WO2024031880A1 - 多波束波束去耦方法、发射端及接收端 - Google Patents

多波束波束去耦方法、发射端及接收端 Download PDF

Info

Publication number
WO2024031880A1
WO2024031880A1 PCT/CN2022/136016 CN2022136016W WO2024031880A1 WO 2024031880 A1 WO2024031880 A1 WO 2024031880A1 CN 2022136016 W CN2022136016 W CN 2022136016W WO 2024031880 A1 WO2024031880 A1 WO 2024031880A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
radio frequency
parallel
baseband modulation
frequency channel
Prior art date
Application number
PCT/CN2022/136016
Other languages
English (en)
French (fr)
Inventor
胡云
李耕余
洪伟
Original Assignee
网络通信与安全紫金山实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 网络通信与安全紫金山实验室 filed Critical 网络通信与安全紫金山实验室
Publication of WO2024031880A1 publication Critical patent/WO2024031880A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/0342QAM

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a multi-beam decoupling method, a transmitting end and a receiving end.
  • precoding technology solves the coding matrix based on the existing channel matrix and noise information, thereby reducing the impact of spatial channels and beams in other directions on the beam. influence, so that the information at the receiving end is the same as the original information of the beam to the greatest extent; and digital beamforming technology refers to using precoding technology in the baseband to form a phase difference on the signals on each antenna, and the phase of the signals radiated by each antenna in the beam direction is the same , forming power directivity and forming a null at the interference location.
  • beam precoding algorithms such as linear zero forcing, minimum mean square error or dirty paper coding
  • the algorithm performance mainly depends on the accuracy of channel matrix estimation, while the digital beamforming algorithm requires each beam Forming zero depth in other beam directions involves matrix inversion and autocorrelation function operations. It is difficult to converge when applying the algorithm to full-frequency multiplexing and many beams. The amount of calculation in the scenario is large, especially in the millimeter wave frequency band where signal data is occupied. The bandwidth is wide and the data processing burden of multi-beam systems is heavy.
  • the present disclosure provides a multi-beam decoupling method, transmitter and receiver to solve the defect of heavy data processing burden in the beamforming process in the prior art, reduce the data processing volume of the beamforming process and improve the processing efficiency.
  • the present disclosure provides a multi-beam beam decoupling method, which is applied to the transmitter, including:
  • sequence length extension is performed on the parallel baseband modulation signals corresponding to each beam to obtain the information sequence corresponding to each beam.
  • the multiple beam signatures are a set of orthogonal codes with the same number of beams, so The multiple beam signatures described above are used for beam orthogonality and beam decoupling;
  • the spread spectrum information sequence corresponding to each beam is mapped to each target radio frequency channel, and the sequence to be modulated corresponding to each target radio frequency channel is obtained.
  • the sequence length extension includes:
  • the first target beam is any one of the beams transmitted by the transmitting end, and the first target beam characteristic code is one of the plurality of beam characteristic codes corresponding to the first target beam.
  • mapping the spread spectrum information sequence corresponding to each beam to each target radio frequency channel and obtaining the to-be-modulated sequence corresponding to each target radio frequency channel includes:
  • the to-be-modulated sequences of each beam on the target radio frequency channel are summed to obtain the to-be-modulated sequence corresponding to the target radio frequency channel.
  • each beam is on the target radio frequency.
  • the sequence to be modulated on the channel it also includes:
  • the second target beam is any one of the beams transmitted by the transmitting end.
  • sequence length extension is performed on the parallel baseband modulation signals corresponding to each beam, and the information sequence corresponding to each beam is obtained.
  • sequence length extension is performed on the parallel baseband modulation signals corresponding to each beam, and the information sequence corresponding to each beam is obtained.
  • the plurality of beam signatures are determined based on the number of beams, channel conditions and target diversity gain.
  • the disclosure also provides a multi-beam beam decoupling method, which is applied to the receiving end, including:
  • parallel-to-serial conversion is performed to obtain the original baseband modulation signal carried by the third target beam.
  • the beam decoupling operation includes:
  • the target signal group to be decoupled is any group among the plurality of signal groups to be decoupled.
  • the second target beam characteristic code is one of the plurality of beam characteristic codes corresponding to the third target beam, and the plurality of beams
  • the characteristic code is a set of orthogonal codes with the same number of beams as the transmitting end; based on the second target beam characteristic code corresponding to the third target beam, a beam decoupling operation is performed on the plurality of signal groups to be decoupled.
  • it before acquiring the parallel baseband modulation signal carried by the third target beam, it also includes:
  • the plurality of beam signatures are determined based on the number of beams, channel conditions and target diversity gain.
  • the present disclosure also provides a transmitting end, including: a beamforming module, a baseband modulation module, a radio frequency channel module and an antenna array that are electrically connected in sequence;
  • the beamforming module includes a first serial-to-parallel conversion unit, an orthogonal processing unit, the second serial-to-parallel conversion unit and the mapping unit;
  • the first serial-to-parallel conversion unit is used to perform serial-to-parallel conversion based on the original baseband modulation signal corresponding to each beam, and obtain the parallel baseband modulation signal corresponding to each beam;
  • the orthogonal processing unit is configured to perform sequence length extension on the parallel baseband modulation signals corresponding to each beam based on multiple beam signatures, and obtain the information sequence corresponding to each beam.
  • the multiple beam signatures are a group with Orthogonal codes with the same number of beams, the multiple beam signature codes are used for beam orthogonality and beam decoupling;
  • the second serial-to-parallel conversion unit is used to allocate the information sequence corresponding to each beam to different sub-carrier frequency points through serial-to-parallel conversion, and obtain the spread spectrum information sequence corresponding to each beam;
  • the mapping unit is used to map the spread spectrum information sequence corresponding to each beam to each target radio frequency channel, and obtain the sequence to be modulated corresponding to each target radio frequency channel.
  • the present disclosure also provides a receiving end, including: an antenna module, a signal extraction module, a fast Fourier transform module and a beam decoupling module that are electrically connected in sequence;
  • the beam decoupling module includes a first parallel-to-serial conversion unit, decoupling unit and second parallel-to-serial conversion unit;
  • the first parallel-to-serial conversion unit is used to perform parallel-to-serial conversion on the signals to be decoupled by the third target beam at each subcarrier frequency point, and obtain multiple signal groups to be decoupled;
  • the decoupling unit is configured to perform a beam decoupling operation on the plurality of signal groups to be decoupled based on the second target beam characteristic code corresponding to the third target beam, and obtain the signal carried by the third target beam.
  • Parallel baseband modulated signal ;
  • the second parallel-to-serial conversion unit is configured to perform parallel-to-serial conversion based on the parallel baseband modulation signal carried by the third target beam, and obtain the original baseband modulation signal carried by the third target beam.
  • the multi-beam decoupling method, transmitter and receiver provided by the present disclosure can obtain the information sequence corresponding to each beam by performing sequence length extension on the parallel baseband modulation signal corresponding to each beam, and then the serial-to-parallel conversion method can be used to obtain the information sequence corresponding to each beam.
  • the information sequence corresponding to each beam is allocated to different sub-carrier frequency points, and the spread spectrum information sequence corresponding to each beam is obtained. Then the spread spectrum information sequence corresponding to the beam can be mapped to each target radio frequency channel, and the corresponding information sequence of each target radio frequency channel is obtained.
  • the sequence to be modulated, the beamforming process does not involve the beam side lobes and the weight calculation process of zero depth, which can reduce the amount of data processing and improve processing efficiency.
  • Figure 1 is one of the flow diagrams of the multi-beam decoupling method provided by the present disclosure
  • Figure 2 is the second schematic flow chart of the multi-beam decoupling method provided by the present disclosure
  • Figure 3 is the third schematic flowchart of the multi-beam decoupling method provided by the present disclosure.
  • Figure 4 is the fourth schematic flowchart of the multi-beam decoupling method provided by the present disclosure.
  • Figure 5 is the fifth schematic flowchart of the multi-beam decoupling method provided by the present disclosure.
  • Figure 6 is a schematic flowchart No. 6 of the multi-beam decoupling method provided by the present disclosure
  • Figure 7 is a schematic structural diagram of the transmitter provided by the present disclosure.
  • Figure 8 is a schematic structural diagram of a receiving end provided by the present disclosure.
  • Figure 1 is one of the flow diagrams of the multi-beam decoupling method provided by the present disclosure.
  • the execution subject of the multi-beam decoupling method may be the transmitter.
  • the method includes:
  • Step 101 Perform serial-to-parallel conversion based on the original baseband modulation signal corresponding to each beam to obtain the parallel baseband modulation signal corresponding to each beam;
  • the original baseband modulation signal corresponding to each beam can be converted from serial to parallel, and then the parallel baseband modulation signal corresponding to each beam can be obtained.
  • the beams that the transmitting end needs to transmit include the first beam, the second beam, the third beam and the fourth beam.
  • the transmitting end can modify the original baseband modulation signal corresponding to the first beam, the original baseband modulation signal corresponding to the second beam.
  • the baseband modulation signal, the original baseband modulation signal corresponding to the third beam, and the original baseband modulation signal corresponding to the fourth beam are serially converted to obtain the parallel baseband modulation signal corresponding to the first beam and the parallel baseband modulation signal corresponding to the second beam.
  • the parallel baseband modulation signal corresponding to the third beam and the parallel baseband modulation signal corresponding to the fourth beam are serially converted to obtain the parallel baseband modulation signal corresponding to the first beam and the parallel baseband modulation signal corresponding to the second beam.
  • Step 102 Perform sequence length extension on the parallel baseband modulation signals corresponding to each beam based on multiple beam signatures, and obtain the information sequence corresponding to each beam.
  • the multiple beam signatures are a group of orthogonal signals with the same number as the beams. code, the plurality of beam signature codes are used for beam orthogonality and beam decoupling;
  • the multiple beam signatures are a set of orthogonal codes that are the same as the number of beams, and each beam can be matched with a beam signature; after obtaining the parallel baseband modulation signal corresponding to each beam, based on the multiple beam signatures , perform sequence length extension on the parallel baseband modulation signals corresponding to each beam, and obtain the information sequence corresponding to each beam.
  • the information sequences corresponding to each beam have orthogonality.
  • the length of the beam signature is P symbols
  • the length of the information sequence is P times the length of the parallel baseband modulation signal.
  • the beams that the transmitting end needs to transmit include the first beam, the second beam, the third beam and the fourth beam.
  • the number of beams is 4.
  • the multiple beam characteristic codes are a set of orthogonal codes with the number of 4.
  • the multiple beam characteristics may include a first beam signature matched by the first beam, a second beam signature matched by the second beam, a third beam signature matched by the third beam, and a fourth beam signature matched by the fourth beam.
  • sequence length extension can be performed on the parallel baseband modulation signals corresponding to the first beam based on the matching of the first beam, to obtain the information sequence corresponding to the first beam, and so on.
  • the information sequence corresponding to the second beam, the information sequence corresponding to the third beam, and the information sequence corresponding to the fourth beam can be obtained.
  • Step 103 allocate the information sequence corresponding to each beam to different subcarrier frequency points through serial-to-parallel conversion, and obtain the spread spectrum information sequence corresponding to each beam;
  • the information sequence corresponding to each beam can be allocated to different subcarrier frequencies through serial-to-parallel conversion (that is, spread spectrum), and then the information sequence corresponding to each beam can be obtained.
  • the spread spectrum information sequence includes multiple sub-information sequences, and each sub-information sequence corresponds to a different sub-carrier frequency point.
  • the number of subcarriers can be P ⁇ Q.
  • the spread spectrum information sequence includes multiple sub-information sequences, and the number of the multiple sub-information sequences is the same as the number of multiple sub-carrier frequency points.
  • the number of multiple subcarrier frequency points is 4, and the multiple subcarrier frequency points include a first subcarrier frequency point, a second subcarrier frequency point, a third subcarrier frequency point, and a fourth subcarrier frequency point, and each subcarrier frequency point
  • the points are different from each other.
  • the information sequence corresponding to the specified beam can be allocated to different subcarrier frequency points through serial-to-parallel conversion, and then the spread spectrum information sequence corresponding to the specified beam can be obtained.
  • the spread spectrum information sequence It may include a first sub-information sequence (corresponding to the first sub-carrier frequency point), a second sub-information sequence (corresponding to the second sub-carrier frequency point), a third sub-information sequence (corresponding to the third sub-carrier frequency point). corresponding) and the fourth sub-information sequence (corresponding to the fourth sub-carrier frequency point).
  • the orthogonally processed sequences are allocated to different subcarrier frequencies in the form of serial-to-parallel conversion (spread spectrum).
  • the spread spectrum signal has the characteristics of diversity gain, which will increase the received signal-to-noise ratio by 10lg. (P/M)(dB), where M is the number of beams at the transmitter, and P is the length of the beam signature.
  • Step 104 Map the spread spectrum information sequence corresponding to each beam to each target radio frequency channel, and obtain the sequence to be modulated corresponding to each target radio frequency channel.
  • the transmitting end may have multiple target radio frequency channels.
  • the spread spectrum information sequence corresponding to each beam can be mapped to each target radio frequency channel through broadband beamforming, and then The sequence to be modulated corresponding to each target radio frequency channel can be obtained, beam forming can be realized, and the sequence to be modulated corresponding to each target radio frequency channel can be input to the baseband modulation module of the transmitter for subsequent processing.
  • the beams that the transmitting end needs to transmit include the first beam, the second beam, the third beam and the fourth beam.
  • the transmitting end can have a first target radio frequency channel and a second target radio frequency channel, and obtain the spreading information corresponding to each beam.
  • the spread spectrum information sequence corresponding to the first beam, the spread spectrum information sequence corresponding to the second beam, the spread spectrum information sequence corresponding to the third beam, and the spread spectrum information sequence corresponding to the fourth beam can be combined into By mapping to the first target radio frequency channel, the sequence to be modulated corresponding to the first target radio frequency channel can be obtained.
  • the spread spectrum information sequence corresponding to the first beam, the spread spectrum information sequence corresponding to the second beam, and The spread spectrum information sequence corresponding to the third beam and the spread spectrum information sequence corresponding to the fourth beam are mapped to the second target radio frequency channel, and the sequence to be modulated corresponding to the second target radio frequency channel can be obtained.
  • the transmitting end may pre-store the plurality of beam signatures, and the transmitting end may also generate the plurality of beam signatures based on a preset protocol.
  • baseband modulation, amplification, frequency conversion and filtering can be performed and converted into radio frequency signals, and then transmitted through the antenna array.
  • the relevant technology is limited by the 3dB beam width.
  • the number of radiation beams in the existing digital multi-beam architecture is highly correlated with the number of required array element channels, making the system complexity of the all-digital multi-beam array high and different from the traditional solution.
  • the present disclosure can improve the orthogonality of beams, reduce the mutual interference of simultaneous co-aperture beam signals, achieve decoupling from the strong correlation between the number of array elements and the number of beams, and can use fewer array elements to achieve any number of beams at any angle.
  • the radiation, the emission angle and number of beams are no longer limited by the number of array units, which can reduce the system complexity of all-digital multi-beam arrays.
  • the present disclosure can reduce the difficulty of calculating beam weights in application scenarios with full frequency reuse and many beams.
  • the present disclosure can further improve the signal-to-noise ratio of the system by introducing spread spectrum diversity gain while utilizing the co-aperture array gain of the digital multi-beam antenna array.
