WO2024032260A1 - 一种通信方法、装置、存储介质以及芯片*** - Google Patents

一种通信方法、装置、存储介质以及芯片*** Download PDF

Info

Publication number
WO2024032260A1
WO2024032260A1 PCT/CN2023/104978 CN2023104978W WO2024032260A1 WO 2024032260 A1 WO2024032260 A1 WO 2024032260A1 CN 2023104978 W CN2023104978 W CN 2023104978W WO 2024032260 A1 WO2024032260 A1 WO 2024032260A1
Authority
WO
WIPO (PCT)
Prior art keywords
sidelink
terminal device
signal
path loss
transmit power
Prior art date
Application number
PCT/CN2023/104978
Other languages
English (en)
French (fr)
Inventor
于莹洁
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032260A1 publication Critical patent/WO2024032260A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method, device, storage medium and chip system.
  • New Radio (NR) positioning scenarios mainly include: enhanced Mobile Broadband (eMBB) outdoor, eMBB indoor, high-reliability and low-latency communications (URLLC) and massive machine-type communications (massive Machine Type of Communication, mMTC)/Internet of Things (IOT).
  • eMBB enhanced Mobile Broadband
  • URLLC high-reliability and low-latency communications
  • mMTC massive Machine-type communications
  • IOT Internet of Things
  • NR positioning also requires high security, scalability, high availability, and accuracy guarantee in high-speed applications.
  • Current positioning technology mainly includes uplink positioning, downlink positioning and uplink and downlink positioning.
  • the network device such as the base station
  • the terminal device measures the positioning reference signal sent by the network device
  • both the terminal device and the network device need to Measure the received signal.
  • signal transmission power control in wireless communication systems is very important.
  • terminal equipment can not only ensure the quality of uplink data, but also minimize interference to the system and other users. , extend the battery life of the terminal device.
  • Base stations can adapt uplink transmission to different wireless transmission environments through power control of uplink signals, including path loss, shadowing, fast fading, interference from other terminal equipment within and between cells, etc.
  • Embodiments of the present application provide a communication method, device, storage medium, and chip system, which are used to provide a power control method for terminal equipment when transmitting side-line positioning reference signals.
  • this application provides a first communication method.
  • the method can be executed by the first terminal device, or by a module, unit, or chip inside the first terminal device.
  • This application takes the example of the method being executed by the first terminal device as an example.
  • the method includes:
  • the first terminal device receives power control parameters from the network device.
  • the power control parameters are associated with the resource pool of the sidelink positioning reference signal.
  • the first terminal device determines the target transmit power according to the power control parameter.
  • the first terminal device sends the first side row positioning reference signal according to the target transmit power.
  • the first terminal device can determine a more reasonable transmission power of the sidelink positioning reference signal based on the power control parameters. , which can not only improve the quality of the side-link positioning reference signal, thereby improving the transmission success rate of the side-link positioning reference signal, but also reduce the mutual interference of signals sent between terminal devices as much as possible.
  • the network device can configure a resource pool for transmitted data and/or signals.
  • the network device can configure a resource pool for the sidelink positioning reference signal of the first terminal device, and the resources in the resource pool are used for the first terminal device.
  • the network device can also configure parameters for the resource pool.
  • the network device configures parameters for the resource pool of the sidelink positioning reference signal (the parameters include power control parameters).
  • the transmission power of the side-link positioning reference signal can be determined based on the parameters configured for the resource pool of the side-link positioning reference signal. This can improve the quality of the side-link positioning reference signal and thereby improve the transmission success of the side-link positioning reference signal. efficiency, and can reduce the mutual interference of sideline positioning reference signals sent between terminal devices as much as possible.
  • the power control parameter may include a first parameter.
  • the first parameter includes the third parameter and/or Downstream path loss adjustment coefficient.
  • the third parameter is an initial power control value based on the downlink path loss of the first terminal device.
  • the first terminal device can consider the impact of downlink path loss when determining the transmission power of the sidelink positioning reference signal, and then can determine the transmission power of the sidelink positioning reference signal more reasonably.
  • the measured downlink path loss can be adjusted based on the downlink path loss adjustment coefficient, and then a more reasonable transmission power of the sidelink positioning reference signal can be obtained.
  • the downlink path loss adjustment coefficient is 1.
  • the first terminal device can determine the target transmit power based on the measured downlink path loss when the network device does not configure the downlink path loss adjustment coefficient.
  • the target transmit power can be determined based on the maximum possible impact of the downlink path loss. To make the target transmit power more reasonable.
  • the power control parameter may include a second parameter.
  • the second parameter includes a fourth parameter and/or a side path loss adjustment coefficient.
  • the fourth parameter is an initial power control value based on the sidelink path loss of the first terminal device.
  • the first terminal device can consider the influence of the sidelink path loss when determining the transmission power of the sidelink positioning reference signal, and then can determine the transmission power of the sidelink positioning reference signal more reasonably.
  • the measured sidelink path loss can be adjusted based on the sidelink path loss adjustment coefficient, and then a more reasonable transmission power of the sidelink positioning reference signal can be obtained.
  • the side path loss adjustment coefficient is 1.
  • the first terminal device can determine the target transmit power based on the measured side path loss when the network device does not configure the side path loss adjustment coefficient.
  • the target can be determined based on the maximum possible impact of the side path loss. Transmit power to make the target transmit power more reasonable.
  • the first parameter and/or the second parameter are carried in the side-link resource pool (SL-resource Pool) message, for example, they can be carried in the side-link resource pool (SL-resource Pool) message.
  • Line power control (SL-power control) field This can be more compatible with existing technology.
  • the first terminal device determines the target transmit power according to the first transmit power.
  • the first transmit power is determined based on the first parameter and the downlink path loss, so that the first terminal device can consider the impact of the downlink path when determining the target transmit power, thereby determining a more reasonable target transmit power.
  • the first transmit power is determined based on the first parameter, the downlink path loss and the number of resources occupied by the first sidelink positioning reference signal. In this way, the target transmit power can be determined based on the number of resources occupied by the first sidelink positioning reference signal, so that can make the results more reasonable.
  • the first terminal device determines the target transmit power according to the second transmit power.
  • the second transmit power is determined based on the second parameter and the sidelink path loss, so that the first terminal device can consider the impact of the sidelink path when determining the target transmit power, thereby determining a more reasonable target transmit power.
  • the second transmit power is determined based on the second parameter, the sidelink path loss and the number of resources occupied by the first sidelink positioning reference signal. In this way, the target transmit power can be determined based on the number of resources occupied by the first sidelink positioning reference signal. , which can make the results more reasonable.
  • the first transmission power when the network device does not configure the third parameter, includes the smaller value of the third transmission power and the fourth transmission power.
  • the third transmission power includes the condition of the first terminal device based on the network congestion rate (Channel Busy Ratio, CBR) of the resource pool corresponding to the first sideline positioning reference signal and the transmission priority corresponding to the first sideline positioning reference signal. transmit power below.
  • the fourth transmission power includes the transmission power of the first terminal device.
  • the first terminal device can determine the target transmit power based on the capabilities of the terminal device and the capabilities of the terminal device under CBR and transmission priority conditions, so that the determined The target transmit power better matches the actual capability of the first terminal device.
  • the second transmission power includes the smaller value of the third transmission power and the fourth transmission power.
  • the first terminal device can determine the target transmit power based on the capabilities of the terminal device and the capabilities of the terminal device under CBR and transmission priority conditions, so that the determined The target transmit power better matches the actual capability of the first terminal device.
  • the first terminal device determines the target transmit power according to the smaller value of the first transmit power and the second transmit power. In this way, the target transmit power can be minimized, thereby saving the power of the terminal device. Consumption.
  • the first terminal device can estimate the downlink path loss based on the downlink signal. For example, the first terminal device receives the downlink signal from the network device, and the first terminal device measures the downlink signal based on the measurement result. , estimate the downlink path loss.
  • the first terminal device of this application receives the first information from the second terminal device, and the first information includes the information from the first terminal device. Information about the received power of the sidelink signal of the device or information about the sidelink path loss.
  • the first terminal device determines the side path loss based on the first information.
  • the first terminal device may To send the sidelink signal used to determine the sidelink path loss so that the second terminal device can measure it. This solution determines the side path loss based on the information transmitted through the side link between the first terminal device and the second terminal device, which can improve the accuracy of the side path loss.
  • the first information further includes: a resource identifier of the sidelink signal from the first terminal device; and/or a resource set identifier corresponding to the resource of the sidelink signal from the first terminal device.
  • a resource identifier of the sidelink signal from the first terminal device may be included in the first information, or may not be included in the first information.
  • the subsequent content will be introduced using the example of the two pieces of information being included in the first information.
  • the first terminal device can determine the sidelink signal corresponding to the received power included in the first information, and then determine the sidelink path loss based on the transmit power of the sidelink signal and the received power in the first information.
  • the first information includes one of the following: information about the received power of the first sidelink signal, the first sidelink signal is a sidelink signal from the first terminal equipment received by the second terminal equipment,
  • the type of the side row signal includes the side row positioning reference signal; the received power information of the second side row signal, the second side row signal is the side row signal from the first terminal device received by the second terminal device, and the second side row signal is received by the second terminal device.
  • the type of line signal includes physical sidelink shared channel (PSSCH) demodulation reference signal (DMRS) or physical sidelink control channel (PSCCH) DMRS; or , the information of the sidelink path loss, the information of the sidelink path loss is determined according to the first sidelink signal or the second sidelink signal.
  • the sidelink path loss can be determined between the first terminal equipment and the second terminal equipment based on the sidelink positioning reference signal, PSSCH DMRS or PSCCH DMRS, thereby improving the flexibility of the solution.
  • the first terminal device before the first terminal device receives the first information from the second terminal device, the first terminal device sends the first configuration information to the second terminal device.
  • the first configuration information indicates information of the sidelink signal used to determine the sidelink path loss.
  • the second terminal device can measure the sidelink signal configured based on the first configuration information, thereby better controlling the sidelink path loss determination process.
  • the first configuration information includes at least one of the first signal type information, the first resource identifier, or the first resource set identifier.
  • the first signal type is a type of sidelink signal used to determine sidelink path loss.
  • the first resource identifier may include the resource identifier of the first sidelink signal.
  • the first resource set identifier may include a resource set identifier corresponding to a resource of the first sidelink signal. It can be seen that there are many ways to configure the sidelink signal through the first configuration information, which are relatively flexible and can improve the flexibility of the solution.
  • the first signal type includes a side row positioning reference signal type. Since the determined target transmit power is the transmit power of the first side-link positioning reference signal, the side-link path loss determined based on the side-link positioning reference signal can more accurately reflect the environment faced by the first side-link positioning reference signal, thereby improving the Target transmit power accuracy.
  • the first signal type includes PSSCH DMRS type and/or PSCCH DMRS type. Since the second terminal equipment can also measure PSSCH DMRS and/or PSCCH DMRS and feed back the first information based on the measurement results, the flexibility of the solution can be improved, and if the first signal type does not include the sidelink positioning reference signal, the first terminal The device also does not need to send the sidelink positioning reference signal in order to determine the sidelink path loss, thereby reducing the number of signals sent by the first terminal device and reducing the power consumption of the first terminal device.
  • the first configuration information also includes: information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or indicating that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • Information of the signal and/or, information indicating that the PSCCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or information indicating that the PSCCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • the first terminal device may send the first configuration information to the second terminal device through the PC5 interface, or may send the first configuration information to the network device, so that the network device sends the first configuration information to the second terminal device.
  • the first configuration information can also be configured by the network device for the second terminal device.
  • the network device can send the first configuration information to the second terminal device (such as through radio resource control, RRC) message to send the first configuration information).
  • RRC radio resource control
  • the first information includes information about the transmission power of the sidelink signal sent by the second terminal device.
  • the second terminal device may send a sidelink signal used to determine the sidelink path loss so that the first terminal device can measure it.
  • the first information includes: information about the transmission power of the third sidelink signal, the third sidelink signal comes from the second terminal device, and the type of the third sidelink signal includes the sidelink positioning reference signal; and/or the fourth side
  • the information about the transmission power of the row signal, the fourth side row signal comes from the second terminal equipment, the third side row signal includes the side row positioning reference signal, and the type of the fourth side row signal includes PSSCH DMRS or PSCCH DMRS.
  • This solution determines the side path loss based on the information transmitted through the side link between the first terminal device and the second terminal device, which can improve the accuracy of the side path loss.
  • the first terminal device when the first terminal device obtains the received power of the third sidelink signal, the first terminal device determines the sidelink signal based on the received power of the third sidelink signal and the transmit power of the third sidelink signal. path loss. Since the determined target transmit power is the first side Therefore, the sidelink path loss determined based on the sidelink positioning reference signal can more accurately reflect the environment faced by the first sidelink positioning reference signal, thereby improving the accuracy of the target transmission power.
  • the first terminal device determines based on the received power of the fourth sideline signal and the transmit power of the fourth sideline signal. Lateral path loss. In this way, the flexibility of the solution can be improved, and since the fourth sidelink signal is a signal transmitted between the second terminal device and the first terminal device based on the sidelink, the fourth sidelink signal can also more accurately reflect the sidelink signal. line path loss, which in turn improves the accuracy of the target transmit power.
  • the first terminal device before the first terminal device determines the side path loss based on the first information, the first terminal device receives the second configuration information, and the second configuration information indicates the side path used to determine the side path loss. signal information. In this way, the second terminal device can measure the sidelink signal configured based on the first configuration information, thereby better controlling the sidelink path loss determination process.
  • the second configuration information includes at least one of second signal type information, a second resource identifier, or a second resource set identifier.
  • Information of a second signal type the second signal type being the type of sidelink signal used to determine the sidelink path loss.
  • the second resource identifier may include the resource identifier of the third sidelink signal.
  • the second resource set identifier may include a resource set identifier corresponding to the resource of the third sidelink signal. It can be seen that there are many ways to configure the sidelink signal through the first configuration information, which are relatively flexible and can improve the flexibility of the solution.
  • the second signal type includes a side row positioning reference signal type. If the second signal type includes a sidelink positioning reference signal, since the determined target transmit power is the transmit power of the first sidelink positioning reference signal, the sidelink path loss determined based on the sidelink positioning reference signal can more accurately reflect the first sidelink positioning reference signal.
  • the sideline positioning reference signal faces the environment, which in turn can improve the accuracy of the target transmit power.
  • the second signal type also includes: PSSCH DMRS type and/or PSCCH DMRS type. Since the first terminal equipment can also measure PSSCH DMRS and/or PSCCH DMRS and determine the sidelink path loss based on the measurement results, the flexibility of the solution can be improved, and if the second signal type does not include the sidelink positioning reference signal, the second The terminal device also does not need to send the sidelink positioning reference signal in order to determine the sidelink path loss, thereby reducing the number of signals sent by the second terminal device and reducing the power consumption of the first terminal device.
  • the second configuration information also includes: information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or indicating that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • Information of the signal and/or, information indicating that the PSCCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or information indicating that the PSCCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • the second terminal device may send the second configuration information to the first terminal device through the PC5 interface, or may send the second configuration information to the network device, so that the network device sends the second configuration information to the first terminal device.
  • the second configuration information can also be configured by the network device for the first terminal device.
  • the network device can send the second configuration information to the first terminal device (for example, send the second configuration information through an RRC message). .
  • the sidelink path loss can be determined based on the difference in frequency between the two, as follows A more accurate side path loss can be obtained.
  • the first terminal device determines the quasi sidelink path loss based on the first information.
  • the first terminal device determines the sidelink path loss based on the quasi-sidelink path loss and the first offset.
  • the first offset is based on the frequency point of the sidelink signal associated with the quasi-sidelink path loss and the first sidelink positioning reference signal.
  • the difference between the frequency points is determined.
  • the lateral path loss is the sum of the quasi-lateral path loss and the first offset, which can reduce the complexity of the solution.
  • the first offset can be calculated by the formula Calculation, where ⁇ P 1 represents the first offset, f n is the frequency point of the sideline signal related to the quasi-sideline path loss, and f is the frequency point of the first sideline positioning reference signal. It can be seen that this formula can more accurately reflect the difference between the frequency point of the sidelink signal associated with the quasi sidelink path loss and the frequency point of the first sidelink positioning reference signal.
  • the first terminal device determines the fifth transmit power based on the second parameter and the sidelink path loss, and the first terminal device determines the second transmit power based on the fifth transmit power and the second offset,
  • the second offset is determined based on the difference between the frequency point of the sidelink signal associated with the sidelink path loss and the frequency point of the first sidelink positioning reference signal. It can be seen that in this solution, the determination process of the second transmit power can be adjusted through the second offset, so that a more accurate second transmit power can be obtained, thereby improving the accuracy of the target transmit power. For example, the second transmit power is equal to the sum of the fifth transmit power and the second offset. In this way, the complexity of the solution can be reduced.
  • the second offset ⁇ P 2 can be expressed by the formula Calculation, where ⁇ SL represents the sideline path loss adjustment value, f n is the frequency point of the sidelink signal associated with the quasi-sideline path loss, and f is the frequency point of the first sideline positioning reference signal. It can be seen that this formula can more accurately reflect the relationship between the frequency point of the sidelink signal associated with the quasi-sidelink path loss and the frequency point of the first sidelink positioning reference signal. difference.
  • the power control parameter also includes a third transmit power
  • the third transmit power includes the CBR of the first terminal device in the resource pool corresponding to the first sidelink positioning reference signal and the first sidelink positioning reference.
  • the transmission power under the conditions of the transmission priority corresponding to the signal.
  • the first terminal device can determine the target transmit power based on the transmit power of the first terminal device under conditions based on CBR and transmission priority, so that the determined target transmit power can better match the actual transmit power of the first terminal device.
  • the third transmission power can be carried in the side-link resource pool (SL-resourcePool) message.
  • the third transmit power is equal to the fourth transmit power
  • the fourth transmit power includes the transmit power of the first terminal device.
  • the first terminal device determines the target transmit power according to the fourth transmit power and the power control parameter, and the fourth transmit power includes the transmit power of the first terminal device.
  • the target transmit power can be determined based on the transmit power of the terminal device, so that the determined target transmit power can better match the transmit power of the terminal device.
  • the first terminal device determines the target transmit power according to the smaller value of one or more of the first value, the third transmit power or the fourth transmit power.
  • the first value is the smaller value of the first transmission power and the second transmission power.
  • the first terminal device determines the target transmit power based on the first transmit power and/or the second transmit power.
  • the first terminal device determines the target transmit power according to the smaller value of the first value, the third transmit power and the fourth transmit power. In this way, the target transmission power can be reduced as much as possible, thereby saving the power consumption of the terminal device.
  • the first transmit power is obtained by the following formula:
  • P PRS,D (i) represents the first transmit power
  • represents the preset value
  • ⁇ D represents the downlink path loss adjustment value
  • PL D represents the downlink path loss
  • min(a, b) represents the minimum value of parameter a and parameter b, where Parameters a and b are used as examples to introduce the meaning of min.
  • the second transmission power is obtained by the following formula:
  • P PRS,SL (i) represents the second transmit power
  • represents the preset value
  • ⁇ SL indicates the sidelink path loss adjustment value
  • PL SL indicates the sidelink path loss
  • min(a, b) indicates the minimum value of parameter a and parameter b
  • parameters a and b are used as examples to introduce the meaning of min.
  • dBm represents the unit of decibel milliwatts.
  • the first terminal device before the first terminal device determines the target transmit power according to the power control parameters, the first terminal device sends the second sideline positioning reference signal, and the first terminal device receives the power feedback parameter from the second terminal device,
  • the power feedback parameter is determined based on the received power of the second side-link positioning reference signal and the received power of the side-link positioning reference signal expected to be received by the second terminal device.
  • the first terminal device determines the target transmit power according to the power control parameter and the power feedback parameter.
  • the first terminal device can determine the target transmit power based on the power feedback parameter, thereby making up for the shortcomings of the open-loop power control mechanism and making the target transmit power more optimal through feedback and adjustment.
  • the first terminal device adjusts the first transmit power according to the power feedback parameter, and the first terminal device determines the target transmit power according to the adjusted first transmit power. For example, the first terminal device may multiply the power feedback parameter by a preset coefficient and then add it to the first transmit power. The resulting value is the adjusted first transmit power.
  • the preset coefficient may or may not be equal to 1. . Since the first terminal device can adjust the first transmit power based on the power feedback parameter, the possible value of the adjusted first transmit power will increase, thereby increasing the target transmit power, thereby alleviating the insufficient transmit power of the first sideline positioning reference signal. In another case, the adjusted first transmit power may be reduced, thereby reducing the target transmit power, thereby reducing the power consumption of the first terminal device, and also reducing interference between signals.
  • the first terminal device adjusts the second transmit power according to the power feedback parameter, and the first terminal device adjusts the second transmit power according to the power feedback parameter.
  • the adjusted second transmit power determines the target transmit power.
  • the first terminal device may multiply the power feedback parameter by a preset coefficient and then add it to the second transmit power.
  • the resulting value is the adjusted second transmit power.
  • the preset coefficient may or may not be equal to 1. . Since the first terminal device can adjust the second transmit power based on the power feedback parameter, the possible value of the adjusted second transmit power will increase, thereby increasing the target transmit power, thereby alleviating the insufficient transmit power of the first sideline positioning reference signal.
  • the adjusted second transmit power value may be reduced, thereby reducing the target transmit power, thereby reducing the power consumption of the first terminal device, and also reducing interference between signals.
  • the first terminal device determines the quasi-target transmit power based on the first transmit power and/or the second transmit power, and determines the target transmit power based on the quasi-target transmit power and the power feedback parameter. For example, the first terminal device can add or multiply the power feedback parameter and the quasi-target transmit power, and other operation parameters can also be added during this operation. The first terminal device can adjust the quasi-target transmit power based on the power feedback parameter, and then use the obtained value as the transmit power of the first side-link positioning reference signal. This solution can reduce the complexity of the solution and make the target transmit power more optimal.
  • the first terminal device adjusts the transmission power of the second side row positioning reference signal according to the power feedback parameter to obtain the target transmission power, and the transmission power of the second side row positioning reference signal is determined according to the power control parameter. of.
  • the first terminal device may add or multiply the power feedback parameter and the transmission power of the second side row positioning reference signal, and other operation parameters may also be added during this operation.
  • the first terminal device can adjust the transmit power of the second side row positioning reference signal based on the power feedback parameter, and then use the obtained value as the transmit power of the first side row positioning reference signal. This solution can reduce the complexity of the solution, and can make The target transmit power is better.
  • this application provides a first communication method.
  • This method can be executed by a network device, or by a module, unit, or chip inside the network device.
  • This application takes the example of the method being executed by a network device as an example. The method includes:
  • the network device determines the power control parameters, and the power control parameters are associated with the resource pool of the side-link positioning reference signal.
  • the network device sends the power control parameters to the first terminal device, and the power control parameters are used by the first terminal device to determine to send the first side-link The target transmit power of the positioning reference signal.
  • the first terminal device can determine a more reasonable transmission power of the sidelink positioning reference signal based on the power control parameters. , which can not only improve the quality of the side-link positioning reference signal, thereby improving the transmission success rate of the side-link positioning reference signal, but also reduce the mutual interference of signals sent between terminal devices as much as possible.
  • the power control parameters include first parameters and/or second parameters.
  • the first parameter includes a third parameter and/or a downlink path loss adjustment coefficient, and the third parameter is an initial power control value based on the downlink path loss of the first terminal device.
  • the second parameter includes a fourth parameter and/or a side path loss adjustment coefficient, and the fourth parameter is an initial power control value based on the side path loss of the first terminal device.
  • the first parameter and/or the second parameter are carried in a side-link resource pool (SL-resource Pool) message.
  • SL-resource Pool side-link resource pool
  • the first parameter and/or the second parameter are carried in the SL-power control field in the SL-resource Pool message.
  • the relevant content in the first aspect or possible implementations of the first aspect please refer to the relevant content in the first aspect or possible implementations of the first aspect, and will not be described again.
  • the network device sends first configuration information to the second terminal device, where the first configuration information indicates sidelink signal information used to determine sidelink path loss.
  • the first configuration information includes at least one of the following: at least one of first signal type information, a first resource identifier, or a first resource set identifier.
  • the first signal type includes sidelink positioning reference signal, PSSCH DMRS type and/or PSCCH DMRS type.
  • PSSCH DMRS type and/or PSCCH DMRS type.
  • the first configuration information also includes: information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or indicating that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss. information, and/or information indicating that the PSCCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or information indicating that the PSCCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss or indicating that the PSCCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • the first configuration information is carried in a PC5RRC message.
  • a PC5RRC message For relevant descriptions and beneficial effects, please refer to the relevant content in the first aspect or possible implementations of the first aspect, and will not be described again.
  • the network device sends second configuration information to the first terminal device, and the second configuration information indicates sidelink signal information used to determine sidelink path loss.
  • the second configuration information includes second signal type information, a second resource identifier, and a second resource set identifier.
  • the second signal type is the type of sidelink signal used to determine the sidelink path loss.
  • the second signal type includes a type of side row positioning reference signal.
  • the second resource identifier includes the resource identifier of the third sidelink signal.
  • the second resource set identifier includes a resource set identifier corresponding to the resource of the third sidelink signal.
  • the second signal type also includes: PSSCH DMRS type and/or PSCCH DMRS type.
  • PSSCH DMRS type and/or PSCCH DMRS type.
  • the second configuration information also includes: information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or indicating that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • the second configuration information is carried in a PC5RRC message.
  • the relevant content in the first aspect or possible implementations of the first aspect please refer to the relevant content in the first aspect or possible implementations of the first aspect, and will not be described again.
  • the power control parameter further includes a third transmit power
  • the third transmit power includes a CBR of the resource pool corresponding to the first sideline positioning reference signal of the network device and a CBR corresponding to the first sideline positioning reference signal. Transmit power under transmission priority conditions.
  • the third transmission power is carried in the sidelink resource pool SL-resourcePool message.
  • the relevant content in the first aspect or possible implementations of the first aspect please refer to the relevant content in the first aspect or possible implementations of the first aspect, and will not be described again.
  • the power control parameter includes a fourth transmit power
  • the fourth transmit power includes the transmit power of the network device.
  • this application provides a first communication method.
  • This method can be executed by the second terminal device, or by a module, unit, or chip inside the second terminal device.
  • This application takes the example of the method being executed by the second terminal device as an example. The method includes:
  • the second terminal device generates first information, and the first information includes information on the received power of the sidelink signal from the first terminal device, information on the sidelink path loss, or information on the transmission power of the sidelink signal sent by the second terminal device. .
  • the second terminal device sends first information to the first terminal device, and the first information is used by the first terminal device to determine the side path loss.
  • This solution determines the side path loss based on the information transmitted through the side link between the first terminal device and the second terminal device, which can improve the accuracy of the side path loss.
  • the first information in the case where the first information includes information about the received power of the sidelink signal from the first terminal device, the first information also includes the resource identifier of the sidelink signal from the first terminal device, or The resource set identifier corresponding to the resource of the sidelink signal from the first terminal device.
  • the relevant content in the first aspect or possible implementations of the first aspect please refer to the relevant content in the first aspect or possible implementations of the first aspect, and will not be described again.
  • the first information includes one of the following contents: information about the received power of the first sidelink signal, and the first sidelink signal is the sidelink signal from the first terminal device received by the second terminal device.
  • the type of the first side row signal includes the side row positioning reference signal; the information of the received power of the second side row signal, the second side row signal is the side row signal from the first terminal device received by the second terminal device.
  • the type of the second sidelink signal includes PSSCH DMRS or PSCCH DMRS; or, the sidelink path loss information, the sidelink path loss information is determined according to the first sidelink signal or the second sidelink signal.
  • the second terminal device before the second terminal device generates the first information, the second terminal device receives the first configuration information, and the first configuration information indicates the information of the sidelink signal used to determine the sidelink path loss.
  • the first configuration information includes at least one of the following: information of a first signal type, the first signal type is a type of sidelink signal used to determine sidelink path loss, and the first signal type includes a sidelink positioning reference. Signal type; first resource identifier, the first resource identifier includes the resource identifier of the first sidelink signal; or first resource set identifier, the first resource set identifier includes the resource set identifier corresponding to the resource of the first sidelink signal.
  • the first signal type also includes PSSCH DMRS type and/or PSCCH DMRS type.
  • PSSCH DMRS type and/or PSCCH DMRS type.
  • the first configuration information also includes: information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or indicating that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • the first configuration information is carried in a PC5RRC message.
  • a PC5RRC message For relevant descriptions and beneficial effects, please refer to the relevant content in the first aspect or possible implementations of the first aspect, and will not be described again.
  • the first information includes: information about the transmission power of a third sidelink signal, the third sidelink signal comes from the second terminal device, and the type of the third sidelink signal includes a sidelink positioning reference signal.
  • the method further includes: the second terminal device sends a third sideline signal.
  • the first information includes: information about the transmission power of the fourth sideline signal, the fourth sideline signal comes from the second terminal device, the third sideline signal includes the sideline positioning reference signal, and the fourth sideline
  • the type of side line signal includes PSSCH DMRS or PSCCH DMRS.
  • the second terminal equipment sends a fourth side line signal.
  • the second terminal device sends second configuration information to the first terminal device, and the second configuration information indicates the information of the sidelink signal used to determine the sidelink path loss.
  • the second configuration information includes at least one of the following: information of a second signal type, the second signal type is a type of sidelink signal used to determine sidelink path loss, and the second signal type includes a sidelink positioning reference.
  • the type of signal; the second resource identifier, the second resource identifier includes the resource identifier of the third sidelink signal; or the second resource set identifier, the second resource set identifier includes the resource set identifier corresponding to the resource of the third sidelink signal.
  • the second signal type also includes: PSSCH DMRS type and/or PSCCH DMRS type.
  • PSSCH DMRS type and/or PSCCH DMRS type.
  • the second configuration information also includes: information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or indicating that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • Information indicating that the PSCCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or information indicating that the PSCCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • the second configuration information is carried in a PC5RRC message.
  • the relevant content in the first aspect or possible implementations of the first aspect please refer to the relevant content in the first aspect or possible implementations of the first aspect, and will not be described again.
  • a communication device may be the above-mentioned first terminal device, network device or second terminal device.
  • the communication device may include a communication unit and a processing unit to perform the above-mentioned first to third aspects. Any embodiment of any method.
  • the communication unit is used to perform functions related to sending and receiving.
  • the communication unit includes a receiving unit and a sending unit.
  • the communication device is a communication chip
  • the processing unit may be one or more processors or processor cores
  • the communication unit may be an input/output circuit or port of the communication chip.
  • the communication unit may be a transmitter and a receiver, or the communication unit may be a transmitter and a receiver.
  • the communication device further includes various modules that can be used to execute any one of the methods of the first to third aspects.
  • a communication device may be the above-mentioned first terminal device, network device or second terminal device.
  • the communication device may include a processor and a memory.
  • a transceiver is also included, the memory is used to store computer programs or instructions, and the processor is used to call and run the computer program or instructions from the memory.
  • the processor executes the computer program or instructions in the memory, the The communication device performs any one of the implementation methods of any one of the above-mentioned first to third aspects.
  • processors there are one or more processors and one or more memories.
  • the memory can be integrated with the processor, or the memory can be provided separately from the processor.
  • the transceiver may include a transmitter (transmitter) and a receiver (receiver).
  • a sixth aspect provides a communication device.
  • the communication device may be the above-mentioned first terminal device, network device, or second terminal device.
  • the communication device may include a processor.
