WO2024032271A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024032271A1
WO2024032271A1 PCT/CN2023/105435 CN2023105435W WO2024032271A1 WO 2024032271 A1 WO2024032271 A1 WO 2024032271A1 CN 2023105435 W CN2023105435 W CN 2023105435W WO 2024032271 A1 WO2024032271 A1 WO 2024032271A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
authorization
network device
preconfigured
resource
Prior art date
Application number
PCT/CN2023/105435
Other languages
English (en)
French (fr)
Inventor
毛颖超
强鹂
常俊仁
李娇娇
酉春华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032271A1 publication Critical patent/WO2024032271A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave

Definitions

  • the present application relates to the field of communication, and in particular to communication methods and devices.
  • the terminal device can switch from the current serving cell to the target cell.
  • the network device can refer to the measurement report of the terminal device to determine the target cell for handover by the terminal device, and send a handover command to the terminal device to instruct the handover to the target cell.
  • the terminal device can switch to the target cell according to the handover command and send a handover completion message to the network device where the target cell is located.
  • the handover process based on layer 1 or layer 2 (layer 1/layer 2, L1/L2), after the terminal device receives the L1/L2-based handover command message from the network device, it switches to the target cell according to the handover command message.
  • the terminal device Since the target cell of the terminal device is one of the preconfigured candidate cells, the terminal device cannot determine the uplink resource for sending the message indicating the completion of the handover based on the handover command message, and thus cannot accurately determine when to start monitoring the physical downlink control channel of the target cell. It may lead to waste of power consumption of terminal equipment.
  • Embodiments of the present application provide communication methods and devices for reducing power consumption of terminal equipment.
  • the first aspect provides a communication method.
  • the method can be executed by a terminal device, or by components of the terminal device, such as a processor, a chip, or a chip system of the terminal device. It can also be executed by a device that can realize all or part of the terminal. Logic module or software implementation of device functions.
  • the following description takes the method executed by a terminal device as an example.
  • the communication method includes: a terminal device receiving first indication information from a first network device for indicating information of a target cell for handover by the terminal device.
  • the target cell is a cell of multiple candidate target cells configured by the terminal device before receiving the first indication information.
  • the terminal device determines the uplink resource for sending the message indicating handover completion according to the configuration of the first preconfigured authorization of the target cell, and sends the message indicating handover completion on the uplink resource.
  • the terminal device after receiving the first indication information, can accurately determine the uplink resource for sending the message indicating the completion of the handover according to the configuration of the preconfigured authorization.
  • the terminal device determines the uplink resource for sending the message indicating the completion of the handover, and may send the message indicating the completion of the handover on the uplink resource.
  • the network device where the target cell is located can receive a message indicating handover completion from the terminal device on the uplink resource.
  • the configuration situation of the first preconfigured authorization includes configuring the first preconfigured authorization or not configuring the first preconfigured authorization.
  • the terminal device when configuring the first preconfiguration authorization, can delay the time of monitoring the configured resources, thereby reducing power consumption.
  • the terminal device can obtain authorization resources according to the dynamic scheduling of the network device. Since there is no need to pre-configure authorization for the terminal device, waste of resources can be avoided.
  • the terminal device configures the first preconfiguration authorization and the first preconfiguration authorization is valid, and the terminal device determines that the uplink resource sending the message indicating the completion of the handover is the resource corresponding to the first preconfiguration authorization.
  • the terminal equipment configures the first preconfigured authorization and the first preconfigured authorization is invalid.
  • the terminal equipment can monitor the physical downlink control channel (PDCCH) of the target cell used to indicate the second uplink authorization resource, and determine the second uplink authorization resource.
  • the second uplink grant is the uplink resource for sending a message indicating handover completion.
  • PDCCH physical downlink control channel
  • the terminal device when the terminal device is configured with the first preconfiguration authorization and the first preconfiguration authorization is valid, the terminal device can send a message indicating the completion of the switch on the first preconfiguration authorization to complete the switch faster.
  • the terminal device may determine the second grant resource by monitoring the PDCCH of the target cell used to indicate the second grant. In this way, the terminal device can send a message indicating that the handover is completed on the second authorized resource, providing the terminal with The device provides access to the uplink resources of the target cell, so that the terminal device does not need to perform a random access process during the handover process, saving handover delay and improving the performance of the terminal device handover.
  • the terminal equipment is not configured with the first preconfigured authorization, and the terminal equipment can monitor the PDCCH of the target cell used to indicate the second authorization resource, and determine that the second authorization resource is used to send a message indicating that the handover is completed. upstream resources.
  • the terminal device when the terminal device is not configured with preconfigured authorization, the terminal device can determine the authorization resource for sending the message indicating the completion of the handover through the dynamic scheduling of the network device, and send the message indicating the handover on the authorized resource.
  • the completion message eliminates the need for the terminal device to perform a random access process during the handover process, thereby saving handover delay and improving the performance of the terminal device handover.
  • the validity of the first preconfigured authorization may include one or more of the following: the reference signal receiving power (reference signal receiving) of the synchronization signal block (SSB) associated with the first preconfigured authorization.
  • power, RSRP reference signal receiving
  • the first preconfigured authorization does not overlap with the physical random access channel (physical random access channel, PRACH) resource
  • the first preconfigured authorization does not overlap with message A (message A, msgA)
  • the physical uplink shared channel (PUSCH) resources do not overlap.
  • the terminal device can determine whether the first preconfigured authorization is valid according to the above conditions, and the terminal device accurately determines the uplink resource for sending the handover completion message.
  • the terminal device configures the first preconfiguration authorization, the first preconfiguration authorization is valid, and the time domain location of the terminal device receiving the first indication information is consistent with the first preconfiguration authorization (or the first preconfiguration authorization).
  • the offset of the time domain position of the first opportunity of authorization is less than the second preset threshold, and the terminal device may determine that the first preconfigured authorization is the uplink resource for sending a message indicating that the handover is completed.
  • the terminal device configures the first preconfiguration authorization, and the first preconfiguration authorization is valid, and the time domain location of the terminal device receiving the first indication information is consistent with the first preconfiguration authorization (or the first opportunity of the first preconfiguration authorization).
  • the terminal device can monitor the PDCCH of the target cell used to indicate the second uplink resource authorization, and determine that the uplink resource used to send the handover completion message is the second uplink authorization. resource.
  • the terminal device when the first preconfigured authorization configured by the terminal device is valid, if the time domain location of the terminal device receiving the first indication information (that is, the switching command) is the same as the time domain location of the first preconfigured authorization. Or the offset between the time domain positions of the first opportunity of the first preconfiguration grant is less than the threshold.
  • the terminal device can send a message indicating that the handover is completed on the first preconfiguration grant.
  • the terminal device does not need to monitor the PDCCH of the target cell. Reduce power consumption.
  • the terminal equipment can immediately monitor the PDCCH used to indicate the uplink authorization resources, and use the uplink authorization resources indicated by the PDCCH as a message indicating the completion of the handover. Compared with using the first preconfigured grant to send a message indicating handover completion, the terminal device uses the uplink grant resource indicated by the PDCCH, which can reduce the delay in sending a message indicating handover completion.
  • the terminal device sends a message indicating the completion of the handover on the uplink resource through a first hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the method further includes: if the terminal equipment does not receive a response message indicating the handover completion message, the terminal equipment may receive the third uplink grant resource for the target cell on the C-RNTI scrambled PDCCH. .
  • the third uplink grant resource is associated with the first HARQ process or the third uplink grant is associated with any one HARQ process, and the third uplink grant resource is indicated for new transmission.
  • the terminal device resends the message indicating the completion of the handover on the third uplink authorization resource.
  • the response message can be carried in the media access control layer (media access control, MAC) control element (control element, CE) or downlink control information (downlink control information, DCI).
  • media access control layer media access control, MAC
  • control element control element, CE
  • downlink control information downlink control information, DCI.
  • Any HARQ process can be the first HARQ process, or it can be another HARQ process different from the first HARQ process.
  • the new transmission may refer to an uplink message different from the message indicating handover completion, or the message indicating handover completion may be re-multiplexed and assembled for transmission.
  • the terminal device may monitor the cell-radio network temporary identifier (C-RNTI). Receive the third uplink grant resource of the target cell on the scrambled PDCCH, and resend the message indicating handover completion on the third uplink grant resource. In this way, the probability that the message indicating the completion of the handover is successfully sent is improved.
  • C-RNTI cell-radio network temporary identifier
  • the method further includes: the terminal device does not receive a response message indicating that the handover is completed, and the terminal device does not receive the third uplink authorization resource, and the second opportunity of the first preconfigured authorization is valid. , the terminal device can retransmit the message indicating the completion of the handover at the second opportunity.
  • the second opportunity is the authorization opportunity in the first preconfigured authorization.
  • the terminal device may retransmit the message indicating the completion of the handover on the valid opportunity.
  • the terminal device can retransmit the message indicating the completion of the handover on a valid opportunity among the multiple opportunities. Improved probability that messages indicating handover completion are sent successfully.
  • the first preconfiguration authorization is a dedicated uplink authorization for the terminal device.
  • the valid duration of the first timer may include a starting offset, which is an offset value for the terminal device receiving the first preconfigured authorization configuration.
  • the validity period can be an integer multiple of the configured grant (CG) period or in symbol units. That is, it can be an integer multiple of a symbol, or it can be an integer multiple of a frame, or it can be a positive integer, or it can be a unit of seconds.
  • the first preconfigured authorization is a dedicated uplink authorization for the terminal device, thereby ensuring the resources for the terminal device to send an uplink message indicating that the handover is completed. There is no conflict with the resources used by other terminal devices to send uplink messages.
  • the first timer times out and the terminal device cannot continue to use the first preconfigured authorization or the first preconfigured authorization is a shared uplink authorization.
  • the shared uplink authorization can also be configured for competing uplink authorization resources or Type-1 (Type-1) authorization resources.
  • the first preconfigured authorization may be a shared uplink authorization, that is, other terminal devices can also use the first preconfigured authorization. In this way, the first preconfigured authorization can be fully used. This avoids the situation that when the terminal device does not use the first preconfigured authorization, other terminal devices cannot use the first preconfigured authorization, resulting in a waste of resources.
  • a communication method is provided.
  • the method may be executed by a second network device, or may be executed by a component of the second network device, such as a processor, chip, or chip system of the second network device. It may also be executed by Logic module or software implementation that can realize all or part of the functions of the second network device.
  • the following description takes the method being executed by the second network device as an example.
  • the communication method includes: the second network device receives second indication information from the first network device.
  • the second indication information is used to indicate the information of the target cell to be switched by the terminal equipment.
  • the target cell is a cell among multiple candidate target cells.
  • the second network device can accurately determine the target cell for handover by the terminal device based on the second indication information from the first network device.
  • the second network device can accurately and dynamically schedule uplink resources to improve the probability of successful handover of the terminal device.
  • the second network device receives a message indicating handover completion from the terminal device on the uplink resource according to the configuration of the first preconfigured authorization of the target cell.
  • the second network device can accurately receive a message indicating handover completion from the terminal device according to the configuration of the first preconfigured authorization of the target cell. The alignment of the terminal device and the second network device is ensured.
  • the configuration situation of the first preconfigured authorization may include configuring the first preconfigured authorization or not configuring the first preconfigured authorization.
  • the terminal device configures a first preconfiguration authorization
  • the second network device receives a message indicating that the handover is completed on the first preconfiguration authorization.
  • the terminal device is not configured with the first preconfigured grant
  • the second network device may schedule the PDCCH of the target cell indicating the second uplink grant resource, and receive a message indicating handover completion on the second uplink grant resource.
  • the second network device when the second network device configures the first preconfiguration authorization for the terminal device, the second network device can receive the message indicating the completion of the handover sent by the terminal device on the first preconfiguration authorization, reducing the 2. Complexity of blind detection of network equipment.
  • the second network device may schedule the PDCCH of the target cell indicating the second uplink grant resource. In this way, the second network device can accurately receive the message from the terminal device indicating that the handover is completed on the second uplink authorization resource.
  • the terminal device configures the first preconfiguration authorization, and the terminal device receives the time domain location of the first indication information indicating the information of the target cell and the first preconfiguration authorization (or the first preconfiguration authorization).
  • the offset of the time domain position of the first opportunity of authorization is less than the second preset threshold, and the second network device can receive a message indicating that the handover is completed on the first preconfigured authorization.
  • the second network device can schedule A PDCCH used to indicate the target cell of the second uplink grant, and receive a message indicating handover completion on the second uplink grant.
  • the second network device configures the first preconfiguration authorization for the terminal device, and the offset between the time domain location of the terminal device receiving the first indication information and the time domain location of the first preconfiguration authorization is smaller than the second
  • a preset threshold it means that the terminal device may send a message indicating that the handover is completed on the first preconfigured authorization.
  • the second network device can receive a message indicating that the handover is completed on the first preconfigured authorization, which is simple and convenient.
  • the second network device configures the first preconfigured authorization for the terminal device, and the offset between the time domain location of the terminal device receiving the first indication information and the time domain location of the first preconfigured authorization is greater than or equal to the second preset threshold.
  • the second network device may schedule the second uplink authorization resource for the terminal device.
  • the terminal device can send a message indicating that the handover is completed on the second uplink authorization resource.
  • the second network device can also receive a message indicating the completion of the handover sent by the terminal device on the second uplink authorization resource, thereby reducing the waiting time. This can reduce the switching delay of the terminal device.
  • the second network device receives a message associated with the first HARQ process indicating that the handover is completed.
  • the method further includes: the second network device sends the third uplink grant resource by scheduling the C-RNTI scrambled PDCCH.
  • the third uplink grant resource is associated with the first HARQ process or any HARQ process, and the third uplink grant resource is indicated for new transmission.
  • the second network device schedules new authorized resources for the terminal device to send uplink messages, and the second network device detects the uplink messages on the scheduled new authorized resources, so that the second network device Accurately receive messages from terminal devices on new authorized resources, reducing the complexity of blind detection.
  • the first preconfiguration authorization is a dedicated uplink authorization for the terminal device.
  • the first preconfigured authorization is a dedicated uplink authorization for the terminal device, so that the second network device can provide uplink messages for the terminal device. sufficient upward resources.
  • the first timer times out and the terminal device cannot continue to use the first preconfigured authorization or the first preconfigured authorization is a shared uplink authorization.
  • the first preconfigured grant may be a shared uplink grant, that is, other terminal devices may also use the first preconfigured grant. In this way, the first preconfigured authorization can be fully used and resource waste is reduced. It is avoided that when the terminal device does not use the first preconfigured authorization to send a message to the second network device, other terminal devices will also be unable to use the first preconfigured authorization, resulting in a waste of resources of the second network device.
  • a communication method is provided.
  • the method can be executed by the first network device, or by a component of the first network device, such as the processor, chip, or chip system of the first network device. It can also be executed by A logical module or software implementation that can realize all or part of the functions of the first network device.
  • the following description takes the method being executed by the first network device as an example.
  • the communication method includes: the first network device sending second indication information to the second network device for instructing the terminal device to switch information of a target cell.
  • the target cell is a cell among multiple candidate cells.
  • the first network device may be the first distribution unit DU.
  • the second network device may be a second DU.
  • the first DU and the second DU may be the same or different.
  • the first DU and the second DU correspond to the same central unit CU.
  • the first network device may send information used to indicate the target cell for handover of the terminal device to the second network device.
  • the second network device can accurately determine the target cell for handover by the terminal device.
  • the method further includes: the first network device sending first indication information indicating the information of the target cell to the terminal device.
  • the first indication information may be carried in MAC CE or DCI.
  • the first network device may send an indication indicating the information of the target cell to the terminal device. information, so that the terminal device can determine the target cell for handover based on the indication information. Since the indication information does not include authorized resources, the amount of data is small, and resources occupied by sending the indication information can be saved.
  • a fourth aspect provides a communication device.
  • the beneficial effects can be found in the description of the first aspect and will not be described again here.
  • the communication device has the function of implementing the behavior in the method example of the first aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver module configured to receive first indication information from the first network device for instructing the terminal device to switch the target cell information.
  • the target cell is a cell among multiple candidate target cells configured by the terminal device before receiving the first indication information; the processing module is configured to determine that the sending indication switching is completed according to the configuration of the first preconfigured authorization of the target cell.
  • the uplink resource of the message and sends a message indicating the completion of the handover on the uplink resource.
  • These modules can perform the corresponding functions in the above method examples of the first aspect. For details, please refer to the detailed description in the method examples, which will not be described again here.
  • a communication device is provided.
  • the communication device has the function of implementing the behavior in the method example of the second aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver module, configured to receive second indication information from the first network device.
  • the second indication information is used to indicate the information of the target cell to be switched by the terminal equipment.
  • the target cell is a cell among multiple candidate target cells.
  • the processing module is configured to receive a message from the terminal device on the uplink resource through the transceiver module according to the configuration of the first preconfigured authorization of the target cell, indicating that the handover is completed.
  • a sixth aspect provides a communication device.
  • the beneficial effects can be found in the description of the third aspect and will not be described again here.
  • the communication device has the function of implementing the behavior in the method example of the third aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module, configured to send second indication information to the second network device through a transceiver module for instructing the terminal device to switch the information of the target cell.
  • the target cell is a cell among multiple candidate cells.
  • the processing module is also configured to send first indication information indicating the information of the target cell to the terminal device.
  • a communication device may be the terminal equipment in the above method embodiment, or a chip provided in the terminal equipment.
  • the communication device includes: at least one processor; the processor is configured to execute computer programs or instructions stored in the memory, so that the communication device executes the communication method described in the first aspect.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be the terminal device in the above-mentioned first aspect, or a device included in the above-mentioned terminal device, such as a chip.
  • the communication device further includes the above-mentioned memory.
  • the communication device further includes a communication interface.
  • a communication device may be the second network device in the above method embodiment, or a chip provided in the second network device.
  • the communication device includes: at least one processor; the processor is configured to execute computer programs or instructions stored in the memory, so that the communication device executes the communication method described in the ninth aspect.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be the second network device in the above-mentioned second aspect, or a device included in the above-mentioned second network device, such as a chip.
  • the communication device further includes the above-mentioned memory.
  • the communication device further includes a communication interface.
  • a communication device may be the first network device in the above method embodiment, or a chip provided in the first network device.
  • the communication device includes: at least one processor; the processor is configured to execute computer programs or instructions stored in the memory, so that the communication device executes the communication method described in the ninth aspect.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be the first network device in the above third aspect, or a device included in the above first network device, such as a chip.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface.
  • the communication device further includes a transceiver.
  • a computer-readable storage medium stores computer programs or instructions, which when run on a communication device, enable the communication device to execute the above-mentioned first or second aspect or The method described in the third aspect.
  • a computer program product containing instructions which, when run on a communication device, enables the communication device to execute the method described in the first aspect, the second aspect, or the third aspect.
  • the present application provides a chip system.
  • the chip system includes a processor and is used to implement the functions of the terminal device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor for implementing the functions of the first network device or the second network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application provides a communication method, including:
  • the first network device sends second indication information to the second network device, where the second indication information is used to indicate information about a target cell to be switched by the terminal device, and the target cell is a cell among multiple candidate target cells;
  • the first network device sends first indication information to the terminal device.
  • the first indication information is used to indicate information about the target cell to be switched by the terminal device.
  • the target cell is the target cell where the terminal device receives the first A cell among multiple candidate target cells configured before the indication information;
  • the terminal device determines the uplink resource for sending the message indicating the completion of the handover according to the configuration of the first preconfigured authorization of the target cell, and sends the message indicating the completion of the handover to the second network device on the uplink resource;
  • the second network device receives a message indicating handover completion from the terminal device according to the configuration of the first preconfigured authorization of the target cell.
  • this application provides a communication system, including the communication device of the fifth aspect and the communication device of the sixth aspect. Further, the system further includes the communication device of the fourth aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is an architectural schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 3 is an architectural schematic diagram of a network device provided by an embodiment of the present application.
  • Figure 4 is an architectural schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 8 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 10 is an architectural schematic diagram of another communication system provided by an embodiment of the present application.
  • Figure 11 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 12 is a schematic flowchart of determining the effective time and validity period of the first preconfigured authorization provided by an embodiment of the present application
  • Figure 13 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 14 is a schematic flow chart of yet another communication method provided by an embodiment of the present application.
  • Figure 15 is an architectural schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 16 is a schematic architectural diagram of another communication device provided by an embodiment of the present application.
  • At least one item (items) refers to any combination of these items, including any combination of single items (items) or plural items (items).
  • at least one of a, b, or c (a) can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects.
  • Words such as “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the number or order of execution.
  • UMTS universal mobile telecommunications system
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • WLAN wireless local area network
  • Wi-Fi wireless fidelity
  • wired network wired network
  • V2X vehicle to everything
  • D2D device-to-device
  • 4G 4th generation
  • LTE long term evolution
  • eLTE evolved LTE
  • WiMAX global interoperability for microwave access
  • 5G fifth generation
  • 5th generation, 5G) mobile communication system such as new radio (NR) system, new radio access technology (NR)
  • 6G Sixth generation
  • eLTE network equipment can be connected to the LTE core network and the future 5G core network at the same time.
  • FIG. 1 is a schematic architectural diagram of a communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the communication system includes multiple network devices (network device 1, network device 2, and network device 3 in Figure 1) and terminal devices.
  • the terminal device can communicate with multiple network devices.
  • the terminal device may be located within a common coverage area of network device 1, network device 2, and network device 3.
  • the above network equipment may also be called access equipment, access network equipment or wireless network equipment.
  • a network device is an entity on the network side that is used to transmit or receive signals.
  • Network equipment can manage wireless resources, provide access services to terminal equipment, and complete data forwarding between the terminal and the core network.
  • network equipment can be base stations, access points (APs), etc., next generation radio access networks (NG-RAN).
  • APs access points
  • NG-RAN next generation radio access networks
  • the network device in the embodiment of the present application may be any communication device with wireless transceiver function used to communicate with the terminal device.
  • the network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) ), base transceiver station (BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station home evolved NodeB, HeNB, or home Node B, HNB
  • baseband unit baseBand unit
  • BBU wireless fidelity (wireless fidelity, WIFI
  • the next Generation Node B (gNB) in the system can also be 5G, such as NR
  • TRP or TP transmission point
  • TRP or TP transmission point
  • TRP or TP transmission point
  • DU distributed unit
  • Satellites or drones, etc.
  • the network device may be a gNB or may be some devices in the gNB.
  • gNB can have separate architectures for centralized unit (CU) and distributed unit (DU).
  • the gNB may include one CU and multiple DUs (DU1 and DU2 in Figure 2).
  • the CU communicates with multiple DUs.
  • the CU and the DUs can communicate through the F1 interface. Only 2 DUs are shown in Figure 2, and the gNB may also include a larger number of DUs.
  • the network device may be a DU in the gNB.
  • the network device may be DU1 or DU2 in Figure 2.
  • the CU can realize some functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the CU may include an RRC layer and a PDCP layer.
  • DU can realize some functions of gNB.
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical (physical, PHY) layer.
  • DU may include an RLC layer, a MAC layer, and a PHY layer.
  • gNB can also include an active antenna unit (active antenna unit, AAU).
  • AAU implements some physical layer processing functions, radio frequency processing and active antenna related functions.
  • AAU can include a low-layer physical layer (i.e., low-PHY layer), a radio frequency unit (Radio Frequency, RF), and an antenna.
  • the above-mentioned physical layer may be layer 1 (Layer 1, L1), and the above-mentioned MAC layer, RLC layer and PDCP layer may be the L2 layer.
  • the RRC layer may be the L3 layer.
  • the RRC layer information is generated by the CU, and will eventually be encapsulated by the PHY layer of the DU into PHY layer information, or converted from the PHY layer information. Therefore, under the architecture of Figure 3, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU, or sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, or an AAU node.
  • the CU can be divided into network devices in the access network, or the CU can be divided into network devices in the core network, which is not limited in this application.
  • the cell switching can be performed based on L1 or L2, or the cell switching can be performed based on layer 3.
  • Cell handover based on L1 layer/L2 layer usually refers to the process of handover through MAC CE or DCI. Specifically, reference may be made to the technical solution in Figure 5 or Figure 6 below.
  • Cell handover based on the L3 layer refers to the process of handover through RRC. Specifically, reference may be made to the technical solution in Figure 7 below.
  • the above-mentioned terminal is an entity on the user side for receiving or transmitting signals.
  • the terminal device can be a mobile terminal, a mobile phone, a sensor with network access function, etc.
  • the terminal equipment in this application may also be called terminal, user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless Communication equipment, user agent or user device.
