WO2024029292A1 - Composition, compound, and method for manufacturing semiconductor substrate - Google Patents

Composition, compound, and method for manufacturing semiconductor substrate Download PDF

Info

Publication number
WO2024029292A1
WO2024029292A1 PCT/JP2023/025665 JP2023025665W WO2024029292A1 WO 2024029292 A1 WO2024029292 A1 WO 2024029292A1 JP 2023025665 W JP2023025665 W JP 2023025665W WO 2024029292 A1 WO2024029292 A1 WO 2024029292A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
compound
aromatic
group
above formula
Prior art date
Application number
PCT/JP2023/025665
Other languages
French (fr)
Japanese (ja)
Inventor
真也 阿部
崇 片切
温子 永縄
修平 山田
大貴 中津
裕之 宮内
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2024029292A1 publication Critical patent/WO2024029292A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/573Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with three six-membered rings
    • C07C13/58Completely or partially hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/66Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a composition, a compound, and a method for manufacturing a semiconductor substrate.
  • a multilayer resist process is used in which a resist film is formed on a substrate through a resist underlayer film such as an organic underlayer film or a silicon-containing film, and then exposed and developed to form a resist pattern. It is being In this process, a desired pattern can be formed on a semiconductor substrate by etching the resist underlayer film using this resist pattern as a mask, and further etching the substrate using the obtained resist underlayer film pattern as a mask. (See Publication No. 2004-177668).
  • the organic underlayer film as the resist underlayer film is required to have etching resistance.
  • the present invention was made based on the above circumstances, and its purpose is to provide a composition, a compound, and a method for manufacturing a semiconductor substrate that can form a film with excellent etching resistance.
  • the present invention provides: A compound having a partial structure represented by the following formula (1) (hereinafter also referred to as "[A] compound”), Contains a solvent (hereinafter also referred to as "[B] solvent”) and The present invention relates to a composition in which the above compound has a molecular weight of 600 or more.
  • Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
  • n is an integer from 1 to 3.
  • Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
  • X 1 is a single bond or a divalent linking group.
  • * is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members. ** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound. r is an integer from 0 to 4. )
  • the present invention provides: It has a partial structure represented by the following formula (1), It relates to a compound having a molecular weight of 600 or more.
  • Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
  • n is an integer from 1 to 3.
  • Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
  • X 1 is a single bond or a divalent linking group.
  • * is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
  • ** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
  • r is an integer from 0 to 4.
  • the present invention provides: a step of directly or indirectly applying a resist underlayer film forming composition to the substrate; forming a resist pattern directly or indirectly on the resist underlayer film formed by the coating process; and a step of performing etching using the resist pattern as a mask,
  • the resist underlayer film forming composition described above is A compound having a partial structure represented by the following formula (1), contains a solvent and The present invention relates to a method for manufacturing a semiconductor substrate, wherein the compound has a molecular weight of 600 or more.
  • Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
  • n is an integer from 1 to 3.
  • Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
  • X 1 is a single bond or a divalent linking group.
  • * is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members. ** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
  • r is an integer from 0 to 4.
  • number of ring members refers to the number of atoms constituting the ring.
  • the biphenyl ring has 12 ring members
  • the naphthalene ring has 10 ring members
  • the fluorene ring has 13 ring members.
  • fused ring structure refers to a structure in which adjacent rings share one edge (two adjacent atoms).
  • the composition a film with excellent etching resistance can be formed.
  • the composition since the composition has excellent solubility in polar solvents, clogging of drain pipes of semiconductor manufacturing equipment can be suppressed.
  • the compounds are suitable for the compositions.
  • the method for manufacturing a semiconductor substrate it is possible to form a resist underlayer film having excellent etching resistance.
  • the composition since the composition has excellent solubility in polar solvents, it is possible to prevent clogging of drain pipes of semiconductor manufacturing equipment. Therefore, these can be suitably used in the production of semiconductor devices, which are expected to be further miniaturized in the future.
  • compositions, compound, and method for manufacturing a semiconductor substrate according to each embodiment of the present invention will be explained in detail.
  • the composition and the compound will be explained as appropriate in the explanation of the method for manufacturing the semiconductor substrate.
  • the method for manufacturing the semiconductor substrate includes a step of directly or indirectly coating the substrate with a composition for forming a resist underlayer film (hereinafter also referred to as a "coating step"), and a resist underlayer film formed by the above coating step.
  • the method includes a step of directly or indirectly forming a resist pattern on the surface (hereinafter also referred to as a “resist pattern forming step”), and a step of performing etching using the resist pattern as a mask (hereinafter also referred to as an "etching step").
  • clogging of a drain pipe of a semiconductor manufacturing device is suppressed by using the composition described below as a composition for forming a resist underlayer film in the coating step.
  • a resist underlayer film having excellent etching resistance can be formed, a semiconductor substrate having a good pattern shape can be manufactured with a high yield.
  • Semiconductor manufacturing equipment includes a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.), but in addition to draining the composition for forming a resist underlayer film, the drain pipe of this spin coater also drains the composition for forming a resist underlayer film. , resist composition, silicon-containing film forming composition, etc. are also discharged.
  • the composition for forming a resist underlayer film in the drain pipe is different from the solvent in the composition for forming a resist underlayer film.
  • the resist underlayer film forming composition may precipitate and clog the drain pipe.
  • the method for manufacturing the semiconductor substrate may further include a step of directly or indirectly forming a silicon-containing film on the resist underlayer film (hereinafter also referred to as "silicon-containing film forming step"), if necessary. .
  • composition for forming a resist underlayer film contains a [A] compound and a [B] solvent.
  • the composition may contain optional components within a range that does not impair the effects of the present invention.
  • the composition can form a film with excellent etching resistance while suppressing clogging of the drain pipe of semiconductor manufacturing equipment. Therefore, the composition can be used as a composition for forming a film. More specifically, the composition can be suitably used as a composition for forming a resist underlayer film in a multilayer resist process.
  • the [A] compound has a partial structure represented by the following formula (1) (hereinafter also referred to as "partial structure (1)"), and the molecular weight of the [A] compound is 600 or more.
  • the compound may have two or more partial structures (1).
  • the plurality of partial structures (1) may be the same or different from each other.
  • the composition can contain one or more [A] compounds.
  • Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
  • n is an integer from 1 to 3.
  • Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
  • X 1 is a single bond or a divalent linking group.
  • * is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members. ** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
  • r is an integer from 0 to 4.
  • the aromatic ring structure corresponding to the monovalent aromatic group having 5 to 30 ring members represented by Ar 1 is, for example, a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring.
  • aromatic hydrocarbon rings such as pentacene ring, perylene ring, benzopyrene ring and coronene ring, furan ring, pyrrole ring, thiophene ring, phosphole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, imidazole ring, pyridine ring , pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, cinnoline ring, benzofuran ring, isobenzofuran ring, indole ring, isoindole ring, benzothiophene ring, benzimidazole ring, Examples include aromatic heterocycles such as an indazole ring, a benzoxazole ring, a benzimi
  • the aromatic ring structure corresponding to Ar 1 is at least one aromatic ring selected from the group consisting of naphthalene ring, anthracene ring, tetracene ring, pyrene ring, fluorene ring, pentacene ring, perylene ring, benzopyrene ring, and coronene ring. It is preferably a hydrocarbon ring, and more preferably the aromatic ring structure corresponding to Ar 1 is a pyrene ring.
  • Ar 1 may have a substituent.
  • substituents include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, Alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group, alkoxycarbonyloxy groups such as methoxycarbonyloxy group and ethoxycarbonyloxy group, acyl group such as formyl group, acetyl group, propionyl group, butyryl group, cyano group, nitro group Examples include.
  • aromatic ring structure containing Ar 2 and having 5 to 60 ring members an aromatic ring obtained by expanding the aromatic ring structure corresponding to Ar 1 in the above formula (1) to 60 ring members can be suitably employed.
  • aromatic ring structures having more than 30 ring members include fused ring structures such as obalene rings, hexa-peri-hexabenzocoronene rings, and hexabenzocoronene rings, and aggregate ring structures such as hexaphenylbenzene rings (where the ring is a single bond). bonded polycyclic structure), etc.
  • the aromatic ring structure containing Ar 2 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring.
  • it is at least one aromatic hydrocarbon ring.
  • the divalent linking group represented by group, a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, -CO-, -O-, -NH-, -S-, and a cyclic acetal structure, or two of these groups. Examples include groups formed by combining two or more groups.
  • Examples of the divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms include alkanediyl groups having 1 to 10 carbon atoms such as methylene group, ethanediyl group, propanediyl group, butanediyl group, and ethenediyl group.
  • Examples include alkenediyl groups having 2 to 10 carbon atoms, such as a propenediyl group, a butenediyl group, and a butenediyl group.
  • an alkenediyl group having 2 to 8 carbon atoms is preferred, an ethenediyl group and a propenediyl group are more preferred, and an ethenediyl group is even more preferred.
  • Examples of the above-mentioned divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms include monocyclic cycloalkanediyl groups such as cyclopentanediyl group and cyclohexanediyl group; polycyclic groups such as norbornanediyl group and adamantanediyl group. Examples include cycloalkanediyl groups.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 12 carbon atoms include a benzenediyl group and a naphthalenediyl group.
  • the above X 1 is preferably a single bond.
  • an aromatic ring structure having 5 to 60 ring members including Ar 2 described above can be suitably employed.
  • n is 1 or 2, and more preferably 1.
  • r is preferably an integer of 0 to 3, more preferably an integer of 0 to 2.
  • At least one of Ar 1 and Ar 2 has a substituent selected from the group consisting of a hydroxy group, a group represented by the following formula (2-1), and a group represented by the following formula (2-2). may have at least one group. Thereby, the etching resistance of the resulting resist underlayer film can be improved.
  • R 7 is each independently a divalent organic group having 1 to 20 carbon atoms or a single bond. * indicates a bond with a carbon atom in an aromatic ring. It is a conjugate.
  • examples of the divalent organic group having 1 to 20 carbon atoms represented by R 7 include the divalent linking group represented by X 1 above. It will be done.
  • R 7 is preferably a divalent hydrocarbon group having 1 to 10 carbon atoms such as a methanediyl group, ethanediyl group, or phenylene group, or a combination thereof and -O-; A combination with is more preferable.
  • the molecular weight of the compound may be 600 or more, and the basic structure of the [A] compound (polymer structure (structure in which one or more repeating units are continuous) or non-polymer structure (single structure without repeating units) is sufficient. It may be set as appropriate depending on the characteristics (such as monomolecular structure) and the required characteristics.
  • the molecular weight is the weight average molecular weight (Mw).
  • the lower limit of the molecular weight is preferably 700, more preferably 800.
  • the upper limit of the molecular weight is preferably 120,000, more preferably 10,000, and even more preferably 8,000.
  • the [A] compound is preferably a compound represented by the following formula (1-1) (hereinafter also referred to as "compound (1-1)").
  • compound (1-1) a compound represented by the following formula (1-1)
  • Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
  • Ar 10 is a part of an aromatic hydrocarbon ring structure having 20 to 60 carbon atoms, which is formed together with two adjacent carbon atoms in the above formula (1-1). s is an integer from 1 to 8.
  • the aromatic hydrocarbon ring structure having 20 to 60 carbon atoms and containing Ar 10 is a structure corresponding to 20 to 60 carbon atoms among the aromatic ring structures having 5 to 60 ring members containing Ar 2 in the above formula (1). It can be suitably adopted.
  • the lower limit of the number of carbon atoms in the aromatic hydrocarbon ring structure is preferably 25, more preferably 35, and even more preferably 40.
  • the upper limit of the number of carbon atoms is not particularly limited, and is, for example, 100. When the number of carbon atoms in the aromatic hydrocarbon ring structure is 25 or more, a film with excellent etching resistance can be formed.
  • aromatic hydrocarbon ring structures examples include a truxene structure (27 carbon atoms), a trinaphthylene structure (30 carbon atoms), a heptaphene structure (30 carbon atoms), a heptacene structure (30 carbon atoms), and a pyrantrene structure (30 carbon atoms). ), an obalene structure (32 carbon atoms), a hexa-peri-hexabenzocoronene ring (42 carbon atoms), and a hexabenzocoronene structure (48 carbon atoms).
  • s is preferably an integer of 2 to 6, more preferably an integer of 3 to 5.
  • the lower limit of the molecular weight of compound (1-1) is preferably 700, more preferably 800, and even more preferably 900.
  • the upper limit of the molecular weight is preferably 3,000, more preferably 2,500, and even more preferably 2,000.
  • Examples of the compound (1-1) include compounds represented by the following formulas (1-1-1) to (1-1-6).
  • the [A] compound is preferably a compound represented by the following formula (1-2) (hereinafter also referred to as "compound (1-2)").
  • Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
  • Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1-2).
  • Y is a (m1+m2)-valent group containing a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
  • R 3 is a monovalent group containing an aromatic ring having 5 to 40 ring members.
  • m1 is an integer from 1 to 10.
  • n is an integer from 0 to 10.
  • m2 is 2 or more, a plurality of R3 's are the same or different from each other.
  • the aromatic ring structure containing Ar 3 and having 5 to 60 ring members the aromatic ring structure containing Ar 2 and having 5 to 60 ring members in the above formula (1) can be suitably employed.
  • Ar 3 has a substituent
  • the substituent that Ar 1 of the above formula (1) can have can be suitably employed.
  • the aromatic ring structure containing Ar 3 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring.
  • it is at least one aromatic hydrocarbon ring.
  • the above Ar 3 has at least one group selected from the group consisting of a hydroxy group, a group represented by the above formula (2-1), and a group represented by the above formula (2-2) as a substituent. You can leave it there.
  • the aromatic ring having 5 to 60 ring members in the above Y the aromatic ring having 5 to 60 ring members in Ar 2 of the above formula (1) can be suitably employed.
  • the (m1+m2) valent group containing an aromatic ring having 5 to 60 ring members in Y include a group obtained by removing (m1+m2) hydrogen atoms from the aromatic ring having 5 to 60 ring members.
  • Y has a substituent
  • the substituent that Ar 1 of the above formula (1) can have can be suitably employed.
  • the aromatic ring of Y above is at least one selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, a perylene ring, a coronene ring, an obalene ring, and a hexabenzocoronene ring.
  • it is an aromatic hydrocarbon ring.
  • an aromatic ring corresponding to 5 to 40 ring members among the aromatic rings having 5 to 60 ring members in Y above can be suitably employed.
  • the monovalent group containing an aromatic ring having 5 to 40 ring members represented by R 3 includes a group obtained by removing one hydrogen atom from the above-mentioned aromatic ring having 5 to 40 ring members.
  • the aromatic ring of R3 is at least one aromatic hydrocarbon ring selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, a perylene ring, and a coronene ring. It is preferable.
  • the lower limit of the molecular weight of compound (1-2) is preferably 700, more preferably 800, and even more preferably 900.
  • the upper limit of the molecular weight is preferably 3,000, more preferably 2,500, and even more preferably 2,000.
  • Examples of the compound (1-2) include compounds represented by the following formulas (1-2-1) to (1-2-6).
  • a substituted fluorene is prepared as a starting material, and this is cyclized in the presence of a catalyst to obtain intermediate (1-2-a) or (1-2-b).
  • compound (1-2-a) or (1-2-b) is reacted with a halogenated alkyl aromatic ring-containing compound having the structure of Ar 1 in formula (1) above.
  • Compound (1-2-A) or (1-2-B) corresponding to 2) can be synthesized.
  • compound (1-1) is synthesized by subjecting the central ring assembly structure portion of intermediate (1-2-b) to a cyclization reaction with a catalyst and then reacting it with the halogenated alkyl aromatic ring-containing compound. be able to.
  • Other structures can also be synthesized by appropriately selecting the starting materials and the structure of the halogenated alkyl aromatic ring-containing compound.
  • the compound is preferably a polymer having two or more partial structures (1) as repeating units.
  • the above polymer preferably has a repeating unit represented by the following formula (1-3) or (1-4) (hereinafter also referred to as "compound (1-3)” etc.).
  • Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
  • Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
  • Ar 4 and Ar 5 are each independently a divalent group containing an aromatic ring having 5 to 60 ring members or a single bond.
  • the aromatic ring structure containing Ar 3 and having 5 to 60 ring members the aromatic ring structure containing Ar 2 and having 5 to 60 ring members in the above formula (1) can be suitably employed.
  • Ar 3 has a substituent
  • the substituent that Ar 1 of the above formula (1) can have can be suitably employed.
  • the aromatic ring structure containing Ar 3 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring.
  • it is at least one aromatic hydrocarbon ring.
  • the above Ar 3 has at least one group selected from the group consisting of a hydroxy group, a group represented by the above formula (2-1), and a group represented by the above formula (2-2) as a substituent. You can leave it there.
  • an aromatic ring having 5 to 60 ring members represented by Ar 4 and Ar 5 2 from the aromatic ring structure having 5 to 60 ring members including Ar 2 and Ar 3 in the above formula (1)
  • Examples include groups in which hydrogen atoms are removed.
  • the aromatic rings of Ar 4 and Ar 5 are each independently at least one selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, a perylene ring, and a coronene ring.
  • it has two aromatic hydrocarbon rings.
  • Ar 4 and Ar 5 have a substituent, the substituent that Ar 1 of the above formula (1) can have can be suitably employed.
  • the lower limit of the weight average molecular weight (Mw) of the polymer is not particularly limited, it is preferably 1,000, more preferably 1,500, and even more preferably 2,000.
  • the upper limit of the weight average molecular weight (Mw) is preferably 10,000, more preferably 8,000, and even more preferably 6,000.
  • the method for measuring the weight average molecular weight (Mw) of the polymer is as described in Examples.
  • Examples of the compound (1-3) which is a polymer include compounds having repeating units represented by the following formulas (1-3-1) to (1-3-6).
  • Examples of the compound (1-4) which is a polymer include compounds having repeating units represented by the following formulas (1-4-1) to (1-4-4).
  • the above polymer may have a repeating unit different from the above.
  • Examples of the different repeating units include repeating units represented by the following formula (1-5).
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 and n have the same meaning as in the above formula (1-3). Two Ar 1 and n are the same or different from each other. .)
  • Examples of the repeating unit represented by the above formula (1-5) include repeating units represented by the following formulas (1-5-1) to (1-5-4).
  • the above polymer is typically obtained by performing an addition condensation reaction of a fluorene derivative and an aromatic ring compound that provides Ar 4 or Ar 5 as necessary in the presence of an acid or a catalyst using a conventional method to obtain an intermediate polymer.
  • the desired polymer can be synthesized by reacting the intermediate polymer with a halogenated alkyl aromatic ring-containing compound having the structure of Ar 1 in the above formula (1).
  • Other structures can also be synthesized by appropriately selecting the starting materials, the aromatic ring compound giving Ar 4 and Ar 5 , the structure of the halogenated alkyl aromatic ring-containing compound, and the like.
  • the lower limit of the content of the [A] compound in the composition is preferably 2% by mass, more preferably 4% by mass, and even more preferably 6% by mass, based on the total mass of the [A] compound and the [B] solvent. Particularly preferred is 8% by weight.
