WO2024029702A1 - Atomic layer deposition device - Google Patents

Atomic layer deposition device Download PDF

Info

Publication number
WO2024029702A1
WO2024029702A1 PCT/KR2023/006786 KR2023006786W WO2024029702A1 WO 2024029702 A1 WO2024029702 A1 WO 2024029702A1 KR 2023006786 W KR2023006786 W KR 2023006786W WO 2024029702 A1 WO2024029702 A1 WO 2024029702A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas injection
chamber
discharge
inlet
Prior art date
Application number
PCT/KR2023/006786
Other languages
French (fr)
Korean (ko)
Inventor
서정호
강병주
곽노원
김현우
최광현
Original Assignee
주식회사 한화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한화 filed Critical 주식회사 한화
Publication of WO2024029702A1 publication Critical patent/WO2024029702A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas

Definitions

  • Embodiments of the present invention relate to atomic layer deposition devices.
  • Atomic Layer Deposition is a technology that coats a thin film, a protective film, on a semiconductor memory device. It is a technology that thermally decomposes the gas flowing into a vacuum chamber and deposits it as an atomic layer. It is used to form a high-quality thin film on a substrate. Efforts to improve devices and processes are continuously being made.
  • an atomic layer deposition device In the case of an atomic layer deposition device, it consists of a loading part that supplies wafers, a vacuum chamber part that is responsible for atomic layer deposition in a vacuum area, an exhaust part that discharges gas after reaction, and a frame and cover that support the deposition device.
  • gas is injected into the vacuum chamber for atomic layer deposition.
  • the method is to inject gas into the chamber through a gas injection hole that is formed integrally with the chamber and has a complex structure.
  • the gas injection hole structure needs to be changed due to damage or damage to the gas injection hole structure, structural changes to the entire chamber are required, resulting in enormous cost and time loss due to chamber replacement.
  • the problem to be solved by the present invention is to simplify the structure of the gas injection unit that sprays gas into the chamber during atomic layer deposition, and to provide an atomic layer deposition device that can easily change and replace the structure when an abnormality occurs in the gas injection unit. .
  • An atomic layer deposition apparatus includes a chamber for storing a plurality of wafers; and a gas injection structure disposed on one surface of the chamber and detached from the chamber, wherein the gas injection structure includes: an inlet through which gas flows; a discharge unit that sprays the introduced gas into the interior of the chamber; and a space part connected to the inlet part and the outlet part and disposed between the inlet part and the outlet part, wherein the gas passing through the inlet part passes through the space part and is discharged into the interior of the chamber through the outlet part.
  • the chamber may be formed in a rectangular parallelepiped shape, and the gas injection unit may be formed in a square ring shape corresponding to one side of the rectangular parallelepiped chamber.
  • the gas injection structure includes first and second gas injection units, and the first and second gas injection units are arranged to face each other, and gas that has passed through the first and second gas injection units may be injected to face each other.
  • 1 Discharges gas into the interior of the chamber through a discharge portion connected to the circulation portion, and the 1-2 gas supply portion discharges gas into the interior of the chamber through a second circulation portion and an discharge portion connected to the second circulation portion.
  • the 1-1 gas supply unit and the 1-2 gas supply unit may be separated from each other, and the first circulation unit and the second circulation unit may be separated from each other.
  • the discharge part may be arranged so that the two discharge parts are symmetrical on both sides with the inlet part as the center.
  • the gas injection direction D1 of the gas injection structure may be perpendicular to the longitudinal direction D2 of the plurality of wafers.
  • the discharge unit may include three or more discharge units spaced apart from each other.
  • the space portion includes a receiving portion that is inserted into the gas injection structure, is connected to the inlet portion and the discharge portion, and forms a space; and a cover part connected to the outer surface of the gas injection structure and covering the accommodating part, wherein the accommodating part and the cover part are detachable.
  • An atomic layer deposition apparatus includes a chamber for storing a plurality of wafers; and a ring-shaped gas injection structure disposed on one surface of the chamber, wherein the gas injection structure is formed in a square ring shape corresponding to the one surface of the chamber, and the gas injection structure includes the gas injection structure. It passes through one side and includes an inlet through which gas flows.
  • the inlet portion includes first and second inlets, the first and second inlets are disposed to face each other, and gases that have passed through the first and second inlets may be injected to face each other.
  • the gas injection structure can be detached from the chamber, so that when changing the gas injection structure or adding injected gas, the gas injection structure according to this embodiment can be changed to the desired structure.
  • the gas injection structure can be changed to the desired structure.
  • the first and second gas injection units are arranged to face each other, so that gas can be uniformly sprayed onto the wafer in facing directions.
  • the receiving part and the cover part forming the space are formed to be detachable, so that when the type of gas injected into the chamber is changed or other damage or damage occurs, the receiving part and the cover part form a space.
  • the cover part can be replaced.
  • Figure 1 is a perspective view showing an atomic layer deposition apparatus according to an embodiment of the present invention.
  • Figure 2 is a front cross-sectional view showing gas being injected from a gas injection structure according to an embodiment of the present invention.
  • Figure 3 is a front cross-sectional view showing the first and second gas injection units according to an embodiment of the present invention.
  • Figure 4 is a diagram showing a wafer disposed within a gas injection structure according to an embodiment of the present invention.
  • Figure 5 is a diagram showing the arrangement of a wafer according to another embodiment of the present invention.
  • Figure 6 is a view showing a gas injection portion with a circulation portion formed according to another embodiment of the present invention.
  • Figure 6(a) is a view showing the gas injection portion with the circulation portion formed according to the first embodiment of the present invention.
  • (a) is a front cross-sectional view of the gas injection structure according to this embodiment
  • (b) is a cross-sectional view of part D-D' of (a).
  • Figure 6(b) is a view showing the gas injection portion with the circulation portion formed according to the second embodiment of the present invention.
  • (a) is a front cross-sectional view of the gas injection structure according to this embodiment
  • (b) is a cross-sectional view of part E-E' of (a).
  • Figure 7 is a diagram showing a gas injection structure with an inlet according to another embodiment of the present invention.
  • Figure 8 is a diagram showing the first and second gas injection units having four discharge units according to another embodiment of the present invention.
  • FIG. 9 is part A of FIG. 2 and is a view showing the space portion according to an embodiment of the present invention and the receiving portion and cover portion forming the space being detached.
  • first and second are used not in a limiting sense but for the purpose of distinguishing one component from another component.
  • a specific process sequence may be performed differently from the described sequence.
  • two processes described in succession may be performed substantially at the same time, or may be performed in an order opposite to that in which they are described.
  • Figure 1 is a perspective view showing an atomic layer deposition apparatus according to an embodiment of the present invention.
  • Figure 2 is a front view showing gas being injected from a gas injection structure according to an embodiment of the present invention.
  • Figure 3 is a front view showing first and second gas injection units according to an embodiment of the present invention.
  • Figure 4 is a diagram showing a wafer disposed within a gas injection structure according to an embodiment of the present invention.
  • the atomic layer deposition apparatus is disposed in a chamber 10 for storing a plurality of wafers W and on one surface of the chamber 10, and includes a chamber ( It includes a gas injection structure 100 that is detached from 10).
  • the gas injection structure that sprays into the chamber was formed integrally with the chamber, so there was a problem that the entire chamber had to be replaced when the gas injection structure needed to be replaced. Accordingly, according to this embodiment, the gas injection structure 100 disposed on one side of the chamber 10 is adopted, so that the gas injection structure 100 can be easily separated from the chamber 10 when replacement of the gas injection structure 100 is necessary. This can improve the efficiency of gas injection structure replacement.
  • the gas injection structure includes an inlet portion 110, 140 through which gas (G) flows, an outlet portion 120, 150 through which the introduced gas is injected into the interior of the chamber 10, an inlet portion 110, 140, and It is connected to the discharge portions 120 and 150 and includes space portions 130 and 160 disposed between the inlet portions 110 and 140 and the discharge portions 120 and 150.
  • the gas that has passed through the inlet portions 110 and 140 passes through the space portions 130 and 160 and is discharged into the interior of the chamber 10 through the discharge portions 120 and 150.
  • the chamber 10 may be formed in a rectangular parallelepiped shape.
  • the gas injection structure may be formed in a square ring shape corresponding to one side of the rectangular parallelepiped-shaped chamber 10.
  • the gas injection structure may be coupled to one surface of the chamber 10 through the coupling portion 170.
  • the coupling portion 170 includes coupling holes disposed at regular intervals along the circumference of the gas injection structure, and the gas injection structure and the chamber 10 can be coupled to each other through the coupling holes using O-rings and bolts.
  • One side of the chamber 10 is formed in a hollow rectangular border structure, and the gas injection structure is formed in a square ring shape corresponding to one side of the chamber 10 and is coupled to one side of the chamber 10, It is possible to prevent gas from leaking between the chamber 10 and the gas injection structure.
  • the rectangular shape of one side of the chamber 10 and the square ring structure of the gas injection structure are formed in a shape that corresponds to each other, so that when the gas injection structure is mounted on the chamber 10, the user can install it on the chamber 10. It may become easier to determine the mounting location of the gas injection structure.
  • the gas injection structure may be formed of the same material as the chamber 10. Through this, during the wafer deposition process within the chamber 10, the negative influence of the gas injection structure on the deposition process can be minimized.
  • the chamber 10 may include a metal material. More specifically, the chamber 10 may be formed of a material including at least one of Al, Cu, Ag, Fe, Cr, Mn, P, S, Ni, Mo, and SUS.
  • the gas injection structure may be disposed between the door 12 and the chamber 10.
  • the door 12 closes one open side of the gas injection structure, thereby preventing the gas inside the chamber 10 from leaking to the outside through the central opening of the gas injection structure. Additionally, the door 12 can improve the durability of the atomic layer deposition device by completely coupling the gas injection structure to the chamber 10.
  • a rear cover 11 may be disposed on the opposite side of the door 12 based on the chamber 10.
  • the rear cover 11 can seal the chamber 10 and create a vacuum inside the chamber 10 together with the door 12.
  • the gas injection structure may include first and second gas injection units 100a and 100b.
  • the first and second gas injection units 100a and 100b are disposed to face each other, and the gas that has passed through the first and second gas injection units 100a and 100b may be injected to face each other.
  • the first and second gas injection units 100a and 100b may be located in a direction perpendicular to the longitudinal direction of the stacked wafers W.
  • the location of the gas injection unit is not limited to this, and may be located in a direction parallel to the longitudinal direction of the wafer W, that is, on both sides of the square ring-shaped gas injection structure, and at the four corners of the square ring-shaped gas injection structure. They may all be located in one part.
  • the two first and second gas injection units 100a and 100b may be arranged to face each other. At this time, the first and second gas injection units 100a and 100b may be formed in a symmetrical structure.
  • the first gas injection unit 100a includes a first inlet 110 through which the first gas G1 flows, and a first discharge section through which the introduced gas is injected into the interior of the chamber 10 ( 120), a first space portion 130 connected to the first inlet 110 and the first discharge portion 120 and disposed between the first inlet 110 and the first discharge portion 120. Includes.
  • the gas that has passed through the first inlet 110 may pass through the first space 130 and be discharged into the interior of the chamber 10 through the first outlet 120.
  • the first gas (G1) may include trimethylaluminum (TMA), N 2 , etc.
  • the first inlet 110 may be formed in a direction perpendicular to the longitudinal direction of the wafer (W).
  • the longitudinal direction of the first space 130 connected to the first inlet 110 may be formed in a direction perpendicular to the longitudinal direction of the first inlet 110.
  • Gas introduced through the first inlet 110 may diffuse in the lateral direction in the first space 130.
  • the first gas G1 diffused in the first space 130 may be discharged into the chamber 10 through at least one first discharge part 120.
  • the first gas G1 may flow into the first inlet 110 through the first gas supply unit 200.
  • the first gas supply unit 200 is detachably coupled to the first inlet 110, and when the type of the first gas (G1) is different, the existing first gas supply unit 200 is connected to the first inlet 110. After being removed from the gas supply unit 200, the first gas supply unit 200 containing different types of gas can be connected to the first inlet unit 110.
  • the first discharge part 120 may be arranged so that the two discharge parts 120a and 120b are symmetrical on both sides about the first inlet 110. Since the gas is sprayed through two discharge portions 120a and 120b instead of a single discharge structure, the gas can be sprayed more evenly on the wafer W stored inside the chamber 10.
  • the outlet structure may include a nozzle structure.
  • the first gas (G1) can be injected into the chamber 10 through the nozzle structure.
  • the distance L11 between the two discharge portions 120a and 120b may be 50 percent or more of the width A of the inner portion of the gas injection structure 100.
  • the distance L11 between the two discharge parts 120a and 120b may be 50% to 90% of the width A of the inner part of the gas injection structure 100.
  • the distance L11 between the two discharge parts 120a and 120b may be longer than the distance L12 between one discharge part 120a and the inner surface of the gas injection part corresponding thereto. At this time, the distance L12 between one discharge part 120a and the inner surface of the corresponding gas injection part may be 5% to 25% of the distance L11 between the two discharge parts 120a and 120b.
  • the distance (L12) between one discharge portion (120a) and the inner surface of the corresponding gas injection portion is less than 5 percent of the distance (L11) between the two discharge portions (120a, 120b), the deposition gas supplied to the center area of the wafer As is decreased, deposition uniformity characteristics may deteriorate.
  • the distance (L12) between one discharge portion (120a) and the inner surface of the corresponding gas injection portion is greater than 25% of the distance (L11) between the two discharge portions (120a, 120b)
  • the gas supplied to the edge area of the wafer As deposition gas is reduced, deposition uniformity characteristics may deteriorate.
  • the distance L11 between the two discharge parts 120a and 120b may be longer than the distance L13 between the other discharge part 120b and the inner surface of the gas injection part corresponding thereto. At this time, the distance L13 between the other discharge part 120b and the inner surface of the corresponding gas injection part may be 5% to 25% of the distance L11 between the two discharge parts 120a and 120b.
  • the distance (L13) between the other discharge portion (120b) and the inner surface of the corresponding gas injection portion is less than 5 percent of the distance (L11) between the two discharge portions (120a, 120b), the supply is supplied to the center area (CA) of the wafer. As the amount of deposition gas used decreases, deposition uniformity characteristics may deteriorate. In addition, when the distance (L13) between the other discharge part (120b) and the inner surface of the corresponding gas injection part exceeds 25% of the distance (L11) between the two discharge parts (120a, 120b), the gas supplied to the edge area of the wafer As deposition gas is reduced, deposition uniformity characteristics may deteriorate.
  • the distance (L12) between one discharge part (120a) and the inner surface of the corresponding gas injection part, and the distance (L13) between the other discharge part (120b) and the inner surface of the corresponding gas injection part are can correspond to each other. That is, the distance (L12) between one discharge part (120a) and the inner surface of the corresponding gas injection part (L12) and the distance (L13) between the other discharge part (120b) and the inner surface of the corresponding gas injection part are equal to each other. can be formed.
  • the distance L11 between the two discharge parts 120a and 120b may be greater than or equal to the first width L14 of the first space 130.
  • the distance L11 between the two discharge parts 120a and 120b may be greater than or equal to 100% to 120% of the first width L14 of the first space 130.
  • the discharge parts 120a and 120b are perpendicular to the first space 130. It can be formed to extend in any direction.
  • the discharge parts 120a and 120b are based on the first space 130. It can be formed to extend obliquely.
  • the second width C11 of the first space 130 may be located within 25% to 75% of the thickness C of the gas injection structure 100.
  • the direction of the second width C11 of the first space 130' may extend in a direction perpendicular to the gas inlet 110, and may be formed to be inclined with respect to the gas inlet 110. It could be.
  • the direction of the second width C11 of the first space 130' is the direction of the door (12) may be disposed inclined in the direction in which it is located and in the direction closer to the discharge unit 120.
  • the fluid discharged through the discharge unit 120 is sprayed toward the door 12, and more fluid is sprayed into the center area (CA), so that the fluid can be sprayed more evenly, and the fluid sprayed toward the door 12
  • the fluid flows again in the direction of the suction portion disposed on the rear cover 11, thereby allowing the fluid to be uniformly supplied throughout the chamber 10.
  • the second gas injection unit 100b includes a second inlet 140 through which the second gas G2 flows, a second outlet 150 through which the introduced gas is injected into the interior of the chamber 10, It is connected to the second inlet 140 and the second outlet 150 and includes a second space 160 disposed between the second inlet 140 and the second outlet 150. At this time, the gas that has passed through the second inlet 140 may pass through the second space 160 and be discharged into the interior of the chamber 10 through the second outlet 150.
  • the second gas (G2) may include H 2 O, O3, N 2, Ar, etc.
  • the second inlet 140 may be formed in a direction perpendicular to the longitudinal direction of the wafer (W).
  • the longitudinal direction of the second space 160 connected to the second inlet 140 may be formed in a direction perpendicular to the longitudinal direction of the second inlet 140.
  • Gas introduced through the second inlet 140 may diffuse in the lateral direction in the second space 160.
  • the second gas G2 diffused in the second space 160 may be discharged into the chamber 10 through at least one second discharge part 150.
  • the second gas (G2) may flow into the second inlet 140 through the second gas supply unit 300.
  • the second gas supply unit 300 is detachably coupled to the second inlet 140, and when the type of the second gas (G2) is different, the existing second gas supply unit 300 is connected to the second inlet 140. After being removed from the gas supply unit 300, the second gas supply unit 300 containing a different type of gas can be connected to the second inlet unit 140.
  • the second discharge part 150 may be arranged so that the two discharge parts 150a and 150b are symmetrical on both sides about the second inlet part 140. Since the gas is sprayed through two discharge parts 150a and 150b instead of a single discharge structure, the gas can be sprayed more evenly on the wafer W stored inside the chamber 10.
  • the outlet structure may include a nozzle structure.
  • the second gas (G1) can be injected into the chamber 10 through the nozzle structure.
  • the distance L21 between the two discharge parts 150a and 150b may be 50 percent or more of the inner width A' of the gas injection structure 100.
  • the distance L21 between the two discharge parts 150a and 150b may be 50% to 90% of the inner width A' of the gas injection structure 100.
  • the distance L21 between the two discharge parts 150a and 150b may be longer than the distance L22 between one discharge part 150a and the inner surface of the gas injection part corresponding thereto. At this time, the distance L22 between one discharge part 150a and the inner surface of the corresponding gas injection part may be 5% to 25% of the distance L21 between the two discharge parts 150a and 150b.
  • the distance (L22) between one discharge portion (150a) and the inner surface of the corresponding gas injection portion is less than 5 percent of the distance (L21) between the two discharge portions (150a, 150b), the deposition gas supplied to the center area of the wafer As is decreased, deposition uniformity characteristics may deteriorate.
  • the distance (L22) between one discharge portion (150a) and the inner surface of the corresponding gas injection portion is greater than 25% of the distance (L21) between the two discharge portions (150a, 150b)
  • the gas supplied to the edge area of the wafer As deposition gas is reduced, deposition uniformity characteristics may deteriorate.
  • the distance L21 between the two discharge parts 150a and 150b may be longer than the distance L23 between the other discharge part 150b and the inner surface of the gas injection part corresponding thereto. At this time, the distance L23 between the other discharge part 150b and the inner surface of the corresponding gas injection part may be 5% to 25% of the distance L21 between the two discharge parts 150a and 150b.
  • the distance (L22) between one discharge portion (150a) and the inner surface of the gas injection portion corresponding thereto, and the distance (L23) between the other discharge portion (150b) and the inner surface of the gas injection portion corresponding thereto, are can correspond to each other. That is, the distance (L22) between one discharge part (150a) and the inner surface of the corresponding gas injection part and the distance (L23) between the other discharge part (150b) and the inner surface of the corresponding gas injection part are equal to each other. can be formed.
  • the distance L21 between the two discharge parts 150a and 150b may be greater than or equal to the first width L24 of the second space 160.
  • the distance L21 between the two discharge parts 150a and 150b may be greater than or equal to 100% to 120% of the first width L24 of the second space 160.
  • the discharge parts 150a and 150b are perpendicular to the second space 160. It can be formed to extend in any direction.
  • the discharge parts 150a and 150b are based on the second space 160. It can be formed to extend obliquely.
  • the second width C11' of the second space 160 may be located within 25% to 75% of the thickness C' of the gas injection structure 100.
  • the direction of the second width C11 of the second space 160' may extend in a direction perpendicular to the gas inlet 110, and may be formed to be inclined with respect to the gas inlet 110. It could be.
  • the direction of the second width C11 of the first space 160' is inclined with respect to the gas inlet 110
  • the direction of the second width C11' of the second space 160' is:
  • the door 12 may be disposed inclined in the direction in which it is located and in the direction closer to the discharge unit 150.
  • the fluid discharged through the discharge unit 150 is sprayed toward the door 12, and more fluid is sprayed into the center area (CA), so that the fluid can be sprayed more evenly, and the fluid sprayed toward the door 12
  • the fluid flows again in the direction of the suction portion disposed on the rear cover 11, thereby allowing the fluid to be uniformly supplied throughout the chamber 10.
  • the lower discharge portions 150a and 150b may be disposed in a shape, angle and position corresponding to the upper discharge portions 120a and 120b. Through this, the fluid injected through the gas injection structure 100 can be sprayed uniformly in the vertical direction.
  • the types of the first gas (G1) and the second gas (G2) may be different or the same.
  • the first gas (G1) and the second gas (G2) can be selected and injected into the chamber 10 according to the wafer deposition environment.
  • the injection direction D1 of the gas injection structure may be perpendicular to the longitudinal direction D2 of the plurality of wafers W.
  • the gas injected from one side of the chamber 10 toward the inside of the chamber is directed to the opposite side of the gas injection structure based on the chamber 10 through the suction part (not shown) disposed on the rear cover 11. (DS).
  • the gas injected from one side of the chamber 10 spreads throughout the inside of the chamber 10, and the gas can be uniformly deposited on the plurality of wafers W stored inside the chamber 10.
  • the injection direction D1 of the gas injection structure may be inclined to the longitudinal direction D2' of the plurality of wafers W. More specifically, the injection direction D1 of the gas injection structure maintains a tilted angle within about 5 degrees left and right with the longitudinal direction D2' of the plurality of wafers W. can be placed. In this case, the fluid injected through the gas injection structure can be uniformly spread into the space between the plurality of wafers W.
  • FIG. 6 For content not shown in FIG. 6, refer to the content and description shown in FIGS. 1 to 4.
  • Figure 6 is a view showing a gas injection portion with a circulation portion formed according to another embodiment of the present invention.
  • Figure 6(a) is a view showing the gas injection portion with the circulation portion formed according to the first embodiment of the present invention.
  • (a) is a front cross-sectional view of the gas injection structure according to this embodiment
  • (b) is a cross-sectional view of part D-D' of (a).
  • Figure 6(b) is a view showing the gas injection portion with the circulation portion formed according to the second embodiment of the present invention.
  • (a) is a front cross-sectional view of the gas injection structure according to this embodiment
  • (b) is a cross-sectional view of part E-E' of (a).
  • the gas injection structure according to the first embodiment of the present invention includes a first gas injection unit 100c for supplying the first gas G1 and a second gas injection unit 100c for supplying the second gas G2. It may include a second gas injection unit 100d.
  • the first gas injection unit 100c and the second gas injection unit 100d may be arranged to be spaced apart from each other in the extending direction of the chamber.
  • first gas injection unit 100c and the second gas injection unit 100d each include a first space part 130a, 130b, 160a, 160b, a circulation part PC1, PC2, and a plurality of discharge parts 120a1, 120b1. , 150a1, 150b1, 120a2, 120b2, 150a2, 150b2).
  • a plurality of discharge parts 120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, and 150b2 may be formed in at least one of the upper, lower, left, and right areas.
  • a plurality of discharge portions may be formed at the top and bottom as shown in FIG. 6(a).
  • the first gas (G1) or the second gas (G2) flowing in through the first gas supply unit 200 located on the upper side through the arrangement of the plurality of discharge parts is discharged at the upper part (120a1, 120b1, 120a2, 120b2), as well as gas can be supplied into the chamber through the discharge parts (150a1, 150b1, 150a2, 150b2) formed at the bottom through the circulation parts (PC1, PC2).
  • first gas (G1) is supplied through the first gas supply unit (200a) connected to the first gas injection unit (100c), and the first gas (G1) is supplied through the second gas supply unit (200b) connected to the second gas injection unit (100d).
  • 2 Gas (G2) can be supplied.
  • the first gas (G1) is routed through the 1-1 gas supply unit 200a, the 1-1 inlet 110a, the 1-1 space 130a, and the first circulation unit PC1.
  • the first gas (G1) is discharged into the interior of the chamber through a plurality of discharge portions (120a1, 120b1, 150a1, and 150b1), and the second gas (G2) is discharged from the first-second gas supply portion (200b) and the second gas supply portion (200b).
  • the second gas (G2) is discharged into the interior of the chamber through 120b2, 150a2, and 150b2).
  • the first gas (G1) and the second gas (G2) are mixed on the discharge path, eliminating reactions that may occur, explosions, and other risk factors that may occur when different types of gas are mixed on the discharge path, and eliminating other hazards that may occur inside the chamber. All types of gas can be supplied stably.
  • the gas injection structure according to the second embodiment of the present invention includes a second gas injection unit 100c' that supplies the first gas (G1) and a second gas (G2). It may include a second gas injection unit 100d'.
  • the first gas injection unit 100c' and the second gas injection unit 100d' may be arranged to be spaced apart from each other in the extending direction of the chamber.
  • first gas injection unit 100c' and the second gas injection unit 100d' each have a first space part 130a', 130b', 160a', and 160b', a circulation part PC1', PC2', and It may include a plurality of discharge parts (120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, 150b2).
  • a plurality of discharge parts 120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, and 150b2 may be formed in at least one of the upper, lower, left, and right areas.
  • a plurality of discharge portions may be formed at the top and bottom as shown in FIG. 6(b).
  • the first gas (G1) or the second gas (G2) flowing in through the second gas supply unit 300 located on the lower side through the arrangement of the plurality of discharge parts is discharged at the upper part (120a1, 120b1, 120a2, 120b2), as well as gas can be supplied into the chamber through the discharge portions 150a1, 150b1, 150a2, and 150b2 formed at the bottom through the circulation portions (PC1' and PC2').
  • first gas (G1) is supplied through the first gas supply unit (300a) connected to the first gas injection unit (100c'), and the second gas supply unit (300b) connected to the second gas injection unit (100d').
  • the second gas (G2) may be supplied through.
  • the first gas (G1) is supplied through the 2-1 gas supply part 300a, the 2-1 inlet part 140a, the 2-1 space part 160a', and the first circulation part PC1'. Circulating in one path, the first gas (G1) is discharged into the interior of the chamber through a plurality of discharge parts (120a1, 120b1, 150a1, and 150b1), and the second gas (G2) is discharged from the 2-2 gas supply part (300b). , circulates through the 2-2 inlet (140b), the 2-2 space (160b'), and the second circulation part (PC2') to a second path that is not connected to the first path but is separated and discharges a plurality of discharges.
  • the second gas G2 is discharged into the chamber through the parts 120a2, 120b2, 150a2, and 150b2.
  • the first gas (G1) and the second gas (G2) are mixed on the discharge path, eliminating reactions that may occur, explosions, and other risk factors that may occur when different types of gas are mixed on the discharge path, and eliminating other hazards that may occur inside the chamber. All types of gas can be supplied stably.
  • FIG. 7 For content not shown in FIG. 7, the content and description shown in FIGS. 1 to 4 may be referred to.
  • Figure 7 is a view showing a gas injection portion with an inlet portion according to another embodiment of the present invention.
  • the gas injection unit may pass through one side of the gas injection unit and include inlet portions 110' and 140' through which gas flows.
  • the inlet includes first and second inlets 110' and 140', and the first and second inlets 110' and 140' are arranged to face each other, and the first and second inlets 110' , 140') may be injected to face each other.
  • the gas supplied from the first and second gas supply units 200 and 300 flows into the chamber through the first and second inlets 110' and 140'.
  • the structure of the gas injection unit can be made more compact, and various types of injection structures can be prepared just by changing the position and number of the first and second inlets (110', 140'). This allows the choice of injection structures to be expanded.
  • FIG. 8 For content not shown in FIG. 8, the content and description shown in FIGS. 1 to 4 may be referred to.
  • Figure 8 is a diagram showing the first and second gas injection units having four discharge units according to another embodiment of the present invention.
  • the first and second discharge parts 120'' and 150'' may each include three or more discharge parts spaced apart from each other.
  • the first discharge part 120'' may include 1-1, 1-2, 1-3, and 1-4 discharge parts 120a, 120b, 120c, and 120d.
  • the second discharge portion 150'' may include discharge portions 2-1, 2-2, 2-3, and 2-4 (150a, 150b, 150c, and 150d).
  • the number of discharge parts may be three or more.
  • FIG. 8 a configuration with four discharge parts is shown, but the number of discharge parts is not limited to this, and may include a gas injection unit with various numbers of discharge parts.
  • FIG. 9 For content not shown in FIG. 9, refer to the content and description shown in FIGS. 1 to 4.
  • FIG. 9 is part A of FIG. 2 and is a view showing the space portion according to an embodiment of the present invention and the receiving portion and cover portion forming the space being detached.
  • the accommodation part and the cover part will be described based on the first gas injection unit 100a, but this can be applied symmetrically and equally to the second gas injection unit 100b.
  • the first space 130 is inserted into the interior of the gas injection structure 100, and the first inlet 110 and the first 1 It may include a cover portion (130a) connected to the discharge portion (120), a receiving portion (130b) forming a space, and a cover portion (130a) connected to the outer surface of the gas injection structure 100 and covering the receiving portion (130b). there is.
  • the first space 130 is formed through a bowl-shaped receiving part 130b containing the first space 130 and a cover part 130a covering one open side of the receiving part 130b. It can be. If the first space 130 is broken or damaged, its surface is contaminated by the gas that was previously flowing in, or it is necessary to inject another type of gas into the chamber in a contaminated situation, the detachable accommodation The part 130b and the cover part 130a can be removed from the gas injection structure 100 and replaced with a new receiving part 130b and cover part 130a, so the corresponding space can be replaced without the need to replace the entire gas injection structure. Since only the forming structure can be replaced separately, the overall usability of the gas injection structure can be improved.
  • a tube can be inserted into the first discharge part 120 and the first inlet part 110, and by replacing the tube, only the corresponding part can be replaced even if the discharge part and the inlet part are damaged or contaminated. This can improve usability.
  • an additional inlet 111 may be provided in addition to the first inlet 110.
  • the additional inlet 111 may also be connected to the first space 130.
  • the gas flowing in through the additional inlet 111 is diffused through the first space 130, and the gas diffused through the first space 130 is discharged to the outside through the first discharge portion 120. You can.
  • the gas can be supplied through an additional inlet 111 in addition to the first inlet 110, so that the types of gas supplied can be varied. You can take it.
  • connection of lines or the absence of connections between components shown in the drawings exemplify functional connections and/or physical or circuit connections, and in actual devices, various functional connections or physical connections may be replaced or added. It can be expressed as connections, or circuit connections. Additionally, if there is no specific mention such as “essential,” “important,” etc., it may not be a necessary component for the application of the present invention.

