング18は、Oリング18に第1軸線A方向の両側から接触する端面2f,6bとの間において隙間を密封する。
 ベース2、アダプタ6、トルクセンサ5および減速機4は、第1軸線Aを含む空間にベース2から旋回胴3の内部まで連通する中空孔19を備える。中空孔19を経由して、ベース2の開口部2cから導入した線条体(図示略)を旋回胴3側に配線することができる。
 このように構成された本実施形態に係るトルクセンサ5の支持構造およびロボット1の作用について、以下に説明する。
 本実施形態に係るロボット1は、以下の通りに組み立てられる。
 まず、図3に示すように、ケース8を上にして、第1軸線Aが鉛直方向となるように減速機4を配置する。そして、減速機4の上方からトルクセンサ5を近接させる。トルクセンサ5の凹部5cにケース8の凸部8bを嵌合させ、トルクセンサ5の端面5dをケース8の端面8cに密着させる。
 この状態で、トルクセンサ5の第1部分9の貫通孔9aの位相をケース8のネジ孔8aの位相に合わせる。そして、図4に示すように、トルクセンサ5の第1部分9の貫通孔9aを通したボルト12をケース8のネジ孔8aに締結する。これにより、トルクセンサ5が、減速機4のケース8に、第1軸線A方向および第1軸線Aに直交する方向に相互に位置決め状態に固定される。
 次に、減速機4の上に固定されたトルクセンサ5の外周にOリング17を回し掛け、外周面5aの径方向外方のケース8の端面8c上に配置する。この状態で、図5に示すように、トルクセンサ5の上方からアダプタ6を下降させ、図6および図7に示すように、アダプタ6の第2嵌合部16内にトルクセンサ5を挿入していく。そして、図8に示すように、トルクセンサ5の外周面5aを第2嵌合部16の底面16b近傍のインロー部16cに嵌合させる。
 この場合に、本実施形態によれば、トルクセンサ5のインロー部16cへの嵌合長さがOリング17の適正な潰し代よりも若干大きく設定されている。したがって、図7に示すように、トルクセンサ5のインロー部16cへの嵌合は、アダプタ6がOリング17に接触する前から開始する。
 アダプタ6がOリング17に接触してから嵌合が開始する場合には、作業者が触感によって嵌合の開始を認識できず、組立作業の作業性が低下する。これに対して、嵌合の開始後にアダプタ6をOリング17に接触させることにより、作業者が嵌合の開始をより確実に認識できる。したがって、組立作業の作業性が向上する。
 そして、図8に示すように、トルクセンサ5の外周面5aをインロー部16cに嵌合させる。アダプタ6の第2嵌合部16の底面16bをトルクセンサ5の端面5bに密着させることにより、Oリング17が適正な潰し代で潰れる。この状態で、アダプタ6の貫通孔6aとトルクセンサ5のネジ孔10aとの位相を合わせる。
 また、この状態で、アダプタ6の第1嵌合部15の径方向外側の平面6b上にOリング18を配置する。そして、図5に示すように、アダプタ6の上方から、上下転倒させたベース2を近づけ、ベース2の凹部14にアダプタ6の第1嵌合部15を嵌合させる。
 ベース2の凹部14の底面がアダプタ6の端面に密着した時点で、ベース2の貫通孔2eとアダプタ6の貫通孔6aとの位相を合わせる。そして、図9に示すように、ベース2およびアダプタ6の貫通孔2e,6aを通したボルト13をトルクセンサ5のネジ孔10aに締結する。
 ボルト13の締結により、トルクセンサ5およびアダプタ6が、ベース2に共締めにより固定される。そして、トルクセンサ5、アダプタ6およびベース2が、第1軸線A方向および第1軸線Aに直交する方向に相互に位置決め状態に固定される。
 ボルト13の共締めにより固定することにより、トルクセンサ5とアダプタ6およびアダプタ6とベース2を径方向の同一距離において固定できる。固定距離が径方向に異なる場合と比較して、トルクセンサ5が、第1軸線Aに直交する軸回りに生ずるモーメントの影響を受け難くすることができる。
 また、共締めとすることにより、アダプタ6をトルクセンサ5およびベース2に別々に固定する場合に必要となるアダプタ6の座グリが不要となる。これにより、アダプタ6の剛性の低下を防止でき、アダプタ6の必要以上の大型化を防止できる。
 共締めが完了すると、ケース8とアダプタ6およびベース2とアダプタ6の隙間は、Oリング17,18を適正な潰し代で潰した寸法に等しくなる。その結果、減速機4のケース8とアダプタ6との間の隙間が、トルクセンサ5の径方向外方において、Oリング17により全周にわたって密封される。また、ベース2とアダプタ6との間の隙間も、アダプタ6の第1嵌合部15の径方向外方において、Oリング18により全周にわたって密封される。
 このように、本実施形態によれば、トルクセンサ5が、アダプタ6を介在させてベース2に固定される。そして、アダプタ6が、ベース2よりも剛性の高い材質により構成されている。さらに、アダプタ6は、厚く、かつ、固定されるトルクセンサ5の第2部分10のみならず、その径方向内外にわたって広く延びた形態を有する。
 これにより、アダプタ6は、十分に高い剛性を有し、アダプタ6が固定される凹部14の底面におけるベース2の変形を十分に抑制できる。すなわち、減速機4側からトルクセンサ5にかかる力またはトルクによるベース2の変形を抑制し、トルクセンサ5による検出精度を向上できる。
 また、本実施形態によれば、トルクセンサ5の外周面5aとアダプタ6との嵌合が、十分に小さい嵌合長さのインロー部16cによって達成される。トルクセンサ5の外周面5aをインロー部16cに嵌合させることにより、トルクセンサ5の中心とアダプタ6の中心とを精度よく位置合わせできる。
 また、インロー部16cの嵌合長さの低減により、トルクセンサ5の外周面5aへのアダプタ6側からの力あるいはモーメントの作用を防止できる。すなわち、トルクセンサ5の外周面5aに作用する力あるいはモーメントが、トルクセンサ5によりトルクとして検出されてしまうことを防止できる。これにより、トルクセンサ5によるトルクの検出精度の低下を防止することができる。