  • the upper limit of the content ratio is preferably 30% by mass, more preferably 25% by mass, even more preferably 20% by mass, and particularly preferably 18% by mass based on the total mass of [A] compound and [B] solvent.
  • the [B] solvent is not particularly limited as long as it can dissolve or disperse the [A] compound and optional components contained therein.
  • [B] solvent examples include hydrocarbon solvents, ester solvents, alcohol solvents, ketone solvents, ether solvents, and nitrogen-containing solvents.
  • [B] Solvents can be used alone or in combination of two or more.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents such as n-pentane, n-hexane, and cyclohexane, and aromatic hydrocarbon solvents such as benzene, toluene, and xylene.
  • ester solvents include carbonate solvents such as diethyl carbonate, acetic acid monoester solvents such as methyl acetate and ethyl acetate, lactone solvents such as ⁇ -butyrolactone, diethylene glycol monomethyl acetate, and propylene glycol monomethyl ether acetate.
  • Examples include alcohol partial ether carboxylate solvents and lactic acid ester solvents such as methyl lactate and ethyl lactate.
  • alcoholic solvents examples include monoalcoholic solvents such as methanol, ethanol, and n-propanol, and polyhydric alcoholic solvents such as ethylene glycol and 1,2-propylene glycol.
  • ketone solvents examples include chain ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketone solvents such as cyclohexanone.
  • ether solvents include chain ether solvents such as n-butyl ether, polyhydric alcohol ether solvents such as cyclic ether solvents such as tetrahydrofuran, and polyhydric alcohol partial ether solvents such as diethylene glycol monomethyl ether. .
  • nitrogen-containing solvents examples include chain nitrogen-containing solvents such as N,N-dimethylacetamide, and cyclic nitrogen-containing solvents such as N-methylpyrrolidone.
  • the solvent is preferably an ester solvent or a ketone solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent or a cyclic ketone solvent, and even more preferably propylene glycol monomethyl ether acetate or cyclohexanone.
  • the lower limit of the content of the [B] solvent in the composition is preferably 50% by mass, more preferably 60% by mass, and even more preferably 70% by mass.
  • the upper limit of the content ratio is preferably 99.9% by mass, more preferably 99% by mass, and even more preferably 95% by mass.
  • the composition may contain optional components within a range that does not impair the effects of the present invention.
  • optional components include acid generators, crosslinking agents, surfactants, and the like.
  • the optional components can be used alone or in combination of two or more.
  • the content ratio of the optional component in the composition can be determined as appropriate depending on the type of the optional component.
  • composition is prepared by mixing [A] the compound, [B] the solvent, and optional components in a predetermined ratio, and preferably filtering the resulting mixture using a membrane filter or the like with a pore size of 0.5 ⁇ m or less. It can be prepared by
  • a composition for forming a resist underlayer film is applied directly or indirectly to the substrate.
  • the above-mentioned composition is used as the resist underlayer film forming composition.
  • the method of applying the composition for forming a resist underlayer film is not particularly limited, and can be carried out by any suitable method such as spin coating, casting coating, roll coating, etc. A coating film is thereby formed, and a resist underlayer film is formed by volatilization of the [B] solvent.
  • the substrate examples include metal or semimetal substrates such as silicon substrates, aluminum substrates, nickel substrates, chromium substrates, molybdenum substrates, tungsten substrates, copper substrates, tantalum substrates, and titanium substrates, and among these, silicon substrates are preferred.
  • the substrate may be a substrate formed with a silicon nitride film, an alumina film, a silicon dioxide film, a tantalum nitride film, a titanium nitride film, or the like.
  • Examples of cases in which the composition for forming a resist underlayer film is indirectly applied to the substrate include cases in which the composition for forming a resist underlayer film is applied onto a silicon-containing film, which will be described later, formed on the substrate.
  • Heating process In this step, the coating film formed in the above coating step is heated. Heating the coating film promotes the formation of the resist underlayer film. More specifically, heating the coating film promotes volatilization of the [B] solvent.
  • Heating of the above-mentioned coating film may be performed under an air atmosphere or under a nitrogen atmosphere.
  • the lower limit of the heating temperature is preferably 300°C, more preferably 320°C, and even more preferably 340°C.
  • the upper limit of the heating temperature is preferably 600°C, more preferably 500°C, and even more preferably 400°C.
  • the lower limit of the heating time is preferably 15 seconds, more preferably 30 seconds.
  • the upper limit of the above time is preferably 1,200 seconds, more preferably 600 seconds.
  • the resist underlayer film may be exposed to light after the above coating step. After the above coating step, the resist underlayer film may be exposed to plasma. After the above coating step, ions may be implanted into the resist underlayer film. Exposure of the resist underlayer film improves the etching resistance of the resist underlayer film. Exposure of the resist underlayer film to plasma improves the etching resistance of the resist underlayer film. Ion implantation into the resist underlayer film improves the etching resistance of the resist underlayer film.
  • the radiation used for exposing the resist underlayer film is appropriately selected from electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and ⁇ -rays; and particle beams such as electron beams, molecular beams, and ion beams.
  • Examples of methods for exposing the resist underlayer film to plasma include a direct method in which the substrate is placed in each gas atmosphere and plasma is discharged.
  • the conditions for plasma exposure are usually a gas flow rate of 50 cc/min or more and 100 cc/min or less, and a supply power of 100 W or more and 1,500 W or less.
  • the lower limit of the plasma exposure time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute.
  • the upper limit of the above time is preferably 10 minutes, more preferably 5 minutes, and even more preferably 2 minutes.
  • plasma is generated in an atmosphere of a mixed gas of H 2 gas and Ar gas.
  • a carbon-containing gas such as CF 4 gas or CH 4 gas may be introduced.
  • CF 4 gas, NF 3 gas, CHF 3 gas, CO 2 gas, CH 2 F 2 gas, CH 4 gas, and C 4 F 8 gas may be used. At least one of them may be introduced.
  • Ion implantation into the resist underlayer film involves injecting dopants into the resist underlayer film.
  • the dopant may be selected from the group consisting of boron, carbon, nitrogen, phosphorus, arsenic, aluminum, and tungsten.
  • the implant energy utilized to energize the dopant can range from approximately 0.5 keV to 60 keV, depending on the type of dopant utilized and the depth of implantation desired.
  • the lower limit of the average thickness of the resist underlayer film to be formed is preferably 30 nm, more preferably 50 nm, and even more preferably 100 nm.
  • the upper limit of the average thickness is preferably 3,000 nm, more preferably 2,000 nm, and even more preferably 500 nm. Note that the method for measuring the average thickness is as described in Examples.
  • a silicon-containing film is formed directly or indirectly on the resist underlayer film formed by the coating step or the heating step.
  • Examples of the case where a silicon-containing film is indirectly formed on the resist underlayer film include a case where a surface modification film of the resist underlayer film is formed on the resist underlayer film.
  • the surface-modified film of the resist underlayer film is, for example, a film that has a different contact angle with water from that of the resist underlayer film.
  • the silicon-containing film can be formed by coating a silicon-containing film-forming composition, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • a method for forming a silicon-containing film by coating a silicon-containing film-forming composition for example, a coated film formed by directly or indirectly applying a silicon-containing film-forming composition to the resist underlayer film is used. , a method of curing by exposure and/or heating, and the like.
  • As commercially available silicon-containing film-forming compositions for example, "NFC SOG01", “NFC SOG04", “NFC SOG080" (all manufactured by JSR Corporation), etc. can be used.
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and an amorphous silicon film can be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • Examples of the radiation used in the exposure include electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and ⁇ -rays, and particle beams such as electron beams, molecular beams, and ion beams.
  • the lower limit of the temperature when heating the coating film is preferably 90°C, more preferably 150°C, and even more preferably 200°C.
  • the upper limit of the above temperature is preferably 550°C, more preferably 450°C, and even more preferably 300°C.
  • the lower limit of the average thickness of the silicon-containing film is preferably 1 nm, more preferably 10 nm, and even more preferably 20 nm.
  • the above upper limit is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
  • the average thickness of the silicon-containing film is a value measured using the spectroscopic ellipsometer described above.
  • a resist pattern is formed directly or indirectly on the resist underlayer film.
  • methods for performing this step include a method using a resist composition, a method using a nanoimprint method, a method using a self-assembling composition, and the like.
  • An example of a case where a resist pattern is indirectly formed on the resist underlayer film is a case where a resist pattern is formed on the silicon-containing film.
  • resist compositions examples include positive or negative chemically amplified resist compositions containing a radiation-sensitive acid generator, positive resist compositions containing an alkali-soluble resin and a quinone diazide photosensitizer, and alkali-soluble Examples include negative resist compositions containing a resin and a crosslinking agent, and metal-containing resist compositions containing metals such as tin, zirconium, and hafnium.
  • Examples of the coating method for the resist composition include a spin coating method.
  • the temperature and time of prebaking can be adjusted as appropriate depending on the type of resist composition used.
  • the radiation used for exposure can be appropriately selected depending on the type of radiation-sensitive acid generator used in the resist composition, and includes visible light, ultraviolet rays, far ultraviolet rays, X-rays, ⁇ -rays, etc. Examples include electromagnetic waves, electron beams, molecular beams, and particle beams such as ion beams.
  • KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), F2 excimer laser light (wavelength 157 nm), Kr2 excimer laser light (wavelength 147 nm), ArKr excimer laser light Laser light (wavelength: 134 nm) or extreme ultraviolet light (wavelength: 13.5 nm, etc., hereinafter also referred to as "EUV”) is more preferred, and KrF excimer laser light, ArF excimer laser light, or EUV is even more preferred.
  • EUV extreme ultraviolet light
  • post-baking can be performed to improve resolution, pattern profile, developability, etc.
  • the temperature and time of this post-baking can be determined as appropriate depending on the type of resist composition used.
  • the exposed resist film is developed to form a resist pattern.
  • Development may be by dissolving in a developer.
  • the metal-containing resist film may be developed by dissolving it in a developer, or by volatilizing it by heating or reducing pressure.
  • Development using a developer may be alkaline development or organic solvent development.
  • the developer include basic aqueous solutions such as ammonia, triethanolamine, tetramethylammonium hydroxide (TMAH), and tetraethylammonium hydroxide.
  • suitable amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants, and the like may be added.
  • examples of the developer include the various organic solvents exemplified as the [B] solvent of the above-mentioned composition.
  • a predetermined resist pattern is formed by washing and drying.
  • etching is performed using the resist pattern as a mask.
  • the etching may be performed once or multiple times, that is, the etching may be performed sequentially using the pattern obtained by etching as a mask. From the viewpoint of obtaining a pattern with a better shape, it is preferable to repeat the process multiple times.
  • etching is performed multiple times, for example, the silicon-containing film, the resist underlayer film, and the substrate are etched in this order.
  • the etching method include dry etching, wet etching, and the like. From the viewpoint of improving the shape of the pattern on the substrate, dry etching is preferable. This dry etching uses, for example, gas plasma such as oxygen plasma.
  • Dry etching can be performed using, for example, a known dry etching device.
  • the etching gas used for dry etching can be appropriately selected depending on the mask pattern, the elemental composition of the film to be etched, etc. For example, CHF3 , CF4 , C2F6 , C3F8 , SF6, etc.
  • Fluorine gas chlorine gas such as Cl2 , BCl3 , oxygen gas such as O2 , O3 , H2O , H2, NH3 , CO, CO2 , CH4 , C2H2 , C Reducing gases such as 2H4 , C2H6 , C3H4 , C3H6 , C3H8 , HF , HI, HBr, HCl, NO, NH3 , BCl3 , He, N2 , Examples include inert gas such as Ar. These gases can also be used in combination. When etching a substrate using a pattern of a resist underlayer film as a mask, a fluorine-based gas is usually used.
  • composition contains a [A] compound and a [B] solvent.
  • a composition used in the method for manufacturing a semiconductor substrate described above can be suitably employed.
  • Compound The compound has a partial structure represented by the above formula (1) and has a molecular weight of 600 or more.
  • the [A] compound used in the method for manufacturing the semiconductor substrate described above can be suitably employed.
  • Mw Weight average molecular weight
  • the average thickness of the resist underlayer film was determined by measuring the film thickness at nine arbitrary points at 5 cm intervals including the center of the resist underlayer film using a spectroscopic ellipsometer (J.A. WOOLLAM Co., Ltd.'s "M2000D"). The average value of the film thickness was calculated as the value.
  • a reaction vessel was charged with 15.0 g of the above intermediate obtained by drying under a nitrogen atmosphere and 760 g of dichloromethane, dissolved at room temperature, and then cooled to 0°C. Then, a solution of 60.9 g of anhydrous iron (III) chloride dissolved in 380 g of nitromethane was added dropwise. After reacting at 0°C for 2 hours, the mixture was heated to 20°C and further reacted for 2 hours. After the reaction was completed, 1,140 g of methanol was added to obtain a precipitate. The resulting precipitate was collected using filter paper, washed with a large amount of methanol and tetrahydrofuran, and dried to obtain compound (a-6).
  • the reaction solution was transferred to a separating funnel, and 200 g of methyl isobutyl ketone and 400 g of water were added to wash the organic phase.
  • the obtained organic phase was concentrated using an evaporator, and the residue was dropped into 500 g of methanol to obtain a precipitate.
  • the precipitate was collected by suction filtration and washed several times with 100 g of methanol.
  • the compound (a-8) having a repeating unit represented by (a-8) below was obtained by drying at 60° C. for 12 hours using a vacuum dryer.
  • the Mw of compound (a-8) was 2,300.
  • the reaction solution was transferred to a separating funnel, and 100 g of methyl isobutyl ketone and 200 g of a 5% aqueous oxalic acid solution were added to wash the organic phase several times.
  • the obtained organic phase was concentrated using an evaporator, and the residue was dropped into 300 g of methanol to obtain a precipitate.
  • the precipitate was collected by suction filtration and washed several times with 100 g of methanol. Thereafter, the compound (a-9) having a repeating unit represented by (a-9) below was obtained by drying at 60° C. for 12 hours using a vacuum dryer.
  • the obtained filtrate was transferred to a separating funnel, and 100 g of methyl isobutyl ketone and 200 g of water were added to wash the organic phase. After separating the aqueous phase, the obtained organic phase was concentrated using an evaporator, and the residue was dropped into 300 g of methanol to obtain a precipitate. The precipitate was collected by suction filtration and washed several times with 100 g of methanol. Thereafter, it was dried at 60° C. for 12 hours using a vacuum dryer to obtain a compound (A-10) having a repeating unit represented by (A-10) below. The Mw of compound (A-10) was 3,600.
  • D-2 Compound represented by the following formula (D-2) (wherein, Me represents a methyl group)
  • Example 1 [A] 10 parts by mass of (A-1) as a compound was dissolved in 90 parts by mass of (B-1) as a [B] solvent. The resulting solution was filtered through a polytetrafluoroethylene (PTFE) membrane filter with a pore size of 0.45 ⁇ m to prepare a composition (J-1).
  • PTFE polytetrafluoroethylene
  • the composition prepared above was applied onto a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, a film with an average thickness of 200 nm was formed by heating at 350°C for 60 seconds in an air atmosphere and cooling at 23°C for 60 seconds, and a film-coated substrate with a resist underlayer film formed on the substrate was formed. Obtained.
  • etching rate (nm/min) was calculated from the average thickness of the film before and after the treatment.
  • the ratio to Comparative Example 1 was calculated based on the etching rate of Comparative Example 1, and this ratio was used as a measure of etching resistance.
  • Etching resistance is rated "A" (very good) if the above ratio is 0.90 or less, "B" (good) if it is more than 0.90 and less than 0.92, and "B" (good) if it is 0.92 or more. It was evaluated as “C” (poor). Note that "-" in Table 2 indicates that it is an evaluation criterion for etching resistance.
  • composition prepared above was applied onto a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, a film with an average thickness of 200 nm was formed by heating at 350°C for 60 seconds in an air atmosphere and cooling at 23°C for 60 seconds, and a film-coated substrate with a resist underlayer film formed on the substrate was formed. Obtained.
  • R (d2/d1) ⁇ 100
  • R is the remaining film rate (%)
  • d1 is the film thickness (nm) before cyclohexanone treatment
  • d2 is the film thickness (nm) after cyclohexanone treatment.
  • Solvent resistance was evaluated as "A” (very good) when the residual film rate was 99.5% or more, and as “B” (good) when it was 99.0% or more and less than 99.5%.
  • the resist underlayer film formed from the composition of the example had excellent etching resistance.
  • composition of the present invention has good solubility in polar solvents and can form a resist underlayer film with excellent etching resistance.
  • Compounds of the invention are suitable for such compositions. According to the method for manufacturing a semiconductor substrate of the present invention, a substrate that is well patterned can be obtained. Therefore, these can be suitably used in the production of semiconductor devices, which are expected to be further miniaturized in the future.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The purpose of the present invention is to provide a method for manufacturing a semiconductor substrate using a composition capable of forming a film having excellent etching resistance; and to provide said composition. The composition according to the present invention comprises a solvent and a compound having a partial structure represented by formula (1) below, wherein the molecular weight of the compound is greater than or equal to 600. (In formula (1), Ar1 is a substituted or unsubstituted monovalent aromatic group having 5-30 ring members. n is an integer of 1-3. Ar2 is a portion of a substituted or unsubstituted aromatic ring structure having 5-60 ring members and is formed together with two adjacent carbon atoms in formula (1). X1 represents a single bond or a divalent linking group .Each * is a bonding site with the two adjacent carbon atoms constituting the substituted or unsubstituted aromatic ring having 5-60 ring members. ** is a bonding site with a portion other than the partial structure represented by formula (1) in the abovementioned compound. r is an integer of 0-4.)

Description

組成物、化合物及び半導体基板の製造方法Composition, compound and method for producing semiconductor substrate
 本発明は、組成物、化合物及び半導体基板の製造方法に関する。 The present invention relates to a composition, a compound, and a method for manufacturing a semiconductor substrate.
 半導体デバイスの製造にあっては、例えば、基板上に有機下層膜、ケイ素含有膜などのレジスト下層膜を介して積層されたレジスト膜を露光及び現像してレジストパターンを形成する多層レジストプロセスが用いられている。このプロセスでは、このレジストパターンをマスクとしてレジスト下層膜をエッチングし、得られたレジスト下層膜パターンをマスクとしてさらに基板をエッチングすることで、半導体基板に所望のパターンを形成することができる(特開2004-177668号公報参照)。 In the manufacture of semiconductor devices, for example, a multilayer resist process is used in which a resist film is formed on a substrate through a resist underlayer film such as an organic underlayer film or a silicon-containing film, and then exposed and developed to form a resist pattern. It is being In this process, a desired pattern can be formed on a semiconductor substrate by etching the resist underlayer film using this resist pattern as a mask, and further etching the substrate using the obtained resist underlayer film pattern as a mask. (See Publication No. 2004-177668).