  • the multi-beam decoupling method provided by the present disclosure can obtain the information sequence corresponding to each beam by performing sequence length extension on the parallel baseband modulation signal corresponding to each beam, and then convert the information sequence corresponding to each beam through serial-to-parallel conversion. Assigned to different subcarrier frequency points, the spread spectrum information sequence corresponding to each beam is obtained, and then the spread spectrum information sequence corresponding to the beam can be mapped to each target radio frequency channel, and the to-be-modulated sequence corresponding to each target radio frequency channel is obtained.
  • the shaping process does not involve the weight calculation process of beam side lobes and zero depth, which can reduce the amount of data processing and improve processing efficiency.
  • sequence length extension includes:
  • the first target beam is any one of the beams transmitted by the transmitting end, and the first target beam characteristic code is one of the plurality of beam characteristic codes corresponding to the first target beam.
  • sequence length extension can be performed on the parallel baseband modulation signals corresponding to each beam.
  • the sequence length extension for the first target beam can be performed by extending the parallel baseband modulation signals corresponding to the first target beam.
  • Each symbol in the baseband modulation signal is multiplied by the first target beam characteristic code, and then the information sequence corresponding to the first target beam can be obtained.
  • the first target beam can be any of the beams transmitted by the transmitter.
  • the information sequence corresponding to the first target beam can be obtained through the following "information sequence calculation formula":
  • v i (m i (T) ⁇ W i ,m i (2T) ⁇ W i ,...,m i (Q ⁇ T) ⁇ W i );
  • m i is the parallel baseband modulation signal corresponding to the i-th beam
  • vi is the signal vector of the i-th beam after orthogonal processing, with a length of P ⁇ Q
  • W i is a vector with a length of P, representing the Characteristic code of i beam
  • Q is the number of symbols carried by a single beam in 1 baseband modulation period
  • P is the length of the beam characteristic code
  • T is the duration of each symbol.
  • m i can be the parallel baseband modulation signal corresponding to the first target beam
  • Wi can be the first target beam characteristic code
  • the parallel baseband modulation signal corresponding to the first target beam can be calculated through the above "information sequence calculation formula" Each symbol in is multiplied by the first target beam characteristic code, and then vi can be obtained and vi is used as the information sequence corresponding to the first target beam.
  • the information sequence corresponding to each beam can be obtained, which can improve the orthogonality of the beams and effectively reduce the mutual interference between the beams.
  • mapping the spread spectrum information sequence corresponding to each beam to each target radio frequency channel and obtaining the sequence to be modulated corresponding to each target radio frequency channel includes:
  • the to-be-modulated sequences of each beam on the target radio frequency channel are summed to obtain the to-be-modulated sequence corresponding to the target radio frequency channel.
  • the process of mapping the spread spectrum information sequence corresponding to each beam to the target radio frequency channel may be based on each The beamforming weight of the beam on the target radio frequency channel and the spread spectrum information sequence corresponding to each beam can determine the sequence to be modulated for each beam on the target radio frequency channel, and then the sequence to be modulated for each beam on the target radio frequency channel can be determined. Sum up to obtain the sequence to be modulated corresponding to the target radio frequency channel.
  • the above mapping process can be applied to each target radio frequency channel, and then the sequence to be modulated corresponding to each target radio frequency channel can be obtained.
  • x j represents the sequence to be modulated in a baseband modulation cycle of the j-th radio frequency channel after beamforming
  • vi (n) is the n-th bit of the i-th beam signal vector after orthogonal processing and spreading
  • w ij represents the beamforming weight vector of the i-th beam in the j-th radio frequency channel
  • w ij (n) represents the n-th bit of the beamforming weight vector
  • Q is a single beam in 1 baseband
  • P is the length of the beam signature.
  • the i-th beam can be any beam among the beams that the transmitter needs to transmit
  • the j-th radio frequency channel can be the target radio frequency channel
  • the beamforming weight of the i-th beam on the j-th radio frequency channel can be Expressed as beamforming weight vector w ij
  • the spread spectrum information sequence corresponding to the i-th beam can be expressed as beam signal vector vi
  • the spread spectrum information sequence corresponding to the i-th beam can include (P ⁇ Q) sub-information sequences.
  • the n-th sub-information sequence of the spread spectrum information sequence corresponding to the i beam can be expressed as vi (n).
  • the sequence to be modulated for the i-th beam on the j-th radio frequency channel can be determined.
  • the i-th beam can be any beam among the beams that the transmitting end needs to transmit, it can be determined by the above method of "determining the sequence to be modulated for the i-th beam on the j-th radio frequency channel" The sequence to be modulated for each beam on the jth radio frequency channel (target radio frequency channel).
  • the above-mentioned "to-be-modulated sequence calculation formula" can be used to calculate the sequence for each beam on the j-th radio frequency channel (target radio frequency channel)
  • the sequences to be modulated on are summed, and the summation result can be used as the sequence to be modulated corresponding to the jth radio frequency channel (target radio frequency channel).
  • mapping the spread spectrum information sequence corresponding to each beam to the target radio frequency channel the sequence to be modulated for each beam on the target radio frequency channel can be determined, and then the sequence to be modulated corresponding to the target radio frequency channel can be obtained.
  • the mapping process can be applied to For each target radio frequency channel, the sequence to be modulated corresponding to each target radio frequency channel can be obtained, beam forming can be realized, and the sequence to be modulated corresponding to each target radio frequency channel can be input to the baseband modulation module of the transmitter for subsequent processing.
  • the sequence to be modulated for each beam on the target radio frequency channel based on the beamforming weight of each beam on the target radio frequency channel and the spread spectrum information sequence corresponding to each beam, it also includes:
  • the second target beam is any one of the beams transmitted by the transmitting end.
  • the sequence to be modulated for each beam on the target radio frequency channel it can be determined based on the launch angle of the second target beam, the position of the target radio frequency channel and the wavelength of the corresponding radio frequency point of each subcarrier.
  • the beamforming weights on the radio frequency channel, the second target beam is any of the beams emitted by the transmitter, through the same process as above, the beamforming weights of each beam on the target radio frequency channel can be obtained, and then based on The beamforming weight of each beam on the target radio frequency channel and the spread spectrum information sequence corresponding to each beam can determine the sequence to be modulated for each beam on the target radio frequency channel.
  • the beamforming weight of the second target beam on the target radio frequency channel can be obtained through the following "beamforming weight calculation formula":
  • w ij is the beamforming weight vector of the i-th beam in the j-th radio frequency channel
  • d is the array element spacing
  • ⁇ i is the emission angle of the i-th beam
  • ⁇ r is the r-th subcarrier corresponding to the radio frequency point.
  • the second target beam may be the i-th beam
  • the emission angle of the i-th beam may be expressed as ⁇ i
  • the target radio frequency channel may be the j-th radio frequency channel
  • the position of the j-th radio frequency channel may be expressed as array
  • the element spacing d, the wavelength of the radio frequency point corresponding to each subcarrier can be expressed as ⁇ r , and then based on ⁇ i , the array element spacing d and the wavelength of the radio frequency point corresponding to each subcarrier, through the above "beamforming weight calculation formula",
  • the beamforming weight w ij of the i-th beam (second target beam) on the j-th radio frequency channel (target radio frequency channel) can be determined.
  • the beamforming weight of each beam on the target radio frequency channel can be obtained, and the beamforming weight of each beam on the target radio frequency channel can be obtained
  • the weight can be used to determine the sequence to be modulated for each beam on the target radio frequency channel.
  • the method before performing sequence length extension on the parallel baseband modulated signals corresponding to each beam based on the multiple beam signatures to obtain the information sequence corresponding to each beam, the method further includes:
  • the plurality of beam signatures are determined based on the number of beams, channel conditions and target diversity gain.
  • multiple beam signatures can be determined based on the number of beams, channel conditions and target diversity gain.
  • the multiple beam signatures are a set of orthogonal codes with the same number of beams, and then based on Multiple beam signatures can perform sequence length extension on the parallel baseband modulation signals corresponding to each beam, and obtain the information sequence corresponding to each beam.
  • the transmitting end may also generate the plurality of beam signatures based on a preset protocol, and the preset protocol may indicate determining the plurality of beam signatures based on the number of beams, channel conditions and target diversity gain.
  • the order P of the signature is determined based on the number of beams. Each beam is required to correspond to a signature, so the number of signatures must be greater than the number of beams M.
  • the order of a set of orthogonal codes (the number of symbols within each code) is equal to the number of orthogonal codes, so the order P of the signature code needs to be greater than the number of beams.
  • the order P of the beam signature is determined based on the difference between the signal-to-noise ratio of the current channel and the required signal-to-noise ratio that can be received normally.
  • the signal amplitude after spreading is increased to P times the original, and the signal power The increase is P 2 times, but due to the power tolerance of the radio frequency channel, the signal power of transmitting M beams is reduced to (Diversity gain), while the power spectral density of Additive White Gaussian Noise (AWGN) channel noise is a constant value within the frequency band, and the power increases by P times, so the signal-to-noise ratio after spreading becomes the original signal (P/M) times the noise ratio.
  • AWGN Additive White Gaussian Noise
  • Figure 2 is the second schematic flow chart of the multi-beam decoupling method provided by the present disclosure.
  • the number of beams that the transmitting end needs to transmit is M
  • m 1 (t) indicates that the first beam corresponds to
  • the original baseband modulation signal of m 2 (t) represents the original baseband modulation signal corresponding to the second beam
  • m M (t) represents the original baseband modulation signal corresponding to the Mth beam.
  • serial-to-parallel conversion can be performed on the original baseband modulation signal corresponding to each beam to obtain the parallel baseband modulation signal corresponding to each beam, where the number of symbols carried by a single beam in one baseband modulation period is for Q.
  • the orthogonal processing process may include: based on multiple beam signatures, perform sequence length extension on the parallel baseband modulation signals corresponding to each beam, and obtain the information sequence corresponding to each beam, where, W 1 represents the beam signature code corresponding to the first beam, W 2 represents the beam signature code corresponding to the second beam, and W M represents the beam signature code corresponding to the Mth beam.
  • the process of spreading spectrum may include: after obtaining the information sequence corresponding to each beam, the information sequence corresponding to each beam may be allocated to the At different subcarrier frequencies, the spread spectrum information sequence corresponding to each beam can be obtained.
  • the beamforming process may include mapping the spread spectrum information sequence corresponding to each beam to each target radio frequency channel, and obtaining the sequence to be modulated corresponding to each target radio frequency channel.
  • Figure 3 is the third schematic flow chart of the multi-beam decoupling method provided by the present disclosure.
  • the number of beams that the transmitting end needs to transmit is M
  • m 1 (t) indicates that the first beam corresponds to
  • the original baseband modulation signal of m 2 (t) represents the original baseband modulation signal corresponding to the second beam
  • m M (t) represents the original baseband modulation signal corresponding to the Mth beam.
  • the process of beam orthogonality and spreading can include: performing serial-to-parallel conversion based on the original baseband modulation signal corresponding to each beam to obtain the parallel baseband modulation signal corresponding to each beam; based on multiple beam signatures, The parallel baseband modulation signals corresponding to each beam perform sequence length expansion respectively to obtain the information sequence corresponding to each beam.
  • the multiple beam characteristic codes are a set of orthogonal codes with the same number of beams; each beam is corresponding to a serial-to-parallel conversion method.
  • the information sequence is allocated to different subcarrier frequency points, and the spread spectrum information sequence corresponding to each beam is obtained.
  • the beamforming process may include: mapping the spread spectrum information sequence corresponding to each beam to each target radio frequency channel through broadband beamforming, and obtaining the to-be-modulated sequence corresponding to each target radio frequency channel, where , the total number of radio frequency channels at the transmitter is N, w 11 , w 12 , w 13 and w 1N respectively represent the beamforming weight vector of the first beam in the first radio frequency channel, the beam of the first beam in the second radio frequency channel.
  • the forming weight vector, the beam forming weight vector of the first beam in the third radio frequency channel, the beam forming weight vector of the first beam in the Nth radio frequency channel, and so on, w M1 , w M2 , w M3 and w MN respectively represents the beamforming weight vector of the Mth beam in the 1st RF channel, the beamforming weight vector of the Mth beam in the 2nd RF channel, and the beamforming weight vector of the Mth beam in the 3rd RF channel.
  • each target radio frequency channel can be The first radio frequency signal is input into the radio frequency channel, and the local oscillator, amplifier and wave recorder in the radio frequency channel are used to convert, amplify and record the frequency of each first radio frequency signal to obtain the second radio frequency signal corresponding to each target radio frequency channel, and then through the antenna
  • the array transmits, in which the second radio frequency signal corresponding to the first radio frequency channel can be s 1 (t), the second radio frequency signal corresponding to the second radio frequency channel can be s 2 (t), and so on, the Nth
  • the second radio frequency signal corresponding to the radio frequency channel may be s N (t)
  • d is the array element spacing
  • ⁇ M is the emission angle of the M-th beam.
  • the multi-beam decoupling method provided by the present disclosure can obtain the information sequence corresponding to each beam by performing sequence length extension on the parallel baseband modulation signal corresponding to each beam, and then convert the information sequence corresponding to each beam through serial-to-parallel conversion. Assigned to different subcarrier frequency points, the spread spectrum information sequence corresponding to each beam is obtained, and then the spread spectrum information sequence corresponding to the beam can be mapped to each target radio frequency channel, and the to-be-modulated sequence corresponding to each target radio frequency channel is obtained.
  • the shaping process does not involve the weight calculation process of beam side lobes and zero depth, which can reduce the amount of data processing and improve processing efficiency.
  • FIG 4 is the fourth schematic flowchart of the multi-beam decoupling method provided by the present disclosure. As shown in Figure 2, the execution subject of the method may be the receiving end. The method includes:
  • Step 401 Perform parallel-to-serial conversion on the signals to be decoupled by the third target beam at each subcarrier frequency point to obtain multiple signal groups to be decoupled;
  • parallel-to-serial conversion can be performed on the signals to be decoupled at each subcarrier frequency point of the third target beam, and multiple signal groups to be decoupled can be obtained.
  • the third target beam may be one beam among multiple beams transmitted by the transmitting end.
  • the receiving end may have a single antenna with a normal direction perpendicular to the direction of the incoming wave (the third target beam).
  • the receiving end may receive
  • the obtained RF signals are superimposed, and then the superimposed RF signals are amplified, filtered, down-converted and extracted to obtain the complex baseband signal, and then the complex baseband signal can be processed by Fast Fourier Transform (FTT) , the signal to be decoupled at each subcarrier frequency point of the third target beam can be obtained.
  • FTT Fast Fourier Transform
  • the number of subcarriers may be the product of a first preset value and a second preset value.
  • the first preset value is the number of symbols carried by a single beam in one baseband modulation period.
  • the second preset value is The length of the second target beam signature.
  • the number of subcarriers may be (P ⁇ Q), where Q represents the number of symbols carried by a single beam in one baseband modulation period, and P represents the length of the second target beam signature.
  • the signals to be decoupled at each subcarrier frequency point of the third target beam can be divided into multiple signal groups to be decoupled, and the number of signal groups to be decoupled is a first preset value, The number of signals to be decoupled in any signal group to be decoupled is the second preset value.
  • the signals to be decoupled at each subcarrier frequency point of the third target beam can be divided into multiple signal groups to be decoupled.
  • the number of signal groups to be decoupled is Q. Any signal to be decoupled
  • the number of signals to be decoupled in the group is P, Q represents the number of symbols carried by a single beam in one baseband modulation period, and P represents the length of the second target beam signature.