  • UE user equipment
  • the terminal in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (pad), a drone, a computer with wireless transceiver functions, customer premise equipment (CPE), virtual reality (virtual reality) , VR) terminal, augmented reality (AR) terminal, wireless terminal in industrial control, wireless terminal in self-driving, wireless terminal in remote medical, intelligent Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, conversations Session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or connected to a wireless modem Other processing equipment, vehicle equipment, wearable devices, drones, or terminals in 5G networks or terminals in future evolution networks, etc.
  • CPE customer premise equipment
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in industrial control wireless terminal in self-driving
  • wireless terminal in remote medical intelligent Wireless terminals in smart grid
  • the terminal device in this application can be an express delivery terminal in smart logistics (such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of cargo, etc.), a wireless terminal in smart agriculture (such as a device that can collect livestock related data wearable devices, etc.), wireless terminals in smart buildings (such as smart elevators, fire monitoring equipment, and smart meters, etc.), wireless terminals in smart medical care (such as wearable devices that can monitor the physiological status of people or animals) ), wireless terminals in smart transportation (such as smart buses, smart vehicles, shared bicycles, charging pile monitoring equipment, smart traffic lights, smart monitoring and smart parking equipment, etc.), wireless terminals in smart retail (such as vending machines, Self-service checkout machines, and unmanned convenience stores, etc.).
  • smart logistics such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of cargo, etc.
  • a wireless terminal in smart agriculture such as a device that can collect livestock related data wearable devices, etc.
  • the terminal device in this application may be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module
  • the group, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit can implement the method provided by this application.
  • the terminal device in this application can be a smart internet of things (SIoT) terminal device or a non-SIoT terminal device, and has certain computing, storage and other capabilities.
  • Non-SIoT terminal devices can collect data through the IoT gateway.
  • non-SIoT terminal devices can be terminals with limited computing capabilities, such as sensors with a single function.
  • the SIoT terminal device can have a built-in data proxy network element, or the SIoT terminal device can implement the function of the data proxy network element.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding.
  • the communication system may also include other devices.
  • it may also include a core network.
  • the core network may be a 5G core network (5G core, 5GC).
  • gNB can communicate with 5GC through the NG interface.
  • each device shown in Figure 1 or Figure 2 can adopt the composition structure shown in Figure 4 or include the components shown in Figure 4.
  • Figure 4 is a schematic diagram of the composition of a communication device 400 provided by an embodiment of the present application.
  • the communication device 400 may be a terminal device or a component in a terminal device. Chip or system-on-chip.
  • the communication device 400 may be a network device or a chip or a system-on-chip in the network device.
  • the communication device 400 includes a processor 401 , a communication interface 402 and a communication line 403 .
  • the communication device 400 may also include a memory 404.
  • the processor 401, the memory 404 and the communication interface 402 can be connected through a communication line 403.
  • the processor 401 is a central processing unit (CPU), a general processor network processor (NP), a digital signal processor (digital signal processing, DSP), a microprocessor, a microcontroller, Programmable logic device (PLD) or any combination thereof.
  • the processor 401 can also be other devices with processing functions, such as circuits, devices or software modules, without limitation.
  • Communication interface 402 is used to communicate with other devices or other communication networks.
  • the other communication network may be Ethernet, wireless access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), etc.
  • the communication interface 402 may be a module, a circuit, a communication interface, or any device capable of realizing communication.
  • the communication line 403 is used to transmit information between various components included in the communication device 400 .
  • Memory 404 used to store instructions. Wherein, the instructions may be computer programs.
  • the memory 404 can be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or it can be a random access memory (random access memory, RAM) or other types of static storage devices that can store static information and/or instructions.
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices that store information and/or instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD- ROM) or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, etc., are not restricted.
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 404 may exist independently of the processor 401 or may be integrated with the processor 401.
  • the memory 404 can be used to store instructions or program codes or some data.
  • the memory 404 may be located within the communication device 400 or outside the communication device 400, without limitation.
  • the processor 401 is configured to execute instructions stored in the memory 404 to implement the slotless measurement method provided in the following embodiments of this application.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4 .
  • the communication device 400 includes multiple processors.
  • the processor 401 in FIG. 4 it may also include a processor 407.
  • the communication device 400 also includes an input device 405 and an output device 406.
  • the input device 405 is a device such as a keyboard, a mouse, a microphone, or a joystick
  • the output device 406 is a device such as a display screen, a speaker, or the like.
  • the communication device 400 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system or a device with a similar structure as shown in Figure 4 .
  • the composition structure shown in Figure 4 does not constitute a limitation of the terminal equipment.
  • the terminal equipment may include more or less components than shown in the figure, or combine certain components. , or a different component arrangement.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • actions, terms, etc. involved in various embodiments of this application can be referred to each other and are not limited.
  • the name of the message exchanged between the various devices or the name of the parameters in the message is just an example, and other names may also be used in the specific implementation without limitation.
  • the source network device currently accessed by the terminal device has only one adjacent network device.
  • the communication method includes the following steps:
  • the source network device sends measurement configuration information to the terminal device.
  • the terminal device receives the measurement configuration information from the source network device.
  • the measurement configuration information can be used to instruct the terminal device to measure the measurement object.
  • the measurement configuration information may include one or more types of parameters: measurement object, reporting configuration, measurement identification, measurement quantity configuration, measurement interval, or S measurement configuration.
  • the measurement object provides a list of objects, and the terminal device performs measurements on the objects in the list.
  • the reporting configuration provides a reporting configuration list, and each measurement object can have one or more reporting configurations.
  • Reporting configuration may include reporting criteria, reporting format, reference signal type, etc.
  • the measurement identification provides a list of measurement identifications. Each measurement identification is associated with a measurement object with a reporting configuration.
  • the terminal device will include the corresponding measurement identification in the measurement report that triggers the reporting as a notification to the network. refer to.
  • the measurement quantity configuration can be different measurement quantities.
  • the measurement parameters can include RSRP, reference signal received quality (RSRQ), and different filters are configured for the measurement of each cell and each beam. coefficient.
  • the S measurement configuration is used to control the special cell (SpCell) RSRP measurement threshold when the terminal device performs measurements on a non-serving cell.
  • SpCell can include a primary cell (primary cell, PCell) or a secondary primary cell (primary secondary cell, PSCell).
  • the measurement interval represents the time period that the terminal device may use to perform measurements.
  • the terminal device sends a measurement report to the source network device.
  • the terminal device can perform measurements according to the measurement configuration, obtain a measurement report, and send the measurement report to the source network device. Accordingly, the source network device receives the measurement report from the terminal device.
  • the terminal device performing measurements according to the measurement configuration may refer to the terminal device measuring the signal quality of the cell provided by the measurement object.
  • the measurement report may include the measurement type (for example, RSRP/RSRQ, etc.) and measurement results of the cell and/or beam, as well as other related information, such as the maximum number of cells that can be reported and the maximum number of beams on each cell.
  • the source network device makes a handover decision.
  • the source network device refers to the measurement report to make a handover decision.
  • the handover decision is used to determine that the terminal device performs handover to the target network device, or the handover decision is used to determine that the terminal device performs handover to the target cell.
  • the target cell is the target network device The neighborhood below.
  • the source network device may determine that the terminal device switches to the target network device based on the measurement object in the measurement report and the measurement result of the measurement quantity.
  • the source network device determines that the terminal device can perform handover to the target network device.
  • the source network device can determine that the terminal device cannot perform handover to the target network device.
  • the preset threshold can be set as needed, for example, it can be 90 decibel milliwatts (dbm), 100dbm, etc., without limitation.
  • the source network device sends a handover request message to the target network device.
  • the source network device determines that the terminal device can perform handover to the target network device.
  • the source network device sends a handover request message to the target network device.
  • the target network device receives the handover request message from the source network device.
  • the handover request message may be used to request to handover the terminal device to the target network device.
  • the handover request message may include information related to handover preparation.
  • the handover preparation related information may include one or more of the identification of the target cell, the key, the identification of the terminal device in the source cell, or the access layer configuration.
  • the source cell of the terminal device is the cell of the source network device.
  • the source network device may allocate the identity of the source cell to the terminal device.
  • the same terminal device can have different identities in different cells.
  • the access layer configuration may include configuration information required for the terminal device to switch to the target network device. For example, it may include random access resources and access layer related information.
  • the target network device performs admission control.
  • the admission control may refer to the target network device determining whether to allow or not allow the terminal device to switch to the target cell under the target network device.
  • the target network device may determine to allow the switching of the terminal device according to the configuration information of the target network device.
  • the configuration information of the target network device may include the carrying capacity, bandwidth usage, etc. of the target network device.
  • the target network device sends a handover request response message to the source network device.
  • the target network device prepares for handover and sends a handover request response message to the source network device.
  • the handover preparation may refer to preparations performed by the target network device for handover of the terminal device to the target cell.
  • terminal equipment can be assigned identifiers, random access channel (RACH) resources, and access cell group configuration information of the target cell, etc.
  • RACH random access channel
  • the handover request response message may be used to instruct the target network device to allow handover of the terminal device.
  • the source network device sends a switching command to the terminal device.
  • the terminal device receives the switching command from the source network device.
  • the handover command is generated by the target network device and transparently transmitted through the source network device (specifically, it can be sent through an RRC reconfiguration message containing synchronization information).
  • the source base station can perform necessary encryption and integrity protection on the message.
  • the handover command contains the information needed to access the target cell. For example, it includes at least the target cell ID, the new UE ID, the security algorithm ID of the target base station, and may also carry the dedicated random access channel (Random Access Channel) for accessing the target cell. , RACH) resources, etc.
  • RACH dedicated random access channel
  • the source network device may also send SN (sequence number, sequence number) status information to the target network device.
  • SN status information may be used to indicate data information transmitted by the source network device to the terminal device.
  • the terminal device receives the switching command and performs synchronization with the target network device.
  • synchronization between the terminal device and the target network device can be used to ensure communication synchronization after the terminal device is successfully switched to the target network device.
  • the terminal device may send a random access preamble to the target network device.
  • the target network device can send a random access response (random access response, RAR) for resource allocation and timing advance.
  • RAR random access response
  • the terminal device sends an RRC reconfiguration completion message to the target network device.
  • the target network device receives the RRC reconfiguration completion message from the terminal device.
  • the RRC reconfiguration completion message can be used to indicate that the terminal device switches to the target network device.
  • This message can also be accompanied by an upstream buffer status report (buffer status report, BSR).
  • BSR buffer status report
  • the target network device confirms the success of the handover process by receiving the RRC reconfiguration complete message.
  • the target base station can start sending data to the terminal.
  • the target network device sends a path conversion request message to the core network.
  • the core network receives the path conversion request message from the target network device.
  • the interaction between the target network device and the core network in S510 can be the interaction between the target network device and the network elements in the core network. interaction.
  • it can be the interaction between the target network device and the authentication management function (Authentication Management Function, AMF) or the user plane function (User Plane Function, UPF).
  • AMF Authentication Management Function
  • UPF User Plane Function
  • Step 11 The target network device sends a path conversion request message to the AMF.
  • the AMF receives the path conversion request message from the target network device.
  • the path switching request message may be used to request path switching, or the terminal device changes cells.
  • the path conversion request can trigger the core network (5GC) to convert the downlink (DL) data path to the target network device and establish an NG-C interface to the target network device. At this time, the air interface switching has been successfully completed.
  • 5GC core network
  • Step 12 AMF sends a user plane (UP) update request message to UPF.
  • UPF receives the UP update request message from AMF.
  • UP user plane
  • Step 13 The UPF switches the DL data path to the target network device and sends one or more end tags to the source cell, and then releases the UP resources or transmission network layer resources between it and the source network device.
  • Step 14 UPF sends an UP update response message to AMF.
  • AMF receives the UP update response message from UPF.
  • Step 15 AMF sends a path conversion ACK message to the target network device.
  • Step 16 After receiving the path conversion ACK message, the target network device sends a UE context release message to the source network device, notifying the source network device that the switch is successful and triggering the source network device to release the UE context.
  • Step 17 After receiving the UE context release message, the source network device can release the radio bearer and control plane (CP) resources related to the UE context.
  • CP control plane
  • the source network device will not release the relevant resources and will continue to forward the data until the data forwarding is completed before releasing the relevant resources.
  • the source network device when switching is performed based on the L3 layer, can implement switching of the terminal device through interaction with the target network device and interaction with the terminal device.
  • the terminal device is performing cell switching, and the cell switching can be performed through a random access channel (RACH-less).
  • RACH-less a random access channel
  • Figure 6 is an example flow chart of RACH-less access provided by the embodiment of the present application. The method may include the following steps.
  • the terminal device sends a measurement report to the source network device.
  • the measurement report may be obtained by measuring the terminal device based on the measurement configuration of the network device.
  • the measurement report may be obtained by measuring the terminal device based on the measurement configuration of the network device.
  • the source network device makes a handover decision based on the measurement report.
  • S602 may refer to the above-mentioned S503 and will not be described again.
  • the source network device sends switching request information to the target network device.
  • the target network device receives the handover request information from the source network device.
  • the target network device After receiving the handover request message from the source network device, the target network device can perform admission control.
  • the target network device sends a handover request confirmation message to the source network device.
  • the source network device receives the handover request confirmation message from the target network device.
  • the handover request confirmation message may be used to indicate that the target network device allows the handover of the terminal device.
  • the handover request confirmation message may include cell radio network temporary identifier (C-RNTI), security algorithm, random access channel (RACH) resources, access layer configuration, and system message block (system information block, SIB) and other information.
  • C-RNTI cell radio network temporary identifier
  • RACH random access channel
  • SIB system message block
  • the handover request confirmation message may also include timing adjustment instructions and/or uplink authorization information.
  • RACH-less means that no random access is performed during the handover process of the terminal device.
  • Uplink authorization can be used to indicate uplink resources. Uplink resources can be used to carry information/data sent by the terminal device to the target network device.
  • the target network device may instruct the terminal device to skip the random access process.
  • the target network device generates an RRC reconfiguration completion message, and sends the RRC reconfiguration completion message to the terminal device through the source network device.
  • the RRC reconfiguration message may also include a timing advance adjustment indication.
  • the RRC reconfiguration completion message may include uplink authorization, or may not include uplink authorization.
  • the terminal device receives the RRC reconfiguration message and performs handover.
  • the terminal device when the RRC reconfiguration completion message includes information about the configured uplink authorization resources, the terminal device can perform uplink transmission on the configured uplink authorization resources and access the target network device.
  • the terminal device can receive the uplink authorization by monitoring the physical downlink control channel (PDCCH) of the target network device, and pass the received uplink authorization resource.
  • PDCCH physical downlink control channel
  • the terminal device sends an RRC reconfiguration completion message to the target network device through preconfigured uplink grant resources or dynamically scheduled uplink grant resources.
  • the dynamically scheduled uplink grant resources may refer to the uplink grant resources received by the terminal device by monitoring the PDCCH of the target cell.
  • the target network device After receiving the RRC reconfiguration completion message, the target network device can interact with the core network to implement data path switching and air interface switching with the core network. For details, reference may be made to the above description of S510, which will not be described again.
  • the source network device can interact with the target network device so that the target network device can accurately know that the terminal device will switch to the target network device. Therefore, the target network device can accurately allocate uplink authorization to the terminal device, or accurately determine the timing of dynamically scheduling the uplink authorization.
  • L1/L2 switching is relative to L3RRC switching, which refers to the MAC control element, CE) or downlink control information (DCI) to complete the handover process, the gain is to reduce access delay, thereby reducing service interruption and reducing signaling overhead.
  • L3RRC switching refers to the MAC control element, CE
  • DCI downlink control information
  • an inter-DU handover may refer to the terminal device switching from the cell of the source DU to the cell of the target DU, or the terminal device switching from the source DU to the target DU.
  • the method may include the following steps:
  • the CU sends measurement configuration information to the terminal device.
  • the terminal device receives the measurement configuration information from the CU.
  • the measurement configuration information may be used to instruct the terminal device to perform measurements on multiple target cells (such as one or more cells of target DU1 and one or more cells of target DU2). Specifically, reference may be made to the description of the measurement configuration information in S501 above, which will not be described again.
  • the terminal device reports the measurement report to the CU.
  • the measurement report is used to assist the CU in making handover decisions and determining candidate cells.
  • the measurement report may include measurement results of one or more cells of each candidate DU in the plurality of candidate DUs. For details, reference may be made to the description of S502 above, which will not be described again.
  • the CU sends a handover request message or a candidate cell addition request to one or more candidate DUs (including target DUs).
  • the candidate DU may perform the following S704 and S705.
  • the candidate DU After receiving the handover request message from the CU, the candidate DU performs handover admission control.
  • the candidate DU sends a handover request confirmation message to the CU.
  • the CU sends L1/L2 switching preconfiguration information to the terminal device.
  • the L1/L2 handover preconfiguration information may include multiple candidate cells and configuration information of multiple candidate cells.
  • L1/L2 preconfiguration information can be included in the RRC reconfiguration message.
  • the UE After receiving the L1/L2 preconfiguration information, the UE continues to maintain data transmission with the source cell. The UE can perform measurements according to the configuration of the network device and assist the network device in making handover decisions.
  • the source DU sends an L1/L2 switching command to the terminal device.
  • the terminal device receives the L1/L2 switching command from the source DU.
  • the L1/L2 handover command is used to instruct the terminal device to switch to the target cell under the target DU, or can be used to instruct the terminal device to complete the cell change through L1/L2 handover.
  • S707 may refer to the above-mentioned S507, which will not be described again. Also, The difference between S707 and S507 is that: S507 is an L3-based switching command (such as an RRC reconfiguration message), while S707 is an L1/L2 switching command (such as a MAC CE or DCI).
  • the terminal device performs a random access process or a RACH-less process to establish a connection with the target cell.
  • the terminal device disconnects data transmission with the source cell.
  • S708 can refer to the above-mentioned S508-S509, which will not be described again.
  • the terminal device when the terminal device needs to perform subsequent L1/L2 handover, the terminal device does not need to release the L1/L2 preconfiguration information after completing access to the target DU once. In this way, the terminal device can continue to perform switching based on the L1/L2 preconfiguration information.
  • the CU performs data path switching.
  • the CU sends a path switching request to the core network.
  • S710 reference may be made to the description of S510 above, which will not be described again.
  • S709 and S710 The execution order of the above S709 and S710 is not limited. You can execute S709 first and then S710. Alternatively, S710 can be executed first and then S709.
  • the terminal equipment configures multiple candidate DUs, and the terminal equipment can complete cell switching based on the L1/L2 candidate cell configuration information.
  • L1/L2 handover there is also L1/L2 handover within a DU, that is, the target cell and the source cell of the handover belong to the same DU.
  • L1/L2 handover within a DU that is, the target cell and the source cell of the handover belong to the same DU.
  • Target neighborhood
  • the source network device can interact with the target network device in time before issuing the handover command.
  • the configuration information of the target cell is issued in the handover command, so that the target The network device can accurately determine that the terminal device is about to switch to the target network. Therefore, the target network device can accurately configure preconfigured authorization for the terminal device, or accurately determine the timing of dynamically scheduling uplink authorization.
  • the target network device includes the instruction to skip the RACH, the timing advance information of the target cell and the uplink authorization resource in the handover command, so that the terminal device can accurately determine the uplink resource for sending the handover completion message.
  • the preconfiguration authorization is preconfigured when configuring one or more candidate cells under one or more candidate DUs for the terminal device.
  • the preconfigured authorization is a periodic allocation of resources, if each candidate cell reserves preconfigured authorization resources for terminal equipment, it will cause a waste of resources.
  • the candidate DU since the L1/L2 handover command is issued by the source DU to the terminal device, the candidate DU (including the target DU) does not know when the terminal device will switch to the candidate DU.
  • the target DU needs to pass Dynamic scheduling schedules authorized resources for the terminal device, but the target DU cannot determine when the source DU sends a handover command to the terminal device and when the terminal device switches to the target DU. Since the target DU cannot determine the time for dynamic scheduling, the terminal device cannot accurately determine the time for monitoring the dynamic scheduling resources of the target DU, and the terminal device and the target DU cannot be aligned.
  • embodiments of the present application provide a communication solution.
  • This method is used in the L1/L2 handover process. If there is no random access process, the terminal device determines the uplink resource used to send the handover completion message, and the terminal device determines the monitoring target.
  • the physical downlink control channel of the cell saves the power consumption of the terminal equipment and ensures the alignment between the terminal equipment and the target DU.
  • the method includes: a first network device sending indication information indicating information of a target cell to a second network device and a terminal device respectively. After receiving the indication information, the terminal device may send a message indicating that the handover is completed to the second network device according to the preconfigured authorization. The second network device also receives a message from the terminal device indicating that the handover is completed according to the instruction information of the first network device.
  • the first network device is the source DU
  • the second network device is the target DU.
  • the target DU and the terminal device can accurately determine the target cell to which the terminal device switches based on the indication information. Avoid the problem that the terminal device and the target DU cannot be aligned.
  • the method may include S801 to S804.
  • the first network device sends second instruction information to the second network device.
  • the second network device receives the second indication information from the first network device.
  • the first network device and the second network device may be DUs in Figure 2.
  • the first network device and the second network device may Take the same, for example, both are DU1 in Figure 2. In this case, it is a cell handover within the same DU.
  • the first network device and the second network device may also be different.
  • the first network device may be DU1 in Figure 2
  • the second network device may be DU2 in Figure 2.
  • the second indication information may be used to indicate information about a target cell to be switched by the terminal device.
  • the first indication information may include the identification of the target cell.
  • the target cell is the cell of the second network device.
  • the target cell may be a cell among multiple configured candidate cells.
  • the plurality of candidate cells may include cells of the first network device, cells of the second network device, or cells of other network devices.
  • the first network device may divide multiple candidate cells into multiple candidate cell groups.
  • the plurality of candidate cells may include Cell 1 to Cell 7.
  • the terminal equipment is located within the coverage area of cell 1.
  • Cells 2 to 7 are candidate cells.
  • cell 2, cell 3 and cell 4 belong to candidate cell group 1.
  • Cell 5 and cell 6 belong to candidate cell group 2.
  • Cell 7 belongs to candidate cell group 3.
  • the first network may configure one or more candidate network devices for the terminal device, and configure one or more cells of the one or more candidate network devices as candidate cells.
  • the first network device may determine one or more candidate network devices (that is, the second network device may be the candidate network device) based on one or more of the deployment situation of the network device, the topology information of the network device, and the movement trajectory of the terminal device. a network device among one or more candidate network devices), and configure one or more cells among the one or more candidate network devices as candidate cells.
  • the one or more candidate network devices may include the first network device and/or other network devices.
  • the deployment situation of the network equipment may include the coverage of the network equipment, the cell of the network equipment, the distance between the network equipment, etc.
  • the topology information of the network device may refer to the networking information between nodes.
  • the topology information of network devices may include identification of network devices and link information between network devices.
  • the deployment situation and topology information of the network device may be pre-configured by the first network device, or may be obtained by the first network device from other devices.
  • the first network device can be obtained from the core network.
  • the first network device is a DU
  • the first network device can also obtain it from the corresponding CU without limitation.
  • the first network device can connect the network device to the first network device.
  • the preset distance can be 50 meters, 60 meters, etc., without restriction.
  • the first network device may use the network device as a candidate network device.
  • the first network device can be a network device whose distance from road A is smaller than the preset distance as a candidate network device.
  • the first network device may also send a handover request to the one or more candidate network devices.
  • the candidate network device may perform access control and send handover request confirmation information to the first network device.
  • the first network device may determine the candidate network device that allows the terminal device to switch based on the handover request confirmation information of the one or more candidate network devices.
  • the terminal device sends a measurement report to the first network device.
  • the measurement report may be an L1 measurement report.
  • the measurement report assists the first network device in determining a target cell from a plurality of candidate cells.
  • the serving cell of the terminal device does not change, but the beam information of the serving cell corresponding to the terminal device changes. That is, the target cell may be the serving cell of the terminal device.
  • the first network device is the first DU
  • the second network device is the second DU.
  • the first DU and the second DU may be the same DU or different DUs.
  • the first DU and the second DU may correspond to the same CU.
  • the first DU may be DU1
  • the second DU may be DU2.
  • the CUs corresponding to the first DU and the second DU are the CUs in Figure 2.
  • the first network device (or the first DU) can send the first indication information to the second network device (or the second DU) through the CU.
  • the first network device sends the first instruction information to the terminal device.
  • the terminal device receives the first indication information from the first network device.
  • the first indication information may be used to indicate information about a target cell to be switched by the terminal device.
  • the first indication information may be the switching command in the above embodiment. That is, the first indication information may also be used to instruct the terminal device to switch to the target cell.
  • the first indication information may include the identification of the target cell.
