WO2024032185A1 - 高度补偿方法、装置、计算机设备和存储介质 - Google Patents

高度补偿方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2024032185A1
WO2024032185A1 PCT/CN2023/102998 CN2023102998W WO2024032185A1 WO 2024032185 A1 WO2024032185 A1 WO 2024032185A1 CN 2023102998 W CN2023102998 W CN 2023102998W WO 2024032185 A1 WO2024032185 A1 WO 2024032185A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
pressure
height compensation
compensation
measurement
Prior art date
Application number
PCT/CN2023/102998
Other languages
English (en)
French (fr)
Inventor
唐京科
王玉龙
Original Assignee
深圳市创想三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创想三维科技股份有限公司 filed Critical 深圳市创想三维科技股份有限公司
Publication of WO2024032185A1 publication Critical patent/WO2024032185A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • This application relates to the field of 3D printing technology, and in particular to a height compensation method, device, computer equipment and storage medium.
  • 3D printing is a rapid prototyping technology. It is a technology that is based on digital model files and uses adhesive materials such as special wax materials, powdered metals or plastics to construct three-dimensional entities through layer-by-layer printing. Among them, how to ensure the horizontality of printing materials on the printing platform is the focus of current research.
  • embodiments of the present application provide a height compensation method, which is executed by a computer device.
  • the method includes:
  • the sampling results are obtained;
  • the sampling results include the first pressure measurement value between the nozzle and the first layer of printing material collected at the current sampling time, the printing platform The second pressure measurement value between the first layer of printing material and the initial height value between the nozzle and the printing platform;
  • the initial height between the nozzle and the printing platform collected at the current sampling time is calculated. value to compensate.
  • inventions of the present application provide a height compensation device.
  • the device includes:
  • the mobile sampling module is used to obtain sampling results when controlling the nozzle to spray the first layer of printing material along the printing platform and perform mobile sampling; the sampling result includes the first layer between the nozzle and the first layer of printing material collected at the current sampling time.
  • a data fusion module configured to perform data fusion processing on the first pressure measurement value and the second pressure measurement value to obtain the true value of pressure at the current sampling moment
  • the compensation value determination module is used to obtain the compensation model between the pressure value and the height compensation value, and determine the target height compensation value corresponding to the true pressure value according to the compensation model; according to the target height compensation value, the current sampling The initial height value between the nozzle and the printing platform collected at all times is compensated.
  • embodiments of the present application provide a computer device, including one or more processors and a memory.
  • the memory stores computer readable instructions.
  • processors execute the computer readable instructions, various embodiments of the present application are implemented. steps in the method.
  • embodiments of the present application provide one or more computer-readable storage media, on which computer-readable instructions are stored.
  • the computer-readable instructions are executed by one or more processors, the methods in the various embodiments of the present application are implemented. step.
  • embodiments of the present application provide a computer program product.
  • the computer program product includes computer-readable instructions.
  • the steps in the methods of each embodiment of the present application are implemented.
  • the details of one or more embodiments of the application are set forth in the accompanying drawings and the description below. Other features, objects and advantages of the application will become apparent from the description, drawings and claims.
  • Figure 1 is an application environment diagram of the height compensation method in one embodiment
  • Figure 2 is a schematic flow chart of a height compensation method in one embodiment
  • Figure 3 is a schematic structural diagram of the printing platform in one embodiment
  • Figure 4 is a schematic flow chart of a height compensation method in another embodiment
  • Figure 5 is a schematic diagram of the measurement point distribution of the printing platform in one embodiment
  • Figure 6 is a schematic diagram of the distribution of adjacent areas in an embodiment
  • Figure 7 is a structural block diagram of a height compensation device in one embodiment
  • Figure 8 is an internal structure diagram of a computer device in one embodiment.
  • the height compensation method provided by the embodiment of the present application can be applied in the application environment as shown in Figure 1.
  • the terminal 102 communicates with the server 104 through the network.
  • the data storage system may store data that server 104 needs to process.
  • the data storage system can be integrated on the server 104, or placed on the cloud or other network servers.
  • the terminal 102 is used to generate a sampling result when the nozzle is controlled to spray the first layer of printing material along the printing platform and perform mobile sampling, and send the sampling result to the server 104.
  • the server 104 is used to compare the first pressure measurement value in the sampling result and The second pressure measurement value is subjected to data fusion processing to obtain the true pressure value at the current sampling moment; the server 104 is also used to obtain the compensation model between the pressure value and the height compensation value, and determine the target height corresponding to the true pressure value based on the compensation model. Compensation value: According to the target height compensation value, the initial height value between the nozzle and the printing platform collected at the current sampling time is compensated.
  • the terminal 102 can be, but is not limited to, various personal computers, 3D printers, laptops, smart phones, tablets, Internet of Things devices and portable wearable devices.
  • the server 104 can be implemented as an independent server or a server cluster composed of multiple servers.
  • a height compensation method is provided.
  • the application of this method to a computer device is used as an example.
  • the computer device can be the terminal or server in Figure 1, which includes the following steps:
  • Step S202 When controlling the nozzle to spray the first layer of printing material along the printing platform and performing mobile sampling, the sampling results are obtained.
  • the sampling results include the first pressure measurement value between the nozzle and the first layer of printing material collected at the current sampling time, the second pressure measurement value between the printing platform and the first layer of printing material, and the initial pressure measurement value between the nozzle and the printing platform. height value.
  • the first layer of printing material is the printing material that is in direct contact with the printing platform.
  • the printing platform is a platform used to carry three-dimensional entities in a three-dimensional printer.
  • the print head can move and sample according to a preset frequency, and spray printing materials while moving; the print head It can be a device including a nozzle and a pressure sensor.
  • Figure 3 is a schematic structural diagram of the printing platform. picture.
  • the nozzle when the user needs to perform a 3D printing task, the nozzle is first controlled to contact a measurement point on the printing platform, and then raised to a certain height, and then the print head of the 3D printer is triggered to print on the printing platform according to the preset measurement frequency.
  • the X coordinate and Y coordinate of the nozzle can be known, and then the initial height value between the nozzle and the printing platform can be determined from the print file.
  • the pressure sensor on the print head can detect the nozzle.
  • the first pressure measurement to the first layer of printing material. If the current sampling time is regarded as time t, the first pressure measurement value is p1(t), the second pressure measurement value is p2(t), and the initial height value is Z(t).
  • the first pressure measurement value is detected by a first pressure sensor
  • the second pressure measurement value is detected by a second pressure sensor
  • the first pressure sensor is installed on the nozzle
  • the second pressure sensor is installed on the printing platform.
  • the first pressure measurement value includes the nozzle It is subject to the first extrusion force brought by the first layer of printing material and the pulling force of the material on the nozzle.
  • the second pressure measurement value includes the second squeezing force brought by the first layer of printing material on the printing platform, and the gravity of the first layer of printing material. Among them, both pulling force and gravity can be regarded as an interference signal, and the first squeezing force and the second squeezing force can be regarded as an effective signal.
  • the computer device can determine the minimum sampling time interval T min when the nozzle is moving.
  • T min can be determined based on the size of the printing platform, the maximum inclination angle of the printing platform, the printing speed of the nozzle in the Z direction, etc.
  • Step S204 Perform data fusion processing on the first pressure measurement value and the second pressure measurement value to obtain the true pressure value at the current sampling time.
  • the data fusion processing method may adopt at least one of Bayesian criterion, Kalman filter algorithm, D-S evidence theory, fuzzy set theory, artificial neural network, and machine learning.
  • Step S206 Obtain the compensation model between the pressure value and the height compensation value, and determine the target height compensation value corresponding to the true value of the pressure based on the compensation model.
  • the compensation model can be a closed-loop control model, that is, a control method that corrects based on the output feedback of the control object.
  • a closed-loop control model that is, a control method that corrects based on the output feedback of the control object.
  • adaptive adjustment is performed according to the standard quantity.
  • PID model Proportion Integral Differential
  • the computer device can obtain a preset compensation model and a preset pressure threshold from the model library.