  • Step 402 Based on the second target beam characteristic code corresponding to the third target beam, perform a beam decoupling operation on the plurality of signal groups to be decoupled, and obtain the parallel baseband modulation signal carried by the third target beam.
  • the receiving end may hold the second target beam signature corresponding to the third target beam; after acquiring multiple signal groups to be decoupled, the multiple signal groups to be decoupled may be beamed based on the second target beam signature. Decoupling operation is performed to obtain the parallel baseband modulation signal carried by the third target beam.
  • beam decoupling refers to a technical method that reduces or eliminates signal interference and energy aliasing between multiple beams to optimize the extraction of specific beam information.
  • Step 403 Perform parallel-to-serial conversion based on the parallel baseband modulation signal carried by the third target beam to obtain the original baseband modulation signal carried by the third target beam.
  • the parallel baseband modulation signal carried by the third target beam can be converted from parallel to serial, and then the original baseband modulation signal carried by the third target beam can be obtained. .
  • the receiving end may pre-store the multiple beam signatures, and the receiving end may also generate the multiple beam signatures based on a preset protocol.
  • the multi-beam decoupling method provided by the present disclosure can obtain the parallel signals carried by the third target beam by performing beam decoupling operations on multiple signal groups to be decoupled based on the second target beam characteristic code corresponding to the third target beam.
  • the baseband modulation signal is then converted to parallel baseband modulation signal, and the original baseband modulation signal carried by the third target beam can be obtained.
  • the beam decoupling process does not involve the calculation process of beam side lobes and zero depth weights, which can reduce the data processing capacity and improve processing efficiency.
  • the beam decoupling operation includes:
  • the target signal group to be decoupled is any group among the plurality of signal groups to be decoupled.
  • a beam decoupling operation may be performed on the multiple signal groups to be decoupled.
  • the beam decoupling operation may be based on the target signal group to be decoupled and the second target beam characteristic code. to determine the target baseband modulation signal.
  • the target signal group to be decoupled is any group of multiple signal groups to be decoupled. Perform the above beam decoupling operation on each signal group to be decoupled to obtain multiple target basebands. Modulation signals, and further multiple target baseband modulation signals can be used as parallel baseband modulation signals carried by the third target beam.
  • the target baseband modulation signal can be obtained through the following "beam decoupling formula":
  • m i(nT) ' is the baseband modulation signal carried by the i-th beam after decoupling
  • 1 ⁇ n ⁇ Q s n is the n-th signal group to be decoupled
  • Wi is the beam of the i-th beam Characteristic code
  • P is the length of the beam characteristic code
  • T is the duration of each symbol.
  • s n can be the target signal group to be decoupled
  • Wi can be the second target beam characteristic code. Based on s n and Wi , through the above-mentioned "beam decoupling formula", the target baseband modulation signal m i can be determined (nT) '.
  • the beam decoupling operation can be used to obtain multiple target baseband modulation signals, and then the multiple target baseband modulation signals can be used as parallel baseband modulation signals carried by the third target beam.
  • the second target beam signature is one of multiple beam signatures corresponding to the third target beam, and the multiple beam signatures are a group of orthogonal beams with the same number as the transmitting end.
  • code based on the second target beam characteristic code corresponding to the third target beam, perform a beam decoupling operation on the plurality of signal groups to be decoupled, and obtain the parallel baseband modulation carried by the third target beam Before the signal, also include:
  • the plurality of beam signatures are determined based on the number of beams, channel conditions and target diversity gain.
  • multiple beam signatures can be determined based on the number of beams, channel conditions and target diversity gain.
  • the multiple beam signatures are a group that is the same as the number of beams at the transmitter.
  • the orthogonal code can match a beam signature for each beam.
  • the receiving end can hold the multiple beam signatures, and then can learn the second target beam signature corresponding to the third target beam, which can be based on the second target beam.
  • Feature code perform beam decoupling operations on multiple signal groups to be decoupled, and obtain the parallel baseband modulation signal carried by the third target beam.
  • the receiving end may also generate the plurality of beam signatures based on a preset protocol, and the preset protocol may indicate determining the plurality of beam signatures based on the number of beams, channel conditions and target diversity gain.
  • Figure 5 is the fifth schematic flow chart of the multi-beam decoupling method provided by the present disclosure
  • Figure 6 is the sixth schematic flow chart of the multi-beam decoupling method provided by the present disclosure.
  • the transmitter The number of transmitted beams is M.
  • the receiving end can receive the radio frequency signals corresponding to each beam through the antenna, superimpose the received radio frequency signals, and then amplify and filter the superimposed radio frequency signals, where s 1 (t) can represent The received radio frequency signal corresponding to the first beam, s 2 (t- ⁇ ) can represent the received radio frequency signal corresponding to the second beam, and so on, s M [t-(M-1) ⁇ ] represents the received For the radio frequency signal corresponding to the Mth beam, ⁇ can represent the propagation delay between each array element, and n c (t) can represent the channel noise.
  • the amplified and filtered RF signal can be down-converted, filtered and extracted to obtain a complex baseband signal in the form of IQ, where fc represents the center frequency and I(t) represents the same direction of the baseband modulation signal.
  • the component, Q(t), represents the orthogonal component of the baseband modulated signal.
  • the third target beam may be one beam among multiple beams transmitted by the transmitting end, and the receiving end may have a single antenna whose normal direction is perpendicular to the direction of the incoming wave (the third target beam).
  • the signal to be decoupled at each subcarrier frequency point of the third target beam can be converted from parallel to serial, Obtain multiple signal groups to be decoupled, where s 1 is the first signal group to be decoupled, s 2 is the second signal group to be decoupled, and so on, s Q is the Qth signal group to be decoupled. , Q represents the number of symbols carried by a single beam in one baseband modulation period.
  • a beam decoupling operation can be performed on each signal group to be decoupled, multiple target baseband modulated signals can be acquired, and the multiple target baseband modulated signals can be used as The parallel baseband modulation signal carried by the third target beam, where Wi is the beam characteristic code of the i-th beam (the third target beam), which can be obtained by performing a beam decoupling operation on the first signal group s 1 to be decoupled.
  • the beam decoupling operation can be performed on the second signal group s 2 to be decoupled to obtain one signal m i2 ' in the parallel baseband modulation signal, and so on, for the Qth
  • the beam decoupling operation on the signal group s Q to be decoupled can obtain one signal m iQ ' in the parallel baseband modulation signal.
  • the parallel baseband modulation signal can be converted into parallel to serial, and the original baseband modulation signal m i '(t carried by the third target beam can be obtained ).
  • the multi-beam decoupling method provided by the present disclosure can obtain the parallel signals carried by the third target beam by performing beam decoupling operations on multiple signal groups to be decoupled based on the second target beam characteristic code corresponding to the third target beam.
  • the baseband modulation signal is then converted to parallel baseband modulation signal, and the original baseband modulation signal carried by the third target beam can be obtained.
  • the beam decoupling process does not involve the calculation process of beam side lobes and zero depth weights, which can reduce the data processing capacity and improve processing efficiency.
  • Figure 7 is a schematic structural diagram of the transmitting end provided by the present disclosure. As shown in Figure 7, the transmitting end includes: a beamforming module 701, a baseband modulation module 702, a radio frequency channel module 703 and an antenna array 704 that are electrically connected in sequence.
  • the beamforming module 701 includes a first serial-to-parallel conversion unit, an orthogonal processing unit, a second serial-to-parallel conversion unit, and a mapping unit; the first serial-to-parallel conversion unit is used to perform processing based on the original baseband modulation signal corresponding to each beam.
  • the orthogonal processing unit is used to perform sequence length extension on the parallel baseband modulation signals corresponding to each beam based on multiple beam signatures to obtain the information sequence corresponding to each beam , the multiple beam characteristic codes are a set of orthogonal codes that are the same as the number of beams;
  • the second serial-to-parallel conversion unit is used to allocate the information sequence corresponding to each beam to different sub-carrier frequency points through serial-to-parallel conversion, and obtain The spread spectrum information sequence corresponding to each beam;
  • the mapping unit is used to map the spread spectrum information sequence corresponding to each beam to each target radio frequency channel, and obtain the to-be-modulated sequence corresponding to each target radio frequency channel.
  • the sequence to be modulated corresponding to each target radio frequency channel can be input into the baseband modulation module.
  • the baseband modulation module and the radio frequency channel module can perform baseband modulation, amplification, and Processing such as frequency conversion and filtering is then converted into a radio frequency signal, which is then transmitted through the antenna array.
  • the beamforming module provided by the present disclosure can effectively reduce the mutual interference between beams by improving the orthogonality of the beams; compared with traditional beam precoding technology, the present disclosure is based on the radiation characteristics of array antennas and electromagnetic field interference propagation.
  • the physical process takes the angle of improving beam orthogonality as the starting point, the calculation is simpler, and it is easy to combine with beam forming technology, which can improve the performance of all-digital array communication systems; the strong correlation between the number of array elements and the number of beams achieves decoupling , can use fewer array elements to achieve radiation from any number of beams at any angle, and can achieve the common aperture gain of digital multi-beams, and the system signal-to-noise ratio will not deteriorate due to the increase in the number of beams.
  • the beamforming module does not involve the weight calculation process of beam side lobes and zero depth, and the data processing volume at the transmitter is small; by introducing spread spectrum diversity gain, array gain can be achieved and the replacement of signal-to-noise ratio and spectrum utilization.
  • the transmitter provided by the present disclosure can obtain the information sequence corresponding to each beam by performing sequence length extension on the parallel baseband modulation signal corresponding to each beam, and then allocate the information sequence corresponding to each beam to different channels through serial-to-parallel conversion.
  • the spread spectrum information sequence corresponding to each beam is obtained, and then the spread spectrum information sequence corresponding to the beam can be mapped to each target radio frequency channel, and the sequence to be modulated corresponding to each target radio frequency channel is obtained.
  • the beamforming process does not involve The weight calculation process of beam side lobes and zero depth can reduce the amount of data processing and improve processing efficiency.
  • the orthogonal processing unit is specifically used for:
  • the first target beam is any one of the beams transmitted by the transmitting end, and the first target beam characteristic code is one of the plurality of beam characteristic codes corresponding to the first target beam.
  • mapping unit is specifically used for:
  • the to-be-modulated sequences of each beam on the target radio frequency channel are summed to obtain the to-be-modulated sequence corresponding to the target radio frequency channel.
  • the beamforming module further includes a first determining unit that determines the position of each beam on the target radio frequency channel based on the beamforming weight of each beam on the target radio frequency channel and the spread spectrum information sequence corresponding to each beam. Before the sequence to be modulated, the first determining unit is used to:
  • the second target beam is any one of the beams transmitted by the transmitting end.
  • the beamforming module further includes a second determination unit.
  • the second determination unit is used for:
  • the plurality of beam signatures are determined based on the number of beams, channel conditions and target diversity gain.
  • the transmitter provided by the present disclosure can obtain the information sequence corresponding to each beam by performing sequence length extension on the parallel baseband modulation signal corresponding to each beam, and then allocate the information sequence corresponding to each beam to different channels through serial-to-parallel conversion.
  • the spread spectrum information sequence corresponding to each beam is obtained, and then the spread spectrum information sequence corresponding to the beam can be mapped to each target radio frequency channel, and the sequence to be modulated corresponding to each target radio frequency channel is obtained.
  • the beamforming process does not involve The weight calculation process of beam side lobes and zero depth can reduce the amount of data processing and improve processing efficiency.
  • FIG 8 is a schematic structural diagram of the receiving end provided by the present disclosure. As shown in Figure 8, the receiving end includes: an antenna module 801, a signal extraction module 802, a fast Fourier transform module 803 and a beam decoupling module 804 that are electrically connected in sequence.
  • the third target beam may be one of multiple beams transmitted by the transmitting end.
  • the receiving end may have a single antenna whose normal direction is perpendicular to the direction of the incoming wave (the third target beam).
  • the receiving end may use an antenna module to The received radio frequency signals are superimposed, and then the superimposed radio frequency signals are amplified and filtered. After the amplified and filtered radio frequency signals are down-converted and extracted through the signal extraction module, the complex baseband signal can be obtained, and then through the fast Fourier
  • the transformation module performs fast Fourier transform processing on the complex baseband signal to obtain the signal to be decoupled at each subcarrier frequency point of the third target beam.
  • the beam decoupling module includes a first parallel-to-serial conversion unit, a decoupling unit and a second parallel-to-serial conversion unit, wherein the first parallel-to-serial conversion unit is used to convert the third target beam at each subcarrier frequency point.
  • the signal to be decoupled performs parallel-to-serial conversion to obtain multiple signal groups to be decoupled; the decoupling unit is used to perform beam decoupling on the multiple signal groups to be decoupled based on the second target beam characteristic code corresponding to the third target beam.
  • the coupling operation is used to obtain the parallel baseband modulation signal carried by the third target beam;
  • the second parallel-to-serial conversion unit is used to perform parallel-to-serial conversion based on the parallel baseband modulation signal carried by the third target beam, and obtain the parallel baseband modulation signal carried by the third target beam. the original baseband modulated signal.
  • the beam decoupling module does not involve the weight calculation process of beam side lobes and zero depth, and the data processing volume at the receiving end is small, which can improve processing efficiency.
  • the receiving end provided by the present disclosure can obtain the parallel baseband modulation signal carried by the third target beam by performing beam decoupling operations on multiple signal groups to be decoupled based on the second target beam characteristic code corresponding to the third target beam. Then, the parallel baseband modulation signal is converted into parallel to serial, and the original baseband modulation signal carried by the third target beam can be obtained.
  • the beam decoupling process does not involve the weight calculation process of beam side lobes and zero depth, which can reduce the amount of data processing and improve processing efficiency.
  • the decoupling unit is specifically used for:
  • the target signal group to be decoupled is any group among the plurality of signal groups to be decoupled.
  • the second target beam signature is one of multiple beam signatures corresponding to the third target beam, and the multiple beam signatures are a group of orthogonal beams with the same number as the transmitting end. code; the beam decoupling module also includes a third determination unit, performing a beam decoupling operation on the plurality of signal groups to be decoupled based on the second target beam characteristic code corresponding to the third target beam, Before acquiring the parallel baseband modulation signal carried by the third target beam, the third determination unit is used to:
  • the plurality of beam signatures are determined based on the number of beams, channel conditions and target diversity gain.
  • the receiving end provided by the present disclosure can obtain the parallel baseband modulation signal carried by the third target beam by performing beam decoupling operations on multiple signal groups to be decoupled based on the second target beam characteristic code corresponding to the third target beam. Then, the parallel baseband modulation signal is converted into parallel to serial, and the original baseband modulation signal carried by the third target beam can be obtained.
  • the beam decoupling process does not involve the weight calculation process of beam side lobes and zero depth, which can reduce the amount of data processing and improve processing efficiency.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供一种多波束波束去耦方法、发射端及接收端,所述多波束波束去耦方法包括:基于各波束对应的原始基带调制信号,进行串并转换,获取各波束对应的并行基带调制信号;基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,多个波束特征码为一组与波束数量相同的正交码;通过串并转换方式将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列;将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列。本公开的波束成形过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。