  • the processor is coupled to a memory and may be used to execute any one of the first to third aspects and the method in any possible implementation of the first to third aspects.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc.
  • a processor may also be embodied as a processing circuit or logic circuit.
  • a system in a seventh aspect, includes the above-mentioned first terminal device, a network device and a second terminal device.
  • a computer program product includes: a computer program (which can also be called a code, or an instruction).
  • a computer program which can also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute any of the above possible implementations of the first aspect.
  • a computer-readable storage medium stores a computer program (which can also be called a code, or an instruction) and when run on a computer, causes the computer to execute any one of the above-mentioned first aspects. method in one possible implementation manner, or causing the computer to execute the method in any one of the above-mentioned first to third aspects implementation manners.
  • a computer program which can also be called a code, or an instruction
  • a chip system may include a processor.
  • the processor is coupled to a memory and may be used to execute any one of the first to third aspects, and any method in any possible implementation manner of any one of the first to third aspects.
  • the chip system also includes a memory.
  • Memory is used to store computer programs (also called codes, or instructions).
  • the processor is used to call and run the computer program from the memory, so that the device installed with the chip system executes any one of the first to third aspects, and any one of the first to third aspects. Methods in the implementation.
  • a communication device may be the above-mentioned first terminal device or the second terminal device.
  • the communication device may include: an interface circuit and a processing circuit.
  • Interface circuits may include input circuits and output circuits.
  • the processing circuit is configured to receive signals through the input circuit and transmit signals through the output circuit, so that the method in any one of the first to third aspects and any possible implementation manner of the first to third aspects is implemented.
  • the above-mentioned processing device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, the receiver, and the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter, and the input circuit and the output A circuit may be the same circuit that functions as an input circuit and an output circuit at different times.
  • This application does not limit the specific implementation methods of the processor and various circuits.
  • the wireless communication device when the communication device is a wireless communication device, the wireless communication device may be a terminal such as a smartphone or a wireless access network device such as a base station.
  • the interface circuit may be a radio frequency processing chip in the wireless communication device, and the processing circuit may be a baseband processing chip in the wireless communication device.
  • the communication device may be a part of a wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the interface circuit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc.
  • the processing circuitry may be logic circuitry on the chip.
  • Figure 1 is a schematic diagram of several possible system architectures applicable to the embodiments of this application;
  • Figure 2 is a schematic diagram of a possible network architecture applicable to the embodiment of this application.
  • Figure 3 is a possible flow diagram of a communication method provided by an embodiment of the present application.
  • Figure 4 is a possible flow diagram of a method for determining side path loss provided by an embodiment of the present application
  • Figure 5 is a possible flow chart of a method for determining side path loss provided by an embodiment of the present application.
  • Figure 6 is a possible flow diagram of another communication method provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a possible communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another possible communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another possible communication device provided by an embodiment of the present application.
  • the technical solutions provided by the embodiments of this application are mainly applicable to wireless communication systems.
  • the wireless communication system can comply with the wireless communication standards of the third generation partnership project (3GPP).
  • 3GPP third generation partnership project
  • the solution provided by the embodiments of this application can be applied to the fourth generation (4th generation, 4G) communication system, such as the long term evolution (long term evolution, LTE) communication system, and can also be applied to the fifth generation (5th generation, 5G) Communication systems, such as 5G new radio (NR) communication systems, or various communication systems applied in the future, such as sixth generation (6th generation, 6G) communication systems.
  • the technical solutions provided by the embodiments of this application may also comply with other wireless communication standards, such as the 802 series (such as 802.11, 802.15, or 802.20) wireless communication standards of the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE Institute of Electrical and Electronics Engineers
  • the methods provided by the embodiments of this application can also be applied to Bluetooth systems, WiFi systems, LoRa systems or vehicle to everything (V2X) systems.
  • the method provided by the embodiment of the present application can also be applied to a satellite communication system, and the satellite communication system can be integrated with the above-mentioned communication system.
  • Figure 1 schematically illustrates several possible system architecture schematics applicable to the embodiments of this application.
  • Figure 1 takes two terminal devices and one network device as an example for illustration.
  • the communication system may also include a larger number of other terminal devices and network devices.
  • FIG. 1 shows the architecture within the coverage of network equipment.
  • PC5 connections are established between terminal equipment and each terminal equipment establishes connections with network equipment (such as base stations) respectively. It should be understood that each terminal device can be connected to the same base station or to different base stations.
  • FIG. 1 shows an example in which the terminal device is connected to the same base station. In this embodiment of the present application, a connection can be established between the terminal device and the base station through the Uu interface.
  • the first terminal device and the second terminal device involved in the solution provided by the embodiment of the present application may be terminal devices covered by the network device shown in (a) in Figure 1 .
  • FIG. (b) in Figure 1 shows the architecture within partial coverage of network equipment.
  • PC5 connections are established between terminal equipment.
  • some terminal equipment does not establish connections with network equipment (such as base stations), and the remaining terminal equipment is connected to the network.
  • a device (such as a base station) establishes a connection.
  • Part of the first terminal equipment and the second terminal equipment involved in the solution provided by the embodiment of the present application (such as the first terminal equipment) may be terminal equipment covered by the network equipment shown in (b) of Figure 1,
  • Another part of the first terminal device and the second terminal device (such as the second terminal device) may be a terminal device outside the coverage of the network device in (b) of Figure 1 .
  • FIG. 1 shows the architecture outside the network device coverage.
  • PC5 connections are established between terminal devices, and all terminal devices do not establish connections with network devices.
  • Some or all of the first terminal equipment and the second terminal equipment involved in the solution provided by the embodiment of the present application may be terminal equipment outside the coverage of the network equipment shown in (c) of Figure 1 .
  • the first terminal device and the second terminal device are in a mobile state, when the first terminal device and/or the second terminal device move into the coverage area of the network device, they can communicate with the network device for transmission. Some information, parameters, etc.
  • the first terminal device has not moved within the coverage of the network device for a period of time (is located outside the coverage of the network device).
  • the first terminal device can be based on the following embodiments of the present application.
  • the transmit power of the first terminal device (such as the maximum transmit power of the first terminal device) can be determined as the transmit power of the first side row positioning reference signal.
  • the first terminal device and/or the second terminal device may be located outside the coverage range of the network device, or may be located within the coverage range of the network device.
  • Figure 2 takes the 5G network architecture as an example to illustrate a possible network architecture schematic diagram applicable to the embodiments of this application.
  • a possible network architecture applicable to this application may include terminal equipment (such as UE1 and UE2 shown in Figure 2), access network equipment (such as next generation (NG) wireless access There are three parts: (radio)access network, (R)AN) equipment) and core network (core network).
  • the terminal equipment may include a user equipment (user equipment, UE)-location management component (LMC).
  • the UE-LMC may be a component or application with partial LMF functions deployed on the terminal device to support the positioning service of the PC5 interface.
  • the LMC in each terminal device is shown as a dotted line, which is used to indicate that the terminal device side may or may not include an LMC.
  • both terminal devices include an LMC as an example.
  • the terminal equipment shown in Figure 2 can be the terminal equipment in each communication system shown in Figure 1.
  • UE1 and UE2 can be ( a) shows two terminal devices located within the coverage of network equipment.
  • some terminal devices in UE1 and UE2 may be located in network device coverage as shown in (b) in Figure 1
  • the other part of the terminal devices within the range, UE1 and UE2 may be the terminal devices located outside the coverage of the network device as shown in (b) of Figure 1 .
  • UE1 and UE2 may be two terminal devices located outside the coverage range of the network device as shown in (c) in Figure 1 .
  • the terminal devices in the embodiment of the present application may include devices that provide voice and/or data connectivity to users. , which may include, for example, a handheld device with wireless connection capabilities, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via the radio access network (RAN) and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle and other device communication (vehicle to everything, V2X) ) terminal equipment (V2X specifically can include vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P) Direct communication, as well as vehicle-to-network (V2N) communication interaction and other application requirements.), machine-to-machine/machine-type communications (M2M/MTC) Terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station, mobile station, remote station, access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user device (user device), etc.
  • IoT Internet of things
  • IoT Internet of things
  • IoT Internet of things
  • this may include a mobile phone (or "cellular" phone), a computer with a mobile terminal device, a portable, pocket-sized, handheld, computer-built-in mobile device, etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • the terminal device can also be a tablet computer or a computer with wireless transceiver function.
  • the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in driverless driving, a wireless terminal in telemedicine, or a smart terminal.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in the power grid wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • constrained devices such as devices with lower power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities.
  • they include barcodes, radio frequency identification (RFID), sensors, global positioning systems (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning systems
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Used, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices introduced above can be considered as vehicle-mounted terminal equipment if they are located on the vehicle (for example, placed or installed in the vehicle).
  • vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example.
  • OBU on-board unit
  • the terminal device in the embodiment of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module, Vehicle-mounted components, vehicle-mounted chips or vehicle-mounted units can implement the method of the present application.
  • the terminal device may also include a relay. Or it can be understood that anything that can perform data communication with the base station can be regarded as a terminal device.
  • the terminal device in the embodiment of the present application can be understood as a device, or it can also be a module used to implement the functions of the terminal device.
  • the module can be set in the terminal device, or can be set independently from the terminal device.
  • the module can be, for example, Chip systems, etc.
  • Network equipment may include access network equipment and/or core network equipment.
  • An access network (AN) device may refer to a device in the access network that communicates with wireless terminal devices through one or more cells over the air interface.
  • the access network device may include an LTE system or an advanced long-term Evolutionary base stations (NodeB or eNB or e-NodeB, evolutionary Node B) in evolution (long term evolution-advanced, LTE-A), or may also include the fifth generation mobile communication technology (the 5th generation, 5G) new
  • the next generation node B (gNB) in the wireless (new radio, NR) system may also include the cloud radio access network (Cloud RAN)
  • the embodiments of this application are not limited to the centralized unit (CU) and the distributed unit (DU) in the system.
  • eNB can include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, and vehicle-mounted devices.
  • the eNB can also be a Transmission and Reception Point (TRP).
  • TRP Transmission and Reception Point
  • gNB can include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, and vehicle-mounted devices. gNB can also be TRP, transmission measurement function (Transmission measurement function, TMF). The gNB may include CUs and DUs integrated on the gNB.
  • the terminal equipment and the serving base station can communicate through the Uu link, for example, they can communicate with the Ng-eNB through the LTE-Uu link, and they can communicate with the gNB through the NR-Uu link.
  • Ng-eNB is the base station of LTE
  • gNB is the base station of NR. Communication between base stations can be carried out through the Xn interface.
  • Positioning-related network elements in the core network mainly include: access and mobility management function (AMF) network elements, location management function (LMF) network elements, etc. It can also include evolutionary service mobile location center (E-SMLC) network elements, unified data management (UDM) network elements, and application function (AF) network elements.
  • AMF access and mobility management function
  • LMF location management function
  • E-SMLC evolutionary service mobile location center
  • UDM unified data management
  • AF application function
  • the base station and the AMF network element can communicate through the NG-C interface, and the AMF network element can be equivalent to a router for communication between gNB and LMF.
  • the LMF network element can estimate the location of the terminal device, and the AMF and LMF communicate through the NLs interface.
  • the location management device in the embodiment of the present application may be the LMF or UE-LMC in Figure 2, or may be a network with the functions of the above-mentioned LMF or UE-LMC in future communications such as the sixth generation (6G) network. Yuan, this application is not limited to this.
  • the transmission modes between terminal devices The current standard protocols support broadcast mode, multicast mode, and unicast mode.
  • the broadcast mode means that the terminal device as the sender uses the broadcast mode to send data.
  • Multiple terminal devices can receive sidelink control information (SCI) or sidelink sharing from the sender.
  • SCI sidelink control information
  • Channel sidelink shared channel, SSCH
  • the way to ensure that all terminal devices parse the control information from the sender is that the sender does not scramble the control information, or the sender scrambles the control information using a scrambling code known to all terminal devices. disturb.
  • Multicast mode The multicast mode is similar to broadcast transmission.
  • the terminal device as the sending end uses broadcast mode to send data.
  • a group of terminal devices can parse SCI or SSCH.
  • Unicast mode In unicast mode, one terminal device sends data to another terminal device. The other terminal device does not need or cannot parse the data.
  • the network device can configure a resource pool for transmitted data and/or signals.
  • the network device can configure a resource pool for the PSSCH of the first terminal device, and the resources in the resource pool are used by the first terminal device to send the PSSCH.
  • the network device configures a resource pool for the sidelink positioning reference signal of the first terminal device, and the resources in the resource pool are used by the first terminal device to send the sidelink positioning reference signal.
  • the network device can also configure parameters for the resource pool. For example, the network device configures parameters for the resource pool of the PSSCH (such as parameters for power control of the PSSCH).
  • the transmission power of PSSCH can be determined based on the parameters configured for the PSSCH resource pool, which can improve the quality of PSSCH, thereby improving the transmission success rate of PSSCH, and can also reduce the mutual interference of PSSCH transmitted between terminal devices as much as possible.
  • the resource pools configured by the network device may be different.
  • the resource pool configured by the network device for the PSSCH of the first terminal device may be different from the resource pool configured for the sidelink positioning reference signal of the first terminal device.
  • One of the parameters configured by the network device for the resource pool of PSSCH may be the same as or different from the parameters (such as power control parameters) configured by the network device for the resource pool of the sidelink positioning reference signal. There is no necessary connection. If the transmission power of the sidelink positioning reference signal is still determined based on the parameters configured by the network device for the resource pool of the PSSCH, it will lead to an unreasonable determination of the transmission power of the sidelink positioning reference signal.
  • the network device sends a power control parameter associated with the resource pool of the sidelink positioning reference signal to the first terminal device.
  • the first terminal device The sidelink positioning reference signal is determined based on the power control parameters.
  • the sidelink positioning reference signal is determined.
  • This method can make the transmission power of the side row positioning reference signal more reasonable, which can not only improve the quality of the side row positioning reference signal, thereby improving the transmission success rate of the side row positioning reference signal, but also reduce the cost of the terminal equipment as much as possible. Mutual interference of signals sent between them.
  • Figure 3 exemplarily shows a possible flow diagram of a communication method provided by the embodiment of the present application.
  • This method is demonstrated by taking the execution subjects as the first terminal device, the second terminal device and the network device as an example.
  • the solution executed on the first terminal device side can also be executed by the unit, module or chip inside the first terminal device.
  • the solution executed on the second terminal device side can also be executed by a unit, module or chip inside the second terminal device
  • the solution executed on the network device side can also be executed by a unit, module or chip inside the network device.
  • the first terminal device and the second terminal device in Figure 3 can be the two terminal devices in the various scenarios of Figure 1.
  • the first terminal device and the second terminal device can be (( in Figure 1) a) shows two terminal devices located within the coverage of network equipment.
  • either one of the first terminal device and the second terminal device may be a terminal device located within the coverage of the network device as shown in (b) of Figure 1
  • the other one of the first terminal device and the second terminal device (such as the second terminal device) may be a terminal device located outside the coverage of the network device as shown in (b) in Figure 1
  • the second terminal device is not related to The network device establishes a connection
  • the first terminal device establishes a connection with the network device.
  • the first terminal device and the second terminal device may be two terminal devices located outside the coverage of the network device as shown in (c) of Figure 1 .
  • the first terminal device and the second terminal device in Figure 3 may be the aforementioned UE1 and UE2 of Figure 2 .
  • the network device in Figure 3 may be the network device shown in Figure 1, or the network device in Figure 2, such as the access network equipment and/or core network equipment shown in Figure 2. This application implements There is no restriction on this.
  • the method includes:
  • Step 301 The network device determines power control parameters.
  • the power control parameters are associated with the resource pool of the sidelink positioning reference signal.
  • the power control parameter is used by the first terminal device to determine the target transmission power for transmitting the first side row positioning reference signal.
  • Step 302 The network device sends power control parameters to the first terminal device.
  • the first terminal device receives the power control parameter from the network device.
  • Step 303 The first terminal device determines the target transmit power according to the power control parameters
  • Step 304 The first terminal device sends the first sidelink positioning reference signal according to the target transmit power.
  • the side row positioning reference signal (such as the first side row positioning reference signal or the second side row positioning reference signal) involved in the embodiment of the present application can be understood as a signal that can be used for positioning and transmitted between terminal devices. Or it can also be understood as a signal transmitted between side links of terminal equipment for positioning.
  • the sideline positioning reference signal in the embodiment of the present application can be a sideline positioning reference signal (positioning reference signal, PRS), a sounding reference signal (sounding reference signal, SRS), or a channel state information reference signal ( channel state information reference signal (CSI-RS), demodulation reference signal (DMRS), phase-tracking reference signal (PTRS), side-link synchronization signal/physical layer side-link broadcast channel block ( Sidelink Synchronization signal/physical sidelink broadcast channel block, S-SS/PSBCH block).
  • positioning reference signal positioning reference signal
  • SRS sounding reference signal
  • SRS sounding reference signal
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PTRS phase-tracking reference signal
  • side-link synchronization signal/physical layer side-link broadcast channel block Sidelink Synchronization signal/physical sidelink broadcast channel block, S-SS/PSBCH block.
  • the network device configures a resource pool for the sidelink positioning reference signal of the first terminal device, and the resources in the resource pool are used by the first terminal device to send the sidelink positioning reference signal.
  • the network device configures parameters for the resource pool, where the power control parameters are parameters among the parameters configured by the network device for the resource. Since the network device indicates the power control parameters to the terminal device, and the power control parameters are associated with the resource pool of the sidelink positioning reference signal, the first terminal device can determine a more reasonable transmission power of the sidelink positioning reference signal based on the power control parameters. , which can not only improve the quality of the side-link positioning reference signal, thereby improving the transmission success rate of the side-link positioning reference signal, but also reduce the mutual interference of signals sent between terminal devices as much as possible.
  • the power control parameters in the embodiment of the present application may include one or more of a first parameter, a second parameter, and a third transmission power. They are introduced separately below.
  • the first parameter includes a third parameter and/or a downlink path loss adjustment coefficient.
  • the third parameter is an initial power control value based on the downlink path loss of the first terminal device.
  • the third parameter can also be understood as the initial power control value of the transmitting end of the first sidelink positioning reference signal based on the downlink path loss, and can also be understood as the first A received power value of the side-link positioning reference signal expected by the receiving end of the side-link positioning reference signal.
  • the third parameter may be indicated by a parameter issued by the network device (the parameter may have multiple names, for example, the parameter may be called dl-P0-SLPRS).
  • the downlink path loss adjustment coefficient may be used to adjust the downlink path loss when calculating the first transmit power based on the first parameter.
  • the downlink path loss adjustment coefficient may be indicated by a parameter delivered by the network device (the parameter may have multiple names, for example, the parameter may be called dl-Alpha-SLPRS).
  • the downlink path loss adjustment coefficient may also be called other names, for example, it may be called a filter parameter or a downlink path filter parameter, etc. This embodiment of the present application does not limit this.
  • the first terminal device can consider the impact of the downlink path loss when determining the target transmission power, and then can determine the target transmission power more reasonably. And the measured downlink path loss can be adjusted based on the downlink path loss adjustment coefficient, so that a more reasonable target transmission power can be obtained.
  • the first parameter (such as the third parameter and/or the downlink path loss adjustment coefficient) can be carried in the sidelink resource pool (SL-resource Pool) message.
  • the first parameter may be carried in the SL-power control field in the SL-resource Pool message.
  • the above parameter dl-P0-SLPRS and/or the parameter dl-Alpha-SLPRS can be carried in the side row power control (SL-power control) field.
  • the first terminal device may determine the third parameter according to the received parameter dl-P0-SLPRS.
  • the first terminal device may determine the downlink path loss adjustment coefficient according to the received parameter dl-Alpha-SLPRS.
  • the network device does not configure the downlink path loss adjustment coefficient for the first terminal device.
  • the network device does not configure the downlink path loss adjustment coefficient for the resource pool of the sidelink positioning reference signal; for another example, the network device does not send the downlink path loss adjustment coefficient to the first terminal device (the network device may configure the resource pool for the sidelink positioning reference signal).
  • the downlink path loss adjustment coefficient is configured or not configured); another example is that the sidelink resource pool (SL-resource Pool) message sent by the network device to the first terminal device does not include the parameter dl-Alpha-SLPRS; another example is that the first terminal device
  • the downlink path loss adjustment coefficient cannot be determined from the parameter dl-Alpha-SLPRS sent by the network device.
  • the parameter dl-Alpha-SLPRS indicates a preset value.
  • the first terminal device may determine that the downlink path loss adjustment coefficient is 1. In this way, the first terminal device can determine the target transmit power based on the measured downlink path loss when the network device does not configure the downlink path loss adjustment coefficient. In this way, the target transmit power can be determined based on the maximum possible impact of the downlink path loss. Avoid interference with uplink signal transmission to make the target transmit power more reasonable.
  • the second parameter includes a fourth parameter and/or a side path loss adjustment coefficient.
  • the fourth parameter is an initial power control value based on the sidelink path loss of the first terminal device.
  • the fourth parameter can also be understood as the initial power control value of the sending end of the first sidelink positioning reference signal based on the sidelink path loss, and can also be understood as the reception of the first sidelink positioning reference signal. Another received power value of the side row positioning reference signal expected by the terminal.
  • the fourth parameter is the received power of the side-link positioning reference signal expected by the receiving end of the first side-link positioning reference signal.
  • the fourth parameter may be indicated by a parameter issued by the network device (the parameter may have multiple names, for example, the parameter may be called sl-P0-SLPRS).
  • the sidelink path loss adjustment coefficient may be used to adjust the sidelink path loss when calculating the second transmit power based on the second parameter.
  • the lateral path loss adjustment coefficient may be indicated by a parameter delivered by the network device (the parameter may have multiple names, for example, the parameter may be called sl-Alpha-SLPRS).
  • the side path loss adjustment coefficient may also be called other names, for example, it may be called a filter parameter or a side path filter parameter, etc. This embodiment of the present application does not limit this.
  • the second parameter (such as the fourth parameter and/or the sidelink path loss adjustment coefficient) can be carried in the sidelink resource pool (SL-resource Pool) message.
  • the second parameter can be carried in the sideline power control (SL-power control) field in the SL-resource Pool message.
  • SL-power control sideline power control
  • the above parameters sl-P0-SLPRS and /Or the parameter sl-Alpha-SLPRS can be carried in the side row power control (SL-power control) field.
  • the first terminal device can determine the fourth parameter according to the received parameter sl-P0-SLPRS.
  • the first terminal device can determine the fourth parameter according to the received parameter sl-P0-SLPRS.
  • the received parameter sl-Alpha-SLPRS determines the side path loss adjustment coefficient.
  • the first terminal device can consider the influence of the side-link path loss in the process of determining the transmission power of the side-link positioning reference signal, and then can make a more reasonable Determine the transmit power of the sidelink positioning reference signal. And the measured lateral path loss can be adjusted based on the lateral path loss adjustment coefficient, so that a more reasonable transmission power of the lateral positioning reference signal can be obtained and interference between terminal devices can be reduced.
  • the network device does not configure the side path loss adjustment coefficient for the first terminal device.
  • the network device does not configure the sidelink path loss adjustment coefficient for the resource pool of the sidelink positioning reference signal; for another example, the network device does not send the sidelink path loss adjustment coefficient to the first terminal device (the network device may not configure the sidelink path loss adjustment coefficient for the sidelink positioning reference signal).
  • the resource pool is configured or the sidelink path loss adjustment coefficient is not configured); another example is that the sidelink resource pool (SL-resource Pool) message sent by the network device to the first terminal device does not include parameters.
  • SL-resource Pool another example is that the first terminal device cannot determine the sidelink path loss adjustment coefficient from the parameter sl-Alpha-SLPRS sent by the network device.
  • the parameter sl-Alpha-SLPRS indicates a preset value.
  • the first terminal device may determine that the side path loss adjustment coefficient is 1. In this way, the first terminal device can determine the target transmit power based on the measured side path loss when the network device does not configure the side path loss adjustment coefficient. In this way, the target can be determined based on the maximum possible impact of the side path loss. Transmit power to make the target transmit power more reasonable.
  • the third transmission power includes the transmission power of the first terminal device under conditions based on the CBR of the resource pool corresponding to the first sideline positioning reference signal and the transmission priority corresponding to the first sideline positioning reference signal.
  • the first terminal device can determine the target transmit power based on the transmit power of the first terminal device under conditions based on CBR and transmission priority, so that the determined target transmit power can better match the actual transmit power of the first terminal device.
  • the third power may be the maximum transmission power of the first terminal device under conditions based on the CBR of the resource pool corresponding to the first sideline positioning reference signal and the transmission priority corresponding to the first sideline positioning reference signal.
  • the third transmit power may be indicated by a parameter delivered by the network device (the parameter may have multiple names, for example, the parameter may be called sl-MaxTxPower-SLPRS).
  • the third transmission power can be carried in the side row resource pool (SL-resource Pool) message.
  • the above parameter sl-MaxTxPower-SLPRS can be carried in the sideline resource pool (SL-resource Pool) message.
  • the first terminal device may determine the third transmit power according to the received parameter sl-MaxTxPower-SLPRS.
  • the network device does not configure the third transmission power for the first terminal device.
  • the network device does not configure the third transmit power for the resource pool of the sidelink positioning reference signal; for another example, the network device does not send the third transmit power to the first terminal device (the network device may be a resource pool for the sidelink positioning reference signal).
  • the third transmit power is configured or not configured); another example is that the side row resource pool (SL-resource Pool) message sent by the network device to the first terminal device does not include the parameter sl-MaxTxPower-SLPRS; another example is that the first terminal device cannot
  • the third transmission power is determined from the parameter sl-MaxTxPower-SLPRS sent by the network device.
  • the parameter sl-MaxTxPower-SLPRS indicates a preset value.
  • the first terminal device may not consider the third transmission power when determining the target transmission power.
  • the first terminal device may determine that the third transmission power is equal to the fourth transmission power.
  • the fourth transmit power includes the transmit power of the first terminal device, for example, the fourth transmit power includes the maximum transmit power of the first terminal device.
  • the target transmit power can be determined based on the transmit power of the terminal device, so that the determined target transmit power can better match the transmit power of the terminal device.
  • the fourth transmit power may be configured on the first terminal device.
  • the first terminal device may learn the fourth transmit power from its own configuration information.
  • the fourth transmit power may also be configured on other devices (such as network devices). Indicated to the first terminal device.
  • the first terminal device determines the target transmit power according to the power control parameter. Specifically, for example, the first terminal device may determine the target transmit power according to the first transmit power, the second transmit power, the third transmit power and the fourth transmit power. One or more items determine the target transmit power.
  • the first transmit power is determined based on the first parameter and the downlink path loss. In this way, the first terminal device can consider the impact of the downlink path when determining the target transmit power, thereby determining a more reasonable target transmit power and avoiding damage to the uplink signal. transmission effects.
  • the first transmit power is determined based on the first parameter, the downlink path loss and the number of resources occupied by the first sidelink positioning reference signal. In this way, the target transmit power can be determined based on the number of resources occupied by the first sidelink positioning reference signal, so that can make the results more reasonable.
  • the second transmit power is determined based on the second parameter and the side path loss. In this way, the first terminal device can consider the impact of the side path when determining the target transmit power, thereby determining a more reasonable target transmit power to avoid the terminal Interference between devices.
  • the second transmit power is determined based on the second parameter, the sidelink path loss and the number of resources occupied by the first sidelink positioning reference signal. In this way, the target transmit power can be determined based on the number of resources occupied by the first sidelink positioning reference signal. , which can make the results more reasonable.
  • the fourth transmit power includes the transmit power of the first terminal device, which may be, for example, the maximum transmit power of the first terminal device.
  • the target transmit power can be determined based on the transmit power of the terminal device, so that the determined target transmit power can better match the transmit power of the terminal device.
  • the first terminal device determines the target transmit power based on the smaller value of one or more of the first value, the third transmit power, or the fourth transmit power. For example, the first terminal device determines the target transmit power based on the smaller value of the first value, the third transmit power, and the fourth transmit power. For example, the first terminal device may combine the first transmission power, the second transmission power, the The minimum value among the three transmission powers and the fourth transmission power is determined as the target transmission power. Wherein, the first value is the smaller value of the first transmission power and the second transmission power.
  • P PRS (i) represents the target transmit power
  • P CMAX represents the fourth transmit power
  • P MAX CBR represents the third transmit power
  • D (i) represents the first transmit power
  • SL (i) represents the second transmit power
  • min(a, b) represents the minimum value of parameter a and parameter b.
  • parameter a and parameter b are used as examples to introduce the meaning of min.
  • dBm represents the unit decibel milliwatt ( decibel relative to one milliwatt, dBm).
  • P PRS (i) in formula (1) can also be understood as the transmission power of the SL bandwidth part (BWP) b of the carrier f at the transmission opportunity i.
  • the first terminal device may also determine the target transmit power in other ways.
  • the first terminal device may determine one or more of the first transmit power, the second transmit power, the third transmit power and the fourth transmit power.
  • the minimum value among the terms is determined as the target transmit power.
  • the first terminal device determines the target transmit power according to the smaller value of the first transmit power and the second transmit power. In this way, the target transmit power can be minimized, thereby It can save the power consumption of terminal equipment.
  • the first terminal device may determine the minimum value among the first transmission power, the second transmission power and the first value as the target transmission power, and the first value is the minimum value among the third transmission power and the fourth transmission power, or maximum value.
  • the first terminal device is far away from the network device, but the distance between the first terminal device and the second terminal device is relatively close. Therefore, the side path loss may be larger, and the fourth transmit power may be larger. If the first value is selected is the maximum value of the third transmit power and the fourth transmit power, that is, the first value is the fourth transmit power, then the first terminal device can further determine the target transmit power based on the fourth transmit power, so as to ensure that the communication between the terminal devices Communication needs.
  • the first transmission power and the second transmission power will be further introduced respectively below.
  • the first transmit power is determined based on the first parameter, the downlink path loss and the number of resources occupied by the first sidelink positioning reference signal.
  • the first transmit power is obtained by the following formula:
  • P PRS,D (i) represents the first transmit power
  • represents the preset value
  • ⁇ D represents the downlink path loss adjustment value
  • PL D represents the downlink path loss
  • min(a, b) represents the minimum value of parameter a and parameter b, where Parameters a and b are used as examples to introduce the meaning of min.
  • dBm represents the unit of decibel milliwatts.
  • the network device is not configured with the third parameter.
  • the network device does not configure the third parameter for the resource pool of the sidelink positioning reference signal; for another example, the network device does not send the third parameter to the first terminal device (the network device may or may not configure the resource pool for the sidelink positioning reference signal).
  • third parameter another example is that the side-link resource pool (SL-resource Pool) message sent by the network device to the first terminal device does not include the parameter dl-P0-SLPRS; another example is that the first terminal device cannot send parameters from the network device dl-P0-SLPRS determines the third parameter, for example, the parameter dl-P0-SLPRS indicates a preset value.
  • the first transmission power includes the smaller value of the third transmission power and the fourth transmission power, which can be used
  • the first terminal device can determine the target transmit power based on the capabilities of the terminal device and the capabilities of the terminal device under CBR and transmission priority conditions, so that the determined The target transmit power better matches the actual capability of the first terminal device.
  • the first terminal device may not consider the first transmission power.
  • the first transmit power can also be determined in other ways.
  • the first transmit power is the sum of the first parameter and the downlink path loss.
  • the first transmit power is determined by the first parameter and the first side. The number of resources occupied by the row positioning reference signal is determined.