 このようなレジスト下層膜形成用組成物に用いられる材料について、種々の検討が行われている(国際公開第2011/108365号参照)。 Various studies have been conducted on materials used in such resist underlayer film forming compositions (see International Publication No. 2011/108365).
特開2004-177668号公報Japanese Patent Application Publication No. 2004-177668 国際公開第2011/108365号International Publication No. 2011/108365
 多層レジストプロセスにおいて、レジスト下層膜としての有機下層膜にはエッチング耐性が要求される。 In the multilayer resist process, the organic underlayer film as the resist underlayer film is required to have etching resistance.
 本発明は以上のような事情に基づいてなされたものであり、その目的は、エッチング耐性に優れる膜を形成可能な組成物、化合物及び半導体基板の製造方法を提供することにある。 The present invention was made based on the above circumstances, and its purpose is to provide a composition, a compound, and a method for manufacturing a semiconductor substrate that can form a film with excellent etching resistance.
 本発明は、一実施形態において、
 下記式(1)で表される部分構造を有する化合物(以下、「[A]化合物」ともいう。)と、
 溶媒(以下、「[B]溶媒」ともいう。)と
 を含有し、
 上記化合物の分子量が600以上である、組成物に関する。
Figure JPOXMLDOC01-appb-C000013
 
(式(1)中、
 Arは、置換又は非置換の環員数5~30の1価の芳香族基である。
 nは1~3の整数である。
 Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
 Xは、単結合又は2価の連結基である。
 *はそれぞれ、置換又は非置換の環員数5~60の芳香環を構成する隣接する2つの炭素原子との結合部位である。
 **は、上記化合物における上記式(1)で表される部分構造以外の部分との結合部位である。
 rは、0~4の整数である。)
In one embodiment, the present invention provides:
A compound having a partial structure represented by the following formula (1) (hereinafter also referred to as "[A] compound"),
Contains a solvent (hereinafter also referred to as "[B] solvent") and
The present invention relates to a composition in which the above compound has a molecular weight of 600 or more.
Figure JPOXMLDOC01-appb-C000013

(In formula (1),
Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
n is an integer from 1 to 3.
Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
X 1 is a single bond or a divalent linking group.
* is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
r is an integer from 0 to 4. )
 本発明は、一実施形態において、
 下記式(1)で表される部分構造を有し、
 分子量が600以上である、化合物に関する。
Figure JPOXMLDOC01-appb-C000014
(式(1)中、
 Arは、置換又は非置換の環員数5~30の1価の芳香族基である。
 nは1~3の整数である。
 Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
 Xは、単結合又は2価の連結基である。
 *はそれぞれ、置換又は非置換の環員数5~60の芳香環を構成する隣接する2つの炭素原子との結合部位である。
 **は、上記化合物における上記式(1)で表される部分構造以外の部分との結合部位である。
 rは、0~4の整数である。)
In one embodiment, the present invention provides:
It has a partial structure represented by the following formula (1),
It relates to a compound having a molecular weight of 600 or more.
Figure JPOXMLDOC01-appb-C000014
(In formula (1),
Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
n is an integer from 1 to 3.
Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
X 1 is a single bond or a divalent linking group.
* is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
r is an integer from 0 to 4. )
 本発明は、一実施形態において、
 基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程と、
 上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程と、
 上記レジストパターンをマスクとしたエッチングを行う工程と
 を含み、
 上記レジスト下層膜形成用組成物が、
 下記式(1)で表される部分構造を有する化合物と、
 溶媒と
 を含有し、
 上記化合物の分子量が600以上である、半導体基板の製造方法に関する。
Figure JPOXMLDOC01-appb-C000015
(式(1)中、
 Arは、置換又は非置換の環員数5~30の1価の芳香族基である。
 nは1~3の整数である。
 Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
 Xは、単結合又は2価の連結基である。
 *はそれぞれ、置換又は非置換の環員数5~60の芳香環を構成する隣接する2つの炭素原子との結合部位である。
 **は、上記化合物における上記式(1)で表される部分構造以外の部分との結合部位である。
 rは、0~4の整数である。)
In one embodiment, the present invention provides:
a step of directly or indirectly applying a resist underlayer film forming composition to the substrate;
forming a resist pattern directly or indirectly on the resist underlayer film formed by the coating process;
and a step of performing etching using the resist pattern as a mask,
The resist underlayer film forming composition described above is
A compound having a partial structure represented by the following formula (1),
contains a solvent and
The present invention relates to a method for manufacturing a semiconductor substrate, wherein the compound has a molecular weight of 600 or more.
Figure JPOXMLDOC01-appb-C000015
(In formula (1),
Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
n is an integer from 1 to 3.
Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
X 1 is a single bond or a divalent linking group.
* is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
r is an integer from 0 to 4. )
 本明細書において、「環員数」とは、環を構成する原子の数をいう。例えば、ビフェニル環の環員数は12であり、ナフタレン環の環員数は10であり、フルオレン環の環員数は13である。「縮合環構造」とは、隣接する環が1つの辺(隣接する2つの原子)を共有する構造をいう。 As used herein, "number of ring members" refers to the number of atoms constituting the ring. For example, the biphenyl ring has 12 ring members, the naphthalene ring has 10 ring members, and the fluorene ring has 13 ring members. "Fused ring structure" refers to a structure in which adjacent rings share one edge (two adjacent atoms).
 当該組成物によれば、エッチング耐性に優れる膜を形成することができる。当該組成物によれば、当該組成物が極性溶媒への溶解性に優れるため、半導体製造装置の排液管の詰まりを抑制することができる。当該化合物は当該組成物に好適である。当該半導体基板の製造方法によれば、エッチング耐性に優れたレジスト下層膜を形成可能である。また、当該半導体基板の製造方法によれば、当該組成物が極性溶媒への溶解性に優れるため、半導体製造装置の排液管の詰まりも抑制することができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 According to the composition, a film with excellent etching resistance can be formed. According to the composition, since the composition has excellent solubility in polar solvents, clogging of drain pipes of semiconductor manufacturing equipment can be suppressed. The compounds are suitable for the compositions. According to the method for manufacturing a semiconductor substrate, it is possible to form a resist underlayer film having excellent etching resistance. Further, according to the method for manufacturing a semiconductor substrate, since the composition has excellent solubility in polar solvents, it is possible to prevent clogging of drain pipes of semiconductor manufacturing equipment. Therefore, these can be suitably used in the production of semiconductor devices, which are expected to be further miniaturized in the future.
 以下、本発明の各実施形態に係る組成物、化合物及び半導体基板の製造方法について詳説する。組成物及び化合物の説明は、半導体基板の製造方法の説明において適宜展開する。 Hereinafter, the composition, compound, and method for manufacturing a semiconductor substrate according to each embodiment of the present invention will be explained in detail. The composition and the compound will be explained as appropriate in the explanation of the method for manufacturing the semiconductor substrate.
《半導体基板の製造方法》
 当該半導体基板の製造方法は、基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程(以下、「レジストパターン形成工程」ともいう)と、上記レジストパターンをマスクとしたエッチングを行う工程(以下、「エッチング工程」ともいう)とを含む。
《Method for manufacturing semiconductor substrate》
The method for manufacturing the semiconductor substrate includes a step of directly or indirectly coating the substrate with a composition for forming a resist underlayer film (hereinafter also referred to as a "coating step"), and a resist underlayer film formed by the above coating step. The method includes a step of directly or indirectly forming a resist pattern on the surface (hereinafter also referred to as a "resist pattern forming step"), and a step of performing etching using the resist pattern as a mask (hereinafter also referred to as an "etching step").
 当該半導体基板の製造方法によれば、上記塗工工程において上記塗工工程においてレジスト下層膜形成用組成物として後述の当該組成物を用いることにより、半導体製造装置の排液管の詰まりを抑制しつつ、エッチング耐性に優れたレジスト下層膜を形成することができるため、良好なパターン形状を有する半導体基板を歩留まり良く製造することができる。半導体製造装置としては、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)などがあるが、このスピンコーターの排液管には、上記レジスト下層膜形成用組成物の排液のほかに、レジスト組成物、ケイ素含有膜形成用組成物などの排液も排出される。上記レジスト下層膜形成用組成物が、極性溶媒への溶解性が低いと、排液管中において、上記レジスト下層膜形成用組成物が、上記レジスト下層膜形成用組成物中の溶媒とは異なる極性溶媒と接触することで、上記レジスト下層膜形成用組成物が析出し、排液管を詰まらせる場合がある。 According to the method for manufacturing a semiconductor substrate, clogging of a drain pipe of a semiconductor manufacturing device is suppressed by using the composition described below as a composition for forming a resist underlayer film in the coating step. At the same time, since a resist underlayer film having excellent etching resistance can be formed, a semiconductor substrate having a good pattern shape can be manufactured with a high yield. Semiconductor manufacturing equipment includes a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.), but in addition to draining the composition for forming a resist underlayer film, the drain pipe of this spin coater also drains the composition for forming a resist underlayer film. , resist composition, silicon-containing film forming composition, etc. are also discharged. When the composition for forming a resist underlayer film has low solubility in a polar solvent, the composition for forming a resist underlayer film in the drain pipe is different from the solvent in the composition for forming a resist underlayer film. When it comes into contact with a polar solvent, the resist underlayer film forming composition may precipitate and clog the drain pipe.
 当該半導体基板の製造方法は、必要に応じて、上記レジスト下層膜に対し直接又は間接にケイ素含有膜を形成する工程(以下、「ケイ素含有膜形成工程」ともいう)をさらに備えていてもよい。 The method for manufacturing the semiconductor substrate may further include a step of directly or indirectly forming a silicon-containing film on the resist underlayer film (hereinafter also referred to as "silicon-containing film forming step"), if necessary. .
 以下、当該半導体基板の製造方法に用いる組成物及び各工程について説明する。 Hereinafter, the composition and each process used in the method for manufacturing the semiconductor substrate will be explained.
<組成物>
 レジスト下層膜形成用組成物としての当該組成物は、[A]化合物と[B]溶媒とを含有する。当該組成物は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。
<Composition>
The composition for forming a resist underlayer film contains a [A] compound and a [B] solvent. The composition may contain optional components within a range that does not impair the effects of the present invention.
 当該組成物は、[A]化合物と[B]溶媒とを含有することにより、半導体製造装置の排液管の詰まりを抑制しつつ、エッチング耐性に優れる膜を形成することができる。したがって、当該組成物は膜を形成するための組成物として用いることができる。より詳細には、当該組成物は、多層レジストプロセスにおけるレジスト下層膜を形成するための組成物として好適に用いることができる。 By containing the compound [A] and the solvent [B], the composition can form a film with excellent etching resistance while suppressing clogging of the drain pipe of semiconductor manufacturing equipment. Therefore, the composition can be used as a composition for forming a film. More specifically, the composition can be suitably used as a composition for forming a resist underlayer film in a multilayer resist process.
 以下、当該組成物が含有する各成分について説明する。 Hereinafter, each component contained in the composition will be explained.
<[A]化合物>
 [A]化合物は、下記式(1)で表される部分構造(以下、「部分構造(1)」ともいう。)を有し、かつ[A]化合物の分子量は600以上である。[A]化合物は、部分構造(1)を2つ以上有していてもよい。[A]化合物が部分構造(1)を2つ以上有する場合、複数の部分構造(1)は互いに同一でも異なっていてもよい。当該組成物は、1種又は2種以上の[A]化合物を含有することができる。
Figure JPOXMLDOC01-appb-C000016
(式(1)中、
 Arは、置換又は非置換の環員数5~30の1価の芳香族基である。
 nは1~3の整数である。
 Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
 Xは、単結合又は2価の連結基である。
 *はそれぞれ、置換又は非置換の環員数5~60の芳香環を構成する隣接する2つの炭素原子との結合部位である。
 **は、上記化合物における上記式(1)で表される部分構造以外の部分との結合部位である。
 rは、0~4の整数である。)
<[A] Compound>
The [A] compound has a partial structure represented by the following formula (1) (hereinafter also referred to as "partial structure (1)"), and the molecular weight of the [A] compound is 600 or more. [A] The compound may have two or more partial structures (1). [A] When the compound has two or more partial structures (1), the plurality of partial structures (1) may be the same or different from each other. The composition can contain one or more [A] compounds.
Figure JPOXMLDOC01-appb-C000016
(In formula (1),
Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
n is an integer from 1 to 3.
Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
X 1 is a single bond or a divalent linking group.
* is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
r is an integer from 0 to 4. )
 式(1)中、Arと結合するアルカンジイル基が結合する炭素原子には、水素原子が1つ結合していることが理解されるべきである。 In formula (1), it should be understood that one hydrogen atom is bonded to the carbon atom to which the alkanediyl group bonded to Ar 1 is bonded.
 Arで表される環員数5~30の1価の芳香族基に対応する芳香環構造は、例えばベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環等の芳香族炭化水素環、フラン環、ピロール環、チオフェン環、ホスホール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イミダゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、シンノリン環、ベンゾフラン環、イソベンゾフラン環、インドール環、イソインドール環、ベンゾチオフェン環、ベンゾイミダゾール環、インダゾール環、ベンゾオキサゾール環、ベンゾイソオキサゾール環、ベンゾチアゾール環、アクリジン環等の芳香族複素環、又はこれらの組み合わせ等が挙げられる。中でも、上記Arに対応する芳香環構造としてはナフタレン環、アントラセン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましく、Arに対応する芳香環構造がピレン環であることがより好ましい。 The aromatic ring structure corresponding to the monovalent aromatic group having 5 to 30 ring members represented by Ar 1 is, for example, a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring. , aromatic hydrocarbon rings such as pentacene ring, perylene ring, benzopyrene ring and coronene ring, furan ring, pyrrole ring, thiophene ring, phosphole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, imidazole ring, pyridine ring , pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, cinnoline ring, benzofuran ring, isobenzofuran ring, indole ring, isoindole ring, benzothiophene ring, benzimidazole ring, Examples include aromatic heterocycles such as an indazole ring, a benzoxazole ring, a benzisoxazole ring, a benzothiazole ring, and an acridine ring, or a combination thereof. Among them, the aromatic ring structure corresponding to Ar 1 is at least one aromatic ring selected from the group consisting of naphthalene ring, anthracene ring, tetracene ring, pyrene ring, fluorene ring, pentacene ring, perylene ring, benzopyrene ring, and coronene ring. It is preferably a hydrocarbon ring, and more preferably the aromatic ring structure corresponding to Ar 1 is a pyrene ring.
 Arは置換基を有していてもよい。置換基としては、例えば炭素数1~10の1価の鎖状炭化水素基、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基等のアルコキシカルボニルオキシ基、ホルミル基、アセチル基、プロピオニル基、ブチリル基等のアシル基、シアノ基、ニトロ基などが挙げられる。 Ar 1 may have a substituent. Examples of the substituent include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, Alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group, alkoxycarbonyloxy groups such as methoxycarbonyloxy group and ethoxycarbonyloxy group, acyl group such as formyl group, acetyl group, propionyl group, butyryl group, cyano group, nitro group Examples include.
 Arを含む環員数5~60の芳香環構造としては、上記式(1)のArに対応する芳香環構造を環員数60まで拡張した芳香環を好適に採用することができる。環員数30を超える芳香環構造としては、例えば、オバレン環、ヘキサ-peri-ヘキサベンゾコロネン環、ヘキサベンゾコロネン環等の縮合環構造、ヘキサフェニルベンゼン環等の集合環構造(環が単結合で結合した多環構造)等が挙げられる。 As the aromatic ring structure containing Ar 2 and having 5 to 60 ring members, an aromatic ring obtained by expanding the aromatic ring structure corresponding to Ar 1 in the above formula (1) to 60 ring members can be suitably employed. Examples of aromatic ring structures having more than 30 ring members include fused ring structures such as obalene rings, hexa-peri-hexabenzocoronene rings, and hexabenzocoronene rings, and aggregate ring structures such as hexaphenylbenzene rings (where the ring is a single bond). bonded polycyclic structure), etc.
 Arが置換基を有する場合、置換基としてはArが有し得る置換基を好適に採用することができる。 When Ar 2 has a substituent, the substituent that Ar 1 can have can be suitably employed.
 上記Arを含む芳香環構造は、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。 The aromatic ring structure containing Ar 2 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. Preferably, it is at least one aromatic hydrocarbon ring.
 Xで表される2価の連結基としては、例えば、炭素数1~10の2価の直鎖状若しくは分岐状の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、炭素数6~12の2価の芳香族炭化水素基、-CO-、-O-、-NH-、-S-及び環状アセタール構造から選ばれる1種の基、又はこれらの基を2個以上組み合わせてなる基等が挙げられる。 The divalent linking group represented by group, a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, -CO-, -O-, -NH-, -S-, and a cyclic acetal structure, or two of these groups. Examples include groups formed by combining two or more groups.
 上記炭素数1~10の2価の直鎖状若しくは分岐状の炭化水素基としては、例えば、メチレン基、エタンジイル基、プロパンジイル基、ブタンジイル基等の炭素数1~10のアルカンジイル基、エテンジイル基、プロペンジイル基、ブテンジイル基等の炭素数2~10のアルケンジイル基等が挙げられる。中でも、炭素数2~8のアルケンジイル基が好ましく、エテンジイル基、プロペンジイル基がより好ましく、エテンジイル基がさらに好ましい。 Examples of the divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms include alkanediyl groups having 1 to 10 carbon atoms such as methylene group, ethanediyl group, propanediyl group, butanediyl group, and ethenediyl group. Examples include alkenediyl groups having 2 to 10 carbon atoms, such as a propenediyl group, a butenediyl group, and a butenediyl group. Among these, an alkenediyl group having 2 to 8 carbon atoms is preferred, an ethenediyl group and a propenediyl group are more preferred, and an ethenediyl group is even more preferred.
 上記炭素数4~12の2価の脂環式炭化水素基としては、例えば、シクロペンタンジイル基、シクロヘキサンジイル基等の単環のシクロアルカンジイル基;ノルボルナンジイル基、アダマンタンジイル基等の多環のシクロアルカンジイル基等が挙げられる。 Examples of the above-mentioned divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms include monocyclic cycloalkanediyl groups such as cyclopentanediyl group and cyclohexanediyl group; polycyclic groups such as norbornanediyl group and adamantanediyl group. Examples include cycloalkanediyl groups.
 上記炭素数6~12の2価の芳香族炭化水素基としては、ベンゼンジイル基、ナフタレンジイル基等が挙げられる。 Examples of the divalent aromatic hydrocarbon group having 6 to 12 carbon atoms include a benzenediyl group and a naphthalenediyl group.
 上記Xは単結合であることが好ましい。 The above X 1 is preferably a single bond.
 2つの*が結合する環員数5~60の芳香環としては、上記Arを含む環員数5~60の芳香環構造を好適に採用することができる。 As the aromatic ring having 5 to 60 ring members to which the two *s are bonded, an aromatic ring structure having 5 to 60 ring members including Ar 2 described above can be suitably employed.
 nは1又は2であることが好ましく、1であることがより好ましい。 It is preferable that n is 1 or 2, and more preferably 1.
 rは、0~3の整数であることが好ましく、0~2の整数であることがより好ましい。 r is preferably an integer of 0 to 3, more preferably an integer of 0 to 2.