 さらに、トルクセンサ5よりも径方向外方において、減速機4のケース8とアダプタ6との間の隙間をOリング17により密封した。これにより、ベース2と旋回胴3との隙間を経由して外部から侵入した液体が、トルクセンサ5側に進入することを防止できる。
 また、アダプタ6とベース2との間の隙間もOリング18により密封した。これにより、ベース2と旋回胴3との隙間を経由して外部から侵入した液体が、アダプタ6よりも径方向内方に進入することを防止できる。
 ベース2と旋回胴3との隙間を経由した液体の進入を防ぐ方法として、減速機4とベース2との間の円筒状の隙間を密封する方法もある。これによれば、使用するOリングは1つで足りる。
 しかし、この場合、アダプタ6をベース2に嵌合させる作業中に、減速機4とベース2との間で潰れたOリングの摺動抵抗が作用する。このため、作業者が触感によって嵌合の開始を認識できない場合がある。そして、適正に嵌合されないまま、ボルト13を締結することにより、嵌合面が損傷したり、傾いたまま組み立てられたりする不都合がある。
 本実施形態によれば、第1軸線Aに直交する平面6c,8c間においてOリング17を潰す。これにより、アダプタ6の第1嵌合部15をベース2の凹部14に嵌合させる作業中に、Oリング17の摺動抵抗が作用しない。したがって、作業者が触感によって嵌合の開始を容易に認識でき、適正に組み立てることができる。
 また、本実施形態においては、トルクセンサ5の径方向外方において、ケース8とアダプタ6との間において軸線A方向に圧縮することによってOリング17を潰している。そして、潰れたOリング17はトルクセンサ5の外周面5aに接触せず、あるいは軽く接触するだけである。
 したがって、Oリング17を経由した力あるいはモーメントを、トルクセンサ5に作用させずに済む。これにより、Oリング17を経由してトルクセンサ5に作用する力あるいはモーメントを、トルクセンサ5がトルクとして検出することを防止できる。
 また、本実施形態においては、Oリング17を、トルクセンサ5の外周面5aをガイドとして配置した。これにより、Oリング17を潰す減速機4のケース8およびアダプタ6の面を単純な平面8c,6cとすることができる。これにより、ケース8およびアダプタ6の加工を容易にすることができる。
 同様に、Oリング18をアダプタ6の凸部からなる第1嵌合部15をガイドとして配置した。これにより、Oリング18を潰すベース2およびアダプタ6の面を単純な平面2f,6bとすることができる。これにより、ベース2およびアダプタ6の加工を容易にすることができる。
 なお、本実施形態においては、ロボット1として垂直多関節型ロボットを例示した。これに代えて、他の任意の形態のロボット1に適用してもよい。
 また、本実施形態においては、ベース2と旋回胴3との間に設けられたトルクセンサ5の支持構造を例示した。これに代えて、他の関節軸の減速機と第1部材との間に配置されるトルクセンサの支持構造としても同様の構造を採用してもよい。
 また、本実施形態においては、減速機4のケース8とベース2との間にトルクセンサ5を固定した場合について説明した。これに代えて、減速機4の出力部7と旋回胴3との間にトルクセンサ5を固定した場合に適用してもよい。
 また、本実施形態においては、ベース2、アダプタ6およびトルクセンサ5を共締めすることにより、第1軸線A回りの同一距離において固定した。これに代えて、ベース2とアダプタ6とを第1ボルトにより固定し、アダプタ6とトルクセンサ5とを第2ボルトによって固定してもよい。この場合に、第1ボルトと第2ボルトとを第1軸線A回りの同一距離に周方向に間隔をあけて配列してもよい。
 ベース2とアダプタ6との固定およびアダプタ6とトルクセンサ5との固定を分けることにより、アダプタ6とトルクセンサ5とを予め固定できる。これにより、トルクセンサ5とアダプタ6とをユニットとして管理することができる。
 また、ベース2とアダプタ6とをトルクセンサ5の径方向外方において固定してもよい。この場合には、ボルト13のサイズを大きくすることができるとともに、ボルト13の本数を減らすことができる。
 また、シール部材としてOリング17,18を採用したが、これに代えて、リング状のガスケット等の他の任意のシール部材を採用してもよい。
 また、本実施形態においては、Oリング17,18の径方向位置を、内側の外周面5aあるいは第1嵌合部15によって大まかに案内した。これに代えて、アダプタ6、ケース8あるいはベース2に、Oリング溝を形成し、Oリング17,18の径方向位置を規定してもよい。
 また、本実施形態においてベース2の側壁に開口部2cを備えているが、側壁の開口部2cはベース2の変形に大きく影響を与えるため、大きさは小さいほど、開口部2cの個数は少ない方が望ましい。
 本開示によれば、減速機4を固定する第1部材であるベース2の剛性が低くても減速機4からベース2に作用するトルクを精度よく検出できるという利点がある。
 また、本開示に係るロボット1によれば、トルクを精度よく検出できるトルクセンサ5の支持構造により、力制御を精度よく行うことができる。
 本開示の実施形態について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、発明の要旨を逸脱しない範囲で、または、特許請求の範囲に記載された内容とその均等物から導き出される本発明の思想および趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。例えば、上述した実施形態において、各動作の順序の変更、各処理の順序の変更、条件に応じた一部の動作の省略又は追加、条件に応じた一部の処理の省略又は追加は、上記の例に拘泥されることなく可能である。また、上記実施形態の説明に数値又は数式が用いられている場合も同様である。
 1 ロボット
 2 ベース(第1部材)
 3 旋回胴(第2部材)
 4 減速機
 5 トルクセンサ
 6 アダプタ
 12 ボルト
 13 ボルト
 17 Oリング(シール部材)
 16c インロー部
 A 第1軸線(軸線)