  • the first terminal device may estimate the downlink path loss according to the downlink signal.
  • PL D PL b, f, c (q d ) in Formula 1, that is, the first terminal equipment can estimate the downlink path loss using the reference signal of the reference signal resource index q d .
  • the downlink path loss may be obtained by subtracting the transmission power of the reference signal with reference signal index q d and the measured RSRP, and the transmission power may be obtained from the network device.
  • the second transmit power is determined based on the second parameter, the sidelink path loss, and the number of resources occupied by the first sidelink positioning reference signal.
  • the second transmit power is obtained by the following formula:
  • P PRS, SL (i) represents the second transmit power
  • P OPRS SL
  • SL represents the fourth parameter
  • represents the preset value
  • ⁇ SL indicates the sidelink path loss adjustment value
  • PL SL indicates the sidelink path loss
  • min(a, b) indicates the minimum value of parameter a and parameter b
  • parameters a and b are used as examples to introduce the meaning of min.
  • dBm represents the unit of decibel milliwatts.
  • the network device is not configured with the fourth parameter.
  • the network device does not configure the fourth parameter for the resource pool of the sidelink positioning reference signal; for another example, the network device does not send the fourth parameter to the first terminal device (the network device may or may not configure the resource pool for the sidelink positioning reference signal).
  • the fourth parameter another example is that the side-link resource pool (SL-resource Pool) message sent by the network device to the first terminal device does not include the parameter sl-P0-SLPRS; another example is that the first terminal device cannot send parameters from the network device sl-P0-SLPRS determines the fourth parameter.
  • the parameter sl-P0-SLPRS indicates a preset value.
  • the second transmission power includes the smaller value of the third transmission power and the fourth transmission power, which can be used
  • the first terminal device can determine the target transmit power based on the capabilities of the terminal device and the capabilities of the terminal device under CBR and transmission priority conditions, so that the determined The target transmit power better matches the actual capability of the first terminal device.
  • the first terminal device may not consider the second transmission power.
  • the second transmit power can also be determined in other ways.
  • the second transmit power is the sum of the second parameter and the side path loss.
  • the second transmit power is determined by the second parameter and the first The number of resources occupied by the sidelink positioning reference signal is determined.
  • the second terminal device generates the first information, and the second terminal device sends the first information to the first terminal device.
  • the first information includes information on the received power of the sidelink signal from the first terminal device, information on the sidelink path loss, or information on the transmission power of the sidelink signal sent by the second terminal device.
  • the first terminal device receives first information from the second terminal device.
  • the first terminal device determines the side path loss based on the first information.
  • There are many ways for the first terminal device to determine the sidelink path loss which can improve the flexibility of the solution, and determining the sidelink path loss based on the information transmitted through the sidelink between the first terminal device and the second terminal device can improve the Sidewalk path loss accuracy.
  • the sidelink signal in the embodiment of this application can be a sidelink PRS, or it can be an SRS, or it can also be a CSI-RS, DMRS, PTRS, or S-SS/PSBCH block.
  • the second terminal device can send the first information to the first terminal device through the PC5 interface.
  • the first information is carried in a PC5RRC message; and then
  • the second terminal device and the first terminal device transmit the first information through other terminal devices or network devices.
  • the second terminal device can send the first information to the network device (such as the first terminal device through the network device). Uu port between devices), after receiving the first information, the network device forwards the first information to the second terminal device.
  • the second terminal device may also send the received power from the first terminal device to the first terminal device.
  • the resource identification (identity, ID) of the sidelink signal, and/or the resource set identification (resource set ID) corresponding to the resource of the sidelink signal from the first terminal device, part or all of the two pieces of information can be It may be included in the first information, or it may not be included in the first information.
  • the subsequent content will be introduced using the example of the two pieces of information being included in the first information.
  • the first terminal device can determine the sidelink signal corresponding to the received power included in the first information, and then determine the sidelink path loss based on the transmit power of the sidelink signal and the received power in the first information.
  • a resource set identifier corresponds to a resource set, and a resource set includes one or more resources.
  • the first information includes information about the received power of the sidelink signal from the first terminal device or information about the sidelink path loss.
  • the first information Information including the transmission power of the sidelink signal sent by the second terminal device.
  • the first information includes information on the received power of the sidelink signal from the first terminal device or information on the sidelink path loss.
  • the first information includes at least one of the following: information about the received power of the first sidelink signal, is the sidelink signal from the first terminal equipment received by the second terminal equipment.
  • the type of the first sidelink signal includes the sidelink positioning reference signal; the information of the received power of the second sidelink signal, and the second sidelink signal is the The second terminal device receives the sidelink signal from the first terminal device.
  • the type of the second sidelink signal includes PSSCH DMRS or PSCCH DMRS; or, the sidelink path loss information, the sidelink path loss information is based on the first sidelink signal. signal or second sideline signal determined.
  • the sidelink path loss can be determined between the first terminal equipment and the second terminal equipment based on the sidelink positioning reference signal, PSSCH DMRS or PSCCH DMRS, thereby improving the flexibility of the solution.
  • Figure 4 schematically shows a possible flow chart of a method for determining side path loss provided by an embodiment of the present application. As shown in Figure 4, the method includes:
  • Step 400 The first terminal device sends the first configuration information to the second terminal device.
  • the second terminal device receives the first configuration information.
  • the first configuration information indicates information of the sidelink signal used to determine the sidelink path loss.
  • the second terminal device can measure the sidelink signal configured based on the first configuration information, thereby better controlling the sidelink path loss determination process.
  • the first terminal device may send the first configuration information to the second terminal device through the PC5 interface, or may send the first configuration information to the network device, so that the network device sends the first configuration information to the second terminal device.
  • the first configuration information can also be configured by the network device for the second terminal device.
  • the network device can send the first configuration information to the second terminal device (for example, send the first configuration information through an RRC message).
  • FIG. 4 takes the first terminal device sending the first configuration information to the second terminal device as an example for illustration.
  • the first configuration information may include one or more of the first signal type information, the first resource identifier, or the first resource set identifier. It can be seen that there are many ways to configure the sidelink signal through the first configuration information, which are relatively flexible and can improve the flexibility of the solution.
  • the first signal type is the type of sidelink signal used to determine sidelink path loss.
  • the first signal type may include one or more of sidelink positioning reference signals, PSSCH DMRS, or PSCCH DMRS. If the first signal type includes the sidelink positioning reference signal, since the determined target transmit power is the transmit power of the first sidelink positioning reference signal, the sidelink path loss determined based on the sidelink positioning reference signal can more accurately reflect the first sidelink positioning reference signal.
  • the sideline positioning reference signal faces the environment, which in turn can improve the accuracy of the target transmit power.
  • the second terminal device can also measure PSSCH DMRS and/or PSCCH DMRS, and feed back the first information based on the measurement results, thereby improving the flexibility of the solution.
  • the first terminal device does not need to send the sidelink positioning reference signal in order to determine the sidelink path loss, thereby reducing the number of signals sent by the first terminal device and reducing the first The power consumption of the terminal device.
  • the first resource identification may include identifications of one or more resources.
  • the first resource set identifier may also include identifiers of one or more resource sets.
  • the second terminal device may determine the sidelink signal whose received power needs to be measured based on the first configuration information.
  • the first signal type includes a side-link positioning reference signal
  • the second terminal device can measure the received side-link positioning reference signal.
  • the first configuration information includes the first resource identifier, and the second terminal device can measure the received sidelink signal in one or more resources indicated by the first resource identifier, and based on the measured one or more The received power feeds back first information.
  • the first information may include the maximum value, average value, larger value, etc. of the one or more received powers measured by the second terminal device.
  • the first configuration information includes a first resource set identifier
  • the second terminal device can measure the received sidelink signal in one or more resources indicated by the first resource set identifier, and obtain one or more resources according to the measurement.
  • Multiple received power feedback first information for example, the first information may include the maximum value, average value, larger value, etc. of the one or more received powers.
  • Step 400 may be an optional step, and the second terminal device may not receive the first configuration information.
  • the second terminal device may use sideline positioning reference signal resources.
  • the received sidelink positioning reference signal is measured, and the first information is fed back according to the measured one or more received powers.
  • the first information may include the maximum value, average value, larger value of the one or more received powers. Worth waiting.
  • Step 401 The first terminal device sends a first sidelink signal.
  • the second terminal device may receive the first sidelink signal.
  • the type of the first sidelink signal includes a sidelink positioning reference signal.
  • Step 402 The first terminal device sends a second sidelink signal.
  • the second terminal device may receive the second sidelink signal.
  • the type of the second sidelink signal includes PSSCH DMRS or PSCCH DMRS.
  • step 401 There is no sequence relationship between step 401 and step 402. It is also possible to execute step 402 first and then execute step 401.
  • Step 403 Whether the second terminal device obtains the received power of the first sidelink signal
  • step 404 When the second terminal device obtains the received power of the first sidelink signal, perform step 404;
  • step 406 is executed.
  • the received power of the first sidelink signal fed back by the second terminal device can be understood as the transmission power of the sidelink positioning reference signal.
  • the second terminal device may have received the first configuration information.
  • the first signal type includes the type of the first sidelink signal.
  • the second terminal device After receiving the information, the received sidelink positioning reference signal is measured, and the second terminal device can feed back the received power of the first sidelink signal according to the received received power of one or more sidelink signals, such as converting the one or more received sidelink signals.
  • the maximum value, larger value or average value among the received powers of the sidelink signals is used as the received power of the first sidelink signal.
  • the first resource identifier includes the identifier of the resource with the first sidelink signal.
  • the first resource set identifier may include the resource set identifier of the resource with the first sidelink signal.
  • the second terminal device may be configured according to the first resource set identifier.
  • the configuration information includes the first resource identifier and/or the first resource set identifier for measurement, and the received power of the first sidelink signal is fed back according to the received received power of one or more sidelink signals, such as converting the one or more sidelink signals.
  • the maximum value, larger value or average value among the received powers of the sidelink signals is used as the received power of the first sidelink signal.
  • the second terminal device may not obtain the received power of the first sidelink signal.
  • the second terminal device may not successfully receive the first sidelink signal; or the second terminal device may successfully receive the first sidelink signal. , but the received power of the first sidelink signal cannot be measured, or the measurement of the first sidelink signal fails or is incorrect.
  • the second terminal device may have multiple implementations.
  • the second terminal device does not obtain the first sidelink signal. (such as side-link positioning reference signal)
  • the second terminal device can measure the second side-link signal (such as PSSCH DMRS or PSCCH DMRS), and feed back the received power of the second side-link signal to the first Terminal Equipment. This example is shown in Figure 4.
  • the first signal type in the first configuration information may include the type of the second sidelink signal.
  • the first signal type may include PSSCH DMRS and/or PSCCH DMRS.
  • the second terminal device when it does not obtain the received power of the first sidelink signal, it can measure the PSSCH DMRS and/or PSCCH DMRS (such as the second sidelink signal) and obtain the measurement results (such as received power) is carried in the first information.
  • the first signal type in the first configuration information may not include the type of the second sidelink signal.
  • the second terminal device can measure the PSSCH DMRS and/or PSCCH DMRS (such as the second sidelink signal) according to the preset rules or default rules without obtaining the received power of the first sidelink signal.
  • the obtained measurement result (such as received power) is carried in the first information.
  • the first configuration information may include information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or indicating that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss. signal information.
  • the first configuration information may also include information indicating that the PSCCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or information indicating that the PSCCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • the second terminal device can measure the PSSCH DMRS and/or PSCCH DMRS (such as the second sidelink signal) according to the preset rules or default rules without obtaining the received power of the first sidelink signal.
  • the obtained measurement result (such as received power) is carried in the first information.
  • a special bit can be set in the field of the first configuration information.
  • the bit value of this bit is 1, which means that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, and the bit is 0. It can mean that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • a special bit can be set in the field of the first configuration information. The bit value of this bit is 1, which can indicate that PSSCH DMRS and PSCCH DMRS belong to sidelink signals used to determine sidelink path loss. This bit A bit of 0 indicates that PSSCH DMRS and PSCCH DMRS are not sidelink signals used to determine sidelink path loss.
  • the second terminal device performing step 406 shown in Figure 4 is a possible example. If the second terminal device does not obtain the received power of the first sidelink signal, it may also perform other embodiments.
  • the second terminal device may report information indicating a measurement error to the network device.
  • the network device may instruct the first terminal device to continue sending the sidelink positioning reference signal based on the information indicating a measurement error, or instruct the second terminal device to measure the PSSCH DMRS or PSCCH DMRS from the first terminal device, and use the obtained PSSCH DMRS Or the received power of PSCCH DMRS is carried in the first information and fed back to the first terminal equipment.
  • the second terminal device can continue to wait for the next sidelink positioning reference signal from the first terminal device until the second terminal device successfully obtains it. to the received power of a side-link positioning reference signal, and then feeds back the information of the received power of the side-link positioning reference signal to the first terminal device.
  • the second terminal device when the second terminal device does not obtain the received power of the first sidelink signal, the second terminal device can obtain the historical incoming power.
  • the information about the received power of the sidelink positioning reference signal, PSSCH DMRS or PSCCH DMRS from the first terminal equipment is carried in the first information and fed back to the first terminal equipment, so that the first terminal equipment can use the historical sidelink positioning reference signal,
  • the received power and transmit power of PSSCH DMRS or PSCCH DMRS estimate the sidelink path loss.
  • Step 404 The second terminal device sends the received power information of the first sidelink signal to the first terminal device.
  • the first terminal device receives information about the received power of the first sidelink signal.
  • the second terminal device may send the information about the received power of the first sidelink signal to the network device, and the network device then sends the information about the received power of the first sidelink signal to the first terminal device.
  • the second terminal device may directly send the received power information of the first sidelink signal to the first terminal device through the PC5 interface.
  • the information about the received power of the first sidelink signal may be, for example, the reference signal receiving power (RSRP) of the first sidelink signal.
  • the first information includes information on the received power of the first sidelink signal.
  • Step 405 When receiving the received power of the first sidelink signal, the first terminal device determines the sidelink path loss based on the received power of the first sidelink signal and the transmit power of the first sidelink signal.
  • the first information in the case where the first information includes information about the received power of the first sidelink signal, the first information further includes: the resource identifier of the first sidelink signal, and/or the first side The resource set identifier corresponding to the row signal resource.
  • the first terminal device can determine the sidelink signal corresponding to the received power included in the first information based on the resource identifier and/or the resource set identifier included in the first information, and then determine the sidelink signal corresponding to the received power included in the first information, and then determine the sidelink signal based on the transmit power of the sidelink signal and the first The received power in the message determines the sidelink path loss.
  • the second terminal device may send sidelink path loss information to the first terminal device.
  • the first information includes sidelink path loss information.
  • the information about the sidelink path loss can be determined based on the first sidelink signal.
  • the first terminal device can also send the information about the transmission power of the first sidelink signal to the second terminal device.
  • the second terminal device can determine the information about the transmission power of the first sidelink signal according to the first sidelink signal. The received power and transmit power of the row signal determine the sidelink path loss.
  • Step 406 The second terminal device obtains the received power of the second sidelink signal.
  • Step 407 The second terminal device sends the received power information of the second sidelink signal to the first terminal device.
  • the first terminal device receives information about the received power of the second sidelink signal from the second terminal device.
  • the second terminal device may send the information about the received power of the second sidelink signal to the network device, and the network device then sends the information about the received power of the second sidelink signal to the first terminal device.
  • the second terminal device may directly send the received power information of the second sidelink signal to the first terminal device through the PC5 interface.
  • the information on the received power of the second sidelink signal may be, for example, the RSRP of the second sidelink signal.
  • the first information includes information on the received power of the second sidelink signal.
  • Step 408 When receiving the received power of the second sidelink signal, the first terminal device determines the sidelink path loss based on the received power of the second sidelink signal and the transmit power of the second sidelink signal.
  • the sidelink path loss can be determined based on the received power of one or more of the sidelink signals.
  • the first information in the case where the first information includes information about the received power of the second sidelink signal, the first information also includes: the resource identifier of the second sidelink signal, and/or the second side The resource set identifier corresponding to the row signal resource.
  • the first terminal device can determine the sidelink signal (such as the second sidelink signal) corresponding to the received power included in the first information based on the resource identifier and/or resource set identifier included in the first information, and then determine the sidelink signal according to the sidelink signal.
  • the transmit power of the row signal and the received power in the first information determine the side row path loss.
  • the second terminal device may send sidelink path loss information to the first terminal device.
  • the first information includes sidelink path loss information.
  • the information about the sidelink path loss can be determined based on the second sidelink signal.
  • the first terminal device can also send information about the transmission power of the second sidelink signal to the second terminal device.
  • the second terminal device can determine the information about the second sidelink signal according to the second sidelink signal. The received power and transmit power of the row signal determine the sidelink path loss.
  • the first terminal device may not successfully receive the information on the received power of the first sidelink signal.
  • the second terminal device may not feedback the information on the received power of the first sidelink signal, or the first terminal device may not receive any information on the received power of the first sidelink signal. Failed to receive the received power of the first side row signal, etc.
  • the first terminal device may have multiple possible implementations.
  • the first terminal device can determine whether the received power information of the second sidelink signal is received. If the received power of the second sidelink signal is successfully received, the first terminal device may The received power of the second sidelink signal and the transmit power of the second sidelink signal determine the sidelink path loss.
  • the first terminal device may be based on the historical positioning sidelink signals, PSSCH DMRS or The received power of one or more of the PSCCH DMRS and the transmit power of these signals determine the sidelink path loss.
  • the first information includes information about the transmission power of the sidelink signal sent by the second terminal device.
  • the second terminal device may send a sidelink signal used to determine the sidelink path loss so that the first terminal device can measure it.
  • the first information includes: information about the transmission power of the third sidelink signal, the third sidelink signal comes from the second terminal device, and the type of the third sidelink signal includes the sidelink positioning reference signal; and/or the fourth side
  • the information about the transmission power of the row signal, the fourth side row signal comes from the second terminal equipment, the third side row signal includes the side row positioning reference signal, and the type of the fourth side row signal includes PSSCH DMRS or PSCCH DMRS.
  • This solution determines the side path loss based on the information transmitted through the side link between the first terminal device and the second terminal device, which can improve the accuracy of the side path loss.
  • Figure 5 schematically shows a possible flow chart of a method for determining side path loss provided by an embodiment of the present application. As shown in Figure 5, the method includes:
  • Step 500 The second terminal device sends second configuration information to the first terminal device.
  • the first terminal device receives the second configuration information.
  • the second configuration information indicates information of the sidelink signal used to determine the sidelink path loss.
  • the second terminal device can measure the sidelink signal configured based on the first configuration information, thereby better controlling the sidelink path loss determination process.
  • the second terminal device may send the second configuration information to the first terminal device through the PC5 interface, or may send the second configuration information to the network device, so that the network device sends the second configuration information to the first terminal device.
  • the second configuration information can also be configured by the network device for the first terminal device.
  • the network device can send the second configuration information to the first terminal device (for example, send the second configuration information through an RRC message).
  • the second terminal device sends the second configuration information to the first terminal device as an example for illustration.
  • the second configuration information may include one or more of information on the second signal type, a second resource identifier, or a second resource set identifier. It can be seen that there are many ways to configure the sidelink signal through the second configuration information, which are relatively flexible and can improve the flexibility of the solution.
  • the second signal type is the type of sidelink signal used to determine the sidelink path loss.
  • the second signal type may include one or more of sidelink positioning reference signals, PSSCH DMRS, or PSCCH DMRS.
  • the second resource identification may include identifications of one or more resources.
  • the second resource set identifier may also include identifiers of one or more resource sets.
  • the second signal type includes a sidelink positioning reference signal
  • the sidelink path loss determined based on the sidelink positioning reference signal can more accurately reflect the first sidelink positioning reference signal.
  • the sideline positioning reference signal faces the environment, which in turn can improve the accuracy of the target transmit power.
  • the second signal type also includes: PSSCH DMRS type and/or PSCCH DMRS type.
  • the first terminal equipment can also measure PSSCH DMRS and/or PSCCH DMRS, and determine the sidelink path loss based on the measurement results, the flexibility of the solution can be improved, and if the second signal type does not include the sidelink positioning reference signal, the third The second terminal device also does not need to send the sidelink positioning reference signal in order to determine the sidelink path loss, thereby reducing the number of signals sent by the second terminal device and reducing the power consumption of the first terminal device.
  • the first terminal device may determine the sidelink signal whose received power needs to be measured based on the second configuration information.
  • the second signal type includes a side-link positioning reference signal, and the first terminal device can measure the received side-link positioning reference signal.
  • the second configuration information includes a second resource identifier, and the first terminal device can measure the received sidelink signal in one or more resources indicated by the second resource identifier to obtain one or more sidelink signals.
  • the first terminal device determines the sidelink path loss based on the maximum value, larger value or average value of the received power of the one or more sidelink signals.
  • the second configuration information includes a second resource set identifier.
  • the first terminal device can measure the received sidelink signal in one or more resources indicated by the second resource set identifier to obtain one or more resources. The received power of the sidelink signal, and then the first terminal device determines the sidelink path loss based on the maximum value, the larger value or the average value of the received power of the one or more sidelink signals. For example, the first terminal device determines the sidelink path loss based on the obtained maximum value of the received power of one or more sidelink signals and the transmission power of the sidelink signal corresponding to the maximum value.
  • Step 500 may be an optional step, and the first terminal device may not receive the second configuration information.
  • the first terminal device may use sideline positioning reference signal resources.
  • the received sidelink positioning reference signal is measured, and the sidelink path loss is determined based on one or more measured received powers.
  • Step 501 The second terminal device sends a third sidelink signal.
  • the first terminal device may receive the third sidelink signal.
  • the third sidelink signal type includes a sidelink positioning reference signal.
  • Step 502 The second terminal device sends information about the transmission power of the third sidelink signal to the first terminal device.
  • the first terminal device receives information about the transmission power of the third sideline signal.
  • the second terminal device may send information about the transmission power of the third sideline signal to the network device, and the network device then sends the information about the transmission power of the third sideline signal to the first terminal device.
  • the second terminal device may directly send the information about the transmission power of the third sideline signal to the first terminal device through the PC5 interface.
  • the second terminal device may also send the resource identifier and/or the resource set identifier of the third sideline signal to the first terminal device, so that the first terminal device learns that the second terminal device in step 502
  • the resources and/or resource sets of the sidelink signals corresponding to the transmitted transmission power information may be carried in the same message.
  • Step 502 can be performed before step 506, and there is no absolute sequence relationship with any of the aforementioned steps 500 to 505.
  • step 502 can be performed first, and then one or more steps from steps 500 to 505 can be performed.
  • Step 503 The second terminal device sends a fourth sideline signal.
  • the first terminal device may receive the fourth sideline signal.
  • the type of fourth sidelink signal includes PSSCH DMRS or PSCCH DMRS.
  • step 501 There is no sequence relationship between step 501 and step 503. It is also possible to execute step 503 first and then execute step 501.
  • Step 504 The second terminal device sends information about the transmission power of the fourth sideline signal to the first terminal device.
  • the first terminal device receives information about the transmission power of the fourth sideline signal from the second terminal device.
  • the second terminal device may send the information about the transmission power of the fourth sideline signal to the network device, and the network device then sends the information about the transmission power of the fourth sideline signal to the first terminal device.
  • the second terminal device may directly send the information about the transmission power of the fourth sideline signal to the first terminal device through the PC5 interface.
  • the second terminal device may also send the resource identifier and/or the resource set identifier of the fourth sideline signal to the first terminal device, so that the first terminal device knows the received first terminal device in step 504.
  • the resource and/or resource set of the sidelink signal corresponding to the transmission power information sent by the second terminal device.
  • the resource identifier and/or resource set identifier of the fourth sidelink signal and the information about the transmission power of the fourth sidelink signal may be carried in the same message.
  • Step 504 can be performed before step 508, and there is no absolute sequence relationship with any of the aforementioned steps 500 to 507.
  • step 504 can be performed first, and then one or more steps from steps 500 to 507 can be performed.
  • Step 505 Whether the first terminal device obtains the received power of the third sidelink signal
  • step 506 is executed;
  • step 507 is executed.
  • the fourth sidelink signal is PSSCH DMRS or PSCCH DMRS
  • the received power of the third sidelink signal obtained by the first terminal device can be understood as the received power of the sidelink positioning reference signal.
  • the first terminal device may have received the second configuration information.
  • the second signal type includes the type of the third sideline signal.
  • the first terminal device After receiving the second configuration information, the first terminal device After receiving the information, the received sidelink positioning reference signal is measured.
  • the first terminal device can determine the received power of the third sidelink signal based on the received received power of one or more sidelink signals.
  • the one or more sidelink signals are The maximum value, larger value or average value among the received powers of the sidelink signals is used as the received power of the third sidelink signal.
  • the second resource identifier may include a resource identifier for a third sidelink signal.
  • the second resource set identifier may include a resource set identifier for a resource for a third sidelink signal.
  • the first terminal device may use the second resource identifier to identify the resource identifier for the third sidelink signal.
  • the configuration information includes the second resource identifier and/or the second resource set identifier for measurement, and the received power of the third sidelink signal is determined based on the received received power of the one or more sidelink signals.
  • the one or more sidelink signals are The maximum value, larger value or average value of the received power of the row signal is used as the received power of the third side row signal.
  • the first terminal device may not obtain the received power of the third sidelink signal.
  • the first terminal device may not successfully receive the third sidelink signal; or the second terminal device may successfully receive the third sidelink signal. , but the received power of the third side-link signal cannot be measured, or the measurement of the third side-link signal fails or is wrong.
  • the first terminal equipment may have multiple implementations. For example, as shown in Figure 5, the first terminal equipment does not obtain the third sideline signal. (such as sidelink positioning reference signal), the first terminal device can measure the fourth sidelink signal (such as PSSCH DMRS or PSCCH DMRS), and determine the sidelink path based on the received power of the fourth sidelink signal. loss. This example is shown in Figure 5.
  • the second signal type in the second configuration information may include the type of the fourth sideline signal.
  • the second signal type may include PSSCH DMRS and/or PSCCH DMRS.
  • the first terminal device does not obtain the received power of the third sidelink signal, it can measure the PSSCH DMRS and/or PSCCH DMRS (such as the fourth sidelink signal), and determine the sidelink based on the obtained measurement results. row path loss.
  • the first signal type in the second configuration information may not include the type of the fourth sideline signal. in this way, When the first terminal device does not obtain the received power of the third sidelink signal, it can measure the PSSCH DMRS and/or PSCCH DMRS (such as the fourth sidelink signal) according to the preset rules or default rules. The measurement determines the lateral path loss.
  • the second configuration information may include information indicating that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or indicating that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss. signal information.
  • the second configuration information may also include information indicating that the PSCCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, or information indicating that the PSCCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • the first terminal device can measure the PSSCH DMRS and/or PSCCH DMRS (such as the fourth sidelink signal) according to the preset rules or default rules without obtaining the received power of the third sidelink signal. The resulting measurements determine the lateral path loss.
  • a special bit can be set in the field of the second configuration information.
  • the bit value of this bit is 1, which means that the PSSCH DMRS belongs to the sidelink signal used to determine the sidelink path loss, and the bit is 0. It can mean that the PSSCH DMRS does not belong to the sidelink signal used to determine the sidelink path loss.
  • a special bit can be set in the field of the second configuration information. If the bit value of this bit is 1, it can indicate that PSSCH DMRS and PSCCH DMRS belong to sidelink signals used to determine sidelink path loss. This bit A bit of 0 indicates that PSSCH DMRS and PSCCH DMRS are not sidelink signals used to determine sidelink path loss.
  • the first terminal device performing step 507 shown in Figure 5 is a possible example. If the first terminal device does not obtain the received power of the third sideline signal, other implementations may be performed.
  • the first terminal device may report information indicating a measurement error to the network device.
  • the network device may instruct the second terminal device to continue sending the sidelink positioning reference signal based on the information indicating a measurement error, or instruct the first terminal device to measure the PSSCH DMRS or PSCCH DMRS from the second terminal device, and based on the obtained PSSCH DMRS Or the received power of PSCCH DMRS determines the sidelink path loss.
  • the first terminal device can continue to wait for the next sidelink positioning reference signal from the second terminal device until the first terminal device successfully obtains it. to the received power of a side-link positioning reference signal, and then determine the side-link path loss based on the received power of the side-link positioning reference signal.
  • the first terminal device when the first terminal device does not obtain the received power of the third sidelink signal, the first terminal device can calculate the received power of the sidelink positioning reference signal, PSSCH DMRS or PSCCH DMRS based on the historical received power of the sidelink positioning reference signal from the second terminal device. and transmit power to estimate sidelink path loss.
  • Step 506 The first terminal device determines the sidelink path loss based on the transmit power of the third sidelink signal and the received power of the third sidelink signal.
  • the first terminal device when the first terminal device obtains the received power of the third side row signal, it determines the side row signal according to the received power of the third side row signal and the transmit power of the third side row signal. path loss. Since the determined target transmit power is the transmit power of the first side-link positioning reference signal, the side-link path loss determined based on the side-link positioning reference signal can more accurately reflect the environment faced by the first side-link positioning reference signal, thereby improving the Target transmit power accuracy.
  • Step 507 The first terminal device obtains the received power of the fourth sidelink signal.
  • Step 508 The first terminal device determines the sidelink path loss based on the transmit power of the fourth sidelink signal and the received power of the fourth sidelink signal.
  • the first terminal device may not successfully receive the information about the transmission power of the third sideline signal.
  • the second terminal device does not feedback the information about the transmission power of the third sideline signal, or the first terminal device does not respond to the information about the transmission power of the third sideline signal. Failure to receive information on the transmission power of the third sidelink signal, etc.
  • the first terminal device may have multiple possible implementations.
  • the first terminal device can determine whether the information about the transmission power of the fourth sideline signal is received. If the transmission power of the fourth sideline signal is successfully received, according to the first The transmit power of the four side-row signals and the received power of the fourth side-row signal determine the side-row path loss. In this way, the flexibility of the solution can be improved, and since the fourth sidelink signal is a signal transmitted between the second terminal device and the first terminal device based on the sidelink, the fourth sidelink signal can also more accurately reflect the sidelink signal. line path loss, which in turn improves the accuracy of the target transmit power.
  • the first terminal device can determine the sidelink path loss based on the historical positioning sidelink signal, the transmit power of one or more of PSSCH DMRS or PSCCH DMRS and the received power of these signals previously fed back by the second terminal device. .
  • the determination may be based on the difference in frequency between the two. Side path loss, so you can get more accurate side path loss. Two possible implementations are introduced below.
  • the first terminal device determines the quasi-lateral path loss based on the first information.
  • the first terminal device determines the sidelink path loss based on the quasi-sidelink path loss and the first offset.
  • the first offset is based on the frequency point of the sidelink signal associated with the quasi-sidelink path loss and the first sidelink positioning reference signal. The difference between the frequency points is determined.
  • the lateral path loss is the sum of the quasi-lateral path loss and the first offset, which can reduce the complexity of the solution.
  • the sidelink signal associated with the quasi-sidelink path loss may refer to the sidelink signal used to determine the sidelink path loss.
  • the first terminal device determines the sidelink signal based on the first sidelink signal involved in Figure 4. If the sidelink path loss is quasi-sidelink path loss, the sidelink signal associated with the quasi-sidelink path loss may be the first sidelink signal, and the first terminal device may use the difference between the transmit power and the receive power of the first sidelink signal as the quasi-sidelink path loss.