  • the set compensation model represents that multiple model parameter settings have been completed. Therefore, the computer device can obtain the preset compensation model and the preset pressure threshold according to the actual value of the pressure. and the preset pressure threshold to determine the target height compensation value. That is, the actual pressure value and the preset pressure threshold are substituted into the compensation model to obtain the target height compensation value.
  • the computer device predetermines the material height L formed when the nozzle sprays the first layer of printing material, as shown in Figure 3, and presets a preset pressure threshold corresponding to the material height according to different material heights. .
  • determining the target height compensation value corresponding to the true pressure value according to the compensation model includes: determining the historical true pressure value at the last sampling moment; determining the first difference value between the true pressure value and the preset pressure threshold. , and determine the second difference value between the historical pressure true value and the preset pressure threshold; determine the target height compensation value corresponding to the pressure true value according to the first difference value, the second difference value and the compensation model.
  • the preset pressure threshold represents the expected pressure value brought by the first layer of printing material to the nozzle under ideal circumstances when the height of the printing material is L.
  • the computer device can determine the true historical pressure value at the last sampling moment, and the true historical pressure value is passed through the first value at the last sampling moment.
  • the pressure measurement value and the second pressure measurement value at the previous sampling moment are obtained through data fusion processing.
  • the computer device substitutes the first difference value and the second difference value into the compensation model to determine the target height compensation value corresponding to the true value of the pressure. For example, the target height compensation value is z(t).
  • Step S208 Compensate the initial height value between the nozzle and the printing platform collected at the current sampling time according to the target height compensation value.
  • the vertical height of the position corresponding to the zero point at each sampling moment should be the same, that is, the initial height value should be the same, as shown in the figure Z(t) in .
  • Z(t) will change with the true value of pressure corresponding to different sampling moments.
  • the target height compensation value corresponding to the true value of pressure it is necessary to use the target height compensation value corresponding to the true value of pressure to calculate the initial height corresponding to the corresponding sampling moment. value to compensate. For example, if a tiny bump occurs on the printing platform, you need to determine the difference between the initial height value and the corresponding target height compensation value, that is, perform Z(t)-z(t) to achieve height compensation. .
  • the target height compensation value is to compensate for the initial height value at the current sampling moment. However, since the nozzle is always in the process of moving sampling, the target height compensation value will be between the current sampling moment and the next sampling moment. Completion of compensation.
  • the sampling time interval T that triggers the nozzle to perform mobile sampling needs to be greater than or equal to the minimum sampling time interval T min , which ensures that the target height compensation value is compensated between the current sampling moment and the next sampling moment.
  • the sampling result includes the first pressure measurement between the nozzle and the first layer of printing material collected at the current sampling time. value, the second pressure measurement value between the printing platform and the first layer of printing material, and the initial height value between the nozzle and the printing platform; perform data fusion processing on the first pressure measurement value and the second pressure measurement value to obtain the current sampling time
  • the true value of the pressure obtain the compensation model between the pressure value and the height compensation value, and determine the target height compensation value corresponding to the true pressure value according to the compensation model; according to the target height compensation value, compare the nozzle and print head collected at the current sampling time
  • the initial height value between platforms is compensated.
  • this application determines the true pressure value at the current sampling moment in real time during the nozzle moving sampling process, and then determines the target height compensation value corresponding to the true pressure value at the current sampling moment through the compensation model, therefore, compared with the traditional need
  • this application does not need to adjust the printing platform before moving the nozzle for sampling, and can accurately determine the coordinates of different sampling positions in real time during the process of spraying printing materials.
  • the height compensation value thus avoids the problem of unequal thickness of the sprayed printing material when the movement of the nozzle on the printing platform is not absolutely parallel due to system errors and the printing platform is uneven.
  • performing data fusion processing on the first pressure measurement value and the second pressure measurement value to obtain the true pressure value at the current sampling moment includes: using a Kalman filter algorithm to combine the first pressure measurement value and the second pressure measurement value. The measured values are subjected to data fusion processing to obtain the true value of pressure at the current sampling moment.
  • the Kalman filter algorithm is a method that uses the measured value at the current sampling time and the estimated value at the previous sampling time. A method to accurately obtain the true value at the current sampling moment.
  • data fusion processing is performed through the Kalman filter algorithm, which not only realizes the weighted fusion of the first pressure measurement value and the second pressure measurement value, but also completes the stress state of the printed material from the previous sampling moment to the current sampling time.
  • the recursion of time accurately obtains the true value of the current sampling time, thus obtaining the global optimal estimate and ensuring the accuracy of the true value of the pressure during nozzle sampling.
  • determining the target height compensation value corresponding to the true pressure value based on the first difference value, the second difference value and the compensation model includes: substituting the first difference value into the proportion sub-model to obtain the first height compensation value ; According to the first difference value and the integral molecule model, the second height compensation value is obtained; the first difference value and the second difference value are substituted into the micromolecule model to obtain the third height compensation value; the first height compensation value and the second height compensation value are obtained. The height compensation value and the third height compensation value are superimposed to obtain the target height compensation value.
  • the compensation model can be a positional PID model.
  • the compensation model includes a proportional sub-model, an integrator model and a micro-molecule model, such as:
  • K P is the proportional control parameter in the proportion sub-model
  • K I is the integral control parameter in the integrator model
  • M is the integration depth parameter in the integrator model
  • K D is the differential control parameter in the micromolecule model.
  • the computer device obtains the first height compensation value based on the first difference value and the proportion sub-model, and substitutes the first difference value into the integral submodel to obtain the second height compensation value.
  • the computer device determines a third difference value between the first difference value and the second difference value, and substitutes the third difference value into the micromolecule model to obtain a third height compensation value, such that according to the first height compensation value, the second height
  • the compensation value and the third height compensation value are used to obtain the target height compensation value. Therefore, this embodiment can quickly determine the target height compensation value at the current acquisition time through the positional PID model, thereby improving the efficiency of data processing.
  • superposing the first height compensation value, the second height compensation value and the third height compensation value to obtain the target height compensation value includes: combining the first height compensation value, the second height compensation value and the third height compensation value.
  • the height compensation values are superimposed to obtain the candidate height compensation value; when the relationship between the preset compensation threshold and the candidate height compensation value meets the preset conditions, the candidate height compensation value is used as the target height compensation value; when the preset compensation threshold and the candidate height When the magnitude relationship of the compensation values does not meet the preset conditions, the preset compensation threshold is used as the target height compensation value.
  • the preset compensation threshold is a maximum dynamic compensation range e. Since the height difference of the general printing platform is about 3mm, and the maximum is about 10mm, the preset compensation threshold is usually different depending on the model of the 3D printer.
  • the candidate height compensation value needs to be combined with Compare the preset compensation threshold, that is, determine whether the relationship between the preset compensation threshold and the candidate height compensation value meets the preset conditions.
  • the candidate height compensation value is less than or equal to the preset compensation threshold, it can be considered that the preset condition is met between the preset compensation threshold and the candidate height compensation value, and the candidate height compensation value is used as the target height compensation value; if the candidate height compensation value is greater than the preset compensation threshold, it can be considered that the preset condition is not met between the preset compensation threshold and the candidate height compensation value, and the preset compensation threshold is used as the target height compensation value.
  • the preset compensation threshold or the candidate height compensation value can be flexibly selected as the target height compensation value under different circumstances. , thus improving the accuracy of subsequent height compensation.
  • the sampling results obtained may also include the nozzle motor current, the nozzle motor vibration frequency, etc., and may also be obtained through a clogging detector, manual Smart cameras, etc. to determine the target height compensation value.
  • the height compensation method in this application also includes the following steps:
  • Step S402 When controlling the nozzle to spray non-first-layer printing materials along the printing platform and performing mobile sampling, multiple measurement points in the printing platform are determined as measurement points to be compensated.
  • Non-first layer printing materials are printing materials that are sprayed on top of the first layer of printing materials after the nozzle is controlled to spray the first layer of printing materials.
  • Figure 5 is a schematic diagram of the distribution of measurement points on the printing platform 501.