Abstract

An atomic layer deposition device according to an embodiment of the present invention comprises: a chamber for receiving a plurality of wafers; and a gas injection structure disposed on one surface portion of the chamber and detachably attached to the chamber, wherein the gas injection structure comprises: an introduction unit into which gas is introduced; a discharge unit for injecting the introduced gas into the chamber; and a space unit connected to the introduction unit and the discharge unit and disposed between the introduction unit and the discharge unit, and the gas having passed the introduction unit passes the space unit and is discharged into the chamber through the discharge unit.

Description

원자층 증착 장치atomic layer deposition device
본 발명의 실시예들은 원자층 증착 장치에 관한 것이다.Embodiments of the present invention relate to atomic layer deposition devices.
원자층 증착(ALD, Atomic Layer Deposition)은 반도체의 기억 소자에 보호막인 박막을 입히는 기술로, 진공 챔버로 유입되는 가스를 열분해하여 원자층으로 증착하는 기술이며, 기판위에 고품질의 박막을 형성하고자 하는 장치나 공정에 대하여 개선하는 노력이 계속적으로 이루어지고 있다.Atomic Layer Deposition (ALD) is a technology that coats a thin film, a protective film, on a semiconductor memory device. It is a technology that thermally decomposes the gas flowing into a vacuum chamber and deposits it as an atomic layer. It is used to form a high-quality thin film on a substrate. Efforts to improve devices and processes are continuously being made.
최근에는 한 증착 장비로 여러 장의 웨이퍼를 동시에 처리하는 배치 타입(Batch Type)의 증착 장비를 통해 웨이퍼의 장당 처리 시간을 단축하는 기술이 개발되었다.Recently, technology has been developed to shorten the processing time per wafer through batch-type deposition equipment that processes multiple wafers simultaneously with one deposition equipment.
원자층 증착 장치의 경우, 웨이퍼를 공급하는 로딩부, 진공 영역에서 원자층 증착을 담당하는 진공 챔버부, 반응 후 가스를 배출하는 배출부 및 증착 장치를 지지하는 프레임 및 커버 등으로 구성된다.In the case of an atomic layer deposition device, it consists of a loading part that supplies wafers, a vacuum chamber part that is responsible for atomic layer deposition in a vacuum area, an exhaust part that discharges gas after reaction, and a frame and cover that support the deposition device.
이때, 원자층 증착을 위해 진공 챔버 내에 가스를 분사하게 되는데, 기존에는 챔버와 일체로 형성되며, 복잡한 구조를 가진 가스 분사 홀을 통해 챔버 내부에 가스를 분사하는 방식을 취한다. 이때 가스 분사 홀 구조의 손상 및 파손 등으로 가스 분사 홀 구조를 변경해야 할 경우 챔버 전체의 구조적 변경이 필요하여 챔버 교체에 따른 비용 및 시간의 손실이 막대한 문제가 있다.At this time, gas is injected into the vacuum chamber for atomic layer deposition. Conventionally, the method is to inject gas into the chamber through a gas injection hole that is formed integrally with the chamber and has a complex structure. At this time, if the gas injection hole structure needs to be changed due to damage or damage to the gas injection hole structure, structural changes to the entire chamber are required, resulting in enormous cost and time loss due to chamber replacement.
본 발명의 해결하고자 하는 과제는, 원자층 증착시 챔버 내에 가스를 분사하는 가스 분사부의 구조를 단순화하여, 가스 분사부의 이상 발생시 구조 변경 및 교환을 손쉽게 수행할 수 있는 원자층 증착 장치를 제공하는 것이다.The problem to be solved by the present invention is to simplify the structure of the gas injection unit that sprays gas into the chamber during atomic layer deposition, and to provide an atomic layer deposition device that can easily change and replace the structure when an abnormality occurs in the gas injection unit. .
다만 이러한 과제는 예시적인 것으로, 본 발명의 해결하고자 하는 과제는 이에 한정되지 않는다.However, these problems are illustrative, and the problems to be solved by the present invention are not limited thereto.
본 발명의 일 실시예에 따른 원자층 증착 장치는, 복수의 웨이퍼를 수납하는 챔버; 및 상기 챔버의 일면부에 배치되고, 상기 챔버로부터 탈착되는 가스 분사 구조를 포함하고, 상기 가스 분사 구조는, 가스가 유입되는 유입부; 유입된 가스를 상기 챔버의 내부로 분사하는 배출부; 및 상기 유입부 및 상기 배출부와 연결되고, 상기 유입부와 상기 배출부 사이에 배치된 공간부를 포함하고, 상기 유입부를 통과한 가스는 상기 공간부를 지나 상기 배출부를 통해 상기 챔버의 내부로 배출된다.An atomic layer deposition apparatus according to an embodiment of the present invention includes a chamber for storing a plurality of wafers; and a gas injection structure disposed on one surface of the chamber and detached from the chamber, wherein the gas injection structure includes: an inlet through which gas flows; a discharge unit that sprays the introduced gas into the interior of the chamber; and a space part connected to the inlet part and the outlet part and disposed between the inlet part and the outlet part, wherein the gas passing through the inlet part passes through the space part and is discharged into the interior of the chamber through the outlet part. .
상기 챔버는 직육면체 형상으로 형성되고, 상기 가스 분사부는 직육면체 형상의 상기 챔버의 일측부와 대응되는 사각 링 형상으로 형성될 수 있다.The chamber may be formed in a rectangular parallelepiped shape, and the gas injection unit may be formed in a square ring shape corresponding to one side of the rectangular parallelepiped chamber.
상기 가스 분사 구조는 제1,2 가스 분사부를 포함하고, 상기 제1,2 가스 분사부는 서로 마주보게 배치되고, 상기 제1,2 가스 분사부를 통과한 가스는 서로 마주보게 분사될 수 있다.The gas injection structure includes first and second gas injection units, and the first and second gas injection units are arranged to face each other, and gas that has passed through the first and second gas injection units may be injected to face each other.
상기 제1 가스 분사부의 제1 공간부의 일단에 서로 이격되게 배치된 제1-1 가스 공급부 및 제1-2 가스 공급부를 더 포함하고, 상기 제1-1 가스 공급부는 제1 순환부 및 상기 제1 순환부와 연결된 배출부를 통해 상기 챔버의 내부로 가스를 배출하고, 상기 제1-2 가스 공급부는 제2 순환부 및 상기 제2 순환부와 연결된 배출부를 통해 상기 챔버의 내부로 가스를 배출하고, 상기 제1-1 가스 공급부 및 상기 제1-2 가스 공급부는 서로 분리되고, 상기 제1 순환부 및 상기 제2 순환부는 서로 분리될 수 있다.It further includes a 1-1 gas supply unit and a 1-2 gas supply unit spaced apart from each other at one end of the first space of the first gas injection unit, and the 1-1 gas supply unit includes a first circulation unit and the first gas supply unit. 1 Discharges gas into the interior of the chamber through a discharge portion connected to the circulation portion, and the 1-2 gas supply portion discharges gas into the interior of the chamber through a second circulation portion and an discharge portion connected to the second circulation portion. , the 1-1 gas supply unit and the 1-2 gas supply unit may be separated from each other, and the first circulation unit and the second circulation unit may be separated from each other.
상기 배출부는 상기 유입부를 중심으로 두 배출부가 양쪽으로 대칭되도록 배치될 수 있다.The discharge part may be arranged so that the two discharge parts are symmetrical on both sides with the inlet part as the center.
상기 가스 분사 구조의 가스 분사 방향(D1)은 복수의 웨이퍼의 길이 방향(D2)과 수직일 수 있다.The gas injection direction D1 of the gas injection structure may be perpendicular to the longitudinal direction D2 of the plurality of wafers.
상기 배출부는 서로 이격 배치된 3개 이상의 배출부를 포함할 수 있다.The discharge unit may include three or more discharge units spaced apart from each other.
상기 공간부는, 상기 가스 분사 구조의 내부에 삽입되고, 상기 유입부 및 상기 배출부와 연결되고, 공간을 형성하는 수용부; 및 상기 가스 분사 구조의 외면부와 연결되고, 상기 수용부를 커버하는 커버부를 포함하고, 상기 수용부 및 상기 커버부는 탈착될 수 있다.The space portion includes a receiving portion that is inserted into the gas injection structure, is connected to the inlet portion and the discharge portion, and forms a space; and a cover part connected to the outer surface of the gas injection structure and covering the accommodating part, wherein the accommodating part and the cover part are detachable.
본 발명의 일 실시예에 따른 원자층 증착 장치는, 복수의 웨이퍼를 수납하는 챔버; 및 상기 챔버의 일면부에 배치된 링 형상의 가스 분사 구조를 포함하고, 상기 가스 분사 구조는 상기 챔버의 일면부와 대응되는 사각 링 형상으로 형성되고, 상기 가스 분사 구조는, 상기 가스 분사 구조의 일측을 관통하고, 가스가 유입되는 유입부를 포함한다.An atomic layer deposition apparatus according to an embodiment of the present invention includes a chamber for storing a plurality of wafers; and a ring-shaped gas injection structure disposed on one surface of the chamber, wherein the gas injection structure is formed in a square ring shape corresponding to the one surface of the chamber, and the gas injection structure includes the gas injection structure. It passes through one side and includes an inlet through which gas flows.
상기 유입부는 제1,2 유입부를 포함하고, 상기 제1,2 유입부는 서로 마주보게 배치되고, 제1,2 유입부를 통과한 가스는 서로 마주보도록 분사될 수 있다.The inlet portion includes first and second inlets, the first and second inlets are disposed to face each other, and gases that have passed through the first and second inlets may be injected to face each other.
전술한 것 외의 다른 측면, 특징, 이점은 이하의 발명을 실시하기 위한 구체적인 내용, 청구범위 및 도면으로부터 명확해질 것이다.Other aspects, features and advantages other than those described above will become apparent from the detailed description, claims and drawings for carrying out the invention below.
본 발명의 실시예들에 따른 원자층 증착 장치는, 가스 분사 구조가 챔버로부터 탈착 가능하게 됨으로써, 가스 분사 구조의 변경 또는 분사되는 가스를 추가할 경우 본 실시예에 따른 가스 분사 구조를 원하는 구조로 변경하거나 추가로 장착할 때 챔버 전체 구조를 변경할 필요 없이 가스 분사 구조 부분만 탈착하여 변경 및 교체를 할 수 있는 효과를 제공한다.In the atomic layer deposition apparatus according to embodiments of the present invention, the gas injection structure can be detached from the chamber, so that when changing the gas injection structure or adding injected gas, the gas injection structure according to this embodiment can be changed to the desired structure. When making changes or additional installations, it is possible to change or replace only the gas injection structure by detaching it without having to change the entire structure of the chamber.
또한 본 발명의 실시예들에 따른 원자층 증착 장치는, 제1,2 가스 분사부가 서로 마주보도록 배치되어, 웨이퍼에 가스를 마주보는 방향으로 균일하게 분사할 수 있다.Additionally, in the atomic layer deposition apparatus according to embodiments of the present invention, the first and second gas injection units are arranged to face each other, so that gas can be uniformly sprayed onto the wafer in facing directions.
또한 본 발명의 실시예들에 따른 원자층 증착 장치는, 공간부를 형성하는 수용부 및 커버부가 탈착되게 형성됨으로써, 챔버 내에 분사되는 가스의 종류를 변경하거나 기타 손상 및 파손 등의 발생 시 수용부 및 커버부를 교체할 수 있다.In addition, in the atomic layer deposition apparatus according to embodiments of the present invention, the receiving part and the cover part forming the space are formed to be detachable, so that when the type of gas injected into the chamber is changed or other damage or damage occurs, the receiving part and the cover part form a space. The cover part can be replaced.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 일 실시예에 따른 원자층 증착 장치를 나타낸 사시도이다.Figure 1 is a perspective view showing an atomic layer deposition apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 가스 분사 구조에서 가스가 분사되는 모습을 나타낸 정면 단면도이다.Figure 2 is a front cross-sectional view showing gas being injected from a gas injection structure according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 제1,2 가스 분사부를 나타낸 정면 단면도이다.Figure 3 is a front cross-sectional view showing the first and second gas injection units according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 가스 분사 구조 내에 웨이퍼가 배치된 모습을 나타낸 도면이다.Figure 4 is a diagram showing a wafer disposed within a gas injection structure according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 웨이퍼의 배치를 나타낸 도면이다.Figure 5 is a diagram showing the arrangement of a wafer according to another embodiment of the present invention.
도 6는 본 발명의 다른 일 실시예에 따른 순환부가 형성된 가스 분사부의 모습을 나타낸 도면이다. 도 6(a)는 본 발명의 제1 실시예에 따른 순환부가 형성된 가스 분사부의 모습을 나타낸 도면이다. 여기서 (a)는 본 실시예에 따른 가스 분사 구조의 정면 단면도, (b)는 (a)의 D-D'부분 단면도이다. 도 6(b)는 본 발명의 제2 실시예에 따른 순환부가 형성된 가스 분사부의 모습을 나타낸 도면이다. 여기서 (a)는 본 실시예에 따른 가스 분사 구조의 정면 단면도, (b)는 (a)의 E-E'부분 단면도이다.Figure 6 is a view showing a gas injection portion with a circulation portion formed according to another embodiment of the present invention. Figure 6(a) is a view showing the gas injection portion with the circulation portion formed according to the first embodiment of the present invention. Here, (a) is a front cross-sectional view of the gas injection structure according to this embodiment, and (b) is a cross-sectional view of part D-D' of (a). Figure 6(b) is a view showing the gas injection portion with the circulation portion formed according to the second embodiment of the present invention. Here, (a) is a front cross-sectional view of the gas injection structure according to this embodiment, and (b) is a cross-sectional view of part E-E' of (a).
도 7은 본 발명의 다른 일 실시예에 따른 유입부가 형성된 가스 분사 구조의 모습을 나타낸 도면이다.Figure 7 is a diagram showing a gas injection structure with an inlet according to another embodiment of the present invention.
도 8은 본 발명의 다른 일 실시예에 따른 4개의 배출부가 형성된 제1,2 가스 분사부의 모습을 나타낸 도면이다.Figure 8 is a diagram showing the first and second gas injection units having four discharge units according to another embodiment of the present invention.
도 9는 도 2의 A 부분으로, 본 발명의 일 실시예에 따른 공간부의 모습 및 공간부를 형성하는 수용부 및 커버부의 탈착되는 모습을 나타낸 도면이다.FIG. 9 is part A of FIG. 2 and is a view showing the space portion according to an embodiment of the present invention and the receiving portion and cover portion forming the space being detached.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 발명의 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시예로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 다른 실시예에 도시되어 있다 하더라도, 동일한 구성요소에 대하여서는 동일한 식별부호를 사용한다.Since the present invention can be modified in various ways and can have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the description of the invention. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all transformations, equivalents, and substitutes included in the spirit and technical scope of the present invention. In describing the present invention, the same identification numbers are used for the same components even if they are shown in different embodiments.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. When describing with reference to the drawings, identical or corresponding components will be assigned the same reference numerals and redundant description thereof will be omitted. .