Description

多波束波束去耦方法、发射端及接收端
相关申请的交叉引用
本申请要求于2022年08月09日提交的申请号为2022109527170,发明名称为“多波束波束去耦方法、发射端及接收端”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种多波束波束去耦方法、发射端及接收端。
背景技术
随着移动通信技术的发展,具有更高增益的波束成形技术成为研究热点,其中,预编码技术根据已有的信道矩阵和噪声信息求解编码矩阵,从而降低空间信道和其他方向的波束对该波束的影响,使接收端信息最大程度的与波束原始信息相同;而数字波束成形技术指的是在基带通过预编码技术使各天线上的信号形成相位差,在波束指向上各天线辐射信号相位相同,形成功率定向性,并在干扰位置形成零陷。
相关技术中,波束预编码算法,如线性迫零、最小均方误差或脏纸编码对信道估计的依赖性高,算法性能主要依赖于信道矩阵估算的精度,而数字波束成形算法需要每个波束在其他波束方向上形成零深,涉及矩阵求逆和自相关函数的运算,在全频率复用且波束较多的应用算法收敛困难,场景下计算量大,尤其在毫米波频段的信号数据占用带宽较宽,多波束***的数据处理负担很重。
发明内容
本公开提供一种多波束波束去耦方法、发射端及接收端,用以解决现有技术中波束成形过程数据处理负担较重的缺陷,实现降低波束成形过程的数据处理量,提高处理效率。
第一方面,本公开提供一种多波束波束去耦方法,应用于发射端,包括:
基于各波束对应的原始基带调制信号,进行串并转换,获取各波束对应的并行基带调制信号;
基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,所述多个波束特征码为一组与波束数量相同的正交码,所述多个波束特征码用于波束正交和波束去耦;
通过串并转换方式将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列;
将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列。
可选地,根据本公开提供的一种多波束波束去耦方法,所述序列长度扩展,包括:
将第一目标波束对应的并行基带调制信号中的每一个符号分别与第一目标波束特征码相乘,获取所述第一目标波束对应的信息序列;
所述第一目标波束为所述发射端所发射的波束中的任一项,所述第一目标波束特征码为所述多个波束特征码中与所述第一目标波束对应的一项。
可选地,根据本公开提供的一种多波束波束去耦方法,所述将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,包括:
基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列;
对各波束在目标射频通道上的待调制序列进行求和,获取目标射频通道对应的待调制序列。
可选地,根据本公开提供的一种多波束波束去耦方法,在所述基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列之前,还包括:
基于第二目标波束的发射角、所述目标射频通道的位置和各子载波对应射频频点的波长,确定所述第二目标波束在所述目标射频通道上的波束成形权值;
所述第二目标波束为所述发射端所发射的波束中的任一项。
可选地,根据本公开提供的一种多波束波束去耦方法,在所述基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列之前,还包括:
基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
第二方面,本公开还提供一种多波束波束去耦方法,应用于接收端,包括:
将第三目标波束在各子载波频点上的待去耦信号,进行并串转换,获取多个待去耦信号组;
基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号;
基于所述第三目标波束所承载的并行基带调制信号,进行并串转换,获取所述第三目标波束所承载的原始基带调制信号。
可选地,根据本公开提供的一种多波束波束去耦方法,所述波束去耦操 作包括:
基于目标待去耦信号组与所述第二目标波束特征码的乘积,确定目标基带调制信号,所述目标基带调制信号为所述并行基带调制信号中的一路信号;
所述目标待去耦信号组为所述多个待去耦信号组中的任一组。
可选地,根据本公开提供的一种多波束波束去耦方法,所述第二目标波束特征码为多个波束特征码中与所述第三目标波束对应的一项,所述多个波束特征码为一组与发射端的波束数量相同的正交码;在所述基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号之前,还包括:
基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
第三方面,本公开还提供一种发射端,包括:依次电连接的波束成形模块、基带调制模块、射频通道模块和天线阵列;所述波束成形模块包括第一串并转换单元、正交处理单元、第二串并转换单元和映射单元;
所述第一串并转换单元,用于基于各波束对应的原始基带调制信号,进行串并转换,获取各波束对应的并行基带调制信号;
所述正交处理单元,用于基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,所述多个波束特征码为一组与波束数量相同的正交码,所述多个波束特征码用于波束正交和波束去耦;
所述第二串并转换单元,用于通过串并转换方式将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列;
所述映射单元,用于将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列。
第四方面,本公开还提供一种接收端,包括:依次电连接的天线模块、信号抽取模块、快速傅里叶变换模块和波束去耦模块;所述波束去耦模块包括第一并串转换单元、去耦单元和第二并串转换单元;
所述第一并串转换单元,用于将第三目标波束在各子载波频点上的待去耦信号,进行并串转换,获取多个待去耦信号组;
所述去耦单元,用于基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号;
所述第二并串转换单元,用于基于所述第三目标波束所承载的并行基带调制信号,进行并串转换,获取所述第三目标波束所承载的原始基带调制信号。
本公开提供的多波束波束去耦方法、发射端及接收端,通过对各波束对应的并行基带调制信号分别执行序列长度扩展,可以获取各波束对应的信息序列,进而通过串并转换方式可以将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列,进而可以将波束对应的扩频 信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,波束成形过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
附图说明
为了更清楚地说明本公开或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开提供的多波束波束去耦方法的流程示意图之一;
图2是本公开提供的多波束波束去耦方法的流程示意图之二;
图3是本公开提供的多波束波束去耦方法的流程示意图之三;
图4是本公开提供的多波束波束去耦方法的流程示意图之四;
图5是本公开提供的多波束波束去耦方法的流程示意图之五;
图6是本公开提供的多波束波束去耦方法的流程示意图之六;
图7是本公开提供的发射端的结构示意图;
图8是本公开提供的接收端的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是本公开提供的多波束波束去耦方法的流程示意图之一,如图1所示,所述多波束波束去耦方法的执行主体可以是发射端,该方法包括:
步骤101,基于各波束对应的原始基带调制信号,进行串并转换,获取各波束对应的并行基带调制信号;
具体地,为了实现波束成形,可以对各波束对应的原始基带调制信号进行串并转换,进而可以获取各波束对应的并行基带调制信号。
例如,发射端需要发射的波束包括第一波束、第二波束、第三波束和第四波束,为了实现波束成形,发射端可以对第一波束对应的原始基带调制信号、第二波束对应的原始基带调制信号、第三波束对应的原始基带调制信号和第四波束对应的原始基带调制信号进行串并转换,进而可以获取第一波束对应的并行基带调制信号、第二波束对应的并行基带调制信号、第三波束对应的并行基带调制信号和第四波束对应的并行基带调制信号。
步骤102,基于多个波束特征码,对各波束对应的并行基带调制信号分 别执行序列长度扩展,获取各波束对应的信息序列,所述多个波束特征码为一组与波束数量相同的正交码,所述多个波束特征码用于波束正交和波束去耦;
具体地,多个波束特征码为一组与波束数量相同的正交码,可以为各波束分别匹配一个波束特征码;在获取各波束对应的并行基带调制信号之后,可以基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,各波束对应的信息序列之间具有正交性。
可以理解的是,若波束特征码的长度为P个符号,则信息序列的长度为并行基带调制信号长度的P倍。
例如,发射端需要发射的波束包括第一波束、第二波束、第三波束和第四波束,波束数量为4,多个波束特征码为一组数量为4的正交码,多个波束特征码可以包括第一波束所匹配的第一波束特征码、第二波束所匹配的第二波束特征码、第三波束所匹配的第三波束特征码和第四波束所匹配的第四波束特征码,在获取各波束对应的并行基带调制信号之后,可以基于第一波束所匹配的,对第一波束对应的并行基带调制信号分别执行序列长度扩展,获取第一波束对应的信息序列,以此类推,可以获取第二波束对应的信息序列,第三波束对应的信息序列以及第四波束对应的信息序列。
步骤103,通过串并转换方式将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列;
具体地,在获取各波束对应的信息序列之后,可以通过串并转换(也即扩频)的方式,将各波束对应的信息序列分配到不同的子载波频点上,进而可以获取各波束对应的扩频信息序列,扩频信息序列包括多个子信息序列,各子信息序列对应不同的子载波频点。
可选地,若波束特征码的长度为P个符号,单波束在1个基带调制周期内承载的符号数为Q,则子载波的数量可以是P×Q。
可选地,扩频信息序列包括多个子信息序列,多个子信息序列的数量与多个子载波频点的数量相同。
例如,多个子载波频点的数量为4,多个子载波频点包括第一子载波频点、第二子载波频点、第三子载波频点和第四子载波频点,各子载波频点之间互不相同,可以通过串并转换的方式,将指定波束对应的信息序列分配到不同的子载波频点上,进而可以获取该指定波束对应的扩频信息序列,该扩频信息序列可以包括第一子信息序列(与第一子载波频点相对应)、第二子信息序列(与第二子载波频点相对应)、第三子信息序列(与第三子载波频点相对应)和第四子信息序列(与第四子载波频点相对应)。
可以理解的是,将正交处理后的序列以串并转换(扩频)的方式分配到不同的子载波频点,经过扩频的信号具有分集增益的特性,将使接收信噪比提高10lg(P/M)(dB),其中M为发射端的波束数量,P为波束特征码的长度。
步骤104,将各波束对应的扩频信息序列映射到各目标射频通道上,获 取各目标射频通道对应的待调制序列。
具体地,发射端可以具有多个目标射频通道,在获取各波束对应的扩频信息序列之后,可以通过宽带波束成形的方式将各波束对应的扩频信息序列映射到各目标射频通道上,进而可以获取各目标射频通道对应的待调制序列,可以实现波束成形,进而可以将各目标射频通道对应的待调制序列输入到发射端的基带调制模块进行后续处理。
例如,发射端需要发射的波束包括第一波束、第二波束、第三波束和第四波束,发射端可以具有第一目标射频通道和第二目标射频通道,在获取各波束对应的扩频信息序列之后,可以通过宽带波束成形的方式将第一波束对应的扩频信息序列、第二波束对应的扩频信息序列、第三波束对应的扩频信息序列和第四波束对应的扩频信息序列映射到第一目标射频通道,可以获取第一目标射频通道对应的待调制序列,同样可以通过宽带波束成形的方式将第一波束对应的扩频信息序列、第二波束对应的扩频信息序列、第三波束对应的扩频信息序列和第四波束对应的扩频信息序列映射到第二目标射频通道,可以获取第二目标射频通道对应的待调制序列。
可选地,发射端可以预存有所述多个波束特征码,发射端还可以基于预设协议生成所述多个波束特征码。
可选地,在获取各目标射频通道对应的待调制序列之后,可以进行基带调制、放大、变频和滤波后转变为射频信号,再通过天线阵列发射。
可以理解的是,相关技术受3dB波束宽度的限制,现有的数字多波束构架辐射波束数量和需要的阵元通道数量高度相关,使全数字多波束阵列的***复杂度偏高,与传统方案相比,本公开能够提高波束的正交性,可以降低同时共口径波束信号的相互干扰,对阵元数量与波束数量的强相关实现解耦,能够利用较少阵元实现任意多个波束任意角度的辐射,波束的发射角度、数量不再受阵列单元数限制,能够降低全数字多波束阵列的***复杂度。
相较传统预编码和数字波束成形算法,在全频率复用且波束较多的应用场景下,本公开能够降低波束权值计算难度。另外,本公开在利用数字多波束天线阵列的共口径阵列增益的同时,还通过引入扩频分集增益能够进一步提高***的信噪比。
本公开提供的多波束波束去耦方法,通过对各波束对应的并行基带调制信号分别执行序列长度扩展,可以获取各波束对应的信息序列,进而通过串并转换方式可以将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列,进而可以将波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,波束成形过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