 Ar及びArのうちの少なくとも1つは、置換基として、ヒドロキシ基、下記式(2-1)で表される基及び下記式(2-2)で表される基からなる群より選ばれる少なくとも1つの基を有していてもよい。これにより、得られるレジスト下層膜のエッチング耐性を向上させることができる。
Figure JPOXMLDOC01-appb-C000017
(式(2-1)及び(2-2)中、Rは、それぞれ独立して、炭素数1~20の2価の有機基又は単結合である。*は芳香環における炭素原子との結合手である。)
At least one of Ar 1 and Ar 2 has a substituent selected from the group consisting of a hydroxy group, a group represented by the following formula (2-1), and a group represented by the following formula (2-2). may have at least one group. Thereby, the etching resistance of the resulting resist underlayer film can be improved.
Figure JPOXMLDOC01-appb-C000017
(In formulas (2-1) and (2-2), R 7 is each independently a divalent organic group having 1 to 20 carbon atoms or a single bond. * indicates a bond with a carbon atom in an aromatic ring. It is a conjugate.)
 上記式(2-1)及び(2-2)中、Rで表される炭素数1~20の2価の有機基としては、上記Xで表される2価の連結基等が挙げられる。Rとしてはメタンジイル基、エタンジイル基、フェニレン基等の炭素数1~10の2価の炭化水素基又はこれらの組み合わせと-O-との組み合わせが好ましく、メタンジイル基、又はメタンジイル基と-O-との組み合わせがより好ましい。 In the above formulas (2-1) and (2-2), examples of the divalent organic group having 1 to 20 carbon atoms represented by R 7 include the divalent linking group represented by X 1 above. It will be done. R 7 is preferably a divalent hydrocarbon group having 1 to 10 carbon atoms such as a methanediyl group, ethanediyl group, or phenylene group, or a combination thereof and -O-; A combination with is more preferable.
 [A]化合物の分子量は600以上であればよく、[A]化合物の基本構造(重合体構造(1又は2以上の繰り返し単位が連続する構造)や非重合体構造(繰り返し単位を有しない単一分子構造)等)や求められる特性に応じて適宜設定すればよい。[A]化合物が重合体構造を有する場合の分子量は重量平均分子量(Mw)である。上記分子量の下限は、700が好ましく、800がさらに好ましい。上記分子量の上限は、120,000が好ましく、10,000がより好ましく、8,000がさらに好ましい。 [A] The molecular weight of the compound may be 600 or more, and the basic structure of the [A] compound (polymer structure (structure in which one or more repeating units are continuous) or non-polymer structure (single structure without repeating units) is sufficient. It may be set as appropriate depending on the characteristics (such as monomolecular structure) and the required characteristics. [A] When the compound has a polymer structure, the molecular weight is the weight average molecular weight (Mw). The lower limit of the molecular weight is preferably 700, more preferably 800. The upper limit of the molecular weight is preferably 120,000, more preferably 10,000, and even more preferably 8,000.
 一実施形態において、[A]化合物は下記式(1―1)で表される化合物(以下、「化合物(1-1)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
(上記式(1-1)中、
 Ar、Ar及びnは、上記式(1)と同義である。
 Ar10は、上記式(1-1)における隣接する2つの炭素原子とともに構成される、炭素数20~60の芳香族炭化水素環構造の一部である。
 sは1~8の整数である。)
In one embodiment, the [A] compound is preferably a compound represented by the following formula (1-1) (hereinafter also referred to as "compound (1-1)").
Figure JPOXMLDOC01-appb-C000018
(In the above formula (1-1),
Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
Ar 10 is a part of an aromatic hydrocarbon ring structure having 20 to 60 carbon atoms, which is formed together with two adjacent carbon atoms in the above formula (1-1).
s is an integer from 1 to 8. )
 Ar10を含む炭素数20~60の芳香族炭化水素環構造としては、上記式(1)のArを含む環員数5~60の芳香環構造のうち炭素数20~60に対応する構造を好適に採用することができる。 The aromatic hydrocarbon ring structure having 20 to 60 carbon atoms and containing Ar 10 is a structure corresponding to 20 to 60 carbon atoms among the aromatic ring structures having 5 to 60 ring members containing Ar 2 in the above formula (1). It can be suitably adopted.
 上記芳香族炭化水素環構造の炭素数の下限としては、25が好ましく、35がより好ましく、40がさらに好ましい。上記炭素数の上限としては特に限定されず、例えば100である。芳香族炭化水素環構造の炭素数が25以上であることにより、エッチング耐性に優れる膜を形成することができる。 The lower limit of the number of carbon atoms in the aromatic hydrocarbon ring structure is preferably 25, more preferably 35, and even more preferably 40. The upper limit of the number of carbon atoms is not particularly limited, and is, for example, 100. When the number of carbon atoms in the aromatic hydrocarbon ring structure is 25 or more, a film with excellent etching resistance can be formed.
 上記芳香族炭化水素環構造としては、例えば、トルクセン構造(炭素数27)、トリナフチレン構造(炭素数30)、ヘプタフェン構造(炭素数30)、ヘプタセン構造(炭素数30)、ピラントレン構造(炭素数30)、オバレン構造(炭素数32)、ヘキサ-peri-ヘキサベンゾコロネン環(炭素数42)、ヘキサベンゾコロネン構造(炭素数48)等の縮合多環構造を含む構造が好ましい。 Examples of the aromatic hydrocarbon ring structures include a truxene structure (27 carbon atoms), a trinaphthylene structure (30 carbon atoms), a heptaphene structure (30 carbon atoms), a heptacene structure (30 carbon atoms), and a pyrantrene structure (30 carbon atoms). ), an obalene structure (32 carbon atoms), a hexa-peri-hexabenzocoronene ring (42 carbon atoms), and a hexabenzocoronene structure (48 carbon atoms).
 sは2~6の整数であることが好ましく、3~5の整数であることがより好ましい。 s is preferably an integer of 2 to 6, more preferably an integer of 3 to 5.
 化合物(1-1)の分子量の下限は、700が好ましく、800がより好ましく、900がさらに好ましい。上記分子量の上限は、3,000が好ましく、2,500がより好ましく、2,000がさらに好ましい。 The lower limit of the molecular weight of compound (1-1) is preferably 700, more preferably 800, and even more preferably 900. The upper limit of the molecular weight is preferably 3,000, more preferably 2,500, and even more preferably 2,000.
 化合物(1-1)としては、例えば下記式(1-1-1)~(1-1-6)で表される化合物等が挙げられる。 Examples of the compound (1-1) include compounds represented by the following formulas (1-1-1) to (1-1-6).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一実施形態において、[A]化合物は下記式(1-2)で表される化合物(以下、「化合物(1-2)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
(上記式(1-2)中、
 Ar、Ar及びnは、上記式(1)と同義である。
 Arは、上記式(1-2)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
 Yは、置換又は非置換の環員数5~60の芳香環を含む(m1+m2)価の基である。
 Rは、環員数5~40の芳香環を含む1価の基である。
 m1は1~10の整数である。m1が2以上である場合、複数のAr、Ar、Ar及びnは、互いに同一又は異なる。
 m2は0~10の整数である。m2が2以上である場合、複数のRは、互いに同一又は異なる。)
In one embodiment, the [A] compound is preferably a compound represented by the following formula (1-2) (hereinafter also referred to as "compound (1-2)").
Figure JPOXMLDOC01-appb-C000022
(In the above formula (1-2),
Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1-2).
Y is a (m1+m2)-valent group containing a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
R 3 is a monovalent group containing an aromatic ring having 5 to 40 ring members.
m1 is an integer from 1 to 10. When m1 is 2 or more, the plurality of Ar 1 , Ar 2 , Ar 3 and n are the same or different from each other.
m2 is an integer from 0 to 10. When m2 is 2 or more, a plurality of R3 's are the same or different from each other. )
 上記Arを含む環員数5~60の芳香環構造としては、上記式(1)のArを含む環員数5~60の芳香環構造を好適に採用することができる。Arが置換基を有する場合、置換基としては上記式(1)のArが有し得る置換基を好適に採用することができる。 As the aromatic ring structure containing Ar 3 and having 5 to 60 ring members, the aromatic ring structure containing Ar 2 and having 5 to 60 ring members in the above formula (1) can be suitably employed. When Ar 3 has a substituent, the substituent that Ar 1 of the above formula (1) can have can be suitably employed.
 上記Arを含む芳香環構造は、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。 The aromatic ring structure containing Ar 3 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. Preferably, it is at least one aromatic hydrocarbon ring.
 上記Arは、置換基として、ヒドロキシ基、上記式(2-1)で表される基及び上記式(2-2)で表される基からなる群より選ばれる少なくとも1つの基を有していてもよい。 The above Ar 3 has at least one group selected from the group consisting of a hydroxy group, a group represented by the above formula (2-1), and a group represented by the above formula (2-2) as a substituent. You can leave it there.
 上記Yにおける環員数5~60の芳香環としては、上記式(1)のArにおける環員数5~60の芳香環を好適に採用することができる。Yにおける環員数5~60の芳香環を含む(m1+m2)価の基としては、上記環員数5~60の芳香環から(m1+m2)個の水素原子を除いた基が挙げられる。Yが置換基を有する場合、置換基としては上記式(1)のArが有し得る置換基を好適に採用することができる。 As the aromatic ring having 5 to 60 ring members in the above Y, the aromatic ring having 5 to 60 ring members in Ar 2 of the above formula (1) can be suitably employed. Examples of the (m1+m2) valent group containing an aromatic ring having 5 to 60 ring members in Y include a group obtained by removing (m1+m2) hydrogen atoms from the aromatic ring having 5 to 60 ring members. When Y has a substituent, the substituent that Ar 1 of the above formula (1) can have can be suitably employed.
 上記Yの芳香環は、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環、コロネン環、オバレン環及びヘキサベンゾコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。 The aromatic ring of Y above is at least one selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, a perylene ring, a coronene ring, an obalene ring, and a hexabenzocoronene ring. Preferably, it is an aromatic hydrocarbon ring.
 上記Rにおける環員数5~40の芳香環としては、上記Yにおける環員数5~60の芳香環のうち環員数5~40に対応する芳香環を好適に採用することができる。Rで表される環員数5~40の芳香環を含む1価の基としては、上記環員数5~40の芳香環から1個の水素原子を除いた基が挙げられる。上記Rの芳香環は、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。 As the aromatic ring having 5 to 40 ring members in R 3 above, an aromatic ring corresponding to 5 to 40 ring members among the aromatic rings having 5 to 60 ring members in Y above can be suitably employed. The monovalent group containing an aromatic ring having 5 to 40 ring members represented by R 3 includes a group obtained by removing one hydrogen atom from the above-mentioned aromatic ring having 5 to 40 ring members. The aromatic ring of R3 is at least one aromatic hydrocarbon ring selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, a perylene ring, and a coronene ring. It is preferable.
 化合物(1-2)の分子量の下限は、700が好ましく、800がより好ましく、900がさらに好ましい。上記分子量の上限は、3,000が好ましく、2,500がより好ましく、2,000がさらに好ましい。 The lower limit of the molecular weight of compound (1-2) is preferably 700, more preferably 800, and even more preferably 900. The upper limit of the molecular weight is preferably 3,000, more preferably 2,500, and even more preferably 2,000.
 化合物(1-2)としては、例えば下記式(1-2-1)~(1-2-6)で表される化合物等が挙げられる。 Examples of the compound (1-2) include compounds represented by the following formulas (1-2-1) to (1-2-6).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[化合物(1-1)、(1-2)の合成方法]
 化合物(1-1)、(1-2)の合成方法としては、常法により、例えば下記の合成スキームに従って合成することができる。
[Method for synthesizing compounds (1-1) and (1-2)]
Compounds (1-1) and (1-2) can be synthesized by conventional methods, for example, according to the following synthetic scheme.
Figure JPOXMLDOC01-appb-C000026
(スキーム中、*はフルオレン環との結合手である。Arは上記式(1)と同義である。Qはハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000026
(In the scheme, * is a bond with the fluorene ring. Ar 1 has the same meaning as the above formula (1). Q is a halogen atom.)
 出発原料としてフルオレンの置換体を準備し、これを触媒等の存在下で環化させることで中間体(1-2-a)又は(1-2-b)を得る。次いで、中間体(1-2-a)又は(1-2-b)と上記式(1)のArの構造を有するハロゲン化アルキル芳香環含有化合物とを反応させることにより、化合物(1-2)に対応する化合物(1-2-A)又は(1-2-B)を合成することができる。また、中間体(1-2-b)の中心の環集合構造部分を触媒で環化反応させた後、上記ハロゲン化アルキル芳香環含有化合物と反応させることにより化合物(1-1)を合成することができる。その他の構造についても、出発原料やハロゲン化アルキル芳香環含有化合物の構造等を適宜選択することで合成することができる。 A substituted fluorene is prepared as a starting material, and this is cyclized in the presence of a catalyst to obtain intermediate (1-2-a) or (1-2-b). Next, compound (1-2-a) or (1-2-b) is reacted with a halogenated alkyl aromatic ring-containing compound having the structure of Ar 1 in formula (1) above. Compound (1-2-A) or (1-2-B) corresponding to 2) can be synthesized. Alternatively, compound (1-1) is synthesized by subjecting the central ring assembly structure portion of intermediate (1-2-b) to a cyclization reaction with a catalyst and then reacting it with the halogenated alkyl aromatic ring-containing compound. be able to. Other structures can also be synthesized by appropriately selecting the starting materials and the structure of the halogenated alkyl aromatic ring-containing compound.
 一実施形態において、上記化合物は部分構造(1)を繰り返し単位として2つ以上有する重合体であることが好ましい。上記重合体は、下記式(1-3)又は(1-4)で表される繰り返し単位を有することが好ましい(以下、それぞれ「化合物(1-3)」等ともいう。)。
Figure JPOXMLDOC01-appb-C000027
(上記式(1-3)及び(1-4)中、
 Ar、Ar及びnは、上記式(1)と同義である。
 Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
 Ar及びArは、それぞれ独立して、環員数5~60の芳香環を含む2価の基又は単結合である。)
In one embodiment, the compound is preferably a polymer having two or more partial structures (1) as repeating units. The above polymer preferably has a repeating unit represented by the following formula (1-3) or (1-4) (hereinafter also referred to as "compound (1-3)" etc.).
Figure JPOXMLDOC01-appb-C000027
(In the above formulas (1-3) and (1-4),
Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
Ar 4 and Ar 5 are each independently a divalent group containing an aromatic ring having 5 to 60 ring members or a single bond. )
 上記Arを含む環員数5~60の芳香環構造としては、上記式(1)のArを含む環員数5~60の芳香環構造を好適に採用することができる。Arが置換基を有する場合、置換基としては上記式(1)のArが有し得る置換基を好適に採用することができる。 As the aromatic ring structure containing Ar 3 and having 5 to 60 ring members, the aromatic ring structure containing Ar 2 and having 5 to 60 ring members in the above formula (1) can be suitably employed. When Ar 3 has a substituent, the substituent that Ar 1 of the above formula (1) can have can be suitably employed.
 上記Arを含む芳香環構造は、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。 The aromatic ring structure containing Ar 3 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. Preferably, it is at least one aromatic hydrocarbon ring.
 上記Arは、置換基として、ヒドロキシ基、上記式(2-1)で表される基及び上記式(2-2)で表される基からなる群より選ばれる少なくとも1つの基を有していてもよい。 The above Ar 3 has at least one group selected from the group consisting of a hydroxy group, a group represented by the above formula (2-1), and a group represented by the above formula (2-2) as a substituent. You can leave it there.
 Ar及びArで表される環員数5~60の芳香環を含む2価の基としては、上記式(1)のAr及びArを含む環員数5~60の芳香環構造から2個の水素原子を除いた基が挙げられる。上記Ar及びArの芳香環は、それぞれ独立して、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、ピレン環、フルオレン環、ペリレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環であることが好ましい。Ar及びArが置換基を有する場合、置換基としては上記式(1)のArが有し得る置換基を好適に採用することができる。 As the divalent group containing an aromatic ring having 5 to 60 ring members represented by Ar 4 and Ar 5 , 2 from the aromatic ring structure having 5 to 60 ring members including Ar 2 and Ar 3 in the above formula (1) Examples include groups in which hydrogen atoms are removed. The aromatic rings of Ar 4 and Ar 5 are each independently at least one selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, a perylene ring, and a coronene ring. Preferably, it has two aromatic hydrocarbon rings. When Ar 4 and Ar 5 have a substituent, the substituent that Ar 1 of the above formula (1) can have can be suitably employed.
 重合体の重量平均分子量(Mw)の下限は特に限定されないものの、1,000が好ましく、1,500がより好ましく、2,000がさらに好ましい。上記重量平均分子量(Mw)の上限は、10,000が好ましく、8,000がより好ましく、6,000がさらに好ましい。なお、重合体の重量平均分子量(Mw)の測定方法は実施例の記載による。 Although the lower limit of the weight average molecular weight (Mw) of the polymer is not particularly limited, it is preferably 1,000, more preferably 1,500, and even more preferably 2,000. The upper limit of the weight average molecular weight (Mw) is preferably 10,000, more preferably 8,000, and even more preferably 6,000. The method for measuring the weight average molecular weight (Mw) of the polymer is as described in Examples.
 重合体である化合物(1-3)としては、例えば下記式(1-3-1)~(1-3-6)で表される繰り返し単位を有する化合物等が挙げられる。 Examples of the compound (1-3) which is a polymer include compounds having repeating units represented by the following formulas (1-3-1) to (1-3-6).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 重合体である化合物(1-4)としては、例えば下記式(1-4-1)~(1-4-4)で表される繰り返し単位を有する化合物等が挙げられる。 Examples of the compound (1-4) which is a polymer include compounds having repeating units represented by the following formulas (1-4-1) to (1-4-4).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記重合体は、上記と異なる繰り返し単位を有していてもよい。異なる繰り返し単位としては、例えば下記式(1-5)で表される繰り返し単位等が挙げられる。 The above polymer may have a repeating unit different from the above. Examples of the different repeating units include repeating units represented by the following formula (1-5).
Figure JPOXMLDOC01-appb-C000030
(上記式(1-5)中、Ar、Ar、Ar、Ar及びnは、上記式(1-3)と同義である。2つのAr及びnは、それぞれ互いに同一又は異なる。)
Figure JPOXMLDOC01-appb-C000030
(In the above formula (1-5), Ar 1 , Ar 2 , Ar 3 , Ar 4 and n have the same meaning as in the above formula (1-3). Two Ar 1 and n are the same or different from each other. .)