  • the measurement points on the printing platform are composed of a matrix of m rows and n columns.
  • the matrix is:
  • the 3D printer when the user continues to perform the 3D printing task based on the first layer of printing material, Can trigger the 3D printer’s print head to move.
  • the measurement point to be compensated that currently requires height compensation can be measured through the detection unit on the print head, and the coordinate data of the measurement point to be compensated is transmitted to the computer device.
  • the current measurement point is regarded as a measurement point to be compensated, and height compensation of the measurement point to be compensated is implemented.
  • Step S404 determine multiple adjacent areas in the printing platform that are located adjacent to the measurement point to be compensated; each adjacent area includes at least two adjacent measurement points; the adjacent measurement point is the measurement point that is adjacent to the measurement point to be compensated among the multiple measurement points. adjacent measurement points.
  • the computer device can perform adjacent area detection on the measurement point to be compensated, and regard the adjacent area located in the preset direction as the adjacent area corresponding to the measurement point to be compensated, wherein the adjacent area in the preset direction can be determined according to the preset direction.
  • the first projection plane be determined.
  • Figure 6 is a schematic diagram of the distribution of adjacent areas on the printing platform.
  • the adjacent locations of the measurement point Q to be compensated include area 1, area 2, area 3 and area 4.
  • the preset first projection plane is YZ
  • the first projection plane is the XZ plane
  • the adjacent areas in the preset direction are area 3 and area 4.
  • the computer device determines adjacent measurement points located in the current adjacent area adjacent to the measurement point to be compensated, wherein each adjacent area includes at least two adjacent measurement points, and the adjacent measurement points To filter out the measurement points, for example, the adjacent measurement point A and the adjacent measurement point B in area 1 are determined.
  • the computer device acquires adjacent measurement points at adjacent positions of the measurement point to be compensated from a preset database based on the coordinate data of the measurement point to be compensated.
  • Step S406 Project at least two adjacent measurement points in each adjacent area to a preset first projection plane to obtain coordinate data of at least two first projection points, and perform a processing on the coordinate data of at least two first projection points. Linear fitting processing is performed to obtain the first fitting lines corresponding to each adjacent area.
  • the preset first projection plane may be a projection plane preset by the user, such as the YZ plane in the three-dimensional coordinate system. Since the processing procedures for at least two adjacent measurement points in each adjacent area are the same, in order to better describe the present application, the following will describe the process for at least two adjacent measurement points in any adjacent area.
  • the computer device projects each of the at least two adjacent measurement points onto a preset first projection plane to obtain a first projection point corresponding to each adjacent measurement point, That is, convert three-dimensional coordinates into two-dimensional coordinates. For example, project adjacent measurement point A and adjacent measurement point B in area 1 onto the preset YZ plane to obtain the A projection point a and a first projection point b.
  • the computer device performs linear fitting processing on each first projection point to obtain a first fitting line corresponding to the first adjacent measurement point, that is, performs linear fitting on the first projection point a and the first projection point b.
  • the linear fitting method can be least squares fitting, etc., which is not limited in this application.
  • Step S408 Determine the coordinate data of each compensation reference point based on the first fitting line corresponding to each adjacent area, the coordinate data of at least two adjacent measurement points in each adjacent area, and the coordinate data of the measurement point to be compensated.
  • the computer device determines whether the abscissa data of at least two adjacent measurement points in each adjacent area are the same, and when the abscissa data of the at least two adjacent measurement points are the same, obtain the first first step from the database.
  • the reference point determination model brings the coordinate data of at least two adjacent measurement points and the coordinate data of the measurement point to be compensated into the first reference point determination model to obtain the coordinate data of the compensation reference point.
  • obtain the second reference point determination model from the database, and bring in the coordinate data of at least two adjacent measurement points and the coordinate data of the measurement point to be compensated. Go to the second reference point determination model to obtain the coordinate data of the compensation reference point.
  • the first reference point determination model representation does not require coordinate transformation of the coordinate data of adjacent measurement points; the second reference point determination model representation requires the construction of a right-angled triangle through the coordinate data of adjacent measurement points.
  • the computer device can determine the coordinate data of each compensation reference point based on the first fitting line corresponding to each adjacent area and the coordinate data of the measurement point to be compensated.
  • Step S410 Project each compensation reference point to a preset second projection plane to obtain coordinate data of each second projection point, and perform height compensation on the coordinate data of the measurement point to be compensated based on the coordinate data of each second projection point.
  • the preset second projection plane is a plane of a different type from the preset first projection plane.
  • the preset first projection plane is the YZ plane
  • the preset second projection plane is the XZ plane.
  • the computer device projects each compensation reference point onto a preset second projection plane to obtain a second projection point corresponding to each compensation reference point, that is, converting the three-dimensional coordinates of the compensation reference point into a two-dimensional coordinate.
  • the compensation reference point M and the compensation reference point N are respectively projected onto the preset second projection plane to obtain the second projection point m and the second projection point n.
  • the computer equipment performs linear fitting processing on the coordinate data of each second projection point to obtain a second fitting line, and performs height compensation on the measurement point to be compensated through the second fitting line, that is, the coordinate data of the measurement point to be compensated is substituted into From the second straight line equation corresponding to the second fitting line, the height compensation value of the measurement point to be compensated is obtained, and then the height compensation of the measurement point to be compensated is performed using the height compensation value.
  • the first fitting line is first determined through the adjacent measurement points corresponding to the measurement points to be compensated, and then The compensation reference point is determined according to the first fitting line, and then based on the second projection point after the projection of the compensation reference point, the height compensation of the measurement point to be compensated can be realized. Therefore, each measurement point to be compensated can be measured in a targeted manner. Perform height compensation to improve the accuracy of height compensation of the printing platform.
  • embodiments of the present application also provide a height compensation device for implementing the above-mentioned height compensation method.
  • the solution to the problem provided by this device is similar to the solution recorded in the above method. Therefore, for the specific limitations in one or more height compensation device embodiments provided below, please refer to the above limitations on the height compensation method. I won’t go into details here.
  • a height compensation device 700 including: a mobile sampling module 702, a data fusion module 704 and a compensation value determination module 706, wherein:
  • the mobile sampling module 702 is used to obtain sampling results when controlling the nozzle to spray the first layer of printing material along the printing platform and perform mobile sampling; the sampling result includes the first pressure between the nozzle and the first layer of printing material collected at the current sampling time. The measured value, the second pressure measurement value between the printing platform and the first layer of printing material, and the initial height value between the nozzle and the printing platform.
  • the data fusion module 704 is used to perform data fusion processing on the first pressure measurement value and the second pressure measurement value to obtain the true pressure value at the current sampling time.
  • the compensation value determination module 706 is used to obtain the compensation model between the pressure value and the height compensation value, and determine the target height compensation value corresponding to the true value of the pressure according to the compensation model; according to the target height compensation value, calculate the nozzle collected at the current sampling time Compensated with the initial height value between the printing platform.
  • the data fusion module 704 is also used to combine the first pressure measurement with a Kalman filter algorithm.
  • the value and the second pressure measurement value are subjected to data fusion processing to obtain the true value of the pressure at the current sampling time.
  • the compensation value determination module 706 is also used to determine the historical true value of pressure at the last sampling moment; determine the first difference value between the true pressure value and the preset pressure threshold, and determine the historical true value of pressure and A second difference value between the pressure thresholds is preset; based on the first difference value, the second difference value and the compensation model, the target height compensation value corresponding to the true value of the pressure is determined.
  • the compensation value determination module 706 is also used to substitute the first difference value into the proportion sub-model to obtain the first height compensation value; and obtain the second height compensation value based on the first difference value and the integral submodel; Substitute the first difference value and the second difference value into the micromolecule model to obtain the third height compensation value; superimpose the first height compensation value, the second height compensation value and the third height compensation value to obtain the target height compensation value.