可选地,所述序列长度扩展,包括:
将第一目标波束对应的并行基带调制信号中的每一个符号分别与第一目标波束特征码相乘,获取所述第一目标波束对应的信息序列;
所述第一目标波束为所述发射端所发射的波束中的任一项,所述第一目 标波束特征码为所述多个波束特征码中与所述第一目标波束对应的一项。
具体地,在获取各波束对应的并行基带调制信号之后,可以对各波束对应的并行基带调制信号分别执行序列长度扩展,对于第一目标波束执行序列长度扩展可以是将第一目标波束对应的并行基带调制信号中的每一个符号分别与第一目标波束特征码相乘,进而可以获取第一目标波束对应的信息序列,第一目标波束可以是发射端所发射的波束中的任一项,通过多次序列长度扩展操作,可以获取各波束对应的信息序列。
可选地,可以通过以下“信息序列计算公式”,获取第一目标波束对应的信息序列:
v i=(m i(T)·W i,m i(2T)·W i,...,m i(Q·T)·W i);
其中,m i为第i个波束对应的并行基带调制信号;v i为经过正交处理后的第i个波束的信号矢量,长度为P×Q;W i是长度为P的向量,表示第i个波束的特征码;Q为单波束在1个基带调制周期内承载的符号数,P为波束特征码的长度,T为每个符号的持续时间。
可选地,m i可以是第一目标波束对应的并行基带调制信号,W i可以是第一目标波束特征码,通过上述“信息序列计算公式”可以将第一目标波束对应的并行基带调制信号中的每一个符号分别与第一目标波束特征码相乘,进而可以获取v i并将v i作为第一目标波束对应的信息序列。
因此,通过多次序列长度扩展操作,可以获取各波束对应的信息序列,能够提高波束的正交性,有效降低波束间的相互干扰。
可选地,所述将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,包括:
基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列;
对各波束在目标射频通道上的待调制序列进行求和,获取目标射频通道对应的待调制序列。
具体地,在获取各波束对应的扩频信息序列之后,为了获取某一目标射频通道对应的待调制序列,将各波束对应的扩频信息序列映射到目标射频通道上的过程可以是,基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,可以确定各波束在目标射频通道上的待调制序列,进而可以对各波束在目标射频通道上的待调制序列进行求和,获取目标射频通道对应的待调制序列。上述映射过程可以应用到每一个目标射频通道,进而可以获取各目标射频通道对应的待调制序列。
可选地,可以通过以下“待调制序列计算公式”,获取目标射频通道对应的待调制序列:
Figure PCTCN2022136016-appb-000001
其中,x j表示波束成形后第j个射频通道在一个基带调制周期内的待调制序列,v i(n)为经过正交处理及扩频后的第i个波束信号矢量的第n位,w ij 表示第i个波束在第j个射频通道的波束成形权向量,w ij(n)表示波束成形权向量的第n位,1≤n≤P×Q,Q为单波束在1个基带调制周期内承载的符号数,P为波束特征码的长度。
可选地,第i个波束可以是发射端需要发射的波束中的任意一个波束,第j个射频通道可以是目标射频通道,第i个波束在第j个射频通道上的波束成形权值可以表示为波束成形权向量w ij,第i个波束对应的扩频信息序列可以表示为波束信号矢量v i,第i个波束对应的扩频信息序列可以包括(P×Q)个子信息序列,第i个波束对应的扩频信息序列的第n个子信息序列可以表示为v i(n)。
可选地,基于w ij和v i,通过上述“待调制序列计算公式”中的[v i(1)w ij(1),v i(2)w ij(2),…,v i(P×Q)w ij(P×Q)],可以确定第i个波束在第j个射频通道上的待调制序列。
可以理解的是,由于第i个波束可以是发射端需要发射的波束中的任意一个波束,因而通过上述“确定第i个波束在第j个射频通道上的待调制序列”的方式,可以确定各波束在第j个射频通道(目标射频通道)上的待调制序列。
可选地,在确定各波束在第j个射频通道(目标射频通道)上的待调制序列之后,可以通过上述“待调制序列计算公式”对各波束在第j个射频通道(目标射频通道)上的待调制序列进行求和,进而可以将求和结果作为第j个射频通道(目标射频通道)对应的待调制序列。
因此,通过将各波束对应的扩频信息序列映射到目标射频通道上,可以确定各波束在目标射频通道上的待调制序列,进而可以获取目标射频通道对应的待调制序列,映射过程可以应用到每一个目标射频通道,进而可以获取各目标射频通道对应的待调制序列,可以实现波束成形,进而可以将各目标射频通道对应的待调制序列输入到发射端的基带调制模块进行后续处理。
可选地,在所述基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列之前,还包括:
基于第二目标波束的发射角、所述目标射频通道的位置和各子载波对应射频频点的波长,确定所述第二目标波束在所述目标射频通道上的波束成形权值;
所述第二目标波束为所述发射端所发射的波束中的任一项。
具体地,为了确定各波束在目标射频通道上的待调制序列,可以基于第二目标波束的发射角、目标射频通道的位置和各子载波对应射频频点的波长,确定第二目标波束在目标射频通道上的波束成形权值,第二目标波束为发射端所发射的波束中的任一项,通过上述相同的处理过程,可以获取各波束在目标射频通道上的波束成形权值,进而基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,可以确定各波束在目标射频通道上 的待调制序列。
可选地,可以通过以下“波束成形权值计算公式”,获取第二目标波束在目标射频通道上的波束成形权值:
Figure PCTCN2022136016-appb-000002
其中,w ij为第i个波束在第j个射频通道的波束成形权向量,d为阵元间距,θ i为第i个波束的发射角,λ r为第r个子载波对应射频频点的波长,R为基带子载波数量,R=P×Q,Q为单波束在1个基带调制周期内承载的符号数,P为波束特征码的长度。
可选地,第二目标波束可以是第i个波束,第i个波束的发射角可以表示为θ i,目标射频通道可以是第j个射频通道,第j个射频通道的位置可以表示为阵元间距d,各子载波对应射频频点的波长可以表示为λ r,进而基于θ i、阵元间距d和各子载波对应射频频点的波长,通过上述“波束成形权值计算公式”,可以确定第i个波束(第二目标波束)在第j个射频通道(目标射频通道)上的波束成形权值w ij
因此,基于各波束的发射角、目标射频通道的位置和各子载波对应射频频点的波长,可以获取各波束在目标射频通道上的波束成形权值,各波束在目标射频通道上的波束成形权值可以用于确定各波束在目标射频通道上的待调制序列。
可选地,在所述基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列之前,还包括:
基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
具体地,为了获取各波束对应的信息序列,可以基于波束数量、信道条件和目标分集增益,确定多个波束特征码,多个波束特征码为一组与波束数量相同的正交码,进而基于多个波束特征码可以对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列。
可以理解的是,发射端还可以基于预设协议生成所述多个波束特征码,该预设协议可以是指示基于波束数量、信道条件和目标分集增益,确定多个波束特征码。
对于波束数量,基于波束数量确定特征码的阶数P,要求每个波束都与一个特征码对应,因此特征码的数量必须大于波束的数量M。一般来说,一组正交码的阶数(每个码内的符号数)与正交码的数量相等,因此特征码的阶数P需要大于波束的数量。
对于信道条件和分集增益,基于当前信道的信噪比与可以正常接收的所需信噪比之差确定波束特征码的阶数P,扩频后的信号幅度增加为原始的P倍,信号功率增加为P 2倍,但由于射频通道存在功率容限,发射M个波束的信号功率降低为
Figure PCTCN2022136016-appb-000003
(分集增益),而加性高斯白噪声(Additive White Gaussian Noise,AWGN)信道噪声的功率谱密度在频带内为恒定值,功率增加为P倍, 因此扩频后的信噪比变为原信噪比的(P/M)倍。
可选地,图2是本公开提供的多波束波束去耦方法的流程示意图之二,如图2所示,发射端需要发射的波束数量为M,m 1(t)表示第1个波束对应的原始基带调制信号,m 2(t)表示第2个波束对应的原始基带调制信号,以此类推,m M(t)表示第M个波束对应的原始基带调制信号。
可选地,如图2所示,可以对各波束对应的原始基带调制信号,进行串并转换获取各波束对应的并行基带调制信号,其中,单波束在1个基带调制周期内承载的符号数为Q。
可选地,如图2所示,正交处理的过程可以包括:基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,其中,W 1表示第1个波束对应的波束特征码,W 2表示第2个波束对应的波束特征码,W M表示第M个波束对应的波束特征码。
可选地,如图2所示,扩频的过程可以包括:在获取各波束对应的信息序列之后,可以通过串并转换(也即扩频)的方式,将各波束对应的信息序列分配到不同的子载波频点上,进而可以获取各波束对应的扩频信息序列。
可选地,如图2所示,波束赋形的过程可以包括:将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列。
可选地,图3是本公开提供的多波束波束去耦方法的流程示意图之三,如图3所示,发射端需要发射的波束数量为M,m 1(t)表示第1个波束对应的原始基带调制信号,m 2(t)表示第2个波束对应的原始基带调制信号,以此类推,m M(t)表示第M个波束对应的原始基带调制信号。
如图3所示,波束正交及扩频的过程可以包括:基于各波束对应的原始基带调制信号,进行串并转换,获取各波束对应的并行基带调制信号;基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,所述多个波束特征码为一组与波束数量相同的正交码;通过串并转换方式将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列。
如图3所示,波束赋形的过程可以包括:通过宽带波束成形的方式,将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,其中,发射端的射频通道总数为N,w 11、w 12、w 13和w 1N分别表示第1个波束在第1个射频通道的波束成形权向量、第1个波束在第2个射频通道的波束成形权向量、第1个波束在第3个射频通道的波束成形权向量、第1个波束在第N个射频通道的波束成形权向量,以此类推,w M1、w M2、w M3和w MN分别表示第M个波束在第1个射频通道的波束成形权向量、第M个波束在第2个射频通道的波束成形权向量、第M个波束在第3个射频通道的波束成形权向量、第M个波束在第N个射频通道的波束成形权向量。
如图3所示,在获取各目标射频通道对应的待调制序列之后,可以对各目标射频通道对应的待调制序列进行基带调制,获取各目标射频通道对应的第一射频信号,进而可以将各第一射频信号输入射频通道,通过射频通道中 的本振、放大器和录波器对各第一射频信号进行变频、放大和录波处理获取各目标射频通道对应的第二射频信号,进而通过天线阵列进行发射,其中,第1个射频通道对应的第二射频信号可以是s 1(t),第2个射频通道对应的第二射频信号可以是s 2(t),以此类推,第N个射频通道对应的第二射频信号可以是s N(t),d为阵元间距,θ M为第M个波束的发射角。
本公开提供的多波束波束去耦方法,通过对各波束对应的并行基带调制信号分别执行序列长度扩展,可以获取各波束对应的信息序列,进而通过串并转换方式可以将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列,进而可以将波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,波束成形过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
图4是本公开提供的多波束波束去耦方法的流程示意图之四,如图2所示,所述方法的执行主体可以是接收端,该方法包括:
步骤401,将第三目标波束在各子载波频点上的待去耦信号,进行并串转换,获取多个待去耦信号组;
具体地,为了获取第三目标波束所承载的原始基带调制信号,可以对第三目标波束在各子载波频点上的待去耦信号进行并串转换,可以获取多个待去耦信号组。
可以理解的是,第三目标波束可以是发射端所发射的多个波束中的一个波束,接收端可以具有法向与来波(第三目标波束)方向垂直的单天线,接收端可以对接收到的射频信号进行叠加处理,再对叠加后的射频信号进行放大滤波、下变频和抽取后可以获取复数基带信号,进而可以对复数基带信号进行快速傅里叶变换(Fast Fourier Transform,FTT)处理,可以获取第三目标波束在各子载波频点上的待去耦信号。
可选地,子载波的数量可以为第一预设值和第二预设值的乘积,第一预设值为单波束在一个基带调制周期内所承载的符号数,第二预设值为第二目标波束特征码的长度。
例如,子载波的数量可以为(P×Q),Q表示单波束在一个基带调制周期内所承载的符号数,P表示第二目标波束特征码的长度。
可选地,通过并串转换,可以将第三目标波束在各子载波频点上的待去耦信号分成多个待去耦信号组,待去耦信号组的数量为第一预设值,任一待去耦信号组中待去耦信号的数量为第二预设值。
例如,通过并串转换,可以将第三目标波束在各子载波频点上的待去耦信号分成多个待去耦信号组,待去耦信号组的数量为Q,任一待去耦信号组中待去耦信号的数量为P,Q表示单波束在一个基带调制周期内所承载的符号数,P表示第二目标波束特征码的长度。