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.In the following embodiments, terms such as first and second are used not in a limiting sense but for the purpose of distinguishing one component from another component.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, singular terms include plural terms unless the context clearly dictates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.In the following embodiments, terms such as include or have mean that the features or components described in the specification exist, and do not exclude in advance the possibility of adding one or more other features or components.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타냈으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. In the drawings, the sizes of components may be exaggerated or reduced for convenience of explanation. For example, the size and thickness of each component shown in the drawings are shown arbitrarily for convenience of explanation, so the present invention is not necessarily limited to what is shown.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.In cases where an embodiment can be implemented differently, a specific process sequence may be performed differently from the described sequence. For example, two processes described in succession may be performed substantially at the same time, or may be performed in an order opposite to that in which they are described.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
이하, 도 1 내지 도 4를 참조하여, 본 발명의 일 실시예에 따른 원자층 증착 장치의 가스 분사 구조에 대해 설명한다.Hereinafter, with reference to FIGS. 1 to 4, the gas injection structure of the atomic layer deposition apparatus according to an embodiment of the present invention will be described.
도 1은 본 발명의 일 실시예에 따른 원자층 증착 장치를 나타낸 사시도이다. 도 2는 본 발명의 일 실시예에 따른 가스 분사 구조에서 가스가 분사되는 모습을 나타낸 정면도이다. 도 3은 본 발명의 일 실시예에 따른 제1,2 가스 분사부를 나타낸 정면도이다. 도 4는 본 발명의 일 실시예에 따른 가스 분사 구조 내에 웨이퍼가 배치된 모습을 나타낸 도면이다.Figure 1 is a perspective view showing an atomic layer deposition apparatus according to an embodiment of the present invention. Figure 2 is a front view showing gas being injected from a gas injection structure according to an embodiment of the present invention. Figure 3 is a front view showing first and second gas injection units according to an embodiment of the present invention. Figure 4 is a diagram showing a wafer disposed within a gas injection structure according to an embodiment of the present invention.
도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 원자층 증착 장치는, 복수의 웨이퍼(W)를 수납하는 챔버(10) 및 챔버(10)의 일면부에 배치되고, 챔버(10)로부터 탈착되는 가스 분사 구조(100)를 포함한다.Referring to FIGS. 1 to 4, the atomic layer deposition apparatus according to an embodiment of the present invention is disposed in a chamber 10 for storing a plurality of wafers W and on one surface of the chamber 10, and includes a chamber ( It includes a gas injection structure 100 that is detached from 10).
종래에는 챔버 내부로 분사하는 가스 분사 구조가 챔버와 일체로 형성되어 있어, 가스 분사 구조의 교체가 필요할 경우 챔버 전체를 교체해야 되는 문제가 있었다. 이에 본 실시예에 따르면, 챔버(10)의 일측에 배치된 가스 분사 구조(100) 를 채용하여, 가스 분사 구조(100)의 교체가 필요할 경우 챔버(10)로부터 가스 분사 구조를 손쉽게 분리할 수 있어 가스 분사 구조 교체의 효율성이 향상될 수 있다.In the past, the gas injection structure that sprays into the chamber was formed integrally with the chamber, so there was a problem that the entire chamber had to be replaced when the gas injection structure needed to be replaced. Accordingly, according to this embodiment, the gas injection structure 100 disposed on one side of the chamber 10 is adopted, so that the gas injection structure 100 can be easily separated from the chamber 10 when replacement of the gas injection structure 100 is necessary. This can improve the efficiency of gas injection structure replacement.
이때 가스 분사 구조는, 가스(G)가 유입되는 유입부(110, 140), 유입된 가스를 챔버(10)의 내부로 분사하는 배출부(120, 150), 유입부(110, 140) 및 배출부(120, 150)와 연결되고, 유입부(110, 140)와 배출부(120, 150) 사이에 배치된 공간부(130, 160)를 포함한다. 여기서 유입부(110, 140)를 통과한 가스는 공간부(130, 160)를 지나 배출부(120, 150)를 통해 챔버(10)의 내부로 배출된다.At this time, the gas injection structure includes an inlet portion 110, 140 through which gas (G) flows, an outlet portion 120, 150 through which the introduced gas is injected into the interior of the chamber 10, an inlet portion 110, 140, and It is connected to the discharge portions 120 and 150 and includes space portions 130 and 160 disposed between the inlet portions 110 and 140 and the discharge portions 120 and 150. Here, the gas that has passed through the inlet portions 110 and 140 passes through the space portions 130 and 160 and is discharged into the interior of the chamber 10 through the discharge portions 120 and 150.
본 실시예에 따르면, 챔버(10)는 직육면체 형상으로 형성될 수 있다. 가스 분사 구조는 직육면체 형상의 챔버(10)의 일측부와 대응되는 사각 링(Ring) 형상으로 형성될 수 있다. 도 2를 참조하면, 가스 분사 구조는 결합부(170)를 통해 챔버(10)의 일면부와 결합될 수 있다. 결합부(170)는 가스 분사 구조의 둘레를 따라 일정 간격으로 배치된 결합 홀을 포함하고, 상기 결합 홀을 통해 가스 분사 구조와 챔버(10)가 오링 및 볼트를 통해 결합될 수 있다.According to this embodiment, the chamber 10 may be formed in a rectangular parallelepiped shape. The gas injection structure may be formed in a square ring shape corresponding to one side of the rectangular parallelepiped-shaped chamber 10. Referring to FIG. 2, the gas injection structure may be coupled to one surface of the chamber 10 through the coupling portion 170. The coupling portion 170 includes coupling holes disposed at regular intervals along the circumference of the gas injection structure, and the gas injection structure and the chamber 10 can be coupled to each other through the coupling holes using O-rings and bolts.
챔버(10)의 일측부는 중공의 직사각형 테두리 구조로 형성되어 있으며, 가스 분사 구조는 챔버(10)의 일측부와 대응된 형상인 사각 링 형상으로 형성되어 챔버(10)의 일측부와 결합됨으로써, 챔버(10)와 가스 분사 구조 사이로 가스가 새어나가는 현상이 일어나지 않도록 할 수 있다.One side of the chamber 10 is formed in a hollow rectangular border structure, and the gas injection structure is formed in a square ring shape corresponding to one side of the chamber 10 and is coupled to one side of the chamber 10, It is possible to prevent gas from leaking between the chamber 10 and the gas injection structure.
이와 같이 챔버(10)의 일측면의 직사각형 형상과 가스 분사 구조의 사각 링 구조가 서로 대응되는 형상으로 형성되어, 가스 분사 구조를 챔버(10)에 장착할 경우 사용자가 챔버(10)에 장착되는 가스 분사 구조의 장착 위치를 파악하기 용이해질 수 있다.In this way, the rectangular shape of one side of the chamber 10 and the square ring structure of the gas injection structure are formed in a shape that corresponds to each other, so that when the gas injection structure is mounted on the chamber 10, the user can install it on the chamber 10. It may become easier to determine the mounting location of the gas injection structure.
가스 분사 구조는 챔버(10)와 동일한 재질로 형성될 수 있다. 이를 통해, 챔버(10) 내에서의 웨이퍼의 증착 공정시, 가스 분사 구조가 증착 공정에 미치는 부정적인 영향을 최소화할 수 있다. 예를 들면, 챔버(10)는 금속 재질을 포함할 수 있다. 보다 상세하게는, 챔버(10)는 Al, Cu, Ag, Fe, Cr, Mn, P, S, Ni, Mo, SUS 중 적어도 하나를 포함한 재질로 형성될 수 있다.The gas injection structure may be formed of the same material as the chamber 10. Through this, during the wafer deposition process within the chamber 10, the negative influence of the gas injection structure on the deposition process can be minimized. For example, the chamber 10 may include a metal material. More specifically, the chamber 10 may be formed of a material including at least one of Al, Cu, Ag, Fe, Cr, Mn, P, S, Ni, Mo, and SUS.
가스 분사 구조는 도어(12)와 챔버(10)의 사이에 배치될 수 있다. 도어(12)는 가스 분사 구조의 개방된 일측부를 폐쇄함으로써, 챔버(10) 내부의 가스가 가스 분사 구조의 가운데 개방부를 통해 외부로 새어나가는 현상을 방지할 수 있다. 또한 도어(12)는 가스 분사 구조를 챔버(10)에 완전히 결합되도록 하여 원자층 증착 장치의 내구성을 향상시킬 수 있다.The gas injection structure may be disposed between the door 12 and the chamber 10. The door 12 closes one open side of the gas injection structure, thereby preventing the gas inside the chamber 10 from leaking to the outside through the central opening of the gas injection structure. Additionally, the door 12 can improve the durability of the atomic layer deposition device by completely coupling the gas injection structure to the chamber 10.
챔버(10)를 기준으로 도어(12)의 반대편에는 후면 커버(11)가 배치될 수 있다. 후면 커버(11)는 챔버(10)를 밀폐시켜 챔버(10) 내부를 도어(12)와 함께 진공 상태로 만들 수 있다. A rear cover 11 may be disposed on the opposite side of the door 12 based on the chamber 10. The rear cover 11 can seal the chamber 10 and create a vacuum inside the chamber 10 together with the door 12.
본 실시예에 따르면, 도 2에 도시된 바와 같이 가스 분사 구조는 제1,2 가스 분사부(100a, 100b)를 포함할 수 있다. 이때 제1,2 가스 분사부(100a, 100b)는 서로 마주보게 배치되고, 제1,2 가스 분사부(100a, 100b)를 통과한 가스는 서로 마주보게 분사될 수 있다. 도 4를 참조하면, 제1,2 가스 분사부(100a, 100b)는 적층 배치된 웨이퍼(W)의 길이 방향과 수직인 방향에 위치할 수 있다. According to this embodiment, as shown in FIG. 2, the gas injection structure may include first and second gas injection units 100a and 100b. At this time, the first and second gas injection units 100a and 100b are disposed to face each other, and the gas that has passed through the first and second gas injection units 100a and 100b may be injected to face each other. Referring to FIG. 4, the first and second gas injection units 100a and 100b may be located in a direction perpendicular to the longitudinal direction of the stacked wafers W.
다만 가스 분사부의 위치는 이에 한정되지 아니하며, 웨이퍼(W)의 길이 방향과 평행인 방향, 즉 사각 링 형상의 가스 분사 구조의 양측면부에 위치할 수도 있으며, 사각 링 형상의 가스 분사 구조의 네 모서리 부분에 모두 위치할 수도 있다.However, the location of the gas injection unit is not limited to this, and may be located in a direction parallel to the longitudinal direction of the wafer W, that is, on both sides of the square ring-shaped gas injection structure, and at the four corners of the square ring-shaped gas injection structure. They may all be located in one part.
본 실시예에 따르면, 도 3 및 도 4에 도시된 바와 같이, 두 개의 제1,2 가스 분사부(100a, 100b)가 서로 마주보도록 배치될 수 있다. 이때 제1,2 가스 분사부(100a, 100b)는 대칭 구조로 형성될 수 있다.According to this embodiment, as shown in FIGS. 3 and 4, the two first and second gas injection units 100a and 100b may be arranged to face each other. At this time, the first and second gas injection units 100a and 100b may be formed in a symmetrical structure.
보다 상세하게는, 제1 가스 분사부(100a)는, 제1 가스(G1)가 유입되는 제1 유입부(110), 유입된 가스를 챔버(10)의 내부로 분사하는 제1 배출부(120), 제1 유입부(110) 및 제1 배출부(120)와 연결되고, 제1 유입부(110)와 제1 배출부(120)의 사이에 배치된 제1 공간부(130)를 포함한다. 이때, 제1 유입부(110)를 통과한 가스는 제1 공간부(130)를 지나 제1 배출부(120)를 통해 챔버(10)의 내부로 배출될 수 있다. 예를 들면, 제1 가스(G1)는 TMA(Trimethylaluminum), N2 등을 포함할 수 있다.More specifically, the first gas injection unit 100a includes a first inlet 110 through which the first gas G1 flows, and a first discharge section through which the introduced gas is injected into the interior of the chamber 10 ( 120), a first space portion 130 connected to the first inlet 110 and the first discharge portion 120 and disposed between the first inlet 110 and the first discharge portion 120. Includes. At this time, the gas that has passed through the first inlet 110 may pass through the first space 130 and be discharged into the interior of the chamber 10 through the first outlet 120. For example, the first gas (G1) may include trimethylaluminum (TMA), N 2 , etc.
제1 유입부(110)는 웨이퍼(W)의 길이 방향과 수직인 방향으로 형성될 수 있다. 반면, 제1 유입부(110)와 연결된 제1 공간부(130)의 길이 방향은 제1 유입부(110)의 길이 방향과 수직인 방향으로 형성될 수 있다. 제1 유입부(110)를 통해 유입된 가스는 제1 공간부(130)에서 측면 방향으로 확산될 수 있다. 제1 공간부(130)에서 확산된 제1 가스(G1)는 적어도 하나의 제1 배출부(120)를 통해 챔버(10) 내부로 배출될 수 있다. The first inlet 110 may be formed in a direction perpendicular to the longitudinal direction of the wafer (W). On the other hand, the longitudinal direction of the first space 130 connected to the first inlet 110 may be formed in a direction perpendicular to the longitudinal direction of the first inlet 110. Gas introduced through the first inlet 110 may diffuse in the lateral direction in the first space 130. The first gas G1 diffused in the first space 130 may be discharged into the chamber 10 through at least one first discharge part 120.
제1 가스(G1)는 제1 가스 공급부(200)를 통해 제1 유입부(110)로 유입될 수 있다. 제1 가스 공급부(200)는 제1 유입부(110)와 착탈 가능하게 결합되며, 제1 가스(G1)의 종류가 달라질 경우 기존의 제1 가스 공급부(200)를 제1 유입부(110)로부터 탈거한 후 다른 종류의 가스를 포함하는 제1 가스 공급부(200)를 제1 유입부(110)와 연결시킬 수 있다.The first gas G1 may flow into the first inlet 110 through the first gas supply unit 200. The first gas supply unit 200 is detachably coupled to the first inlet 110, and when the type of the first gas (G1) is different, the existing first gas supply unit 200 is connected to the first inlet 110. After being removed from the gas supply unit 200, the first gas supply unit 200 containing different types of gas can be connected to the first inlet unit 110.
본 실시예에 따르면, 제1 배출부(120)는 두 배출부(120a, 120b)가 제1 유입부(110)를 중심으로 양쪽으로 대칭이 되도록 배치될 수 있다. 단일 배출 구조가 아닌, 두 배출부(120a, 120b)를 통해 가스가 분사됨으로써, 챔버(10) 내부에 수납된 웨이퍼(W)에 가스를 보다 고르게 분사할 수 있다. 배출부 구조는 노즐 구조를 포함할 수 있다. 노즐 구조를 통해 제1 가스(G1)를 챔버(10) 내부로 분사할 수 있다. According to this embodiment, the first discharge part 120 may be arranged so that the two discharge parts 120a and 120b are symmetrical on both sides about the first inlet 110. Since the gas is sprayed through two discharge portions 120a and 120b instead of a single discharge structure, the gas can be sprayed more evenly on the wafer W stored inside the chamber 10. The outlet structure may include a nozzle structure. The first gas (G1) can be injected into the chamber 10 through the nozzle structure.
도 4를 참조하면, 두 배출부(120a, 120b) 간의 거리(L11)는 가스 분사 구조(100)의 안쪽부 폭(A)의 50퍼센트 이상일 수 있다. 자세하게는 두 배출부(120a, 120b) 간의 거리(L11)는 가스 분사 구조(100)의 안쪽부 폭(A)의 50퍼센트 내지 90퍼센트로 형성될 수 있다.Referring to FIG. 4, the distance L11 between the two discharge portions 120a and 120b may be 50 percent or more of the width A of the inner portion of the gas injection structure 100. In detail, the distance L11 between the two discharge parts 120a and 120b may be 50% to 90% of the width A of the inner part of the gas injection structure 100.
일 실시예로, 두 배출부(120a, 120b) 간의 거리(L11)는, 일 배출부(120a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L12)보다 더 길 수 있다. 이때 일 배출부(120a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L12)는 두 배출부(120a, 120b) 간의 거리(L11)의 5퍼센트 내지 25퍼센트일 수 있다. In one embodiment, the distance L11 between the two discharge parts 120a and 120b may be longer than the distance L12 between one discharge part 120a and the inner surface of the gas injection part corresponding thereto. At this time, the distance L12 between one discharge part 120a and the inner surface of the corresponding gas injection part may be 5% to 25% of the distance L11 between the two discharge parts 120a and 120b.