  • the compensation value determination module 706 is also used to superpose the first height compensation value, the second height compensation value and the third height compensation value to obtain a candidate height compensation value; when the preset compensation threshold and the candidate height When the magnitude relationship between the compensation values meets the preset conditions, the candidate height compensation value is used as the target height compensation value; when the magnitude relationship between the preset compensation threshold and the candidate height compensation value does not meet the preset conditions, the preset compensation threshold is used as the target height. compensation value.
  • the height compensation device 700 also includes a measurement point compensation module 708 for determining multiple measurement points in the printing platform when the nozzle is controlled to spray non-first-layer printing materials along the printing platform and perform mobile sampling.
  • the measurement point to be compensated determine multiple adjacent areas in the printing platform that are located adjacent to the measurement point to be compensated; each adjacent area includes at least two adjacent measurement points; the adjacent measurement point is the measurement point to be compensated among the multiple measurement points.
  • Each module in the above-mentioned height compensation device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be shown in Figure 8 .
  • the computer device includes one or more processors, memory, input/output interfaces (Input/Output, referred to as I/O) and communication interface.
  • processors processors, memories and input/output interfaces are connected through the system bus, and the communication interface is connected to the system bus through the input/output interface.
  • processors of the computer device are used to provide computing and control capabilities.
  • the computer device's memory includes one or more non-volatile storage media and internal memory.
  • One or more non-volatile storage media store the operating system, computer readable instructions and database.
  • the internal memory provides an environment for the execution of an operating system and computer-readable instructions in one or more non-volatile storage media.
  • the computer device's database is used to store altitude compensation data.
  • the input/output interface of the computer device is used to exchange information between one or more processors and external devices.
  • the communication interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer-readable instructions when executed by one or more processors, implement a printing platform height compensation method.
  • Figure 8 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
  • Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • a computer device including one or more processors and a memory.
  • Computer readable instructions are stored in the memory.
  • processors execute the computer readable instructions, the above methods are implemented. The steps in the example.
  • one or more computer-readable storage media are provided, on which are stored computer-readable instructions.
  • the computer-readable instructions When executed by one or more processors, the computer-readable instructions implement the steps in each of the above method embodiments.
  • a computer program product including computer-readable instructions.
  • the steps in the above method embodiments are implemented.
  • the computer readable instructions can be stored in one or more non-volatile computers.
  • the computer-readable instructions may include the processes of the above method embodiments. Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory (FRAM)), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include Random Access Memory (Random Access Memory) Memory, RAM) or external cache memory, etc.
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM random Access Memory
  • the databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto.
  • One or more processors involved in the various embodiments provided in this application may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic device, or a data processing logic device based on quantum computing. etc., not limited to this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ink Jet (AREA)

Abstract