Claims (8)

  1.  減速機と該減速機を取り付ける第1部材との間に配置され、前記減速機の軸線回りのトルクを検出するトルクセンサを、前記第1部材に固定するアダプタを備え、
     該アダプタが、前記トルクセンサに作用する力およびモーメントの少なくとも一方による前記第1部材の変形を抑制するトルクセンサの支持構造。
  2.  前記アダプタが、前記第1部材よりも剛性の高い材質により構成されている請求項1に記載のトルクセンサの支持構造。
  3.  前記トルクセンサが前記減速機に固定され、前記アダプタと前記第1部材とが、ボルトの共締めにより前記トルクセンサに締結されている請求項1または請求項2に記載のトルクセンサの支持構造。
  4.  前記トルクセンサが前記減速機にボルトにより締結され、前記第1部材が前記アダプタに第1ボルトにより締結され、前記アダプタが前記トルクセンサに第2ボルトにより締結されている請求項1または請求項2に記載のトルクセンサの支持構造。
  5.  前記トルクセンサが円板状に形成され、
     前記アダプタが、前記トルクセンサよりも径方向外方に大きな板状に形成されている請求項1から請求項4のいずれかに記載のトルクセンサの支持構造。
  6.  前記トルクセンサを取り囲む環状のシール部材を備え、
     該シール部材が、前記減速機と前記アダプタとの間において前記軸線方向に圧縮されている請求項5に記載のトルクセンサの支持構造。
  7.  前記トルクセンサと前記アダプタとがインロー部により嵌合し、
     該インロー部の嵌合長さが、前記シール部材の適正な圧縮量よりも若干大きい請求項6に記載のトルクセンサの支持構造。
  8.  第1部材と、
     第2部材と、
     前記第1部材に対して前記第2部材を所定の軸線回りに回転可能に支持する減速機と、
     前記減速機と前記第1部材との間に配置され、前記減速機と前記第1部材との間に作用するトルクを検出するトルクセンサと、
     該トルクセンサと前記第1部材との間に固定されたアダプタとを備え、
     該アダプタが、前記トルクセンサに作用する力およびモーメントの少なくとも一方による前記第1部材の変形を抑制するロボット。
PCT/JP2022/030250 2022-08-08 2022-08-08 トルクセンサの支持構造およびロボット WO2024033962A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/030250 WO2024033962A1 (ja) 2022-08-08 2022-08-08 トルクセンサの支持構造およびロボット
TW112128919A TW202406702A (zh) 2022-08-08 2023-08-01 扭矩感測器的支撐結構以及機器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030250 WO2024033962A1 (ja) 2022-08-08 2022-08-08 トルクセンサの支持構造およびロボット