일 배출부(120a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L12)가 두 배출부(120a, 120b) 간의 거리(L11)의 5퍼센트 미만인 경우, 웨이퍼의 센터 영역으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다. 또한 일 배출부(120a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L12)가 두 배출부(120a, 120b) 간의 거리(L11)의 25퍼센트 초과일 경우, 웨이퍼의 가장자리 영역으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다.When the distance (L12) between one discharge portion (120a) and the inner surface of the corresponding gas injection portion is less than 5 percent of the distance (L11) between the two discharge portions (120a, 120b), the deposition gas supplied to the center area of the wafer As is decreased, deposition uniformity characteristics may deteriorate. In addition, when the distance (L12) between one discharge portion (120a) and the inner surface of the corresponding gas injection portion is greater than 25% of the distance (L11) between the two discharge portions (120a, 120b), the gas supplied to the edge area of the wafer As deposition gas is reduced, deposition uniformity characteristics may deteriorate.
또한 두 배출부(120a, 120b) 간의 거리(L11)는, 타 배출부(120b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L13)보다 더 길 수 있다. 이때 타 배출부(120b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L13)는 두 배출부(120a, 120b) 간의 거리(L11)의 5퍼센트 내지 25퍼센트일 수 있다. Additionally, the distance L11 between the two discharge parts 120a and 120b may be longer than the distance L13 between the other discharge part 120b and the inner surface of the gas injection part corresponding thereto. At this time, the distance L13 between the other discharge part 120b and the inner surface of the corresponding gas injection part may be 5% to 25% of the distance L11 between the two discharge parts 120a and 120b.
타 배출부(120b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L13)가 두 배출부(120a, 120b) 간의 거리(L11)의 5퍼센트 미만인 경우, 웨이퍼의 센터 영역(CA)으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다. 또한 타 배출부(120b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L13)가 두 배출부(120a, 120b) 간의 거리(L11)의 25퍼센트 초과일 경우, 웨이퍼의 가장자리 영역으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다.If the distance (L13) between the other discharge portion (120b) and the inner surface of the corresponding gas injection portion is less than 5 percent of the distance (L11) between the two discharge portions (120a, 120b), the supply is supplied to the center area (CA) of the wafer. As the amount of deposition gas used decreases, deposition uniformity characteristics may deteriorate. In addition, when the distance (L13) between the other discharge part (120b) and the inner surface of the corresponding gas injection part exceeds 25% of the distance (L11) between the two discharge parts (120a, 120b), the gas supplied to the edge area of the wafer As deposition gas is reduced, deposition uniformity characteristics may deteriorate.
일 실시예로, 일 배출부(120a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L12)와, 타 배출부(120b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L13)는 서로 대응될 수 있다. 즉, 일 배출부(120a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L12)와, 타 배출부(120b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L13)는 서로 동일하게 형성될 수 있다.In one embodiment, the distance (L12) between one discharge part (120a) and the inner surface of the corresponding gas injection part, and the distance (L13) between the other discharge part (120b) and the inner surface of the corresponding gas injection part are can correspond to each other. That is, the distance (L12) between one discharge part (120a) and the inner surface of the corresponding gas injection part (L12) and the distance (L13) between the other discharge part (120b) and the inner surface of the corresponding gas injection part are equal to each other. can be formed.
일 실시예로, 두 배출부(120a, 120b) 간의 거리(L11)는 제1 공간부(130)의 제1 폭(L14)보다 크거나 같을 수 있다. 예를 들면, 두 배출부(120a, 120b) 간의 거리(L11)는 제1 공간부(130)의 제1 폭(L14)의 100퍼센트 내지 120퍼센트의 범위에서 크거나 같을 수 있다. 두 배출부(120a, 120b) 간의 거리(L11)와 제1 공간부(130)의 제1 폭(L14)가 같을 경우, 배출부(120a, 120b)는 제1 공간부(130)와 수직인 방향으로 연장 형성될 수 있다. 또한 두 배출부(120a, 120b) 간의 거리(L11)가 제1 공간부(130)의 제1 폭(L14)보다 클 경우, 배출부(120a, 120b)는 제1 공간부(130)를 기준으로 경사지게 연장 형성될 수 있다.In one embodiment, the distance L11 between the two discharge parts 120a and 120b may be greater than or equal to the first width L14 of the first space 130. For example, the distance L11 between the two discharge parts 120a and 120b may be greater than or equal to 100% to 120% of the first width L14 of the first space 130. When the distance L11 between the two discharge parts 120a and 120b is the same as the first width L14 of the first space 130, the discharge parts 120a and 120b are perpendicular to the first space 130. It can be formed to extend in any direction. In addition, when the distance L11 between the two discharge parts 120a and 120b is greater than the first width L14 of the first space 130, the discharge parts 120a and 120b are based on the first space 130. It can be formed to extend obliquely.
두 배출부(120a, 120b) 간의 거리(L11)가 제1 공간부(130)의 제1 폭(L14)의 120퍼센트를 초과할 경우, 배출부의 경사각이 커져 센터 영역으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다.When the distance L11 between the two discharge parts 120a and 120b exceeds 120% of the first width L14 of the first space 130, the inclination angle of the discharge part increases and less deposition gas is supplied to the center area. Therefore, deposition uniformity characteristics may deteriorate.
일 실시예로, 제1 공간부(130)의 제2 폭(C11)은 가스 분사 구조(100)의 두께(C)의 25퍼센트 내지 75퍼센트 안에 위치할 수 있다. 다른 실시예로, 제1 공간부(130')의 제2 폭(C11) 방향은, 가스 유입부(110)와 수직 방향으로 연장 형성될 수 있으며, 가스 유입부(110)를 기준으로 경사지게 형성될 수도 있다.In one embodiment, the second width C11 of the first space 130 may be located within 25% to 75% of the thickness C of the gas injection structure 100. In another embodiment, the direction of the second width C11 of the first space 130' may extend in a direction perpendicular to the gas inlet 110, and may be formed to be inclined with respect to the gas inlet 110. It could be.
제1 공간부(130')의 제2 폭(C11) 방향이 가스 유입부(110)를 기준으로 경사지게 형성될 경우, 제1 공간부(130')의 제2 폭(C11) 방향은, 도어(12)가 위치한 방향 및 배출부(120)와 가까워지는 방향으로 경사지게 배치될 수 있다. 이 경우, 배출부(120)를 통해 배출되는 유체가 도어(12) 쪽으로 분사되어 센터 영역(CA)으로 보다 많은 유체가 분사되어 유체가 보다 균일하게 분사될 수 있으며, 도어(12)쪽으로 분사된 유체는 다시 후면 커버(11)에 배치된 흡입부 방향으로 유동함으로써 챔버(10) 내부에 유체를 전반적으로 균일하게 공급할 수 있다.When the direction of the second width C11 of the first space 130' is inclined with respect to the gas inlet 110, the direction of the second width C11 of the first space 130' is the direction of the door (12) may be disposed inclined in the direction in which it is located and in the direction closer to the discharge unit 120. In this case, the fluid discharged through the discharge unit 120 is sprayed toward the door 12, and more fluid is sprayed into the center area (CA), so that the fluid can be sprayed more evenly, and the fluid sprayed toward the door 12 The fluid flows again in the direction of the suction portion disposed on the rear cover 11, thereby allowing the fluid to be uniformly supplied throughout the chamber 10.
또한, 제2 가스 분사부(100b)는, 제2 가스(G2)가 유입되는 제2 유입부(140), 유입된 가스를 챔버(10)의 내부로 분사하는 제2 배출부(150), 제2 유입부(140) 및 제2 배출부(150)와 연결되고, 제2 유입부(140)와 제2 배출부(150)의 사이에 배치된 제2 공간부(160)를 포함한다. 이때, 제2 유입부(140)를 통과한 가스는 제2 공간부(160)를 지나 제2 배출부(150)를 통해 챔버(10)의 내부로 배출될 수 있다. 예를 들면, 제2 가스(G2)는 H2O, O3, N2, Ar 등을 포함할 수 있다.In addition, the second gas injection unit 100b includes a second inlet 140 through which the second gas G2 flows, a second outlet 150 through which the introduced gas is injected into the interior of the chamber 10, It is connected to the second inlet 140 and the second outlet 150 and includes a second space 160 disposed between the second inlet 140 and the second outlet 150. At this time, the gas that has passed through the second inlet 140 may pass through the second space 160 and be discharged into the interior of the chamber 10 through the second outlet 150. For example, the second gas (G2) may include H 2 O, O3, N 2, Ar, etc.
제2 유입부(140)는 웨이퍼(W)의 길이 방향과 수직인 방향으로 형성될 수 있다. 반면, 제2 유입부(140)와 연결된 제2 공간부(160)의 길이 방향은 제2 유입부(140)의 길이 방향과 수직인 방향으로 형성될 수 있다. 제2 유입부(140)를 통해 유입된 가스는 제2 공간부(160)에서 측면 방향으로 확산될 수 있다. 제2 공간부(160)에서 확산된 제2 가스(G2)는 적어도 하나의 제2 배출부(150)를 통해 챔버(10) 내부로 배출될 수 있다. The second inlet 140 may be formed in a direction perpendicular to the longitudinal direction of the wafer (W). On the other hand, the longitudinal direction of the second space 160 connected to the second inlet 140 may be formed in a direction perpendicular to the longitudinal direction of the second inlet 140. Gas introduced through the second inlet 140 may diffuse in the lateral direction in the second space 160. The second gas G2 diffused in the second space 160 may be discharged into the chamber 10 through at least one second discharge part 150.
제2 가스(G2)는 제2 가스 공급부(300)를 통해 제2 유입부(140)로 유입될 수 있다. 제2 가스 공급부(300)는 제2 유입부(140)와 착탈 가능하게 결합되며, 제2 가스(G2)의 종류가 달라질 경우 기존의 제2 가스 공급부(300)를 제2 유입부(140)로부터 탈거한 후 다른 종류의 가스를 포함하는 제2 가스 공급부(300)를 제2 유입부(140)와 연결시킬 수 있다.The second gas (G2) may flow into the second inlet 140 through the second gas supply unit 300. The second gas supply unit 300 is detachably coupled to the second inlet 140, and when the type of the second gas (G2) is different, the existing second gas supply unit 300 is connected to the second inlet 140. After being removed from the gas supply unit 300, the second gas supply unit 300 containing a different type of gas can be connected to the second inlet unit 140.
본 실시예에 따르면, 제2 배출부(150)는 두 배출부(150a, 150b)가 제2 유입부(140)를 중심으로 양쪽으로 대칭이 되도록 배치될 수 있다. 단일 배출 구조가 아닌, 두 배출부(150a, 150b)를 통해 가스가 분사됨으로써, 챔버(10) 내부에 수납된 웨이퍼(W)에 가스를 보다 고르게 분사할 수 있다. 배출부 구조는 노즐 구조를 포함할 수 있다. 노즐 구조를 통해 제2 가스(G1)를 챔버(10) 내부로 분사할 수 있다.According to this embodiment, the second discharge part 150 may be arranged so that the two discharge parts 150a and 150b are symmetrical on both sides about the second inlet part 140. Since the gas is sprayed through two discharge parts 150a and 150b instead of a single discharge structure, the gas can be sprayed more evenly on the wafer W stored inside the chamber 10. The outlet structure may include a nozzle structure. The second gas (G1) can be injected into the chamber 10 through the nozzle structure.
도 4를 참조하면, 두 배출부(150a, 150b) 간의 거리(L21)는 가스 분사 구조(100)의 안쪽부 폭(A')의 50퍼센트 이상일 수 있다. 자세하게는 두 배출부(150a, 150b) 간의 거리(L21)는 가스 분사 구조(100)의 안쪽부 폭(A')의 50퍼센트 내지 90퍼센트로 형성될 수 있다.Referring to FIG. 4, the distance L21 between the two discharge parts 150a and 150b may be 50 percent or more of the inner width A' of the gas injection structure 100. In detail, the distance L21 between the two discharge parts 150a and 150b may be 50% to 90% of the inner width A' of the gas injection structure 100.
일 실시예로, 두 배출부(150a, 150b) 간의 거리(L21)는, 일 배출부(150a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L22)보다 더 길 수 있다. 이때 일 배출부(150a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L22)는 두 배출부(150a, 150b) 간의 거리(L21)의 5퍼센트 내지 25퍼센트일 수 있다. In one embodiment, the distance L21 between the two discharge parts 150a and 150b may be longer than the distance L22 between one discharge part 150a and the inner surface of the gas injection part corresponding thereto. At this time, the distance L22 between one discharge part 150a and the inner surface of the corresponding gas injection part may be 5% to 25% of the distance L21 between the two discharge parts 150a and 150b.
일 배출부(150a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L22)가 두 배출부(150a, 150b) 간의 거리(L21)의 5퍼센트 미만인 경우, 웨이퍼의 센터 영역으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다. 또한 일 배출부(150a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L22)가 두 배출부(150a, 150b) 간의 거리(L21)의 25퍼센트 초과일 경우, 웨이퍼의 가장자리 영역으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다.When the distance (L22) between one discharge portion (150a) and the inner surface of the corresponding gas injection portion is less than 5 percent of the distance (L21) between the two discharge portions (150a, 150b), the deposition gas supplied to the center area of the wafer As is decreased, deposition uniformity characteristics may deteriorate. In addition, when the distance (L22) between one discharge portion (150a) and the inner surface of the corresponding gas injection portion is greater than 25% of the distance (L21) between the two discharge portions (150a, 150b), the gas supplied to the edge area of the wafer As deposition gas is reduced, deposition uniformity characteristics may deteriorate.
또한 두 배출부(150a, 150b) 간의 거리(L21)는, 타 배출부(150b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L23)보다 더 길 수 있다. 이때 타 배출부(150b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L23)는 두 배출부(150a, 150b) 간의 거리(L21)의 5퍼센트 내지 25퍼센트일 수 있다. Additionally, the distance L21 between the two discharge parts 150a and 150b may be longer than the distance L23 between the other discharge part 150b and the inner surface of the gas injection part corresponding thereto. At this time, the distance L23 between the other discharge part 150b and the inner surface of the corresponding gas injection part may be 5% to 25% of the distance L21 between the two discharge parts 150a and 150b.
타 배출부(150b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L23)가 두 배출부(150a, 150b) 간의 거리(L21)의 5퍼센트 미만인 경우, 웨이퍼의 센터 영역(CA)으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다. 또한 타 배출부(150b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L23)가 두 배출부(150a, 150b) 간의 거리(L21)의 25퍼센트 초과일 경우, 웨이퍼의 가장자리 영역으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다.When the distance (L23) between the other discharge portion (150b) and the inner surface of the corresponding gas injection portion is less than 5 percent of the distance (L21) between the two discharge portions (150a, 150b), supply is supplied to the center area (CA) of the wafer. As the amount of deposition gas used decreases, deposition uniformity characteristics may deteriorate. In addition, when the distance (L23) between the other discharge part (150b) and the inner surface of the corresponding gas injection part exceeds 25% of the distance (L21) between the two discharge parts (150a, 150b), the gas supplied to the edge area of the wafer As deposition gas is reduced, deposition uniformity characteristics may deteriorate.