一种高度补偿方法,由计算机设备执行,包括:当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取采样结果(步骤S202);对第一压力测量值和第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值(步骤S204);获取压力值与高度补偿值之间的补偿模型,并根据补偿模型,确定压力真实值对应的目标高度补偿值(步骤S206);根据目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度值进行补偿(步骤S208)。

Description

高度补偿方法、装置、计算机设备和存储介质
本申请要求2022年8月12日申请的,申请号为2022109683304,名称为“高度补偿方法、装置、计算机设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D打印技术领域,特别是涉及一种高度补偿方法、装置、计算机设备和存储介质。
背景技术
3D打印是一种快速成型技术,它是一种以数字模型文件为基础,运用特殊蜡材、粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造三维实体的技术。其中,如何确保打印材料在打印平台上的水平性是现阶段研究的重点。
目前,在对打印平台上的测量点进行测量时,需要预先确定测量点相邻区域内的多个相邻点,并通过相邻点的坐标数据构建拟合平面,进而根据拟合平面计算出测量点对应的高度补偿值。然而,由于喷涂打印材料是一种实时的、动态的过程。若打印平台发生了微小震动却依然通过相邻点的坐标数据来确定高度补偿值,便会造成高度补偿值的计算错误。因此,如何在喷涂打印材料的过程中进行高度的实时补偿,确保高度补偿的准确性是本公开需要解决的问题。
发明内容
根据本申请提供的各种实施例,有必要针对上述技术问题,提供一种能够提升高度补偿准确性的高度补偿方法、装置、计算机设备、计算机可读存储介质和计算机程序产品。
本申请实施例一方面提供了一种高度补偿方法,由计算机设备执行,方法包括:
当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取采样结果;所述采样结果包括当前采样时刻采集到的喷头与首层打印材料之间的第一压力测量值、打印平台与首层打印材料之间的第二压力测量值以及喷头与打印平台之间的初始高度值;
对所述第一压力测量值和所述第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值;
获取压力值与高度补偿值之间的补偿模型;
根据所述补偿模型,确定所述压力真实值对应的目标高度补偿值;
根据所述目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度 值进行补偿。
本申请实施例一方面提供了一种高度补偿装置。所述装置包括:
移动采样模块,用于当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取采样结果;所述采样结果包括当前采样时刻采集到的喷头与首层打印材料之间的第一压力测量值、打印平台与首层打印材料之间的第二压力测量值以及喷头与打印平台之间的初始高度值;
数据融合模块,用于对所述第一压力测量值和所述第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值;
补偿值确定模块,用于获取压力值与高度补偿值之间的补偿模型,并根据所述补偿模型确定所述压力真实值对应的目标高度补偿值;根据所述目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度值进行补偿。
本申请实施例一方面提供了一种计算机设备,包括一个或多个处理器及存储器,存储器存储有计算机可读指令,一个或多个处理器执行计算机可读指令时,实现本申请各实施例方法中的步骤。
本申请实施例一方面提供了一个或多个计算机可读存储介质,其上存储有计算机可读指令,计算机可读指令被一个或多个处理器执行时,实现本申请各实施例方法中的步骤。
本申请实施例一方面提供了一种计算机程序产品,该计算机程序产品包括计算机可读指令,计算机可读指令被一个或多个处理器执行时,实现本申请各实施例方法中的步骤。本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一个实施例中高度补偿方法的应用环境图;
图2为一个实施例中高度补偿方法的流程示意图;
图3为一个实施例中打印平台的结构示意图;
图4为另一个实施例中高度补偿方法的流程示意图;
图5为一个实施例中打印平台的测量点分布示意图;
图6为一个实施例中邻近区域的分布示意图;
图7为一个实施例中高度补偿装置的结构框图;
图8为一个实施例中计算机设备的内部结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的高度补偿方法,可以应用于如图1所示的应用环境中。其中,终端102通过网络与服务器104进行通信。数据存储***可以存储服务器104需要处理的数据。数据存储***可以集成在服务器104上,也可以放在云上或其他网络服务器上。终端102用于当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,生成采样结果,并将采样结果发送至服务器104,服务器104用于对采样结果中的第一压力测量值和第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值;服务器104还用于获取压力值与高度补偿值之间的补偿模型,并根据补偿模型,确定压力真实值对应的目标高度补偿值;根据目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度值进行补偿。其中,终端102可以但不限于是各种个人计算机、3D打印机、笔记本电脑、智能手机、平板电脑、物联网设备和便携式可穿戴设备。服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图2所示,提供了一种高度补偿方法,以该方法应用于计算机设备为例进行说明,该计算机设备可为图1中的终端或服务器,包括以下步骤:
步骤S202,当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取采样结果。
其中,采样结果包括当前采样时刻采集到的喷头与首层打印材料之间的第一压力测量值、打印平台与首层打印材料之间的第二压力测量值以及喷头与打印平台之间的初始高度值。首层打印材料为与打印平台直接接触的打印材料。
其中,打印平台是三维打印机中一种用于承载三维实体的平台,当打印头接触到打印平台的平面时,便可按照预设的频率进行移动采样,并在移动时喷涂打印材料;打印头可为一种包括了喷头、压力传感器的装置,示例性如图3所示,图3为打印平台的结构示意 图。
在一个实施例中,当用户需要进行3D打印任务时,先控制喷头接触到打印平台上的一个测量点,然后抬升一定高度后,再触发3D打印机的打印头按照预设测量频率,在打印平台上进行平行移动并喷涂打印材料,也即当测量频率为f时,喷头进行移动采样的采样时间间隔为T=1/f,因此,可得到不同采样时刻对应的采样结果。其中,根据喷头沿着打印平台移动的距离,可以知道喷头所在的X坐标、Y坐标,进而从打印文件中确定出喷头与打印平台之间的初始高度值,打印头上的压力传感器可检测喷头与首层打印材料之间的第一压力测量值。若将当前采样时刻视作t时刻,则第一压力测量值为p1(t),第二压力测量值为p2(t),初始高度值为Z(t)。
在一个实施例中,第一压力测量值通过第一压力传感器检测得到,第二压力测量值通过第二压力传感器检测得到;第一压力传感器安装在喷头上,第二压力传感器安装在打印平台上。
在一个实施例中,由于喷头喷涂首层打印材料时,喷头与首层打印材料成一种挤压状态,且在喷头移动过程中会拉扯耗材卷中的材料,因此,第一压力测量值包括喷头受到首层打印材料带来的第一挤压力、以及喷头受到的材料的拉力。第二压力测量值包括打印平台受到首层打印材料带来的第二挤压力、以及首层打印材料的重力。其中,拉力和重力均可视作一种干扰信号,第一挤压力和第二挤压力则视作一种有效信号。
在一个实施例中,计算机设备可确定出喷头移动时最小的采样时间间隔Tmin,Tmin可根据打印平台尺寸、打印平台的最大倾角、喷头在Z方向上的打印速度等确定。
步骤S204,对第一压力测量值和第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值。
其中,进行数据融合处理的方法可采用贝叶斯准则、卡尔曼滤波算法、D-S证据理论、模糊集合理论、人工神经网络、机器学习中的至少一种。
在一个实施例中,由于刚控制喷头沿着打印平台进行移动采样时,可能出现随机误差等情况,可将对采样结果中初次采样到的部分数据进行去除,从而确保通过数据融合处理得到的压力真实值的准确性。
步骤S206,获取压力值与高度补偿值之间的补偿模型,并根据补偿模型,确定压力真实值对应的目标高度补偿值。
其中,补偿模型可为一种闭环控制模型,也即一种根据控制对象的输出反馈来进行校正的控制方式,当测量出实际量与计划量发生偏差时,按照标准量来进行自适应调节。例如比例-积分-微分模型(Proportion Integral Differential,PID模型)。
在一个实施例中,计算机设备可从模型库中获取预先设置好的补偿模型和预设压力阈值,设置好的补偿模型表征已完成多个模型参数的设置,因此,计算机设备可以根据压力真实值和预设压力阈值,确定出目标高度补偿值,也即将压力真实值和预设压力阈值代入至补偿模型中,得到目标高度补偿值。
在一个实施例中,计算机设备预先确定控制喷头喷涂首层打印材料时所形成的材料高度L,参考图3所示,并根据不同的材料高度,预先设置与材料高度相对应的预设压力阈值。
在一个实施例中,根据补偿模型,确定压力真实值对应的目标高度补偿值,包括:确定上一采样时刻的历史压力真实值;确定压力真实值和预设压力阈值之间的第一差异值,并确定历史压力真实值和预设压力阈值之间的第二差异值;根据第一差异值、第二差异值和补偿模型,确定压力真实值对应的目标高度补偿值。
其中,预设压力阈值表征打印材料的高度为L时,理想情况下喷头受到与首层打印材料带来的期望压力值。
在一个实施例中,由于喷头移动采样时进行的是一种动态闭环控制的过程,因此,计算机设备可确定上一采样时刻的历史压力真实值,历史压力真实值通过上一采样时刻的第一压力测量值和上一采样时刻的第二压力测量值进行数据融合处理后得到。计算机设备分别确定压力真实值和预设压力阈值之间的第一差异值、历史压力真实值和预设压力阈值之间的第二差异值,例如,压力真实值为p(t)、历史压力真实值为p(t-1)、预设压力阈值为P,则第一差异值为e(t)=p(t)-P,第二差异值为e(t-1)=p(t-1)-P。计算机设备将第一差异值、第二差异值代入至补偿模型,确定压力真实值对应的目标高度补偿值,例如目标高度补偿值为z(t)。