 上記式(1-5)で表される繰り返し単位としては、下記式(1-5-1)~(1-5-4)で表される繰り返し単位等が挙げられる。 Examples of the repeating unit represented by the above formula (1-5) include repeating units represented by the following formulas (1-5-1) to (1-5-4).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[重合体の合成方法]
 上記重合体は、代表的には、定法によりフルオレン誘導体と、必要に応じてAr又はArを与える芳香環化合物との酸や触媒存在下での付加縮合反応を行って中間重合体を得る。次いで、中間体重合体と上記式(1)のArの構造を有するハロゲン化アルキル芳香環含有化合物とを反応させることにより、目的とする重合体を合成することができる。その他の構造についても、出発原料やAr及びArを与える芳香環化合物、ハロゲン化アルキル芳香環含有化合物の構造等を適宜選択することで合成することができる。
[Polymer synthesis method]
The above polymer is typically obtained by performing an addition condensation reaction of a fluorene derivative and an aromatic ring compound that provides Ar 4 or Ar 5 as necessary in the presence of an acid or a catalyst using a conventional method to obtain an intermediate polymer. . Next, the desired polymer can be synthesized by reacting the intermediate polymer with a halogenated alkyl aromatic ring-containing compound having the structure of Ar 1 in the above formula (1). Other structures can also be synthesized by appropriately selecting the starting materials, the aromatic ring compound giving Ar 4 and Ar 5 , the structure of the halogenated alkyl aromatic ring-containing compound, and the like.
 当該組成物における[A]化合物の含有割合の下限としては、[A]化合物及び[B]溶媒の合計質量中、2質量%が好ましく、4質量%がより好ましく、6質量%がさらに好ましく、8質量%が特に好ましい。上記含有割合の上限としては、[A]化合物及び[B]溶媒の合計質量中、30質量%が好ましく、25質量%がより好ましく、20質量%がさらに好ましく、18質量%が特に好ましい。 The lower limit of the content of the [A] compound in the composition is preferably 2% by mass, more preferably 4% by mass, and even more preferably 6% by mass, based on the total mass of the [A] compound and the [B] solvent. Particularly preferred is 8% by weight. The upper limit of the content ratio is preferably 30% by mass, more preferably 25% by mass, even more preferably 20% by mass, and particularly preferably 18% by mass based on the total mass of [A] compound and [B] solvent.
<[B]溶媒>
 [B]溶媒は、[A]化合物及び必要に応じて含有する任意成分を溶解又は分散することができれば特に限定されない。
<[B] Solvent>
The [B] solvent is not particularly limited as long as it can dissolve or disperse the [A] compound and optional components contained therein.
 [B]溶媒としては、例えば炭化水素系溶媒、エステル系溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、含窒素系溶媒などが挙げられる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。 Examples of the [B] solvent include hydrocarbon solvents, ester solvents, alcohol solvents, ketone solvents, ether solvents, and nitrogen-containing solvents. [B] Solvents can be used alone or in combination of two or more.
 炭化水素系溶媒としては、例えばn-ペンタン、n-ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒などが挙げられる。 Examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents such as n-pentane, n-hexane, and cyclohexane, and aromatic hydrocarbon solvents such as benzene, toluene, and xylene.
 エステル系溶媒としては、例えばジエチルカーボネート等のカーボネート系溶媒、酢酸メチル、酢酸エチル等の酢酸モノエステル系溶媒、γ-ブチロラクトン等のラクトン系溶媒、酢酸ジエチレングリコールモノメチルエーテル、酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒、乳酸メチル、乳酸エチル等の乳酸エステル系溶媒などが挙げられる。 Examples of ester solvents include carbonate solvents such as diethyl carbonate, acetic acid monoester solvents such as methyl acetate and ethyl acetate, lactone solvents such as γ-butyrolactone, diethylene glycol monomethyl acetate, and propylene glycol monomethyl ether acetate. Examples include alcohol partial ether carboxylate solvents and lactic acid ester solvents such as methyl lactate and ethyl lactate.
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール等の多価アルコール系溶媒などが挙げられる。 Examples of alcoholic solvents include monoalcoholic solvents such as methanol, ethanol, and n-propanol, and polyhydric alcoholic solvents such as ethylene glycol and 1,2-propylene glycol.
 ケトン系溶媒としては、例えばメチルエチルケトン、メチルイソブチルケトン等の鎖状ケトン系溶媒、シクロヘキサノン等の環状ケトン系溶媒などが挙げられる。 Examples of ketone solvents include chain ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and cyclic ketone solvents such as cyclohexanone.
 エーテル系溶媒としては、例えばn-ブチルエーテル等の鎖状エーテル系溶媒、テトラヒドロフラン等の環状エーテル系溶媒等の多価アルコールエーテル系溶媒、ジエチレングリコールモノメチルエーテル等の多価アルコール部分エーテル系溶媒などが挙げられる。 Examples of ether solvents include chain ether solvents such as n-butyl ether, polyhydric alcohol ether solvents such as cyclic ether solvents such as tetrahydrofuran, and polyhydric alcohol partial ether solvents such as diethylene glycol monomethyl ether. .
 含窒素系溶媒としては、例えばN,N-ジメチルアセトアミド等の鎖状含窒素系溶媒、N-メチルピロリドン等の環状含窒素系溶媒などが挙げられる。 Examples of nitrogen-containing solvents include chain nitrogen-containing solvents such as N,N-dimethylacetamide, and cyclic nitrogen-containing solvents such as N-methylpyrrolidone.
 [B]溶媒としては、エステル系溶媒又はケトン系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒又は環状ケトン系溶媒がより好ましく、酢酸プロピレングリコールモノメチルエーテル又はシクロヘキサノンがさらに好ましい。 [B] The solvent is preferably an ester solvent or a ketone solvent, more preferably a polyhydric alcohol partial ether carboxylate solvent or a cyclic ketone solvent, and even more preferably propylene glycol monomethyl ether acetate or cyclohexanone.
 当該組成物における[B]溶媒の含有割合の下限としては、50質量%が好ましく、60質量%がより好ましく、70質量%がさらに好ましい。上記含有割合の上限としては、99.9質量%が好ましく、99質量%がより好ましく、95質量%がさらに好ましい。 The lower limit of the content of the [B] solvent in the composition is preferably 50% by mass, more preferably 60% by mass, and even more preferably 70% by mass. The upper limit of the content ratio is preferably 99.9% by mass, more preferably 99% by mass, and even more preferably 95% by mass.
[任意成分]
 当該組成物は、本発明の効果を損なわない範囲において任意成分を含有していてもよい。任意成分としては、例えば酸発生剤、架橋剤、界面活性剤等が挙げられる。任意成分は、1種単独で又は2種以上を組み合わせて用いることができる。当該組成物における任意成分の含有割合は任意成分の種類等に応じて適宜決定することができる。
[Optional ingredients]
The composition may contain optional components within a range that does not impair the effects of the present invention. Examples of optional components include acid generators, crosslinking agents, surfactants, and the like. The optional components can be used alone or in combination of two or more. The content ratio of the optional component in the composition can be determined as appropriate depending on the type of the optional component.
[組成物の調製方法]
 当該組成物は、[A]化合物、[B]溶媒、及び必要に応じて任意成分を所定の割合で混合し、好ましくは得られた混合物を孔径0.5μm以下のメンブランフィルター等でろ過することにより調製できる。
[Method for preparing composition]
The composition is prepared by mixing [A] the compound, [B] the solvent, and optional components in a predetermined ratio, and preferably filtering the resulting mixture using a membrane filter or the like with a pore size of 0.5 μm or less. It can be prepared by
[塗工工程]
 本工程では、基板に直接又は間接にレジスト下層膜形成用組成物を塗工する。本工程ではレジスト下層膜形成用組成物として、上述の当該組成物を用いる。
[Coating process]
In this step, a composition for forming a resist underlayer film is applied directly or indirectly to the substrate. In this step, the above-mentioned composition is used as the resist underlayer film forming composition.
 レジスト下層膜形成用組成物の塗工方法としては特に限定されず、例えば回転塗工、流延塗工、ロール塗工などの適宜の方法で実施することができる。これにより塗工膜が形成され、[B]溶媒の揮発などが起こることによりレジスト下層膜が形成される。 The method of applying the composition for forming a resist underlayer film is not particularly limited, and can be carried out by any suitable method such as spin coating, casting coating, roll coating, etc. A coating film is thereby formed, and a resist underlayer film is formed by volatilization of the [B] solvent.
 基板としては、例えばシリコン基板、アルミニウム基板、ニッケル基板、クロム基板、モリブデン基板、タングステン基板、銅基板、タンタル基板、チタン基板等の金属又は半金属基板などが挙げられ、これらの中でもシリコン基板が好ましい。上記基板は、窒化ケイ素膜、アルミナ膜、二酸化ケイ素膜、窒化タンタル膜、窒化チタン膜などが形成された基板でもよい。 Examples of the substrate include metal or semimetal substrates such as silicon substrates, aluminum substrates, nickel substrates, chromium substrates, molybdenum substrates, tungsten substrates, copper substrates, tantalum substrates, and titanium substrates, and among these, silicon substrates are preferred. . The substrate may be a substrate formed with a silicon nitride film, an alumina film, a silicon dioxide film, a tantalum nitride film, a titanium nitride film, or the like.
 基板に間接にレジスト下層膜形成用組成物を塗工する場合としては、例えば上記基板に形成された後述のケイ素含有膜上にレジスト下層膜形成用組成物を塗工する場合などが挙げられる。 Examples of cases in which the composition for forming a resist underlayer film is indirectly applied to the substrate include cases in which the composition for forming a resist underlayer film is applied onto a silicon-containing film, which will be described later, formed on the substrate.
[加熱工程]
 本工程では、上記塗工工程により形成された塗工膜を加熱する。塗工膜の加熱によりレジスト下層膜の形成が促進される。より詳細には、塗工膜の加熱により[B]溶媒の揮発等が促進される。
[Heating process]
In this step, the coating film formed in the above coating step is heated. Heating the coating film promotes the formation of the resist underlayer film. More specifically, heating the coating film promotes volatilization of the [B] solvent.
 上記塗工膜の加熱は、大気雰囲気下で行ってもよいし、窒素雰囲気下で行ってもよい。加熱温度の下限としては、300℃が好ましく、320℃がより好ましく、340℃がさらに好ましい。上記加熱温度の上限としては、600℃が好ましく、500℃がより好ましく、400℃がさらに好ましい。加熱における時間の下限としては、15秒が好ましく、30秒がより好ましい。上記時間の上限としては、1,200秒が好ましく、600秒がより好ましい。 Heating of the above-mentioned coating film may be performed under an air atmosphere or under a nitrogen atmosphere. The lower limit of the heating temperature is preferably 300°C, more preferably 320°C, and even more preferably 340°C. The upper limit of the heating temperature is preferably 600°C, more preferably 500°C, and even more preferably 400°C. The lower limit of the heating time is preferably 15 seconds, more preferably 30 seconds. The upper limit of the above time is preferably 1,200 seconds, more preferably 600 seconds.
 なお、上記塗工工程後に、レジスト下層膜を露光してもよい。上記塗工工程後に、レジスト下層膜にプラズマを暴露してもよい。上記塗工工程後に、レジスト下層膜にイオン注入をしてもよい。レジスト下層膜を露光すると、レジスト下層膜のエッチング耐性が向上する。レジスト下層膜にプラズマを暴露すると、レジスト下層膜のエッチング耐性が向上する。レジスト下層膜にイオン注入をすると、レジスト下層膜のエッチング耐性が向上する。 Note that the resist underlayer film may be exposed to light after the above coating step. After the above coating step, the resist underlayer film may be exposed to plasma. After the above coating step, ions may be implanted into the resist underlayer film. Exposure of the resist underlayer film improves the etching resistance of the resist underlayer film. Exposure of the resist underlayer film to plasma improves the etching resistance of the resist underlayer film. Ion implantation into the resist underlayer film improves the etching resistance of the resist underlayer film.
 レジスト下層膜の露光に用いられる放射線としては、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波;電子線、分子線、イオンビーム等の粒子線から適宜選択される。 The radiation used for exposing the resist underlayer film is appropriately selected from electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and γ-rays; and particle beams such as electron beams, molecular beams, and ion beams.
 レジスト下層膜へのプラズマの暴露を行う方法としては、例えば基板を各ガス雰囲気中に設置し、プラズマ放電することによる直接法等が挙げられる。プラズマの暴露の条件としては、通常ガス流量が50cc/min以上100cc/min以下、供給電力が100W以上1,500W以下である。 Examples of methods for exposing the resist underlayer film to plasma include a direct method in which the substrate is placed in each gas atmosphere and plasma is discharged. The conditions for plasma exposure are usually a gas flow rate of 50 cc/min or more and 100 cc/min or less, and a supply power of 100 W or more and 1,500 W or less.
 プラズマの暴露の時間の下限としては、10秒が好ましく、30秒がより好ましく、1分がさらに好ましい。上記時間の上限としては、10分が好ましく、5分がより好ましく、2分がさらに好ましい。 The lower limit of the plasma exposure time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 1 minute. The upper limit of the above time is preferably 10 minutes, more preferably 5 minutes, and even more preferably 2 minutes.
 プラズマは、例えば、HガスとArガスの混合ガスの雰囲気下でプラズマが生成される。また、HガスとArガスに加えて、CFガスやCHガス等の炭素含有ガスを導入するようにしてもよい。なお、Hガス及びArガスのいずれか一方または両方の代わりに、CFガス、NFガス、CHFガス、COガス、CHガス、CHガス及びCガスのうちの少なくとも一つを導入してもよい。 For example, plasma is generated in an atmosphere of a mixed gas of H 2 gas and Ar gas. Further, in addition to H 2 gas and Ar gas, a carbon-containing gas such as CF 4 gas or CH 4 gas may be introduced. Note that instead of either or both of H 2 gas and Ar gas, CF 4 gas, NF 3 gas, CHF 3 gas, CO 2 gas, CH 2 F 2 gas, CH 4 gas, and C 4 F 8 gas may be used. At least one of them may be introduced.
 レジスト下層膜へのイオン注入は、ドーパントをレジスト下層膜へ注入する。ドーパントは、ホウ素、炭素、窒素、リン、ヒ素、アルミニウム、及びタングステンから成るグループから選択され得る。ドーパントに電圧を加えるために利用される注入エネルギーは、利用されるドーパントのタイプ、及び望ましい注入の深さに応じて、約0.5keVから60keVまでが挙げられる。 Ion implantation into the resist underlayer film involves injecting dopants into the resist underlayer film. The dopant may be selected from the group consisting of boron, carbon, nitrogen, phosphorus, arsenic, aluminum, and tungsten. The implant energy utilized to energize the dopant can range from approximately 0.5 keV to 60 keV, depending on the type of dopant utilized and the depth of implantation desired.
 形成されるレジスト下層膜の平均厚みとの下限としては、30nmが好ましく、50nmがより好ましく、100nmがさらに好ましい。上記平均厚みの上限としては、3,000nmが好ましく、2,000nmがより好ましく、500nmがさらに好ましい。なお、平均厚みの測定方法は実施例の記載による。 The lower limit of the average thickness of the resist underlayer film to be formed is preferably 30 nm, more preferably 50 nm, and even more preferably 100 nm. The upper limit of the average thickness is preferably 3,000 nm, more preferably 2,000 nm, and even more preferably 500 nm. Note that the method for measuring the average thickness is as described in Examples.
[ケイ素含有膜形成工程]
 本工程では、上記塗工工程又は上記加熱工程により形成されたレジスト下層膜に直接又は間接にケイ素含有膜を形成する。上記レジスト下層膜に間接にケイ素含有膜を形成する場合としては、例えば上記レジスト下層膜上にレジスト下層膜の表面改質膜が形成された場合などが挙げられる。上記レジスト下層膜の表面改質膜とは、例えば水との接触角が上記レジスト下層膜とは異なる膜である。
[Silicon-containing film formation process]
In this step, a silicon-containing film is formed directly or indirectly on the resist underlayer film formed by the coating step or the heating step. Examples of the case where a silicon-containing film is indirectly formed on the resist underlayer film include a case where a surface modification film of the resist underlayer film is formed on the resist underlayer film. The surface-modified film of the resist underlayer film is, for example, a film that has a different contact angle with water from that of the resist underlayer film.
 ケイ素含有膜は、ケイ素含有膜形成用組成物の塗工、化学蒸着(CVD)法、原子層堆積(ALD)などにより形成することができる。ケイ素含有膜をケイ素含有膜形成用組成物の塗工により形成する方法としては、例えばケイ素含有膜形成用組成物を当該レジスト下層膜に直接又は間接に塗工して形成された塗工膜を、露光及び/又は加熱することにより硬化等させる方法などが挙げられる。上記ケイ素含有膜形成用組成物の市販品としては、例えば「NFC SOG01」、「NFC SOG04」、「NFC SOG080」(以上、JSR(株))等を用いることができる。化学蒸着(CVD)法又は原子層堆積(ALD)により、酸化ケイ素膜、窒化ケイ素膜、酸化窒化ケイ素膜、アモルファスケイ素膜を形成することができる。 The silicon-containing film can be formed by coating a silicon-containing film-forming composition, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like. As a method for forming a silicon-containing film by coating a silicon-containing film-forming composition, for example, a coated film formed by directly or indirectly applying a silicon-containing film-forming composition to the resist underlayer film is used. , a method of curing by exposure and/or heating, and the like. As commercially available silicon-containing film-forming compositions, for example, "NFC SOG01", "NFC SOG04", "NFC SOG080" (all manufactured by JSR Corporation), etc. can be used. A silicon oxide film, a silicon nitride film, a silicon oxynitride film, and an amorphous silicon film can be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
 上記露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。 Examples of the radiation used in the exposure include electromagnetic waves such as visible light, ultraviolet rays, deep ultraviolet rays, X-rays, and γ-rays, and particle beams such as electron beams, molecular beams, and ion beams.
 塗工膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。 The lower limit of the temperature when heating the coating film is preferably 90°C, more preferably 150°C, and even more preferably 200°C. The upper limit of the above temperature is preferably 550°C, more preferably 450°C, and even more preferably 300°C.
 ケイ素含有膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましい。上記上限としては、20,000nmが好ましく、1,000nmがより好ましく、100nmがさらに好ましい。ケイ素含有膜の平均厚みは、レジスト下層膜の平均厚みと同様に、上記分光エリプソメータを用いて測定した値である。 The lower limit of the average thickness of the silicon-containing film is preferably 1 nm, more preferably 10 nm, and even more preferably 20 nm. The above upper limit is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm. The average thickness of the silicon-containing film, like the average thickness of the resist underlayer film, is a value measured using the spectroscopic ellipsometer described above.
[レジストパターン形成工程]
 本工程では、上記レジスト下層膜に直接又は間接にレジストパターンを形成する。この工程を行う方法としては、例えばレジスト組成物を用いる方法、ナノインプリント法を用いる方法、自己組織化組成物を用いる方法などが挙げられる。上記レジスト下層膜に間接にレジストパターンを形成する場合としては、例えば、上記ケイ素含有膜上にレジストパターンを形成する場合などが挙げられる。
[Resist pattern formation process]
In this step, a resist pattern is formed directly or indirectly on the resist underlayer film. Examples of methods for performing this step include a method using a resist composition, a method using a nanoimprint method, a method using a self-assembling composition, and the like. An example of a case where a resist pattern is indirectly formed on the resist underlayer film is a case where a resist pattern is formed on the silicon-containing film.