일 실시예로, 일 배출부(150a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L22)와, 타 배출부(150b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L23)는 서로 대응될 수 있다. 즉, 일 배출부(150a) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L22)와, 타 배출부(150b) 및 그와 대응되는 가스 분사부 내측면 간의 거리(L23)는 서로 동일하게 형성될 수 있다.In one embodiment, the distance (L22) between one discharge portion (150a) and the inner surface of the gas injection portion corresponding thereto, and the distance (L23) between the other discharge portion (150b) and the inner surface of the gas injection portion corresponding thereto, are can correspond to each other. That is, the distance (L22) between one discharge part (150a) and the inner surface of the corresponding gas injection part and the distance (L23) between the other discharge part (150b) and the inner surface of the corresponding gas injection part are equal to each other. can be formed.
일 실시예로, 두 배출부(150a, 150b) 간의 거리(L21)는 제2 공간부(160)의 제1 폭(L24)보다 크거나 같을 수 있다. 예를 들면, 두 배출부(150a, 150b) 간의 거리(L21)는 제2 공간부(160)의 제1 폭(L24)의 100퍼센트 내지 120퍼센트의 범위에서 크거나 같을 수 있다. 두 배출부(150a, 150b) 간의 거리(L21)와 제2 공간부(160)의 제1 폭(L24)가 같을 경우, 배출부(150a, 150b)는 제2 공간부(160)와 수직인 방향으로 연장 형성될 수 있다. 또한 두 배출부(150a, 150b) 간의 거리(L21)가 제2 공간부(160)의 제1 폭(L24)보다 클 경우, 배출부(150a, 150b)는 제2 공간부(160)를 기준으로 경사지게 연장 형성될 수 있다.In one embodiment, the distance L21 between the two discharge parts 150a and 150b may be greater than or equal to the first width L24 of the second space 160. For example, the distance L21 between the two discharge parts 150a and 150b may be greater than or equal to 100% to 120% of the first width L24 of the second space 160. When the distance L21 between the two discharge parts 150a and 150b is the same as the first width L24 of the second space 160, the discharge parts 150a and 150b are perpendicular to the second space 160. It can be formed to extend in any direction. In addition, when the distance L21 between the two discharge parts 150a and 150b is greater than the first width L24 of the second space 160, the discharge parts 150a and 150b are based on the second space 160. It can be formed to extend obliquely.
두 배출부(150a, 150b) 간의 거리(L21)가 제2 공간부(160)의 제1 폭(L24)의 120퍼센트를 초과할 경우, 배출부의 경사각이 커져 센터 영역으로 공급되는 증착 가스가 적어지므로 증착 균일성(Uniformity) 특성이 저하될 수 있다.When the distance L21 between the two discharge parts 150a and 150b exceeds 120% of the first width L24 of the second space 160, the inclination angle of the discharge part increases and less deposition gas is supplied to the center area. Therefore, deposition uniformity characteristics may deteriorate.
일 실시예로, 제2 공간부(160)의 제2 폭(C11')은 가스 분사 구조(100)의 두께(C')의 25퍼센트 내지 75퍼센트 안에 위치할 수 있다. 다른 실시예로, 제2 공간부(160')의 제2 폭(C11) 방향은, 가스 유입부(110)와 수직 방향으로 연장 형성될 수 있으며, 가스 유입부(110)를 기준으로 경사지게 형성될 수도 있다.In one embodiment, the second width C11' of the second space 160 may be located within 25% to 75% of the thickness C' of the gas injection structure 100. In another embodiment, the direction of the second width C11 of the second space 160' may extend in a direction perpendicular to the gas inlet 110, and may be formed to be inclined with respect to the gas inlet 110. It could be.
제1 공간부(160')의 제2 폭(C11) 방향이 가스 유입부(110)를 기준으로 경사지게 형성될 경우, 제2 공간부(160')의 제2 폭(C11') 방향은, 도어(12)가 위치한 방향 및 배출부(150)와 가까워지는 방향으로 경사지게 배치될 수 있다. 이 경우, 배출부(150)를 통해 배출되는 유체가 도어(12) 쪽으로 분사되어 센터 영역(CA)으로 보다 많은 유체가 분사되어 유체가 보다 균일하게 분사될 수 있으며, 도어(12)쪽으로 분사된 유체는 다시 후면 커버(11)에 배치된 흡입부 방향으로 유동함으로써 챔버(10) 내부에 유체를 전반적으로 균일하게 공급할 수 있다.When the direction of the second width C11 of the first space 160' is inclined with respect to the gas inlet 110, the direction of the second width C11' of the second space 160' is: The door 12 may be disposed inclined in the direction in which it is located and in the direction closer to the discharge unit 150. In this case, the fluid discharged through the discharge unit 150 is sprayed toward the door 12, and more fluid is sprayed into the center area (CA), so that the fluid can be sprayed more evenly, and the fluid sprayed toward the door 12 The fluid flows again in the direction of the suction portion disposed on the rear cover 11, thereby allowing the fluid to be uniformly supplied throughout the chamber 10.
일 실시예로, 하부 배출부(150a, 150b)는 상부 배출부(120a, 120b)와 대응되는 형상, 각도 및 위치에 배치될 수 있다. 이를 통해 가스 분사 구조(100)를 통해 분사되는 유체가 상하 방향으로 균일하게 분사될 수 있다.In one embodiment, the lower discharge portions 150a and 150b may be disposed in a shape, angle and position corresponding to the upper discharge portions 120a and 120b. Through this, the fluid injected through the gas injection structure 100 can be sprayed uniformly in the vertical direction.
제1 가스(G1)와 제2 가스(G2)의 종류는 다를 수도 있고, 같을 수도 있다. 웨이퍼 증착 환경에 맞게 제1 가스(G1)와 제2 가스(G2)를 선택하여 챔버(10) 내부에 분사할 수 있다.The types of the first gas (G1) and the second gas (G2) may be different or the same. The first gas (G1) and the second gas (G2) can be selected and injected into the chamber 10 according to the wafer deposition environment.
도 1 및 도 4를 참조하면, 가스 분사 구조의 분사 방향(D1)은, 복수의 웨이퍼(W)의 길이 방향(D2)과 수직인 방향일 수 있다. 이때, 챔버(10)의 일측부에서 챔버의 내부를 향해 분사된 가스는, 후면 커버(11)에 배치된 흡입부(미도시)를 통해, 챔버(10)를 기준으로 가스 분사 구조의 반대편 방향(DS)으로 유동될 수 있다. 이를 통해 챔버(10)의 일측부에서 분사된 가스가 챔버(10) 내부의 전역으로 확산되면서, 챔버(10) 내부에 수납된 복수의 웨이퍼(W)에 가스가 균일하게 증착될 수 있다.Referring to FIGS. 1 and 4 , the injection direction D1 of the gas injection structure may be perpendicular to the longitudinal direction D2 of the plurality of wafers W. At this time, the gas injected from one side of the chamber 10 toward the inside of the chamber is directed to the opposite side of the gas injection structure based on the chamber 10 through the suction part (not shown) disposed on the rear cover 11. (DS). Through this, the gas injected from one side of the chamber 10 spreads throughout the inside of the chamber 10, and the gas can be uniformly deposited on the plurality of wafers W stored inside the chamber 10.
도 5를 참조하면, 가스 분사 구조의 분사 방향(D1)은, 복수의 웨이퍼(W)의 길이 방향(D2')과 경사진 방향일 수 있다. 보다 상세하게는, 가스 분사 구조의 분사 방향(D1)은, 복수의 웨이퍼(W)의 길이 방향(D2')과 좌우 약 5도 이내로 틸팅(Tilting)된 각도를 유지하도록 복수의 웨이퍼(W)가 배치될 수 있다. 이 경우, 가스 분사 구조를 통해 분사되는 유체가 복수의 웨이퍼(W)의 사이 공간으로 균일하게 확산될 수 있다.Referring to FIG. 5, the injection direction D1 of the gas injection structure may be inclined to the longitudinal direction D2' of the plurality of wafers W. More specifically, the injection direction D1 of the gas injection structure maintains a tilted angle within about 5 degrees left and right with the longitudinal direction D2' of the plurality of wafers W. can be placed. In this case, the fluid injected through the gas injection structure can be uniformly spread into the space between the plurality of wafers W.
이하, 도 6를 참조하여 본 발명의 다른 일 실시예에 따른 순환부가 형성된 가스 분사부에 대해 설명한다. 도 6에 도시되지 않은 내용은 도 1 내지 도 4에 도시된 내용 및 설명을 참조할 수 있다.Hereinafter, a gas injection unit with a circulation unit according to another embodiment of the present invention will be described with reference to FIG. 6. For content not shown in FIG. 6, refer to the content and description shown in FIGS. 1 to 4.
도 6는 본 발명의 다른 일 실시예에 따른 순환부가 형성된 가스 분사부의 모습을 나타낸 도면이다. 도 6(a)는 본 발명의 제1 실시예에 따른 순환부가 형성된 가스 분사부의 모습을 나타낸 도면이다. 여기서 (a)는 본 실시예에 따른 가스 분사 구조의 정면 단면도, (b)는 (a)의 D-D'부분 단면도이다. 도 6(b)는 본 발명의 제2 실시예에 따른 순환부가 형성된 가스 분사부의 모습을 나타낸 도면이다. 여기서 (a)는 본 실시예에 따른 가스 분사 구조의 정면 단면도, (b)는 (a)의 E-E'부분 단면도이다.Figure 6 is a view showing a gas injection portion with a circulation portion formed according to another embodiment of the present invention. Figure 6(a) is a view showing the gas injection portion with the circulation portion formed according to the first embodiment of the present invention. Here, (a) is a front cross-sectional view of the gas injection structure according to this embodiment, and (b) is a cross-sectional view of part D-D' of (a). Figure 6(b) is a view showing the gas injection portion with the circulation portion formed according to the second embodiment of the present invention. Here, (a) is a front cross-sectional view of the gas injection structure according to this embodiment, and (b) is a cross-sectional view of part E-E' of (a).
도 6(a)를 참조하면, 본 발명의 제1 실시예에 따른 가스 분사 구조는, 제1 가스(G1)를 공급하는 제1 가스 분사부(100c) 및 제2 가스(G2)를 공급하는 제2 가스 분사부(100d)를 포함할 수 있다.Referring to FIG. 6(a), the gas injection structure according to the first embodiment of the present invention includes a first gas injection unit 100c for supplying the first gas G1 and a second gas injection unit 100c for supplying the second gas G2. It may include a second gas injection unit 100d.
이때 가스 분사 구조(100) 내에서, 제1 가스 분사부(100c)와 제2 가스 분사부(100d)는 챔버의 연장 방향으로 서로 이격되게 배치될 수 있다.At this time, within the gas injection structure 100, the first gas injection unit 100c and the second gas injection unit 100d may be arranged to be spaced apart from each other in the extending direction of the chamber.
또한 제1 가스 분사부(100c)와 제2 가스 분사부(100d) 각각은 제1 공간부(130a, 130b, 160a, 160b), 순환부(PC1, PC2) 및 복수의 배출부(120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, 150b2)를 포함할 수 있다. 이때 복수의 배출부(120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, 150b2)는 상부, 하부, 좌측, 우측 중 적어도 하나의 영역에 형성될 수 있다. 예를 들면 복수의 배출부는 도 6(a)에 도시된 바와 같이 상부 및 하부에 형성될 수 있다.In addition, the first gas injection unit 100c and the second gas injection unit 100d each include a first space part 130a, 130b, 160a, 160b, a circulation part PC1, PC2, and a plurality of discharge parts 120a1, 120b1. , 150a1, 150b1, 120a2, 120b2, 150a2, 150b2). At this time, a plurality of discharge parts 120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, and 150b2 may be formed in at least one of the upper, lower, left, and right areas. For example, a plurality of discharge portions may be formed at the top and bottom as shown in FIG. 6(a).
이와 같이 복수의 배출부의 배치를 통해 상측에 위치한 제1 가스 공급부(200)를 통해 유입된 제1 가스(G1) 또는 제2 가스(G2)는, 상부에 형성된 배출부(120a1, 120b1, 120a2, 120b2) 뿐만 아니라 순환부(PC1, PC2)를 통해 하부에 형성된 배출부(150a1, 150b1, 150a2, 150b2)를 통해 챔버 내부로 가스가 공급될 수 있다.In this way, the first gas (G1) or the second gas (G2) flowing in through the first gas supply unit 200 located on the upper side through the arrangement of the plurality of discharge parts is discharged at the upper part (120a1, 120b1, 120a2, 120b2), as well as gas can be supplied into the chamber through the discharge parts (150a1, 150b1, 150a2, 150b2) formed at the bottom through the circulation parts (PC1, PC2).
또한 제1 가스 분사부(100c)와 연결된 제1 가스 공급부(200a)를 통해 제1 가스(G1)가 공급되고, 제2 가스 분사부(100d)와 연결된 제2 가스 공급부(200b)를 통해 제2 가스(G2)가 공급될 수 있다. In addition, the first gas (G1) is supplied through the first gas supply unit (200a) connected to the first gas injection unit (100c), and the first gas (G1) is supplied through the second gas supply unit (200b) connected to the second gas injection unit (100d). 2 Gas (G2) can be supplied.
이때 제1 가스(G1)는 제1-1 가스 공급부(200a), 제1-1 유입부(110a), 제1-1 공간부(130a) 및 제1 순환부(PC1)를 통해 제1 경로로 순환하며 복수의 배출부(120a1, 120b1, 150a1, 150b1)을 통해 챔버의 내부로 제1 가스(G1)가 배출되고, 제2 가스(G2)는 제1-2 가스 공급부(200b), 제1-2 유입부(110b), 제1-2 공간부(130b) 및 제2 순환부(PC2)를 통해 제1 경로와 연결되지 않고 분리된 제2 경로로 순환하며 복수의 배출부(120a2, 120b2, 150a2, 150b2)를 통해 챔버의 내부로 제2 가스(G2)가 배출된다. 이를 통해 제1 가스(G1)와 제2 가스(G2)가 배출 경로 상에서 혼합되며 발생할 수 있는 반응, 폭발 기타 배출 경로 상에서 다른 종류의 가스가 혼합되며 발생할 수 있는 위험 요소를 제거하고 챔버 내부로 다른 종류의 가스를 안정적으로 공급할 수 있다.At this time, the first gas (G1) is routed through the 1-1 gas supply unit 200a, the 1-1 inlet 110a, the 1-1 space 130a, and the first circulation unit PC1. The first gas (G1) is discharged into the interior of the chamber through a plurality of discharge portions (120a1, 120b1, 150a1, and 150b1), and the second gas (G2) is discharged from the first-second gas supply portion (200b) and the second gas supply portion (200b). It circulates through the 1-2 inlet part 110b, the 1-2 space part 130b, and the second circulation part PC2 to a second path that is not connected to the first path but is separated from the first path, and a plurality of discharge parts 120a2, The second gas (G2) is discharged into the interior of the chamber through 120b2, 150a2, and 150b2). Through this, the first gas (G1) and the second gas (G2) are mixed on the discharge path, eliminating reactions that may occur, explosions, and other risk factors that may occur when different types of gas are mixed on the discharge path, and eliminating other hazards that may occur inside the chamber. All types of gas can be supplied stably.
도 6(b)를 참조하면, 본 발명의 제2 실시예에 따른 가스 분사 구조는, 제1 가스(G1)를 공급하는 제2 가스 분사부(100c') 및 제2 가스(G2)를 공급하는 제2 가스 분사부(100d')를 포함할 수 있다.Referring to FIG. 6(b), the gas injection structure according to the second embodiment of the present invention includes a second gas injection unit 100c' that supplies the first gas (G1) and a second gas (G2). It may include a second gas injection unit 100d'.
이때 가스 분사 구조(100) 내에서, 제1 가스 분사부(100c')와 제2 가스 분사부(100d')는 챔버의 연장 방향으로 서로 이격되게 배치될 수 있다.At this time, within the gas injection structure 100, the first gas injection unit 100c' and the second gas injection unit 100d' may be arranged to be spaced apart from each other in the extending direction of the chamber.
또한 제1 가스 분사부(100c')와 제2 가스 분사부(100d') 각각은 제1 공간부(130a', 130b', 160a', 160b'), 순환부(PC1', PC2') 및 복수의 배출부(120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, 150b2)를 포함할 수 있다. 이때 복수의 배출부(120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, 150b2)는 상부, 하부, 좌측, 우측 중 적어도 하나의 영역에 형성될 수 있다. 예를 들면 복수의 배출부는 도 6(b)에 도시된 바와 같이 상부 및 하부에 형성될 수 있다.In addition, the first gas injection unit 100c' and the second gas injection unit 100d' each have a first space part 130a', 130b', 160a', and 160b', a circulation part PC1', PC2', and It may include a plurality of discharge parts (120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, 150b2). At this time, a plurality of discharge parts 120a1, 120b1, 150a1, 150b1, 120a2, 120b2, 150a2, and 150b2 may be formed in at least one of the upper, lower, left, and right areas. For example, a plurality of discharge portions may be formed at the top and bottom as shown in FIG. 6(b).