步骤S208,根据目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度值进行补偿。
在一个实施例中,参考图3所示,O点为用户预先设置的零点,零点处的Z=0,喷头与打印平台之间的初始高度值则为打印文件中设定的喷头移动到的位置相对于零点的垂 直高度。当打印平台完全平整等理想情况下,喷头在对首层打印材料进行移动采样时,每个采样时刻所对应的位置相对于零点的垂直高度均应该相同,也即初始高度值应该相同,为图中的Z(t)。但因为打印平台不平整等情况,Z(t)会随着不同采样时刻所对应的压力真实值发生变化,也即需要通过压力真实值对应的目标高度补偿值,对相应采样时刻对应的初始高度值进行补偿,例如,打印平台上发生微小凸起,则需要确定初始高度值与对应的目标高度补偿值之间的差值,也即进行Z(t)-z(t),进而实现高度补偿。
在一个实施例中,目标高度补偿值是为了补偿当前采样时刻所处位置的初始高度值,但由于喷头一直处于移动采样过程中,目标高度补偿值会在当前采样时刻和下一采样时刻之间完成补偿。
在一个实施例中,触发喷头进行移动采样的采样时间间隔T需要大于等于最小的采样时间间隔Tmin,此时可确保目标高度补偿值在当前采样时刻和下一采样时刻之间完成补偿。
上述高度补偿方法中,当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取采样结果;采样结果包括当前采样时刻采集到的喷头与首层打印材料之间的第一压力测量值、打印平台与首层打印材料之间的第二压力测量值以及喷头与打印平台之间的初始高度值;对第一压力测量值和第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值;获取压力值与高度补偿值之间的补偿模型,并根据补偿模型,确定压力真实值对应的目标高度补偿值;根据目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度值进行补偿。由于本申请是在喷头移动采样的过程中实时确定当前采样时刻的压力真实值,进而通过补偿模型,确定出当前采样时刻的压力真实值对应的目标高度补偿值,因此,相比于传统的需要预先确定多个相邻点的坐标数据的方式,本申请在喷头进行移动采样之前不用再进行打印平台的调节操作,便可在喷涂打印材料的过程中实时地、准确地确定出不同采样位置的高度补偿值,进而避免了因***误差造成喷头在打印平台上的移动并非绝对平行、打印平台存在不平整时,喷涂的打印材料的厚度不相等的问题。
在一个实施例中,将第一压力测量值和第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值,包括:通过卡尔曼滤波算法,将第一压力测量值和第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值。
其中,卡尔曼滤波算法是一种通过当前采样时刻的测量值和上一采样时刻的估计值, 来准确得到当前采样时刻的真实值的方法。
本实施例中,通过卡尔曼滤波算法进行数据融合处理,不仅实现了将第一压力测量值和第二压力测量值加权融合,还可以完成打印材料的受力状态从上一采样时刻到当前采样时刻的递推,准确得到了当前采样时刻的真实值,因此获得了全局最优估计,确保了喷头采样时的压力真实值的准确性。
在一个实施例中,根据第一差异值、第二差异值和补偿模型,确定压力真实值对应的目标高度补偿值,包括:将第一差异值代入比例子模型中,得到第一高度补偿值;根据第一差异值和积分子模型,得到第二高度补偿值;将第一差异值和第二差异值代入微分子模型中,得到第三高度补偿值;将第一高度补偿值、第二高度补偿值和第三高度补偿值进行叠加,得到目标高度补偿值。
其中,补偿模型可为一种位置式PID模型,补偿模型包括比例子模型、积分子模型和微分子模型,比如:
其中,KP为比例子模型中的比例控制参数,KI为积分子模型中的积分控制参数,M为积分子模型中的积分深度参数,KD为微分子模型中的微分控制参数。参考上述,e(t)为第一差异值,e(t-1)为第二差异值。
在一个实施例中,计算机设备根据第一差异值和比例子模型,得到第一高度补偿值,并将第一差异值代入积分子模型中,得到第二高度补偿值。计算机设备确定第一差异值和第二差异值之间的第三差异值,并将第三差异值代入微分子模型中,得到第三高度补偿值,使得根据第一高度补偿值、第二高度补偿值和第三高度补偿值,得到目标高度补偿值。因此,本实施例通过位置式PID模型可以快速地确定出当前采集时刻目标高度补偿值,提高了数据处理的效率。
在一个实施例中,将第一高度补偿值、第二高度补偿值和第三高度补偿值进行叠加,得到目标高度补偿值,包括:将第一高度补偿值、第二高度补偿值和第三高度补偿值进行叠加,得到候选高度补偿值;当预设补偿阈值与候选高度补偿值的大小关系满足预设条件时,将候选高度补偿值作为目标高度补偿值;当预设补偿阈值与候选高度补偿值的大小关系不满足预设条件时,将预设补偿阈值作为目标高度补偿值。
其中,预设补偿阈值为一种最大动态补偿范围e,由于一般打印平台高低差大概3mm左右,最大在10mm左右,三维打印机的型号不同,预设补偿阈值通常也不同。
在一个实施例中,若将第一高度补偿值、第二高度补偿值和第三高度补偿值进行叠加后得到的z(t)视作候选高度补偿值,此时需要将候选高度补偿值与预设补偿阈值进行对比,也即确定预设补偿阈值与候选高度补偿值的大小关系是否满足预设条件。若候选高度补偿值小于等于预设补偿阈值,此时可视作预设补偿阈值与候选高度补偿值之间满足预设条件,则将候选高度补偿值作为目标高度补偿值;若候选高度补偿值大于预设补偿阈值,此时可视作预设补偿阈值与候选高度补偿值之间不满足预设条件,则将预设补偿阈值作为目标高度补偿值。
本实施例中,通过确定预设补偿阈值与候选高度补偿值的大小关系是否满足预设条件,进而在不同的情况下,能灵活地选择预设补偿阈值或候选高度补偿值作为目标高度补偿值,如此便提高了后续对高度进行补偿的准确性。
在一个实施例中,当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取的采样结果还可包括喷头电机电流、喷头电机振动频率等,也可通过堵料检测器、人工智能摄像头等来确定目标高度补偿值。
在一个实施例中,如图4所示,本申请中的高度补偿方法还包括以下步骤:
步骤S402,当控制喷头沿着打印平台喷涂非首层打印材料并进行移动采样时,将打印平台中的多个测量点确定为待补偿测量点。
其中,当控制喷头沿着打印平台喷涂非首层打印材料并进行移动采样时,打印头上的检测单元便可测量出打印平台中的每个测量点各自对应的坐标数据。非首层打印材料是在控制喷头喷涂完首层打印材料后,在首层打印材料的基础上继续叠加喷涂的打印材料。示例性如图5所示,图5为打印平台501上的测量点分布示意图,打印平台上的测量点由m行n列矩阵组成,矩阵为:
其中,测量点的坐标数据为aij=(xij,yij,zij)(i∈[0,m-1],j∈(0,n-1))。
在一个实施例中,当用户在首层打印材料的基础上,继续执行进行3D打印任务时, 可触发3D打印机的打印头进行移动。当打印头移动到打印平台的相应位置上时,通过打印头上的检测单元便可测量到当前需要进行高度补偿的待补偿测量点,并将待补偿测量点的坐标数据传输至计算机设备中。
在一个实施例中,针对当前打印任务所对应的多个测量点中的每个测量点,均将当前测量点视作待补偿测量点,实现对待补偿测量点的高度补偿。
步骤S404,确定打印平台中位于待补偿测量点邻近位置处的多个邻近区域;各邻近区域中包括至少两个相邻测量点;相邻测量点为多个测量点中与待补偿测量点相邻的测量点。
在一个实施例中,计算机设备可对待补偿测量点进行邻近区域检测,将位于预设方向上的邻近区域视作待补偿测量点对应的邻近区域,其中,预设方向上的邻近区域可根据预设第一投影平面来确定。示例性如图6所示,图6为打印平台上的邻近区域的分布示意图,待补偿测量点Q邻近位置包括区域1、区域2、区域3和区域4,当预设第一投影平面为YZ平面时,符合预设方向上的邻近区域为区域1和区域2,当预设第一投影平面为XZ平面时,符合预设方向上的邻近区域为区域3和区域4。
进一步地,计算机设备针对每个邻近区域,均确定位于与待补偿测量点邻近的当前邻近区域中的相邻测量点,其中,各邻近区域中包括至少两个相邻测量点,相邻测量点为从测量点中筛选得到,例如,确定区域1中的相邻测量点A和相邻测量点B。
在一个实施例中,计算机设备根据待补偿测量点的坐标数据,从预设的数据库中获取待补偿测量点邻近位置处的相邻测量点。
步骤S406,将各邻近区域中的至少两个相邻测量点投影至预设第一投影平面,得到至少两个第一投影点的坐标数据,并对至少两个第一投影点的坐标数据进行线性拟合处理,得到各邻近区域各自对应的第一拟合线。
其中,预设第一投影平面可以是用户预先设置的投影平面,例如三维坐标系中的YZ平面。由于对每个各邻近区域中的至少两个相邻测量点的处理过程相同,为了更好地描述本申请,下述将针对任意一个邻近区域中的至少两个相邻测量点进行过程描述。
在一个实施例中,计算机设备将至少两个相邻测量点中的每个相邻测量点,均投影至预设第一投影平面,得到每个相邻测量点各自对应的第一投影点,也即将三维坐标转换成二维坐标。例如,将区域1中的相邻测量点A、相邻测量点B投影至预设YZ平面,得到第 一投影点a和第一投影点b。计算机设备将各第一投影点进行线性拟合处理,得到第一相邻测量点对应的第一拟合线,也即将第一投影点a和第一投影点b进行线性拟合。其中,线性拟合方式可为最小二乘法拟合等方式,本申请在此不做限制。
步骤S408,根据各邻近区域各自对应的第一拟合线、各邻近区域中的至少两个相邻测量点的坐标数据和待补偿测量点的坐标数据,分别确定各补偿基准点的坐标数据。
其中,当邻近区域有两个区域时,第一拟合线有两条,确定出各邻近区域中的补偿基准点的数量也为两个。
在一个实施例中,计算机设备确定各邻近区域中的至少两个相邻测量点的横坐标数据是否相同,当至少两个相邻测量点的横坐标数据均相同时,从数据库中获取第一基准点确定模型,并将至少两个相邻测量点的坐标数据和待补偿测量点的坐标数据带入至第一基准点确定模型中,得到补偿基准点的坐标数据。当至少两个相邻测量点的横坐标数据不相同时,从数据库中获取第二基准点确定模型,并将至少两个相邻测量点的坐标数据和待补偿测量点的坐标数据均带入至第二基准点确定模型中,得到补偿基准点的坐标数据。其中,第一基准点确定模型表征不需要将相邻测量点的坐标数据进行坐标变换;第二基准点确定模型表征需要通过相邻测量点的坐标数据构建成直角三角形。