  • the sidelink signal related to the quasi-sidelink path loss can also be the second sidelink signal involved in the aforementioned Figure 4, the third sidelink signal or the fourth sidelink signal involved in Figure 5. The related solution is the same as the first sidelink signal. The correlation of lateral signals is similar and will not be described again.
  • PL PRS,SL (i) represents the lateral path loss
  • PL PRS,SL_n (i) represents the quasi-path loss
  • ⁇ P 1 represents the first offset
  • the first offset ⁇ P 1 in formula (4) can be expressed by the formula Calculation, where f n is the frequency point of the sidelink signal related to the quasi-sidelink path loss, and f is the frequency point of the first sidelink positioning reference signal. It can be seen that this formula can more accurately reflect the difference between the frequency point of the sidelink signal associated with the quasi sidelink path loss and the frequency point of the first sidelink positioning reference signal.
  • the first terminal device determines the fifth transmit power according to the second parameter and the sidelink path loss.
  • the side path loss can be determined based on the above content, for example, it can be determined based on the relevant content in FIG. 4 or FIG. 5 .
  • the first terminal device determines the second transmit power based on the fifth transmit power and the second offset.
  • the second offset is based on the frequency point of the sidelink signal associated with the sidelink path loss and the frequency of the first sidelink positioning reference signal. The difference between points is determined. It can be seen that in this solution, the determination process of the second transmission power can be adjusted through the second offset, so that a more accurate second transmission power can be obtained, thereby improving the accuracy of the target transmission power.
  • the second transmit power is equal to the sum of the fifth transmit power and the second offset. In this way, the complexity of the solution can be reduced.
  • the sidelink signal associated with the quasi-sidelink path loss may refer to the sidelink signal used to determine the sidelink path loss.
  • the first terminal device determines the sidelink signal based on the first sidelink signal involved in Figure 4. If the sidelink path loss is the first sidelink signal, the sidelink signal associated with the sidelink path loss may be the first sidelink signal, and the first terminal device may use the difference between the transmit power and the receive power of the first sidelink signal as the sidelink path loss.
  • the sidelink signal related to the sidelink path loss can also be the second sidelink signal involved in the aforementioned Figure 4, the third sidelink signal or the fourth sidelink signal involved in Figure 5. The related solution is the same as the first sidelink signal. The correlation of row signals is similar and will not be described again.
  • P PRS,SL (i) represents the second transmission power
  • P PRS,SL_n (i) represents the fifth transmission power
  • ⁇ P 2 represents the second offset
  • the second offset ⁇ P 2 in formula (5) can be expressed by the formula Calculation, where ⁇ SL represents the sideline path loss adjustment value, f n is the frequency point of the sidelink signal associated with the quasi-sideline path loss, and f is the frequency point of the first sideline positioning reference signal. It can be seen that this formula can more accurately reflect the difference between the frequency point of the sidelink signal associated with the quasi sidelink path loss and the frequency point of the first sidelink positioning reference signal.
  • the lateral path loss adjustment value ⁇ SL in this formula can also be changed to other coefficients, which is not limited in the embodiment of the present application.
  • FIG. 6 exemplarily shows a possible flow diagram of another communication method provided by the embodiment of the present application.
  • FIG. 6 exemplarily shows a possible flow diagram of another communication method provided by the embodiment of the present application.
  • relevant content of the execution subject in Figure 6 please refer to the relevant introduction in Figure 3, and will not be described again.
  • the method includes:
  • Step 601 The first terminal device sends a second sideline positioning reference signal.
  • the second terminal device may receive the second side row positioning reference signal.
  • Step 602 The second terminal device determines the power feedback parameter according to the second side row positioning reference signal.
  • the power feedback parameter is determined based on the received power of the second side-link positioning reference signal and the received power of the side-link positioning reference signal expected to be received by the second terminal device.
  • Step 603 The second terminal device sends the power feedback parameter to the first terminal device.
  • the first terminal device receives the power feedback parameter from the second terminal device.
  • the power feedback parameters can be carried in request messages, measurement feedback messages, PC5RRC messages, media access control control elements (media access control control elements, MAC CE), SCI, etc.
  • Step 604 The first terminal device determines the target transmit power according to the power control parameter, and the first terminal device determines the target transmit power according to the power control parameter and the power feedback parameter.
  • the distance between the first terminal device and the second terminal device is greater than the distance between the first terminal device and the network device, that is, the distance between the first terminal device and the second terminal device is longer, and the distance between the first terminal device and the network device is longer.
  • the distance between devices is relatively close. The farther the distance, the greater the path loss.
  • the sidelink path loss may be greater than the downlink path loss, and the second transmit power calculated based on the sidelink path loss may be greater than that calculated based on the downlink path loss.
  • First transmit power If the first terminal equipment selects the smaller value of the first transmit power and the second transmit power (i.e., the first transmit power), or selects a smaller value than the smaller value as the target transmit power, the sidelink path loss may be relatively small. Therefore, the target transmission power selected by the first terminal device may be smaller, resulting in insufficient transmission power of the first sideline positioning reference signal sent by the first terminal device.
  • the first terminal device can determine the target transmission power based on the power feedback parameter, thereby making up for the shortcomings of the open-loop power control mechanism and making the target transmission power more optimal through feedback and adjustment. For example, when the second terminal device can instruct the first terminal device to increase the transmission power of the sidelink positioning reference signal through the power feedback parameter, the first terminal device can then increase the target transmission power based on the power feedback parameter, thereby alleviating the problem of the first side. The problem of insufficient transmission power of the row positioning reference signal.
  • the first terminal device when the second terminal device can instruct the first terminal device to reduce the transmission power of the sidelink positioning reference signal through the power feedback parameter, then the first terminal device can reduce the target transmission power based on the power feedback parameter, thereby reducing the first Reduce the power consumption of terminal equipment and reduce interference to other transmission signals.
  • Step 604 may include a variety of possible implementations, which are exemplarily introduced below through Embodiment 1 to Embodiment 5.
  • the first terminal device adjusts the first transmit power according to the power feedback parameter, and the first terminal device determines the target transmit power according to the adjusted first transmit power. For example, the first terminal device may multiply the power feedback parameter by a preset coefficient and then add it to the first transmit power. The resulting value is the adjusted first transmit power.
  • the preset coefficient may or may not be equal to 1. .
  • the first terminal device determines the target transmit power based on the adjusted first transmit power. For example, it may be based on one of the adjusted first transmit power, second transmit power, third transmit power, and fourth transmit power.
  • One or more items are used to determine the target transmit power, and the related solution is the same as the previous solution in which the first terminal device determines the target transmit power based on one or more of the first transmit power, the second transmit power, the third transmit power, and the fourth transmit power.
  • the difference is that the first transmit power is replaced by the adjusted first transmit power.
  • the determination scheme of the first transmission power please refer to the foregoing content and will not be described again.
  • the first terminal device can adjust the first transmit power based on the power feedback parameter, the possible value of the adjusted first transmit power will increase, thereby increasing the target transmit power, thereby alleviating the insufficient transmit power of the first sideline positioning reference signal.
  • the adjusted first transmit power may be reduced, thereby reducing the target transmit power, thereby reducing the power consumption of the first terminal device, and also reducing interference between signals.
  • the first terminal device can adjust the first transmit power according to the formula.
  • P PRS,D (i) represents the first transmit power
  • ⁇ P represents the power feedback parameter, such as the received power of the second side row positioning reference signal and the side row expected to be received by the second terminal device.
  • the difference between the received powers of the positioning reference signal; ⁇ can be a preset value.
  • ⁇ in formula (6) and formula (7) can be 1.
  • the first terminal device adjusts the second transmit power according to the power feedback parameter, and the first terminal device determines the target transmit power according to the adjusted second transmit power. For example, the first terminal device may multiply the power feedback parameter by a preset coefficient and then add it to the second transmit power. The resulting value is the adjusted second transmit power.
  • the preset coefficient may or may not be equal to 1. .
  • the first terminal device determines the target transmit power based on the adjusted second transmit power. For example, it may be based on one of the adjusted second transmit power, the first transmit power, the third transmit power, and the fourth transmit power.
  • One or more items are used to determine the target transmit power, and the related solution is the same as the previous solution in which the first terminal device determines the target transmit power based on one or more of the first transmit power, the second transmit power, the third transmit power, and the fourth transmit power.
  • the difference is that the second transmit power is replaced by the adjusted second transmit power.
  • the determination scheme of the second transmission power please refer to the foregoing content and will not be described again.
  • the first terminal device can adjust the second transmit power based on the power feedback parameter, the possible value of the adjusted second transmit power will increase, thereby increasing the target transmit power, thereby alleviating the insufficient transmit power of the first sideline positioning reference signal.
  • the adjusted second transmit power value may be reduced, thereby reducing the target transmit power, thereby reducing the power consumption of the first terminal device, and also reducing interference between signals.
  • the first terminal device can adjust the second transmit power according to the formula.
  • P PRS, SL (i) represents the second transmit power
  • ⁇ P represents the power feedback parameter, such as the received power of the second side row positioning reference signal and the side row expected to be received by the second terminal device.
  • the difference between the received powers of the positioning reference signal; ⁇ can be a preset value.
  • ⁇ in formula (10) and formula (9) can be 1.
  • the first terminal device determines the quasi-target transmit power according to the first transmit power and/or the second transmit power, and determines the target transmit power according to the quasi-target transmit power and the power feedback parameter. For example, the first terminal device can add or multiply the power feedback parameter and the quasi-target transmit power, and other operation parameters can also be added during this operation.
  • the first terminal device may determine the quasi-target transmit power based on the first transmit power and/or the second transmit power. For example, the first terminal device may determine the quasi-target transmit power based on the first transmit power, the second transmit power, the third transmit power and the fourth transmit power. Determine the quasi-target transmit power by one or more items. For example, the minimum value among the first transmit power, the second transmit power, the third transmit power and the fourth transmit power can be selected as the quasi-target transmit power.
  • the relevant solution is the same as the previous first
  • the terminal device determines the target transmit power according to one or more of the first transmit power, the second transmit power, the third transmit power and the fourth transmit power. The solution is similar.
  • the first terminal device can adjust the quasi-target transmit power based on the power feedback parameter, and then use the obtained value as the transmit power of the first side-link positioning reference signal. This solution can reduce the complexity of the solution and make the target transmit power more optimal.
  • ⁇ P represents the power feedback parameter.
  • the meaning of other parameters in formula (12) can be found in the relevant content of the aforementioned formula (1), and will not be described again.
  • ⁇ P represents the power feedback parameter
  • * represents multiplication.
  • the meaning of other parameters in formula (13) can be found in the relevant content of the aforementioned formula (1), and will not be described again.
  • the first terminal device adjusts the transmit power of the second sideline positioning reference signal according to the power feedback parameter to obtain the target transmit power. For example, the first terminal device may add or multiply the power feedback parameter and the transmission power of the second side row positioning reference signal, and other operation parameters may also be added during this operation.
  • the transmission power of the second side row positioning reference signal is determined according to the power control parameter. Second side row positioning parameters
  • the transmission power of the test signal can be determined according to the method of determining the target transmission power introduced in any one of the aforementioned Figures 3, 4 and 5, which will not be described again.
  • the first terminal device can adjust the transmit power of the second side row positioning reference signal based on the power feedback parameter, and then use the obtained value as the transmit power of the first side row positioning reference signal.
  • This solution can reduce the complexity of the solution, and can make The target transmit power is better.
  • ⁇ P represents the power feedback parameter
  • P PRS (i-1) represents the transmit power of the second side row positioning reference signal
  • the meaning of other parameters in formula (14) can be found in the aforementioned formula (1). The relevant content will not be described again.
  • ⁇ P represents the power feedback parameter
  • * represents multiplication
  • P PRS (i-1) represents the transmit power of the second side row positioning reference signal
  • network element A when a certain network element (for example, network element A) receives information from another network element (for example, network element B), it may mean that network element A directly receives information from network element B. Receiving information may also refer to network element A receiving information from network element B via other network elements (for example, network element C).
  • network element C When network element A receives information from network element B via network element C, network element C can transparently transmit the information or process the information, for example, carry the information in different messages for transmission or filter the information. , and only sends the filtered information to network element A.
  • network element A when network element A sends information to network element B, it may mean that network element A sends information directly to network element B, or it may mean that network element A sends information to network element B via other network elements (for example, network C). element) sends information to network element B.
  • system and “network” in the embodiments of this application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device can be a first terminal device, a network device, a second terminal device, or a chip or a circuit.
  • it can be a chip or circuit that can be installed in the first terminal device
  • another example can be a chip or circuit that can be installed in the network device
  • another example can be a chip or circuit that can be installed in the second terminal device.
  • the communication device may be used to perform the method of the first terminal device, the network device, or the second terminal device in any of the related solutions in FIG. 3, FIG. 4, FIG. 5, or FIG. 6.
  • the communication device 1801 includes a processor 1802 and a transceiver 1803.
  • the communication device 1801 may include a memory 1804.
  • the dotted line on the memory 1804 in the figure further indicates that the memory is optional.
  • the communication device 1801 may further include a bus system, wherein the processor 1802, the memory 1804, and the transceiver 1803 may be connected through the bus system.
  • the above-mentioned processor 1802 may be a chip.
  • the processor 1802 can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller unit, MCU), or a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 1802 .