  • the target cell may be a cell among multiple candidate cells configured by the terminal device before receiving the first indication information.
  • the first indication information may also include group information of the candidate cell group.
  • the group information may include an identification of the candidate cell group, an identification of each candidate cell included in the candidate cell group, and the like.
  • the first indication information can be carried in the MAC CE or DCI.
  • the first indication information can also be independent signaling, which is not limited.
  • the first network device may first perform the above S801 and then perform S802. You can also execute S802 first and then S801. Alternatively, the first network device can execute the above S801 and S802 synchronously without limitation.
  • the terminal device determines the uplink resource for sending the message indicating handover completion according to the configuration of the first preconfigured authorization of the target cell, and sends the message indicating handover completion on the uplink resource.
  • the first preconfiguration authorization may also be called configuration authorization or configured authorization.
  • the first preconfigured authorization is preconfigured by the second network device for the terminal device.
  • the uplink resource may be used by the terminal device to send a message indicating completion of the handover to the second network device.
  • the handover completion message is used to instruct the terminal device to switch to the target cell, or the synchronization completion message to instruct the terminal device to complete synchronization with the target cell.
  • the message indicating the completion of the handover can be carried in the MAC CE or DCI, for example, it can be the MAC CE for the completion of the handover, or the 1-bit indication information in the DCI.
  • the uplink resource may be the first preconfigured grant.
  • the first preconfigured authorization may also be called the first preconfigured authorization resource.
  • the configuration situation of the first preconfigured authorization may include that the terminal device is configured with the first preconfigured authorization or the terminal device is not configured with the first preconfigured authorization.
  • the configuration information of the first preconfiguration authorization may be configured in the L1/L2 preconfiguration information, for example, configured in S706. It can also be understood that the first preconfiguration authorization is configured during the candidate cell configuration process, for example, S703-S706.
  • the first preconfiguration authorization of the terminal device for the handover target cell is configured when configuring the target cell as a candidate cell.
  • the configuration information of the first preconfigured authorization includes time domain information, frequency domain information, period, etc. of the first preconfigured authorization. For example, if the first preconfigured grant is configured as a recurring resource, it may include one or more opportunities.
  • the terminal device may determine that the uplink resource sending the message indicating the completion of the handover is the uplink resource indicated by the first preconfiguration authorization.
  • configuring the first preconfigured authorization for the terminal device can also be described as the second network device preconfiguring the first preconfigured authorization for the terminal device.
  • the second network device may configure the first preconfigured authorization for the terminal device and provide the The first network device sends a message indicating the first preconfigured authorization.
  • the message indicating the first preconfiguration authorization may be carried in the handover request confirmation message, or may be separate signaling.
  • the first network device may forward the message indicating the first preconfiguration authorization to the terminal device.
  • the message indicating the first preconfiguration authorization may be carried in the measurement configuration information of S801, or may be separate signaling, without limitation.
  • the validity of the first preconfigured authorization may include one or more of the following: the RSRP of the SSB associated with the first preconfigured authorization is higher than the first preset threshold, the first preconfigured authorization does not overlap with the PRACH resource, A preconfigured grant does not overlap with the msgA PUSCH resource.
  • the first preset threshold may be configured by the network or be a preconfigured threshold.
  • the terminal device configures the first preconfigured authorization, and the RSRP of the SSB associated with the first preconfigured authorization is higher than the preset threshold, or the first preconfigured authorization does not overlap with the PRACH resource, or the first preconfigured authorization does not overlap with the msgA PUSCH resource. If there is no overlap, the terminal device may determine that the uplink resource sending the message indicating the completion of the handover is the first preconfigured authorized resource.
  • the terminal device may determine that the sending instruction is completed.
  • the upstream resource of the message is authorized for the first preconfiguration.
  • the terminal device is configured with a first preconfigured authorization, and the RSRP of the SSB associated with the first preconfigured authorization is higher than a preset threshold. value, and the first preconfigured grant does not overlap with the msgA PUSCH resource, then the terminal device can determine that the uplink resource sending the message indicating handover completion is the first preconfigured grant.
  • the terminal device can determine the uplink to send the message indicating that the handover is completed.
  • the resource is the first preconfigured authorization.
  • the terminal device configures a first preconfigured authorization, and the RSRP of the SSB associated with the first preconfigured authorization is higher than a preset threshold, and the first preconfigured authorization does not overlap with PRACH resources, and the first preconfigured authorization does not overlap with msgA PUSCH If the resources do not overlap, the terminal device may determine that the uplink resource sending the message indicating the completion of the handover is the first preconfigured authorized resource.
  • the first preconfigured grant is not a periodic resource, for example, it can be understood that the first preconfigured grant corresponds to a time-frequency resource, or corresponds to a preconfigured grant opportunity.
  • the terminal device configures the first preconfigured authorization, and the first preconfigured authorization is valid, and the offset between the time domain position of the terminal device receiving the first indication information and the time domain position of the first preconfigured authorization is less than the second preset threshold, then The terminal device may determine that the uplink resource sending the message indicating handover completion is the uplink resource indicated by the first preconfigured authorization.
  • the uplink resource sending the message indicating handover completion is the uplink resource indicated by the first preconfigured authorization.
  • the first preconfigured grant is a periodic resource, for example, it can be understood that the first preconfigured grant corresponds to multiple time-frequency resources, or corresponds to multiple preconfigured grant opportunities.
  • the terminal device configures the first preconfiguration authorization, and the first preconfiguration authorization is valid, and the offset between the time domain position of the terminal device receiving the first indication information and the time domain position of the first opportunity of the first preconfiguration authorization is smaller than the second preconfiguration authorization. If the threshold is set, the terminal device may determine that the uplink resource sending the message indicating the completion of the handover is the uplink resource of the first preconfigured authorization indication.
  • the terminal equipment can monitor the PDCCH of the target cell indicating the second uplink authorization resource. At this time, for The terminal device sends a message indicating that the handover is completed to the second network device.
  • the uplink resource is the second uplink resource.
  • the second preset threshold may be configured by the network or be a preconfigured threshold.
  • the terminal device is not configured with the first preconfigured authorization, or the first preconfigured authorization is invalid, or the time domain location of the terminal device receiving the first indication information is different from the time domain location of the first preconfigured authorization.
  • the offset also called an offset value
  • the terminal equipment monitors the PDCCH of the target cell indicating the second uplink authorization resource, and the terminal equipment can determine the uplink resource for sending a message indicating the completion of the handover.
  • Authorize resources for the second uplink For details, reference may be made to the description of the following embodiments, which will not be described again here.
  • the first preconfigured grant is a periodic resource, for example, it can be understood that the first preconfigured grant corresponds to multiple time-frequency resources, or corresponds to multiple preconfigured grant opportunities.
  • the terminal device is not configured with the first preconfigured authorization, or the first preconfigured authorization is invalid, or the offset between the time domain position of the terminal device receiving the first indication information and the time domain position of the first opportunity of the first preconfigured authorization is greater than or equal to
  • the terminal equipment monitors the PDCCH of the target cell indicating the second uplink authorization resource. In this way, the terminal device can determine that the uplink resource sending the message indicating the completion of the handover is the second uplink authorization resource.
  • the second network device receives a message from the terminal device indicating that the switching is completed.
  • the second network device detects the uplink message of the terminal device. For example, the second network device detects a message indicating handover completion from the terminal device on the first preconfigured authorization, and/or the second network device detects a message indicating handover completion from the terminal device on the second uplink resource.
  • the second network device After receiving the second indication information from the first network device, the second network device starts to detect a message from the terminal device indicating that the handover is completed.
  • the second network device receives a message indicating that the handover is completed from the terminal device on the uplink resource according to the configuration of the first preconfigured authorization.
  • the configuration situation of the first preconfiguration authorization may include the second network device configuring the first preconfiguration authorization for the terminal device or the second network device not configuring the first preconfiguration authorization for the terminal device.
  • the second network device configures the first preconfigured authorization for the terminal device, and the uplink resource may include the first preconfigured authorization.
  • the second network device does not configure the first preconfigured authorization for the terminal device, and the uplink resources are authorized resources dynamically scheduled by the second network device.
  • the second network device configures the first preconfigured authorization for the terminal device.
  • the second network device receives a message sent by the terminal device indicating completion of the handover on the first preconfigured grant (in this process, the uplink resource is the first preconfigured grant). If the second network device does not receive a message indicating that the handover is completed within the time domain corresponding to the first preconfigured authorization. message, the second network device can dynamically schedule the second uplink authorization resource and receive a message indicating the completion of the handover on the second uplink authorization resource (in this process, the uplink resource is a resource dynamically scheduled by the second network device).
  • the second network device configures a first preconfigured authorization for the terminal device, and the terminal device determines that the first preconfigured authorization is valid.
  • the terminal device sends a message indicating completion of the handover on the first preconfigured authorization.
  • the second network device may receive a message from the terminal device indicating that the handover is completed on the first preconfigured authorization.
  • the second network device configures the first preconfigured authorization for the terminal device, but the offset between the time domain location of the terminal device receiving the first indication information and the time domain location of the first preconfigured authorization is less than the second preset threshold, the terminal device may send a message indicating that the handover is completed on the first preconfigured authorization.
  • the second network device may receive a message indicating completion of the handover on the first preconfigured authorization.
  • the second network device configures the first preconfiguration authorization for the terminal device, but the second network device does not receive a message from the terminal device indicating the completion of the handover on the first preconfiguration authorization.
  • the second network device may schedule the PDCCH of the target cell used to indicate the second uplink grant resource. In this way, the terminal device can send a message indicating that the handover is completed on the second uplink resource.
  • the second network device may receive a message indicating completion of the handover on the second uplink authorization resource (in this process, the uplink resource is a resource dynamically scheduled by the second network device).
  • the second network device configures the first preconfiguration authorization for the terminal device, but the second network device does not receive a message from the terminal device indicating that the switching is completed on the first preset authorization.
  • This may include: the terminal device configures the first preconfiguration. authorization, and the terminal device determines that the first preconfigured authorization is invalid; or the terminal device configures the first preconfigured authorization, and the first preconfigured authorization is valid, but the time domain location of the terminal device receiving the first indication information is different from the first preconfigured authorization.
  • the time domain position is greater than or equal to the second preset threshold; or the first preconfigured authorization of the terminal device sends a message indicating the completion of the handover, and due to some reasons (for example, poor signal quality or interference), the second network device does not receive the message from the terminal. A message sent by the device indicating that the switch is complete.
  • the second network device after receiving the second indication information from the first network device, the second network device can accurately determine the target cell for handover by the terminal device based on the second indication information. At the same time, after receiving the first indication information, the terminal device can accurately determine the uplink resource for sending the message indicating the completion of the handover according to the configuration of the preconfigured authorization. The terminal device determines the uplink resource for sending the message indicating the completion of the handover, and may send the message indicating the completion of the handover on the uplink resource. In this way, the second network device can accurately receive the message indicating handover completion from the terminal device according to the configuration of the first preconfigured authorization of the target cell. The alignment of the terminal device and the second network device is ensured.
  • Uplink authorization resources are used as uplink resources, which may include the following situations.
  • Case 1 The terminal device is not configured with the first preconfigured authorization.
  • the second network device may dynamically schedule the second uplink grant resource.
  • the terminal device can monitor the PDCCH of the target cell, determine the second uplink authorized resource, and send a message indicating that the handover is completed on the second uplink authorized resource.
  • the second network device may receive a message indicating that the handover is completed on the second uplink authorization resource.
  • Case 2 The terminal device is configured with the first preconfigured authorization resource, and the first preconfigured authorization is invalid.
  • the invalidity of the first preconfigured authorization may include one or more of the following: the RSRP of the SSB associated with the first preconfigured authorization is lower than the first preset threshold, the first preconfigured authorization overlaps with PRACH resources, or the first preconfigured authorization Authorization pre-MSGA PUSCH resource overlap.
  • the terminal device determines that the first preconfigured authorization is invalid.
  • the terminal device does not send a message indicating completion of the handover on the first preconfigured authorization.
  • the terminal device determines The first preconfigured authorization is invalid.
  • the terminal device determines that the first preconfigured grant is invalid.
  • the terminal device determines that the first preconfigured authorization is invalid.
  • the terminal device determines that the first preconfigured authorization is invalid.
  • the terminal device determines that the first preconfigured authorization is invalid.
  • a message indicating that the handover is completed is sent. Then the second network device cannot receive the message indicating that the handover is completed on the first preconfigured authorization.
  • the second network device detects a message indicating completion of the handover within the time domain position (including the starting position and the ending position) corresponding to the first preconfigured authorization. If the second network device does not detect a message indicating completion of the handover within the time domain location range corresponding to the first preconfigured grant, the second network device may schedule the PDCCH of the target cell indicating the second uplink grant resource. In this way, the end device can receive the second uplink grant resource by monitoring the PDCCH of the target cell. The endpoint device may send a message indicating handover completion on the second uplink grant. Correspondingly, the second network device may receive a message indicating completion of the handover on the second uplink grant.
  • this embodiment may also include case 3.
  • the terminal device sends a message indicating that the handover is completed on the uplink resource, which may specifically include:
  • the terminal device sends a message indicating that the handover is completed on the uplink resource through the first HARQ process.
  • the first HARQ process may be determined by the terminal device based on the configuration information of the first preconfigured authorization resource.
  • the configuration information of the first preconfiguration grant may include the period of the first preconfiguration grant, the number of HARQ processes, time domain configuration, and frequency domain configuration.
  • the first preconfigured authorized HARQ process is calculated as follows:
  • HARQ process ID [floor(CURRENT_symbol/periodicity)]modulo nrof HARQ-Processes.
  • CURRENT_symbol (SFN ⁇ numberOfSlotsPerFrame ⁇ numberOfSymbolsPerSlot+slot number in the frame ⁇ numberOfSymbolsPerSlot+symbol number in the slot).
  • nrof HARQ-Processes is the number of HARQ processes. Periodicity is the period of configuration authorization. SFN is the system frame number. number Of Slots PerFrame is the number of consecutive slots in each frame. number Of Symbols PerSlot is the number of consecutive symbols in each slot. slot number in the frame is the slot number in the frame where the first symbol of uplink transmission is located. symbol number in the slot is the symbol number in the slot where the first symbol of uplink transmission is located.
  • the above calculation formula is only exemplary and not limiting.
  • the message indicating the completion of the handover may carry information about the first HARQ process.
  • the message indicating handover completion may include the ID of the first HARQ process.
  • the terminal device receives a message indicating the completion of the handover on the uplink resource, which may specifically include: the second network device receives a message indicating the completion of the handover associated with the first HARQ process on the uplink resource. The second network device determines the first HARQ process after receiving a message indicating that the handover is completed.
  • the method provided by the embodiment of the present application may also include:
  • the second network device sends a first response message to the terminal device.
  • the terminal device receives the first response message from the second network device.
  • the first response message may be used to indicate that the second network device has received a message indicating that the handover is completed.
  • the first response message may be a handover completion confirmation message or a contention resolution message.
  • the first response message may include the first character. The first character may be used to identify that the second network device has received a message indicating that the handover is completed, without limitation.
  • the first response message may be carried in MAC CE or DCI.
  • the second network device may feedback the receipt of the message indicating the completion of the handover.
  • the terminal device can accurately determine that the second network device has received the message indicating that the handover is completed, and the terminal device can perform data transmission with the second network device.
  • the terminal equipment may monitor the C-RNTI scrambled PDCCH and receive the third uplink grant resource for the target cell.
  • the terminal device After the terminal device sends a message indicating that the handover is completed, it monitors the PDCCH of the target cell. For example, if the terminal device does not receive the first response message, the terminal device can monitor the C-RNTI scrambled PDCCH and receive the third uplink grant resource for the target cell.
  • the third uplink grant resource is indicated for new transmission (also called new transmission).
  • the second network device includes a new data indicator (NDI) in the downlink control information (DCI) for scheduling the third uplink authorization resource.
  • NDI new data indicator
  • DCI downlink control information
  • the new data indication is set to 0 to indicate a new transmission, and is set to 1 to indicate a retransmission, or the new data indication is set to 1 to indicate a new transmission, Set to 0 to indicate retransmission.
  • the third uplink authorization resource can be associated with the first HARQ process or any HARQ process. Any HARQ process may be the same as the first HARQ process, or may be different from the first HARQ process.
  • the terminal device does not receive the first response message from the network, and the third uplink grant is received through the C-RNTI scrambled PDCCH.
  • the terminal device sends a message indicating the completion of the handover again on the third uplink grant resource.
  • the terminal device treats the message indicating the handover completion sent again on the third uplink authorized resource as a new transmission.
  • the terminal equipment can monitor the C-RNTI scrambled PDCCH and receive the third uplink grant resource for the target cell.
  • the terminal device after the terminal device sends a message indicating that the handover is completed, it monitors the PDCCH of the target cell. For example, if the terminal device does not receive the first response message, the terminal device can monitor the C-RNTI scrambled PDCCH and receive the third uplink grant resource for the target cell.
  • the third uplink grant resource is indicated for retransmission.
  • the third uplink authorization resource is associated with the first HARQ process.
  • the terminal device does not receive the first response message from the network, and the third uplink grant is received through the C-RNTI scrambled PDCCH, and the terminal device retransmits the message indicating handover completion on the third uplink grant resource.
  • this retransmission is considered a retransmission.
  • Example 1 The terminal device sends a message indicating that the handover is completed on the uplink resource through the first HARQ process.
  • the second network device detects the message indicating the completion of the handover on the uplink resource, but fails to parse or successfully receives the message indicating the completion of the handover.
  • the second network device may schedule the uplink grant resource associated with the first HARQ process (ie, the third uplink grant resource). After receiving the uplink authorization resource, the terminal device may resend the message indicating the completion of the handover on the uplink authorization resource.
  • the third uplink authorization resource is a retransmission resource.
  • Example 2 The terminal device sends a message indicating that the handover is completed on the uplink resource through the first HARQ process.
  • the second network device does not detect a message indicating handover completion on the uplink resource.
  • the second network device may schedule the uplink grant resources associated with the first HARQ process, or the second network device may schedule the uplink grant resources associated with any HARQ process. If the terminal device does not receive the first response message from the second network device, it may transmit a message indicating that the handover is completed again on the uplink authorization resource. Optionally, this retransmission is considered a new transmission.
  • the uplink grant resource scheduled by the second network device is associated with the first HARQ process.
  • the terminal device may transmit a message indicating the completion of the handover on the uplink authorization resource through the first HARQ process.
  • the second network device schedules uplink grant resources associated with any HARQ process.
  • the uplink grant resource scheduled by the second network is associated with the second HARQ process, and the terminal device can transmit a message indicating the completion of the handover again on the uplink grant resource through the second HARQ process.
  • the uplink grant resource scheduled by the second network is associated with the third HARQ process, and the terminal device can transmit the message indicating the completion of the handover again on the uplink grant resource through the third HARQ process.
  • the terminal device does not receive the first response message, and does not receive the C-RNTI scrambled PDCCH scheduling of the second network or the third uplink grant resource.
  • the terminal device may retransmit the message indicating the completion of the handover on the uplink grant resource associated with the next first HARQ process.
  • the first preconfigured authorization may include multiple opportunities.
  • the multiple timings may be periodic timings.
  • Each opportunity is associated with a HARQ process.
  • the terminal device sends a message indicating that the handover is completed at the first opportunity associated with the first HARQ process of the first preconfigured authorization.
  • the terminal device does not receive the first response message, and the terminal device does not receive the third uplink authorization resource.
  • the terminal device may retransmit the message indicating the completion of the handover at the next opportunity to associate the first HARQ process in the first preconfigured grant.
  • the terminal device can retransmit the message indicating that the handover is completed, thereby improving the handover success rate.
  • the first preconfigured authorization may also be set with a corresponding validity period and/or validity time.
  • this embodiment can be implemented through the following process.
  • Step 1 Configure the timer on the second network device.
  • the second network device configures a candidate cell for the terminal device.
  • the candidate cell configuration includes the first preconfigured authorization configuration information.
  • it may also include the first timer duration corresponding to the first preconfigured authorization (also i.e. valid duration) and/or starting offset.
  • the first timer duration and/or validity time corresponding to the first preconfigured authorization may be: configured by the second network device for each candidate cell when configuring the candidate cell for the terminal device, or configured for each candidate cell group. of.
  • the validity period may refer to the time during which the terminal device uses the first preconfigured authorization. That is, within the validity period, the first preconfigured authorization may be a dedicated uplink authorization for the terminal device.
  • the effective duration can be an integer multiple of the CG cycle or in symbol units, that is, an integer multiple of symbols, or in frames, an integer multiple of frames, or it can be a positive integer, or in seconds.
  • the effective time may refer to the time when the first preconfigured authorization can be configured for use by the terminal device, such as the first symbol.
  • the effective time can be the offset duration. After the terminal device receives the first indication information and after an offset period, the terminal device can use the first preconfigured authorization.
  • the first preconfigured authorization is a dedicated uplink authorization for the terminal device.
  • the terminal device has used the first preconfigured authorization for a period longer than the valid period, and the terminal device cannot continue to use the first preconfigured authorization, or the first preconfigured authorization is a shared uplink authorization.
  • the shared uplink authorization may mean that both the terminal device and other terminal devices can use the first preconfigured authorization.
  • the first preconfigured grant may be a competing uplink grant, or may be a Type-1 configuration grant.
  • the first network device includes, in the configuration of the candidate cell of the terminal device, the configuration of the first timer corresponding to the candidate cell.
  • the first timer may be used to control the validity period for the terminal device to use the first preconfigured authorization. It can be understood that within the running time of the first timer, the first preconfigured authorization is a dedicated authorization resource of the terminal device.
  • the first timer may be configured for each candidate cell, or may be configured for a group of candidate cells.
  • the candidate cell group may be obtained by the first network device grouping multiple candidate cells.
  • the first network device may group multiple candidate cells according to network device deployment, topology information of the network device, or movement trajectory of the terminal device.
  • the first network device may divide cells with overlapping coverage areas into a candidate cell group.
  • the first network device may divide multiple cells in the same topology diagram or network devices with direct links into a candidate cell group.
  • the first network device can divide multiple cells of network devices whose distance from road A is less than a preset distance into a candidate cell group.
  • the first network device configures a timer. That is, the first network device configures the starting offset (that is, the effective time) and the effective duration for the first timer.
  • the starting offset and valid duration may be carried/included in the RRC reconfiguration message, or may be separate signaling, or may be carried/included in other messages without limitation.
  • the starting offset takes effect based on the configuration of the candidate cell received by the terminal equipment.
  • the terminal device starts the first timer after the offset time has elapsed after receiving the message containing the candidate cell configuration information.
  • the message containing the candidate cell configuration information may be an RRC reconfiguration message, or may be a separate message, or may be other messages without limitation.
  • the first timer is configured for each candidate cell, and each candidate cell may be configured with a starting offset and/or a valid duration.
  • the first timer is configured for each candidate cell group, and each candidate cell group may be configured with a starting offset and/or a valid duration.
  • the first network device is not configured with the first timer. That is, the first network device is not configured for the first timer Starting offset and/or valid duration.
  • the first network device does not configure the validity period of the first timer, but configures the starting offset of the first timer.
  • the terminal device receives the configuration of the candidate cell, the first preconfiguration authorization begins to take effect, and the first preconfiguration authorization takes effect.
  • Preconfigured authorizations are always dedicated authorization resources for end devices.
  • the first network device does not configure a starting offset, but configures a valid duration of the first timer
  • the terminal device receives the first preconfiguration authorization from the candidate cell
  • the first preconfiguration authorization begins to take effect.
  • the terminal device cannot continue to use the first preconfigured authorization or the first preconfigured authorization as a shared authorization resource.
  • the first network device does not configure the starting offset and the validity period of the first timer.
  • the terminal device receives the first preconfiguration authorization from the candidate cell, the first preconfiguration authorization begins to take effect, and the first preconfiguration authorization begins to take effect.
  • a preconfigured authorization is always a dedicated authorization resource for the end device.
  • Step 2 Terminal device applies timer.
  • the terminal device determines the effective time and validity period of the first preconfigured authorization based on the configuration of the second network device.
  • the first preconfigured authorization is configured with a corresponding validity period and sets an effective time.
  • the terminal device receives a message containing the configuration of the candidate cell or the terminal device receives the first preconfiguration authorization for the candidate cell/group from the first network device. After the validity time has elapsed, the first timer is started, and the first preconfiguration authorization begins to take effect. . Within the validity period, the terminal device may send a message indicating that the handover is completed on the first preconfigured authorization.
  • the target cell is cell 2
  • the terminal device receives the message containing the candidate cell configuration information
  • the first preconfiguration authorization of cell 2 begins to take effect (that is, the first preconfiguration authorization refers to the dedicated uplink authorization of the terminal device).