在一个实施例中,计算机设备根据各邻近区域各自对应的第一拟合线和待补偿测量点的坐标数据,可分别确定各补偿基准点的坐标数据。
步骤S410,将各补偿基准点投影至预设第二投影平面,得到各第二投影点的坐标数据,并根据各第二投影点的坐标数据,对待补偿测量点的坐标数据进行高度补偿。
其中,预设第二投影平面为与预设第一投影平面的类型并不相同的平面,例如,当预设第一投影平面为YZ平面时,预设第二投影平面为XZ平面。
在一个实施例中,计算机设备将每个补偿基准点均投影至预设第二投影平面,得到每个补偿基准点各自对应的第二投影点,也即将补偿基准点的三维坐标转换成二维坐标。例如,将补偿基准点M和补偿基准点N分别投影至预设第二投影平面,得到第二投影点m和第二投影点n。计算机设备对各第二投影点的坐标数据进行线性拟合处理,得到第二拟合线,并通过第二拟合线对待补偿测量点进行高度补偿,也即待补偿测量点的坐标数据代入至第二拟合线对应的第二直线方程中,得到待补偿测量点的高度补偿值,进而通过高度补偿值对待补偿测量点进行高度补偿。
本实施例中,针对喷头喷涂非首层打印材料时进行移动采样得到的多个待补偿测量点,由于是先通过待补偿测量点对应的相邻测量点确定出第一拟合线之后,再根据第一拟合线确定出补偿基准点,进而根据补偿基准点投影后的第二投影点,便可实现对待补偿测量点的高度补偿,因此,能够有针对性地对每个待补偿测量点进行高度补偿,提高了打印平台的高度补偿的准确性。
应该理解的是,虽然如上的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的高度补偿方法的高度补偿装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个高度补偿装置实施例中的具体限定可以参见上文中对于高度补偿方法的限定,在此不再赘述。
在一个实施例中,如图7所示,提供了一种高度补偿装置700,包括:移动采样模块702、数据融合模块704和补偿值确定模块706,其中:
移动采样模块702,用于当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取采样结果;采样结果包括当前采样时刻采集到的喷头与首层打印材料之间的第一压力测量值、打印平台与首层打印材料之间的第二压力测量值以及喷头与打印平台之间的初始高度值。
数据融合模块704,用于对第一压力测量值和第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值。
补偿值确定模块706,用于获取压力值与高度补偿值之间的补偿模型,并根据补偿模型确定压力真实值对应的目标高度补偿值;根据目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度值进行补偿。
在一个实施例中,数据融合模块704,还用于通过卡尔曼滤波算法,将第一压力测量 值和第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值。
在一个实施例中,补偿值确定模块706,还用于确定上一采样时刻的历史压力真实值;确定压力真实值和预设压力阈值之间的第一差异值,并确定历史压力真实值和预设压力阈值之间的第二差异值;根据第一差异值、第二差异值和补偿模型,确定压力真实值对应的目标高度补偿值。
在一个实施例中,补偿值确定模块706,还用于将第一差异值代入比例子模型中,得到第一高度补偿值;根据第一差异值和积分子模型,得到第二高度补偿值;将第一差异值和第二差异值代入微分子模型中,得到第三高度补偿值;将第一高度补偿值、第二高度补偿值和第三高度补偿值进行叠加,得到目标高度补偿值。
在一个实施例中,补偿值确定模块706,还用于将第一高度补偿值、第二高度补偿值和第三高度补偿值进行叠加,得到候选高度补偿值;当预设补偿阈值与候选高度补偿值的大小关系满足预设条件时,将候选高度补偿值作为目标高度补偿值;当预设补偿阈值与候选高度补偿值的大小关系不满足预设条件时,将预设补偿阈值作为目标高度补偿值。
在一个实施例中,高度补偿装置700还包括测量点补偿模块708,用于当控制喷头沿着打印平台喷涂非首层打印材料并进行移动采样时,将打印平台中的多个测量点确定为待补偿测量点;确定打印平台中位于待补偿测量点邻近位置处的多个邻近区域;各邻近区域中包括至少两个相邻测量点;相邻测量点为多个测量点中与待补偿测量点相邻的测量点;将各邻近区域中的至少两个相邻测量点投影至预设第一投影平面,得到至少两个第一投影点的坐标数据,并对至少两个第一投影点的坐标数据进行线性拟合处理,得到各邻近区域各自对应的第一拟合线;根据各邻近区域各自对应的第一拟合线、各邻近区域中的至少两个相邻测量点的坐标数据和待补偿测量点的坐标数据,分别确定各补偿基准点的坐标数据;将各补偿基准点投影至预设第二投影平面,得到各第二投影点的坐标数据,并根据各第二投影点的坐标数据,对待补偿测量点的坐标数据进行高度补偿
上述高度补偿装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括一个或多个处理器、存储器、输入/输出接口 (Input/Output,简称I/O)和通信接口。其中,一个或多个处理器、存储器和输入/输出接口通过***总线连接,通信接口通过输入/输出接口连接到***总线。其中,该计算机设备的一个或多个处理器用于提供计算和控制能力。该计算机设备的存储器包括一个或多个非易失性存储介质和内存储器。一个或多个非易失性存储介质存储有操作***、计算机可读指令和数据库。该内存储器为一个或多个非易失性存储介质中的操作***和计算机可读指令的运行提供环境。该计算机设备的数据库用于存储高度补偿数据。该计算机设备的输入/输出接口用于一个或多个处理器与外部设备之间交换信息。该计算机设备的通信接口用于与外部的终端通过网络连接通信。该计算机可读指令被一个或多个处理器执行时以实现一种打印平台的高度补偿方法。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括一个或多个处理器及存储器,存储器中存储有计算机可读指令,一个或多个处理器执行计算机可读指令时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一个或多个计算机可读存储介质,其上存储有计算机可读指令,计算机可读指令被一个或多个处理器执行时实现上述各方法实施例中的步骤。
在一些实施例中,还提供了一种计算机程序产品,包括计算机可读指令,计算机可读指令被处理器执行时实现上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,计算机可读指令可存储于一个或多个非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access  Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的一个或多个处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种高度补偿方法,其特征在于,由计算机设备执行,所述方法包括:
    当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取采样结果;所述采样结果包括当前采样时刻采集到的喷头与首层打印材料之间的第一压力测量值、打印平台与首层打印材料之间的第二压力测量值以及喷头与打印平台之间的初始高度值;
    对所述第一压力测量值和所述第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值;
    获取压力值与高度补偿值之间的补偿模型;
    根据所述补偿模型,确定所述压力真实值对应的目标高度补偿值;及
    根据所述目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度值进行补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述第一压力测量值通过第一压力传感器检测得到,所述第二压力测量值通过第二压力传感器检测得到;所述第一压力传感器安装在所述喷头上,所述第二压力传感器安装在所述打印平台上。
  3. 根据权利要求1所述的方法,其特征在于,所述第一压力测量值包括所述喷头受到所述首层打印材料带来的第一挤压力、以及所述喷头受到所述首层打印材料的拉力;所述第二压力测量值包括所述打印平台受到所述首层打印材料带来的第二挤压力、以及所述首层打印材料的重力。
  4. 根据权利要求1所述的方法,其特征在于,所述对所述第一压力测量值和所述第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值,包括:
    通过卡尔曼滤波算法,对所述第一压力测量值和所述第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述补偿模型,确定所述压力真实值对应的目标高度补偿值,包括:
    确定上一采样时刻的历史压力真实值;
    确定所述压力真实值和预设压力阈值之间的第一差异值,并确定所述历史压力真实值和所述预设压力阈值之间的第二差异值;
    根据所述第一差异值、所述第二差异值和所述补偿模型,确定所述压力真实值对应的目标高度补偿值。
  6. 根据权利要求5所述的方法,其特征在于,所述补偿模型包括比例子模型、积分子模型和微分子模型;所述根据所述第一差异值、所述第二差异值和所述补偿模型,确定所述压力真实值对应的目标高度补偿值,包括:
    将所述第一差异值代入所述比例子模型中,得到第一高度补偿值;
    根据所述第一差异值和所述积分子模型,得到第二高度补偿值;
    将所述第一差异值和所述第二差异值代入所述微分子模型中,得到第三高度补偿值;
    将所述第一高度补偿值、所述第二高度补偿值和所述第三高度补偿值进行叠加,得到目标高度补偿值。
  7. 根据权利要求6所述的方法,其特征在于,所述将所述第一高度补偿值、所述第二高度补偿值和所述第三高度补偿值进行叠加,得到目标高度补偿值,包括:
    将所述第一高度补偿值、所述第二高度补偿值和所述第三高度补偿值进行叠加,得到候选高度补偿值;
    当预设补偿阈值与所述候选高度补偿值的大小关系满足预设条件时,将所述候选高度补偿值作为目标高度补偿值;