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or can be executed using a processor.
  • the combination of hardware and software modules in 1802 is completed.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 1804.
  • the processor 1802 reads the information in the memory 1804 and completes the steps of the above method in combination with its hardware.
  • the processor 1802 in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 1804 in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the memory in the embodiments of the present application please refer to the foregoing content and will not be described again here.
  • the processor 1802 is configured to execute through the transceiver 1803: receive the power control parameter from the network device, and send the first sideline positioning reference signal according to the target transmit power.
  • the target transmit power is determined based on the power control parameters, and the power control parameters are associated with the resource pool of the sidelink positioning reference signal.
  • the processor 1802 is specifically configured to: determine the target transmission power according to the first transmission power and/or the second transmission power.
  • the processor 1802 is specifically configured to receive downlink signals from the network device through the transceiver 1803.
  • the processor 1802 is specifically configured to estimate the downlink path loss based on the measurement results obtained by measuring the downlink signal.
  • the processor 1802 is specifically configured to receive first information from the second terminal device through the transceiver 1803, where the first information includes information from the first terminal device. Information on the received power of the sidelink signal, information on the sidelink path loss, or information on the transmission power of the sidelink signal sent by the second terminal device.
  • the processor 1802 is specifically configured to determine the side path loss according to the first information.
  • the processor 1802 is specifically configured to send the first configuration information to the second terminal device through the transceiver 1803.
  • the processor 1802 is specifically configured to: when the received power of the third sideline signal is obtained, and the transmit power of the third sidelink signal to determine the sidelink path loss.
  • the processor 1802 is specifically configured to, when the received power of the third sidelink signal is not obtained, receive the fourth sidelink signal according to the received power of the third sidelink signal. power and the transmit power of the fourth sidelink signal to determine the sidelink path loss.
  • the processor 1802 is specifically configured to receive the second configuration information through the transceiver 1803.
  • the processor 1802 is specifically configured to determine the quasi-sidelink path loss based on the first information, based on the quasi-sidelink path loss and the first offset. , determine the lateral path loss. The first offset is determined based on the difference between the frequency point of the sidelink signal associated with the quasi-sidelink path loss and the frequency point of the first sidelink positioning reference signal.
  • the processor 1802 is specifically configured to determine the fifth transmit power according to the second parameter and the sidelink path loss.
  • the second offset is determined based on the difference between the frequency point of the sidelink signal associated with the sidelink path loss and the frequency point of the first sidelink positioning reference signal.
  • the processor 1802 is specifically configured to determine the target transmit power according to the smaller value of the first value, the third transmit power and the fourth transmit power. , where the first value is the smaller value of the first transmission power and the second transmission power.
  • the processor 1802 is specifically configured to send the second side row positioning reference signal through the transceiver 1803 and receive the power feedback parameter from the second terminal equipment,
  • the power feedback parameter is determined based on the received power of the second side-link positioning reference signal and the received power of the side-link positioning reference signal expected to be received by the second terminal device.
  • processor 1802 is specifically used to determine the target transmit power according to the power control parameter and the power feedback parameter.
  • the processor 1802 is specifically configured to adjust the first transmit power according to the power feedback parameter, and determine the target transmit power according to the adjusted first transmit power.
  • the processor 1802 is specifically configured to adjust the second transmit power according to the power feedback parameter; the first terminal device determines the target according to the adjusted second transmit power. Transmit power.
  • the processor 1802 is specifically configured to determine the quasi-target transmit power according to the first transmit power and/or the second transmit power, and determine the quasi-target transmit power according to the quasi-target transmit power and The power feedback parameter determines the target transmit power.
  • the processor 1802 is specifically configured to adjust the transmission power of the second side row positioning reference signal according to the power feedback parameter to obtain the target transmission power.
  • the transmission power of the row positioning reference signal is determined based on the power control parameters.
  • the processor 1802 is configured to execute through the transceiver 1803: sending the power control parameter to the first terminal device.
  • the power control parameters are associated with the resource pool of the sidelink positioning reference signal.
  • the power control parameter is used by the first terminal device to determine the target transmission power for transmitting the first side row positioning reference signal.
  • the processor 1802 is also configured to send the first configuration information to the second terminal device through the transceiver 1803.
  • the processor 1802 is also configured to send the second configuration information to the first terminal device through the transceiver 1803.
  • the processor 1802 is configured to execute through the transceiver 1803: sending the first information, and the first information is used by the first terminal device to determine the side path loss.
  • the first information includes information on the received power of the sidelink signal from the first terminal device, information on the sidelink path loss, or information on the transmission power of the sidelink signal sent by the second terminal device.
  • the processor 1802 is also configured to receive the first configuration information through the transceiver 1803.
  • the processor 1802 is also configured to send a third sideline signal through the transceiver 1803.
  • the processor 1802 is also configured to send a fourth sideline signal through the transceiver 1803.
  • the processor 1802 is also configured to send the second configuration information to the first terminal device through the transceiver 1803.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1901 may include a communication interface 1903 and a processor 1902. Further, the communication device 1901 may include a memory 1904. The dotted line on memory 1904 in the figure further indicates that the memory is optional.
  • the communication interface 1903 is used to input and/or output information; the processor 1902 is used to execute computer programs or instructions, so that the communication device 1901 implements any of the related solutions in Figure 3, Figure 4, Figure 5 or Figure 6.
  • the communication interface 1903 can implement the solution implemented by the transceiver 1803 of Figure 7
  • the processor 1902 can implement the solution implemented by the processor 1802 of Figure 7
  • the memory 1904 can implement the memory 1804 of Figure 7 The implemented solution will not be described again here.
  • FIG. 9 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device 2001 may be a first terminal device or a second terminal device, or may be a chip or a circuit. , for example, may be provided in a chip or circuit of the first terminal device or the second terminal device.
  • the communication device 2001 includes a processing unit 2002 and a communication unit 2003. Further, the communication device 2001 may or may not include the storage unit 2004.
  • the storage unit 2004 in the figure is dotted to further indicate that the memory is optional. think.
  • the processing unit 2002 is configured to perform through the communication unit 2003: receiving power control parameters from the network device, and sending the first sideline positioning reference signal according to the target transmit power.
  • the target transmit power is determined based on the power control parameters, and the power control parameters are associated with the resource pool of the sidelink positioning reference signal.
  • the processing unit 2002 is configured to execute through the communication unit 2003: sending the power control parameter to the first terminal device.
  • the power control parameters are associated with the resource pool of the sidelink positioning reference signal.
  • the power control parameter is used by the first terminal device to determine the target transmission power for transmitting the first side row positioning reference signal.
  • the processing unit 2002 is configured to perform through the communication unit 2003: sending the first information, and the first information is used by the first terminal equipment to determine the side path loss.
  • the first information includes information on the received power of the sidelink signal from the first terminal device, information on the sidelink path loss, or information on the transmission power of the sidelink signal sent by the second terminal device.
  • the communication unit 2003 is used to input and/or output information; the processing unit 2002 is used to execute computer programs or instructions, so that the communication device 2001 implements any one of the above-mentioned Figure 3, Figure 4, Figure 5 or Figure 6 The method on the first terminal device side in the related solution of the item, or the method on the second terminal device side in the related solution of any one of the above-mentioned FIG. 3, FIG. 4, FIG. 5 or FIG. 6.
  • the communication unit 2003 can implement the solution implemented by the transceiver 1803 of Figure 7
  • the processing unit 2002 can implement the solution implemented by the processor 1802 of Figure 7
  • the storage unit 2004 can implement the memory of Figure 7
  • the solution implemented by 1804 will not be described again here.
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code or instructions.
  • the computer program code or instructions When the computer program code or instructions are run on a computer, the computer causes the computer to execute Figure 3 , the method of any one of the embodiments shown in any one of Figure 4, Figure 5 or Figure 6.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute Figures 3 and 4 , the method of any one of the embodiments shown in any one of Figure 5 or Figure 6.
  • the present application also provides a chip system, and the chip system may include a processor.
  • the processor is coupled to the memory and can be used to execute the method of any one of the embodiments shown in any one of FIG. 3, FIG. 4, FIG. 5 or FIG. 6.
  • the chip system also includes a memory.
  • Memory is used to store computer programs (also called codes, or instructions).
  • the processor is configured to call and run the computer program from the memory, so that the device equipped with the chip system executes the method of any one of the embodiments shown in any one of Figure 3, Figure 4, Figure 5 or Figure 6.
  • the present application also provides a system, which includes the aforementioned one or more first terminal devices, one or more second terminal devices, and a network device.
  • a computer program product includes one or more computer instructions.
  • Computer instructions When computer instructions are loaded and executed on a computer, processes or functions according to embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • the first terminal equipment, network equipment and second terminal equipment in the above-mentioned apparatus embodiments correspond to the first terminal equipment, network equipment and second terminal equipment in the method embodiments, and the corresponding steps are performed by corresponding modules or units, for example
  • the communication unit (transceiver) performs the steps of receiving or sending in the method embodiment, and other steps except sending and receiving may be performed by the processing unit (processor).
  • processing unit processing unit
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • Functions may be stored in a computer-readable storage medium when implemented in the form of software functional units and sold or used as independent products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置、存储介质以及芯片***,涉及通信技术领域,用于提供终端设备在发送侧行定位参考信号时的功率控制方式。本申请中第一终端设备接收来自网络设备的功率控制参数,根据以功率控制参数确定的目标发送功率发送第一侧行定位参考信号。功率控制参数与侧行定位参考信号的资源池具有关联关系,因此第一终端设备可以根据功率控制参数确定出更加合理的侧行定位参考信号的发送功率,既可以提高侧行定位参考信号的质量,进而提高侧行定位参考信号的发送成功率,又可以尽可能地降低终端设备间发送的信号的相互干扰。

Description

一种通信方法、装置、存储介质以及芯片***
相关申请的交叉引用
本申请要求在2022年08月12日提交中国专利局、申请号为202210966591.2、申请名称为“一种通信方法、装置、存储介质以及芯片***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、存储介质以及芯片***。
背景技术
随着通讯技术快速发展,高精度定位也逐步被确定为第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)第五代移动通信***(5th Generation Mobile Networks or 5th Generation Wireless Systems,5G)中重要研究项目。新广播(New Radio,NR)定位的场景主要包括:增强移动宽带(enhanced Mobile Broadband,eMBB)室外、eMBB室内、高可靠低时延(Ultra-Reliable and Low Latency Communications,URLLC)和海量机器类通信(massive Machine Type of Communication,mMTC)/物联网(Internet of Things,IOT)。NR定位还要求高安全性、可扩展性、高可用性以及高速应用中精度保证等特点。
目前定位技术主要包括上行定位、下行定位和上下行定位。其中,上行定位过程中网络设备(比如基站)对终端设备发送的参考信号进行测量;下行定位过程中终端设备对网络设备发送的定位参考信号进行测量;上下行定位中需要终端设备和网络设备均对接收到的信号进行测量。随着车联网、自动驾驶技术等技术发展的越来越好,未来基于侧行链路定位的研究将会逐步吸引学术和工业界的关注。
另一方面,无线通信***中的信号的发送功率控制是非常重要的,比如通过上行信号的功率控制,可以使得终端设备既保证上行数据的质量,又尽可能地减少对***和其他用户的干扰,延长终端设备的电池的使用时间。基站通过上行信号的功率控制可以使得上行传输适应不同的无线传输环境,包括路径损耗、阴影、快速衰落、小区内及小区间其他终端设备的干扰等。然而基于侧行链路定位的场景中,目前还没有功率控制机制。
发明内容
本申请实施例提供一种通信方法、装置、存储介质以及芯片***,用于提供终端设备在发送侧行定位参考信号时的功率控制方式。
第一方面,本申请提供第一种通信方法。该方法可以由第一终端设备执行,或者由第一终端设备内部的模块、单元、芯片执行,本申请以该方法由第一终端设备执行为例进行示意。该方法包括:
第一终端设备接收来自网络设备的功率控制参数。功率控制参数与侧行定位参考信号的资源池具有关联关系。第一终端设备根据功率控制参数确定目标发送功率。第一终端设备根据目标发送功率,发送第一侧行定位参考信号。
由于网络设备向终端设备指示功率控制参数,功率控制参数与侧行定位参考信号的资源池具有关联关系,因此第一终端设备可以根据功率控制参数确定出更加合理的侧行定位参考信号的发送功率,既可以提高侧行定位参考信号的质量,进而提高侧行定位参考信号的发送成功率,又可以尽可能地降低终端设备间发送的信号的相互干扰。
在应用中,网络设备可以为传输的数据和/或信号配置资源池,比如网络设备可以为第一终端设备的侧行定位参考信号配置资源池,该资源池中的资源用于第一终端设备发送侧行定位参考信号。进一步,网络设备还可以为资源池配置参数,比如网络设备为该侧行定位参考信号的资源池配置参数(该参数包括功率控制参数),当第一终端设备需要对发送的侧行定位参考信号进行功率控制时,可以基于为侧行定位参考信号的资源池配置的参数确定侧行定位参考信号的发送功率,如此可以提高侧行定位参考信号的质量,进而提高侧行定位参考信号的发送成功率,又可以尽可能地降低终端设备间发送的侧行定位参考信号的相互干扰。
在一种可能的实施方式中,功率控制参数可以包括第一参数。其中,第一参数包括第三参数和/或 下行路径损耗调整系数。第三参数为基于所述第一终端设备的下行路径损耗的功控初始值。如此第一终端设备在确定侧行定位参考信号的发送功率的过程中可以考虑下行路径损耗的影响,继而可以更加合理的确定出侧行定位参考信号的发送功率。且可以基于下行路径损耗调整系数对测量得到的下行路径损耗进行调整,继而可以得到更加合理的侧行定位参考信号的发送功率。
在一种可能的实施方式中,在网络设备未配置下行路径损耗调整系数的情况下,下行路径损耗调整系数为1。如此,第一终端设备可以在网络设备未配置下行路径损耗调整系数的情况下,根据测量得到的下行路径损耗确定目标发送功率,如此可以以下行路径损耗可能带来的最大影响确定目标发送功率,以使目标发送功率更加合理。
在又一种可能的实施方式中,功率控制参数可以包括第二参数。第二参数包括第四参数和/或侧行路径损耗调整系数。第四参数为基于所述第一终端设备的侧行路径损耗的功控初始值。如此第一终端设备在确定侧行定位参考信号的发送功率的过程中可以考虑侧行路径损耗的影响,继而可以更加合理的确定出侧行定位参考信号的发送功率。且可以基于侧行路径损耗调整系数对测量得到的侧行路径损耗进行调整,继而可以得到更加合理的侧行定位参考信号的发送功率。
在又一种可能的实施方式中,在网络设备未配置侧行路径损耗调整系数的情况下,侧行路径损耗调整系数为1。如此,第一终端设备可以在网络设备未配置侧行路径损耗调整系数的情况下,根据测量得到的侧行路径损耗确定目标发送功率,如此可以以侧行路径损耗可能带来的最大影响确定目标发送功率,以使目标发送功率更加合理。
在一种可能的实施方式中,第一参数和/或第二参数承载于侧行资源池(SL-resource Pool)消息,比如可以承载于侧行资源池(SL-resource Pool)消息中的侧行功率控制(SL-power control)字段。如此可以与现有技术更加兼容。
在一种可能的实施方式中,第一终端设备根据第一发送功率,确定目标发送功率。其中,第一发送功率根据第一参数和下行路径损耗确定,如此第一终端设备确定目标发送功率的过程中可以考虑下行路径带来的影响,从而可以确定出更加合理的目标发送功率。再比如第一发送功率根据第一参数、下行路径损耗和第一侧行定位参考信号占用的资源的数量确定,如此可以结合第一侧行定位参考信号占用的资源的数量确定目标发送功率,从而可以使结果更加合理。
在一种可能的实施方式中,第一终端设备根据第二发送功率,确定目标发送功率。其中,第二发送功率根据第二参数和侧行路径损耗确定,如此第一终端设备确定目标发送功率的过程中可以考虑侧行路径带来的影响,从而可以确定出更加合理的目标发送功率。再比如,第二发送功率根据第二参数、侧行路径损耗和第一侧行定位参考信号占用的资源的数量确定,如此可以结合第一侧行定位参考信号占用的资源的数量确定目标发送功率,从而可以使结果更加合理。
在一种可能的实施方式中,在网络设备未配置第三参数的情况下,第一发送功率包括第三发送功率和第四发送功率中的较小值。其中,第三发送功率包括第一终端设备在基于第一侧行定位参考信号对应的资源池的网络拥塞率(Channel Busy Ratio,CBR)和第一侧行定位参考信号对应的传输优先级的条件下的发送功率。第四发送功率包括第一终端设备的发送功率。如此,在网络设备未配置第三参数的情况下,第一终端设备可以基于终端设备的能力,以及在CBR和传输优先级条件下的终端设备的能力确定目标发送功率,从而可以使确定出的目标发送功率与第一终端设备的实际能力更加匹配。
在一种可能的实施方式中,在网络设备未配置第四参数的情况下,第二发送功率包括第三发送功率和第四发送功率中的较小值。如此,在网络设备未配置第四参数的情况下,第一终端设备可以基于终端设备的能力,以及在CBR和传输优先级条件下的终端设备的能力确定目标发送功率,从而可以使确定出的目标发送功率与第一终端设备的实际能力更加匹配。
在一种可能的实施方式中,第一终端设备根据第一发送功率和第二发送功率中的较小值,确定目标发送功率,如此可以尽量减小目标发送功率,从而可以节省终端设备的功耗。
在一种可能的实施方式中,第一终端设备可以基于下行信号估计下行路径损耗,比如,第一终端设备接收来自网络设备的下行信号,第一终端设备根据对下行信号进行测量得到的测量结果,估计下行路径损耗。
本申请第一终端设备估计侧行路径损耗的方式有多种,比如在一种可能的实施方式中,第一终端设备接收来自第二终端设备的第一信息,第一信息包括来自第一终端设备的侧行信号的接收功率的信息或侧行路径损耗的信息。第一终端设备根据第一信息,确定侧行路径损耗。该实施方式中第一终端设备可 以发送用于确定侧行路径损耗的侧行信号,以便第二终端设备对其进行测量。该方案基于第一终端设备和第二终端设备之间通过侧行链路传输的信息确定侧行路径损耗,可以提高侧行路径损耗的准确性。
一种可能的实施方式中,第一信息还包括:来自第一终端设备的侧行信号的资源标识;和/或,来自第一终端设备的侧行信号的资源对应的资源集标识。该两个信息中的部分或全部可以包括在第一信息中,也可以不包括于第一信息中,后续部分内容以该两个信息包括于第一信息中为例进行介绍。如此,第一终端设备可以确定出第一信息中包括的接收功率对应的侧行信号,继而根据该侧行信号的发送功率和第一信息中的接收功率确定侧行路径损耗。
举个例子,第一信息包括以下内容中的一项:第一侧行信号的接收功率的信息,第一侧行信号为第二终端设备接收到的来自第一终端设备的侧行信号,第一侧行信号的类型包括侧行定位参考信号;第二侧行信号的接收功率的信息,第二侧行信号为第二终端设备接收到的来自第一终端设备的侧行信号,第二侧行信号的类型包括物理侧行链路共享信道(physical sidelink shared channel,PSSCH)解调参考信号(demodulation reference signal,DMRS)或物理侧行链路控制信道(physical sidelink control channel,PSCCH)DMRS;或,侧行路径损耗的信息,侧行路径损耗的信息根据第一侧行信号或第二侧行信号确定。第一终端设备和第二终端设备之间可以基于侧行定位参考信号、PSSCH DMRS或PSCCH DMRS确定侧行路径损耗,从而可以提高方案的灵活性。
在一种可能的实施方式中,第一终端设备接收来自第二终端设备的第一信息之前,第一终端设备向第二终端设备发送第一配置信息。第一配置信息指示用于确定侧行路径损耗的侧行信号的信息。如此,第二终端设备可以基于第一配置信息配置的侧行信号进行测量,从而可以更好的管控侧行路径损耗的确定过程。
比如,第一配置信息包括第一信号类型的信息、第一资源标识或第一资源集标识中的至少一项。其中,第一信号类型为用于确定侧行路径损耗的侧行信号的类型。结合上述示例,第一资源标识可以包括第一侧行信号的资源标识。第一资源集标识可以包括第一侧行信号的资源对应的资源集标识。可以看出,通过第一配置信息配置侧行信号的方式有多种,较为灵活,可以提高方案的灵活性。
一种可能的实施方式中,第一信号类型包括侧行定位参考信号类型。由于确定的目标发送功率为第一侧行定位参考信号的发送功率,因此基于侧行定位参考信号确定的侧行路径损耗可以更准确的反映第一侧行定位参考信号面临的环境,继而可以提高目标发送功率的准确性。
又一种可能的实施方式中,第一信号类型包括PSSCH DMRS类型和/或PSCCH DMRS类型。由于第二终端设备还可以测量PSSCH DMRS和/或PSCCH DMRS,基于测量结果反馈第一信息,从而可以提高方案的灵活性,而且若第一信号类型不包括侧行定位参考信号,则第一终端设备也可以无需为了确定侧行路径损耗发送侧行定位参考信号,从而可以减少第一终端设备发送的信号的数量,降低第一终端设备的功耗。
又一种可能的实施方式中,第一配置信息还包括:指示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息;和/或,指示PSCCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。如此,可以提高方案的灵活性。
本申请中第一终端设备可以通过PC5接口向第二终端设备发送第一配置信息,也可以向网络设备发送第一配置信息,以使网络设备将第一配置信息发送给第二终端设备。又一种可能的实施方式中,第一配置信息也可以由网络设备为第二终端设备配置,比如网络设备可以向第二终端设备发送第一配置信息(比如通过无线资源控制(radio resource control,RRC)消息发送第一配置信息)。