 上記レジスト組成物としては、例えば感放射線性酸発生剤を含有するポジ型又はネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とを含有するポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とを含有するネガ型レジスト組成物、スズ、ジルコニウム、ハフニウムなどの金属を含有する金属含有レジスト組成物などが挙げられる。 Examples of the above resist compositions include positive or negative chemically amplified resist compositions containing a radiation-sensitive acid generator, positive resist compositions containing an alkali-soluble resin and a quinone diazide photosensitizer, and alkali-soluble Examples include negative resist compositions containing a resin and a crosslinking agent, and metal-containing resist compositions containing metals such as tin, zirconium, and hafnium.
 レジスト組成物の塗工方法としては、例えば回転塗工法等が挙げられる。プレベークの温度及び時間は、使用されるレジスト組成物の種類などに応じて適宜調整することができる。 Examples of the coating method for the resist composition include a spin coating method. The temperature and time of prebaking can be adjusted as appropriate depending on the type of resist composition used.
 次に、上記形成されたレジスト膜を露光する。具体的には、選択的な放射線照射を行う。露光に用いられる放射線としては、レジスト組成物に使用される感放射線性酸発生剤の種類等に応じて適宜選択することができ、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。これらの中で、遠紫外線が好ましく、KrFエキシマレーザー光(波長248nm)、ArFエキシマレーザー光(波長193nm)、Fエキシマレーザー光(波長157nm)、Krエキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)又は極端紫外線(波長13.5nm等、以下、「EUV」ともいう)がより好ましく、KrFエキシマレーザー光、ArFエキシマレーザー光又はEUVがさらに好ましい。 Next, the resist film formed above is exposed. Specifically, selective radiation irradiation is performed. The radiation used for exposure can be appropriately selected depending on the type of radiation-sensitive acid generator used in the resist composition, and includes visible light, ultraviolet rays, far ultraviolet rays, X-rays, γ-rays, etc. Examples include electromagnetic waves, electron beams, molecular beams, and particle beams such as ion beams. Among these, far ultraviolet light is preferable, and KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), F2 excimer laser light (wavelength 157 nm), Kr2 excimer laser light (wavelength 147 nm), ArKr excimer laser light Laser light (wavelength: 134 nm) or extreme ultraviolet light (wavelength: 13.5 nm, etc., hereinafter also referred to as "EUV") is more preferred, and KrF excimer laser light, ArF excimer laser light, or EUV is even more preferred.
 上記露光後、解像度、パターンプロファイル、現像性等を向上させるためポストベークを行うことができる。このポストベークの温度及び時間は、使用されるレジスト組成物の種類等に応じて適宜決定することができる。 After the above exposure, post-baking can be performed to improve resolution, pattern profile, developability, etc. The temperature and time of this post-baking can be determined as appropriate depending on the type of resist composition used.
 次に、上記露光されたレジスト膜を現像してレジストパターンを形成する。現像は、現像液への溶解であってもよい。また、金属含有レジスト膜の現像は、現像液への溶解であってもよく、加熱や減圧による揮発であってもよい。現像液を用いる現像は、アルカリ現像であっても有機溶媒現像であってもよい。現像液としては、アルカリ現像の場合、アンモニア、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシドなどの塩基性水溶液が挙げられる。これらの塩基性水溶液には、例えばメタノール、エタノール等のアルコール類などの水溶性有機溶媒、界面活性剤などを適量添加することもできる。また、有機溶媒現像の場合、現像液としては、例えば上述の当該組成物の[B]溶媒として例示した種々の有機溶媒等が挙げられる。 Next, the exposed resist film is developed to form a resist pattern. Development may be by dissolving in a developer. Furthermore, the metal-containing resist film may be developed by dissolving it in a developer, or by volatilizing it by heating or reducing pressure. Development using a developer may be alkaline development or organic solvent development. In the case of alkaline development, examples of the developer include basic aqueous solutions such as ammonia, triethanolamine, tetramethylammonium hydroxide (TMAH), and tetraethylammonium hydroxide. To these basic aqueous solutions, suitable amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants, and the like may be added. In the case of organic solvent development, examples of the developer include the various organic solvents exemplified as the [B] solvent of the above-mentioned composition.
 上記現像後、洗浄し、乾燥することによって、所定のレジストパターンが形成される。 After the above development, a predetermined resist pattern is formed by washing and drying.
[エッチング工程]
 本工程では、上記レジストパターンをマスクとしたエッチングを行う。エッチングの回数としては1回でも、複数回、すなわちエッチングにより得られるパターンをマスクとして順次エッチングを行ってもよい。より良好な形状のパターンを得る観点からは、複数回が好ましい。複数回のエッチングを行う場合、例えばケイ素含有膜、レジスト下層膜及び基板の順に順次エッチングを行う。エッチングの方法としては、ドライエッチング、ウエットエッチング等が挙げられる。基板のパターンの形状をより良好なものとする観点からは、ドライエッチングが好ましい。このドライエッチングには、例えば酸素プラズマ等のガスプラズマなどが用いられる。上記エッチングにより、所定のパターンを有する半導体基板が得られる。
[Etching process]
In this step, etching is performed using the resist pattern as a mask. The etching may be performed once or multiple times, that is, the etching may be performed sequentially using the pattern obtained by etching as a mask. From the viewpoint of obtaining a pattern with a better shape, it is preferable to repeat the process multiple times. When etching is performed multiple times, for example, the silicon-containing film, the resist underlayer film, and the substrate are etched in this order. Examples of the etching method include dry etching, wet etching, and the like. From the viewpoint of improving the shape of the pattern on the substrate, dry etching is preferable. This dry etching uses, for example, gas plasma such as oxygen plasma. Through the above etching, a semiconductor substrate having a predetermined pattern is obtained.
 ドライエッチングとしては、例えば公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、マスクパターン、エッチングされる膜の元素組成等により適宜選択することができ、例えばCHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、NH、BCl等の還元性ガス、He、N、Ar等の不活性ガスなどが挙げられる。これらのガスは混合して用いることもできる。レジスト下層膜のパターンをマスクとして基板をエッチングする場合には、通常、フッ素系ガスが用いられる。 Dry etching can be performed using, for example, a known dry etching device. The etching gas used for dry etching can be appropriately selected depending on the mask pattern, the elemental composition of the film to be etched, etc. For example, CHF3 , CF4 , C2F6 , C3F8 , SF6, etc. Fluorine gas, chlorine gas such as Cl2 , BCl3 , oxygen gas such as O2 , O3 , H2O , H2, NH3 , CO, CO2 , CH4 , C2H2 , C Reducing gases such as 2H4 , C2H6 , C3H4 , C3H6 , C3H8 , HF , HI, HBr, HCl, NO, NH3 , BCl3 , He, N2 , Examples include inert gas such as Ar. These gases can also be used in combination. When etching a substrate using a pattern of a resist underlayer film as a mask, a fluorine-based gas is usually used.
《組成物》
 当該組成物は、[A]化合物と[B]溶媒とを含有する。当該組成物としては、上記半導体基板の製造方法において用いられる組成物を好適に採用することができる。
"Composition"
The composition contains a [A] compound and a [B] solvent. As the composition, a composition used in the method for manufacturing a semiconductor substrate described above can be suitably employed.
《化合物》
 当該化合物は、上記式(1)で表される部分構造を有し、かつ、その分子量が600以上である。当該化合物としては、上記半導体基板の製造方法において用いられる[A]化合物を好適に採用することができる。
"Compound"
The compound has a partial structure represented by the above formula (1) and has a molecular weight of 600 or more. As the compound, the [A] compound used in the method for manufacturing the semiconductor substrate described above can be suitably employed.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples.
[重量平均分子量(Mw)]
 重合体のMwは、東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本、及び「G4000HXL」1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
[Weight average molecular weight (Mw)]
The Mw of the polymer was determined using Tosoh Corporation GPC columns (2 G2000HXL, 1 G3000HXL, and 1 G4000HXL), flow rate: 1.0 mL/min, elution solvent: tetrahydrofuran, column. Measurement was performed by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard under analysis conditions of temperature: 40°C.
[レジスト下層膜の平均厚み]
 レジスト下層膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて、レジスト下層膜の中心を含む5cm間隔の任意の9点の位置で膜厚を測定し、それらの膜厚の平均値を算出した値として求めた。
[Average thickness of resist lower layer film]
The average thickness of the resist underlayer film was determined by measuring the film thickness at nine arbitrary points at 5 cm intervals including the center of the resist underlayer film using a spectroscopic ellipsometer (J.A. WOOLLAM Co., Ltd.'s "M2000D"). The average value of the film thickness was calculated as the value.
[合成例1](化合物(a-1)の合成)
 反応容器に、窒素雰囲気下、フルオレン10.0g及びジクロロメタン200.0gを加えた後、塩化鉄(III)97.6gとニトロメタン150.0gの混合溶液を滴下し、室温で50時間反応させた。沈殿物をろ紙で回収して300.0gのニトロメタンで洗浄し、乾燥して下記(a-1)で表される繰り返し単位を有する化合物(a-1)を得た。化合物(a-1)のMwは1,400であった。
[Synthesis Example 1] (Synthesis of compound (a-1))
After adding 10.0 g of fluorene and 200.0 g of dichloromethane to the reaction vessel under a nitrogen atmosphere, a mixed solution of 97.6 g of iron (III) chloride and 150.0 g of nitromethane was added dropwise, and the mixture was reacted at room temperature for 50 hours. The precipitate was collected with a filter paper, washed with 300.0 g of nitromethane, and dried to obtain a compound (a-1) having a repeating unit represented by the following (a-1). The Mw of compound (a-1) was 1,400.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[合成例2](化合物(a-2)の合成)
 反応容器に、窒素雰囲気下、1-ヒドロキシメチルピレン10.0g及びテトラヒドロフラン60.0gを加えて0℃に冷却した後、トリブロモホスフィン14.0gを滴下して室温で16時間反応させた。その後反応溶液を0℃に冷却してメタノール20.0gで反応を停止させた。不溶分を除いて得られたろ液を減圧濃縮した後、シリカゲルカラムクロマトグラフィーにより精製し、化合物(a-2)を得た。
[Synthesis Example 2] (Synthesis of compound (a-2))
10.0 g of 1-hydroxymethylpyrene and 60.0 g of tetrahydrofuran were added to the reaction vessel under a nitrogen atmosphere, and the mixture was cooled to 0° C., and then 14.0 g of tribromophosphine was added dropwise and reacted at room temperature for 16 hours. Thereafter, the reaction solution was cooled to 0° C. and the reaction was stopped with 20.0 g of methanol. The filtrate obtained by removing insoluble matter was concentrated under reduced pressure, and then purified by silica gel column chromatography to obtain compound (a-2).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
[合成例3](化合物(A-1)の合成)
 反応容器に、窒素雰囲気下、上記化合物(a-1)3.0g、化合物(a-2)5.9g及びトルエン60.0gを加えて撹拌した後、50質量%水酸化ナトリウム水溶液43.9g及びテトラブチルアンモニウムブロミド1.8gを加え、92℃で12時間反応させた。反応液を50℃に冷却した後、テトラヒドロフラン25gを加えた。水相を除去した後、1質量%シュウ酸水溶液50gを加えて分液抽出を行った後、ヘキサンに投入し再沈殿した。沈殿物をろ紙で回収し、乾燥して下記(A-1)で表される繰り返し単位を有する化合物(A-1)を得た。化合物(A-1)のMwは3,200であった。
[Synthesis Example 3] (Synthesis of compound (A-1))
3.0 g of the above compound (a-1), 5.9 g of compound (a-2) and 60.0 g of toluene were added to a reaction vessel under a nitrogen atmosphere and stirred, followed by 43.9 g of a 50% by mass aqueous sodium hydroxide solution. and 1.8 g of tetrabutylammonium bromide were added and reacted at 92° C. for 12 hours. After the reaction solution was cooled to 50° C., 25 g of tetrahydrofuran was added. After removing the aqueous phase, 50 g of a 1% by mass oxalic acid aqueous solution was added to perform liquid separation and extraction, and then poured into hexane for reprecipitation. The precipitate was collected with filter paper and dried to obtain a compound (A-1) having a repeating unit represented by (A-1) below. The Mw of compound (A-1) was 3,200.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[合成例4](化合物(a-3)の合成)
 1-ヒドロキシメチルピレン10.0gを3-ヒドロキシメチルペリレン12.2gに変更した以外は、合成例2と同様にして下記化合物(a-3)を得た。
[Synthesis Example 4] (Synthesis of compound (a-3))
The following compound (a-3) was obtained in the same manner as in Synthesis Example 2, except that 10.0 g of 1-hydroxymethylpyrene was changed to 12.2 g of 3-hydroxymethylperylene.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[合成例5](化合物(A-2)の合成)
 化合物(a-2)5.9gを化合物(a-3)6.9gに変更した以外は、合成例3と同様にして下記(A-2)で表される繰り返し単位を有する化合物(A-2)を得た。化合物(A-2)のMwは3,600であった。
[Synthesis Example 5] (Synthesis of compound (A-2))
A compound (A-2) having a repeating unit represented by (A-2) below was prepared in the same manner as in Synthesis Example 3, except that 5.9 g of compound (a-2) was changed to 6.9 g of compound (a-3). 2) was obtained. The Mw of compound (A-2) was 3,600.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[合成例6](化合物(a-4)の合成)
 1-ヒドロキシメチルピレン10.0gを1-ヒドロキシメチルアントラセン9.0gに変更した以外は、合成例2と同様にして下記化合物(a-4)を得た。
[Synthesis Example 6] (Synthesis of compound (a-4))
The following compound (a-4) was obtained in the same manner as in Synthesis Example 2, except that 10.0 g of 1-hydroxymethylpyrene was changed to 9.0 g of 1-hydroxymethylanthracene.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
[合成例7](化合物(A-3)の合成)
 化合物(a-2)5.9g化合物を(a-4)5.5gに変更した以外は、合成例3と同様にして下記(A-3)で表される繰り返し単位を有する化合物(A-3)を得た。化合物(A-3)のMwは3,000であった。
[Synthesis Example 7] (Synthesis of compound (A-3))
A compound (A-3) having a repeating unit represented by the following (A-3) was prepared in the same manner as in Synthesis Example 3, except that 5.9 g of compound (a-2) was changed to 5.5 g of compound (a-4). 3) was obtained. The Mw of compound (A-3) was 3,000.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[合成例8](化合物(A-4)の合成)
 化合物(a-2)5.9gを2-ブロモメチルナフタレン4.4gに変更した以外は、合成例3と同様にして下記(A-4)で表される繰り返し単位を有する化合物(A-4)を得た。化合物(A-4)のMwは2,600であった。
[Synthesis Example 8] (Synthesis of compound (A-4))
A compound (A-4) having a repeating unit represented by the following (A-4) was prepared in the same manner as in Synthesis Example 3, except that 5.9 g of compound (a-2) was changed to 4.4 g of 2-bromomethylnaphthalene. ) was obtained. Mw of compound (A-4) was 2,600.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
[合成例9](化合物(a-5)の合成)
 反応容器に、窒素雰囲気下、2-アセチルフルオレン20.0g及びm-キシレン20.0gを仕込み、110℃にて溶解させた。次いで、ドデシルベンゼンスルホン酸3.1gを添加し、140℃に加熱して16時間反応させた。反応終了後、本反応溶液にキシレン80.0gを加えて希釈した後、50℃に冷却し、500.0gのメタノールに投入し再沈殿した。得られた沈殿物をトルエンで洗浄した後、固体をろ紙で回収し、乾燥して下記化合物(a-5)を得た。
[Synthesis Example 9] (Synthesis of compound (a-5))
A reaction vessel was charged with 20.0 g of 2-acetylfluorene and 20.0 g of m-xylene under a nitrogen atmosphere, and dissolved at 110°C. Next, 3.1 g of dodecylbenzenesulfonic acid was added, heated to 140° C., and reacted for 16 hours. After the reaction was completed, 80.0 g of xylene was added to the reaction solution to dilute it, the solution was cooled to 50° C., and reprecipitated by pouring into 500.0 g of methanol. After washing the obtained precipitate with toluene, the solid was collected with a filter paper and dried to obtain the following compound (a-5).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
[合成例10](化合物(A-5)の合成)
 化合物(a-1)3.0gを化合物(a-5)10.4g、化合物(a-2)5.9gを化合物(a-2)17.8g、トルエン60.0gをトルエン208.6gに変更した以外は、合成例3と同様にして下記化合物(A-5)を得た。
[Synthesis Example 10] (Synthesis of compound (A-5))
3.0 g of compound (a-1) to 10.4 g of compound (a-5), 5.9 g of compound (a-2) to 17.8 g of compound (a-2), and 60.0 g of toluene to 208.6 g of toluene. The following compound (A-5) was obtained in the same manner as Synthesis Example 3 except for the following changes.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
[合成例11](化合物(A-6)の合成)
 化合物(a-1)3.0gをトルクセン6.3g、化合物(a-2)5.9gを(a-2)17.8g、トルエン60.0gをトルエン125.2gに変更した以外は、合成例3と同様にして下記化合物(A-6)を得た。
[Synthesis Example 11] (Synthesis of compound (A-6))
Synthesis except that 3.0 g of compound (a-1) was changed to 6.3 g of truxene, 5.9 g of compound (a-2) was changed to 17.8 g of (a-2), and 60.0 g of toluene was changed to 125.2 g of toluene. The following compound (A-6) was obtained in the same manner as in Example 3.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[合成例12](化合物(a-6)の合成)
 反応容器に、窒素雰囲気下、2-フェニルエチニルフルオレン20.0g及び1,4-ジオキサン200gを仕込み、50℃にて溶解させた。次いで、オクタカルボニル二コバルト1.28gを添加し、110℃に加熱して12時間反応させた。反応終了後、室温に冷却し、600gのメタノール及び水60.0gを加えて沈殿物を得た。得られた沈殿物をろ紙で回収し、多量のメタノールで洗浄して乾燥して中間体を得た。
[Synthesis Example 12] (Synthesis of compound (a-6))
A reaction vessel was charged with 20.0 g of 2-phenylethynylfluorene and 200 g of 1,4-dioxane under a nitrogen atmosphere, and dissolved at 50°C. Next, 1.28 g of octacarbonyl dicobalt was added, heated to 110° C., and reacted for 12 hours. After the reaction was completed, the mixture was cooled to room temperature, and 600 g of methanol and 60.0 g of water were added to obtain a precipitate. The resulting precipitate was collected using filter paper, washed with a large amount of methanol, and dried to obtain an intermediate.