    当所述预设补偿阈值与所述候选高度补偿值的大小关系不满足所述预设条件时,将所述预设补偿阈值作为所述目标高度补偿值。
  8. 根据权利要求7所述的方法,其特征在于,所述预设条件为所述候选高度补偿值小于或等于所述预设补偿阈值。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当控制喷头沿着打印平台喷涂非首层打印材料并进行移动采样时,将打印平台中的多个测量点确定为待补偿测量点;
    确定所述打印平台中位于所述待补偿测量点邻近位置处的多个邻近区域;各邻近区域中包括至少两个相邻测量点;所述相邻测量点为所述多个测量点中与所述待补偿测量点相邻的测量点;
    将各邻近区域中的至少两个相邻测量点投影至预设第一投影平面,得到至少两个第一投影点的坐标数据;
    对所述至少两个第一投影点的坐标数据进行线性拟合处理,得到各邻近区域各自对应的第一拟合线;
    根据各邻近区域各自对应的所述第一拟合线、各邻近区域中的至少两个相邻测量点的坐标数据和所述待补偿测量点的坐标数据,分别确定各补偿基准点的坐标数据;
    将各所述补偿基准点投影至预设第二投影平面,得到各第二投影点的坐标数据;
    根据各所述第二投影点的坐标数据,对所述待补偿测量点的坐标数据进行高度补偿。
  10. 根据权利要求9所述的方法,其特征在于,所述确定所述打印平台中位于所述待补偿测量点邻近位置处的多个邻近区域,包括:
    对所述待补偿测量点进行邻近区域检测,将位于预设方向上的邻近区域作为所述待补偿测量点对应的邻近区域。
  11. 根据权利要求9所述的方法,其特征在于,所述根据各邻近区域各自对应的所述第一拟合线、各邻近区域中的至少两个相邻测量点的坐标数据和所述待补偿测量点的坐标数据,分别确定各补偿基准点的坐标数据,包括:
    确定各邻近区域中的至少两个相邻测量点的横坐标数据是否相同;
    当所述至少两个相邻测量点的横坐标数据均相同时,从数据库中获取第一基准点确定模型;所述第一基准点确定模型表征不需要将相邻测量点的坐标数据进行坐标变换;
    将所述至少两个相邻测量点的坐标数据和所述待补偿测量点的坐标数据带入至所述第一基准点确定模型中,得到各补偿基准点的坐标数据。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    当所述至少两个相邻测量点的横坐标数据不相同时,从所述数据库中获取第二基准点确定模型;所述第二基准点确定模型表征需要通过相邻测量点的坐标数据构建成直角三角形;
    将所述至少两个相邻测量点的坐标数据和所述待补偿测量点的坐标数据带入至所述第二基准点确定模型中,得到各补偿基准点的坐标数据。
  13. 一种高度补偿装置,其特征在于,所述装置包括:
    移动采样模块,用于当控制喷头沿着打印平台喷涂首层打印材料并进行移动采样时,获取采样结果;所述采样结果包括当前采样时刻采集到的喷头与首层打印材料之间的第一压力测量值、打印平台与首层打印材料之间的第二压力测量值以及喷头与打印平台之间的初始高度值;
    数据融合模块,用于对所述第一压力测量值和所述第二压力测量值进行数据融合处理,得到当前采样时刻的压力真实值;
    补偿值确定模块,用于获取压力值与高度补偿值之间的补偿模型;根据所述补偿模型确定所述压力真实值对应的目标高度补偿值;根据所述目标高度补偿值,对当前采样时刻采集到的喷头与打印平台之间的初始高度值进行补偿。
  14. 一种计算机设备,包括一个或多个处理器及存储器,所述存储器存储有计算机可读指令,其特征在于,一个或多个处理器执行所述计算机可读指令时实现权利要求1至12 任一项所述的方法的步骤。
  15. 一个或多个计算机可读存储介质,其上存储有计算机可读指令,其特征在于,所述计算机可读指令被一个或多个处理器执行时实现权利要求1至12中任一项所述的方法的步骤。
PCT/CN2023/102998 2022-08-12 2023-06-28 高度补偿方法、装置、计算机设备和存储介质 WO2024032185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968330.4 2022-08-12
CN202210968330.4A CN117621456A (zh) 2022-08-12 2022-08-12 高度补偿方法、装置、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024032185A1 true WO2024032185A1 (zh) 2024-02-15

Family

ID=89850624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102998 WO2024032185A1 (zh) 2022-08-12 2023-06-28 高度补偿方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN117621456A (zh)
WO (1) WO2024032185A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057612A (zh) * 2014-06-17 2014-09-24 韩成超 3d打印机用自动调平装置及3d打印机及调平方法
CN105014958A (zh) * 2014-04-15 2015-11-04 上海智位机器人有限公司 3d打印机及其自动调平方法
CN207310540U (zh) * 2017-09-14 2018-05-04 深圳森工科技有限公司 3d打印平台调平结构及3d打印机
US20200361155A1 (en) * 2019-05-17 2020-11-19 Markforged, Inc 3d printing and measurement apparatus and method
CN113665110A (zh) * 2021-08-10 2021-11-19 深圳市洋明达科技有限公司 一种3d打印机机头、3d打印机及3d打印机的调平方法
CN114096396A (zh) * 2019-07-30 2022-02-25 终极制造商公司 确定构建表面的局部高度的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014958A (zh) * 2014-04-15 2015-11-04 上海智位机器人有限公司 3d打印机及其自动调平方法
CN104057612A (zh) * 2014-06-17 2014-09-24 韩成超 3d打印机用自动调平装置及3d打印机及调平方法
CN207310540U (zh) * 2017-09-14 2018-05-04 深圳森工科技有限公司 3d打印平台调平结构及3d打印机
US20200361155A1 (en) * 2019-05-17 2020-11-19 Markforged, Inc 3d printing and measurement apparatus and method
CN114096396A (zh) * 2019-07-30 2022-02-25 终极制造商公司 确定构建表面的局部高度的方法
CN113665110A (zh) * 2021-08-10 2021-11-19 深圳市洋明达科技有限公司 一种3d打印机机头、3d打印机及3d打印机的调平方法

Also Published As

Publication number Publication date
CN117621456A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN107229430B (zh) 一种应用于3d打印的自动调平方法及其调平设备
EP3283249B1 (en) System and method for monitoring and recoating in an additive manufacturing environment
US11597156B2 (en) Monitoring additive manufacturing
CN106033621B (zh) 一种三维建模的方法及装置
CN116929338B (zh) 地图构建方法、设备及存储介质
CN108921898B (zh) 摄像机位姿确定方法、装置、电子设备和计算机可读介质
WO2021145892A1 (en) Displacement maps
WO2024032185A1 (zh) 高度补偿方法、装置、计算机设备和存储介质
WO2023050577A1 (zh) 一种涂胶方法、装置、设备及***
CN111462235A (zh) 基于yolo v3算法的倾斜目标检测方法、装置及存储介质
WO2022134328A1 (zh) 一种建筑信息模型的构建方法及装置
US20230043252A1 (en) Model prediction
CN113160317A (zh) 云台目标追踪控制方法、装置及云台控制设备、存储介质
CN112414444B (zh) 一种数据标定方法、计算机设备、存储介质
WO2022086554A1 (en) Agent map generation
CN114913500A (zh) 位姿确定方法、装置、计算机设备和存储介质
JP2022106671A (ja) 空中給油のための燃料容器及びブーム先端の位置及び姿勢の推定
US20220413464A1 (en) Registering objects
CN111862332A (zh) 一种卫星影像通用成像模型拟合误差的改正方法及***
WO2020209851A1 (en) Adaptive thermal diffusivity
CN111197975A (zh) 一种基于Rodrigues的影像姿态估计方法
WO2024001369A1 (zh) 打印平台的高度补偿方法、装置和计算机设备
CN115937261B (zh) 基于事件相机的空间目标运动参数测量方法
CN113016007B (zh) 估计相机相对于地面的方位的装置和方法
US20230245272A1 (en) Thermal image generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851412

Country of ref document: EP

Kind code of ref document: A1