本申请提供另一种确定侧行路径损耗的方式,第一信息包括第二终端设备发送的侧行信号的发送功率的信息。该实施方式中第二终端设备可以发送用于确定侧行路径损耗的侧行信号,以便第一终端设备对其进行测量。比如,第一信息包括:第三侧行信号的发送功率的信息,第三侧行信号来自第二终端设备,第三侧行信号的类型包括侧行定位参考信号;和/或,第四侧行信号的发送功率的信息,第四侧行信号来自第二终端设备,第三侧行信号包括侧行定位参考信号,第四侧行信号的类型包括PSSCH DMRS或PSCCH DMRS。该方案基于第一终端设备和第二终端设备之间通过侧行链路传输的信息确定侧行路径损耗,可以提高侧行路径损耗的准确性。
在一种可能的实施方式中,第一终端设备在获取到第三侧行信号的接收功率的情况下,根据第三侧行信号的接收功率和第三侧行信号的发送功率,确定侧行路径损耗。由于确定的目标发送功率为第一侧 行定位参考信号的发送功率,因此基于侧行定位参考信号确定的侧行路径损耗可以更准确的反映第一侧行定位参考信号面临的环境,继而可以提高目标发送功率的准确性。
在又一种可能的实施方式中,第一终端设备在未获取到第三侧行信号的接收功率的情况下,根据第四侧行信号的接收功率和第四侧行信号的发送功率,确定侧行路径损耗。如此,可以提高方案的灵活性,且由于第四侧行信号为第二终端设备和第一终端设备之间基于侧行链路传输的信号,因此第四侧行信号也可以较为准确的反映侧行路径损耗,继而可以提高目标发送功率的准确性。
在一种可能的实施方式中,第一终端设备根据第一信息,确定侧行路径损耗之前,第一终端设备接收第二配置信息,第二配置信息指示用于确定侧行路径损耗的侧行信号的信息。如此,第二终端设备可以基于第一配置信息配置的侧行信号进行测量,从而可以更好的管控侧行路径损耗的确定过程。
比如,第二配置信息包括第二信号类型的信息、第二资源标识或第二资源集标识中的至少一项。第二信号类型的信息,第二信号类型为用于确定侧行路径损耗的侧行信号的类型。结合上述示例,第二资源标识可以包括第三侧行信号的资源标识。第二资源集标识可以包括第三侧行信号的资源对应的资源集标识。可以看出,通过第一配置信息配置侧行信号的方式有多种,较为灵活,可以提高方案的灵活性。
一种可能的实施方式中,第二信号类型包括侧行定位参考信号的类型。若第二信号类型包括侧行定位参考信号,由于确定的目标发送功率为第一侧行定位参考信号的发送功率,因此基于侧行定位参考信号确定的侧行路径损耗可以更准确的反映第一侧行定位参考信号面临的环境,继而可以提高目标发送功率的准确性。
又一种可能的实施方式中,第二信号类型还包括:PSSCH DMRS类型和/或PSCCH DMRS类型。由于第一终端设备还可以测量PSSCH DMRS和/或PSCCH DMRS,基于测量结果确定侧行路径损耗,从而可以提高方案的灵活性,而且若第二信号类型不包括侧行定位参考信号,则第二终端设备也可以无需为了确定侧行路径损耗发送侧行定位参考信号,从而可以减少第二终端设备发送的信号的数量,降低第一终端设备的功耗。
又一种可能的实施方式中,第二配置信息还包括:指示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息;和/或,指示PSCCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。如此,可以提高方案的灵活性。
第二终端设备可以通过PC5接口向第一终端设备发送第二配置信息,也可以向网络设备发送第二配置信息,以使网络设备将第二配置信息发送给第一终端设备。又一种可能的实施方式中,第二配置信息也可以由网络设备为第一终端设备配置,比如网络设备可以向第一终端设备发送第二配置信息(比如通过RRC消息发送第二配置信息)。
由于第一侧行定位参考信号和用于确定侧行路径损耗的侧行信号可能频点不同,一种可能的实施方式中,可以根据二者之间频点的差异确定侧行路径损耗,如此可以得到更为准确的侧行路径损耗。一种可能的实施方式中,第一终端设备根据第一信息,确定准侧行路径损耗。第一终端设备根据准侧行路径损耗和第一偏移量,确定侧行路径损耗,第一偏移量根据准侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异确定。比如侧行路径损耗为准侧行路径损耗与第一偏移量的和,如此可以降低方案的复杂度。再比如,第一偏移量可以通过公式计算,其中ΔP1表示第一偏移量,fn为准侧行路径损耗关联的侧行信号的频点,f为第一侧行定位参考信号的频点。可以看出,该公式可以较为准确的反映出根据准侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异。
又一种可能的实施方式中,第一终端设备根据第二参数和侧行路径损耗确定第五发送功率,第一终端设备根据第五发送功率和第二偏移量,确定第二发送功率,第二偏移量根据侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异确定。可以看出,该方案中可以通过第二偏移量对第二发送功率的确定过程进行调整,从而可以得到更加准确的第二发送功率,继而可以提高目标发送功率的准确度。比如,第二发送功率等于第五发送功率和第二偏移量的和,如此,可以降低方案的复杂度。
比如,第二偏移量ΔP2可以通过公式计算,其中,αSL表示侧行路径损耗调整值,fn为准侧行路径损耗关联的侧行信号的频点,f为第一侧行定位参考信号的频点。可以看出,该公式可以较为准确的反映出根据准侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间 的差异。
在一种可能的实施方式中,功率控制参数还包括第三发送功率,第三发送功率包括第一终端设备在基于第一侧行定位参考信号对应的资源池的CBR和第一侧行定位参考信号对应的传输优先级的条件下的发送功率。如此,第一终端设备可以基于第一终端设备在基于CBR和传输优先级的条件下的发送功率确定目标发送功率,从而可以使确定目标发送功率与第一终端设备的实际发送功率更加匹配。比如第三发送功率可以承载于侧行资源池(SL-resourcePool)消息。
在一种可能的实施方式中,在网络设备未为第一终端设备配置第三发送功率的情况下,第三发送功率与第四发送功率相等,第四发送功率包括第一终端设备的发送功率。如此可以基于终端设备的发送功率确定目标发送功率,从而使确定出的目标发送功率与终端设备的发送功率更加匹配。
在一种可能的实施方式中,第一终端设备根据第四发送功率和功率控制参数确定目标发送功率,第四发送功率包括第一终端设备的发送功率。如此可以基于终端设备的发送功率确定目标发送功率,从而使确定出的目标发送功率与终端设备的发送功率更加匹配。
在一种可能的实施方式中,所述第一终端设备根据第一值、所述第三发送功率或第四发送功率中的一项或多项中的较小值,确定所述目标发送功率。其中,第一值为第一发送功率和第二发送功率中的较小值。比如,第一终端设备根据第一发送功率和/或第二发送功率,确定目标发送功率。第一终端设备根据第一值、第三发送功率和第四发送功率中的较小值,确定目标发送功率。如此可以尽量减小目标发送功率,从而可以节省终端设备的功耗。
为了与现有技术更加兼容,也为了更加准确的确定第一发送功率,在一种可能的实施方式中,第一发送功率通过以下公式得到:
其中,PPRS,D(i)表示第一发送功率,表示第三参数,μ表示预设的值,表示第一侧行定位参考信号占用的资源的数量,αD表示下行路径损耗调整值,PLD表示下行路径损耗,min(a,b)表示取参数a和参数b中的最小值,此处以参数a和参数b为例介绍min的含义。
为了与现有技术更加兼容,也为了更加准确的确定第一发送功率,在一种可能的实施方式中,第二发送功率通过以下公式得到:
其中,PPRS,SL(i)表示第二发送功率,表示第四参数,μ表示预设的值,表示第一侧行定位参考信号占用的资源的数量,αSL表示侧行路径损耗调整值,PLSL表示侧行路径损耗,min(a,b)表示取参数a和参数b中的最小值,此处以参数a和参数b为例介绍min的含义,dBm表示单位分贝毫瓦。
一种可能的实施方式中,第一终端设备根据功率控制参数确定目标发送功率之前,第一终端设备发送第二侧行定位参考信号,第一终端设备接收来自第二终端设备的功率反馈参数,功率反馈参数根据第二侧行定位参考信号的接收功率和第二终端设备期望接收到的侧行定位参考信号的接收功率确定。第一终端设备根据功率控制参数和功率反馈参数,确定目标发送功率。本申请实施例提供的方案中第一终端设备可以基于功率反馈参数确定目标发送功率,从而可以弥补开环功率控制机制的不足,通过反馈和调整使得目标发送功率更优。
一种可能的实施方式中,第一终端设备根据功率反馈参数调整第一发送功率,第一终端设备根据调整后的第一发送功率确定目标发送功率。比如第一终端设备可以将功率反馈参数乘以预设的系数再与第一发送功率相加,得到的值为调整后的第一发送功率,该预设的系数可以等于1也可以不等于1。由于第一终端设备可以基于功率反馈参数调整第一发送功率,调整后的第一发送功率可能值会增大,从而可以提高目标发送功率,继而可以缓解第一侧行定位参考信号的发送功率不足的问题,另一种情况,调整后的第一发送功率可能值会减小,从而可以降低目标发送功率,从而可以降低第一终端设备的功耗,还可以降低信号间的干扰。
又一种可能的实施方式中,第一终端设备根据功率反馈参数调整第二发送功率,第一终端设备根据 调整后的第二发送功率确定目标发送功率。比如第一终端设备可以将功率反馈参数乘以预设的系数再与第二发送功率相加,得到的值为调整后的第二发送功率,该预设的系数可以等于1也可以不等于1。由于第一终端设备可以基于功率反馈参数调整第二发送功率,调整后的第二发送功率可能值会增大,从而可以提高目标发送功率,继而可以缓解第一侧行定位参考信号的发送功率不足的问题,另一种情况,调整后的第二发送功率可能值会减小,从而可以降低目标发送功率,从而可以降低第一终端设备的功耗,还可以降低信号间的干扰。
又一种可能的实施方式中,第一终端设备根据第一发送功率和/或第二发送功率确定准目标发送功率,根据准目标发送功率和功率反馈参数确定目标发送功率。比如第一终端设备可以将功率反馈参数与准目标发送功率相加或相乘,该运算过程中也可以增加其他运算参数。第一终端设备可以基于功率反馈参数调整准目标发送功率,继而将得到的值作为第一侧行定位参考信号的发送功率,该方案可以降低方案的复杂度,而且可以使目标发送功率更优。
又一种可能的实施方式中,第一终端设备根据功率反馈参数调整第二侧行定位参考信号的发送功率,得到目标发送功率,第二侧行定位参考信号的发送功率是根据功率控制参数确定的。比如第一终端设备可以将功率反馈参数与第二侧行定位参考信号的发送功率相加或相乘,该运算过程中也可以增加其他运算参数。第一终端设备可以基于功率反馈参数调整第二侧行定位参考信号的发送功率,继而将得到的值作为第一侧行定位参考信号的发送功率,该方案可以降低方案的复杂度,而且可以使目标发送功率更优。
第二方面,本申请提供第一种通信方法。该方法可以由网络设备执行,或者由网络设备内部的模块、单元、芯片执行,本申请以该方法由网络设备执行为例进行示意。该方法包括:
网络设备确定功率控制参数,功率控制参数与侧行定位参考信号的资源池具有关联关系,网络设备向第一终端设备发送功率控制参数,功率控制参数用于第一终端设备确定发送第一侧行定位参考信号的目标发送功率。
由于网络设备向终端设备指示功率控制参数,功率控制参数与侧行定位参考信号的资源池具有关联关系,因此第一终端设备可以根据功率控制参数确定出更加合理的侧行定位参考信号的发送功率,既可以提高侧行定位参考信号的质量,进而提高侧行定位参考信号的发送成功率,又可以尽可能地降低终端设备间发送的信号的相互干扰。
一种可能的实施方式中,功率控制参数包括第一参数和/或第二参数。其中,第一参数包括第三参数和/或下行路径损耗调整系数,第三参数为基于所述第一终端设备的下行路径损耗的功控初始值。第二参数包括第四参数和/或侧行路径损耗调整系数,第四参数为基于所述第一终端设备的侧行路径损耗的功控初始值。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一参数和/或第二参数承载于侧行资源池(SL-resource Pool)消息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一参数和/或第二参数承载于侧行资源池(SL-resource Pool)消息中的侧行功率控制(SL-power control)字段。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,网络设备向第二终端设备发送第一配置信息,第一配置信息指示用于确定侧行路径损耗的侧行信号的信息。其中,第一配置信息包括以下内容中的至少一项:第一信号类型的信息、第一资源标识或第一资源集标识中的至少一项。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一信号类型包括侧行定位参考信号、PSSCH DMRS类型和/或PSCCH DMRS类型。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一配置信息还包括:指示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息,和/或指示PSCCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一配置信息承载于PC5RRC消息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,网络设备向第一终端设备发送第二配置信息,第二配置信息指示用于确定侧行路径损耗的侧行信号的信息。其中,第二配置信息包括第二信号类型的信息、第二资源标识和第二资源集标识。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。第二信号类型为用于确定侧行路径损耗的侧行信号的类型。第二信号类型包括侧行定位参考信号的类型。第二资源标识包括第三侧行信号的资源标识。第二资源集标识包括第三侧行信号的资源对应的资源集标识。
一种可能的实施方式中,第二信号类型还包括:PSSCH DMRS类型和/或PSCCH DMRS类型。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第二配置信息还包括:指示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息,和/或,指示PSCCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第二配置信息承载于PC5RRC消息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,功率控制参数还包括第三发送功率,第三发送功率包括网络设备在基于第一侧行定位参考信号对应的资源池的CBR和第一侧行定位参考信号对应的传输优先级的条件下的发送功率。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第三发送功率承载于侧行资源池SL-resourcePool消息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,功率控制参数包括第四发送功率,第四发送功率包括网络设备的发送功率。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
第三方面,本申请提供第一种通信方法。该方法可以由第二终端设备执行,或者由第二终端设备内部的模块、单元、芯片执行,本申请以该方法由第二终端设备执行为例进行示意。该方法包括:
第二终端设备生成第一信息,第一信息包括来自第一终端设备的侧行信号的接收功率的信息、侧行路径损耗的信息,或第二终端设备发送的侧行信号的发送功率的信息。第二终端设备向第一终端设备发送第一信息,第一信息用于第一终端设备确定侧行路径损耗。
该方案基于第一终端设备和第二终端设备之间通过侧行链路传输的信息确定侧行路径损耗,可以提高侧行路径损耗的准确性。
一种可能的实施方式中,在第一信息包括来自第一终端设备的侧行信号的接收功率的信息的情况下,第一信息还包括来自第一终端设备的侧行信号的资源标识,或来自第一终端设备的侧行信号的资源对应的资源集标识。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一信息包括以下内容中的一项:第一侧行信号的接收功率的信息,第一侧行信号为第二终端设备接收到的来自第一终端设备的侧行信号,第一侧行信号的类型包括侧行定位参考信号;第二侧行信号的接收功率的信息,第二侧行信号为第二终端设备接收到的来自第一终端设备的侧行信号,第二侧行信号的类型包括PSSCH DMRS或PSCCH DMRS;或,侧行路径损耗的信息,侧行路径损耗的信息根据第一侧行信号或第二侧行信号确定。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第二终端设备生成第一信息之前,第二终端设备接收第一配置信息,第一配置信息指示用于确定侧行路径损耗的侧行信号的信息。其中,第一配置信息包括以下内容中的至少一项:第一信号类型的信息,第一信号类型为用于确定侧行路径损耗的侧行信号的类型,第一信号类型包括侧行定位参考信号类型;第一资源标识,第一资源标识包括第一侧行信号的资源标识;或第一资源集标识,第一资源集标识包括第一侧行信号的资源对应的资源集标识。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一信号类型还包括PSSCH DMRS类型和/或PSCCH DMRS类型。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一配置信息还包括:指示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息,和/或,指示PSCCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一配置信息承载于PC5RRC消息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一信息包括:第三侧行信号的发送功率的信息,第三侧行信号来自第二终端设备,第三侧行信号的类型包括侧行定位参考信号。第二终端设备生成第一信息之前,还包括:第二终端设备发送第三侧行信号。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第一信息包括:第四侧行信号的发送功率的信息,第四侧行信号来自第二终端设备,第三侧行信号包括侧行定位参考信号,第四侧行信号的类型包括PSSCH DMRS或PSCCH DMRS,第二终端设备生成第一信息之前,第二终端设备发送第四侧行信号。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第二终端设备向第一终端设备发送第二配置信息,第二配置信息指示用于确定侧行路径损耗的侧行信号的信息。其中,第二配置信息包括以下内容中的至少一项:第二信号类型的信息,第二信号类型为用于确定侧行路径损耗的侧行信号的类型,第二信号类型包括侧行定位参考信号的类型;第二资源标识,第二资源标识包括第三侧行信号的资源标识;或,第二资源集标识,第二资源集标识包括第三侧行信号的资源对应的资源集标识。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第二信号类型还包括:PSSCH DMRS类型和/或PSCCH DMRS类型。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第二配置信息还包括:指示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息;和/或,指示PSCCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
一种可能的实施方式中,第二配置信息承载于PC5RRC消息。相关描述以及有益效果参见第一方面或第一方面的可能的实施方式中的相关内容,不再赘述。
第四方面,提供了一种通信装置,该通信装置可以为上述第一终端设备、网络设备或第二终端设备,该通信装置可以包括通信单元和处理单元,以执行上述第一方面至第三方面任一种方法中的任一种实施方式。通信单元用于执行与发送和接收相关的功能。可选地,通信单元包括接收单元和发送单元。在一种设计中,通信装置为通信芯片,处理单元可以时一个或多个处理器或处理器核心,通信单元可以为通信芯片的输入输出电路或者端口。
在另一种设计中,通信单元可以为发射器和接收器,或者通信单元为发射机和接收机。
可选的,通信装置还包括可用于执行上述第一方面至第三方面任一种方法中的任一种实施方式的各个模块。
第五方面,提供了一种通信装置,该通信装置可以为上述第一终端设备、网络设备或第二终端设备,该通信装置可以包括处理器和存储器。可选的,还包括收发器,该存储器用于存储计算机程序或指令,该处理器用于从存储器中调用并运行该计算机程序或指令,当处理器执行存储器中的计算机程序或指令时,使得该通信装置执行上述第一方面至第三方面任一种方法中的任一种实施方式。
可选的,处理器为一个或多个,存储器为一个或多个。
可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,收发器中可以包括,发射机(发射器)和接收机(接收器)。
第六方面,提供了一种通信装置,该通信装置可以为上述第一终端设备、网络设备或第二终端设备,该通信装置可以包括处理器。该处理器与存储器耦合,可用于执行第一方面至第三方面任一方面,以及第一方面至第三方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为无线通信设备时,通信接口可以是收发器,或,输入/输出接口。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在又一种实现方式中,当该通信装置为芯片或芯片***时,通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
第七方面,提供了一种***,***包括上述第一终端设备、网络设备和第二终端设备。
第八方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法,或者使得计算机执行上述第一方面至第三方面任一种实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法,或者使得计算机执行上述第一方面至第三方面任一种实现方式中的方法。
第十方面,提供了一种芯片***,该芯片***可以包括处理器。该处理器与存储器耦合,可用于执行第一方面至第三方面中任一方面,以及第一方面至第三方面中任一方面中任一种可能实现方式中的方法。可选地,该芯片***还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理器,用于从存储器调用并运行计算机程序,使得安装有芯片***的设备执行第一方面至第三方面中任一方面,以及第一方面至第三方面中任一方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信装置,该通信装置可以为上述第一终端设备或第二终端设备,该通信装置可以包括:接口电路和处理电路。接口电路可以包括输入电路和输出电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得第一方面至第三方面任一方面,以及第一方面至第三方面中任一种可能实现方式中的方法被实现。
在具体实现过程中,上述处理装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请对处理器及各种电路的具体实现方式不做限定。
在一种实现方式中,当通信装置是无线通信设备,其中,无线通信设备可以是诸如智能手机这样的终端,也可以是诸如基站这样的无线接入网设备。接口电路可以为无线通信设备中的射频处理芯片,处理电路可以为无线通信设备中的基带处理芯片。
在又一种实现方式中,通信装置可以是无线通信设备中的部分器件,如***芯片或通信芯片等集成电路产品。接口电路可以为该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理电路可以为该芯片上的逻辑电路。
附图说明
图1为本申请实施例适用的几种可能的***架构示意图;
图2为本申请实施例适用的一种可能的网络架构示意图;
图3为本申请实施例提供的一种通信方法的可能的流程示意图;
图4为本申请实施例提供的一种确定侧行路径损耗的方法的可能的流程示意图;
图5为本申请实施例提供的一种确定侧行路径损耗的方法的可能的流程示意图;
图6为本申请实施例提供的另一种通信方法的可能的流程示意图;
图7为本申请实施例提供的一种可能的通信装置的结构示意图;
图8为本申请实施例提供的又一种可能的通信装置的结构示意图;
图9为本申请实施例提供的又一种可能的通信装置的结构示意图。
具体实施方式
本申请实施例提供的技术方案主要适用于无线通信***。该无线通信***可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准。比如,本申请实施例提供的方案可以应用于***(4th generation,4G)通信***,例如长期演进(long term evolution,LTE)通信***,也可以应用于第五代(5th generation,5G)通信***,例如5G新空口(new radio,NR)通信***,或应用于未来的各种通信***,例如第六代(6th generation,6G)通信***。本申请实施例提供的技术方案也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。
本申请实施例提供的方法还可以应用于蓝牙***、WiFi***、LoRa***或车联网(vehicle to everything,V2X)***中。本申请实施例提供的方法还可以应用于卫星通信***其中,卫星通信***可以与上述通信***相融合。
图1示例性示出了本申请实施例适用的几种可能的***架构示意图。图1中以两个终端设备,一个网络设备为例进行说明,该通信***中还可以包括其他更多数量的终端设备和网络设备。
图1中的(a)示出了网络设备覆盖内架构,终端设备与终端设备之间建立PC5连接,同时各个终端设备分别与网络设备(例如基站)建立连接。应当理解的是,各个终端设备可以连接同一基站也可以连接到不同基站,图1中的(a)以终端设备连接到同一基站为例示出。本申请实施例中,终端设备与基站之间可以通过Uu接口建立连接。本申请实施例提供的方案中涉及到的第一终端设备和第二终端设备可以为图1中的(a)所示的网络设备覆盖内的终端设备。
图1中的(b)示出了网络设备部分覆盖内架构,终端设备与终端设备之间建立PC5连接,同时有部分终端设备不与网络设备(例如基站)建立连接,剩余部分终端设备与网络设备(例如基站)建立连接。本申请实施例提供的方案中涉及到的第一终端设备和第二终端设备中的一部分(比如第一终端设备)可以为图1中的(b)所示的网络设备覆盖内的终端设备,第一终端设备和第二终端设备中的另一部分(比如第二终端设备)可以为图1中的(b)中的网络设备覆盖外的终端设备。
图1中的(c)示出了网络设备覆盖外架构,终端设备与终端设备之间建立PC5连接,所有终端设备均不与网络设备建立连接。本申请实施例提供的方案中涉及到的第一终端设备和第二终端设备中的部分或全部可以为图1中的(c)所示的网络设备覆盖外的终端设备。
在上述场景中,由于第一终端设备和第二终端设备是处于移动状态的,因此当第一终端设备和/或第二终端设备移动至网络设备覆盖范围内可以与网络设备之间通信以便传输一些信息、参数等。又一种可能的实施方式中,比如,第一终端设备一段时间内一直未移动至网络设备的覆盖范围内(位于网络设备覆盖范围外),第一终端设备可以基于后续本申请实施例给出的公式(1)确定第一侧行定位参考信号的发送功率,比如可以将第一终端设备的发送功率(比如第一终端设备的最大发送功率)确定为第一侧行定位参考信号的发送功率。可以看出,本申请实施例提供的方案中第一终端设备和/或第二终端设备可以位于网络设备覆盖范围外,也可以位于网络设备覆盖范围内。
图2以5G网络架构为例,示例性示出了本申请实施例适用的一种可能的网络架构示意图。如图2所示,本申请适用的一种可能的网络架构中可以包括终端设备(比如图2所示的UE1和UE2)、接入网设备(比如,下一代(next generation,NG)无线接入网((radio)access network,(R)AN)设备)和核心网(core network)三部分。
(1)终端设备。
本申请实施例中,终端设备(比如图2所示的UE1和UE2)可以包括用户设备(user equipment,UE)-定位管理组件(location management component,LMC)。该UE-LMC可以是一种部署于终端设备上的具有部分LMF功能的组件或应用,用于支持PC5接口的定位业务。图2中各个终端设备中的LMC展示为虚线,用于表示该终端设备侧可以包括LMC,也可以不包括LMC,图2中以两个终端设备中均包括有LMC进行示例。
本申请实施例中图2所示的终端设备(比如图2所示的UE1或UE2)可以前述图1中所示的各个通信***中的终端设备,比如UE1和UE2可以为图1中的(a)所示的位于网络设备覆盖范围内的两个终端设备。再比如,UE1和UE2中的一部分终端设备可以为图1中的(b)所示的位于网络设备覆盖 范围内的终端设备,UE1和UE2中的另一部分终端设备可以为图1中的(b)所示的位于网络设备覆盖范围外的终端设备。UE1和UE2可以为图1中的(c)所示的位于网络设备覆盖范围外的两个终端设备。
本申请实施例中的终端设备(比如图2所示的UE1和UE2,以及本申请实施例中的第一终端设备和第二终端设备)可以包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车辆与其他装置的通讯(vehicle to everything,V2X)终端设备(V2X具体可以包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。终端设备还可以是平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请实施例的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中的终端设备可以理解为设备,或者也可以是用于实现终端设备的功能的模块,该模块可以设置在终端设备中,或者也可以与终端设备彼此独立设置,该模块例如为芯片***等。
(2)网络设备。
网络设备可以包括接入网设备和/或核心网设备。
(2.1)接入网设备。
接入网(access network,AN)设备(例如基站)可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,例如,接入网设备可以包括LTE***或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新无线(new radio,NR)***中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN) ***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
eNB可以包括各种形式的宏基站、微基站(也称为小站)、中继站、接入点,可穿戴设备,车载设备。eNB还可以是传输接收节点(Transmission and Reception Point,TRP)。
gNB可以包括各种形式的宏基站、微基站(也称为小站)、中继站、接入点,可穿戴设备,车载设备。gNB还可以是TRP、传输测量功能(Transmission measurement function,TMF)。gNB可以包括集成于gNB上的CU和DU。
终端设备与服务基站可以通过Uu链路进行通信,比如可以通过LTE-Uu链路与Ng-eNB进行通信,可以通过NR-Uu链路与gNB进行通信。Ng-eNB是LTE的基站,gNB是NR的基站。基站间可以通过Xn接口进行通信。
(2.2)核心网设备。
核心网内与定位相关的网元主要包括:接入和移动管理功能(access and mobility management function,AMF)网元、位置管理功能(location management function,LMF)网元等。还可以包括演进服务移动定位中心(evolutional server mobile location center,E-SMLC)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元。基站与AMF网元之间可以通过NG-C接口进行通信,AMF网元可以相当于gNB与LMF通信的路由器。
LMF网元可以实现对终端设备的位置估计,AMF与LMF间通过NLs接口进行通信。
本申请实施例中的位置管理装置可以是图2中的LMF或UE-LMC等,也可以是未来通信如第六代(6th generation,6G)网络中具有上述LMF或UE-LMC的功能的网元,本申请对此不限定。
(3)终端设备之间的传输模式。
终端设备和终端设备之间的传输模式,当前标准协议支持的有广播方式,组播方式,和单播方式。
广播方式:广播方式是指作为发送端的终端设备采用广播的模式进行数据发送,多个终端设备端均能接收来自发送端的侧行链路控制信息(sidelink control information,SCI)或侧行链路共享信道(sidelink shared channel,SSCH)。
在侧行链路中,保证所有的终端设备都解析来自发送端的控制信息的方式是,发送端不对控制信息不加扰,或者发送端使用所有的终端设备都已知的扰码对控制信息加扰。
组播方式:组播方式和广播发送相似,作为发送端的终端设备采用广播的模式进行数据发送,一组终端设备均能解析SCI或SSCH。
单播方式:单播方式是一个终端设备向另外一个终端设备发送数据,其它终端设备不需要或者不能够解析该数据。
(4)侧行链路(sidelink),是指终端设备和终端设备之间的链路。上行链路,是指终端设备和网络设备之间的链路。
在应用中,网络设备可以为传输的数据和/或信号配置资源池,比如网络设备可以为第一终端设备的PSSCH配置资源池,该资源池中的资源用于第一终端设备发送PSSCH。再比如网络设备为第一终端设备的侧行定位参考信号配置资源池,该资源池中的资源用于第一终端设备发送侧行定位参考信号。
进一步,网络设备还可以为资源池配置参数,比如网络设备为该PSSCH的资源池配置参数(比如用于对PSSCH进行功率控制的参数),当第一终端设备需要对发送的PSSCH进行功率控制时,可以基于为PSSCH的资源池配置的参数确定PSSCH的发送功率,如此可以提高PSSCH的质量,进而提高PSSCH的发送成功率,又可以尽可能地降低终端设备间发送的PSSCH的相互干扰。
实际应用中,网络设备配置的资源池可能不相同,比如网络设备为第一终端设备的PSSCH配置资源池和为第一终端设备的侧行定位参考信号配置的资源池可能不同。网络设备为PSSCH的资源池配置的参数中的一项可能与网络设备为侧行定位参考信号的资源池配置的参数(比如功率控制参数)中的参数可能相同,也可能不同,二者之间没有必然的联系。若仍然依据网络设备为PSSCH的资源池配置的参数确定侧行定位参考信号的发送功率,则会导致侧行定位参考信号的发送功率确定的不合理。
针对上述问题,本申请实施例提供一种可能的实施方式,该实施方式中,网络设备向第一终端设备发送与侧行定位参考信号的资源池具有关联关系的功率控制参数,第一终端设备根据该功率控制参数确定侧行定位参考信号,相比采用其他资源池(比如PSSCH的资源池)的配置参数确定侧行定位参考信 号的方式,该方式可以更加合理的侧行定位参考信号的发送功率,既可以提高侧行定位参考信号的质量,进而提高侧行定位参考信号的发送成功率,又可以尽可能地降低终端设备间发送的信号的相互干扰。下面结合附图对本申请实施例提供的方案进行进一步的介绍。
基于图1和图2所示的实施例以及上述其他内容,图3示例性示出了本申请实施例提供的一种通信方法的可能的流程示意图。该方法以执行主体为第一终端设备、第二终端设备和网络设备为例进行展示,实际应用中,第一终端设备侧执行的方案也可以由第一终端设备内部的单元、模块或芯片执行,第二终端设备侧执行的方案也可以由第二终端设备内部的单元、模块或芯片执行,网络设备侧执行的方案也可以由网络设备内部的单元、模块或芯片执行。
图3中的第一终端设备和第二终端设备可以为前述图1的各个场景中的两个终端设备,比如本申请实施例中第一终端设备和第二终端设备可以为图1中的(a)所示的位于网络设备覆盖范围内的两个终端设备。再比如,本申请实施例中第一终端设备和第二终端设备中的任一个(比如第一终端设备)可以为图1中的(b)所示的位于网络设备覆盖范围内的一个终端设备,第一终端设备和第二终端设备中的另一个(比如第二终端设备)可以为图1中的(b)所示的位于网络设备覆盖范围外的一个终端设备,第二终端设备不与网络设备建立连接,第一终端设备与网络设备建立连接。再比如,本申请实施例中第一终端设备和第二终端设备可以为图1中的(c)所示的位于网络设备覆盖范围外的两个终端设备。图3中的第一终端设备和第二终端设备可以为前述图2的UE1和UE2。
图3中的网络设备可以为前述图1中所示的网络设备,也可以为前述图2中的网络设备,比如图2中所示的接入网设备和/或核心网设备,本申请实施例对此不做限制。
如图3所示,该方法包括:
步骤301,网络设备确定功率控制参数。
功率控制参数与侧行定位参考信号的资源池具有关联关系。
功率控制参数用于第一终端设备确定发送第一侧行定位参考信号的目标发送功率。
步骤302,网络设备向第一终端设备发送功率控制参数。
相对应的,第一终端设备接收来自网络设备的功率控制参数。
步骤303,第一终端设备根据功率控制参数确定目标发送功率;
步骤304,第一终端设备根据目标发送功率,发送第一侧行定位参考信号。
本申请实施例中涉及的侧行定位参考信号(比如第一侧行定位参考信号或第二侧行定位参考信号)可以理解为可以用于定位的,且在终端设备之间进行传输的信号,或者也可以理解为用于定位的在终端设备的侧行链路之间传输的信号。
本申请实施例中的侧行定位参考信号可以为侧行的定位参考信号(positioning reference signal,PRS),也可以为探测参考信号(sounding reference signal,SRS),还可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase-tracking reference signals,PTRS)、侧行同步信号/物理层侧行广播信道块(Sidelink Synchronization signal/physical sidelink broadcast channel block,S-SS/PSBCH block)。
本申请实施例中网络设备为第一终端设备的侧行定位参考信号配置资源池,该资源池中的资源用于第一终端设备发送侧行定位参考信号。网络设备为该资源池配置参数,其中功率控制参数为网络设备为该资源配置的参数中的参数。由于网络设备向终端设备指示功率控制参数,功率控制参数与侧行定位参考信号的资源池具有关联关系,因此第一终端设备可以根据功率控制参数确定出更加合理的侧行定位参考信号的发送功率,既可以提高侧行定位参考信号的质量,进而提高侧行定位参考信号的发送成功率,又可以尽可能地降低终端设备间发送的信号的相互干扰。
本申请实施例中的功率控制参数可以包括第一参数、第二参数和第三发送功率中的一项或多项。下面分别进行介绍。
(1)第一参数。
第一参数包括第三参数和/或下行路径损耗调整系数。
第三参数为基于所述第一终端设备的下行路径损耗的功控初始值。一种可能的实施方式中第三参数也可以理解为所述第一侧行定位参考信号的发送端基于下行路径损耗的功控初始值,又可以理解为第一 侧行定位参考信号的接收端期望的侧行定位参考信号的一个接收功率值。第三参数可以由网络设备下发的参数(该参数的名称可能有多种,比如该参数可以称为dl-P0-SLPRS)进行指示。
下行路径损耗调整系数可以用于在基于第一参数计算第一发送功率时,对下行路径损耗进行调整。下行路径损耗调整系数可以由网络设备下发的参数(该参数的名称可能有多种,比如该参数可以称为dl-Alpha-SLPRS)进行指示。下行路径损耗调整系数也可以称为其他名称,比如可以称为滤波参数或下行路径滤波参数等,本申请实施例对此不做限制。
由于第一参数包括第三参数和/或下行路径损耗调整系数,第一终端设备在确定目标发送功率的过程中可以考虑下行路径损耗的影响,继而可以更加合理的确定出目标发送功率。且可以基于下行路径损耗调整系数对测量得到的下行路径损耗进行调整,继而可以得到更加合理的目标发送功率。
第一参数(比如第三参数和/或下行路径损耗调整系数)可以承载于侧行资源池(SL-resource Pool)消息。比如,第一参数可以承载于侧行资源池(SL-resource Pool)消息中的侧行功率控制(SL-power control)字段。如此可以与现有技术更加兼容。比如上述参数dl-P0-SLPRS和/或参数dl-Alpha-SLPRS可以承载于侧行功率控制(SL-power control)字段。第一终端设备可以根据接收到的参数dl-P0-SLPRS确定出第三参数。第一终端设备可以根据接收到的参数dl-Alpha-SLPRS确定出下行路径损耗调整系数。
一种可能的实施方式中,网络设备未为第一终端设备配置下行路径损耗调整系数。比如网络设备没有为侧行定位参考信号的资源池配置下行路径损耗调整系数;再比如,网络设备未向第一终端设备发送下行路径损耗调整系数(网络设备可能为侧行定位参考信号的资源池配置或未配置该下行路径损耗调整系数);再比如网络设备向第一终端设备发送的侧行资源池(SL-resource Pool)消息中不包括参数dl-Alpha-SLPRS;再比如第一终端设备无法从网络设备发送的参数dl-Alpha-SLPRS确定出下行路径损耗调整系数,比如参数dl-Alpha-SLPRS指示的为一个预设值。在网络设备未向第一终端设备指示下行路径损耗调整系数的情况下,一种可能的实施方式中,第一终端设备可以确定下行路径损耗调整系数为1。如此,第一终端设备可以在网络设备未配置下行路径损耗调整系数的情况下,根据测量得到的下行路径损耗确定目标发送功率,如此可以以下行路径损耗可能带来的最大影响确定目标发送功率,避免与上行信号传输之间的干扰,以使目标发送功率更加合理。
(2)第二参数。
第二参数包括第四参数和/或侧行路径损耗调整系数。
第四参数为基于所述第一终端设备的侧行路径损耗的功控初始值。一种可能的实施方式中第四参数也可以理解为所述第一侧行定位参考信号的发送端基于侧行路径损耗的功控初始值,又可以理解为第一侧行定位参考信号的接收端期望的侧行定位参考信号的又一个接收功率值。第四参数为第一侧行定位参考信号的接收端期望的侧行定位参考信号的接收功率。第四参数可以由网络设备下发的参数(该参数的名称可能有多种,比如该参数可以称为sl-P0-SLPRS)进行指示。
侧行路径损耗调整系数可以用于在基于第二参数计算第二发送功率时,对侧行路径损耗进行调整。侧行路径损耗调整系数可以由网络设备下发的参数(该参数的名称可能有多种,比如该参数可以称为sl-Alpha-SLPRS)进行指示。侧行路径损耗调整系数也可以称为其他名称,比如可以称为滤波参数或侧行路径滤波参数等,本申请实施例对此不做限制。
第二参数(比如第四参数和/或侧行路径损耗调整系数)可以承载于侧行资源池(SL-resource Pool)消息。比如,第二参数可以承载于侧行资源池(SL-resource Pool消息中的侧行功率控制(SL-power control)字段。如此可以与现有技术更加兼容。比如上述参数sl-P0-SLPRS和/或参数sl-Alpha-SLPRS可以承载于侧行功率控制(SL-power control)字段。第一终端设备可以根据接收到的参数sl-P0-SLPRS确定出第四参数。第一终端设备可以根据接收到的参数sl-Alpha-SLPRS确定出侧行路径损耗调整系数。