이와 같이 복수의 배출부의 배치를 통해 하측에 위치한 제2 가스 공급부(300)를 통해 유입된 제1 가스(G1) 또는 제2 가스(G2)는, 상부에 형성된 배출부(120a1, 120b1, 120a2, 120b2) 뿐만 아니라 순환부(PC1', PC2')를 통해 하부에 형성된 배출부(150a1, 150b1, 150a2, 150b2)를 통해 챔버 내부로 가스가 공급될 수 있다.In this way, the first gas (G1) or the second gas (G2) flowing in through the second gas supply unit 300 located on the lower side through the arrangement of the plurality of discharge parts is discharged at the upper part (120a1, 120b1, 120a2, 120b2), as well as gas can be supplied into the chamber through the discharge portions 150a1, 150b1, 150a2, and 150b2 formed at the bottom through the circulation portions (PC1' and PC2').
또한 제1 가스 분사부(100c')와 연결된 제1 가스 공급부(300a)를 통해 제1 가스(G1)가 공급되고, 제2 가스 분사부(100d')와 연결된 제2 가스 공급부(300b)를 통해 제2 가스(G2)가 공급될 수 있다. In addition, the first gas (G1) is supplied through the first gas supply unit (300a) connected to the first gas injection unit (100c'), and the second gas supply unit (300b) connected to the second gas injection unit (100d'). The second gas (G2) may be supplied through.
이때 제1 가스(G1)는 제2-1 가스 공급부(300a), 제2-1 유입부(140a), 제2-1 공간부(160a') 및 제1 순환부(PC1')를 통해 제1 경로로 순환하며 복수의 배출부(120a1, 120b1, 150a1, 150b1)을 통해 챔버의 내부로 제1 가스(G1)가 배출되고, 제2 가스(G2)는 제2-2 가스 공급부(300b), 제2-2 유입부(140b), 제2-2 공간부(160b') 및 제2 순환부(PC2')를 통해 제1 경로와 연결되지 않고 분리된 제2 경로로 순환하며 복수의 배출부(120a2, 120b2, 150a2, 150b2)를 통해 챔버의 내부로 제2 가스(G2)가 배출된다. 이를 통해 제1 가스(G1)와 제2 가스(G2)가 배출 경로 상에서 혼합되며 발생할 수 있는 반응, 폭발 기타 배출 경로 상에서 다른 종류의 가스가 혼합되며 발생할 수 있는 위험 요소를 제거하고 챔버 내부로 다른 종류의 가스를 안정적으로 공급할 수 있다.At this time, the first gas (G1) is supplied through the 2-1 gas supply part 300a, the 2-1 inlet part 140a, the 2-1 space part 160a', and the first circulation part PC1'. Circulating in one path, the first gas (G1) is discharged into the interior of the chamber through a plurality of discharge parts (120a1, 120b1, 150a1, and 150b1), and the second gas (G2) is discharged from the 2-2 gas supply part (300b). , circulates through the 2-2 inlet (140b), the 2-2 space (160b'), and the second circulation part (PC2') to a second path that is not connected to the first path but is separated and discharges a plurality of discharges. The second gas G2 is discharged into the chamber through the parts 120a2, 120b2, 150a2, and 150b2. Through this, the first gas (G1) and the second gas (G2) are mixed on the discharge path, eliminating reactions that may occur, explosions, and other risk factors that may occur when different types of gas are mixed on the discharge path, and eliminating other hazards that may occur inside the chamber. All types of gas can be supplied stably.
이하, 도 7을 참조하여 본 발명의 다른 일 실시예에 따른 단일 유입부가 형성된 가스 분사부에 대해 설명한다. 도 7에 도시되지 않은 내용은 도 1 내지 도 4에 도시된 내용 및 설명을 참조할 수 있다.Hereinafter, a gas injection unit having a single inlet portion according to another embodiment of the present invention will be described with reference to FIG. 7. For content not shown in FIG. 7, the content and description shown in FIGS. 1 to 4 may be referred to.
도 7은 본 발명의 다른 일 실시예에 따른 유입부가 형성된 가스 분사부의 모습을 나타낸 도면이다.Figure 7 is a view showing a gas injection portion with an inlet portion according to another embodiment of the present invention.
도 7을 참조하면, 본 발명의 다른 일 실시예에 따른 가스 분사부는, 가스 분사부의 일측을 관통하고, 가스가 유입되는 유입부(110', 140')를 포함할 수 있다. 이때, 유입부는 제1,2 유입부(110', 140')를 포함하고, 제1,2 유입부(110', 140')는 서로 마주보게 배치되고, 제1,2 유입부(110', 140')를 통과한 가스는 서로 마주보도록 분사될 수 있다.Referring to FIG. 7, the gas injection unit according to another embodiment of the present invention may pass through one side of the gas injection unit and include inlet portions 110' and 140' through which gas flows. At this time, the inlet includes first and second inlets 110' and 140', and the first and second inlets 110' and 140' are arranged to face each other, and the first and second inlets 110' , 140') may be injected to face each other.
본 실시예에 따르면, 중간에 버퍼층 역할을 하는 공간부가 존재하지 않으며, 제1,2 가스 공급부(200. 300)에서 공급된 가스가 제1,2 유입부(110', 140')를 통해 챔버(10)의 내부로 곧바로 분사되도록 함으로써, 가스 분사부 구조를 보다 컴팩트하게 가져갈 수 있으며, 제1,2 유입부(110', 140')의 위치 및 개수 변경 만으로도 다양한 방식의 분사 구조를 마련할 수 있어 분사 구조의 선택의 폭이 확대될 수 있다.According to this embodiment, there is no space serving as a buffer layer in the middle, and the gas supplied from the first and second gas supply units 200 and 300 flows into the chamber through the first and second inlets 110' and 140'. By injecting directly into the inside of (10), the structure of the gas injection unit can be made more compact, and various types of injection structures can be prepared just by changing the position and number of the first and second inlets (110', 140'). This allows the choice of injection structures to be expanded.
이하, 도 8을 참조하여 본 발명의 다른 일 실시예에 따른 2개 초과의 배출부를 가진 가스 분사부에 대해 설명한다. 도 8에 도시되지 않은 내용은 도 1 내지 도 4에 도시된 내용 및 설명을 참조할 수 있다.Hereinafter, a gas injection unit with more than two discharge units according to another embodiment of the present invention will be described with reference to FIG. 8. For content not shown in FIG. 8, the content and description shown in FIGS. 1 to 4 may be referred to.
도 8은 본 발명의 다른 일 실시예에 따른 4개의 배출부가 형성된 제1,2 가스 분사부의 모습을 나타낸 도면이다.Figure 8 is a diagram showing the first and second gas injection units having four discharge units according to another embodiment of the present invention.
도 8을 참조하면, 본 발명의 다른 일 실시예에 따른 가스 분사부에서, 제1,2 배출부(120'', 150'')는 각각 서로 이격 배치된 3개 이상의 배출부를 포함할 수 있다. 보다 상세하게는, 제1 배출부(120'')는 제1-1,1-2,1-3,1-4 배출부(120a, 120b, 120c, 120d)를 포함할 수 있다. 또한 제2 배출부(150'')는 제2-1, 2-2, 2-3, 2-4 배출부(150a, 150b, 150c, 150d)를 포함할 수 있다.Referring to FIG. 8, in the gas injection unit according to another embodiment of the present invention, the first and second discharge parts 120'' and 150'' may each include three or more discharge parts spaced apart from each other. . More specifically, the first discharge part 120'' may include 1-1, 1-2, 1-3, and 1-4 discharge parts 120a, 120b, 120c, and 120d. Additionally, the second discharge portion 150'' may include discharge portions 2-1, 2-2, 2-3, and 2-4 (150a, 150b, 150c, and 150d).
본 실시예와 같이, 배출부의 개수는 3개 이상이 될 수 있다. 도 8에서는 배출부가 4개인 구성으로 도시되었으나, 배출부의 개수는 이에 한정되지 아니하며, 다양한 개수의 배출부를 가진 가스 분사부를 포함할 수 있다.As in this embodiment, the number of discharge parts may be three or more. In FIG. 8, a configuration with four discharge parts is shown, but the number of discharge parts is not limited to this, and may include a gas injection unit with various numbers of discharge parts.
이하, 도 9를 참조하여 본 발명의 다른 일 실시예에 따른 탈착되는 수용부 및 커버부를 포함하는 원자층 증착 장치에 대해 설명한다. 도 9에 도시되지 않은 내용은 도 1 내지 도 4에 도시된 내용 및 설명을 참조할 수 있다.Hereinafter, an atomic layer deposition apparatus including a detachable receiving portion and a cover portion according to another embodiment of the present invention will be described with reference to FIG. 9. For content not shown in FIG. 9, refer to the content and description shown in FIGS. 1 to 4.
도 9는 도 2의 A 부분으로, 본 발명의 일 실시예에 따른 공간부의 모습 및 공간부를 형성하는 수용부 및 커버부의 탈착되는 모습을 나타낸 도면이다. 이하 제1 가스 분사부(100a)를 기준으로 수용 부 및 커버부를 설명하나, 이는 제2 가스 분사부(100b)에도 대칭적으로 동일하게 적용될 수 있다.FIG. 9 is part A of FIG. 2 and is a view showing the space portion according to an embodiment of the present invention and the receiving portion and cover portion forming the space being detached. Hereinafter, the accommodation part and the cover part will be described based on the first gas injection unit 100a, but this can be applied symmetrically and equally to the second gas injection unit 100b.
도 9을 참조하면, 본 발명의 다른 일 실시예에 따른 가스 분사 구조에서, 제1 공간부(130)는, 가스 분사 구조(100)의 내부에 삽입되고, 제1 유입부(110) 및 제1 배출부(120)와 연결되고, 공간을 형성하는 수용부(130b) 및 가스 분사 구조(100)의 외면부와 연결되고, 수용부(130b)를 커버하는 커버부(130a)를 포함할 수 있다.Referring to FIG. 9, in the gas injection structure according to another embodiment of the present invention, the first space 130 is inserted into the interior of the gas injection structure 100, and the first inlet 110 and the first 1 It may include a cover portion (130a) connected to the discharge portion (120), a receiving portion (130b) forming a space, and a cover portion (130a) connected to the outer surface of the gas injection structure 100 and covering the receiving portion (130b). there is.
제1 공간부(130)를 담는 보울(Bowl) 형상의 수용부(130b) 및 수용부(130b)의 개방된 일측면을 커버하는 커버부(130a)를 통해 제1 공간부(130)가 형성될 수 있다. 제1 공간부(130)가 파손 또는 손상이 일어나거나, 그 표면이 기존에 유입되고 있었던 가스에 의해 오염되었거나, 오염된 상황에서 다른 종류의 가스를 챔버 내로 분사할 필요가 있을 경우, 탈착 가능한 수용부(130b) 및 커버부(130a)를 가스 분사 구조(100) 로부터 탈거하고, 새 수용부(130b) 및 커버부(130a)로 교체할 수 있어 가스 분사 구조 전체를 교체할 필요 없이 해당 공간부를 형성하는 구조만 별도로 교체 가능함으로써, 가스 분사 구조의 사용성이 전반적으로 향상될 수 있다.The first space 130 is formed through a bowl-shaped receiving part 130b containing the first space 130 and a cover part 130a covering one open side of the receiving part 130b. It can be. If the first space 130 is broken or damaged, its surface is contaminated by the gas that was previously flowing in, or it is necessary to inject another type of gas into the chamber in a contaminated situation, the detachable accommodation The part 130b and the cover part 130a can be removed from the gas injection structure 100 and replaced with a new receiving part 130b and cover part 130a, so the corresponding space can be replaced without the need to replace the entire gas injection structure. Since only the forming structure can be replaced separately, the overall usability of the gas injection structure can be improved.
또한 도 9을 참조하면, 제1 배출부(120) 및 제1 유입부(110)에 튜브가 삽입될 수 있고, 해당 튜브를 교체함으로써, 배출부 및 유입부의 파손 및 오염시에도 해당 부분만을 교체함으로써 사용성을 향상시킬 수 있다.Also, referring to FIG. 9, a tube can be inserted into the first discharge part 120 and the first inlet part 110, and by replacing the tube, only the corresponding part can be replaced even if the discharge part and the inlet part are damaged or contaminated. This can improve usability.
또한 도 9을 참조하면, 제1 유입부(110) 외에도 추가 유입부(111)가 마련될 수 있다. 추가 유입부(111) 또한 제1 공간부(130)와 연결될 수 있다. 추가 유입부(111)를 통해 유입된 가스는 제1 공간부(130)를 통해 확산되고, 제1 공간부(130)를 통해 확산된 가스가 제1 배출부(120)를 통해 외부로 배출될 수 있다.Also, referring to FIG. 9, in addition to the first inlet 110, an additional inlet 111 may be provided. The additional inlet 111 may also be connected to the first space 130. The gas flowing in through the additional inlet 111 is diffused through the first space 130, and the gas diffused through the first space 130 is discharged to the outside through the first discharge portion 120. You can.
이와 같이, 여러 종류의 가스를 여러 포트를 통해 한번에 유입시킬 필요가 있을 경우, 제1 유입부(110) 외에도 추가 유입부(111)를 통해 가스를 공급할 수 있어, 공급되는 가스의 종류를 다양하게 가져갈 수 있다.In this way, when it is necessary to introduce several types of gas through several ports at once, the gas can be supplied through an additional inlet 111 in addition to the first inlet 110, so that the types of gas supplied can be varied. You can take it.
이와 같이 도면에 도시된 실시예를 참고로 본 발명을 설명하였으나, 이는 예시에 불과하다. 해당 기술 분야에서 통상의 지식을 갖는 자라면 실시예로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 충분히 이해할 수 있다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위에 기초하여 정해져야 한다.Although the present invention has been described with reference to the embodiments shown in the drawings, these are merely examples. Those skilled in the art can fully understand that various modifications and equivalent other embodiments are possible from the embodiments. Therefore, the true technical protection scope of the present invention should be determined based on the attached claims.
실시예에서 설명하는 특정 기술 내용은 일 실시예들로서, 실시예의 기술 범위를 한정하는 것은 아니다. 발명의 설명을 간결하고 명확하게 기재하기 위해, 종래의 일반적인 기술과 구성에 대한 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재는 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로 표현될 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.The specific technical content described in the embodiment is an example and does not limit the technical scope of the embodiment. In order to describe the invention concisely and clearly, descriptions of conventional general techniques and configurations may be omitted. In addition, the connection of lines or the absence of connections between components shown in the drawings exemplify functional connections and/or physical or circuit connections, and in actual devices, various functional connections or physical connections may be replaced or added. It can be expressed as connections, or circuit connections. Additionally, if there is no specific mention such as “essential,” “important,” etc., it may not be a necessary component for the application of the present invention.
발명의 설명 및 청구범위에 기재된 "상기" 또는 이와 유사한 지시어는 특별히 한정하지 않는 한, 단수 및 복수 모두를 지칭할 수 있다. 또한, 실시 예에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 발명의 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 또한, 실시예에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 실시예들이 한정되는 것은 아니다. 실시예에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 실시예를 상세히 설명하기 위한 것으로서 청구범위에 의해 한정되지 않는 이상, 상기 예들 또는 예시적인 용어로 인해 실시예의 범위가 한정되는 것은 아니다. 또한, 통상의 기술자는 다양한 수정, 조합 및 변경이 부가된 청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.“The” or similar designators used in the description and claims may refer to both the singular and the plural, unless otherwise specified. In addition, when a range is described in an example, the invention includes the application of individual values within the range (unless there is a statement to the contrary), and each individual value constituting the range is described in the description of the invention. same. Additionally, unless the order of the steps constituting the method according to the embodiment is clearly stated or there is no description to the contrary, the steps may be performed in an appropriate order. The embodiments are not necessarily limited by the order of description of the steps above. The use of any examples or illustrative terms (e.g., etc.) in the embodiments is merely to describe the embodiments in detail, and unless limited by the claims, the examples or illustrative terms do not limit the scope of the embodiments. That is not the case. Additionally, those skilled in the art will appreciate that various modifications, combinations and changes may be made according to design conditions and factors within the scope of the appended claims or their equivalents.