步骤402,基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号。
具体地,接收端可以持有第三目标波束对应的第二目标波束特征码;在获取多个待去耦信号组之后,可以基于第二目标波束特征码对多个待去耦信号组进行波束去耦操作,获取第三目标波束所承载的并行基带调制信号。
可以理解的是,波束去耦是指降低或消除多波束间信号干扰和能量混叠,以优化提取特定波束信息的技术方法。
步骤403,基于所述第三目标波束所承载的并行基带调制信号,进行并串转换,获取所述第三目标波束所承载的原始基带调制信号。
具体地,在获取第三目标波束所承载的并行基带调制信号之后,可以对第三目标波束所承载的并行基带调制信号进行并串转换,进而可以获取第三目标波束所承载的原始基带调制信号。
可选地,接收端可以预存有所述多个波束特征码,接收端还可以基于预设协议生成所述多个波束特征码。
本公开提供的多波束波束去耦方法,通过基于第三目标波束对应的第二目标波束特征码,对多个待去耦信号组进行波束去耦操作,可以获取第三目标波束所承载的并行基带调制信号,进而对并行基带调制信号进行并串转换,可以获取第三目标波束所承载的原始基带调制信号,波束去耦过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
可选地,所述波束去耦操作包括:
基于目标待去耦信号组与所述第二目标波束特征码的乘积,确定目标基带调制信号,所述目标基带调制信号为所述并行基带调制信号中的一路信号;
所述目标待去耦信号组为所述多个待去耦信号组中的任一组。
具体地,在获取多个待去耦信号组之后,可以对多个待去耦信号组进行波束去耦操作,波束去耦操作具体可以是基于目标待去耦信号组与第二目标波束特征码的乘积,确定目标基带调制信号,目标待去耦信号组为多个待去耦信号组中的任一组,对每一个待去耦信号组执行上述波束去耦操作,可以获取多个目标基带调制信号,进而可以将多个目标基带调制信号作为第三目标波束所承载的并行基带调制信号。
可选地,可以通过以下“波束去耦公式”,获取目标基带调制信号:
Figure PCTCN2022136016-appb-000004
其中,m i(nT)'为去耦后的第i个波束承载的基带调制信号,1≤n≤Q,s n为第n个待去耦信号组,W i为第i个波束的波束特征码,P为波束特征码的长度,T为每个符号的持续时间。
可选地,s n可以是目标待去耦信号组,W i可以是第二目标波束特征码,基于s n和W i,通过上述“波束去耦公式”,可以确定目标基带调制信号m i(nT)'。
因此,波束去耦操作可以用于获取多个目标基带调制信号,进而可以将多个目标基带调制信号作为第三目标波束所承载的并行基带调制信号。
可选地,所述第二目标波束特征码为多个波束特征码中与所述第三目标波束对应的一项,所述多个波束特征码为一组与发射端的波束数量相同的正 交码;在所述基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号之前,还包括:
基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
具体地,为了获取第三目标波束所承载的并行基带调制信号,可以基于波束数量、信道条件和目标分集增益,确定多个波束特征码,多个波束特征码为一组与发射端的波束数量相同的正交码,可以为各波束分别匹配一个波束特征码,接收端可以持有该多个波束特征码,进而可以获知第三目标波束对应的第二目标波束特征码,可以基于第二目标波束特征码,对多个待去耦信号组进行波束去耦操作,可以获取第三目标波束所承载的并行基带调制信号。
可以理解的是,接收端还可以基于预设协议生成所述多个波束特征码,该预设协议可以是指示基于波束数量、信道条件和目标分集增益,确定多个波束特征码。
可选地,图5是本公开提供的多波束波束去耦方法的流程示意图之五,图6是本公开提供的多波束波束去耦方法的流程示意图之六,如图5所示,发射端发射的波束数量为M,接收端可以通过天线接收各波束对应的射频信号,并对接收到的射频信号进行叠加处理,再对叠加后的射频信号进行放大滤波,其中s 1(t)可以表示接收到的第1个波束对应的射频信号,s 2(t-τ)可以表示接收到的第2个波束对应的射频信号,依次类推,s M[t-(M-1)τ]表示接收到的第M个波束对应的射频信号,τ可以表示各阵元间的传播时延,n c(t)可以表示信道噪声。
如图5所示,可以对放大滤波后的射频信号进行下变频、滤波和抽取后可以获取IQ形式的复数基带信号,其中,f c表示中心频率,I(t)表示基带调制信号的同向分量,Q(t)表示基带调制信号的正交分量。
如图6所示,在获取复数基带信号之后,可以对复数基带信号进行FTT处理,可以获取第三目标波束在各子载波频点上的待去耦信号。可以理解的是,第三目标波束可以是发射端所发射的多个波束中的一个波束,接收端可以具有法向与来波(第三目标波束)方向垂直的单天线。
如图6所示,在获取第三目标波束在各子载波频点上的待去耦信号之后,可以将第三目标波束在各子载波频点上的待去耦信号,进行并串转换,获取多个待去耦信号组,其中,s 1为第1个待去耦信号组,s 2为第2个待去耦信号组,以此类推,s Q为第Q个待去耦信号组,Q表示单波束在一个基带调制周期内所承载的符号数。
如图6所示,在获取多个待去耦信号组之后,可以对每一个待去耦信号组执行波束去耦操作,可以获取多个目标基带调制信号,并将多个目标基带调制信号作为第三目标波束所承载的并行基带调制信号,其中,W i为第i个波束(第三目标波束)的波束特征码,对第1个待去耦信号组s 1进行波束去 耦操作可以获取并行基带调制信号中的一路信号m i1',对第2个待去耦信号组s 2进行波束去耦操作可以获取并行基带调制信号中的一路信号m i2',以此类推,对第Q个待去耦信号组s Q进行波束去耦操作可以获取并行基带调制信号中的一路信号m iQ'。
如图6所示,在获取第三目标波束所承载的并行基带调制信号之后,可以对并行基带调制信号进行并串转换,可以获取第三目标波束所承载的原始基带调制信号m i'(t)。
本公开提供的多波束波束去耦方法,通过基于第三目标波束对应的第二目标波束特征码,对多个待去耦信号组进行波束去耦操作,可以获取第三目标波束所承载的并行基带调制信号,进而对并行基带调制信号进行并串转换,可以获取第三目标波束所承载的原始基带调制信号,波束去耦过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
图7是本公开提供的发射端的结构示意图,如图7所示,发射端包括:依次电连接的波束成形模块701、基带调制模块702、射频通道模块703和天线阵列704。
具体地,波束成形模块701包括第一串并转换单元、正交处理单元、第二串并转换单元和映射单元;第一串并转换单元,用于基于各波束对应的原始基带调制信号,进行串并转换,获取各波束对应的并行基带调制信号;正交处理单元,用于基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,多个波束特征码为一组与波束数量相同的正交码;第二串并转换单元,用于通过串并转换方式将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列;映射单元,用于将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列。
具体地,在获取各目标射频通道对应的待调制序列之后,可以将各目标射频通道对应的待调制序列输入基带调制模块,通过基带调制模块和射频通道模块可以对待调制序列进行基带调制、放大、变频和滤波等处理进而转变为射频信号,再通过天线阵列发射。
可以理解的是,本公开提供的波束成形模块,通过提高波束的正交,能够有效降低波束间的相互干扰;相比于传统波束预编码技术,本公开基于阵列天线辐射特性和电磁场干涉传播的物理过程,以提高波束正交性的角度作为出发点,计算更加简单,并易于与波束成形技术相结合,可以提高全数字阵列通信***的性能;对阵元数量与波束数量的强相关实现了解耦,能够利用较少阵元实现任意多个波束任意角度的辐射,可以实现数字多波束的共口径增益,***信噪比不会因波束数量的增加而恶化。
相比于相关技术中的波束成形算法,本公开提供的波束成形模块不涉及波束旁瓣和零深的权值计算过程,发射端的数据处理量小;通过引入扩频分集增益,能够实现阵列增益和信噪比与频谱利用率的置换。
本公开提供的发射端,通过对各波束对应的并行基带调制信号分别执行 序列长度扩展,可以获取各波束对应的信息序列,进而通过串并转换方式可以将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列,进而可以将波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,波束成形过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
可选地,所述正交处理单元具体用于:
将第一目标波束对应的并行基带调制信号中的每一个符号分别与第一目标波束特征码相乘,获取所述第一目标波束对应的信息序列;
所述第一目标波束为所述发射端所发射的波束中的任一项,所述第一目标波束特征码为所述多个波束特征码中与所述第一目标波束对应的一项。
可选地,所述映射单元具体用于:
基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列;
对各波束在目标射频通道上的待调制序列进行求和,获取目标射频通道对应的待调制序列。
可选地,所述波束成形模块还包括第一确定单元,在所述基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列之前,所述第一确定单元用于:
基于第二目标波束的发射角、所述目标射频通道的位置和各子载波对应射频频点的波长,确定所述第二目标波束在所述目标射频通道上的波束成形权值;
所述第二目标波束为所述发射端所发射的波束中的任一项。
可选地,所述波束成形模块还包括第二确定单元,在所述基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列之前,所述第二确定单元用于:
基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
本公开提供的发射端,通过对各波束对应的并行基带调制信号分别执行序列长度扩展,可以获取各波束对应的信息序列,进而通过串并转换方式可以将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列,进而可以将波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,波束成形过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
图8是本公开提供的接收端的结构示意图,如图8所示,接收端包括:依次电连接的天线模块801、信号抽取模块802、快速傅里叶变换模块803和波束去耦模块804。
具体地,第三目标波束可以是发射端所发射的多个波束中的一个波束,接收端可以具有法向与来波(第三目标波束)方向垂直的单天线,接收端可以通过天线模块对接收到的射频信号进行叠加处理,再对叠加后的射频信号 进行放大滤波,在通过信号抽取模块对放大滤波后的射频信号进行下变频和抽取后可以获取复数基带信号,进而通过快速傅里叶变换模块对复数基带信号进行快速傅里叶变换处理,可以获取第三目标波束在各子载波频点上的待去耦信号。
具体地,波束去耦模块包括第一并串转换单元、去耦单元和第二并串转换单元,其中,第一并串转换单元,用于将第三目标波束在各子载波频点上的待去耦信号,进行并串转换,获取多个待去耦信号组;去耦单元,用于基于第三目标波束对应的第二目标波束特征码,对多个待去耦信号组进行波束去耦操作,获取第三目标波束所承载的并行基带调制信号;第二并串转换单元,用于基于第三目标波束所承载的并行基带调制信号,进行并串转换,获取第三目标波束所承载的原始基带调制信号。
可以理解的是,本公开提供的波束去耦模块不涉及波束旁瓣和零深的权值计算过程,接收端的数据处理量小,能够提高处理效率。
本公开提供的接收端,通过基于第三目标波束对应的第二目标波束特征码,对多个待去耦信号组进行波束去耦操作,可以获取第三目标波束所承载的并行基带调制信号,进而对并行基带调制信号进行并串转换,可以获取第三目标波束所承载的原始基带调制信号,波束去耦过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
可选地,所述去耦单元具体用于:
基于目标待去耦信号组与所述第二目标波束特征码的乘积,确定目标基带调制信号,所述目标基带调制信号为所述并行基带调制信号中的一路信号;
所述目标待去耦信号组为所述多个待去耦信号组中的任一组。
可选地,所述第二目标波束特征码为多个波束特征码中与所述第三目标波束对应的一项,所述多个波束特征码为一组与发射端的波束数量相同的正交码;所述波束去耦模块还包括第三确定单元,在所述基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号之前,所述第三确定单元用于:
基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
本公开提供的接收端,通过基于第三目标波束对应的第二目标波束特征码,对多个待去耦信号组进行波束去耦操作,可以获取第三目标波束所承载的并行基带调制信号,进而对并行基带调制信号进行并串转换,可以获取第三目标波束所承载的原始基带调制信号,波束去耦过程不涉及波束旁瓣和零深的权值计算过程,能够降低数据处理量,提高处理效率。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例 方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (16)