Publications (1)

Publication Number Publication Date
WO2024033962A1 true WO2024033962A1 (ja) 2024-02-15

Family

ID=89851160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030250 WO2024033962A1 (ja) 2022-08-08 2022-08-08 トルクセンサの支持構造およびロボット

Country Status (2)

Country Link
TW (1) TW202406702A (ja)
WO (1) WO2024033962A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061305A (ja) * 2011-09-15 2013-04-04 Toyota Motor Corp トルク計測装置
JP2013091159A (ja) * 2013-01-15 2013-05-16 Yaskawa Electric Corp ロボット
JP2020003459A (ja) * 2018-07-02 2020-01-09 日本電産コパル電子株式会社 トルクセンサの支持装置
JP2022052789A (ja) * 2020-09-24 2022-04-05 アズビル株式会社 トルク検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061305A (ja) * 2011-09-15 2013-04-04 Toyota Motor Corp トルク計測装置
JP2013091159A (ja) * 2013-01-15 2013-05-16 Yaskawa Electric Corp ロボット
JP2020003459A (ja) * 2018-07-02 2020-01-09 日本電産コパル電子株式会社 トルクセンサの支持装置
JP2022052789A (ja) * 2020-09-24 2022-04-05 アズビル株式会社 トルク検出装置

Also Published As

Publication number Publication date
TW202406702A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
US3940948A (en) Universal joint shaft
JP6527734B2 (ja) 固定装置、蒸気タービン、回転機械の製造方法及び組立方法
KR20180123433A (ko) 스크롤 압축기
EP2682734B1 (en) Tire holding member for tire testing machine
KR20180014162A (ko) 전동기
WO2024033962A1 (ja) トルクセンサの支持構造およびロボット
US8449233B2 (en) Clamp sleeve
US5713506A (en) Vacuum holding rotary welding fixture
WO2024033965A1 (ja) トルクセンサのシール構造およびロボット
US5294132A (en) Semi-cartridge seal
US10052771B2 (en) Joint device for robot
JP4690775B2 (ja) 高圧車室の水圧試験構造及び水圧試験方法
KR101723192B1 (ko) 평탄도 세팅이 용이한 로터리 테이블 장치
US4820060A (en) Spacer bushing for two-row ball bearing
JP3175094U (ja) フランジ継手構造
US11117231B2 (en) Fixture for machining parts and method of using same
TW202421397A (zh) 扭矩感測器的密封結構以及機器人
JP2005140192A (ja) 車輪用軸受装置
EP3786596A1 (en) A vibration detection instrument assembly and method of assembling a vibration detection instrument assembly
JP7464641B2 (ja) 減速機の防水構造、及び、回転装置
CN214212575U (zh) 一种带锁定结构的轴套、具有其的焊具和焊接装置
KR20050037562A (ko) 긴 물체의 입구/출구 통로를 밀봉시키기 위한 시일 구조물
JP3474503B2 (ja) 回転工具の緊定構造
WO2021111892A1 (ja) トルクセンサ
JPH0735143Y2 (ja) 油圧固定フランジ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954884

Country of ref document: EP

Kind code of ref document: A1