 反応容器に、窒素雰囲気下、乾燥により得られた上記中間体15.0g及びジクロロメタン760gを仕込み、室温にて溶解させた後、0℃に冷却した。次いで、無水塩化鉄(III)60.9gをニトロメタン380gに溶解させた溶液を滴下した。0℃で2時間反応させた後、20℃に加温してさらに2時間反応させた。反応終了後、1,140gのメタノールを加えて沈殿物を得た。得られた沈殿物をろ紙で回収し、多量のメタノール、テトラヒドロフランで洗浄、乾燥して化合物(a-6)を得た。 A reaction vessel was charged with 15.0 g of the above intermediate obtained by drying under a nitrogen atmosphere and 760 g of dichloromethane, dissolved at room temperature, and then cooled to 0°C. Then, a solution of 60.9 g of anhydrous iron (III) chloride dissolved in 380 g of nitromethane was added dropwise. After reacting at 0°C for 2 hours, the mixture was heated to 20°C and further reacted for 2 hours. After the reaction was completed, 1,140 g of methanol was added to obtain a precipitate. The resulting precipitate was collected using filter paper, washed with a large amount of methanol and tetrahydrofuran, and dried to obtain compound (a-6).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[合成例13](化合物(A-7)の合成)
 化合物(a-1)3.0gを化合物(a-6)14.4g、化合物(a-2)5.9gを化合物(a-2)17.8g、トルエン60.0gをトルエン287.8gに変更した以外は、合成例3と同様にして下記化合物(A-7)を得た。
[Synthesis Example 13] (Synthesis of compound (A-7))
3.0 g of compound (a-1) to 14.4 g of compound (a-6), 5.9 g of compound (a-2) to 17.8 g of compound (a-2), and 60.0 g of toluene to 287.8 g of toluene. The following compound (A-7) was obtained in the same manner as Synthesis Example 3 except for the following changes.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[合成例14](化合物(a-7)の合成)
 反応容器に、フルオレン10.0g、9-フルオレノン7.6g、トリフルオロメタンスルホン酸18.1g及びニトロベンゼン70.4gを加えて120℃で15時間反応させた。反応液を30℃に冷却した後、200.0gのメタノール/水(80/20(質量比))混合溶媒中に投入し、沈殿物をろ紙で回収し、乾燥して下記(a-7)で表される繰り返し単位を有する化合物(a-7)を得た。化合物(a-7)のMwは2,500であった。
[Synthesis Example 14] (Synthesis of compound (a-7))
10.0 g of fluorene, 7.6 g of 9-fluorenone, 18.1 g of trifluoromethanesulfonic acid, and 70.4 g of nitrobenzene were added to the reaction vessel and reacted at 120° C. for 15 hours. After cooling the reaction solution to 30°C, it was poured into 200.0 g of methanol/water (80/20 (mass ratio)) mixed solvent, and the precipitate was collected with filter paper and dried to form the following (a-7). A compound (a-7) having a repeating unit represented by was obtained. The Mw of compound (a-7) was 2,500.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
[合成例15](化合物(A-8)の合成)
 化合物(a-1)3.0gを化合物(a-7)6.0g、トルエン60.0gをトルエン120.0gに変更した以外は、合成例3と同様にして下記(A-8)で表される繰り返し単位を有する化合物(A-8)を得た。化合物(A-8)のMwは4,100であった。
[Synthesis Example 15] (Synthesis of compound (A-8))
The following procedure (A-8) was carried out in the same manner as in Synthesis Example 3, except that 3.0 g of compound (a-1) was changed to 6.0 g of compound (a-7) and 60.0 g of toluene was changed to 120.0 g of toluene. A compound (A-8) having the repeating unit was obtained. Mw of compound (A-8) was 4,100.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
[合成例16](化合物(A-9)の合成)
 化合物(a-2)5.9gを化合物(a-2)8.6gに変更した以外は、合成例3と同様にして下記(A-9)で表される繰り返し単位を有する化合物(A-9)を得た。下記式中、繰り返し単位に添えられている数字は各繰り返し単位のモル比を表す。化合物(A-9)のMwは4,100であった。
[Synthesis Example 16] (Synthesis of compound (A-9))
A compound (A-9) having a repeating unit represented by the following (A-9) was prepared in the same manner as in Synthesis Example 3, except that 5.9 g of compound (a-2) was changed to 8.6 g of compound (a-2). 9) was obtained. In the formula below, the numbers appended to repeating units represent the molar ratio of each repeating unit. The Mw of compound (A-9) was 4,100.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
[合成例17](重合体(a-8)の合成)
 反応容器に、窒素雰囲気下、1-ヒドロキシピレン20.0g、2-フルオレンカルボキシアルデヒド19.8g、および1-ブタノール90.0gを仕込み、80℃に加熱して溶解させた。p-トルエンスルホン酸一水和物4.3gの1-ブタノール(10.0g)溶液を反応容器に添加した後、115℃に加熱して15時間反応させた。反応終了後、反応溶液を分液ロートに移し、メチルイソブチルケトン200gと水400gを加えて有機相を洗浄した。水相を分離した後,得られた有機相をエバポレーターで濃縮し,残渣をメタノール500g中に滴下させて沈殿物を得た。沈殿物を吸引濾過により回収し、メタノール100gで数回洗浄した。その後、真空乾燥機を用いて60℃で12時間乾燥することにより、下記(a-8)で表される繰り返し単位を有する化合物(a-8)を得た。化合物(a-8)のMwは2,300であった。
[Synthesis Example 17] (Synthesis of polymer (a-8))
A reaction vessel was charged with 20.0 g of 1-hydroxypyrene, 19.8 g of 2-fluorenecarboxaldehyde, and 90.0 g of 1-butanol under a nitrogen atmosphere, and the mixture was heated to 80° C. to dissolve them. A solution of 4.3 g of p-toluenesulfonic acid monohydrate in 1-butanol (10.0 g) was added to the reaction vessel, and the mixture was heated to 115° C. and reacted for 15 hours. After the reaction was completed, the reaction solution was transferred to a separating funnel, and 200 g of methyl isobutyl ketone and 400 g of water were added to wash the organic phase. After separating the aqueous phase, the obtained organic phase was concentrated using an evaporator, and the residue was dropped into 500 g of methanol to obtain a precipitate. The precipitate was collected by suction filtration and washed several times with 100 g of methanol. Thereafter, the compound (a-8) having a repeating unit represented by (a-8) below was obtained by drying at 60° C. for 12 hours using a vacuum dryer. The Mw of compound (a-8) was 2,300.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
[合成例18](化合物(a-9)の合成)
 反応容器に、窒素雰囲気下、化合物(a-8)10.0g、メチルイソブチルケトン100.0gテトラヒドロフラン66.0g、1-ピレンカルボキシアルデヒド6.4g、テトラブチルアンモニウムブロミド2.5gを加えて数分間攪拌させた。次いでテトラメチルアンモニウムヒドロキシド(25%水溶液)10.2gを室温でゆっくりと滴下した。滴下終了後に室温でさらに12時間反応させた。反応終了後、反応溶液を分液ロートに移し、メチルイソブチルケトン100gと5%シュウ酸水溶液200gを加えて有機相を数回洗浄した。水相を分離した後,得られた有機相をエバポレーターで濃縮し,残渣をメタノール300g中に滴下させて沈殿物を得た。沈殿物を吸引濾過により回収し、メタノール100gで数回洗浄した。その後、真空乾燥機を用いて60℃で12時間乾燥することにより、下記(a-9)で表される繰り返し単位を有する化合物(a-9)を得た。
[Synthesis Example 18] (Synthesis of compound (a-9))
10.0 g of compound (a-8), 100.0 g of methyl isobutyl ketone, 66.0 g of tetrahydrofuran, 6.4 g of 1-pyrenecarboxaldehyde, and 2.5 g of tetrabutylammonium bromide were added to a reaction vessel under a nitrogen atmosphere for several minutes. Allowed to stir. Then, 10.2 g of tetramethylammonium hydroxide (25% aqueous solution) was slowly added dropwise at room temperature. After the dropwise addition was completed, the reaction was continued at room temperature for an additional 12 hours. After the reaction was completed, the reaction solution was transferred to a separating funnel, and 100 g of methyl isobutyl ketone and 200 g of a 5% aqueous oxalic acid solution were added to wash the organic phase several times. After separating the aqueous phase, the obtained organic phase was concentrated using an evaporator, and the residue was dropped into 300 g of methanol to obtain a precipitate. The precipitate was collected by suction filtration and washed several times with 100 g of methanol. Thereafter, the compound (a-9) having a repeating unit represented by (a-9) below was obtained by drying at 60° C. for 12 hours using a vacuum dryer.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
[合成例19](化合物(A-10)の合成)
 反応容器に、窒素雰囲気下、化合物(a-9)5.0g、パラジウム-活性炭素(パラジウム10%)0.9g、メタノール100.0gを加えて数分間攪拌させた。次いで、反応容器内を水素ガスで置換して、50℃で10時間反応させた。反応終了後、反応容器内を窒素ガスで置換してテトラヒドロフラン50.0gを加え、セライトろ過によりパラジウムを除去した。得られたろ液を分液ロートに移し、メチルイソブチルケトン100gと水200gを加えて有機相を洗浄した。水相を分離した後,得られた有機相をエバポレーターで濃縮し,残渣をメタノール300g中に滴下させて沈殿物を得た。沈殿物を吸引濾過により回収し、メタノール100gで数回洗浄した。その後、真空乾燥機を用いて60℃で12時間乾燥することにより、下記(A-10)で表される繰り返し単位を有する化合物(A-10)を得た。化合物(A-10)のMwは3,600であった。
[Synthesis Example 19] (Synthesis of compound (A-10))
5.0 g of compound (a-9), 0.9 g of palladium-activated carbon (10% palladium), and 100.0 g of methanol were added to a reaction vessel under a nitrogen atmosphere, and the mixture was stirred for several minutes. Next, the inside of the reaction vessel was replaced with hydrogen gas, and the reaction was carried out at 50° C. for 10 hours. After the reaction was completed, the inside of the reaction vessel was replaced with nitrogen gas, 50.0 g of tetrahydrofuran was added, and palladium was removed by filtration through Celite. The obtained filtrate was transferred to a separating funnel, and 100 g of methyl isobutyl ketone and 200 g of water were added to wash the organic phase. After separating the aqueous phase, the obtained organic phase was concentrated using an evaporator, and the residue was dropped into 300 g of methanol to obtain a precipitate. The precipitate was collected by suction filtration and washed several times with 100 g of methanol. Thereafter, it was dried at 60° C. for 12 hours using a vacuum dryer to obtain a compound (A-10) having a repeating unit represented by (A-10) below. The Mw of compound (A-10) was 3,600.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
[比較合成例1](化合物(x-1)の合成)
 反応容器に、窒素雰囲気下、9,9-ビス(4-ヒドロキシフェニル)フルオレン100.0g、プロピレングリコールモノメチルエーテルアセテート300.0g及びパラホルムアルデヒド10.0gを仕込み、p-トルエンスルホン酸一水和物1.0gを添加し、100℃で16時間反応させた。その後、重合反応液を500.0gのメタノール/水(70/30(質量比))混合溶媒中に投入し、沈殿物をろ紙で回収し、乾燥して下記(x-1)で表される繰り返し単位を有する化合物(x-1)を得た。化合物(x-1)のMwは5,200であった。
[Comparative Synthesis Example 1] (Synthesis of compound (x-1))
A reaction vessel was charged with 100.0 g of 9,9-bis(4-hydroxyphenyl)fluorene, 300.0 g of propylene glycol monomethyl ether acetate, and 10.0 g of paraformaldehyde under a nitrogen atmosphere, and p-toluenesulfonic acid monohydrate was added. 1.0 g was added and reacted at 100° C. for 16 hours. After that, the polymerization reaction solution was poured into 500.0 g of methanol/water (70/30 (mass ratio)) mixed solvent, and the precipitate was collected with filter paper and dried to give the following (x-1): A compound (x-1) having repeating units was obtained. Mw of compound (x-1) was 5,200.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
<組成物の調製>
 組成物の調製に用いた[A]化合物、[B]溶媒、[C]酸発生剤及び[D]架橋剤について以下に示す。
<Preparation of composition>
The [A] compound, [B] solvent, [C] acid generator, and [D] crosslinking agent used in the preparation of the composition are shown below.
[[A]化合物]
 実施例:上記合成した化合物(A-1)~(A-10)
 比較例:上記合成した化合物(x-1)
[[A] Compound]
Example: Compounds (A-1) to (A-10) synthesized above
Comparative example: Compound (x-1) synthesized above
[[B]溶媒]
 B-1:酢酸プロピレングリコールモノメチルエーテル
[[B] Solvent]
B-1: Propylene glycol monomethyl ether acetate
[[C]酸発生剤]
 C-1:ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート(下記式(C-1)で表される化合物)
[[C] Acid generator]
C-1: Bis(4-t-butylphenyl)iodonium nonafluoro-n-butanesulfonate (compound represented by the following formula (C-1))
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
[[D]架橋剤]
 D-1:下記式(D-1)で表される化合物
[[D] Crosslinking agent]
D-1: Compound represented by the following formula (D-1)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 D-2:下記式(D-2)で表される化合物(式中、Meはメチル基を表す。) D-2: Compound represented by the following formula (D-2) (wherein, Me represents a methyl group)
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
[実施例1]
 [A]化合物としての(A-1)10質量部を[B]溶媒としての(B-1)90質量部に溶解した。得られた溶液を孔径0.45μmのポリテトラフルオロエチレン(PTFE)メンブランフィルターでろ過して、組成物(J-1)を調製した。
[Example 1]
[A] 10 parts by mass of (A-1) as a compound was dissolved in 90 parts by mass of (B-1) as a [B] solvent. The resulting solution was filtered through a polytetrafluoroethylene (PTFE) membrane filter with a pore size of 0.45 μm to prepare a composition (J-1).
[実施例2~15及び比較例1]
 下記表1に示す種類及び含有量の各成分を使用したこと以外は、実施例1と同様にして組成物(J-2)~(J-15)及び(CJ-1)を調製した。表1中の「[A]化合物」、「[C]酸発生剤」及び「[D]架橋剤」の列における「-」は、該当する成分を使用しなかったことを示す。
[Examples 2 to 15 and Comparative Example 1]
Compositions (J-2) to (J-15) and (CJ-1) were prepared in the same manner as in Example 1, except that the types and contents of each component shown in Table 1 below were used. In Table 1, "-" in the columns of "[A] Compound,""[C] Acid Generator," and "[D] Crosslinking Agent" indicates that the corresponding component was not used.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
<評価>
 上記得られた組成物を用い、エッチング耐性、溶媒耐性及び極性溶媒への溶解性について下記方法により評価を行った。評価結果を下記表2に合わせて示す。
<Evaluation>
Using the composition obtained above, the etching resistance, solvent resistance, and solubility in polar solvents were evaluated by the following methods. The evaluation results are also shown in Table 2 below.
[エッチング耐性]
 上記調製した組成物を、シリコンウエハ(基板)上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を用いて回転塗工法により塗工した。次に、大気雰囲気下にて350℃で60秒間加熱した後、23℃で60秒間冷却することにより、平均厚み200nmの膜を形成し、基板上にレジスト下層膜が形成された膜付き基板を得た。上記得られた膜付き基板における膜を、エッチング装置(東京エレクトロン(株)の「TACTRAS」)を用いて、CF/Ar=110/440sccm、PRESS.=30MT、HF RF(プラズマ生成用高周波電力)=500W、LF RF(バイアス用高周波電力)=3000W、DCS=-150V、RDC(ガスセンタ流量比)=50%、30秒の条件にて処理し、処理前後の膜の平均厚みからエッチング速度(nm/分)を算出した。次いで、比較例1のエッチング速度を基準として比較例1に対する比率を算出し、この比率をエッチング耐性の尺度とした。エッチング耐性は、上記比率が0.90以下の場合は「A」(極めて良好)、0.90を超え0.92未満の場合は「B」(良好)と、0.92以上の場合は「C」(不良)と評価した。なお、表2中の「-」は、エッチング耐性の評価基準であることを示す。
[Etching resistance]
The composition prepared above was applied onto a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, a film with an average thickness of 200 nm was formed by heating at 350°C for 60 seconds in an air atmosphere and cooling at 23°C for 60 seconds, and a film-coated substrate with a resist underlayer film formed on the substrate was formed. Obtained. The film on the film-coated substrate obtained above was etched using an etching apparatus ("TACTRAS" manufactured by Tokyo Electron Ltd.) at CF 4 /Ar=110/440 sccm, PRESS. = 30MT, HF RF (high frequency power for plasma generation) = 500W, LF RF (high frequency power for bias) = 3000W, DCS = -150V, RDC (gas center flow rate ratio) = 50%, processed for 30 seconds, The etching rate (nm/min) was calculated from the average thickness of the film before and after the treatment. Next, the ratio to Comparative Example 1 was calculated based on the etching rate of Comparative Example 1, and this ratio was used as a measure of etching resistance. Etching resistance is rated "A" (very good) if the above ratio is 0.90 or less, "B" (good) if it is more than 0.90 and less than 0.92, and "B" (good) if it is 0.92 or more. It was evaluated as "C" (poor). Note that "-" in Table 2 indicates that it is an evaluation criterion for etching resistance.
[溶媒耐性]
 上記調製した組成物を、シリコンウエハ(基板)上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を用いて回転塗工法により塗工した。次に、大気雰囲気下にて350℃で60秒間加熱した後、23℃で60秒間冷却することにより、平均厚み200nmの膜を形成し、基板上にレジスト下層膜が形成された膜付き基板を得た。上記得られた膜付き基板における膜にシクロヘキサノンを吐出して膜をシクロヘキサノンで覆った後、30秒間静置し、この基板を1,500rpm及び30秒間の条件で回転させ、大気雰囲気下にて100℃で60秒間加熱した後、23℃で60秒間冷却することにより、シクロヘキサノン処理膜を得た。上記得られたシクロヘキサノン処理膜の膜厚を測定し、シクロヘキサノン処理前後の膜厚から残膜率(%)を算出した。この残膜率を溶媒耐性の尺度とした。
   R=(d2/d1)×100
 ここで、上記式中、Rは、残膜率(%)であり、d1は、シクロヘキサノン処理前の膜厚(nm)であり、d2は、シクロヘキサノン処理後の膜厚(nm)である。溶媒耐性は、上記残膜率が99.5%以上の場合は「A」(極めて良好)と、99.0%以上99.5%未満の場合は「B」(良好)と評価した。
[Solvent resistance]
The composition prepared above was applied onto a silicon wafer (substrate) by a spin coating method using a spin coater ("CLEAN TRACK ACT12" manufactured by Tokyo Electron Ltd.). Next, a film with an average thickness of 200 nm was formed by heating at 350°C for 60 seconds in an air atmosphere and cooling at 23°C for 60 seconds, and a film-coated substrate with a resist underlayer film formed on the substrate was formed. Obtained. After discharging cyclohexanone onto the film on the film-coated substrate obtained above to cover the film with cyclohexanone, the film was left to stand still for 30 seconds, and the substrate was rotated at 1,500 rpm for 30 seconds, and then rotated at 100 rpm under atmospheric conditions. A cyclohexanone-treated film was obtained by heating at .degree. C. for 60 seconds and then cooling at 23.degree. C. for 60 seconds. The film thickness of the cyclohexanone-treated film obtained above was measured, and the remaining film rate (%) was calculated from the film thickness before and after the cyclohexanone treatment. This residual film rate was taken as a measure of solvent resistance.