  • the first preconfigured authorization of cell 2 becomes invalid (that is, the first preconfigured authorization is a shared uplink authorization, or the terminal device does not need to continue to use the first preconfigured authorization).
  • the first preconfiguration authorization does not configure the validity period of the first timer, but configures the starting offset of the first timer. Then, when the terminal device receives a message containing the candidate cell configuration information, it starts the first timer. timer (that is, the first preconfigured authorization starts to take effect), and the first preconfigured authorization is always a dedicated authorization resource of the terminal device.
  • the target cell is cell 3
  • the first preconfiguration authorization does not configure a starting offset, but configures a valid duration of the first timer, and then the terminal device starts the first timer when receiving a message containing the candidate cell configuration information.
  • the terminal device cannot continue to use the first preconfigured authorization or the first preconfigured authorization as a shared authorization resource.
  • the target cell is cell 5
  • n and m are positive integers. That is, when the terminal device receives the message containing the candidate cell configuration information, the first preconfiguration authorization takes effect after n times the length of the CG cycle. After m times the length of the CG cycle, the first preconfigured authorization expires.
  • the first network device does not configure a starting offset and a valid duration of the first timer, and the terminal device starts the first timer when receiving information containing candidate cell configuration.
  • the first preconfigured authorization is always the dedicated authorization resource of the terminal device.
  • the target cell is cell 7, and the first preconfigured authorization of cell 7 or the candidate cell group 3 in which cell 7 is located does not have a first timer duration and an effective time configured. Then, when the terminal device receives the message containing the configuration information of the candidate cell, the first preconfiguration authorization of cell 7 begins to take effect, and during the time period when cell 7 is the serving cell of the terminal device, the first preconfiguration authorization is always for the terminal device.
  • Dedicated uplink resources are examples of mapped to Physical channels.
  • the method provided by the embodiment of the present application will be described below with reference to the communication system of Figure 2, taking the first network device as the source DU and the second network device as the target DU as an example.
  • a communication method is provided in an embodiment of the present application.
  • the method includes:
  • the source DU pre-configures multiple candidate cells for the terminal device.
  • the source DU may send the configuration information of the multiple candidate cells to the terminal device through an RRC reconfiguration message.
  • the configuration information of the candidate cell may include the configuration of the first preconfigured authorization configured by the candidate cell for the terminal device.
  • S1301 can refer to the above-mentioned S701 to S706, which will not be described again.
  • the terminal device sends a measurement report to the source DU.
  • the measurement report may be a layer 1 measurement report.
  • the terminal device measures multiple candidate cells according to the measurement configuration information and obtains measurement results.
  • the measurement result is a layer 1 measurement result.
  • the terminal device sends a measurement report to the source DU.
  • the source DU receives measurement reports from the end devices.
  • the source DU makes a handover decision.
  • the source DU refers to the measurement report reported by the terminal device, decides to perform the handover, and determines the target cell of the handover.
  • the source DU sends the second indication information
  • the source DU sends the second indication information to the target DU where the target cell is located through the CU.
  • the target DU sends the second indication information to the CU, and the CU forwards the second indication information to the target DU.
  • the source DU sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the source DU.
  • the terminal device determines to perform cell handover to the target DU according to the first instruction information.
  • the terminal device when performing cell switching, may start the second timer and apply the running duration of the second timer.
  • the second timer is a MAC layer timer.
  • the terminal device sends a message indicating that the switching is completed.
  • the terminal device sends a message indicating completion of the handover on the uplink resource according to the configuration of the first pre-configured authorization.
  • the terminal device configures a first preconfigured authorization, and the first preconfigured authorization is valid, and the terminal device sends a message indicating that the switching is completed on the first preconfigured authorization.
  • the terminal device starts monitoring the C-RNTI scrambled PDCCH in the xth time slot after sending the message indicating the completion of the handover on the first preconfiguration grant to receive the scheduling of the target DU.
  • x is an integer.
  • the terminal equipment is not configured with the first preconfigured authorization, or the first preconfigured authorization is invalid.
  • the terminal equipment can monitor the C-RNTI scrambled PDCCH to receive the second uplink from the target DU for the target cell. Authorize resources, and send a message indicating handover completion on the second uplink authorized resource.
  • the target DU receives a message from the terminal device indicating that the handover is completed.
  • the target cell may receive a message indicating completion of the handover on the uplink resource according to the configuration of the first preconfigured grant.
  • the target DU configures a first preconfiguration authorization for the terminal device, and the target DU does not receive a message indicating that the handover is completed on the first preconfiguration authorization.
  • the target DU may schedule the C-RNTI scrambled PDCCH, send the second uplink grant resource to the terminal device, and receive a message indicating handover completion on the second uplink grant resource.
  • the target DU sends a response message to the terminal device.
  • the target DU sends a response message to the terminal device.
  • the response message can be carried on DCI or MAC CE. This response message indicates that the target DU received a message indicating handover completion.
  • S1301 ⁇ S1304, S1308, S1309, and S1310 are optional steps.
  • the target DU can determine when to perform resource scheduling on the terminal device based on the second indication information.
  • the terminal device can determine the time to monitor the PDCCH through the configuration of preconfigured authorization resources. The time for terminal equipment to monitor PDCCH is reduced, thereby achieving the purpose of saving power consumption.
  • the terminal device can determine the uplink resource for sending a message indicating the completion of the handover to the target DU through the configuration of the preconfigured authorization, thereby improving the handover success rate.
  • the source DU and the target DU may be the same DU. In this case, it is understood as cell handover within the DU.
  • the source DU and the target DU can be replaced by the source cell and the target cell respectively.
  • the method includes:
  • the source DU configures multiple candidate cells for the terminal device.
  • the source DU may send the configuration information of the multiple candidate cells to the terminal device through an RRC reconfiguration message.
  • the configuration information of the candidate cell may include the configuration of the first preconfigured authorization configured by the candidate cell for the terminal device.
  • S1401 can refer to the above-mentioned S701 to S706, which will not be described again.
  • the terminal device sends a measurement report to the source DU.
  • S1402 may refer to the above-mentioned S1302 and will not be described again.
  • the source DU makes a handover decision.
  • the source DU refers to the measurement report reported by the terminal device to determine the target cell to perform the handover.
  • the source DU sends the second indication information to the target DU where the target cell is located.
  • the target DU receives the second indication information from the source DU.
  • the source DU sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the source DU.
  • the terminal device performs cell handover to the target DU according to the first instruction information.
  • the terminal device when performing cell switching, may start the second timer and apply the running duration of the second timer. When the terminal equipment fails to successfully switch to the target cell within the running time, it is determined that the cell switching fails.
  • the terminal device receives the first indication information and starts the second timer.
  • the second timer is a timer maintained by the MAC layer. If the second timer times out and the terminal device fails to switch to the target cell successfully, the switching process fails. If the terminal device successfully switches to the target cell, the second timer is stopped.
  • the terminal device sends a message indicating that the handover is completed to the target DU.
  • the terminal device sends a message indicating completion of the handover on the uplink resource according to the configuration of the first pre-configured authorization.
  • the terminal device is configured with a first preconfigured authorization, and the first preconfigured authorization is valid, and the time domain location of the terminal device receiving the first indication information and the time domain location of the first preconfigured authorization are smaller than the second preset threshold, the terminal device sends a message indicating that the handover is completed on the first preconfigured authorization.
  • the terminal device After the terminal device sends a message indicating the completion of the handover on the first preconfiguration grant, it can monitor the C-RNTI scrambled PDCCH after x time slots to receive uplink resources for subsequent transmission of data.
  • the terminal device is not configured with the first preconfigured authorization, or the first preconfigured authorization is invalid, or the time domain location at which the terminal device receives the first indication information is greater than or equal to the time domain location of the first preconfigured authorization.
  • the terminal device can monitor the C-RNTI scrambled PDCCH, receive the second uplink grant resource for the target cell from the target DU, and send a message indicating handover completion on the second uplink grant resource.
  • the target DU receives a message from the terminal device indicating that the handover is completed.
  • the target DU may receive a message indicating handover completion on the uplink resource according to the configuration of the first preconfigured grant.
  • Method 1 After receiving the handover instruction from the source DU, the target DU starts scheduling the PDCCH of the target cell.
  • the target DU A first preconfigured authorization is configured for the terminal device, and the target DU detects the first preconfigured authorization to receive a message indicating that the handover is completed.
  • the target DU dynamically schedules uplink grant, the target DU detects the message carried on the dynamic grant (DG) resource.
  • DG dynamic grant
  • the target DU configures compensation delay for the terminal device.
  • the RRC reconfiguration message in S1401 may include the compensation delay ⁇ of the terminal device.
  • can be twice the transmission time between the source DU and the CU.
  • the terminal equipment does not need to monitor the PDCCH within ⁇ time after receiving the first indication information. After ⁇ time, the terminal equipment can monitor the PDCCH.
  • the terminal device can monitor the PDCCH on a specific search space.
  • the specific search space may be a dedicated search space of the terminal device.
  • the target DU configures an offset value for the terminal device.
  • the RRC reconfiguration message in S1401 may include an offset value used to instruct the terminal device to monitor the PDCCH.
  • the terminal equipment does not need to monitor the PDCCH within the offset value period of receiving the first indication information.
  • the terminal device can monitor the PDCCH.
  • the terminal device can monitor the PDCCH on a specific search space.
  • Method 4 The time domain position where the terminal device receives the first indication information and the time domain position of the first preconfigured authorization (or the first opportunity of the first preconfigured authorization) are greater than the second preset threshold.
  • the PDCCH is monitored.
  • the target DU sends a response message of the handover completion message to the terminal device.
  • the terminal device can resend the message indicating that the handover is completed.
  • the terminal device sends a message indicating that the handover is completed on the uplink resource through the first HARQ process.
  • the second network device detects a message indicating handover completion on the uplink resource, but fails to decode/receive it.
  • the second network device can dynamically schedule the first HARQ process and send the second uplink grant resource associated with the first HARQ process. After receiving the second uplink grant resource associated with the first HARQ process, the terminal device resends the message indicating the completion of the handover in the second uplink grant.
  • the terminal device sends a message indicating that the handover is completed on the uplink resource through the first HARQ process.
  • the second network device does not detect a message indicating handover completion on the uplink resource.
  • the terminal device does not receive the response message, but receives the second uplink grant resource from the second network device for scheduling the first HARQ process.
  • the terminal device may retransmit the message indicating the completion of the handover on the second uplink authorization resource.
  • the SDU corresponding to the message indicating the completion of the handover may be saved. In this way, after the terminal device does not receive the response message, it can continue to transmit the message indicating that the handover is completed.
  • the terminal device does not receive the response message, but receives the second uplink grant resource from any HARQ process scheduled by the second network device.
  • the terminal device may retransmit the message indicating the completion of the handover on the second uplink authorization resource.