Claims (10)

  1. 복수의 웨이퍼를 수납하는 챔버; 및A chamber storing a plurality of wafers; and
    상기 챔버의 일면부에 배치되고, 상기 챔버로부터 탈착되는 가스 분사 구조를 포함하고,It includes a gas injection structure disposed on one side of the chamber and detached from the chamber,
    상기 가스 분사 구조는,The gas injection structure is,
    가스가 유입되는 유입부;An inlet through which gas flows;
    유입된 가스를 상기 챔버의 내부로 분사하는 배출부; 및a discharge unit that sprays the introduced gas into the interior of the chamber; and
    상기 유입부 및 상기 배출부와 연결되고, 상기 유입부와 상기 배출부 사이에 배치된 공간부를 포함하고,It is connected to the inlet and the outlet, and includes a space disposed between the inlet and the outlet,
    상기 유입부를 통과한 가스는 상기 공간부를 지나 상기 배출부를 통해 상기 챔버의 내부로 배출되는 원자층 증착 장치.An atomic layer deposition apparatus in which the gas that has passed through the inlet passes through the space and is discharged into the interior of the chamber through the outlet.
  2. 제1 항에 있어서,According to claim 1,
    상기 챔버는 직육면체 형상으로 형성되고,The chamber is formed in a rectangular parallelepiped shape,
    상기 가스 분사 구조는 직육면체 형상의 상기 챔버의 일측부와 대응되는 사각 링 형상으로 형성되는 원자층 증착 장치.The gas injection structure is formed in a square ring shape corresponding to one side of the rectangular parallelepiped-shaped chamber.
  3. 제1 항에 있어서,According to claim 1,
    상기 가스 분사 구조는 제1,2 가스 분사부를 포함하고,The gas injection structure includes first and second gas injection units,
    상기 제1,2 가스 분사부는 서로 마주보게 배치되고,The first and second gas injection units are arranged to face each other,
    상기 제1,2 가스 분사부를 통과한 가스는 서로 마주보게 분사되는 원자층 증착 장치.An atomic layer deposition device in which gases that have passed through the first and second gas injection units are injected to face each other.
  4. 제3 항에 있어서,According to clause 3,
    상기 제1 가스 분사부의 제1 공간부의 일단에 서로 이격되게 배치된 제1-1 가스 공급부 및 제1-2 가스 공급부를 더 포함하고,It further includes a 1-1 gas supply part and a 1-2 gas supply part spaced apart from each other at one end of the first space of the first gas injection unit,
    상기 제1-1 가스 공급부는 제1 순환부 및 상기 제1 순환부와 연결된 배출부를 통해 상기 챔버의 내부로 가스를 배출하고,The 1-1 gas supply unit discharges gas into the interior of the chamber through a first circulation unit and a discharge unit connected to the first circulation unit,
    상기 제1-2 가스 공급부는 제2 순환부 및 상기 제2 순환부와 연결된 배출부를 통해 상기 챔버의 내부로 가스를 배출하고,The first-second gas supply unit discharges gas into the interior of the chamber through a second circulation unit and a discharge unit connected to the second circulation unit,
    상기 제1 순환부 및 상기 제2 순환부는 서로 분리되는 원자층 증착 장치.Atomic layer deposition apparatus wherein the first circulation section and the second circulation section are separated from each other.
  5. 제1 항에 있어서,According to claim 1,
    상기 배출부는 상기 유입부를 중심으로 두 배출부가 양쪽으로 대칭되도록 배치되는 원자층 증착 장치.An atomic layer deposition apparatus in which the discharge portion is arranged so that the two discharge portions are symmetrical on both sides with the inlet portion as the center.
  6. 제1 항에 있어서,According to claim 1,
    상기 가스 분사 구조의 가스 분사 방향(D1)은 복수의 웨이퍼의 길이 방향(D2)과 수직인 원자층 증착 장치.The atomic layer deposition apparatus wherein the gas injection direction (D1) of the gas injection structure is perpendicular to the longitudinal direction (D2) of the plurality of wafers.
  7. 제1 항에 있어서,According to claim 1,
    상기 배출부는 서로 이격 배치된 3개 이상의 배출부를 포함하는 원자층 증착 장치.An atomic layer deposition apparatus wherein the discharge portion includes three or more discharge portions spaced apart from each other.
  8. 제1 항에 있어서,According to claim 1,
    상기 공간부는,The space part is,
    상기 가스 분사 구조의 내부에 삽입되고, 상기 유입부 및 상기 배출부와 연결되고, 공간을 형성하는 수용부; 및a receiving portion inserted into the interior of the gas injection structure, connected to the inlet portion and the discharge portion, and forming a space; and
    상기 가스 분사 구조의 외면부와 연결되고, 상기 수용부를 커버하는 커버부를 포함하고,A cover part connected to the outer surface of the gas injection structure and covering the receiving part,
    상기 수용부 및 상기 커버부는 탈착되는 원자층 증착 장치.The atomic layer deposition device wherein the receiving portion and the cover portion are detachable.
  9. 복수의 웨이퍼를 수납하는 챔버; 및A chamber storing a plurality of wafers; and
    상기 챔버의 일면부에 배치된 링 형상의 가스 분사 구조를 포함하고,It includes a ring-shaped gas injection structure disposed on one surface of the chamber,
    상기 가스 분사 구조는 상기 챔버의 일면부와 대응되는 사각 링 형상으로 형성되고,The gas injection structure is formed in a square ring shape corresponding to one surface of the chamber,
    상기 가스 분사 구조는, 상기 가스 분사 구조의 일측을 관통하고, 가스가 유입되는 유입부를 포함하는 원자층 증착 장치.The gas injection structure is an atomic layer deposition device that penetrates one side of the gas injection structure and includes an inlet through which gas flows.
  10. 제9 항에 있어서,According to clause 9,
    상기 유입부는 제1,2 유입부를 포함하고,The inlet portion includes first and second inlets,
    상기 제1,2 유입부는 서로 마주보게 배치되고, 제1,2 유입부를 통과한 가스는 서로 마주보도록 분사되는 원자층 증착 장치.The first and second inlets are arranged to face each other, and the gases that have passed through the first and second inlets are injected to face each other.
PCT/KR2023/006786 2022-08-02 2023-05-18 Atomic layer deposition device WO2024029702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0095860 2022-08-02
KR1020220095860A KR20240018059A (en) 2022-08-02 2022-08-02 Atomic layer deposition apparatus