由于第一参数包括第四参数和/或侧行路径损耗调整系数,因此第一终端设备在确定侧行定位参考信号的发送功率的过程中可以考虑侧行路径损耗的影响,继而可以更加合理的确定出侧行定位参考信号的发送功率。且可以基于侧行路径损耗调整系数对测量得到的侧行路径损耗进行调整,继而可以得到更加合理的侧行定位参考信号的发送功率,降低终端设备之间的干扰。
一种可能的实施方式中,网络设备未为第一终端设备配置侧行路径损耗调整系数。比如网络设备没有为侧行定位参考信号的资源池配置侧行路径损耗调整系数;再比如,网络设备未向第一终端设备发送侧行路径损耗调整系数(网络设备可能为侧行定位参考信号的资源池配置或未配置该侧行路径损耗调整系数);再比如网络设备向第一终端设备发送的侧行资源池(SL-resource Pool)消息中不包括参数 sl-Alpha-SLPRS;再比如第一终端设备无法从网络设备发送的参数sl-Alpha-SLPRS确定出侧行路径损耗调整系数,比如参数sl-Alpha-SLPRS指示的为一个预设值。在网络设备未向第一终端设备指示侧行路径损耗调整系数的情况下,一种可能的实施方式中,第一终端设备可以确定侧行路径损耗调整系数为1。如此,第一终端设备可以在网络设备未配置侧行路径损耗调整系数的情况下,根据测量得到的侧行路径损耗确定目标发送功率,如此可以以侧行路径损耗可能带来的最大影响确定目标发送功率,以使目标发送功率更加合理。
(3)第三发送功率。
第三发送功率包括第一终端设备在基于第一侧行定位参考信号对应的资源池的CBR和第一侧行定位参考信号对应的传输优先级的条件下的发送功率。如此,第一终端设备可以基于第一终端设备在基于CBR和传输优先级的条件下的发送功率确定目标发送功率,从而可以使确定目标发送功率与第一终端设备的实际发送功率更加匹配。
比如,第三功率可以为第一终端设备在基于第一侧行定位参考信号对应的资源池的CBR和第一侧行定位参考信号对应的传输优先级的条件下的最大发送功率。第三发送功率可以由网络设备下发的参数(该参数的名称可能有多种,比如该参数可以称为sl-MaxTxPower-SLPRS)进行指示。
第三发送功率可以承载于侧行资源池(SL-resource Pool)消息。比如上述参数sl-MaxTxPower-SLPRS可以承载于侧行资源池(SL-resource Pool)消息。第一终端设备可以根据接收到的参数sl-MaxTxPower-SLPRS确定出第三发送功率。
一种可能的实施方式中,网络设备未为第一终端设备配置第三发送功率。比如网络设备没有为侧行定位参考信号的资源池配置该第三发送功率;再比如,网络设备未向第一终端设备发送该第三发送功率(网络设备可能为侧行定位参考信号的资源池配置或未配置该第三发送功率);再比如网络设备向第一终端设备发送的侧行资源池(SL-resource Pool)消息中不包括参数sl-MaxTxPower-SLPRS;再比如第一终端设备无法从网络设备发送的参数sl-MaxTxPower-SLPRS确定出第三发送功率,比如参数sl-MaxTxPower-SLPRS指示的为一个预设值。
在网络设备未向第一终端设备指示第三发送功率的情况下,一种可能的实施方式中,第一终端设备在确定目标发送功率时可以不考虑第三发送功率。又一种可能的实施方式中,第一终端设备可以确定第三发送功率与第四发送功率相等。第四发送功率包括第一终端设备的发送功率,比如第四发送功率包括第一终端设备的最大发送功率。如此可以基于终端设备的发送功率确定目标发送功率,从而使确定出的目标发送功率与终端设备的发送功率更加匹配。本申请实施例中第四发送功率可以是配置在第一终端设备的,第一终端设备可以从自身的配置信息中获知第四发送功率,第四发送功率也可以是其他设备(比如网络设备)向第一终端设备指示的。
上述步骤303中,第一终端设备根据功率控制参数确定目标发送功率,具体来说,比如第一终端设备可以根据第一发送功率、第二发送功率、第三发送功率和第四发送功率中的一项或多项确定目标发送功率。
第一发送功率根据第一参数和下行路径损耗确定,如此第一终端设备确定目标发送功率的过程中可以考虑下行路径带来的影响,从而可以确定出更加合理的目标发送功率,避免对上行信号传输的影响。再比如第一发送功率根据第一参数、下行路径损耗和第一侧行定位参考信号占用的资源的数量确定,如此可以结合第一侧行定位参考信号占用的资源的数量确定目标发送功率,从而可以使结果更加合理。
第二发送功率根据第二参数和侧行路径损耗确定,如此第一终端设备确定目标发送功率的过程中可以考虑侧行路径带来的影响,从而可以确定出更加合理的目标发送功率,避免终端设备之间的干扰。再比如,第二发送功率根据第二参数、侧行路径损耗和第一侧行定位参考信号占用的资源的数量确定,如此可以结合第一侧行定位参考信号占用的资源的数量确定目标发送功率,从而可以使结果更加合理。
第四发送功率包括第一终端设备的发送功率,比如可以为第一终端设备的最大发送功率。如此可以基于终端设备的发送功率确定目标发送功率,从而使确定出的目标发送功率与终端设备的发送功率更加匹配。
一种可能的实施方式中,所述第一终端设备根据第一值、所述第三发送功率或第四发送功率中的一项或多项中的较小值,确定所述目标发送功率。比如,第一终端设备根据第一值、第三发送功率和第四发送功率中的较小值,确定目标发送功率。比如第一终端设备可以将第一发送功率、第二发送功率、第 三发送功率和第四发送功率中的最小值确定为目标发送功率。其中,第一值为第一发送功率和第二发送功率中的较小值。
目标发送功率通过以下公式得到:
PPRS(i)=min(PCMAX,PMAX,CBR,min(PPRS,D(i),PPRS,SL(i)))[dBm]……公式(1)
在公式(1)中,PPRS(i)表示目标发送功率,PCMAX表示第四发送功率,PMAX,CBR表示第三发送功率,PPRS,D(i)表示第一发送功率,PPRS,SL(i)表示第二发送功率,min(a,b)表示取参数a和参数b中的最小值,此处以参数a和参数b为例介绍min的含义,dBm表示单位分贝毫瓦(decibel relative to one milliwatt,dBm)。公式(1)中的PPRS(i)也可以理解为载波f的SL带宽部分(bandwidth part,BWP)b在发送时机i时的发送功率。
除了上述示例,第一终端设备还可以通过其他方式确定目标发送功率,比如第一终端设备可以将第一发送功率、第二发送功率、第三发送功率和第四发送功率中的一项或多项中的最小值确定为目标发送功率,举个例子,第一终端设备根据第一发送功率和第二发送功率中的较小值确定为目标发送功率,如此可以尽量减小目标发送功率,从而可以节省终端设备的功耗。再比如,第一终端设备可以将第一发送功率、第二发送功率和第一值中的最小值确定为目标发送功率,第一值为第三发送功率和第四发送功率中的最小值或最大值。举个例子,第一终端设备距离网络设备较远,但第一终端设备与第二终端设备距离较近,因此侧行路径损耗可能较大,第四发送功率可能较大,若第一值选为第三发送功率和第四发送功率中的最大值,即第一值为第四发送功率,则第一终端设备可以基于第四发送功率进一步确定目标发送功率,从而可以尽量保证终端设备之间通信需求。
下面分别对第一发送功率和第二发送功率进行进一步介绍。
(1)第一发送功率。
第一发送功率根据第一参数、下行路径损耗和第一侧行定位参考信号占用的资源的数量确定。
第一发送功率通过以下公式得到:
在公式(2)中,PPRS,D(i)表示第一发送功率,表示第三参数,μ表示预设的值,表示第一侧行定位参考信号占用的资源的数量,αD表示下行路径损耗调整值,PLD表示下行路径损耗,min(a,b)表示取参数a和参数b中的最小值,此处以参数a和参数b为例介绍min的含义,dBm表示单位分贝毫瓦。
在一种可能的实施方式中,网络设备未配置第三参数。比如网络设备没有为侧行定位参考信号的资源池配置第三参数;再比如,网络设备未向第一终端设备发送第三参数(网络设备可能为侧行定位参考信号的资源池配置或未配置第三参数);再比如网络设备向第一终端设备发送的侧行资源池(SL-resource Pool)消息中不包括参数dl-P0-SLPRS;再比如第一终端设备无法从网络设备发送的参数dl-P0-SLPRS确定出第三参数,比如参数dl-P0-SLPRS指示的为一个预设值。
一种可能的实施方式中,在网络设备未配置第三参数的情况下,一种可能的实施方式中,第一发送功率包括第三发送功率和第四发送功率中的较小值,可以用公式PPRS,D(i)=min(PCMAX,PMAX,CBR)[dBm]表示,该公式中各个参数的含义可以参见前述公式(1)和公式(2)的内容,不再赘述。如此,在网络设备未配置第三参数的情况下,第一终端设备可以基于终端设备的能力,以及在CBR和传输优先级条件下的终端设备的能力确定目标发送功率,从而可以使确定出的目标发送功率与第一终端设备的实际能力更加匹配。又一种可能的实施方式中,第一终端设备在确定目标发送功率的情况下,可以不考虑第一发送功率。
本申请实施例中,第一发送功率还可以有其他的确定方式,比如,第一发送功率为第一参数和下行路径损耗之和,再比如第一发送功率是通过第一参数和第一侧行定位参考信号占用的资源的数量确定的。
(1.1)下行路径损耗。
第一终端设备可以根据下行信号估计下行路径损耗。举个例子,公式1中的PLD=PLb,f,c(qd),即第一终端设备可以使用参考信号资源索引qd的参考信号估计下行路径损耗。具体来说,下行路径损耗可以是参考信号索引为qd的参考信号的发送功率和测得的RSRP相减得到的,该发送功率可以是从网络设备获取的。
(2)第二发送功率。
第二发送功率根据第二参数、侧行路径损耗和第一侧行定位参考信号占用的资源的数量确定。
第二发送功率通过以下公式得到:
在公式(3)中,PPRS,SL(i)表示第二发送功率,POPRS,SL表示第四参数,μ表示预设的值,表示第一侧行定位参考信号占用的资源的数量,αSL表示侧行路径损耗调整值,PLSL表示侧行路径损耗,min(a,b)表示取参数a和参数b中的最小值,此处以参数a和参数b为例介绍min的含义,dBm表示单位分贝毫瓦。
在一种可能的实施方式中,网络设备未配置第四参数。比如网络设备没有为侧行定位参考信号的资源池配置第四参数;再比如,网络设备未向第一终端设备发送第四参数(网络设备可能为侧行定位参考信号的资源池配置或未配置第四参数);再比如网络设备向第一终端设备发送的侧行资源池(SL-resource Pool)消息中不包括参数sl-P0-SLPRS;再比如第一终端设备无法从网络设备发送的参数sl-P0-SLPRS确定出第四参数,比如参数sl-P0-SLPRS指示的为一个预设值。
一种可能的实施方式中,在网络设备未配置第四参数的情况下,一种可能的实施方式中,第二发送功率包括第三发送功率和第四发送功率中的较小值,可以用公式PPRS,SL(i)=min(PCMAX,PMAX,CBR)[dBm]表示,该公式中各个参数的含义可以参见前述公式(1)、公式(2)和公式(3)的内容,不再赘述。如此,在网络设备未配置第四参数的情况下,第一终端设备可以基于终端设备的能力,以及在CBR和传输优先级条件下的终端设备的能力确定目标发送功率,从而可以使确定出的目标发送功率与第一终端设备的实际能力更加匹配。又一种可能的实施方式中,第一终端设备在确定目标发送功率的情况下,可以不考虑第二发送功率。
本申请实施例中,第二发送功率还可以有其他的确定方式,比如,第二发送功率为第二参数和侧行路径损耗之和,再比如第二发送功率是通过第二参数和第一侧行定位参考信号占用的资源的数量确定的。
(2.1)侧行路径损耗。
一种可能的实施方式中,第二终端设备生成第一信息,第二终端设备向第一终端设备发送第一信息。第一信息包括来自第一终端设备的侧行信号的接收功率的信息、侧行路径损耗的信息,或第二终端设备发送的侧行信号的发送功率的信息。第一终端设备接收来自第二终端设备的第一信息。第一终端设备根据第一信息,确定侧行路径损耗。第一终端设备确定侧行路径损耗的方式较多,可以提高方案的灵活性,且基于第一终端设备和第二终端设备之间通过侧行链路传输的信息确定侧行路径损耗,可以提高侧行路径损耗的准确性。本申请实施例中的侧行信号可以为侧行的PRS,也可以为SRS,还可以是CSI-RS、DMRS、PTRS、S-SS/PSBCH block。
第二终端设备和第一终端设备之间传输第一信息的方式有多种,比如第二终端设备可以通过PC5接口向第一终端设备发送第一信息,比如第一信息承载于PC5RRC消息;再比如第二终端设备和第一终端设备通过其他终端设备或网络设备等设备传输第一信息,举个例子,第二终端设备可以将第一信息发送给网络设备(比如第一终端设备通过与网络设备之间的Uu口进行发送),网络设备接收到该第一信息之后,将该第一信息转发给第二终端设备。
又一种可能的实施方式中,在第一信息包括来自第一终端设备的侧行信号的接收功率的信息的情况下,第二终端设备还可以向第一终端设备发送来自第一终端设备的侧行信号的资源(resource)标识(identity,ID),和/或来自第一终端设备的侧行信号的资源对应的资源集标识(resource set ID),该两个信息中的部分或全部可以包括在第一信息中,也可以不包括于第一信息中,后续部分内容以该两个信息包括于第一信息中为例进行介绍。如此,第一终端设备可以确定出第一信息中包括的接收功率对应的侧行信号,继而根据该侧行信号的发送功率和第一信息中的接收功率确定侧行路径损耗。一个资源集标识对应一个资源集,一个资源集包括一个或多个资源。
下面通过方式一和方式二介绍两种可能的方式,方式一中,第一信息包括来自第一终端设备的侧行信号的接收功率的信息或侧行路径损耗的信息,方式二中第一信息包括第二终端设备发送的侧行信号的发送功率的信息。
方式一,第一信息包括来自第一终端设备的侧行信号的接收功率的信息或侧行路径损耗的信息。
举个例子,第一信息包括以下内容中的至少一项:第一侧行信号的接收功率的信息,第一侧行信号 为第二终端设备接收到的来自第一终端设备的侧行信号,第一侧行信号的类型包括侧行定位参考信号;第二侧行信号的接收功率的信息,第二侧行信号为第二终端设备接收到的来自第一终端设备的侧行信号,第二侧行信号的类型包括PSSCH DMRS或PSCCH DMRS;或,侧行路径损耗的信息,侧行路径损耗的信息根据第一侧行信号或第二侧行信号确定。第一终端设备和第二终端设备之间可以基于侧行定位参考信号、PSSCH DMRS或PSCCH DMRS确定侧行路径损耗,从而可以提高方案的灵活性。
图4示例性示出了本申请实施例提供的一种确定侧行路径损耗的方法的可能的流程示意图,如图4所示,该方法包括:
步骤400,第一终端设备向第二终端设备发送第一配置信息。
相对应的,第二终端设备接收第一配置信息。
第一配置信息指示用于确定侧行路径损耗的侧行信号的信息。如此,第二终端设备可以基于第一配置信息配置的侧行信号进行测量,从而可以更好的管控侧行路径损耗的确定过程。
在步骤400中,第一终端设备可以通过PC5接口向第二终端设备发送第一配置信息,也可以向网络设备发送第一配置信息,以使网络设备将第一配置信息发送给第二终端设备。又一种可能的实施方式中,第一配置信息也可以由网络设备为第二终端设备配置,比如网络设备可以向第二终端设备发送第一配置信息(比如通过RRC消息发送第一配置信息)。图4中以第一终端设备向第二终端设备发送第一配置信息发送为例进行示意。
第一配置信息可以包括第一信号类型的信息、第一资源标识或第一资源集标识中的一项或多项。可以看出,通过第一配置信息配置侧行信号的方式有多种,较为灵活,可以提高方案的灵活性。第一信号类型为用于确定侧行路径损耗的侧行信号的类型。第一信号类型可以包括侧行定位参考信号、PSSCH DMRS或PSCCH DMRS中的一项或多项。若第一信号类型包括侧行定位参考信号,由于确定的目标发送功率为第一侧行定位参考信号的发送功率,因此基于侧行定位参考信号确定的侧行路径损耗可以更准确的反映第一侧行定位参考信号面临的环境,继而可以提高目标发送功率的准确性。若第一信号类型包括PSSCH DMRS和/或PSCCH DMRS,则第二终端设备还可以测量PSSCH DMRS和/或PSCCH DMRS,基于测量结果反馈第一信息,从而可以提高方案的灵活性。若第一信号类型不包括侧行定位参考信号,则第一终端设备也可以无需为了确定侧行路径损耗发送侧行定位参考信号,从而可以减少第一终端设备发送的信号的数量,降低第一终端设备的功耗。
第一资源标识可以包括一个或多个资源的标识。第一资源集标识也可以包括一个或多个资源集的标识。
第二终端设备在接收到第一配置信息之后,可以基于第一配置信息的确定需测量接收功率的侧行信号。比如第一信号类型包括侧行定位参考信号,第二终端设备可以对接收到的侧行定位参考信号进行测量。再比如第一配置信息包括第一资源标识,第二终端设备可以在第一资源标识指示的一个或多个资源中的资源对接收到的侧行信号进行测量,根据测量得到的一个或多个接收功率反馈第一信息,比如第一信息可以包括第二终端设备测得的该一个或多个接收功率的最大值、平均值、较大值等。再比如第一配置信息包括第一资源集标识,第二终端设备可以在第一资源集标识指示的一个或多个资源中的资源对接收到的侧行信号进行测量,根据测量得到的一个或多个接收功率反馈第一信息,比如第一信息可以包括该一个或多个接收功率的最大值、平均值、较大值等。
步骤400可以为可选择的步骤,第二终端设备也可能没有接收到该第一配置信息,这种情况下,一种可能的实施方式中,第二终端设备可以在侧行定位参考信号的资源上对接收到的侧行定位参考信号进行测量,根据测量得到的一个或多个接收功率反馈第一信息,比如第一信息可以包括该一个或多个接收功率的最大值、平均值、较大值等。
步骤401,第一终端设备发送第一侧行信号。
第二终端设备可以接收第一侧行信号。第一侧行信号的类型包括侧行定位参考信号。
步骤402,第一终端设备发送第二侧行信号。
第二终端设备可以接收第二侧行信号。第二侧行信号的类型包括PSSCH DMRS或PSCCH DMRS。
步骤401和步骤402没有先后关系,也有可能先执行步骤402,后执行步骤401。
步骤403,第二终端设备是否获取第一侧行信号的接收功率;
在第二终端设备获取到第一侧行信号的接收功率的情况下,执行步骤404;
在第二终端设备未获取到第一侧行信号的接收功率的情况下,执行步骤406。
本申请实施例中为了区分以第一侧行信号为侧行定位参考信号,第二侧行信号并非侧行定位参考信号(比如PSSCH DMRS或PSCCH DMRS)为例进行介绍。本申请实施例中第二终端设备反馈的第一侧行信号的接收功率可以理解为侧行定位参考信号的发送功率。
一种可能的实施方式中,在步骤403之前,第二终端设备可能接收到了第一配置信息,比如,第一信号类型包括第一侧行信号的类型,第二终端设备在接收到第一配置信息之后,对接收到的侧行定位参考信号进行测量,第二终端设备可以根据得到的一个或多个侧行信号的接收功率反馈第一侧行信号的接收功率,比如将该一个或多个侧行信号的接收功率中的最大值、较大值或平均值作为第一侧行信号的接收功率。再比如第一资源标识包括有第一侧行信号的资源的标识,再比如第一资源集标识可能包括有第一侧行信号的资源的资源集标识,类似的,第二终端设备可以根据第一配置信息中包括第一资源标识和/或第一资源集标识进行测量,根据得到的一个或多个侧行信号的接收功率反馈第一侧行信号的接收功率,比如将该一个或多个侧行信号的接收功率中的最大值、较大值或平均值作为第一侧行信号的接收功率。相关内容可以参见前述步骤400的相关描述,不再赘述。
在步骤403中,第二终端设备可能未获取到第一侧行信号的接收功率,比如第二终端设备可能未成功接收到第一侧行信号;或者第二终端成功接收到第一侧行信号,但是未能测到第一侧行信号的接收功率,或者对第一侧行信号测量失败或测量出错。第二终端设备未获取到第一侧行信号的接收功率的情况下,第二终端设备可以有多种实施方式,比如,如图4所示,第二终端设备未获取到第一侧行信号(比如侧行定位参考信号)的接收功率的情况下,第二终端设备可以测量第二侧行信号(比如PSSCH DMRS或PSCCH DMRS),将得到的第二侧行信号的接收功率反馈给第一终端设备。图4中以该示例进行展示。
在图4所示的实施方式中,第一配置信息中的第一信号类型可以包括第二侧行信号的类型,比如第一信号类型可以包括PSSCH DMRS和/或PSCCH DMRS。如此,第二终端设备在未获取到第一侧行信号的接收功率的情况下,可以根据对PSSCH DMRS和/或PSCCH DMRS(比如第二侧行信号)进行测量,将得到的测量结果(比如接收功率)携带于第一信息。
又一种可能的实施方式中,第一配置信息中的第一信号类型可以不包括第二侧行信号的类型。如此,第二终端设备在未获取到第一侧行信号的接收功率的情况下,可以依据预设规则或默认规则对PSSCH DMRS和/或PSCCH DMRS(比如第二侧行信号)进行测量,将得到的测量结果(比如接收功率)携带于第一信息。
又一种可能的实施方式中,第一配置信息可能包括有指示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。第一配置信息也可能包括有指示PSCCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。如此,第二终端设备在未获取到第一侧行信号的接收功率的情况下,可以依据预设规则或默认规则对PSSCH DMRS和/或PSCCH DMRS(比如第二侧行信号)进行测量,将得到的测量结果(比如接收功率)携带于第一信息。
举个例子,比如第一配置信息的字段中可以设置一个特殊比特位,该比特位的比特值为1则可以表示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号,该比特位为0则可以表示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号。再举个例子,第一配置信息的字段中可以设置一个特殊比特位,该比特位的比特值为1则可以表示PSSCH DMRS和PSCCH DMRS属于用于确定侧行路径损耗的侧行信号,该比特位为0则可以表示PSSCH DMRS和PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号。
本申请实施例中图4示出的第二终端设备执行步骤406是一种可能的示例,第二终端设备未获取到第一侧行信号的接收功率的情况下还可能执行其他实施方式。
比如,第二终端设备未获取到第一侧行信号的接收功率的情况下可以向网络设备上报用于指示测量出错的信息。网络设备可以基于该用于指示测量出错的信息指示第一终端设备继续发送侧行定位参考信号,或者指示第二终端设备测量来自第一终端设备的PSSCH DMRS或PSCCH DMRS,并将得到的PSSCH DMRS或PSCCH DMRS的接收功率携带于第一信息反馈给第一终端设备。
再比如,第二终端设备未获取到第一侧行信号的接收功率的情况下,第二终端设备可以继续等待来自第一终端设备的下一个侧行定位参考信号,直至第二终端设备成功获取到一个侧行定位参考信号的接收功率,之后将该侧行定位参考信号的接收功率的信息反馈给第一终端设备。
再比如,第二终端设备未获取到第一侧行信号的接收功率的情况下,第二终端设备可以将历史的来 自第一终端设备的侧行定位参考信号、PSSCH DMRS或PSCCH DMRS的接收功率的信息携带于第一信息向第一终端设备反馈,以使第一终端设备根据该历史的侧行定位参考信号、PSSCH DMRS或PSCCH DMRS的接收功率和发送功率估计侧行路径损耗。
步骤404,第二终端设备向第一终端设备发送第一侧行信号的接收功率的信息。
相对应的,第一终端设备接收第一侧行信号的接收功率的信息。
在步骤404中,第二终端设备可以向网络设备发送第一侧行信号的接收功率的信息,网络设备继而将该第一侧行信号的接收功率的信息发送给第一终端设备。又一种可能的实施方式中,第二终端设备可以直接通过PC5接口向第一终端设备发送第一侧行信号的接收功率的信息。
本申请实施例中第一侧行信号的接收功率的信息比如可以为第一侧行信号的参考信号接收功率(reference signal receiving power,RSRP)。这种情况下,第一信息包括第一侧行信号的接收功率的信息。
步骤405,第一终端设备在接收到第一侧行信号的接收功率的情况下,根据第一侧行信号的接收功率和第一侧行信号的发送功率,确定侧行路径损耗。
又一种可能的实施方式中,在第一信息包括第一侧行信号的接收功率的信息的情况下,第一信息还包括:第一侧行信号的资源标识,和/或,第一侧行信号的资源对应的资源集标识。如此,第一终端设备可以根据第一信息中包括的资源标识和/或资源集标识确定出第一信息中包括的接收功率对应的侧行信号,继而根据该侧行信号的发送功率和第一信息中的接收功率确定侧行路径损耗。
又一种可能的实施方式中,在步骤404中,第二终端设备可以向第一终端设备发送侧行路径损耗的信息。第一信息包括侧行路径损耗信息。侧行路径损耗的信息可以根据第一侧行信号确定,举个例子,第一终端设备还可以向第二终端设备发送第一侧行信号的发送功率的信息,第二终端设备根据第一侧行信号的接收功率和发送功率确定侧行路径损耗。
步骤406,第二终端设备获取第二侧行信号的接收功率。
步骤407,第二终端设备向第一终端设备发送第二侧行信号的接收功率的信息。
相对应的,第一终端设备接收来自第二终端设备的第二侧行信号的接收功率的信息。
在步骤407中,第二终端设备可以向网络设备发送第二侧行信号的接收功率的信息,网络设备继而将该第二侧行信号的接收功率的信息发送给第一终端设备。又一种可能的实施方式中,第二终端设备可以直接通过PC5接口向第一终端设备发送第二侧行信号的接收功率的信息。
本申请实施例中第二侧行信号的接收功率的信息比如可以为第二侧行信号的RSRP。这种情况下,第一信息包括第二侧行信号的接收功率的信息。
步骤408,第一终端设备在接收到第二侧行信号的接收功率的情况下根据第二侧行信号的接收功率和第二侧行信号的发送功率,确定侧行路径损耗。
又一种可能的实施方式中,第一终端设备若接收到多个侧行信号的接收功率,可以根据其中一个或多个侧行信号的接收功率确定侧行路径损耗。
又一种可能的实施方式中,在第一信息包括第二侧行信号的接收功率的信息的情况下,第一信息还包括:第二侧行信号的资源标识,和/或,第二侧行信号的资源对应的资源集标识。如此,第一终端设备可以根据第一信息中包括的资源标识和/或资源集标识确定出第一信息中包括的接收功率对应的侧行信号(比如第二侧行信号),继而根据该侧行信号的发送功率和第一信息中的接收功率确定侧行路径损耗。
又一种可能的实施方式中,在步骤407中,第二终端设备可以向第一终端设备发送侧行路径损耗的信息。第一信息包括侧行路径损耗信息。侧行路径损耗的信息可以根据第二侧行信号确定,举个例子,第一终端设备还可以向第二终端设备发送第二侧行信号的发送功率的信息,第二终端设备根据第二侧行信号的接收功率和发送功率确定侧行路径损耗。
本申请实施例中,第一终端设备可能未成功接收到第一侧行信号的接收功率的信息,比如第二终端设备未反馈第一侧行信号的接收功率的信息,或第一终端设备对第一侧行信号的接收功率接收失败等。这种情况下,第一终端设备可以有多种可能地实施方式。
比如,如图4中所示的实施例,第一终端设备可以判断是否接收到第二侧行信号的接收功率的信息,在成功接收到第二侧行信号的接收功率的情况下,根据第二侧行信号的接收功率和第二侧行信号的发送功率确定侧行路径损耗。
再比如,第一终端设备可以根据第二终端设备之前反馈的历史的定位侧行信号、PSSCH DMRS或 PSCCH DMRS中的一项或多项的接收功率以及这些信号的发送功率,确定侧行路径损耗。
方式二,第一信息包括第二终端设备发送的侧行信号的发送功率的信息。
该实施方式中第二终端设备可以发送用于确定侧行路径损耗的侧行信号,以便第一终端设备对其进行测量。比如,第一信息包括:第三侧行信号的发送功率的信息,第三侧行信号来自第二终端设备,第三侧行信号的类型包括侧行定位参考信号;和/或,第四侧行信号的发送功率的信息,第四侧行信号来自第二终端设备,第三侧行信号包括侧行定位参考信号,第四侧行信号的类型包括PSSCH DMRS或PSCCH DMRS。该方案基于第一终端设备和第二终端设备之间通过侧行链路传输的信息确定侧行路径损耗,可以提高侧行路径损耗的准确性。
图5示例性示出了本申请实施例提供的一种确定侧行路径损耗的方法的可能的流程示意图,如图5所示,该方法包括:
步骤500,第二终端设备向第一终端设备发送第二配置信息。
相对应的,第一终端设备接收第二配置信息。
第二配置信息指示用于确定侧行路径损耗的侧行信号的信息。如此,第二终端设备可以基于第一配置信息配置的侧行信号进行测量,从而可以更好的管控侧行路径损耗的确定过程。
在步骤500中,第二终端设备可以通过PC5接口向第一终端设备发送第二配置信息,也可以向网络设备发送第二配置信息,以使网络设备将第二配置信息发送给第一终端设备。又一种可能的实施方式中,第二配置信息也可以由网络设备为第一终端设备配置,比如网络设备可以向第一终端设备发送第二配置信息(比如通过RRC消息发送第二配置信息)。图5中以第二终端设备向第一终端设备发送第二配置信息发送为例进行示意。
第二配置信息可以包括第二信号类型的信息、第二资源标识或第二资源集标识中的一项或多项。可以看出,通过第二配置信息配置侧行信号的方式有多种,较为灵活,可以提高方案的灵活性。第二信号类型为用于确定侧行路径损耗的侧行信号的类型。第二信号类型可以包括侧行定位参考信号、PSSCH DMRS或PSCCH DMRS中的一项或多项。第二资源标识可以包括一个或多个资源的标识。第二资源集标识也可以包括一个或多个资源集的标识。
若第二信号类型包括侧行定位参考信号,由于确定的目标发送功率为第一侧行定位参考信号的发送功率,因此基于侧行定位参考信号确定的侧行路径损耗可以更准确的反映第一侧行定位参考信号面临的环境,继而可以提高目标发送功率的准确性。又一种可能的实施方式中,第二信号类型还包括:PSSCH DMRS类型和/或PSCCH DMRS类型。又由于第一终端设备还可以测量PSSCH DMRS和/或PSCCH DMRS,基于测量结果确定侧行路径损耗,从而可以提高方案的灵活性,而且若第二信号类型不包括侧行定位参考信号,则第二终端设备也可以无需为了确定侧行路径损耗发送侧行定位参考信号,从而可以减少第二终端设备发送的信号的数量,降低第一终端设备的功耗。
第一终端设备在接收到第二配置信息之后,可以基于第二配置信息的确定需测量接收功率的侧行信号。比如第二信号类型包括侧行定位参考信号,第一终端设备可以对接收到的侧行定位参考信号进行测量。再比如第二配置信息包括第二资源标识,第一终端设备可以在第二资源标识指示的一个或多个资源中的资源对接收到的侧行信号进行测量,以得到一个或多个侧行信号的接收功率,继而第一终端设备根据该一个或多个侧行信号的接收功率中的最大值、较大值或平均值等确定侧行路径损耗。再比如第二配置信息包括第二资源集标识,第一终端设备可以在第二资源集标识指示的一个或多个资源中的资源对接收到的侧行信号进行测量,以得到一个或多个侧行信号的接收功率,继而第一终端设备根据该一个或多个侧行信号的接收功率中的最大值、较大值或平均值等确定侧行路径损耗。比如,第一终端设备根据得到的一个或多个侧行信号的接收功率中的最大值以及该最大值对应的侧行信号的发送功率确定侧行路径损耗。
步骤500可以为可选择的步骤,第一终端设备也可能没有接收到该第二配置信息,这种情况下,一种可能的实施方式中,第一终端设备可以在侧行定位参考信号的资源上对接收到的侧行定位参考信号进行测量,根据测量得到的一个或多个接收功率确定侧行路径损耗。
步骤501,第二终端设备发送第三侧行信号。
第一终端设备可以接收第三侧行信号。第三侧行信号的类型包括侧行定位参考信号。
步骤502,第二终端设备向第一终端设备发送第三侧行信号的发送功率的信息。
相对应的,第一终端设备接收第三侧行信号的发送功率的信息。
在步骤502中,第二终端设备可以向网络设备发送第三侧行信号的发送功率的信息,网络设备继而将该第三侧行信号的发送功率的信息发送给第一终端设备。又一种可能的实施方式中,第二终端设备可以直接通过PC5接口向第一终端设备发送第三侧行信号的发送功率的信息。又一种可能的实施方式中,第二终端设备还可以向第一终端设备发送第三侧行信号的资源标识和/或资源集标识,以使第一终端设备获知步骤502中第二终端设备发送的发送功率的信息所对应的侧行信号的资源和/或资源集。第三侧行信号的资源标识和/或资源集标识与第三侧行信号的发送功率的信息可以承载于同一个消息。
步骤502在步骤506之前就可以,与前述步骤500至步骤505中的任一个步骤没有绝对的先后关系,比如可以先执行步骤502,再执行步骤500至步骤505中的一个或多个步骤。
步骤503,第二终端设备发送第四侧行信号。
第一终端设备可以接收第四侧行信号。第四侧行信号的类型包括PSSCH DMRS或PSCCH DMRS。
步骤501和步骤503没有先后关系,也有可能先执行步骤503,后执行步骤501。
步骤504,第二终端设备向第一终端设备发送第四侧行信号的发送功率的信息。
相对应的,第一终端设备接收来自第二终端设备的第四侧行信号的发送功率的信息。
在步骤504中,第二终端设备可以向网络设备发送第四侧行信号的发送功率的信息,网络设备继而将该第四侧行信号的发送功率的信息发送给第一终端设备。又一种可能的实施方式中,第二终端设备可以直接通过PC5接口向第一终端设备发送第四侧行信号的发送功率的信息。又一种可能的实施方式中,第二终端设备还可以向第一终端设备发送第四侧行信号的资源标识和/或资源集标识,以使第一终端设备获知接收到的步骤504中第二终端设备发送的该发送功率的信息所对应的侧行信号的资源和/或资源集。第四侧行信号的资源标识和/或资源集标识与第四侧行信号的发送功率的信息可以承载于同一个消息。
步骤504在步骤508之前就可以,与前述步骤500至步骤507中的任一个步骤没有绝对的先后关系,比如可以先执行步骤504,再执行步骤500至步骤507中的一个或多个步骤。
步骤505,第一终端设备是否获取到第三侧行信号的接收功率;
在第一终端设备获取到第三侧行信号的接收功率的情况下,执行步骤506;
在第一终端设备未获取到第三侧行信号的接收功率的情况下,执行步骤507。
本申请实施例中为了区分以第三侧行信号为侧行定位参考信号,第四侧行信号并非侧行定位参考信号(比如第四侧行信号为PSSCH DMRS或PSCCH DMRS)为例进行介绍。本申请实施例中第一终端设备获取到的第三侧行信号的接收功率可以理解为侧行定位参考信号的接收功率。
一种可能的实施方式中,在步骤505之前,第一终端设备可能接收到了第二配置信息,比如,第二信号类型包括第三侧行信号的类型,第一终端设备在接收到第二配置信息之后,对接收到的侧行定位参考信号进行测量,第一终端设备可以根据得到的一个或多个侧行信号的接收功率确定第三侧行信号的接收功率,比如将该一个或多个侧行信号的接收功率中的最大值、较大值或平均值作为第三侧行信号的接收功率。再比如第二资源标识包括有第三侧行信号的资源标识,再比如第二资源集标识可能包括有第三侧行信号的资源的资源集标识,类似的,第一终端设备可以根据第二配置信息中包括第二资源标识和/或第二资源集标识进行测量,根据得到的一个或多个侧行信号的接收功率确定第三侧行信号的接收功率,比如将该一个或多个侧行信号的接收功率中的最大值、较大值或平均值作为第三侧行信号的接收功率。相关内容可以参见前述步骤500的相关描述,不再赘述。
在步骤505中,第一终端设备可能未获取到第三侧行信号的接收功率,比如第一终端设备可能未成功接收到第三侧行信号;或者第二终端成功接收到第三侧行信号,但是未能测到第三侧行信号的接收功率,或者对第三侧行信号测量失败或测量出错。第一终端设备未获取到第三侧行信号的接收功率的情况下,第一终端设备可以有多种实施方式,比如,如图5所示,第一终端设备未获取到第三侧行信号(比如侧行定位参考信号)的接收功率的情况下,第一终端设备可以测量第四侧行信号(比如PSSCH DMRS或PSCCH DMRS),根据得到的第四侧行信号的接收功率确定侧行路径损耗。图5中以该示例进行展示。
在图5所示的实施方式中,第二配置信息中的第二信号类型可以包括第四侧行信号的类型,比如第二信号类型可以包括PSSCH DMRS和/或PSCCH DMRS。如此,第一终端设备在未获取到第三侧行信号的接收功率的情况下,可以根据对PSSCH DMRS和/或PSCCH DMRS(比如第四侧行信号)进行测量,根据得到的测量结果确定侧行路径损耗。
又一种可能的实施方式中,第二配置信息中的第一信号类型可以不包括第四侧行信号的类型。如此, 第一终端设备在未获取到第三侧行信号的接收功率的情况下,可以依据预设规则或默认规则对PSSCH DMRS和/或PSCCH DMRS(比如第四侧行信号)进行测量,根据得到的测量结果确定侧行路径损耗。
又一种可能的实施方式中,第二配置信息可能包括有指示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。第二配置信息也可能包括有指示PSCCH DMRS属于用于确定侧行路径损耗的侧行信号的信息,或指示PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号的信息。如此,第一终端设备在未获取到第三侧行信号的接收功率的情况下,可以依据预设规则或默认规则对PSSCH DMRS和/或PSCCH DMRS(比如第四侧行信号)进行测量,根据得到的测量结果确定侧行路径损耗。
举个例子,比如第二配置信息的字段中可以设置一个特殊比特位,该比特位的比特值为1则可以表示PSSCH DMRS属于用于确定侧行路径损耗的侧行信号,该比特位为0则可以表示PSSCH DMRS不属于用于确定侧行路径损耗的侧行信号。再举个例子,第二配置信息的字段中可以设置一个特殊比特位,该比特位的比特值为1则可以表示PSSCH DMRS和PSCCH DMRS属于用于确定侧行路径损耗的侧行信号,该比特位为0则可以表示PSSCH DMRS和PSCCH DMRS不属于用于确定侧行路径损耗的侧行信号。
本申请实施例中图5示出的第一终端设备执行步骤507是一种可能的示例,第一终端设备未获取到第三侧行信号的接收功率的情况下还可能执行其他实施方式。
比如,第一终端设备未获取到第三侧行信号的接收功率的情况下可以向网络设备上报用于指示测量出错的信息。网络设备可以基于该用于指示测量出错的信息指示第二终端设备继续发送侧行定位参考信号,或者指示第一终端设备测量来自第二终端设备的PSSCH DMRS或PSCCH DMRS,并根据得到的PSSCH DMRS或PSCCH DMRS的接收功率确定侧行路径损耗。
再比如,第一终端设备未获取到第三侧行信号的接收功率的情况下,第一终端设备可以继续等待来自第二终端设备的下一个侧行定位参考信号,直至第一终端设备成功获取到一个侧行定位参考信号的接收功率,之后根据得到的侧行定位参考信号的接收功率确定侧行路径损耗。
再比如,第一终端设备未获取到第三侧行信号的接收功率的情况下,第一终端设备可以根据历史的来自第二终端设备的侧行定位参考信号、PSSCH DMRS或PSCCH DMRS的接收功率和发送功率估计侧行路径损耗。
步骤506,第一终端设备根据第三侧行信号的发送功率和第三侧行信号的接收功率,确定侧行路径损耗。
可以看出,该实施方式中,第一终端设备在获取到第三侧行信号的接收功率的情况下,根据第三侧行信号的接收功率和第三侧行信号的发送功率,确定侧行路径损耗。由于确定的目标发送功率为第一侧行定位参考信号的发送功率,因此基于侧行定位参考信号确定的侧行路径损耗可以更准确的反映第一侧行定位参考信号面临的环境,继而可以提高目标发送功率的准确性。
步骤507,第一终端设备获取第四侧行信号的接收功率。
步骤508,第一终端设备根据第四侧行信号的发送功率和第四侧行信号的接收功率,确定侧行路径损耗。
本申请实施例中,第一终端设备可能未成功接收到第三侧行信号的发送功率的信息,比如第二终端设备未反馈第三侧行信号的发送功率的信息,或第一终端设备对第三侧行信号的发送功率的信息接收失败等。这种情况下,第一终端设备可以有多种可能地实施方式。
比如,如图5中所示的实施例,第一终端设备可以判断是否接收到第四侧行信号的发送功率的信息,在成功接收到第四侧行信号的发送功率的情况下,根据第四侧行信号的发送功率和第四侧行信号的接收功率确定侧行路径损耗。如此,可以提高方案的灵活性,且由于第四侧行信号为第二终端设备和第一终端设备之间基于侧行链路传输的信号,因此第四侧行信号也可以较为准确的反映侧行路径损耗,继而可以提高目标发送功率的准确性。
再比如,第一终端设备可以根据第二终端设备之前反馈的历史的定位侧行信号、PSSCH DMRS或PSCCH DMRS中的一项或多项的发送功率以及这些信号的接收功率,确定侧行路径损耗。
本申请实施例中,由于第一侧行定位参考信号和用于确定侧行路径损耗的侧行信号可能频点不同,一种可能的实施方式中,可以根据二者之间频点的差异确定侧行路径损耗,如此可以得到更为准确的侧行路径损耗。下面通过两种可能的实施方式进行介绍。
实施方式一
在实施方式一中,第一终端设备根据第一信息,确定准侧行路径损耗。第一终端设备根据准侧行路径损耗和第一偏移量,确定侧行路径损耗,第一偏移量根据准侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异确定。比如侧行路径损耗为准侧行路径损耗与第一偏移量的和,如此可以降低方案的复杂度。
本申请实施例中准侧行路径损耗关联的侧行信号可以是指用于确定侧行路径损耗的侧行信号,比如第一终端设备根据前述图4中涉及到的第一侧行信号确定侧行路径损耗,则准侧行路径损耗关联的侧行信号可以为第一侧行信号,第一终端设备可以将第一侧行信号的发送功率和接收功率的差值作为准侧行路径损耗。类似的,准侧行路径损耗关联的侧行信号也可以为前述图4涉及到的第二侧行信号、图5涉及到的第三侧行信号或第四侧行信号,相关方案与第一侧行信号的相关类似,不再赘述。
举个例子,第一终端设备根据以下公式确定侧行路径损耗:
PLPRS,SL(i)=PLPRS,SL_n(i)+ΔP1……公式(4)
在公式(4)中,PLPRS,SL(i)表示侧行路径损耗,PLPRS,SL_n(i)表示准路径损耗,ΔP1表示第一偏移量。
比如,公式(4)中的第一偏移量ΔP1可以通过公式计算,其中fn为准侧行路径损耗关联的侧行信号的频点,f为第一侧行定位参考信号的频点。可以看出,该公式可以较为准确的反映出根据准侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异。
实施方式二
在实施方式二中,第一终端设备根据第二参数和侧行路径损耗确定第五发送功率。该侧行路径损耗可以通过前述内容确定,比如可以通过前述图4或图5的相关内容确定。第一终端设备根据第五发送功率和第二偏移量,确定第二发送功率,第二偏移量根据侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异确定。可以看出,该方案中可以通过第二偏移量对第二发送功率的确定过程进行调整,从而可以得到更加准确的第二发送功率,继而可以提高目标发送功率的准确度。比如,第二发送功率等于第五发送功率和第二偏移量的和,如此,可以降低方案的复杂度。
本申请实施例中准侧行路径损耗关联的侧行信号可以是指用于确定侧行路径损耗的侧行信号,比如第一终端设备根据前述图4中涉及到的第一侧行信号确定侧行路径损耗,则侧行路径损耗关联的侧行信号可以为第一侧行信号,第一终端设备可以将第一侧行信号的发送功率和接收功率的差值作为侧行路径损耗。类似的,侧行路径损耗关联的侧行信号也可以为前述图4涉及到的第二侧行信号、图5涉及到的第三侧行信号或第四侧行信号,相关方案与第一侧行信号的相关类似,不再赘述。
举个例子,第一终端设备根据以下公式确定第二发送功率:
PPRS,SL(i)=PPRS,SL_n(i)+ΔP2……公式(5)
在公式(5)中,PPRS,SL(i)表示第二发送功率,PPRS,SL_n(i)表示第五发送功率,ΔP2表示第二偏移量。
比如,公式(5)中的第二偏移量ΔP2可以通过公式计算,其中,αSL表示侧行路径损耗调整值,fn为准侧行路径损耗关联的侧行信号的频点,f为第一侧行定位参考信号的频点。可以看出,该公式可以较为准确的反映出根据准侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异。该公式中的侧行路径损耗调整值αSL也可以更改为其他系数,本申请实施例对此不做限定。
基于前述图1、图2、图3、图4和图5所示的实施例以及其他内容,图6示例性示出了本申请实施例提供的另一种通信方法的可能的流程示意图。图6中的执行主体的相关内容可以参见前述图3中的相关介绍,不再赘述。
如图6所示,该方法包括:
步骤601,第一终端设备发送第二侧行定位参考信号。
相对应的,第二终端设备可以接收到第二侧行定位参考信号。