  • any HARQ process can be the first HARQ process or the second HARQ process.
  • the first HARQ process is different from the second HARQ process.
  • the terminal device does not receive the response message, and the terminal device does not receive the second uplink authorization resource of the HARQ process scheduled by the second network device.
  • the terminal device may send a message indicating that the handover is completed at the authorization opportunity of the next first HARQ process.
  • the terminal device determines that the handover is successful and stops the running of the second timer.
  • S1401 ⁇ S1405, S1408, and S1409 are optional steps.
  • the terminal device determines the offset value of the time when the first indication information is received and the time of the first preconfiguration authorization, and determines the sending instruction switch. Completed message.
  • the offset value is too large, the dynamically scheduled uplink grant resources of the target DU can be monitored, and a message indicating that the handover is completed can be sent on the received uplink grant resources.
  • the handover can reduce the delay.
  • the terminal device can determine whether the message indicating the completion of the handover has been successfully sent based on the response message. This avoids the situation that the target DU does not receive the message indicating that the handover is completed.
  • the condition for the first preconfigured authorization to be valid includes that the RSRP of the SSB associated with the first preconfigured authorization is higher than the first preset threshold, and the condition for the first preconfigured authorization to be invalid includes that the RSRP of the SSB associated with the first preconfigured authorization is higher than the first preset threshold.
  • RSRP is lower than or equal to the first preset threshold, which can be replaced by: the conditions for the first preconfigured authorization to be valid include that the RSRP of the SSB associated with the first preconfigured authorization is higher than or equal to the first preset threshold, and the first preconfigured authorization is invalid.
  • the condition includes that the RSRP of the SSB associated with the first preconfigured authorization is lower than the first preset threshold.
  • the offset value is greater than or equal to the second preset threshold and the offset value is less than the second preset threshold, which can be replaced by: the offset value is greater than the second preset threshold and the offset value is less than or equal to the second preset threshold. Preset threshold.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • the methods and/or steps implemented by the terminal device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software) that can be used in the terminal device.
  • the methods and/or steps implemented by the first network device may also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software) available for the first network device.
  • the methods and/or steps implemented by the second network device may also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software) available for the second network device.
  • the above mainly introduces the solutions provided by this application.
  • this application also provides a communication device, which is used to implement various methods in the above method embodiments.
  • the communication device may be the terminal device in the above method embodiment, or a device including the terminal device, or a component that can be used in the terminal device, such as a chip or a chip system.
  • the communication device may be the first network device in the above method embodiment, or a device including the first network device, or a component that can be used in the first network device, such as a chip or a chip system.
  • the communication device may be the second network device in the above method embodiment, or a device including the second network device, or a component that can be used in the second network device, such as a chip or a chip system.
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
  • functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • Figures 15 and 16 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can realize the functions of the terminal device, the first network device or the second network device in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be a terminal device as shown in Figure 1, a network device as shown in Figure 1, or a module (such as a chip) applied to the terminal device or network device.
  • the communication device 1500 includes a transceiver module 1501 and a processing module 1502.
  • the communication device 1500 may be used to implement the functions of the terminal device, the first network device, or the second network device in the method embodiments shown in FIG. 8, FIG. 10, or FIG. 11.
  • the transceiver module 1501 is used to receive the first indication information from the first network device.
  • the processing module 1502 is configured to determine the uplink resource for sending a message indicating handover completion according to the configuration of the first preconfigured grant of the target cell.
  • the transceiver module 1501 is also configured to send a message indicating the completion of the handover on the uplink resource.
  • the transceiver module 1501 is used to send the second instruction information to the second network device; the transceiver module 1501 is also used to send the second instruction information to the terminal device. Send the first instruction message.
  • the transceiver module 1501 is used to receive the second indication information from the first network device, and to receive the uplink resource from the terminal device. Send a message indicating the completion of the switch.
  • the transceiver module 1501 is used to receive the first indication information, and the processing module 1502 is used to authorize according to the first preconfiguration of the target cell.
  • the configuration situation determines the uplink resource for sending the message indicating the completion of the handover.
  • the transceiver module 1501 is configured to send the message indicating the completion of the handover on the uplink resource through the first HARQ process.
  • the transceiver module 1501 is used to receive the second indication information from the first network device, and receive the terminal device through the first HARQ process Send a message indicating handover completion on the uplink resource.
  • the transceiver module 1501 is also used to send the first response message to the terminal device.
  • transceiver module 1501 and processing module 1502 For a more detailed description of the above-mentioned transceiver module 1501 and processing module 1502, reference may be made to the relevant descriptions in the above-mentioned method embodiments, which will not be described again here.
  • the communication device 1600 includes a processor 1610 and an interface circuit 1620 .
  • the processor 1610 and the interface circuit 1620 are coupled to each other.
  • the interface circuit 1620 may be a transceiver or an input-output interface.
  • the communication device 1600 may also include a memory 1630 for storing instructions executed by the processor 1610 or input data required for the processor 1610 to run the instructions or data generated after the processor 1610 executes the instructions.
  • the processor 1610 is used to execute the function of the above processing module 1502
  • the interface circuit 1620 is used to execute the function of the above transceiver module 1501.
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal equipment chip receives information from other modules (such as radio frequency modules or antennas) in the terminal equipment, and the information is sent by the network equipment to the terminal equipment; or, the terminal equipment chip sends information to other modules (such as radio frequency modules or antennas) in the terminal equipment.
  • Antenna sends information, which is sent by the terminal device to the network device.
  • the first network device chip When the above communication device is a chip applied to the first network device, the first network device chip implements the functions of the network device in the above method embodiment.
  • the first network device chip receives information from other modules (such as radio frequency modules or antennas) in the first network device, and the information is sent by the terminal device to the first network device; or, the first network device chip sends information to the first network device.
  • Other modules in the device such as radio frequency modules or antennas
  • send information and the information is sent by the first network device to the terminal device.
  • the second network device chip implements the functions of the network device in the above method embodiment.
  • the first network device chip receives information from other modules (such as radio frequency modules or antennas) in the second network device, and the information is sent by the first network device to the second network device; or, the second network device chip sends information to the second network device.
  • Other modules (such as radio frequency modules or antennas) in the second network device send information, and the information is sent by the second network device to the terminal device.
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory. (random access memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronic In an electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the ASIC can be located in the access network equipment or terminal equipment.
  • the processor and the storage medium may also exist as discrete components in the access network device or terminal device.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program or instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; they may also be optical media, such as DVDs; or they may be semiconductor media, such as solid state disks (SSD).
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,用于降低终端设备的功耗,提高切换的性能。该方法包括:终端设备接收来自第一网络设备的用于指示切换的目标小区的信息的指示信息,该目标小区是为终端设备配置的小区;终端设备根据目标小区的第一预配置资源的配置情况,确定发送指示切换完成的消息的上行资源,并在该上行资源上发送指示切换完成的消息。

Description

通信方法及装置
本申请要求于2022年08月09日提交国家知识产权局、申请号为202210951896.6、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信方法及装置。
背景技术
在无线通信***中,终端设备移动过程中,为了给用户提供更好的网络服务,终端设备可以从当前服务小区切换至目标小区。
目前,网络设备可以参考终端设备的测量报告,确定终端设备切换的目标小区,并向终端设备发送用于指示切换至目标小区的切换命令。终端设备可以根据该切换命令,切换至目标小区并向目标小区所在的网络设备发送切换完成消息。在基于层1或层2(layer 1/layer 2,L1/L2)的切换过程中,终端设备接收到网络设备的基于L1/L2的切换命令消息后,根据该切换命令消息切换至目标小区。由于终端设备的目标小区是预配置的候选小区中的一个小区,终端设备无法基于切换命令消息确定发送指示切换完成的消息的上行资源,进而无法准确确定何时开始监听目标小区物理下行控制信道,可能导致终端设备功耗的浪费。
发明内容
本申请实施例提供通信方法及装置,用于降低终端设备功耗。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片***等执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。以下以该方法由终端设备执行为例进行说明。该通信方法包括:终端设备接收来自第一网络设备的用于指示终端设备切换的目标小区的信息的第一指示信息。该目标小区是终端设备在接收第一指示信息前配置的多个候选目标小区的小区。终端设备根据该目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源,并在该上行资源上发送指示切换完成的消息。
也就是说,本申请中,终端设备在接收到第一指示信息之后,可以根据预配置授权的配置情况,准确的确定发送指示切换完成的消息的上行资源。终端设备确定发送指示切换完成的消息的上行资源,可以在该上行资源上发送指示切换完成的消息。如此,目标小区所在的网络设备可以在该上行资源上接收来自终端设备的指示切换完成的消息。
在一种可能的实现方式中,第一预配置授权的配置情况包括配置第一预配置授权或者未配置第一预配置授权。
基于该可能的实现方式,当配置第一预配置授权时,终端设备可以延迟监听配置资源的时间,从而降低了功耗。当未配置第一预配置授权时,终端设备可以根据网络设备的动态调度获取授权资源,由于无需为终端设备预先配置授权,因此,可以避免出现资源的浪费。
在一种可能的实现方式中,终端设备配置第一预配置授权且第一预配置授权有效,终端设备确定发送指示切换完成的消息的上行资源为第一预配置授权对应的资源。或者,终端设备配置第一预配置授权且第一预配置授权无效,终端设备可以监听用于指示第二上行授权资源的目标小区的物理下行控制信道(physical downlink control channel,PDCCH),并确定第二上行授为发送指示切换完成的消息的上行资源。
基于该可能的实现方式,在终端设备配置第一预配置授权且第一预配置授权有效的情况下,终端设备可以在第一预配置授权上发送指示切换完成的消息,更快完成切换。在终端设备配置的第一预配置授权无效的情况下,终端设备可以通过监听用于指示第二授权的目标小区的PDCCH,确定第二授权资源。如此,终端设备可以在该第二授权资源上发送指示切换完成的消息,为终端 设备提供接入目标小区的上行资源,使得终端设备在切换过程中可以不需要进行随机接入过程,节省切换时延,提高了终端设备切换的性能。
在一种可能的实现方式中,终端设备未配置第一预配置授权,终端设备可以监听用于指示第二授权资源的目标小区的PDCCH,并确定该第二授权资源为发送指示切换完成的消息的上行资源。
基于该可能的实现方式,在终端设备未配置预配置授权的情况下,终端设备可以通过网络设备的动态调度确定用于发送指示切换完成的消息的授权资源,并在该授权资源上发送指示切换完成的消息,使得终端设备在切换过程中可以不需要进行随机接入过程,节省切换时延,提高了终端设备切换的性能。
在一种可能的实现方式中,第一预配置授权有效可以包括以下一项或多项:第一预配置授权关联的同步信号块(synchronization signal block,SSB)的参考信号接收功率(reference signal receiving power,RSRP)高于第一预设阈值,第一预配置授权与物理随机接入信道(physical random access channel,PRACH)资源不重叠,或第一预配置授权与消息A(消息A,msgA)的物理上行共享信道(physical uplink shared channel,PUSCH)资源不重叠。
基于该可能的实现方式,终端设备可以根据上述条件确定第一预配置授权是否有效,终端设备准确的确定发送指示切换完成消息的上行资源。
在一种可能的实现方式中,终端设备配置第一预配置授权、且第一预配置授权有效、且终端设备接收第一指示信息的时域位置与第一预配置授权(或第一预配置授权的第一时机)的时域位置的偏移小于第二预设阈值,终端设备可以确定第一预配置授权为发送指示切换完成的消息的上行资源。或者,终端设备配置第一预配置授权、且第一预配置授权有效、且终端设备接收第一指示信息的时域位置与第一预配置授权(或第一预配置授权的第一时机)的时域位置的偏移大于或等于第二预设阈值,终端设备可以监听用于指示第二上行资源授权的目标小区的PDCCH,并确定用于发送切换完成的消息的上行资源为第二上行授权资源。
基于该可能的实现方式,在终端设备配置的第一预配置授权有效的情况下,如果终端设备接收第一指示信息(也即切换命令)的时域位置与第一预配置授权的时域位置或者第一预配置授权的第一时机的时域位置之间的偏移小于阈值,终端设备可以在第一预配置授权上发送指示切换完成的消息,终端设备无需在监听目标小区的PDCCH,可以降低功耗。在终端设备配置的第一预配置授权有效的情况下,如果终端设备接收第一指示信息(也即切换命令)的时域位置与第一预配置授权的时域位置或者第一预配置授权的第一时机的时域位置之间的偏移大于或等于阈值,说明第一预配置授权的时域位置距离终端设备接收切换命令的时域位置之间的时长较长。本申请中,终端设备可以立即监听用于指示上行授权资源的PDCCH,并将PDCCH指示的上行授权资源作为发送指示切换完成的消息。相较于使用第一预配置授权发送指示切换完成的消息,终端设备使用PDCCH指示的上行授权资源,可以减少发送指示切换完成消息的时延。
在一种可能的实现方式中,终端设备通过第一混合自动重传请求(hybrid automatic repeat request,HARQ)进程在上行资源上发送指示切换完成的消息。
在一种可能的实现方式中,该方法还包括:终端设备未接收到指示切换完成的消息的响应消息,终端设备可以在C-RNTI加扰的PDCCH上接收针对目标小区的第三上行授权资源。该第三上行授权资源关联第一HARQ进程或第三上行授权关联任意一个HARQ进程、且该第三上行授权资源被指示用于新的传输。终端设备在第三上行授权资源上重新发送指示切换完成的消息。
需要说明的是,该响应消息可以承载在媒体接入控制层(media access control,MAC)控制单元(control element,CE)或下行控制信息(downlink control information,DCI)中。任意一个HARQ进程可以为第一HARQ进程,也可以为和第一HARQ进程不同的其他HARQ进程。新的传输可以是指与指示切换完成消息不同的上行消息,或者重新复用和组装指示切换完成的消息进行传输。
基于该可能的实现方式,当终端设备在未接收到用于指示接收到指示切换完成的消息的响应消息时,终端设备可以监听小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)加扰的PDCCH上接收目标小区的第三上行授权资源,并在该第三上行授权资源上重新发送指示切换完成的消息。如此,提高了指示切换完成的消息成功发送的概率。
在一种可能的实现方式中,该方法还包括:终端设备未接收到指示切换完成的消息的响应消息,且终端设备未收到第三上行授权资源,第一预配置授权的第二时机有效,终端设备可以在第二时机上重新传输指示切换完成的消息。该第二时机为第一预配置授权中的授权时机。
基于该可能的实现方式,当终端设备未接收到指示切换完成的消息的响应消息,且终端设备也没有在目标小区的PDCCH上接收到上行授权资源。在第一预配置授权的第二时机有效的情况下,终端设备可以在该有效的时机上重新传输指示切换完成的消息。如此,针对第一预配置授权包括多个时机的场景,终端设备可以在该多个时机中的有效时机上重新传输指示切换完成的消息。提高了指示切换完成的消息成功发送的概率。
在一种可能的实现方式中,在第一预配置授权对应的第一定时器的有效时长内,第一预配置授权为终端设备的专用上行授权。
例如,第一定时器的有效时长可以包括起始偏移,该起始偏移是针对终端设备接收到第一预配置授权配置的偏移值。该有效时长可以为预配置授权(configured grant,CG)周期的整数倍或符号为单位。即符号的整数倍、或帧为单位,帧的整数倍,或者也可以为正整数,或者以秒为单位。
基于该可能的实现方式,通过为第一预配置授权设置有效时长,在该有效时长内,第一预配置授权为终端设备的专用上行授权,从而保证终端设备发送指示切换完成的上行消息的资源与其他终端设备发送上行消息的资源不冲突。
在一种可能的实现方式中,第一定时器超时,终端设备无法继续使用第一预配置授权或者第一预配置授权为共用上行授权。
需要说明的是,共用上行授权也可以为竞争的上行授权资源或类型-1(Type-1)配置授权资源。
基于该可能的实现方式,当第一定时器超时,也即第一预配置授权的时长超过了有效时长。第一预配置授权可以为共用上行授权,也即,其他终端设备也可以使用该第一预配置授权。如此,可以充分使用第一预配置授权。避免出现终端设备不使用第一预配置授权的时候,其他终端设备也无法使用该第一预配置授权,造成资源的浪费。
第二方面,提供一种通信方法,该方法可以由第二网络设备执行,也可以由第二网络设备的部件,例如第二网络设备的处理器、芯片、或芯片***等执行,还可以由能实现全部或部分第二网络设备功能的逻辑模块或软件实现。以下以该方法由第二网络设备执行为例进行说明。该通信方法包括:第二网络设备接收来自第一网络设备的第二指示信息。第二指示信息用于指示终端设备切换的目标小区的信息。目标小区为多个候选目标小区中的小区。
基于该方法,第二网络设备可以基于来自第一网络设备的第二指示信息,准确的确定终端设备切换的目标小区。第二网络设备可以准确的动态调度上行资源,提高终端设备的切换成功概率。
一种可能的实现方式中,第二网络设备根据目标小区的第一预配置授权的配置情况,在上行资源上接收来自终端设备的指示切换完成的消息。
基于该可能的实现方式,第二网络设备可以根据目标小区的第一预配置授权的配置情况,准确的接收来自终端设备的指示切换完成的消息。保证了终端设备与第二网络设备的对齐。
在一种可能的实现方式中,第一预配置授权的配置情况可以包括配置第一预配置授权或未配置第一预配置授权。
在一种可能的实现方式中,终端设备配置第一预配置授权,第二网络设备在第一预配置授权上接收指示切换完成的消息。或者,终端设备未配置第一预配置授权,第二网络设备可以调度用于指示第二上行授权资源的目标小区的PDCCH,并在该第二上行授权资源上接收指示切换完成的消息。
基于该可能的实现方式中,当第二网络设备为终端设备配置第一预配置授权时,第二网络设备可以在该第一预配置授权上接收终端设备发送的指示切换完成的消息,减少第二网络设备盲检的复杂度。当第二网络设备为给终端设备配置第一预配置授权时,第二网络设备可以调度用于指示第二上行授权资源的目标小区的PDCCH。如此,第二网络设备可以在该第二上行授权资源上准确的接收来自终端设备的指示切换完成的消息。