Publications (1)

Publication Number Publication Date
WO2024029702A1 true WO2024029702A1 (en) 2024-02-08

Family

ID=89849145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006786 WO2024029702A1 (en) 2022-08-02 2023-05-18 Atomic layer deposition device

Country Status (2)

Country Link
KR (1) KR20240018059A (en)
WO (1) WO2024029702A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060185591A1 (en) * 2005-02-18 2006-08-24 General Electric Company High temperature chemical vapor deposition apparatus
KR20140147556A (en) * 2013-06-20 2014-12-30 피에스케이 주식회사 Unit and method for cooling, and apparatus and method for treating substrate
KR20190123866A (en) * 2018-04-25 2019-11-04 삼성전자주식회사 Gas injector and wafer processing apparatus having the same
KR20200139914A (en) * 2019-06-05 2020-12-15 주식회사 원익아이피에스 Chamber lid assembly and apparatus for processing substrate having the same
WO2021235739A1 (en) * 2020-05-19 2021-11-25 주성엔지니어링(주) Substrate processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060185591A1 (en) * 2005-02-18 2006-08-24 General Electric Company High temperature chemical vapor deposition apparatus
KR20140147556A (en) * 2013-06-20 2014-12-30 피에스케이 주식회사 Unit and method for cooling, and apparatus and method for treating substrate
KR20190123866A (en) * 2018-04-25 2019-11-04 삼성전자주식회사 Gas injector and wafer processing apparatus having the same
KR20200139914A (en) * 2019-06-05 2020-12-15 주식회사 원익아이피에스 Chamber lid assembly and apparatus for processing substrate having the same
WO2021235739A1 (en) * 2020-05-19 2021-11-25 주성엔지니어링(주) Substrate processing apparatus

Also Published As

Publication number Publication date
KR20240018059A (en) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2016036039A1 (en) Purge module and load port comprising same
WO2011004987A2 (en) Substrate-processing apparatus and substrate-processing method for selectively inserting diffusion plates
WO2010101369A2 (en) Gas distribution apparatus, and substrate-processing apparatus comprising same
WO2010067974A2 (en) Apparatus for treating multiple substrates
WO2013105730A1 (en) Cooling type showerhead and substrate processing apparatus having same
WO2013147481A1 (en) Apparatus and cluster equipment for selective epitaxial growth
WO2010011013A1 (en) Multi-workpiece processing chamber and workpiece processing system including the same
WO2020149556A1 (en) Substrate drying chamber
WO2017073901A1 (en) Substrate processing apparatus and method for assembling tube assembly
WO2015156542A1 (en) Gas spraying apparatus and substrate processing apparatus including same
WO2013191415A1 (en) Substrate processing apparatus
WO2013015481A1 (en) Wafer carrier
WO2024029702A1 (en) Atomic layer deposition device
WO2016167555A1 (en) Substrate processing apparatus
WO2017073902A1 (en) Substrate processing apparatus
WO2020138970A2 (en) Substrate treatment apparatus
WO2017003058A1 (en) Frictional resistance-reducing device and ship including same
WO2023027342A1 (en) Substrate processing apparatus
WO2014185626A1 (en) Gas sprayer and thin film depositing apparatus having the same
WO2021002590A1 (en) Gas supply device for substrate processing device, and substrate processing device
WO2018038547A1 (en) Atomic layer deposition equipment and atomic layer deposition method using same
WO2023195701A1 (en) Substrate processing apparatus
WO2021006676A1 (en) Substrate processing apparatus
WO2022025402A1 (en) Block valve for substrate processing device, and substrate processing device
WO2018038375A1 (en) Atomic layer deposition device and atomic layer deposition method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850213

Country of ref document: EP

Kind code of ref document: A1