  1. 一种多波束波束去耦方法,应用于发射端,包括:
    基于各波束对应的原始基带调制信号,进行串并转换,获取各波束对应的并行基带调制信号;
    基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,所述多个波束特征码为一组与波束数量相同的正交码,所述多个波束特征码用于波束正交和波束去耦;
    通过串并转换方式将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列;
    将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列。
  2. 根据权利要求1所述多波束波束去耦方法,其中,所述序列长度扩展,包括:
    将第一目标波束对应的并行基带调制信号中的每一个符号分别与第一目标波束特征码相乘,获取所述第一目标波束对应的信息序列;
    所述第一目标波束为所述发射端所发射的波束中的任一项,所述第一目标波束特征码为所述多个波束特征码中与所述第一目标波束对应的一项。
  3. 根据权利要求1所述多波束波束去耦方法,其中,所述将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列,包括:
    基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列;
    对各波束在目标射频通道上的待调制序列进行求和,获取目标射频通道对应的待调制序列。
  4. 根据权利要求3所述多波束波束去耦方法,其中,在所述基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列之前,还包括:
    基于第二目标波束的发射角、所述目标射频通道的位置和各子载波对应射频频点的波长,确定所述第二目标波束在所述目标射频通道上的波束成形权值;
    所述第二目标波束为所述发射端所发射的波束中的任一项。
  5. 根据权利要求1-4任一项所述多波束波束去耦方法,其中,在所述基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列之前,还包括:
    基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
  6. 一种多波束波束去耦方法,应用于接收端,包括:
    将第三目标波束在各子载波频点上的待去耦信号,进行并串转换,获取 多个待去耦信号组;
    基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号;
    基于所述第三目标波束所承载的并行基带调制信号,进行并串转换,获取所述第三目标波束所承载的原始基带调制信号。
  7. 根据权利要求6所述多波束波束去耦方法,其中,所述波束去耦操作包括:
    基于目标待去耦信号组与所述第二目标波束特征码的乘积,确定目标基带调制信号,所述目标基带调制信号为所述并行基带调制信号中的一路信号;
    所述目标待去耦信号组为所述多个待去耦信号组中的任一组。
  8. 根据权利要求6或7所述多波束波束去耦方法,其中,所述第二目标波束特征码为多个波束特征码中与所述第三目标波束对应的一项,所述多个波束特征码为一组与发射端的波束数量相同的正交码;在所述基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号之前,还包括:
    基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
  9. 一种发射端,包括:依次电连接的波束成形模块、基带调制模块、射频通道模块和天线阵列;所述波束成形模块包括第一串并转换单元、正交处理单元、第二串并转换单元和映射单元;
    所述第一串并转换单元,用于基于各波束对应的原始基带调制信号,进行串并转换,获取各波束对应的并行基带调制信号;
    所述正交处理单元,用于基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列,所述多个波束特征码为一组与波束数量相同的正交码,所述多个波束特征码用于波束正交和波束去耦;
    所述第二串并转换单元,用于通过串并转换方式将各波束对应的信息序列分配到不同的子载波频点上,获取各波束对应的扩频信息序列;
    所述映射单元,用于将各波束对应的扩频信息序列映射到各目标射频通道上,获取各目标射频通道对应的待调制序列。
  10. 根据权利要求9所述发射端,其中,所述正交处理单元具体用于:
    将第一目标波束对应的并行基带调制信号中的每一个符号分别与第一目标波束特征码相乘,获取所述第一目标波束对应的信息序列;
    所述第一目标波束为所述发射端所发射的波束中的任一项,所述第一目标波束特征码为所述多个波束特征码中与所述第一目标波束对应的一项。
  11. 根据权利要求9所述发射端,其中,所述映射单元具体用于:
    基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列;
    对各波束在目标射频通道上的待调制序列进行求和,获取目标射频通道对应的待调制序列。
  12. 根据权利要求11所述发射端,其中,所述波束成形模块还包括第一确定单元,在所述基于各波束在目标射频通道上的波束成形权值和各波束对应的扩频信息序列,确定各波束在目标射频通道上的待调制序列之前,所述第一确定单元用于:
    基于第二目标波束的发射角、所述目标射频通道的位置和各子载波对应射频频点的波长,确定所述第二目标波束在所述目标射频通道上的波束成形权值;
    所述第二目标波束为所述发射端所发射的波束中的任一项。
  13. 根据权利要求9-12任一项所述发射端,其中,所述波束成形模块还包括第二确定单元,在所述基于多个波束特征码,对各波束对应的并行基带调制信号分别执行序列长度扩展,获取各波束对应的信息序列之前,所述第二确定单元用于:
    基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
  14. 一种接收端,包括:依次电连接的天线模块、信号抽取模块、快速傅里叶变换模块和波束去耦模块;所述波束去耦模块包括第一并串转换单元、去耦单元和第二并串转换单元;
    所述第一并串转换单元,用于将第三目标波束在各子载波频点上的待去耦信号,进行并串转换,获取多个待去耦信号组;
    所述去耦单元,用于基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号;
    所述第二并串转换单元,用于基于所述第三目标波束所承载的并行基带调制信号,进行并串转换,获取所述第三目标波束所承载的原始基带调制信号。
  15. 根据权利要求14所述接收端,其中,所述去耦单元具体用于:
    基于目标待去耦信号组与所述第二目标波束特征码的乘积,确定目标基带调制信号,所述目标基带调制信号为所述并行基带调制信号中的一路信号;
    所述目标待去耦信号组为所述多个待去耦信号组中的任一组。
  16. 根据权利要求14或15所述接收端,其中,所述第二目标波束特征码为多个波束特征码中与所述第三目标波束对应的一项,所述多个波束特征码为一组与发射端的波束数量相同的正交码;所述波束去耦模块还包括第三确定单元,在所述基于所述第三目标波束对应的第二目标波束特征码,对所述多个待去耦信号组进行波束去耦操作,获取所述第三目标波束所承载的并行基带调制信号之前,所述第三确定单元用于:
    基于所述波束数量、信道条件和目标分集增益,确定所述多个波束特征码。
PCT/CN2022/136016 2022-08-09 2022-12-01 多波束波束去耦方法、发射端及接收端 WO2024031880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210952717.0A CN115499046A (zh) 2022-08-09 2022-08-09 多波束波束去耦方法、发射端及接收端
CN202210952717.0 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024031880A1 true WO2024031880A1 (zh) 2024-02-15