在一种可能的实现方式中,终端设备配置第一预配置授权、且终端设备接收用于指示目标小区的信息的第一指示信息的时域位置与第一预配置授权(或第一预配置授权的第一时机)的时域位置的偏移小于第二预设阈值,第二网络设备可以在第一预配置授权上接收指示切换完成的消息。或者,终端设备配置第一预配置授权、且终端设备接收第一指示信息的时域位置与第一预配置的时域位置的偏移大于或等于第二预设阈值,第二网络设备可以调度用于指示第二上行授权的目标小区的PDCCH,并在该第二上行授权上接收指示切换完成的消息。
基于该可能的实现方式,在第二网络设备为终端设备配置第一预配置授权,且终端设备接收第一指示信息的时域位置与第一预配置授权的时域位置的偏移小于第二预设阈值的情况下,说明终端设备可能在该第一预配置授权上发送指示切换完成的消息。如此,第二网络设备可以在第一预配置授权上接收指示切换完成的消息,简单方便。在第二网络设备为终端设备配置第一预配置授权,且终端设备接收第一指示信息的时域位置与第一预配置授权的时域位置的偏移大于或等于第二预设阈值的情况下,为了减少时延,第二网络设备可以再为终端设备调度第二上行授权资源。如此,终端设备可以在该第二上行授权资源上发送指示切换完成的消息。相应的,第二网络设备也可以在该第二上行授权资源上接收终端设备发送的指示切换完成的消息,减少了等待时间。从而可以降低终端设备的切换时延。
在一种可能的实现方式中,第二网络设备接收关联第一HARQ进程的指示切换完成的消息。
在一种可能的实现方式中,该方法还包括:第二网络设备通过调度C-RNTI加扰的PDCCH,发送第三上行授权资源。该第三上行授权资源关联第一HARQ进程或任意一个HARQ进程,且第三上行授权资源被指示用于新的传输。
基于该可能的实现方式,第二网络设备通过调度新的授权资源,用于终端设备发送上行消息,第二网络设备通过在该调度的新的授权资源上检测上行消息,使得第二网络设备在新的授权资源上准确的接收终端设备的消息,减少盲检复杂度。
在一种可能的实现方式中,在第一预配置授权对应的第一定时器的有效时长内,第一预配置授权为终端设备的专用上行授权。
基于该可能的实现方式,通过为第一预配置授权设置有效时长,在该有效时长内,第一预配置授权为终端设备的专用上行授权,从而第二网络设备可以为终端设备发送上行消息提供了充足的上行资源。
在一种可能的实现方式中,第一定时器超时,终端设备无法继续使用第一预配置授权或者第一预配置授权为共用上行授权。
基于该可能的实现方式,当第一定时器超时,也即第一预配置授权的时长超过了有效时长。为了避免影响其他终端设备的资源分配,第一预配置授权可以为共用上行授权,也即,其他终端设备也可以使用该第一预配置授权。如此,可以充分使用第一预配置授权,减少资源浪费。避免出现终端设备不使用第一预配置授权向第二网络设备发送消息时,导致其他终端设备也无法使用该第一预配置授权,造成第二网络设备的资源的浪费。
第三方面,提供一种通信方法,该方法可以由第一网络设备执行,也可以由第一网络设备的部件,例如第一网络设备的处理器、芯片、或芯片***等执行,还可以由能实现全部或部分第一网络设备功能的逻辑模块或软件实现。以下以该方法由第一网络设备执行为例进行说明。该通信方法包括:第一网络设备向第二网络设备发送用于指示终端设备切换的目标小区的信息的第二指示信息。目标小区为多个候选小区中的小区。
一种应用场景中,第一网络设备可以为第一分布单元DU。第二网络设备可以为第二DU。第一DU和第二DU可以相同,也可以不同。第一DU和第二DU对应同一中心单元CU。
基于该方法,第一网络设备可以向第二网络设备发送用于指示终端设备切换的目标小区的信息。如此,可以使得第二网络设备可以准确的确定终端设备切换的目标小区。
在一种可能的实现方式中,该方法还包括:第一网络设备向终端设备发送用于指示目标小区的信息的第一指示信息。
一种示例中,第一指示信息可以承载在MAC CE或DCI中。
基于该可能的实现方式,第一网络设备可以向终端设备发送用于指示目标小区的信息的指示 信息,如此,终端设备可以根据该指示信息,确定切换的目标小区。由于该指示信息不包括授权资源,因此,数据量较小,可以节省发送该指示信息占据的资源。
第四方面,提供一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于接收来自第一网络设备的用于指示终端设备切换的目标小区的信息的第一指示信息。该目标小区是该终端设备在接收第一指示信息前配置的多个候选目标小区的小区;所述处理模块,用于根据该目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源,并在该上行资源上发送指示切换完成的消息。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于接收来自第一网络设备的第二指示信息。第二指示信息用于指示终端设备切换的目标小区的信息。目标小区为多个候选目标小区中的小区。处理模块,用于根据目标小区的第一预配置授权的配置情况,通过收发模块在上行资源上接收终端设备的指示切换完成的消息。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第六方面,提供一种通信装置,有益效果可以参见第三方面的描述此处不再赘述。所述通信装置具有实现上述第三方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于通过收发模块向第二网络设备发送用于指示终端设备切换的目标小区的信息的第二指示信息。目标小区为多个候选小区中的小区。所述处理模块,还用于向终端设备发送用于指示目标小区的信息的第一指示信息。这些模块可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第七方面,提供一种通信装置。该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述第一方面所述的通信方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第一方面中的终端设备,或者上述终端设备中包含的装置,比如芯片。
在一种可能的实现方式中,该通信装置还包括上述存储器。
在一种可能的实现方式中,该通信装置还包括通信接口。
第八方面,提供一种通信装置。该通信装置可以为上述方法实施例中的第二网络设备,或者为设置在第二网络设备中的芯片。该通信装置包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述第九方面所述的通信方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第二方面中的第二网络设备,或者上述第二网络设备中包含的装置,比如芯片。
在一种可能的实现方式中,该通信装置还包括上述存储器。
在一种可能的实现方式中,该通信装置还包括通信接口。
第九方面,提供一种通信装置。该通信装置可以为上述方法实施例中的第一网络设备,或者为设置在第一网络设备中的芯片。该通信装置包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述第九方面所述的通信方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第三方面中的第一网络设备,或者上述第一网络设备中包含的装置,比如芯片。
在一种可能的实现方式中,该通信装置还包括存储器。
在一种可能的实现方式中,该通信装置还包括通信接口。
在一种可能的实现方式中,该通信装置还包括收发器。
第十方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当其在通信装置上运行时,使得通信装置可以执行上述第一方面或第二方面或第三方面所述的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行上述第一方面或第二方面或第三方面所述的方法。
第十二方面,本申请提供了一种芯片***,该芯片***包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片***还包括存储器,用于保存程序指令和/或数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十三方面,本申请提供了一种芯片***,该芯片***包括处理器,用于实现上述各方面的方法中第一网络设备或第二网络设备的功能。在一种可能的设计中,所述芯片***还包括存储器,用于保存程序指令和/或数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十四方面,本申请提供了一种通信方法,包括:
第一网络设备向第二网络设备发送第二指示信息,所述第二指示信息用于指示终端设备切换的目标小区的信息,所述目标小区是多个候选目标小区中的小区;
所述第一网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备切换的目标小区的信息,所述目标小区是所述终端设备在接收所述第一指示信息前配置的多个候选目标小区中的小区;
所述终端设备根据目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源,以及在所述上行资源上向第二网络设备发送指示切换完成的消息;
所述第二网络设备根据所述目标小区的第一预配置授权的配置情况,接收来自所述终端设备的指示切换完成的消息。
第十五方面,本申请提供了一种通信***,包括第五方面的通信装置和第六方面的通信装置。进一步所述***还包括第四方面的通信装置。
附图说明
图1为本申请实施例提供的一种通信***的架构示意图;
图2为本申请实施例提供的一种通信***的架构示意图;
图3是本申请实施例提供的一种网络设备的架构示意图;
图4为本申请实施例提供的一种通信装置的架构示意图;
图5为本申请实施例提供的一种通信方法的流程示意图;
图6为本申请实施例提供的另一种通信方法的流程示意图;
图7为本申请实施例提供的又一种通信方法的流程示意图;
图8为本申请实施例提供的又一种通信方法的流程示意图;
图9为本申请实施例提供的另一种通信装置的结构示意图;
图10为本申请实施例提供的又一种通信***的架构示意图;
图11为本申请实施例提供的又一种通信方法的流程示意图;
图12为本申请实施例提供的一种确定第一预配置授权的生效时间和有效时长的流程示意图;
图13为本申请实施例提供的又一种通信方法的流程示意图;
图14为本申请实施例提供的又一种通信方法的流程示意图;
图15为本申请实施例提供的一种通信装置的架构示意图;
图16为本申请实施例提供的又一种通信装置的架构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下 至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的技术方案可以应用于各种通信***,例如通用移动通信***(universal mobile telecommunications system,UMTS)、码分多址(code division multiple access,CDMA)***、无线局域网(wireless local area network,WLAN)、无线保真(wireless fidelity,Wi-Fi)***、有线网络、车到任意物体(vehicle to everything,V2X)通信***、设备间(device-to-device,D2D)通信***、车联网通信***、第4代(4th generation,4G)移动通信***,如长期演进(long term evolution,LTE)***、演进的LTE(evolved LTE,eLTE)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)移动通信***,如新空口(new radio,NR)***、新无线电接入技术(new radio access technology,NR)以及未来的通信***,如第六代(6th generation,6G)移动通信***等。其中,eLTE的网络设备可以同时连接到LTE的核心网以及未来5G的核心网。
本申请将围绕可包括多个设备,组件,或者模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备,组件,模块等,并且/或者可以并不包括结合附图讨论的所有设备,组件,或模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
为便于理解本申请实施例,首先以图1中示出的通信***为例详细说明适用于本申请实施例的通信***。示例性的,图1为本申请实施例提供的通信方法所适用的一种通信***的架构示意图。
如图1所示,该通信***包括多个网络设备(如图1中的网络设备1、网络设备2、网络设备3)和终端设备。
其中,终端设备可以与多个网络设备通信连接。例如,终端设备可以为位于网络设备1、网络设备2以及网络设备3的共同覆盖范围内。
其中,上述网络设备也可以称为接入设备、接入网设备或无线网络设备。网络设备是网络侧的一种用于发射或接收信号的实体。网络设备能够管理无线资源,为终端设备提供接入服务,完成数据在终端和核心网之间的转发。例如,网络设备可以基站、接入点(access point,AP)等、下一代无线接入网(next generation radio access network,NG-RAN)。
示例性的,本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB),无线网络控制器(radio network controller,RNC),节点B(Node B,NB),基站控制器(base station controller,BSC),基站收发台(base transceiver station,BTS),家庭基站(home evolved NodeB,HeNB,或home Node B,HNB),基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP),无线中继节点,无线回传节点,传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如NR***中的下一代基站(the next Generation Node B,gNB),传输点(TRP或TP),或5G***中的基站 的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或分布式单元(distributed unit,DU),还可以为卫星,或无人机等。
一种示例中,网络设备可以为gNB或者可以为gNB中的部分设备。gNB可以为集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离架构。如图2所示,gNB可以包括一个CU与多个DU(如图2中的DU1和DU2)。CU与多个DU通信连接,例如,CU与DU之间可以通过F1接口通信连接。图2中仅示出了2个DU,gNB还可以包括更多数量的DU。当网络设备为gNB中的部分设备时,网络设备可以为gNB中的DU。例如,网络设备可以为图2中的DU1或DU2。
其中,CU可以实现gNB的部分功能。例如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。比如,如图3所示,CU可以包括RRC层、PDCP层。
其中,DU可以实现gNB的部分功能。例如,DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。比如,如图3所示,DU可以包括RLC层、MAC层、PHY层。
进一步的,gNB还可以包括有源天线单元(active antenna unit,AAU)。AAU实现部分物理层处理功能,射频处理及有源天线的相关功能。如图3所示,AAU可以包括低层物理层(即low-PHY层),射频单元(Radio Frequency,RF)和天线。
一种示例中,按照协议栈分层,上述物理层可以为层1(Layer 1,L1),上述MAC层、RLC层和PDCP层可以为L2层。RRC层可以为L3层。
其中,RRC层的信息由CU生成,最终会经过DU的PHY层封装变成PHY层信息,或者,由PHY层的信息转变而来。因而,在图3的架构下,高层信令如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点,DU节点,或者AAU节点中一项或多项的设备。此外,可以将CU划分为接入网中的网络设备,也可以将CU划分为核心网中的网络设备,本申请对此不做限定。
一种示例中,当终端设备需要进行小区切换时,可以基于L1或L2进行小区切换,也可以基于层3进行小区切换。基于L1层/L2层进行小区切换通常是指通过MAC CE或DCI进行切换的过程。具体的,可以参照下述图5或图6的技术方案。基于L3层进行小区切换是指通过RRC进行切换的过程。具体的,可以参照下述图7的技术方案。
其中,上述终端为用户侧的一种用于接收或发射信号的实体。例如,终端设备可以为移动终端、手机、具有网络接入功能的传感器等。本申请中的终端设备也可以称为终端,用户设备(user equipment,UE),接入终端,用户单元,用户站,移动站,移动台,远方站,远程终端,移动设备,用户终端,无线通信设备,用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone),平板电脑(pad),无人机,带无线收发功能的电脑,客户前置设备(customer premise equipment,CPE),虚拟现实(virtual reality,VR)终端,增强现实(augmented reality,AR)终端,工业控制(industrial control)中的无线终端,无人驾驶(self driving)中的无线终端,远程医疗(remote medical)中的无线终端,智能电网(smart grid)中的无线终端,运输安全(transportation safety)中的无线终端,智慧城市(smart city)中的无线终端,智慧家庭(smart home)中的无线终端,蜂窝电话,无绳电话,会话启动协议(session initiation protocol,SIP)电话,无线本地环路(wireless local loop,WLL)站,个人数字助理(personal digital assistant,PDA),具有无线通信功能的手持设备,计算设备或连接到无线调制解调器的其它处理设备,车载设备,可穿戴设备,无人机,或者5G网络中的终端或者未来演进网络中的终端等。
又例如,本申请中的终端设备可以是智慧物流中的快递终端(例如可监控货物车辆位置的设备,可监控货物温湿度的设备等),智慧农业中的无线终端(例如可收集禽畜的相关数据的可穿戴设备等),智慧建筑中的无线终端(例如智慧电梯,消防监测设备,以及智能电表等),智能医疗中的无线终端(例如可监测人或动物的生理状态的可穿戴设备),智能交通中的无线终端(例如智能公交车,智能车辆,共享单车,充电桩监测设备,智能红绿灯,以及智能监控以及智能停车设备等),智能零售中的无线终端(例如自动售货机,自助结账机,以及无人便利店等)。又 例如,本申请中的终端设备可以是作为一个或多个部件或者单元而内置于车辆的车载模块,车载模组,车载部件,车载芯片或者车载单元,车辆通过内置的所述车载模块,车载模组,车载部件,车载芯片或者车载单元可以实施本申请提供的方法。本申请中的终端设备可以是智能物联网(smart internet of things,SIoT)终端设备或非SIoT终端设备,具有一定的计算、存储等能力。非SIoT终端设备可以通过物联网网关收集数据,例如,非SIoT终端设备可以为计算能力受限的终端,例如功能单一的传感器等。可选地,SIoT终端设备可以内置数据代理网元,或者SIoT终端设备可以实现数据代理网元的功能。
应理解,图1仅为便于理解而示例的简化示意图,该通信***中还可以包括其他设备,例如,如图2所示,还可以包括核心网。该核心网可以为5G核心网(5G core,5GC)。gNB可以通过NG接口与5GC通信连接。
需要说明的是,本申请实施例提供的通信方法,可以适用于图1-图3所示的通信***,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信***中,相应的名称也可以用其他通信***中的对应功能的名称进行替代。
一种具体实现,图1或图2所示的各设备,如终端以及网络设备可以采用图4所示的组成结构或者包括图4所示部件。图4为本申请实施例提供的一种通信装置400的组成示意图,当该通信装置400具有本申请实施例所述的终端设备的功能时,该通信装置400可以为终端设备或者终端设备中的芯片或者片上***。当通信装置400具有本申请实施例所述的网络设备的功能时,该通信装置400可以为网络设备或网络设备中的芯片或者片上***。如图4所示,该通信装置400包括处理器401,通信接口402以及通信线路403。
进一步的,该通信装置400还可以包括存储器404。其中,处理器401,存储器404以及通信接口402之间可以通过通信线路403连接。
其中,处理器401是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器401还可以是其它具有处理功能的装置,例如电路、器件或软件模块,不予限制。
通信接口402,用于与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口402可以是模块、电路、通信接口或者任何能够实现通信的装置。
通信线路403,用于在通信装置400所包括的各部件之间传送信息。
存储器404,用于存储指令。其中,指令可以是计算机程序。
其中,存储器404可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备等,不予限制。
需要指出的是,存储器404可以独立于处理器401存在,也可以和处理器401集成在一起。存储器404可以用于存储指令或者程序代码或者一些数据等。存储器404可以位于通信装置400内,也可以位于通信装置400外,不予限制。处理器401,用于执行存储器404中存储的指令,以实现本申请下述实施例提供的无时隙测量方法。
在一种示例中,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
作为一种可选的实现方式,通信装置400包括多个处理器,例如,除图4中的处理器401之外,还可以包括处理器407。
作为一种可选的实现方式,通信装置400还包括输入设备405和输出设备406。示例性地,输入设备405是键盘、鼠标、麦克风或操作杆等设备,输出设备406是显示屏、扬声器(speaker)等设备。
需要指出的是,通信装置400可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片***或有图4中类似结构的设备。此外,图4中示出的组成结构并不构成对该终端设备的限定,除图4所示部件之外,该终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。
此外,本申请的各实施例之间涉及的动作、术语等均可以相互参考,不予限制。本申请的实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合图1或图2所示通信***,对本申请实施例提供的通信方法进行描述。其中,下述实施例所述的网络设备和终端设备可以具备图4所示部件,不予赘述。本申请的实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。本申请各实施例涉及的动作只是一个示例,具体实现中也可以采用其他的名称,如:本申请实施例所述的“携带在”还可以替换为“承载于”或者“包括在”等。
一种场景下,在基于L3层进行小区切换时,终端设备当前接入的源网络设备相邻的网络设备为一个,如图5所示,该通信方法包括如下步骤:
S501、源网络设备向终端设备发送测量配置信息。相应的,终端设备接收来自源网络设备的测量配置信息。
示例性的,测量配置信息可以用于指示终端设备对测量对象进行测量。测量配置信息可以包括一类或多类参数:测量对象,上报配置,测量标识,测量量配置,测量间隔,或S测量配置。测量对象提供一个对象列表,终端设备对该列表的对象执行测量。
其中,上报配置提供一个上报配置列表,每个测量对象可以有一个或多个上报配置。上报配置可以包括上报准则,上报格式及参考信号类型等。
其中,测量标识提供一个测量标识列表,其中每一个测量标识都与带有一种上报配置的一个测量对象关联,终端设备会在触发上报的测量报告中,包含相应的测量标识,作为给网络的一个参考。
其中,测量量配置可以为不同的测量量,例如,测量参数可以包括RSRP、参考信号接收质量(reference singnal received quality,RSRQ),以及为每一小区和每一波束的测量都配置不同的滤波器系数。
其中,S测量配置用于控制终端设备在非服务小区上进行测量时的特殊小区(special cell,SpCell)RSRP测量门限。SpCell可以包括主小区(primary cell,PCell)或辅主小区(primary secondary cell,PSCell)。
其中,测量间隔表示终端设备可能用于执行测量的时间段。
S502、终端设备向源网络设备发送测量报告。
其中,终端设备可以根据测量配置进行测量,得到测量报告,并向源网络设备发送测量报告。相应的,源网络设备接收来自终端设备的测量报告。
示例性的,终端设备根据测量配置进行测量可以是指终端设备对测量对象提供的小区的信号质量进行测量。测量报告可以包括小区和/或波束的测量量类型(例如,RSRP/RSRQ等)和测量结果,以及其他相关信息,例如可上报的最大小区数量和每小区上的最大波束数量等。
S503、源网络设备进行切换判决。
可选的,源网络设备参考测量报告进行切换判决。该切换判决用于确定终端设备向目标网络设备进行切换,或者切换判决用于确定终端设备向目标小区进行切换。目标小区为目标网络设备 下的小区。
一种示例中,源网络设备可以根据测量报告中的测量对象,以及测量量的测量结果,确定终端设备向目标网络设备进行切换。
例如,当测量报告中目标网络设备的目标小区的RSRP大于或等于预设阈值,则源网络设备确定终端设备可以向目标网络设备进行切换。当RSRP小于预设阈值,则源网络设备可以确定终端设备不能向目标网络设备进行切换。预设阈值可以根据需要设置,例如,可以为90分贝毫瓦(dbm)、100dbm等,不予限制。
S504、源网络设备向目标网络设备发送切换请求消息。
其中,源网络设备确定终端设备能够向目标网络设备进行切换。源网络设备向目标网络设备发送切换请求消息。相应的,目标网络设备接收来自源网络设备的切换请求消息。
其中,切换请求消息可以用于请求将终端设备切换至目标网络设备。例如,切换请求消息可以包括用于切换准备相关信息。比如,切换准备相关信息可以包括目标小区的标识、密钥、终端设备在源小区的标识或接入层配置中的一种或多种。
其中,终端设备的源小区为源网络设备的小区。源网络设备可以为终端设备分配源小区的标识。同一终端设备在不同的小区下可以具有不同的标识。接入层配置可以包括终端设备切换至目标网络设备所需的配置信息。例如,可以包括随机接入资源、接入层的相关信息。
S505、目标网络设备执行准入控制。
其中,准入控制可以是指目标网络设备确定允许或不允许终端设备切换到该目标网络设备下的目标小区。例如,目标网络设备可以根据目标网络设备的配置信息确定允许终端设备的切换。比如,目标网络设备的配置信息可以包括目标网络设备的承载能力、带宽使用情况等。
S506、目标网络设备向源网络设备发送切换请求应答消息。
其中,目标网络设备进行切换准备,向源网络设备发送切换请求应答消息。
其中,切换准备可以是指目标网络设备为终端设备的切换到目标小区执行的相关准备。比如,可以为终端设备分配标识、随机接入信道(random access channel,RACH)资源,接入目标小区的小区组配置信息等。切换请求应答消息可以用于指示目标网络设备允许终端设备的切换。
S507、源网络设备向终端设备发送切换命令。相应的,终端设备接收来自源网络设备的切换命令。
其中,切换命令是目标网络设备生成的并通过源网络设备透传的(具体可通过包含同步信息的RRC重配消息发送)。源基站可以对该消息进行必要的加密和完整性保护。切换命令包含了接入目标小区需要的信息,比如,至少包括目标小区标识、新的UE ID、目标基站的安全算法标识,还有可能携带接入目标小区的专用随机接入信道(Random Access Channel,RACH)资源等。
一种示例中,源网络设备接收到切换请求应答消息,还可以向目标网络设备发送SN(sequence number,序列号)状态信息。该SN状态信息可以用于指示源网络设备向终端设备传输的数据信息。
S508、终端设备接收切换命令,执行与目标网络设备的同步。
其中,终端设备与目标网络设备同步可以用于保证当终端设备成功切换到目标网络设备之后的通信同步。
一种示例中,终端设备可以向目标网络设备发送随机接入前导码。目标网络设备在接收到来自终端设备的随机接入前导码之后,可以发送随机接入响应(random access response,RAR)进行资源分配以及定时提前。
S509、终端设备向目标网络设备发送RRC重配完成消息。相应的,目标网络设备接收来自终端设备的RRC重配完成消息。
其中,RRC重配完成消息可以用于表示终端设备切换至目标网络设备,该消息还可以伴随上行缓存状态报告(buffer status report,BSR)。目标网络设备通过接收RRC重配完成消息确认切换过程成功。至此,目标基站可开始向终端发送数据。
S510、目标网络设备向核心网发送路径转换请求消息。相应的,核心网接收来自目标网络设备的路径转换请求消息。
其中,S510中目标网络设备与核心网之间的交互可以为目标网络设备与核心网中的网元之间 的交互。例如,可以为目标网络设备与认证管理功能(Authentication Management Function,AMF)、用户面功能(User Plane Function,UPF)的交互。
一种示例中,上述S510可以通过下述过程实现。
步骤11、目标网络设备向AMF发送路径转换请求消息。相应的,AMF接收来自目标网络设备的路径转换请求消息。
其中,路径转换请求消息可以用于请求切换路径,或者终端设备更换了小区。该路径转换请求可以触发核心网(5GC)转换下行(Downlink,DL)数据路径到目标网络设备,并建立到目标网络设备的NG-C接口。此时空口的切换已经成功完成。
步骤12、AMF向UPF发送用户面(user plane,UP)更新请求消息。相应的,UPF接收来自AMF的UP更新请求消息。
步骤13、UPF将DL数据路径切换到目标网络设备,并向源小区发送一个或多个结束标记,然后就可以释放其与源网络设备之间的UP资源或传输网络层资源。
步骤14、UPF向AMF发送UP更新响应消息。相应的,AMF接收来自UPF的UP更新响应消息。
步骤15、AMF向目标网络设备发送路径转换ACK消息。
步骤16、目标网络设备收到路径转换ACK消息之后,向源网络设备发送UE上下文释放消息,通知源网络设备切换成功并触发源网络设备释放UE上下文。
步骤17、源网络设备在收到UE上下文释放消息后,可以释放无线承载和与UE上下文相关的控制面(control plane,CP)资源。
其中,如果数据转发还没有完成,源网络设备不会释放相关的资源,继续数据转发,直至数据转发完成之后再释放相关资源。
基于图5的技术方案,当基于L3层进行切换时,源网络设备可以通过与目标网络设备的交互,以及与终端设备的交互,实现终端设备的切换。
又一种场景中,在基于L3层的切换过程中,终端设备在进行小区切换,可以通过无随机接入信道(RACH-less)进行小区切换。图6为本申请实施例提供的一种RACH-less接入的示例流程图。该方法可以包括如下步骤。
S601、终端设备向源网络设备发送测量报告。
其中,该测量报告可以为终端设备基于网络设备的测量配置进行测量得到的。具体的,可以参照上述S501和S502。
S602、源网络设备根据测量报告进行切换判决。
其中,S602可以参照上述S503,不予赘述。
S603、源网络设备向目标网络设备发送切换请求信息。相应的,目标网络设备接收来自源网络设备的切换请求信息。
其中,切换请求信息可以参照上述S504的描述,不予赘述。
S604、目标网络设备在接收到来自源网络设备的切换请求消息,可以执行准入控制。
S605、目标网络设备向源网络设备发送切换请求确认消息。相应的,源网络设备接收来自目标网络设备的切换请求确认消息。
其中,该切换请求确认消息可以用于表示目标网络设备允许终端设备的切换。例如,该切换请求确认消息可以包括小区无线网临时标识(cell radio network temporary identifier,C-RNTI)、安全算法、随机接入信道(random access channel,RACH)资源以及接入层配置、***消息块(system information block,SIB)等信息。
一种示例中,当目标网络设备配置RACH-less切换,切换请求确认消息还可以包括定时调整指示和/或上行授权信息。其中,RACH-less是指在终端设备的切换过程中,不进行随机接入。上行授权可以用于指示上行资源。上行资源可以用于承载终端设备向目标网络设备发送的信息/数据。目标网络设备配置RACH-less切换可以是目标网络设备指示终端设备跳过随机接入过程。
S606、目标网络设备生成RRC重配完成消息,并通过源网络设备向终端设备发送RRC重配完成消息。
其中,RRC重配完成消息可以参照上述S509的描述,不予赘述。
一种示例中,当目标网络设备配置了RACH-less切换,RRC重配消息还可以包括定时提前调整指示。
又一种示例中,RRC重配完成消息可以包括上行授权,也可以不包括上行授权。
S607、终端设备接收RRC重配消息,并执行切换。
一种示例中,当RRC重配完成消息包括配置的上行授权资源的信息时,终端设备可以在该配置的上行授权资源上进行上行传输,接入目标网络设备。当RRC重配完成消息不包括配置的上行授权资源的信息时,终端设备可以通过监听目标网络设备的物理下行控制信道(physical downlink control channel,PDCCH),以接收上行授权,并通过接收到的上行授权资源,接入目标网络设备。
又一种示例中,如果目标网络设备配置RACH-less切换,终端设备通过预配置的上行授权资源或者动态调度的上行授权资源向目标网络设备发送RRC重配完成消息。其中,动态调度的上行授权资源可以是指终端设备通过监听目标小区的PDCCH,接收到的上行授权资源。
当目标网络设备接收到RRC重配完成消息之后,可以与核心网进行交互,实现与核心网之间的数据路径切换以及空口切换。具体的,可以参照上述S510的描述,不予赘述。
基于图6的技术方案,在基于L3层的RACH-less切换过程中,源网络设备可以通过与目标网络设备进行交互,以使得目标网络设备可以准确知道终端设备将向该目标网络设备进行切换。因此,目标网络设备可以准确的为终端设备分配上行授权,或者准确的确定动态调度上行授权的时机。
又一种场景中,基于层1或层2(Layer 1/Layer 2,L1/L2)的切换,L1/L2切换是相对于L3RRC切换而言的,指的是通过MAC控制单元(control element,CE)或下行控制信息(downlink control information,DCI)完成切换过程,其增益是减少接入的时延,从而减少业务的中断,并减少信令开销。