步骤602,第二终端设备根据第二侧行定位参考信号确定功率反馈参数。
功率反馈参数根据第二侧行定位参考信号的接收功率和第二终端设备期望接收到的侧行定位参考信号的接收功率确定。
步骤603,第二终端设备向第一终端设备发送功率反馈参数。
相对应的,第一终端设备接收来自第二终端设备的功率反馈参数。
步骤603中功率反馈参数可以承载于请求消息、测量反馈消息、PC5RRC消息、媒体接入控制控制元素(media access control control element,MAC CE)、SCI等。
步骤604,第一终端设备根据功率控制参数确定目标发送功率,第一终端设备根据功率控制参数和功率反馈参数,确定目标发送功率。
举个例子,第一终端设备与第二终端设备距离大于第一终端设备与网络设备之间的距离,即第一终端设备和第二终端设备之间的距离较远,第一终端设备与网络设备之间的距离较近,距离越远可能会导致路径损耗越大,侧行路径损耗有可能大于下行路径损耗,继而根据侧行路径损耗得到的第二发送功率可能大于基于下行路径损耗计算的第一发送功率。第一终端设备若选择第一发送功率和第二发送功率中的较小值(即第一发送功率),或选择比该较小值更小的作为目标发送功率,由于侧行路径损耗可能较大,因此可能会导致第一终端设备选择的目标发送功率较小,从而使第一终端设备发送的第一侧行定位参考信号的发送功率不足。
而本申请实施例提供的方案中第一终端设备可以基于功率反馈参数确定目标发送功率,从而可以弥补开环功率控制机制的不足,通过反馈和调整使得目标发送功率更优。比如当第二终端设备可以通过功率反馈参数指示第一终端设备将侧行定位参考信号的发送功率调大,继而第一终端设备可以基于功率反馈参数将目标发送功率调大,从而缓解第一侧行定位参考信号的发送功率不足的问题。再比如当第二终端设备可以通过功率反馈参数指示第一终端设备将侧行定位参考信号的发送功率调小,继而第一终端设备可以基于功率反馈参数将目标发送功率调小,从而降低第一终端设备的功耗,且减少对其他传输信号的干扰。
在步骤604中可以包括多种可能的实施方式,下面通过实施方式一至实施方式五示例性介绍。
实施方式一
第一终端设备根据功率反馈参数调整第一发送功率,第一终端设备根据调整后的第一发送功率确定目标发送功率。比如第一终端设备可以将功率反馈参数乘以预设的系数再与第一发送功率相加,得到的值为调整后的第一发送功率,该预设的系数可以等于1也可以不等于1。
第一终端设备根据调整后的第一发送功率确定目标发送功率的方式有多种,比如可以根据调整后的第一发送功率、第二发送功率、第三发送功率和第四发送功率中的一项或多项确定目标发送功率,相关方案与之前第一终端设备根据第一发送功率、第二发送功率、第三发送功率和第四发送功率中的一项或多项确定目标发送功率的方案类似,区别在于第一发送功率替换为调整后的第一发送功率。第一发送功率的确定方案可以参见前述内容,不再赘述。
由于第一终端设备可以基于功率反馈参数调整第一发送功率,调整后的第一发送功率可能值会增大,从而可以提高目标发送功率,继而可以缓解第一侧行定位参考信号的发送功率不足的问题,另一种情况,调整后的第一发送功率可能值会减小,从而可以降低目标发送功率,从而可以降低第一终端设备的功耗,还可以降低信号间的干扰。
比如,第一终端设备可以根据公式调整第一发送功率,比如调整后的第一发送功率可以通过以下公式(6)计算:
调整后的第一发送功率=PPRS,D(i)+α*ΔP……公式(6)
在公式(6)中,PPRS,D(i)表示第一发送功率;ΔP表示功率反馈参数,比如可以为第二侧行定位参考信号的接收功率和第二终端设备期望接收到的侧行定位参考信号的接收功率之间的差值;α可以为预设的值。
在公式(6)的基础上,前述公式(1)可以替换为以下公式(7):
PPRS(i)=min(PCMAX,PMAX,CBR,min(PPRS,D(i)+α*ΔP,PPRS,SL(i)))……公式(7)
公式(7)中各个参数的含义可以参见前述公式(1)和公式(6)中的相关内容,不再赘述。
一种可能的实施方式中,公式(6)和公式(7)α可以为1,这种情况下,公式(7)可以替换为如下公式(8):
PPRS(i)=min(PCMAX,PMAX,CBR,min(PPRS,D(i)+ΔP,PPRS,SL(i)))……公式(8)
公式(8)中各个参数的含义可以参见前述公式(1)和公式(6)中的相关内容,不再赘述。
实施方式二
第一终端设备根据功率反馈参数调整第二发送功率,第一终端设备根据调整后的第二发送功率确定目标发送功率。比如第一终端设备可以将功率反馈参数乘以预设的系数再与第二发送功率相加,得到的值为调整后的第二发送功率,该预设的系数可以等于1也可以不等于1。
第一终端设备根据调整后的第二发送功率确定目标发送功率的方式有多种,比如可以根据调整后的第二发送功率、第一发送功率、第三发送功率和第四发送功率中的一项或多项确定目标发送功率,相关方案与之前第一终端设备根据第一发送功率、第二发送功率、第三发送功率和第四发送功率中的一项或多项确定目标发送功率的方案类似,区别在于第二发送功率替换为调整后的第二发送功率。第二发送功率的确定方案可以参见前述内容,不再赘述。
由于第一终端设备可以基于功率反馈参数调整第二发送功率,调整后的第二发送功率可能值会增大,从而可以提高目标发送功率,继而可以缓解第一侧行定位参考信号的发送功率不足的问题,另一种情况,调整后的第二发送功率可能值会减小,从而可以降低目标发送功率,从而可以降低第一终端设备的功耗,还可以降低信号间的干扰。
比如,第一终端设备可以根据公式调整第二发送功率,比如调整后的第二发送功率可以通过以下公式(9)计算:
调整后的第二发送功率=PPRS,SL(i)+α*ΔP……公式(9)
在公式(9)中,PPRS,SL(i)表示第二发送功率;ΔP表示功率反馈参数,比如可以为第二侧行定位参考信号的接收功率和第二终端设备期望接收到的侧行定位参考信号的接收功率之间的差值;α可以为预设的值。
在公式(9)的基础上,前述公式(1)可以替换为以下公式(10):
PPRS(i)=min(PCMAX,PMAX,CBR,min(PPRS,D(i),PPRS,SL(i)+α*ΔP))……公式(10)
公式(10)中各个参数的含义可以参见前述公式(1)和公式(9)中的相关内容,不再赘述。
一种可能的实施方式中,公式(10)和公式(9)α可以为1,这种情况下,公式(10)可以替换为如下公式(11):
PPRS(i)=min(PCMAX,PMAX,CBR,min(PPRS,D(i),PPRS,SL(i)+ΔP))……公式(11)
公式(11)中各个参数的含义可以参见前述公式(1)和公式(6)中的相关内容,不再赘述。
实施方式三
第一终端设备根据第一发送功率和/或第二发送功率确定准目标发送功率,根据准目标发送功率和功率反馈参数确定目标发送功率。比如第一终端设备可以将功率反馈参数与准目标发送功率相加或相乘,该运算过程中也可以增加其他运算参数。
第一终端设备根据第一发送功率和/或第二发送功率确定准目标发送功率的方式有多种,比如可以根据第一发送功率、第二发送功率、第三发送功率和第四发送功率中的一项或多项确定准目标发送功率,比如可以选择第一发送功率、第二发送功率、第三发送功率和第四发送功率中的最小值作为准目标发送功率,相关方案与之前第一终端设备根据第一发送功率、第二发送功率、第三发送功率和第四发送功率中的一项或多项确定目标发送功率的方案类似。
第一终端设备可以基于功率反馈参数调整准目标发送功率,继而将得到的值作为第一侧行定位参考信号的发送功率,该方案可以降低方案的复杂度,而且可以使目标发送功率更优。
一种可能的实施方式中,公式(1)可以替换为如下公式(12):
PPRS(i)=min(PCMAX,PMAX,CBR,min(PPRS,D(i),PPRS,SL(i)))+ΔP……公式(12)
在公式(12)中,ΔP表示功率反馈参数,公式(12)中其他各个参数的含义可以参见前述公式(1)的相关内容,不再赘述。
又一种可能的实施方式中,公式(1)可以替换为如下公式(13):
PPRS(i)=min(PCMAX,PMAX,CBR,min(PPRS,D(i),PPRS,SL(i)))*ΔP……公式(13)
在公式(13)中,ΔP表示功率反馈参数,*表示乘,公式(13)中其他各个参数的含义可以参见前述公式(1)的相关内容,不再赘述。
实施方式四
第一终端设备根据功率反馈参数调整第二侧行定位参考信号的发送功率,得到目标发送功率。比如第一终端设备可以将功率反馈参数与第二侧行定位参考信号的发送功率相加或相乘,该运算过程中也可以增加其他运算参数。第二侧行定位参考信号的发送功率是根据功率控制参数确定的。第二侧行定位参 考信号的发送功率可以根据前述图3、图4和图5中任一项内容介绍的确定目标发送功率的方式确定,不再赘述。
第一终端设备可以基于功率反馈参数调整第二侧行定位参考信号的发送功率,继而将得到的值作为第一侧行定位参考信号的发送功率,该方案可以降低方案的复杂度,而且可以使目标发送功率更优。
一种可能的实施方式中,公式(1)可以替换为如下公式(14):
PPRS(i)=PPRS(i-1)+ΔP……公式(14)
在公式(14)中,ΔP表示功率反馈参数,PPRS(i-1)表示第二侧行定位参考信号的发送功率,公式(14)中其他各个参数的含义可以参见前述公式(1)的相关内容,不再赘述。
又一种可能的实施方式中,公式(1)可以替换为如下公式(15):
PPRS(i)=PPRS(i-1)*ΔP……公式(15)
在公式(15)中,ΔP表示功率反馈参数,*表示乘,PPRS(i-1)表示第二侧行定位参考信号的发送功率,公式(15)中其他各个参数的含义可以参见前述公式(1)的相关内容,不再赘述。
需要说明的是,在本申请的实施例中,某一网元(例如:A网元)接收来自另一网元(例如:B网元)的信息,可以指A网元直接从B网元接收信息,也可以指A网元经其他网元(例如:C网元)从B网元接收信息。当A网元经C网元从B网元接收信息时,C网元可以对信息进行透传,也可以将信息进行处理,例如:将信息携带在不同的消息中进行传输或者对信息进行筛选,只发送筛选后的信息给A网元。类似的,在本申请的各实施例中,A网元向B网元发送信息,可以指A网元直接向B网元发送信息,也可以指A网元经其他网元(例如:C网元)向B网元发送信息。
本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
需要说明的是,上述各个消息的名称仅仅是作为示例,随着通信技术的演变,上述任意消息均可能改变其名称,但不管其名称如何发生变化,只要其含义与本申请上述消息的含义相同,则均落入本申请的保护范围之内。
根据前述方法,图7为本申请实施例提供的通信装置的结构示意图,如图7所示,该通信装置可以为第一终端设备、网络设备或第二终端设备,也可以为芯片或电路,比如可设置于第一终端设备的芯片或电路,再比如可设置于网络设备内的芯片或电路,再比如可设置于第二终端设备内的芯片或电路。该通信装置可以用于执行上述图3、图4、图5或图6中任一项的相关方案中第一终端设备、网络设备或第二终端设备的方法。
该通信装置1801包括处理器1802和收发器1803。
进一步的,该通信装置1801可以包括有存储器1804。图中存储器1804为虚线是进一步标识存储器为可选地意思。
进一步的,该通信装置1801还可以进一步包括总线***,其中,处理器1802、存储器1804、收发器1803可以通过总线***相连。
应理解,上述处理器1802可以是一个芯片。例如,该处理器1802可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是***芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器1802中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器 1802中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1804,处理器1802读取存储器1804中的信息,结合其硬件完成上述方法的步骤。
应注意,本申请实施例中的处理器1802可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器1804可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。本申请实施例中的存储器的相关描述可以参见前述内容,在此不再赘述。
当通信装置1801为上述第一终端设备,处理器1802用于通过收发器1803执行:接收来自网络设备的功率控制参数,根据目标发送功率,发送第一侧行定位参考信号。目标发送功率根据功率控制参数确定,功率控制参数与侧行定位参考信号的资源池具有关联关系。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于:根据第一发送功率和/或第二发送功率,确定目标发送功率。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于通过收发器1803接收来自网络设备的下行信号。处理器1802具体用于根据对下行信号进行测量得到的测量结果,估计下行路径损耗。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于通过收发器1803接收来自第二终端设备的第一信息,第一信息包括来自第一终端设备的侧行信号的接收功率的信息、侧行路径损耗的信息,或第二终端设备发送的侧行信号的发送功率的信息。处理器1802具体用于根据第一信息,确定侧行路径损耗。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于通过收发器1803向第二终端设备发送第一配置信息。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于在获取到第三侧行信号的接收功率的情况下,根据第三侧行信号的接收功率和第三侧行信号的发送功率,确定侧行路径损耗。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于在未获取到第三侧行信号的接收功率的情况下,根据第四侧行信号的接收功率和第四侧行信号的发送功率,确定侧行路径损耗。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于通过收发器1803接收第二配置信息。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于根据第一信息,确定准侧行路径损耗,根据准侧行路径损耗和第一偏移量,确定侧行路径损耗。第一偏移量根据准侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异确定。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于根据第二参数和侧行路径损耗确定第五发送功率,根据第五发送功率和第二偏移量,确定第二发送功率,第二偏移量根据侧行路径损耗关联的侧行信号的频点和第一侧行定位参考信号的频点之间的差异确定。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于根据第一值、第三发送功率和第四发送功率中的较小值,确定目标发送功率,其中,第一值为第一发送功率和第二发送功率中的较小值。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于通过收发器1803发送第二侧行定位参考信号,接收来自第二终端设备的功率反馈参数,功率反馈参数根据第二侧行定位参考信号的接收功率和第二终端设备期望接收到的侧行定位参考信号的接收功率确定。处理器 1802具体用于根据功率控制参数和功率反馈参数,确定目标发送功率。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于根据功率反馈参数调整第一发送功率,根据调整后的第一发送功率确定目标发送功率。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于根据功率反馈参数调整第二发送功率;第一终端设备根据调整后的第二发送功率确定目标发送功率。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于根据第一发送功率和/或第二发送功率确定准目标发送功率,根据准目标发送功率和功率反馈参数确定目标发送功率。
当通信装置1801为上述第一终端设备,在一种可能的实施方式中,处理器1802具体用于根据功率反馈参数调整第二侧行定位参考信号的发送功率,得到目标发送功率,第二侧行定位参考信号的发送功率是根据功率控制参数确定的。
当通信装置1801为上述网络设备,处理器1802用于通过收发器1803执行:向第一终端设备发送功率控制参数。功率控制参数与侧行定位参考信号的资源池具有关联关系。功率控制参数用于第一终端设备确定发送第一侧行定位参考信号的目标发送功率。
当通信装置1801为上述网络设备,在一种可能的实施方式中,处理器1802还用于通过收发器1803向第二终端设备发送第一配置信息。
当通信装置1801为上述网络设备,在一种可能的实施方式中,处理器1802还用于通过收发器1803向第一终端设备发送第二配置信息。
当通信装置1801为上述第二终端设备,处理器1802用于通过收发器1803执行:发送第一信息,第一信息用于第一终端设备确定侧行路径损耗。第一信息包括来自第一终端设备的侧行信号的接收功率的信息、侧行路径损耗的信息,或第二终端设备发送的侧行信号的发送功率的信息。
当通信装置1801为上述第二终端设备,在一种可能的实施方式中,处理器1802还用于通过收发器1803接收第一配置信息。
当通信装置1801为上述第二终端设备,在一种可能的实施方式中,处理器1802还用于通过收发器1803发送第三侧行信号。
当通信装置1801为上述第二终端设备,在一种可能的实施方式中,处理器1802还用于通过收发器1803发送第四侧行信号。
当通信装置1801为上述第二终端设备,在一种可能的实施方式中,处理器1802还用于通过收发器1803向第一终端设备发送第二配置信息。
该通信装置所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图8为本申请实施例提供的通信装置的结构示意图,如图8所示,通信装置1901可以包括通信接口1903和处理器1902。进一步的,该通信装置1901可以包括有存储器1904。图中存储器1904为虚线是进一步标识存储器为可选地意思。通信接口1903,用于输入和/或输出信息;处理器1902,用于执行计算机程序或指令,使得通信装置1901实现上述图3、图4、图5或图6中任一项的相关方案中第一终端设备侧的方法,或使得通信装置1901实现上述图3、图4、图5或图6中任一项的相关方案中第二终端设备侧的方法。本申请实施例中,通信接口1903可以实现上述图7的收发器1803所实现的方案,处理器1902可以实现上述图7的处理器1802所实现的方案,存储器1904可以实现上述图7的存储器1804所实现的方案,在此不再赘述。
基于以上实施例以及相同构思,图9为本申请实施例提供的通信装置的示意图,如图9所示,该通信装置2001可以为第一终端设备或第二终端设备,也可以为芯片或电路,比如可设置于第一终端设备或第二终端设备的芯片或电路。
该通信装置2001包括处理单元2002和通信单元2003。进一步的,该通信装置2001可以包括有存储单元2004,也可以不包括存储单元2004。图中存储单元2004为虚线是进一步标识存储器为可选地意 思。
当通信装置2001为上述第一终端设备,处理单元2002用于通过通信单元2003执行:接收来自网络设备的功率控制参数,根据目标发送功率,发送第一侧行定位参考信号。目标发送功率根据功率控制参数确定,功率控制参数与侧行定位参考信号的资源池具有关联关系。
当通信装置2001为上述网络设备,处理单元2002用于通过通信单元2003执行:向第一终端设备发送功率控制参数。功率控制参数与侧行定位参考信号的资源池具有关联关系。功率控制参数用于第一终端设备确定发送第一侧行定位参考信号的目标发送功率。
当通信装置2001为上述第二终端设备,处理单元2002用于通过通信单元2003执行:发送第一信息,第一信息用于第一终端设备确定侧行路径损耗。第一信息包括来自第一终端设备的侧行信号的接收功率的信息、侧行路径损耗的信息,或第二终端设备发送的侧行信号的发送功率的信息。
本申请实施例中通信单元2003,用于输入和/或输出信息;处理单元2002,用于执行计算机程序或指令,使得通信装置2001实现上述图3、图4、图5或图6中任一项的相关方案中第一终端设备侧的方法,或使得通信装置2001实现上述图3、图4、图5或图6中任一项的相关方案中第二终端设备侧的方法。本申请实施例中,通信单元2003可以实现上述图7的收发器1803所实现的方案,处理单元2002可以实现上述图7的处理器1802所实现的方案,存储单元2004可以实现上述图7的存储器1804所实现的方案,在此不再赘述。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码或指令,当该计算机程序代码或指令在计算机上运行时,使得该计算机执行图3、图4、图5或图6中任一项所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3、图4、图5或图6中任一项所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种芯片***,该芯片***可以包括处理器。该处理器与存储器耦合,可用于执行图3、图4、图5或图6中任一项所示实施例中任意一个实施例的方法。可选地,该芯片***还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理器,用于从存储器调用并运行计算机程序,使得安装有芯片***的设备执行图3、图4、图5或图6中任一项所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种***,其包括前述的一个或多个第一终端设备以及一个或多个第二终端设备以及网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
需要指出的是,本专利申请文件的一部分包含受著作权保护的内容。除了对专利局的专利文件或记录的专利文档内容制作副本以外,著作权人保留著作权。
上述各个装置实施例中第一终端设备、网络设备和第二终端设备和方法实施例中的第一终端设备、网络设备和第二终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬 件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备接收来自网络设备的功率控制参数,所述功率控制参数与侧行定位参考信号的资源池具有关联关系;
    所述第一终端设备根据所述功率控制参数确定目标发送功率;
    所述第一终端设备根据所述目标发送功率,发送第一侧行定位参考信号。
  2. 如权利要求1所述的方法,其特征在于,所述功率控制参数包括第一参数、第二参数或第三发送功率中的一项或多项;
    其中,所述第一参数包括第三参数和/或下行路径损耗调整系数,所述第三参数为基于所述第一终端设备的下行路径损耗的功控初始值;
    所述第二参数包括第四参数和/或侧行路径损耗调整系数,所述第四参数为基于所述第一终端设备的侧行路径损耗的功控初始值;
    所述第三发送功率包括所述网络设备在基于所述第一侧行定位参考信号对应的资源池的网络拥塞率CBR和所述第一侧行定位参考信号对应的传输优先级的条件下的发送功率。
  3. 如权利要求2所述的方法,其特征在于,所述第一终端设备根据所述功率控制参数确定目标发送功率,包括:
    所述第一终端设备根据第一发送功率和/或第二发送功率,确定所述目标发送功率;
    其中,所述第一发送功率根据所述第一参数和下行路径损耗确定,所述第二发送功率根据所述第二参数和侧行路径损耗确定。
  4. 如权利要求3所述的方法,其特征在于,所述第一终端设备根据第一发送功率和/或第二发送功率,确定所述目标发送功率之前,还包括:
    所述第一终端设备接收来自第二终端设备的第一信息,所述第一信息包括来自所述第一终端设备的侧行信号的接收功率的信息、所述侧行路径损耗的信息,或所述第二终端设备发送的侧行信号的发送功率的信息;
    所述第一终端设备根据所述第一信息,确定所述侧行路径损耗。
  5. 如权利要求4所述的方法,其特征在于,所述第一信息包括以下内容中的至少一项:
    第一侧行信号的接收功率的信息,所述第一侧行信号为所述第二终端设备接收到的来自所述第一终端设备的侧行信号,所述第一侧行信号的类型包括侧行定位参考信号;
    第二侧行信号的接收功率的信息,所述第二侧行信号为所述第二终端设备接收到的来自所述第一终端设备的侧行信号,所述第二侧行信号的类型包括物理侧行链路共享信道PSSCH解调参考信号DMRS或物理侧行链路控制信道PSCCH DMRS;
    所述侧行路径损耗的信息,所述侧行路径损耗的信息根据所述第一侧行信号或所述第二侧行信号确定;
    第三侧行信号的发送功率的信息,所述第三侧行信号来自所述第二终端设备,所述第三侧行信号的类型包括侧行定位参考信号;或,
    第四侧行信号的发送功率的信息,所述第四侧行信号来自所述第二终端设备,所述第三侧行信号包括侧行定位参考信号,所述第四侧行信号的类型包括PSSCH DMRS或PSCCH DMRS。
  6. 如权利要求5所述的方法,其特征在于,所述第一终端设备接收来自第二终端设备的第一信息之前,还包括:
    所述第一终端设备向所述第二终端设备发送第一配置信息,所述第一配置信息指示用于确定所述侧行路径损耗的侧行信号的信息;
    其中,所述第一配置信息包括以下内容中的至少一项:
    第一信号类型的信息,所述第一信号类型为用于确定所述侧行路径损耗的侧行信号的类型,所述第一信号类型包括侧行定位参考信号类型;
    第一资源标识,所述第一资源标识包括所述第一侧行信号的资源标识;或,
    第一资源集标识,所述第一资源集标识包括所述第一侧行信号的资源对应的资源集标识。
  7. 如权利要求4-6任一项所述的方法,其特征在于,所述第一终端设备根据所述第一信息,确定所述侧行路径损耗,包括:
    所述第一终端设备根据所述第一信息,确定准侧行路径损耗;
    所述第一终端设备根据所述准侧行路径损耗和第一偏移量,确定所述侧行路径损耗,所述第一偏移量根据所述准侧行路径损耗关联的侧行信号的频点和所述第一侧行定位参考信号的频点之间的差异确定。
  8. 如权利要求4-6任一项所述的方法,其特征在于,所述第一终端设备根据第一发送功率和/或第二发送功率,确定所述目标发送功率之前,还包括:
    所述第一终端设备根据所述第二参数和所述侧行路径损耗确定第五发送功率;
    所述第一终端设备根据所述第五发送功率和第二偏移量,确定所述第二发送功率,所述第二偏移量根据所述侧行路径损耗关联的侧行信号的频点和所述第一侧行定位参考信号的频点之间的差异确定。
  9. 如权利要求3-8任一项所述的方法,其特征在于,所述第一终端设备根据第一发送功率和/或第二发送功率,确定所述目标发送功率,包括:
    所述第一终端设备根据第一值、所述第三发送功率或第四发送功率中的一项或多项中的较小值,确定所述目标发送功率;
    其中,所述第一值为所述第一发送功率和所述第二发送功率中的较小值,所述第四发送功率包括所述第一终端设备的发送功率。
  10. 如权利要求3-9任一项所述的方法,其特征在于,所述第一终端设备根据所述功率控制参数确定目标发送功率之前,还包括:
    所述第一终端设备发送第二侧行定位参考信号;
    所述第一终端设备接收来自所述第二终端设备的功率反馈参数,所述功率反馈参数根据所述第二侧行定位参考信号的接收功率和所述第二终端设备期望接收到的侧行定位参考信号的接收功率确定;
    所述第一终端设备根据所述功率控制参数确定目标发送功率,包括:
    所述第一终端设备根据所述功率控制参数和所述功率反馈参数,确定所述目标发送功率。
  11. 一种通信方法,其特征在于,包括:
    网络设备确定功率控制参数,所述功率控制参数与侧行定位参考信号的资源池具有关联关系;
    所述网络设备向第一终端设备发送所述功率控制参数,所述功率控制参数用于所述第一终端设备确定发送第一侧行定位参考信号的目标发送功率。
  12. 如权利要求11所述的方法,其特征在于,所述功率控制参数包括第一参数、第二参数或第三发送功率中的一项或多项;
    其中,所述第一参数包括第三参数和/或下行路径损耗调整系数,所述第三参数为基于所述第一终端设备的下行路径损耗的功控初始值;
    所述第二参数包括第四参数和/或侧行路径损耗调整系数,所述第四参数为基于所述第一终端设备的侧行路径损耗的功控初始值;
    所述第三发送功率包括所述网络设备在基于所述第一侧行定位参考信号对应的资源池的网络拥塞率CBR和所述第一侧行定位参考信号对应的传输优先级的条件下的发送功率。
  13. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述网络设备向第二终端设备发送第一配置信息,所述第一配置信息指示用于确定侧行路径损耗的侧行信号的信息;
    其中,所述第一配置信息包括以下内容中的至少一项:
    第一信号类型的信息,所述第一信号类型为用于确定所述侧行路径损耗的侧行信号的类型,所述第一信号类型包括侧行定位参考信号类型;
    第一资源标识,所述第一资源标识包括所述第一侧行信号的资源标识;或,
    第一资源集标识,所述第一资源集标识包括所述第一侧行信号的资源对应的资源集标识。
  14. 一种通信装置,其特征在于,适用于第一终端设备,包括通信接口和处理器,所述处理器用于:
    通过所述通信接口接收来自网络设备的功率控制参数,所述功率控制参数与侧行定位参考信号的资源池具有关联关系;
    根据所述功率控制参数确定目标发送功率;
    根据所述目标发送功率,通过所述通信接口发送第一侧行定位参考信号。
  15. 如权利要求14所述的通信装置,其特征在于,所述功率控制参数包括第一参数、第二参数或第三发送功率中的一项或多项;
    其中,所述第一参数包括第三参数和/或下行路径损耗调整系数,所述第三参数为基于所述第一终端设备的下行路径损耗的功控初始值;
    所述第二参数包括第四参数和/或侧行路径损耗调整系数,所述第四参数为基于所述第一终端设备的侧行路径损耗的功控初始值;
    所述第三发送功率包括所述网络设备在基于所述第一侧行定位参考信号对应的资源池的网络拥塞率CBR和所述第一侧行定位参考信号对应的传输优先级的条件下的发送功率。
  16. 如权利要求15所述的通信装置,其特征在于,所述处理器,具体用于:
    根据第一发送功率和/或第二发送功率,确定所述目标发送功率;
    其中,所述第一发送功率根据所述第一参数和下行路径损耗确定,所述第二发送功率根据所述第二参数和侧行路径损耗确定。
  17. 如权利要求16所述的通信装置,其特征在于,所述处理器,还用于:
    通过所述通信接口接收来自第二终端设备的第一信息,所述第一信息包括来自所述第一终端设备的侧行信号的接收功率的信息、所述侧行路径损耗的信息,或所述第二终端设备发送的侧行信号的发送功率的信息;
    根据所述第一信息,确定所述侧行路径损耗。
  18. 如权利要求17所述的通信装置,其特征在于,所述第一信息包括以下内容中的至少一项:
    第一侧行信号的接收功率的信息,所述第一侧行信号为所述第二终端设备接收到的来自所述第一终端设备的侧行信号,所述第一侧行信号的类型包括侧行定位参考信号;
    第二侧行信号的接收功率的信息,所述第二侧行信号为所述第二终端设备接收到的来自所述第一终端设备的侧行信号,所述第二侧行信号的类型包括物理侧行链路共享信道PSSCH解调参考信号DMRS或物理侧行链路控制信道PSCCH DMRS;
    所述侧行路径损耗的信息,所述侧行路径损耗的信息根据所述第一侧行信号或所述第二侧行信号确定;
    第三侧行信号的发送功率的信息,所述第三侧行信号来自所述第二终端设备,所述第三侧行信号的类型包括侧行定位参考信号;或,
    第四侧行信号的发送功率的信息,所述第四侧行信号来自所述第二终端设备,所述第三侧行信号包括侧行定位参考信号,所述第四侧行信号的类型包括PSSCH DMRS或PSCCH DMRS。
  19. 如权利要求18所述的通信装置,其特征在于,所述处理器,还用于:
    通过所述通信接口向所述第二终端设备发送第一配置信息,所述第一配置信息指示用于确定所述侧行路径损耗的侧行信号的信息;
    其中,所述第一配置信息包括以下内容中的至少一项:
    第一信号类型的信息,所述第一信号类型为用于确定所述侧行路径损耗的侧行信号的类型,所述第一信号类型包括侧行定位参考信号类型;
    第一资源标识,所述第一资源标识包括所述第一侧行信号的资源标识;或,
    第一资源集标识,所述第一资源集标识包括所述第一侧行信号的资源对应的资源集标识。
  20. 如权利要求17-19任一项所述的通信装置,其特征在于,所述处理器,具体用于:
    根据所述第一信息,确定准侧行路径损耗;
    根据所述准侧行路径损耗和第一偏移量,确定所述侧行路径损耗,所述第一偏移量根据所述准侧行路径损耗关联的侧行信号的频点和所述第一侧行定位参考信号的频点之间的差异确定。
  21. 如权利要求17-19任一项所述的通信装置,其特征在于,所述处理器,具体用于:
    根据所述第二参数和所述侧行路径损耗确定第五发送功率;
    根据所述第五发送功率和第二偏移量,确定所述第二发送功率,所述第二偏移量根据所述侧行路径损耗关联的侧行信号的频点和所述第一侧行定位参考信号的频点之间的差异确定。
  22. 如权利要求16-21任一项所述的通信装置,其特征在于,所述处理器,具体用于:
    根据第一值、所述第三发送功率或第四发送功率中的一项或多项中的较小值,确定所述目标发送功 率;
    其中,所述第一值为所述第一发送功率和所述第二发送功率中的较小值,所述第四发送功率包括所述第一终端设备的发送功率。
  23. 如权利要求16-22任一项所述的通信装置,其特征在于,所述处理器,还用于:
    通过所述通信接口发送第二侧行定位参考信号;
    通过所述通信接口接收来自所述第二终端设备的功率反馈参数,所述功率反馈参数根据所述第二侧行定位参考信号的接收功率和所述第二终端设备期望接收到的侧行定位参考信号的接收功率确定;
    所述处理器,具体用于:
    根据所述功率控制参数和所述功率反馈参数,确定所述目标发送功率。
  24. 一种通信装置,其特征在于,包括通信接口和处理器,所述处理器用于:
    确定功率控制参数,所述功率控制参数与侧行定位参考信号的资源池具有关联关系;
    通过所述通信接口向第一终端设备发送所述功率控制参数,所述功率控制参数用于所述第一终端设备确定发送第一侧行定位参考信号的目标发送功率。
  25. 如权利要求24所述的通信装置,其特征在于,所述功率控制参数包括第一参数、第二参数或第三发送功率中的一项或多项;
    其中,所述第一参数包括第三参数和/或下行路径损耗调整系数,所述第三参数为基于所述第一终端设备的下行路径损耗的功控初始值;
    所述第二参数包括第四参数和/或侧行路径损耗调整系数,所述第四参数为基于所述第一终端设备的侧行路径损耗的功控初始值;
    所述第三发送功率包括所述网络设备在基于所述第一侧行定位参考信号对应的资源池的网络拥塞率CBR和所述第一侧行定位参考信号对应的传输优先级的条件下的发送功率。
  26. 如权利要求24或25所述的通信装置,其特征在于,所述处理器还用于:
    通过所述通信接口向第二终端设备发送第一配置信息,所述第一配置信息指示用于确定侧行路径损耗的侧行信号的信息;
    其中,所述第一配置信息包括以下内容中的至少一项:
    第一信号类型的信息,所述第一信号类型为用于确定所述侧行路径损耗的侧行信号的类型,所述第一信号类型包括侧行定位参考信号类型;
    第一资源标识,所述第一资源标识包括所述第一侧行信号的资源标识;或,
    第一资源集标识,所述第一资源集标识包括所述第一侧行信号的资源对应的资源集标识。
  27. 一种通信装置,其特征在于,包括处理器和存储器,
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行存储器中的计算机程序或指令,使得权利要求1-10中任一项所述的方法被执行,或使得权利要求11-13任一项所述的方法被执行。
  28. 一种通信装置,其特征在于,包括处理模块和通信模块,所述处理模块用于通过所述通信模块执行如权利要求1-10中任一项所述的方法,或执行如权利要求11-13任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使得利要求1-10任一项所述的方法被执行,或使得权利要求11-13任一项所述的方法被执行。
  30. 一种芯片***,其特征在于,包括通信接口和处理器:
    所述通信接口,用于输入和/或输出信令或数据;
    所述处理器,用于执行计算机可执行程序,使得安装有所述芯片***的设备执行如利要求1-10任一项所述的方法,或执行如权利要求11-13任一项所述的方法。
PCT/CN2023/104978 2022-08-12 2023-06-30 一种通信方法、装置、存储介质以及芯片*** WO2024032260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210966591.2A CN117641548A (zh) 2022-08-12 2022-08-12 一种通信方法、装置、存储介质以及芯片***
CN202210966591.2 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032260A1 true WO2024032260A1 (zh) 2024-02-15

Family

ID=89850647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104978 WO2024032260A1 (zh) 2022-08-12 2023-06-30 一种通信方法、装置、存储介质以及芯片***

Country Status (2)

Country Link
CN (1) CN117641548A (zh)
WO (1) WO2024032260A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118019113A (zh) * 2024-04-08 2024-05-10 荣耀终端有限公司 通信方法、通信装置、计算机可读存储介质及相关***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021148031A1 (en) * 2020-01-23 2021-07-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Transmission of reference signal for positioning
WO2022059887A1 (ko) * 2020-09-17 2022-03-24 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 측위와 관련된 신호를 송수신하는 방법 및 이를 위한 장치
CN114845371A (zh) * 2021-02-01 2022-08-02 ***通信有限公司研究院 边链路控制信道功率控制方法、装置、设备及可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021148031A1 (en) * 2020-01-23 2021-07-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Transmission of reference signal for positioning
WO2022059887A1 (ko) * 2020-09-17 2022-03-24 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 측위와 관련된 신호를 송수신하는 방법 및 이를 위한 장치
CN114845371A (zh) * 2021-02-01 2022-08-02 ***通信有限公司研究院 边链路控制信道功率控制方法、装置、设备及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Remaining issues on sidelink power control", 3GPP TSG RAN WG1 #103-E R1-2008497, 16 October 2020 (2020-10-16), XP051939555 *

Also Published As

Publication number Publication date
CN117641548A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US11291059B2 (en) Methods, user equipment and base station for sidelink identification
CN113225846B (zh) 一种通信方法及装置
KR20220038425A (ko) 전력 절감 신호 전송 방법, 기지국 및 단말 기기
WO2022022517A1 (zh) 确定传输功率的方法及装置
WO2021239064A1 (zh) 通信方法及装置
WO2024032260A1 (zh) 一种通信方法、装置、存储介质以及芯片***
WO2021208751A1 (zh) 一种时间同步方法及装置
US20230337319A1 (en) Methods, devices, and systems for configuring sidelink drx
WO2022151391A1 (zh) 一种发送频率调整方法及装置
WO2021213136A1 (zh) 一种通信方法和终端设备
WO2020156214A1 (zh) 功率控制方法及终端设备
WO2021088063A1 (zh) 一种通信方法及装置
WO2024152813A1 (zh) 一种通信方法、装置、存储介质以及芯片***
WO2020134897A1 (zh) 随机接入方法、装置、***及存储介质
WO2023184308A1 (en) Sidelink transfer and round trip time positioning
WO2023184333A1 (en) Positioning reference signal priority and zero power signals in sidelink
WO2023155887A1 (zh) 一种定位信息传输方法、装置、存储介质和芯片***
WO2023184319A1 (en) Reference signaling design and configuration mapping
JP7488377B2 (ja) マルチキャスト通信のための方法および装置
WO2023241288A1 (zh) 一种唤醒信号传输方法及通信***
WO2023051473A1 (zh) 一种信号的发送方法、接收方法及通信装置
WO2024152789A1 (zh) 通信的方法和装置
WO2024017301A1 (zh) 通信方法及装置
WO2022089335A1 (zh) 通信方法、装置及***
WO2021032011A1 (zh) 一种功率控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851487

Country of ref document: EP

Kind code of ref document: A1