Family

ID=84465727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136016 WO2024031880A1 (zh) 2022-08-09 2022-12-01 多波束波束去耦方法、发射端及接收端

Country Status (2)

Country Link
CN (1) CN115499046A (zh)
WO (1) WO2024031880A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071841A (zh) * 2015-07-02 2015-11-18 北京理工大学 基于ds-cdma体制的正交码字同频多波束分离方法
CN106450801A (zh) * 2016-11-16 2017-02-22 国家电网公司 N阵元圆阵智能天线波束成形方法
CN110943295A (zh) * 2019-11-25 2020-03-31 武汉虹信通信技术有限责任公司 多波束天线阵列、基站天线及天线阵列去耦方法
CN112804182A (zh) * 2021-04-12 2021-05-14 中国人民解放军国防科技大学 一种多载波扩频方法及其应用的通信方法和相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071841A (zh) * 2015-07-02 2015-11-18 北京理工大学 基于ds-cdma体制的正交码字同频多波束分离方法
CN106450801A (zh) * 2016-11-16 2017-02-22 国家电网公司 N阵元圆阵智能天线波束成形方法
CN110943295A (zh) * 2019-11-25 2020-03-31 武汉虹信通信技术有限责任公司 多波束天线阵列、基站天线及天线阵列去耦方法
CN112804182A (zh) * 2021-04-12 2021-05-14 中国人民解放军国防科技大学 一种多载波扩频方法及其应用的通信方法和相关装置

Also Published As

Publication number Publication date
CN115499046A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US7477190B2 (en) Smart antenna beamforming device in communication system and method thereof
US20200112360A1 (en) Method for fast beam sweeping and device discovery in 5g millimeter wave and upper centimeter-wave systems
US8040278B2 (en) Adaptive antenna beamforming
US7212158B2 (en) Method and apparatus for beamforming based on broadband antenna
US10205491B2 (en) System and method for large scale multiple input multiple output communications
Huang et al. Frequency-domain AoA estimation and beamforming with wideband hybrid arrays
CN108881074B (zh) 一种低精度混合架构下宽带毫米波信道估计方法
KR20050004605A (ko) 서브-어레이 그루핑된 적응 배열 안테나들을 이용하여빔형성 및 다이버시티 이득을 제공하는 무선 페이딩 채널복조기, 이를 구비한 이동 통신 수신 시스템 및 그 방법
CN109067476B (zh) 一种多天线***发射通道校准方法及其校准信号
US7339979B1 (en) Adaptive beamforming methods and systems that enhance performance and reduce computations
CN112929962B (zh) 定位方法、装置、计算机设备和存储介质
US9065605B2 (en) Methods and systems for crest factor reduction in multi-carrier multi-channel architectures
CN111830482A (zh) 基于捷变ofdm的fda雷达目标定位方法
WO2024031880A1 (zh) 多波束波束去耦方法、发射端及接收端
CN111211825B (zh) 基于空间调制的阵列天线划分方法及***
CN117394895A (zh) 一种用于超大规模通信***的混合近远场波束训练方法
CN116405348A (zh) 通信感知一体化***阵列天线与5g新空口估角方法
US9444532B1 (en) Wideband transceiver for antenna array
CN115348577B (zh) 隐蔽通信***中基于强化学习的波束扫描方法
CN112731279B (zh) 一种基于混合天线子阵列的到达角估计方法
TWI624159B (zh) 通道資訊的估測系統及其方法
CN111934728B (zh) 一种数字多波束天线处理方法、装置及设备
KR101748814B1 (ko) 하이브리드 빔포밍을 위한 송신기, 수신기 및 신호 송수신 방법
CN114745240A (zh) 信号的频偏值确定方法及装置
JP4001880B2 (ja) 空間多重伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954818

Country of ref document: EP

Kind code of ref document: A1