结合图2所示的通信***,一种DU间切换可以是指终端设备从源DU的小区切换到目标DU的小区,或者是指终端设备从源DU切换到目标DU。如图7所示,该方法可以包括如下步骤:
S701、CU向终端设备发送测量配置信息。相应的,终端设备接收来自CU的测量配置信息。
其中,测量配置信息可以用于指示终端设备对多个目标小区(如目标DU1的一个或多个小区、目标DU2的一个或多个小区)进行测量。具体的,可以参照上述S501中的测量配置信息的描述,不予赘述。
S702、终端设备向CU上报测量报告。
其中,该测量报告用于辅助CU进行切换判决和候选小区的确定。
其中,测量报告可以包括多个候选DU中每个候选DU的一个或多个小区的测量结果。具体的,可以参照上述S502的描述,不予赘述。
S703、CU向一个或多个候选DU(包括目标DU)发送切换请求消息或候选小区添加请求。
其中,S703可以参照上述S504的描述,不予赘述。
针对一个或多个候选DU中的任意一个候选DU,候选DU可以执行下述S704和S705。
S704、候选DU在接收来自CU的切换请求消息,执行切换准入控制。
其中,S704可以参照上述S505的描述,不予赘述。
S705、候选DU向CU发送切换请求确认消息。
其中,S705可以参照上述S506的描述,不予赘述。
S706、CU向终端设备发送L1/L2切换预配置信息。
其中L1/L2切换预配置信息中可以包含多个候选小区,以及多个候选小区的配置信息。L1/L2预配置信息可以包含在RRC重配消息中。UE在收到L1/L2预配置信息后,继续保持与源小区的数据传输。UE可以根据网络设备的配置执行测量,辅助网络设备做切换判决。
S707、源DU向终端设备发送L1/L2切换命令。相应的,终端设备接收来自源DU的L1/L2切换命令。
其中,L1/L2切换命令用于指示终端设备切换到目标DU下的目标小区,或者可以用于指示终端设备通过L1/L2切换完成小区变更。具体的,S707可以参照上述S507,不予赘述。此外, S707和S507不同的是:S507中是基于L3的切换命令(如为RRC重配消息),S707是L1/L2切换命令(如为MAC CE或DCI)。
S708、终端设备执行随机接入过程或RACH-less过程,与目标小区建立连接。
可选的,终端设备在收到L1/L2切换命令后,断开与源小区的数据传输。
其中,S708可以参照上述S508-S509,不予赘述。
S709、在终端设备与目标DU建立连接后,与目标DU进行数据传输。
一种示例中,当终端设备需要进行连续L1/L2切换(subsequent L1/L2 handover)时,终端设备在完成一次目标DU的接入后,不需要释放L1/L2预配置信息。如此,终端设备后续可以继续根据L1/L2预配置信息进行切换。
S710、CU执行路径切换。
可选的,CU执行数据路径切换。
其中,CU向核心网发送路径切换请求。S710可以参照上述S510的描述,不予赘述。
上述S709和S710的执行顺序,不予限定。可以先执行S709,再执行S710。或者,可以先执行S710,再执行S709。
基于图7的技术方案,终端设备配置多个候选DU,终端设备可以根据L1/L2候选小区配置信息,完成小区切换。
除上述DU间的L1/L2切换外,还有DU内的L1/L2切换,也即切换的目标小区和源小区属于同一DU,将图7中的源DU和目标DU分别替换为源小区和目标小区。
由上述图6的基于L3层的RACH-less切换过程可知,源网络设备下发切换命令前可以与目标网络设备进行及时交互,目标小区的配置信息是在切换命令中下发的,以使得目标网络设备可以准确的确定终端设备即将向该目标网络切换。因此,目标网络设备可以准确的为终端设备配置预配置授权,或者准确的确定动态调度上行授权的时机。此外,目标网络设备在切换命令中包含跳过RACH的指示,目标小区的定时提前信息和上行授权资源,使得终端设备能够准确确定发送切换完成消息的上行资源。
但是该方式不适用于基于L1/L2切换过程。对于基于L1/L2切换过程,预配置授权是在为终端设备配置一个或多个候选DU下的一个或多个候选小区时预先配置的。当该预配置授权为周期性配置资源时,若每个候选小区都为终端设备预留预配置授权资源,则会造成资源浪费。另外,由于L1/L2切换命令是源DU下发给终端设备的,候选DU(包括目标DU)不知道终端设备何时会切换到该候选DU。如果源DU下发L1/L2切换命令指示终端设备切换到目标DU(候选DU中的一个DU)的目标小区,如果针对该目标小区未配置预配置授权或预配置授权无法使用,目标DU需要通过动态调度为终端设备调度授权资源,但目标DU无法确定源DU何时向终端设备发送切换命令以及终端设备何时切换到目标DU。由于目标DU无法确定进行动态调度的时间,那么终端设备也无法准确的确定监听目标DU的动态调度资源的时间,终端设备与目标DU不能对齐。
鉴于此,本申请实施例提供了一种通信方案,该方法用于L1/L2切换过程,如果是无随机接入过程,终端设备确定用于发送切换完成消息的上行资源,终端设备确定监听目标小区的物理下行控制信道,节省终端设备的功耗,保证终端设备与目标DU之间的对齐。该方法包括:第一网络设备分别向第二网络设备和终端设备发送用于指示目标小区的信息的指示信息。终端设备在接收到该指示信息之后,可以根据预配置授权,向第二网络设备发送指示切换完成的消息。第二网络设备也根据第一网络设备的指示信息接收来自终端设备的指示切换完成的消息。
一种应用场景中,第一网络设备为源DU,第二网络设备为目标DU。目标DU和终端设备可以根据该指示信息,准确的确定终端设备切换的目标小区。避免出现终端设备和目标DU不能对齐的问题。
下面结合图2的通信***,对本申请实施例提供的方法进行说明。
如图8所示,该方法可以包括S801~S804。
S801、第一网络设备向第二网络设备发送第二指示信息。相应的,第二网络设备接收来自第一网络设备的第二指示信息。
其中,第一网络设备和第二网络设备可以为图2中的DU。第一网络设备和第二网络设备可 以相同,例如,均为图2中的DU1,这种情况下,为同一DU内的小区切换。第一网络设备和第二网络设备也可以不同,例如,第一网络设备可以为图2中的DU1,第二网络设备可以为图2中的DU2。
其中,第二指示信息可以用于指示终端设备切换的目标小区的信息。比如,第一指示信息可以包括目标小区的标识。
其中,目标小区为第二网络设备的小区。目标小区可以为配置的多个候选小区中的小区。该多个候选小区可以包括第一网络设备的小区、第二网络设备的小区,或者其他网络设备的小区。
一种示例中,为了便于管理,第一网络设备可以将多个候选小区划分为多个候选小区组。
例如,如图9所示,该多个候选小区可以包括小区1~小区7。终端设备位于小区1的覆盖范围。小区2~小区7为候选小区。其中,小区2、小区3和小区4属于候选小区组1。小区5和小区6属于候选小区组2。小区7属于候选小区组3。
又一种示例中,第一网络设备在向第二网络设备发送第二指示信息前,为了保证终端设备在切换时,减少接入的时延,从而减少业务的中断,并减少信令开销,第一网络可以为终端设备配置一个或多个候选网络设备,并将该一个或多个候选网络设备的一个或多个小区配置为候选小区。
例如,第一网络设备可以根据网络设备的部署情况、网络设备的拓扑信息、终端设备的移动轨迹中的一个或多个,确定一个或多个候选网络设备(也即第二网络设备可以为该一个或多个候选网络设备中的网络设备),并将该一个或多个候选网络设备中的一个或多个小区配置为候选小区。该一个或多个候选网络设备可以包括第一网络设备和/或其他网络设备。
其中,网络设备的部署情况可以包括网络设备以及网络设备的小区的覆盖范围、网络设备之间的距离等。网络设备的拓扑信息可以是指节点之间的组网信息。比如,网络设备的拓扑信息可以包括网络设备的标识以及网络设备之间的链路信息等。网络设备的部署情况以及拓扑信息可以为第一网络设备预先配置的,也可以为第一网络设备从其他设备处获取的。比如,第一网络设备可以从核心网获取的。又比如,当第一网络设备为DU时,第一网络设备也可以从对应的CU处获取,不予限制。
例如,当某个网络设备的覆盖区域与第一网络设备的覆盖区域具有重叠区域,或者该网络设备与第一网络设备之间的距离小于预设距离,则第一网络设备可以将该网络设备作为候选网络设备。预设距离可以50米、60米等,不予限制。
又例如,当某个网络设备与第一网络设备位于同一拓扑图中或该网络设备与第一网络设备具有直连链路,则第一网络设备可以将该网络设备作为候选网络设备。
又例如,当终端设备的移动轨迹为道路A,则第一网络设备可以与道路A的距离小于预设距离的网络设备,作为候选网络设备。
进一步的,第一网络设备在确定一个或多个候选网络设备之后,还可以向该一个或多个候选网络设备发送切换请求。候选网络设备在接收到切换请求之后,可以执行接入控制,并向第一网络设备发送切换请求确认信息。第一网络设备可以根据该一个或多个候选网络设备的切换请求确认信息,确定允许终端设备切换的候选网络设备。具体的,可以参照上述图7的实施例,不予赘述。
又一种示例中终端设备向第一网络设备发送测量报告,例如,该测量报告可以是L1测量报告。该测量报告辅助第一网络设备从多个候选小区中确定目标小区。具体的,可以参照上述实施例的描述,不予赘述。
又一种示例中,在某些切换中,终端设备的服务小区没有变化,但是终端设备对应的服务小区的波束信息变化。也即,目标小区可以为终端设备的服务小区。
一种应用场景中,第一网络设备为第一DU,第二网络设备为第二DU。第一DU和第二DU可以为相同的DU,也可以为不同的DU。当第一DU和第二DU为不同的DU时,第一DU和第二DU可以对应同一CU。例如,如图2所示,第一DU可以为DU1,第二DU可以为DU2。第一DU和第二DU对应的CU为图2中的CU。
一种可能的实现方式中,结合上述应用场景,第一网络设备(或者第一DU)可以通过CU向第二网络设备(或者第二DU)发送第一指示信息。
S802、第一网络设备向终端设备发送第一指示信息。
相应的,终端设备接收来自第一网络设备的第一指示信息。
其中,第一指示信息可以用于指示终端设备切换的目标小区的信息。例如,第一指示信息可以为上述实施例中的切换命令。也即,第一指示信息还可以用于指示终端设备切换至目标小区。比如,第一指示信息可以包括目标小区的标识。目标小区可以为终端设备在接收第一指示信息前配置的多个候选小区中的小区。
一种示例中,当目标小区为候选小区组的小区时,第一指示信息还可以包括该候选小区组的组信息。例如,组信息可以包括候选小区组的标识、候选小区组包括的每个候选小区的标识等。
一种可能的实现方式中,如果该方法应用在基于L1/L2切换过程中,则第一指示信息可以承载在MAC CE或DCI中。第一指示信息也可以为单独的信令,不予限制。
需要说明的是,第一网络设备可以先执行上述S801,再执行S802。也可以先执行S802,再执行S801。或者,第一网络设备可以同步执行上述S801和S802,不予限制。
S803、终端设备根据目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源,并在该上行资源上发送指示切换完成的消息。
其中,第一预配置授权也可以称为配置授权、配置的授权。第一预配置授权为第二网络设备为终端设备预先配置的。
其中,该上行资源可以用于终端设备向第二网络设备发送指示切换完成的消息。指示切换完成的消息用于指示终端设备切换至目标小区的切换完成消息,或者用于指示终端设备与目标小区完成同步的同步完成消息。指示切换完成的消息可以承载于MAC CE或DCI中,例如可以为切换完成MAC CE,或DCI中1比特指示信息。
其中,上行资源可以是第一预配置授权。第一预配置授权也可以叫第一预配置授权资源。
其中,第一预配置授权的配置情况可以包括终端设备配置第一预配置授权或终端设备未配置第一预配置授权。
第一预配置授权的配置信息可以是在L1/L2预配置信息中配置的,例如,S706中配置的。还可以理解为,第一预配置授权是在候选小区配置过程中配置的,例如,S703-S706。终端设备针对切换目标小区的第一预配置授权是在配置目标小区为候选小区时配置的。第一预配置授权的配置信息包括第一预配置授权的时域信息、频域信息,周期等。例如,如果第一预配置授权配置为周期性资源,其可以包括一个或多个时机。
一种可能的实现方式中,终端设备配置第一预配置授权且第一预配置授权有效,则终端设备可以确定发送指示切换完成的消息的上行资源为第一预配置授权指示的上行资源。
其中,终端设备配置第一预配置授权也可以描述为第二网络设备为终端设备预先配置有第一预配置授权。例如,第二网络设备在接收到第一网络设备的第二指示信息之后,如果第二网络设备允许终端设备的接入,则第二网络设备可以为终端设备配置第一预配置授权,并向第一网络设备发送用于指示第一预配置授权的消息。例如,用于指示第一预配置授权的消息可以承载在切换请求确认信息中,或者可以为单独的信令。第一网络设备在接收到用于指示第一预配置授权的消息之后,可以向终端设备转发该用于指示第一预配置授权的消息。例如,该用于指示第一预配置授权的消息可以承载在S801的测量配置信息中,也可以为单独的信令,不予限制。
一种示例中,第一预配置授权有效可以包括以下一项或多项:第一预配置授权关联的SSB的RSRP高于第一预设阈值、第一预配置授权与PRACH资源不重叠、第一预配置授权与msgA PUSCH资源不重叠。其中,第一预设阈值可以是网络配置的,或者为预配置的阈值。
例如,终端设备配置第一预配置授权、且第一预配置授权关联的SSB的RSRP高于预设阈值,或者第一预配置授权与PRACH资源不重叠,或者第一预配置授权与msgA PUSCH资源不重叠,则终端设备可以确定发送指示切换完成的消息的上行资源为第一预配置授权资源。
又例如,终端设备配置第一预配置授权、且第一预配置授权关联的SSB的RSRP高于预设阈值、且第一预配置授权与PRACH资源不重叠,则终端设备可以确定发送指示切换完成的消息的上行资源为第一预配置授权。
又例如,终端设备配置第一预配置授权、且第一预配置授权关联的SSB的RSRP高于预设阈 值、且第一预配置授权与msgA PUSCH资源不重叠,则终端设备可以确定发送指示切换完成的消息的上行资源为第一预配置授权。
又例如,终端设备配置第一预配置授权、且第一预配置授权与PRACH资源不重叠,且第一预配置授权与msgA PUSCH资源不重叠,则终端设备可以确定发送指示切换完成的消息的上行资源为第一预配置授权。
又例如,终端设备配置第一预配置授权、且第一预配置授权关联的SSB的RSRP高于预设阈值,且第一预配置授权与PRACH资源不重叠,且第一预配置授权与msgA PUSCH资源不重叠,则终端设备可以确定发送指示切换完成的消息的上行资源为第一预配置授权资源。
又一种可能的实现方式中,如果第一预配置授权不是周期性资源,例如,可以理解为,第一预配置授权对应一个时频资源,或者说对应一个预配置授权时机。终端设备配置第一预配置授权、且第一预配置授权有效、且终端设备接收第一指示信息的时域位置与第一预配置授权的时域位置的偏移小于第二预设阈值,则终端设备可以确定发送指示切换完成的消息的上行资源为第一预配置授权指示的上行资源。具体的,可以参照下述实施例的描述,此处不予赘述。
又一种可能的实现方式中,如果第一预配置授权是周期性资源,例如可以理解为,第一预配置授权对应多个时频资源,或者说对应多个预配置授权时机。终端设备配置第一预配置授权、且第一预配置授权有效、且终端设备接收第一指示信息的时域位置与第一预配置授权的第一时机的时域位置的偏移小于第二预设阈值,则终端设备可以确定发送指示切换完成的消息的上行资源为第一预配置授权指示的上行资源。
又一种可能的实现方式中,终端设备未配置第一预配置授权或第一预配置授权无效,则终端设备可以监听用于指示第二上行授权资源的目标小区的PDCCH,此时,用于终端设备向第二网络设备发送指示切换完成的消息上行资源为第二上行资源。具体的,可以参照下述实施例的描述,此处不予赘述。其中,第二预设阈值可以是网络配置的,或者为预配置的阈值。
又一种可能的实现方式中,终端设备未配置第一预配置授权,或者第一预配置授权无效,或者终端设备接收第一指示信息的时域位置与第一预配置授权的时域位置的偏移(也可以称为偏移值)大于或等于第二预设阈值,终端设备监听用于指示第二上行授权资源的目标小区的PDCCH,终端设备可以确定发送指示切换完成的消息的上行资源为第二上行授权资源。具体的,可以参照下述实施例的描述,此处不予赘述。
又一种可能的实现方式中,如果第一预配置授权是周期性资源,例如可以理解为,第一预配置授权对应多个时频资源,或者说对应多个预配置授权时机。终端设备未配置第一预配置授权,或者第一预配置授权无效,或者终端设备接收第一指示信息的时域位置与第一预配置授权的第一时机的时域位置的偏移大于或等于第二预设阈值,终端设备监听用于指示第二上行授权资源的目标小区的PDCCH。如此,终端设备可以确定发送指示切换完成的消息的上行资源为第二上行授权资源。可以参照下述实施例的描述,此处不予赘述。
S804、第二网络设备接收来自终端设备的指示切换完成的消息。
一种可能的实现方式中,第二网络设备检测终端设备的上行消息。例如,第二网络设备在第一预配置授权上检测来自终端设备的指示切换完成的消息,和/或第二网络设备在第二上行资源上检测来自终端设备的指示切换完成的消息。可选的,第二网络设备在接收到来自第一网络设备的第二指示信息后,开始检测来自终端设备的指示切换完成的消息。
一种可能的实现方式中,第二网络设备根据第一预配置授权的配置情况,在上行资源上接收来自终端设备的指示切换完成的消息。
其中,第一预配置授权的配置情况可以包括第二网络设备为终端设备配置第一预配置预授权或第二网络设备未给终端设备配置第一预配置授权。第二网络设备为终端设备配置第一预配置授权,上行资源可以包括第一预配置授权。第二网络设备未给终端设备配置第一预配置授权,上行资源为第二网络设备动态调度的授权资源。
一种可能的实现方式中,第二网络设备为终端设备配置第一预配置授权。第二网络设备在第一预配置授权上接收终端设备发送的用于指示切换完成的消息(这个过程中,上行资源为第一预配置授权)。如果第二网络设备在第一预配置授权对应的时域范围内未接收到用于指示切换完成 的消息,第二网络设备可以通过动态调度第二上行授权资源,在第二上行授权资源上接收用于指示切换完成的消息(这个过程中,上行资源为第二网络设备动态调度的资源)。
一种示例中,第二网络设备为终端设备配置第一预配置授权,且终端设备确定第一预配置授权有效。终端设备在第一预配置授权上发送指示切换完成的消息。相应的,第二网络设备可以在第一预配置授权上接收来自终端设备的用于指示切换完成的消息。
又一种示例中,第二网络设备为终端设备配置第一预配置授权,但终端设备接收第一指示信息的时域位置与第一预配置授权的时域位置的偏移小于第二预设阈值,则终端设备可以在第一预配置授权上发送用于指示切换完成的消息。相应的,第二网络设备可以在该第一预配置授权上接收用于指示切换完成的消息。
又一种可能的实现方式中,第二网络设备为终端设备配置第一预配置授权,但第二网络设备在第一预配置授权上未接收到来自终端设备的用于指示切换完成的消息,或者,第二网络设备未给终端设备配置第一预配置授权,则第二网络设备可以通过调度用于指示第二上行授权资源的目标小区的PDCCH。如此,终端设备可以在第二上行资源上发送指示切换完成的消息。相应的,第二网络设备可以在该第二上行授权资源上接收指示切换完成的消息(这个过程中,上行资源为第二网络设备动态调度的资源)。
其中,第二网络设备为终端设备配置第一预配置授权,但第二网络设备在第一预设授权上未接收到来自终端设备的指示切换完成的消息可以包括:终端设备配置第一预配置授权,且终端设备确定第一预配置授权无效;或终端设备配置第一预配置授权,且第一预配置授权有效,但终端设备接收第一指示信息的时域位置与第一预配置授权的时域位置大于或等于第二预设阈值;或终端设备第一预配置授权发送了指示切换完成的消息,由于某些原因(例如,信号质量差或干扰),第二网络设备未收到终端设备发送的指示切换完成的消息。
基于图8所示的技术方案,第二网络设备可以在接收到来自第一网络设备的第二指示信息之后,可以根据该第二指示信息准确的确定终端设备切换的目标小区。同时,终端设备在接收到第一指示信息之后,可以根据预配置授权的配置情况,准确的确定发送指示切换完成的消息的上行资源。终端设备确定发送指示切换完成的消息的上行资源,可以在该上行资源上发送指示切换完成的消息。如此,第二网络设备可以根据目标小区的第一预配置授权的配置情况,准确的接收来自终端设备的指示切换完成的消息。保证了终端设备与第二网络设备的对齐。
一种可能的实施例中,上述S803中,终端设备未配置第一预配置授权或第一预配置授权无效,则终端设备可以监听目标小区的PDCCH,以获取第二上行授权资源,并将第二上行授权资源作为上行资源,具体可以包括以下多种情况。
情况1、终端设备未配置第一预配置授权。
当第二网络设备未给终端设备预配置第一预配置授权时,第二网络设备可以通过动态调度第二上行授权资源。如此,终端设备可以监听目标小区的PDCCH,确定第二上行授权资源,并在该第二上行授权资源上发送指示切换完成的消息。相应的,第二网络设备可以在第二上行授权资源上接收指示切换完成的消息。
情况2、终端设备配置了第一预配置授权资源,第一预配置授权无效。
其中,第一预配置授权无效可以包括以下一项或多项:第一预配置授权关联的SSB的RSRP低于第一预设阈值、第一预配置授权与PRACH资源重叠、或第一预配置授权预MSGA PUSCH资源重叠。
一种示例中,当第二网络设备为终端设备配置第一预配置授权,且终端设备确定第一预配置授权无效。终端设备不在第一预配置授权上发送指示切换完成的消息。
例如,当第一预配置授权关联的SSB的RSRP低于或等于第一预设阈值,或者第一预配置授权与PRACH资源重叠,或者第一预配置授权与msgA PUSCH资源重叠,则终端设备确定第一预配置授权无效。
又例如,当第一预配置授权关联的SSB的RSRP低于或等于第一预设阈值,且第一预配置授权与PRACH资源重叠,则终端设备确定第一预配置授权无效。
又例如,当第一预配置授权关联的SSB的RSRP低于或等于第一预设阈值,且第一预配置授 权与msgA PUSCH资源重叠,则终端设备确定第一预配置授权无效。
又例如,当第一预配置授权与PRACH资源重叠,且第一预配置授权与msgA PUSCH资源重叠,则终端设备确定第一预配置授权无效。
又例如,当第一预配置授权关联的SSB的RSRP低于或等于第一预设阈值,且第一预配置授权与PRACH资源重叠,且第一预配置授权与msgA PUSCH资源重叠,则终端设备确定第一预配置授权无效。
当终端设备不在第一预配置授权上发送指示切换完成的消息。则第二网络设备在第一预配置授权上就无法接收到指示切换完成的消息。
一种示例中,第二网络设备在第一预配置授权对应的时域位置(包括起点位置和终点位置)范围内检测用于指示切换完成的消息。若第二网络设备在第一预配置授权对应的时域位置范围内未检测到用于指示切换完成的消息,则第二网络设备可以调度用于指示第二上行授权资源的目标小区的PDCCH。如此,终点设备可以通过监听目标小区的PDCCH,接收第二上行授权资源。终点设备可以在该第二上行授权上发送指示切换完成的消息。相应的,第二网络设备可以在第二上行授权上接收指示切换完成的消息。
又一种示例中,该实施例还可以包括情况3。
情况3、终端设备接收第一指示信息的时域位置与第一预配置授权的时域位置的偏移(也可以称为偏移值)大于或等于第二预设阈值,则终端设备可以监听用于指示第二上行授权资源的目标小区的PDCCH,以获取第二上行授权资源,并将第二上行授权资源作为上行资源。需要说明的是,本申请实施例可以单独实现,也可以与前述图5~图7,图10~图14对应实施例结合实现。
一种可能的实施例中,如图10所示,本申请实施例提供的方法,上述S803中,终端设备在上行资源上发送指示切换完成的消息,具体可以包括:
S1001、终端设备通过第一HARQ进程在上行资源上发送指示切换完成的消息。
其中,第一HARQ进程可以为终端设备基于第一预配置授权资源的配置信息确定的。例如,第一预配置授权的配置信息可以包括第一预配置授权的周期,HARQ进程数,时域配置,频域配置。
一种示例中,第一预配置授权的HARQ进程计算如下:
与上行传输的第一个符号相关联的HARQ进程ID从以下等式导出:
HARQ进程ID=[floor(CURRENT_symbol/periodicity)]modulo nrof HARQ-Processes。
其中,floor是向下取整。modulo是取模。CURRENT_symbol=(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slot number in the frame×numberOfSymbolsPerSlot+symbol number in the slot)。
其中,nrof HARQ-Processes是HARQ进程数。Periodicity是配置授权的周期。SFN是***帧号。number Of Slots PerFrame是每个帧中连续的时隙数。number Of Symbols PerSlot是每个时隙中连续的符号数。slot number in the frame是上行传输的第一个符号所在的帧中的时隙编号。symbol number in the slot是上行传输的第一个符号所在的时隙中的符号编号。上述计算公式仅为示例性的,不进行限定。
一种示例中,指示切换完成的消息中可以携带第一HARQ进程的信息。例如,指示切换完成的消息可以包括第一HARQ进程的ID。
相应的,上述S804中,终端设备在上行资源上接收指示切换完成的消息,具体可以包括:第二网络设备在上行资源上接收与第一HARQ进程关联的指示切换完成的消息。第二网络设备在接收到指示切换完成的消息确定第一HARQ进程。
一种可能的实施例中,如图11所示,本申请实施例提供的方法,如果第二网络设备接收指示切换完成的消息,还可以包括:
S1101、第二网络设备向终端设备发送第一响应消息。
相应的,终端设备接收来自第二网络设备的第一响应消息。
其中,第一响应消息可以用于指示第二网络设备接收到指示切换完成的消息。例如,第一响应消息可以为切换完成确认消息或者竞争解决消息。又例如,第一响应消息可以包括第一字符。 第一字符可以用于标识第二网络设备接收到指示切换完成的消息,不予限制。第一响应消息可以承载于MAC CE或DCI中。
基于该实施例,第二网络设备在接收到指示切换完成的消息之后,可以反馈收到指示切换完成的消息。如此,终端设备在接收到第二网络设备反馈的响应消息之后,可以准确的确定第二网络设备接收到了指示切换完成的消息,终端设备可以与第二网络设备进行数据传输。
一种可能的实施例中,终端设备可以监听C-RNTI加扰的PDCCH,接收针对目标小区的第三上行授权资源。
可选的,终端设备发送指示切换完成的消息后,监听目标小区的PDCCH。例如,如果终端设备未收到第一响应消息,终端设备可以监听C-RNTI加扰的PDCCH,接收针对目标小区的第三上行授权资源。该第三上行授权资源被指示用于新的传输(也叫新传)。可选的,第二网络设备在调度第三上行授权资源的下行控制信息(downlink control information,DCI)中包含新数据指示(new data indicator,NDI)。例如,如果针对相同HARQ进程的NDI翻转,则认为是新传资源;或者例如该新数据指示设为0指示新传,设为1指示重传,或者该新数据指示设为1指示新传,设为0指示重传。
其中,第三上行授权资源可以关联第一HARQ进程,也可以关联任意一个HARQ进程。任意一个HARQ进程可以与第一HARQ进程相同,也可以与第一HARQ进程不同。终端设备未收到网络的第一响应消息,且第三上行授权是通过C-RNTI加扰的PDCCH接收的,终端设备在第三上行授权资源上再次发送指示切换完成的消息。
可选的,终端设备将在第三上行授权资源上再次发送指示切换完成的消息视为新传。
一种可能的实现方式中,终端设备可以监听C-RNTI加扰的PDCCH,接收针对目标小区的第三上行授权资源。
可选的,终端设备发送指示切换完成的消息后,监听目标小区的PDCCH。例如,如果终端设备未收到第一响应消息,终端设备可以监听C-RNTI加扰的PDCCH,接收针对目标小区的第三上行授权资源。该第三上行授权资源被指示用于重新传输。可选的,第三上行授权资源关联第一HARQ进程。终端设备未收到网络的第一响应消息,且第三上行授权是通过C-RNTI加扰的PDCCH接收的,终端设备在第三上行授权资源上重新传输指示切换完成的消息。可选的,该重新传输视为重传。
下面结合示例对该可能的实现方式进行举例说明:
示例1,终端设备通过第一HARQ进程在上行资源上发送指示切换完成的消息。第二网络设备在上行资源上检测到指示切换完成的消息,但未成功解析或未成功接收到指示切换完成的消息。第二网络设备可以通过调度与第一HARQ进程关联的上行授权资源(也即第三上行授权资源)。终端设备在接收到该上行授权资源后,可以在该上行授权资源上重新发送指示切换完成的消息。在该示例中,第三上行授权资源为重传资源。
示例2,终端设备通过第一HARQ进程在上行资源上发送指示切换完成的消息。第二网络设备在上行资源上未检测到指示切换完成的消息。第二网络设备可以通过调度与第一HARQ进程关联的上行授权资源,或者第二网络设备调度与任意一个HARQ进程关联的上行授权资源。终端设备如果未收到第二网络设备的第一响应消息,可以在该上行授权资源上再次传输指示切换完成的消息。可选的,该再次传输视为新传。
例如,第二网络设备调度的上行授权资源关联第一HARQ进程。终端设备可以通过第一HARQ进程在该上行授权资源上传输指示切换完成的消息。
例如,第二网络设备调度与任意一个HARQ进程关联的上行授权资源的情况。例如第二网络调度的上行授权资源与第二HARQ进程关联,终端设备可以通过第二HARQ进程在该上行授权资源上再次传输指示切换完成的消息。又例如,第二网络调度的上行授权资源与第三HARQ进程关联,终端设备可以通过第三HARQ进程在该上行授权资源上再次传输指示切换完成的消息。
又一种可能的实现方式中,终端设备未接收到第一响应消息,且未接收到第二网络的C-RNTI加扰的PDCCH调度或未收到第三上行授权资源。终端设备可以在与下一个第一HARQ进程关联的上行授权资源上重新传输指示切换完成的消息。
一种示例中,第一预配置授权可以包括多个时机。该多个时机可以为周期性的时机。每个时机关联一个HARQ进程。例如,终端设备在第一预配置授权的与第一HARQ进程关联的第一时机上发送指示切换完成的消息。终端设备未收到第一响应消息,且终端设备未收到第三上行授权资源。终端设备可以在第一预配置授权中关联第一HARQ进程的下一个时机上重新传输指示切换完成的消息。
基于该可能的实施例,终端设备未收到指示第二网络设备在接收到指示切换完成的消息的响应消息,终端设备可以重新传输指示切换完成的消息,提高了切换成功率。
一种可能的实施例中,第一预配置授权还可以设置有对应的有效时长和/或生效时间。
一种可能的实现方式中,该实施例可以通过下述过程实现。
步骤1:第二网络设备配置定时器。
一种示例中,第二网络设备在为终端设备配置候选小区,候选小区配置包括第一预配置授权配置信息,可选的,还可以包括第一预配置授权对应的第一定时器时长(也即有效时长)和/或起始偏移。
其中,第一预配置授权对应的第一定时器时长和/或生效时间可以为:第二网络设备在为终端设备配置候选小区时为每个候选小区配置的,或者为每个候选小区组配置的。
其中,有效时长可以是指终端设备使用第一预配置授权的时间。也即,在有效时长内,第一预配置授权可以为终端设备的专用上行授权。有效时长可以为CG周期的整数倍或符号为单位,即符号的整数倍、或帧为单位,帧的整数倍,或者也可以为正整数,或者以秒为单位。
其中,生效时间可以是指第一预配置授权可以配置给终端设备使用的时间,例如第一个符号。例如,生效时间可以为补偿(offset)时长。终端设备在收到第一指示信息后,经offset时长后,终端设备可以使用该第一预配置授权。
一种示例中,在第一预配置授权的有效时长内,第一预配置授权为终端设备的专用上行授权。终端设备使用第一预配置授权的时长超过有效时长,终端设备无法继续使用第一预配置授权,或者第一预配置授权为共用上行授权。
其中,共用上行授权可以是指终端设备和其他终端设备均可以使用第一预配置授权。例如,第一预配置授权可以为竞争的上行授权,或者可以为Type-1配置授权。
一种可能的实现方式中,第一网络设备在对终端设备的候选小区的配置中,包括对候选小区对应的第一定时器的配置。第一定时器可以用于控制终端设备使用第一预配置授权的有效时长。可以理解为,在第一定时器的运行时间内,第一预配置授权为终端设备的专用授权资源。
其中,该第一定时器可以是针对每个候选小区配置的,也可以对候选小区组配置的。其中,候选小区组可以为第一网络设备对多个候选小区进行分组得到。例如,第一网络设备可以根据网络设备部署或者网络设备的拓扑信息或者,终端设备的移动轨迹等信息,对多个候选小区进行分组。
例如,第一网络设备可以将具有重叠覆盖区域的小区划分为一个候选小区组。又例如,第一网络设备可以将处于同一拓扑图中或具有直连链路的网络设备的多个小区划分为一个候选小区组。又例如,当终端设备的移动轨迹为道路A,则第一网络设备可以与道路A的距离小于预设距离的网络设备的多个小区划分为一个候选小区组。
一种示例中,第一网络设备配置定时器。也即,第一网络设备为第一定时器配置起始offset(也即生效时间)和有效时长。例如,该起始offset、有效时长可以承载/包含在RRC重配消息中,或者也可以为单独的信令,或者也可以承载/包含在其他消息中,不予限制。起始offset是以终端设备收候选小区的配置为基准生效的。终端设备在收到包含候选小区配置信息的消息后经过offset的时间,启动第一定时器。包含候选小区配置信息的消息可以为RRC重配消息,或者,也还可以为单独的消息,或者,也可以为其他消息,不予限制。
其中,第一定时器是针对每个候选小区配置的,则每个候选小区可以配置有起始offset和/或有效时长。第一定时器是针对每个候选小区组配置的,则每个候选小区组可以配置有起始offset和/或有效时长。
又一种示例中,第一网络设备未配置第一定时器。也即,第一网络设备未为第一定时器配置 起始offset和/或有效时长。
例如,第一网络设备未配置第一定时器的有效时长,但配置第一定时器的起始offset,则终端设备在收到候选小区的配置时,第一预配置授权开始生效,且第一预配置授权始终为终端设备的专用授权资源。
又例如,第一网络设备未配置起始offset,但配置第一定时器的有效时长,则终端设备在收到候选小区的第一预配置授权时,第一预配置授权开始生效。在运行时长超过有效时长,则终端设备无法继续使用第一预配置授权或第一预配置授权为共用授权资源。
又例如,第一网络设备未配置起始offset,也未配置第一定时器的有效时长,则终端设备在收到候选小区的第一预配置授权时,第一预配置授权开始生效,且第一预配置授权始终为终端设备的专用授权资源。
步骤2:终端设备应用定时器。
一种可能的实现方式中,终端设备根据第二网络设备的配置,确定第一预配置授权的生效时间和有效时长。
一种示例中,第一预配置授权配置了对应的有效时长且设置生效时间。终端设备收到包含候选小区配置的消息或者终端设备在收到第一网络设备针对候选小区/组的第一预配置授权,经过生效时间后,启动第一定时器,第一预配置授权开始生效。在有效时长内,终端设备可以在第一预配置授权上发送指示切换完成的消息。
例如,如图12中的a所示,目标小区为小区2,小区2或小区2所在的候选小区组1的第一预配置授权配置的第一定时器时长为CG资源的时长的2倍(也可以描述为2倍的CG周期),offset1=0。则终端设备在接收到包含候选小区配置信息的消息时,小区2的第一预配置授权开始生效(也即,第一预配置授权为指终端设备的专用上行授权)。经2倍的CG周期的时长之后,小区2的第一预配置授权失效(也即,第一预配置授权为共用上行授权,或者终端设备无需继续使用第一预配置授权)。
又一种示例中,第一预配置授权未配置第一定时器的有效时长,但配置第一定时器的起始offset,则终端设备在收到包含候选小区配置信息的消息时,启动第一定时器(也即第一预配置授权开始生效),且第一预配置授权始终为终端设备的专用授权资源。
例如,如图12中的b所示,目标小区为小区3,小区3或小区3所在的候选小区组1的第一预配置授权配置的定时器时长为3倍的CG周期,offset2=2(也即为2倍的CG周期)。则终端设备在接收到第一指示信息时,经2倍的CG周期的时长之后,小区3的第一预配置授权生效,即启动第一定时器。第一定时器启动后,经3倍的CG周期的时长之后,小区3的第一预配置授权失效。
又一种示例中,第一预配置授权未配置起始offset,但配置第一定时器的有效时长,则终端设备在收到包含候选小区配置信息的消息时,启动第一定时器。在第一定时器的运行时长超过有效时长,则终端设备无法继续使用第一预配置授权或第一预配置授权为共用授权资源。
例如,如图12中的c所示,目标小区为小区5,小区5或小区5所在的候选小区组2的第一预配置授权配置的第一定时器时长为n倍的CG周期,offset3=m。n、m为正整数。也即,终端设备在接收到包含候选小区配置信息的消息时,经n倍的CG周期的时长之后,第一预配置授权生效。经m倍的CG周期的时长之后,第一预配置授权失效。
又一种示例中,第一网络设备未配置起始offset,也未配置第一定时器的有效时长,则终端设备在收到包含候选小区配置信息时,启动第一定时器。第一预配置授权始终为终端设备的专用授权资源。
例如,如图12中的d所示,目标小区为小区7,小区7或小区7所在的候选小区组3的第一预配置授权未配置第一定时器时长以及生效时间。则终端设备在接收到包含候选小区配置信息的消息时,小区7的第一预配置授权开始生效,且在小区7为终端设备的服务小区的时间段内,第一预配置授权始终为终端设备的专用上行资源。
基于该可能的实施例,通过为目标小区的第一预配置授权配置有效时长和生效时间,避免出现多个候选小区的预配置授权同时生效,造成资源浪费,从而提高了资源利用率。
需要说明的是,上述图10和图11对应的实施例可以单独实现,也可以与本申请实施例中任意一个或多个实施例结合,并且该两个实施例也可以相互结合。
一种实施例中,下面结合图2的通信***,以第一网络设备源DU、第二网络设备为目标DU为例,对本申请实施例提供的方法进行说明。
如图13所示,为本申请实施例提供的一种通信方法,该方法包括:
S1301、源DU为终端设备预配置多个候选小区。
其中,源DU在确定终端设备的多个候选小区之后,可以通过RRC重配消息,将多个候选小区的配置信息发送给终端设备。候选小区的配置信息可以包括候选小区为终端设备配置的第一预配置授权的配置。
其中,S1301的实现方式可以参考上述S701~S706,不予赘述。
S1302、终端设备向源DU发送测量报告。
可选的,该测量报告可以是层1测量报告。
终端设备根据测量配置信息,对多个候选小区进行测量,得到测量结果。可选的,该测量结果是层1测量结果。终端设备向源DU发送测量报告。源DU接收来自终端设备的测量报告。
S1303、源DU进行切换决策。
其中,源DU参考终端设备上报的测量报告,决定执行切换,确定切换的目标小区。
S1304、源DU发送第二指示信息;
可选的,源DU通过CU向目标小区所在的目标DU发送第二指示信息。
其中,目标DU向CU发送第二指示信息,CU将第二指示信息转发给目标DU。
S1305、源DU向终端设备发送第一指示信息。相应的,终端设备接收来自源DU的第一指示信息。
其中,上述S1304和S1305的执行顺序不分先后。
S1306、终端设备根据第一指示信息,确定向目标DU进行小区切换。
一种示例中,终端设备在执行小区切换时,可以启动第二定时器,并应用第二定时器的运行时长。当终端设备在该运行时长内,终端设备未成功切换至目标小区,则确定小区切换失败。可选的,该第二定时器为MAC层定时器。
S1307、终端设备发送指示切换完成的消息。
其中,终端设备根据第一预配置授权的配置情况,在上行资源上发送指示切换完成的消息。
一种示例中,终端设备配置第一预配置授权,且第一预配置授权有效,终端设备在第一预配置授权上发送指示切换完成的消息。
进一步的,终端设备在第一预配置授权上发送指示切换完成的消息后的第x个时隙,开始监听C-RNTI加扰的PDCCH,用以接收目标DU的调度。其中,x为整数。
又一种示例中,终端设备未配置第一预配置授权,或第一预配置授权无效,终端设备可以监听C-RNTI加扰的PDCCH,用以接收来自目标DU的针对目标小区的第二上行授权资源,并在第二上行授权资源上发送指示切换完成的消息。
S1308、目标DU接收来自终端设备的指示切换完成的消息。
其中,目标小区可以根据第一预配置授权的配置情况,在上行资源上接收指示切换完成的消息。
一种示例中,目标DU为终端设备配置第一预配置授权,且目标DU未在第一预配置授权上接收到指示切换完成的消息。目标DU可以调度C-RNTI加扰的PDCCH,向终端设备发送第二上行授权资源,并在第二上行授权资源上接收指示切换完成的消息。
S1309、目标DU向终端设备发送响应消息。
可选的,目标DU在接收到指示切换完成的消息之后,目标DU向终端设备发送响应消息。其中,该响应消息可以承载在DCI或者MAC CE。该响应消息指示目标DU接收到指示切换完成的消息。
S1310、CU进行路径切换。
其中,图13中各个步骤的具体实现方法可以参照上述实施例的描述,不予赘述。S1301~S1304、 S1308、S1309、S1310为可选的步骤。
基于图13的技术方案,目标DU可以根据第二指示信息,确定何时对终端设备进行资源调度。终端设备可以通过预配置授权资源的配置情况确定监听PDCCH的时间。减少终端设备监听PDCCH的时间,达到了节省功耗的目的。另外,终端设备可以通预配置授权的配置情况,确定向目标DU发送指示切换完成的消息的上行资源,提高了切换成功率。
在一种示例中,源DU和目标DU可以是同一个DU。在这种情况下,理解为DU内的小区切换。可选的,对应的流程中,源DU和目标DU可以分别替换为源小区和目标小区。
如图14所示,为本申请实施例提供的又一种通信方法,该方法包括:
S1401、源DU为终端设备配置多个候选小区。
其中,源DU在确定终端设备的多个候选小区之后,可以通过RRC重配消息,将多个候选小区的配置信息发送给终端设备。候选小区的配置信息可以包括候选小区为终端设备配置的第一预配置授权的配置。
其中,S1401的实现方式可以参照上述S701~S706,不予赘述。
S1402、终端设备向源DU发送测量报告。
其中,S1402可以参照上述S1302,不予赘述。
S1403、源DU进行切换决策。
其中,源DU参考终端设备上报的测量报告,决定执行切换的确定切换的目标小区。
S1404、源DU向目标小区所在的目标DU发送第二指示信息。相应的,目标DU接收来自源DU的第二指示信息。
S1405、源DU向终端设备发送第一指示信息。相应的,终端设备接收来自源DU的第一指示信息。
其中,上述S1404和S1405的执行顺序不分先后。
S1406、终端设备根据第一指示信息,向目标DU进行小区切换。
一种示例中,终端设备在执行小区切换时,可以启动第二定时器,并应用第二定时器的运行时长。当终端设备在该运行时长内,终端设备未成功切换至目标小区,则确定小区切换失败。
例如,终端设备收到第一指示信息,启动第二定时器。可选的,该第二定时器是MAC层维护的定时器。如果该第二定时器超时,终端设备未成功切换至目标小区,则切换过程失败。如果终端设备成功切换到目标小区,停止第二定时器。
S1407、终端设备向目标DU发送指示切换完成的消息。
其中,终端设备根据第一预配置授权的配置情况,在上行资源上发送指示切换完成的消息。
一种示例中,终端设备配置第一预配置授权,且第一预配置授权有效,且终端设备收到第一指示信息的时域位置与第一预配置授权的时域位置小于第二预设阈值,终端设备在第一预配置授权上发送指示切换完成的消息。
进一步的,终端设备在第一预配置授权上发送指示切换完成的消息之后,经x个时隙,可以监听C-RNTI加扰的PDCCH,用以接收后续传输数据的上行资源。
又一种示例中,终端设备未配置第一预配置授权,或者第一预配置授权无效,或者终端设备收到第一指示信息的时域位置与第一预配置授权的时域位置大于或等于第二预设阈值,终端设备可以监听C-RNTI加扰的PDCCH,接收来自目标DU的针对目标小区的第二上行授权资源,并在第二上行授权资源上发送指示切换完成的消息。
S1408、目标DU接收来自终端设备的指示切换完成的消息。
例如,目标DU可以根据第一预配置授权的配置情况,在上行资源上接收指示切换完成的消息。
上述S1404和S1408中,由于源DU与目标DU的传输时间、源DU与终端设备的传输时间存在差异,因此目标DU接收第二指示信息和终端设备接收第一指示信息的时间不同。从而导致终端设备监听第二网络设备调度的资源和第二网络设备动态调度的时间也存在差异。为了保证终端设备和第二网络设备对齐,减少终端设备监听PDCCH的功耗,可以通过下述技术方案。
方式一、目标DU在接收到源DU的切换指示后,开始调度目标小区的PDCCH。当目标DU 为终端设备配置第一预配置授权,目标DU对第一预配置授权进行检测,用以接收指示切换完成的消息。当目标DU动态调度了上行授权,目标DU检测动态授权(dynamic grant,DG)资源上承载的消息。
方式二、目标DU为终端设备配置补偿时延。例如,S1401中的RRC重配消息可以包括终端设备的补偿时延α。α可以为源DU与CU之间的传输时间的两倍。终端设备在接收到第一指示信息的α时间内,不需要监听PDCCH。经α时间后,终端设备可以监听PDCCH。例如,终端设备可以在特定的搜索空间上监听PDCCH。特定的搜索空间可以为终端设备的专用搜索空间。
方式三、目标DU为终端设备配置偏移值。例如,S1401中的RRC重配消息可以包括用于指示终端设备监听PDCCH的偏移值。终端设备在接收到第一指示信息的偏移值时间内,无需监听PDCCH。经offset时间后,终端设备可以监听PDCCH。例如,终端设备可以在特定的搜索空间上监听PDCCH。
方式四、终端设备接收到第一指示信息的时域位置与第一预配置授权(或第一预配置授权的第一时机)的时域位置大于第二预设阈值,终端设备在接收到第一指示信息时,监听PDCCH。
S1409、目标DU向终端设备发送切换完成的消息的响应消息。
结合上述S1406,第二定时器未超时,且终端设备未接收到响应消息,终端设备可以重新发送指示切换完成的消息。
一种场景中,S1407中终端设备通过第一HARQ进程,在上行资源发送指示切换完成的消息。第二网络设备在上行资源上检测到指示切换完成的消息,但解码/接收失败。
一种示例中,第二网络设备可以动态调度第一HARQ进程,发送与第一HARQ进程关联的第二上行授权资源。终端设备在接收到与第一HARQ进程关联的第二上行授权资源后,在第二上行授权重新发送指示切换完成的消息。
又一种场景中,S1407中终端设备通过第一HARQ进程,在上行资源发送指示切换完成的消息。第二网络设备在上行资源上未检测到指示切换完成的消息。
一种示例中,终端设备未接收到响应消息,但接收到来自第二网络设备的用于调度第一HARQ进程的第二上行授权资源。终端设备可以在第二上行授权资源上重新传输指示切换完成的消息。
其中,在终端设备在上行资源上发送指示切换完成的消息后,可以保存指示切换完成的消息对应的SDU。如此,终端设备在未接收到响应消息后,可以继续传输指示切换完成的消息。
又一种示例中,终端设备未接收到响应消息,但接收到来自第二网络设备调度的任意一个HARQ进程的第二上行授权资源。终端设备可以在第二上行授权资源上重新传输指示切换完成的消息。
其中,任意一个HARQ进程可以为第一HARQ进程,也可以第二HARQ进程。第一HARQ进程与第二HARQ进程不同。
又一种场景中,终端设备未接收到响应消息,且终端设备未接收到第二网络设备调度的HARQ进程的第二上行授权资源。终端设备可以下一个第一HARQ进程的授权时机上指示切换完成的消息。
进一步的,终端设备在接收到响应消息之后,确定切换成功,并停止第二定时器的运行。
其中,图14中各个步骤的具体实现方法可以参照上述实施例的描述,不予赘述。S1401~S1405、S1408、S1409为可选的步骤。
基于图14的技术方案,在终端设备确定第一预配置授权有效的情况下,终端设备通过确定接收到第一指示信息的时间与第一预配置授权的时间的偏移值,确定发送指示切换完成的消息。在偏移值过大时,可以监听目标DU的动态调度的上行授权资源,并在接收到上行授权资源上发送指示切换完成的消息。相较于经较长时间后,使用第一预配置授权发送指示切换完成的消息,可以切换减少时延。
另外,通过反馈机制,终端设备可以根据响应消息,确定是否成功发送指示切换完成的消息。避免出现目标DU没有接收到指示切换完成的消息。
需要说明的是,本申请实施例中,上述根据预设阈值作为判断条件的描述中,比如,高于可以替换为高于或等于,低于或等于可以替换为低于;大于或等于可以替换为大于,小于可以替换 为小于或等于;高于或等于可以替换为高于,小于可以替换为小于或等于;大于可以替换为大于或等于,小于或等于可以替换为小于。
一种示例中,第一预配置授权有效的条件包括第一预配置授权关联的SSB的RSRP高于第一预设阈值、第一预设授权无效的条件包括第一预配置授权关联的SSB的RSRP低于或等于第一预设阈值,可以替换为:第一预配置授权有效的条件包括第一预配置授权关联的SSB的RSRP高于或等于第一预设阈值、第一预配置授权无效的条件包括第一预配置授权关联的SSB的RSRP低于第一预设阈值。
又一种示例中,偏移值大于或等于第二预设阈值、偏移值小于第二预设阈值,可以替换为:偏移值大于第二预设阈值、偏移值小于或等于第二预设阈值。
本申请实施例中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。每个实施例步骤中,可以部分执行(比如,终端设备可以不执行上述实施例中由终端设备执行的步骤)。不同步骤的执行顺序可以变更。本文所描述的实施例可以与其它实施例相结合,本文的不同实施例的步骤也可以结合。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于该终端设备的部件(例如处理器、芯片、芯片***、电路、逻辑模块、或软件)实现。由第一网络设备实现的方法和/或步骤,也可以由可用于该第一网络设备的部件(例如处理器、芯片、芯片***、电路、逻辑模块、或软件)实现。由第二网络设备实现的方法和/或步骤,也可以由可用于该第二网络设备的部件(例如处理器、芯片、芯片***、电路、逻辑模块、或软件)实现。
上述主要对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述方法实施例中的各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含终端设备的装置,或者为可用于终端设备的部件,例如芯片或芯片***。该通信装置可以为上述方法实施例中的第一网络设备,或者包含第一网络设备的装置,或者为可用于第一网络设备的部件,例如芯片或芯片***。该通信装置可以为上述方法实施例中的第二网络设备,或者包含第二网络设备的装置,或者为可用于第二网络设备的部件,例如芯片或芯片***。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图15和图16为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以实现上述方法实施例中终端设备、第一网络设备或第二网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端设备,也可以是如图1所示的网络设备,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图15所示,通信装置1500包括收发模块1501和处理模块1502。通信装置1500可用于实现上述图8、图10或图11所示的方法实施例中终端设备或第一网络设备或第二网络设备的功能。
当通信装置1500用于实现图8所述方法实施例中终端设备的功能时:收发模块1501,用于接收来自第一网络设备的第一指示信息。处理模块1502,用于根据目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源。收发模块1501,还用于在该上行资源上发送指示切换完成的消息。
当通信装置1500用于实现图8所述方法实施例中第一网络设备的功能时:收发模块1501,用于向第二网络设备发送第二指示信息;收发模块1501,还用于向终端设备发送第一指示信息。
当通信装置1500用于实现图8所述方法实施例中第二网络设备的功能时:收发模块1501,用于接收来自第一网络设备的第二指示信息,以及接收来自终端设备在该上行资源上发送指示切换完成的消息。
当通信装置1500用于实现图10所述方法实施例中终端设备的功能时:收发模块1501,用于接收第一指示信息,所述处理模块1502用于根据目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源,所述收发模块1501,用于通过第一HARQ进程在上行资源上发送切换指示完成的消息。
当通信装置1500用于实现图10所述方法实施例中第二网络设备的功能时:收发模块1501,用于接收来自第一网络设备的第二指示信息,以及接收终端设备通过第一HARQ进程在上行资源上发送指示切换完成的消息。
当通信装置1500用于实现图11所述方法实施例中第二网络设备的功能时:收发模块1501,还用于向终端设备发送第一响应消息。
关于上述收发模块1501和处理模块1502更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图16所示,通信装置1600包括处理器1610和接口电路1620。处理器1610和接口电路1620之间相互耦合。可以理解的是,接口电路1620可以为收发器或输入输出接口。可选的,通信装置1600还可以包括存储器1630,用于存储处理器1610执行的指令或存储处理器1610运行指令所需要的输入数据或存储处理器1610运行指令后产生的数据。
当通信装置1600用于实现上述方法实施例中的方法时,处理器1610用于执行上述处理模块1502的功能,接口电路1620用于执行上述收发模块1501的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于第一网络设备的芯片时,该第一网络设备芯片实现上述方法实施例中网络设备的功能。该第一网络设备芯片从第一网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给第一网络设备的;或者,该第一网络设备芯片向第一网络设备中的其它模块(如射频模块或天线)发送信息,该信息是第一网络设备发送给终端设备的。
当上述通信装置为应用于第二网络设备的芯片时,该第二网络设备芯片实现上述方法实施例中网络设备的功能。该第一网络设备芯片从第二网络设备中的其它模块(如射频模块或天线)接收信息,该信息是第一网络设备发送给第二网络设备的;或者,该第二网络设备芯片向第二网络设备中的其它模块(如射频模块或天线)发送信息,该信息是第二网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器 (random access memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (24)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备接收来自第一网络设备的第一指示信息,所述第一指示信息用于指示所述终端设备切换的目标小区的信息,所述目标小区是所述终端设备在接收所述第一指示信息前配置的多个候选目标小区中的小区;
    所述终端设备根据所述目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源;
    所述终端设备在所述上行资源上发送所述指示切换完成的消息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预配置授权的配置情况包括配置所述第一预配置授权或者未配置所述第一预配置授权。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源,包括:
    所述终端设备配置所述第一预配置授权、且所述第一预配置授权有效,所述终端设备确定发送所述指示切换完成的消息的上行资源为所述第一预配置授权对应的资源;或者,
    所述终端设备配置所述第一预配置授权、且所述第一预配置授权无效,所述终端设备监听用于指示第二上行授权资源的所述目标小区的物理下行控制信道PDCCH,并确定所述上行资源为所述第二上行授权资源。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源,包括:
    所述终端设备未配置所述第一预配置授权,所述终端设备监听用于指示第二上行授权资源的所述目标小区的PDCCH,并确定所述上行资源为所述第二上行授权资源。
  5. 根据权利要求3所述的方法,其特征在于,所述第一预配置授权有效包括以下一项或多项:所述第一预配置授权关联的同步信号块SSB的参考信号接收功率RSRP高于第一预设阈值、所述第一预配置授权与物理随机接入信道PRACH资源不重叠或所述第一预配置授权与消息A的物理上行共享信道PUSCH资源不重叠。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述终端设备根据所述目标小区的第一预配置授权的配置情况,确定发送指示切换完成的消息的上行资源,包括:
    所述终端设备配置所述第一预配置授权、且所述第一预配置授权有效、且偏差值小于第二预设阈值,所述终端设备确定所述上行资源为所述第一预配置授权对应的资源;或者,
    所述终端设备配置所述第一预配置授权、且所述第一预配置授权有效、且所述偏差值大于或等于所述第二预设阈值,所述终端设备监听用于指示第二上行授权资源的所述目标小区的PDCCH,并确定所述上行资源为所述第二上行授权资源;其中,所述偏差值为所述终端设备接收所述第一指示信息的时域位置与所述第一预配置授权的时域位置的偏移;或,所述偏差值为所述终端设备接收所述第一指示信息的时域位置与所述第一预配置授权的第一时机的时域位置的偏移。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述终端设备在所述上行资源上发送指示切换完成的消息,包括
    所述终端设备通过第一混合自动重传请求HARQ进程在所述上行资源上发送所述指示切换完成的消息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备未收到所述指示切换完成的消息的响应消息,所述终端设备在小区无线网络临时标识C-RNTI加扰的PDCCH上接收针对所述目标小区的第三上行授权资源,所述第三上行授权资源关联所述第一HARQ进程、且所述第三上行授权资源被指示用于新的传输,所述终端设备在所述第三上行授权资源上重新发送所述指示切换完成的消息;或者,
    所述终端设备在所述C-RNTI加扰的PDCCH上接收到所述第三上行授权资源,所述第三上行授权资源关联任意一个HARQ进程、且所述第三上行授权资源被指示用于新的传输,所述终端设备在所述第三上行授权资源上重新发送所述指示切换完成的消息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括,
    所述终端设备未收到所述指示切换完成的消息的响应消息、且所述终端设备未收到所述第三上行授权资源,所述第一预配置授权的第二时机有效,所述终端设备在所述第二时机上重新传输所述指示切换完成的消息,所述第二时机为所述第一预配置授权中的授权时机。
  10. 一种通信方法,其特征在于,所述方法包括:
    第二网络设备接收来自第一网络设备的第二指示信息,所述第二指示信息用于指示终端设备切换的目标小区的信息,所述目标小区是多个候选目标小区中的小区;
    所述第二网络设备根据所述目标小区的第一预配置授权的配置情况,在上行资源上接收来自所述终端设备的指示切换完成的消息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一预配置授权的配置情况包括配置所述第一预配置授权或未配置所述第一预配置授权。
  12. 根据权利要求11所述的方法,其特征在于,所述第二网络设备根据所述目标小区的第一预配置授权的配置情况,在上行资源上接收来自所述终端设备的指示切换完成的消息,包括:
    所述终端设备配置第一预配置授权,所述第二网络设备在所述第一预配置授权上接收所述指示切换完成的消息;或者,
    所述终端设备未配置所述第一预配置授权,所述第二网络设备调度用于指示第二上行授权资源的所述目标小区的PDCCH,并在所述第二上行授权资源上接收所述指示切换完成的消息。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二网络设备根据所述目标小区的第一预配置授权的配置情况,在上行资源上接收来自所述终端设备的指示切换完成的消息,包括:
    所述终端设备配置所述第一预配置授权、且偏差值小于第二预设阈值,所述第二网络设备在所述第一预配置授权上接收所述指示切换完成的消息;或者,
    所述终端设备配置所述第一预配置授权、且所述偏差值大于或等于所述第二预设阈值,所述第二网络设备调度用于指示第二上行授权的所述目标小区的PDCCH,并在所述第二上行授权上接收所述指示切换完成的消息;其中,所述偏差值为所述终端设备接收第一指示信息的时域位置与所述第一预配置授权的时域位置的偏移;或,所述偏差值为所述终端设备接收所述第一指示信息的时域位置与所述第一预配置授权的第一时机的时域位置的偏移,所述第一指示信息用于指示所述目标小区的信息。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述第二网络设备接收来自所述终端设备的指示切换完成的消息,包括:
    所述第二网络设备接收关联第一HARQ进程的所述指示切换完成的消息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备通过调度C-RNTI加扰的PDCCH,发送第三上行授权资源,所述第三上行授权资源关联第一HARQ进程、且所述第三上行授权资源被指示用于新的传输;或者,
    所述第二网络设备通过调度C-RNTI加扰的PDCCH,发送所述第三上行授权资源,所述第三上行授权资源关联任意一个HARQ进程,且所述第三上行授权资源被指示用于新的传输。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,在所述第一预配置授权对应的第一定时器的有效时长内,所述第一预配置授权为所述终端设备的专用上行授权。
  17. 根据权利要求16所述的方法,其特征在于,所述第一定时器超时,所述终端设备无法继续使用所述第一预配置授权或者所述第一预配置授权为共用上行授权。
  18. 一种通信方法,其特征在于,所述方法包括:
    第一网络设备向第二网络设备发送第二指示信息,所述第二指示信息用于指示终端设备切换的目标小区的信息,所述目标小区是多个候选目标小区中的小区。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述目标小区的信息。
  20. 一种通信装置,其特征在于,包括用于执行如权利要求1至9或10至17或18至19中的任一项所述方法的模块。
  21. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通 信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至9或10至17或18至19中任一项所述的方法。
  22. 一种通信***,其特征在于,包括,第一网络设备与第二网络设备、终端设备,所述第一网络设备用于执行权利要求18或19所述的方法,所述第二网络设备用于执行权利要求10至17中任一项所述的方法,所述终端设备用于指示权利要求1-9中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至9或10至17或18至19中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至9或10至17或18至19中任一项所述的方法。
PCT/CN2023/105435 2022-08-09 2023-06-30 通信方法及装置 WO2024032271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210951896.6A CN117676723A (zh) 2022-08-09 2022-08-09 通信方法及装置
CN202210951896.6 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024032271A1 true WO2024032271A1 (zh) 2024-02-15

Family

ID=89850711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105435 WO2024032271A1 (zh) 2022-08-09 2023-06-30 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117676723A (zh)
WO (1) WO2024032271A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572856A (zh) * 2019-07-31 2019-12-13 成都天奥集团有限公司 一种非地面移动通信网络免随机接入的快速切换方法
CN113747460A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 通信方法及装置
US20220015131A1 (en) * 2018-11-20 2022-01-13 Peng Cheng Random access channel (rach)-less procedure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220015131A1 (en) * 2018-11-20 2022-01-13 Peng Cheng Random access channel (rach)-less procedure
CN110572856A (zh) * 2019-07-31 2019-12-13 成都天奥集团有限公司 一种非地面移动通信网络免随机接入的快速切换方法
CN113747460A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "RACH-less handover for NTN", 3GPP DRAFT; R2-1904167 RACH-LESS HANDOVER FOR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Xi’an, China; 20190408 - 20190412, 29 March 2019 (2019-03-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051693397 *

Also Published As

Publication number Publication date
CN117676723A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US10869272B2 (en) Communication method and apparatus applied to hyper cell
EP3512263B1 (en) Method and apparatus for controlling communication of a portable terminal in a wireless communication system
WO2018171759A1 (zh) 一种信息传输方法和装置
US20210136642A1 (en) Telecommunications system, terminal device, infrastructure equipment and methods
KR20190017995A (ko) 그랜트리스 동작들
CN102905306B (zh) 小区切换方法、基站设备和用户设备
US10251084B2 (en) Method for multi-rat scheduling and apparatus therefor in system in which heterogeneous wireless communication technologies are utilized
WO2020164355A1 (zh) Bwp切换方法及通信装置
US20230143942A1 (en) Managing a ue preferred configuration
CN104285475A (zh) 在无线局域网中的增强型主动扫描
JP7163405B2 (ja) リジェクトウェイトタイムの処理
US20240172325A1 (en) Method and apparatuses for nr sidelink discontinuous reception
US20230156544A1 (en) Managing measurement gap configurations
US20220303902A1 (en) User equipment involved in monitoring the downlink control channel
US20240023186A1 (en) Network method for small data transmission termination and signaling
US20170164194A1 (en) Offloading of a wireless node authentication with core network
WO2024032271A1 (zh) 通信方法及装置
WO2022089200A1 (zh) 用于小区切换的方法和装置
US11991575B2 (en) Handover procedures involving sidelink communications
US20230171667A1 (en) Terminal Roaming Method and Apparatus
WO2023108416A1 (zh) 无线通信的方法、终端设备及网络设备
WO2023092485A1 (en) Service continuity of sidelink relay communication
WO2023138669A1 (zh) 一种通信方法及装置
US20240179790A1 (en) Radio resource control for multi-sim
WO2023117080A1 (en) Master cell group-failure recovery and uplink data transmission via deactivated secondary cell group for wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851497

Country of ref document: EP

Kind code of ref document: A1