R=(d2/d1)×100
Here, in the above formula, R is the remaining film rate (%), d1 is the film thickness (nm) before cyclohexanone treatment, and d2 is the film thickness (nm) after cyclohexanone treatment. Solvent resistance was evaluated as "A" (very good) when the residual film rate was 99.5% or more, and as "B" (good) when it was 99.0% or more and less than 99.5%.
[極性溶媒への溶解性]
 上記調製したレジスト下層膜形成用組成物5.0gに1-メトキシ-2-プロパノール3.0gを加えて5分間攪拌した後、10分間静置した。静置後に目視にて不溶物が生じなかった場合は「A」(良好)と評価し、静置後に目視にて不溶物が生じた場合は「B」(不良)と評価した。
[Solubility in polar solvents]
3.0 g of 1-methoxy-2-propanol was added to 5.0 g of the composition for forming a resist underlayer film prepared above, stirred for 5 minutes, and then allowed to stand for 10 minutes. When no insoluble matter was visually observed after standing, it was evaluated as "A" (good), and when insoluble matter was visually observed after standing, it was evaluated as "B" (poor).
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 表2の結果から分かるように、実施例の組成物から形成されたレジスト下層膜は、エッチング耐性に優れていた。 As can be seen from the results in Table 2, the resist underlayer film formed from the composition of the example had excellent etching resistance.
 本発明の組成物は、極性溶媒への溶解性が良好であり、エッチング耐性に優れるレジスト下層膜を形成することができる。本発明の化合物は、当該組成物に好適である。本発明の半導体基板の製造方法によれば、良好にパターニングされた基板を得ることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 The composition of the present invention has good solubility in polar solvents and can form a resist underlayer film with excellent etching resistance. Compounds of the invention are suitable for such compositions. According to the method for manufacturing a semiconductor substrate of the present invention, a substrate that is well patterned can be obtained. Therefore, these can be suitably used in the production of semiconductor devices, which are expected to be further miniaturized in the future.

Claims (29)

  1.  下記式(1)で表される部分構造を有する化合物と、
     溶媒と
     を含有し、
     上記化合物の分子量が600以上である、組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     Arは、置換又は非置換の環員数5~30の1価の芳香族基である。
     nは1~3の整数である。
     Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
     Xは、単結合又は2価の連結基である。
     *はそれぞれ、置換又は非置換の環員数5~60の芳香環を構成する隣接する2つの炭素原子との結合部位である。
     **は、上記化合物における上記式(1)で表される部分構造以外の部分との結合部位である。
     rは、0~4の整数である。)
    A compound having a partial structure represented by the following formula (1),
    contains a solvent and
    A composition in which the above compound has a molecular weight of 600 or more.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1),
    Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
    n is an integer from 1 to 3.
    Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
    X 1 is a single bond or a divalent linking group.
    * is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
    ** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
    r is an integer from 0 to 4. )
  2.  上記化合物は、下記式(1―1)で表される化合物である、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(1-1)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Ar10は、上記式(1-1)における隣接する2つの炭素原子とともに構成される、炭素数20~60の芳香族炭化水素環構造の一部である。
     sは1~8の整数である。)
    The composition according to claim 1, wherein the compound is a compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula (1-1),
    Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
    Ar 10 is a part of an aromatic hydrocarbon ring structure having 20 to 60 carbon atoms, which is formed together with two adjacent carbon atoms in the above formula (1-1).
    s is an integer from 1 to 8. )
  3.  上記芳香族炭化水素環構造は、トルクセン構造、トリナフチレン構造、ヘプタフェン構造、ヘプタセン構造、ピラントレン構造、オバレン構造及びヘキサベンゾコロネン構造からなる群より選ばれる少なくとも1つである、請求項2に記載の組成物。 The composition according to claim 2, wherein the aromatic hydrocarbon ring structure is at least one selected from the group consisting of a truxene structure, a trinaphthylene structure, a heptafen structure, a heptacene structure, a pyrantrene structure, an obalene structure, and a hexabenzocoronene structure. thing.
  4.  上記化合物は、下記式(1-2)で表される化合物である、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(1-2)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Arは、上記式(1-2)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
     Yは、置換又は非置換の環員数5~60の芳香環を含む(m1+m2)価の基である。
     Rは、環員数5~40の芳香環を含む1価の基である。
     m1は1~10の整数である。m1が2以上である場合、複数のAr、Ar、Ar及びnは、互いに同一又は異なる。
     m2は0~10の整数である。m2が2以上である場合、複数のRは、互いに同一又は異なる。)
    The composition according to claim 1, wherein the compound is a compound represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula (1-2),
    Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
    Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1-2).
    Y is a (m1+m2)-valent group containing a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
    R 3 is a monovalent group containing an aromatic ring having 5 to 40 ring members.
    m1 is an integer from 1 to 10. When m1 is 2 or more, the plurality of Ar 1 , Ar 2 , Ar 3 and n are the same or different from each other.
    m2 is an integer from 0 to 10. When m2 is 2 or more, a plurality of R3 's are the same or different from each other. )
  5.  上記化合物は、下記式(1-3)又は(1-4)で表される繰り返し単位を有する重合体である、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(1-3)及び(1-4)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
     Ar及びArは、それぞれ独立して、環員数5~60の芳香環を含む2価の基又は単結合である。)
    The composition according to claim 1, wherein the compound is a polymer having a repeating unit represented by the following formula (1-3) or (1-4).
    Figure JPOXMLDOC01-appb-C000004
    (In the above formulas (1-3) and (1-4),
    Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
    Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
    Ar 4 and Ar 5 are each independently a divalent group containing an aromatic ring having 5 to 60 ring members or a single bond. )
  6.  上記Arの1価の芳香族基に対応する芳香環構造及びArを含む芳香環構造が、それぞれ独立して、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項1~5に記載の組成物。 The aromatic ring structure corresponding to the monovalent aromatic group of Ar 1 and the aromatic ring structure containing Ar 2 are each independently a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring. 6. The composition according to claim 1, wherein the composition is at least one aromatic hydrocarbon ring selected from the group consisting of a ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring.
  7.  上記nが1である、請求項1~5に記載の組成物。 The composition according to claims 1 to 5, wherein n is 1.
  8.  上記Arの1価の芳香族基に対応する芳香環構造が、ナフタレン環、アントラセン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項1~5に記載の組成物。 The aromatic ring structure corresponding to the monovalent aromatic group of Ar 1 is selected from the group consisting of a naphthalene ring, an anthracene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. Composition according to claims 1 to 5, which is at least one aromatic hydrocarbon ring.
  9.  上記Arを含む芳香環構造が、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項4又は5に記載の組成物。 The aromatic ring structure containing Ar 3 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. 6. The composition according to claim 4 or 5, wherein the composition is at least one aromatic hydrocarbon ring.
  10.  レジスト下層膜形成用である、請求項1~5に記載の組成物。 The composition according to claims 1 to 5, which is used for forming a resist underlayer film.
  11.  下記式(1)で表される部分構造を有し、
     分子量が600以上である、化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式(1)中、
     Arは、置換又は非置換の環員数5~30の1価の芳香族基である。
     nは1~3の整数である。
     Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
     Xは、単結合又は2価の連結基である。
     *はそれぞれ、置換又は非置換の環員数5~60の芳香環を構成する隣接する2つの炭素原子との結合部位である。
     **は、上記化合物における上記式(1)で表される部分構造以外の部分との結合部位である。
     rは、0~4の整数である。)
    It has a partial structure represented by the following formula (1),
    A compound having a molecular weight of 600 or more.
    Figure JPOXMLDOC01-appb-C000005
    (In formula (1),
    Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
    n is an integer from 1 to 3.
    Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
    X 1 is a single bond or a divalent linking group.
    * is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
    ** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
    r is an integer from 0 to 4. )
  12.  上記化合物は、下記式(1―1)で表される化合物である、請求項11に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    (上記式(1-1)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Ar10は、上記式(1-1)における隣接する2つの炭素原子とともに構成される、炭素数20~60の芳香族炭化水素環構造の一部である。
     sは1~8の整数である。)
    The compound according to claim 11, wherein the compound is a compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000006
    (In the above formula (1-1),
    Ar 1 , Ar 2 and n have the same meanings as in formula (1) above.
    Ar 10 is part of an aromatic hydrocarbon ring structure having 20 to 60 carbon atoms, which is formed together with two adjacent carbon atoms in the above formula (1-1).
    s is an integer from 1 to 8. )
  13.  上記芳香族炭化水素環構造は、トルクセン構造、トリナフチレン構造、ヘプタフェン構造、ヘプタセン構造、ピラントレン構造、オバレン構造及びヘキサベンゾコロネン構造からなる群より選ばれる少なくとも1つである、請求項12に記載の化合物。 The compound according to claim 12, wherein the aromatic hydrocarbon ring structure is at least one selected from the group consisting of a truxene structure, a trinaphthylene structure, a heptafen structure, a heptacene structure, a pyrantrene structure, an obalene structure, and a hexabenzocoronene structure. .
  14.  上記化合物は、下記式(1-2)で表される化合物である、請求項11に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    (上記式(1-2)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Arは、上記式(1-2)における隣接する2つの炭素原子とともに縮合環構造を形成する置換又は非置換の環員数5~60の芳香環である。
     Yは、置換又は非置換の環員数5~60の芳香環を含む(m1+m2)価の基である。
     Rは、環員数5~40の芳香環を含む1価の基である。
     m1は1~10の整数である。m1が2以上である場合、複数のAr、Ar、Ar及びnは、互いに同一又は異なる。
     m2は0~10の整数である。m2が2以上である場合、複数のRは、互いに同一又は異なる。)
    The compound according to claim 11, wherein the compound is a compound represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000007
    (In the above formula (1-2),
    Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
    Ar 3 is a substituted or unsubstituted aromatic ring having 5 to 60 ring members that forms a condensed ring structure together with two adjacent carbon atoms in the above formula (1-2).
    Y is a (m1+m2)-valent group containing a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
    R 3 is a monovalent group containing an aromatic ring having 5 to 40 ring members.
    m1 is an integer from 1 to 10. When m1 is 2 or more, the plurality of Ar 1 , Ar 2 , Ar 3 and n are the same or different from each other.
    m2 is an integer from 0 to 10. When m2 is 2 or more, a plurality of R3 's are the same or different from each other. )
  15.  上記化合物は、下記式(1-3)又は(1-4)で表される繰り返し単位を有する重合体である、請求項11に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    (上記式(1-3)及び(1-4)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
     Ar及びArは、それぞれ独立して、環員数5~60の芳香環を含む2価の基又は単結合である。)
    The compound according to claim 11, wherein the compound is a polymer having a repeating unit represented by the following formula (1-3) or (1-4).
    Figure JPOXMLDOC01-appb-C000008
    (In the above formulas (1-3) and (1-4),
    Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
    Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
    Ar 4 and Ar 5 are each independently a divalent group containing an aromatic ring having 5 to 60 ring members or a single bond. )
  16.  上記Arの1価の芳香族基に対応する芳香環構造及びArを含む芳香環構造が、それぞれ独立して、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項11~15に記載の化合物。 The aromatic ring structure corresponding to the monovalent aromatic group of Ar 1 and the aromatic ring structure containing Ar 2 are each independently a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring. The compound according to claims 11 to 15, which is at least one aromatic hydrocarbon ring selected from the group consisting of a ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring.
  17.  上記nが1である、請求項11~15に記載の化合物。 The compound according to claims 11 to 15, wherein n is 1.
  18.  上記Arの1価の芳香族基に対応する芳香環構造が、ナフタレン環、アントラセン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項11~15に記載の化合物。 The aromatic ring structure corresponding to the monovalent aromatic group of Ar 1 is selected from the group consisting of a naphthalene ring, an anthracene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. Compounds according to claims 11 to 15, which are at least one aromatic hydrocarbon ring.
  19.  上記Arを含む芳香環構造が、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項14又は15に記載の化合物。 The aromatic ring structure containing Ar 3 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. 16. A compound according to claim 14 or 15, which is at least one aromatic hydrocarbon ring.
  20.  基板に直接又は間接にレジスト下層膜形成用組成物を塗工する工程と、
     上記塗工工程により形成されたレジスト下層膜に直接又は間接にレジストパターンを形成する工程と、
     上記レジストパターンをマスクとしたエッチングを行う工程と
     を含み、
     上記レジスト下層膜形成用組成物が、
     下記式(1)で表される部分構造を有する化合物と、
     溶媒と
     を含有し、
     上記化合物の分子量が600以上である、半導体基板の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (式(1)中、
     Arは、置換又は非置換の環員数5~30の1価の芳香族基である。
     nは1~3の整数である。
     Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
     Xは、単結合又は2価の連結基である。
     *はそれぞれ、置換又は非置換の環員数5~60の芳香環を構成する隣接する2つの炭素原子との結合部位である。
     **は、上記化合物における上記式(1)で表される部分構造以外の部分との結合部位である。
     rは、0~4の整数である。)
    a step of directly or indirectly applying a resist underlayer film forming composition to the substrate;
    forming a resist pattern directly or indirectly on the resist underlayer film formed by the coating process;
    and a step of performing etching using the resist pattern as a mask,
    The resist underlayer film forming composition described above is
    A compound having a partial structure represented by the following formula (1),
    contains a solvent and
    A method for producing a semiconductor substrate, wherein the compound has a molecular weight of 600 or more.
    Figure JPOXMLDOC01-appb-C000009
    (In formula (1),
    Ar 1 is a substituted or unsubstituted monovalent aromatic group having 5 to 30 ring members.
    n is an integer from 1 to 3.
    Ar 2 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
    X 1 is a single bond or a divalent linking group.
    * is a bonding site with two adjacent carbon atoms constituting a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
    ** is a bonding site with a portion other than the partial structure represented by the above formula (1) in the above compound.
    r is an integer from 0 to 4. )
  21.  上記化合物は、下記式(1―1)で表される化合物である、請求項20に記載の半導体基板の製造方法。
    Figure JPOXMLDOC01-appb-C000010
    (上記式(1-1)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Ar10は、上記式(1-1)における隣接する2つの炭素原子とともに構成される、炭素数20~60の芳香族炭化水素環構造の一部である。
     sは1~8の整数である。)
    The method for manufacturing a semiconductor substrate according to claim 20, wherein the compound is a compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000010
    (In the above formula (1-1),
    Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
    Ar 10 is a part of an aromatic hydrocarbon ring structure having 20 to 60 carbon atoms, which is formed together with two adjacent carbon atoms in the above formula (1-1).
    s is an integer from 1 to 8. )
  22.  上記芳香族炭化水素環構造は、トルクセン構造、トリナフチレン構造、ヘプタフェン構造、ヘプタセン構造、ピラントレン構造、オバレン構造及びヘキサベンゾコロネン構造からなる群より選ばれる少なくとも1つである、請求項21に記載の半導体基板の製造方法。 The semiconductor according to claim 21, wherein the aromatic hydrocarbon ring structure is at least one selected from the group consisting of a truxene structure, a trinaphthylene structure, a heptafen structure, a heptacene structure, a pyrantrene structure, an obalene structure, and a hexabenzocoronene structure. Substrate manufacturing method.
  23.  上記化合物は、下記式(1-2)で表される化合物である、請求項20に記載の半導体基板の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    (上記式(1-2)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Arは、上記式(1-2)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
     Yは、置換又は非置換の環員数5~60の芳香環を含む(m1+m2)価の基である。
     Rは、環員数5~40の芳香環を含む1価の基である。
     m1は1~10の整数である。m1が2以上である場合、複数のAr、Ar、Ar及びnは、互いに同一又は異なる。
     m2は0~10の整数である。m2が2以上である場合、複数のRは、互いに同一又は異なる。)
    The method for manufacturing a semiconductor substrate according to claim 20, wherein the compound is a compound represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000011
    (In the above formula (1-2),
    Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
    Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1-2).
    Y is a (m1+m2)-valent group containing a substituted or unsubstituted aromatic ring having 5 to 60 ring members.
    R 3 is a monovalent group containing an aromatic ring having 5 to 40 ring members.
    m1 is an integer from 1 to 10. When m1 is 2 or more, the plurality of Ar 1 , Ar 2 , Ar 3 and n are the same or different from each other.
    m2 is an integer from 0 to 10. When m2 is 2 or more, a plurality of R3 's are the same or different from each other. )
  24.  上記化合物は、下記式(1-3)又は(1-4)で表される繰り返し単位を有する重合体である、請求項20に記載の半導体基板の製造方法。
    Figure JPOXMLDOC01-appb-C000012
    (上記式(1-3)及び(1-4)中、
     Ar、Ar及びnは、上記式(1)と同義である。
     Arは、上記式(1)における隣接する2つの炭素原子とともに構成される、置換又は非置換の環員数5~60の芳香環構造の一部である。
     Ar及びArは、それぞれ独立して、環員数5~60の芳香環を含む2価の基又は単結合である。)
    The method for manufacturing a semiconductor substrate according to claim 20, wherein the compound is a polymer having a repeating unit represented by the following formula (1-3) or (1-4).
    Figure JPOXMLDOC01-appb-C000012
    (In the above formulas (1-3) and (1-4),
    Ar 1 , Ar 2 and n have the same meanings as in the above formula (1).
    Ar 3 is part of a substituted or unsubstituted aromatic ring structure having 5 to 60 ring members, which is formed together with two adjacent carbon atoms in the above formula (1).
    Ar 4 and Ar 5 are each independently a divalent group containing an aromatic ring having 5 to 60 ring members or a single bond. )
  25.  上記Arの1価の芳香族基に対応する芳香環構造及びArを含む芳香環構造が、それぞれ独立して、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項20~24に記載の半導体基板の製造方法。 The aromatic ring structure corresponding to the monovalent aromatic group of Ar 1 and the aromatic ring structure containing Ar 2 are each independently a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring. 25. The method for manufacturing a semiconductor substrate according to claim 20, wherein the aromatic hydrocarbon ring is at least one aromatic hydrocarbon ring selected from the group consisting of a ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring.
  26.  上記nが1である、請求項20~24に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to claim 20, wherein n is 1.
  27.  上記Arの1価の芳香族基に対応する芳香環構造が、ナフタレン環、アントラセン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項20~24に記載の半導体基板の製造方法。 The aromatic ring structure corresponding to the monovalent aromatic group of Ar 1 is selected from the group consisting of a naphthalene ring, an anthracene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. The method for manufacturing a semiconductor substrate according to claim 20, wherein the semiconductor substrate is at least one aromatic hydrocarbon ring.
  28.  上記Arを含む芳香環構造が、ベンゼン環、ナフタレン環、アントラセン環、フェナレン環、フェナントレン環、テトラセン環、ピレン環、フルオレン環、ペンタセン環、ペリレン環、ベンゾピレン環及びコロネン環からなる群より選ばれる少なくとも1つの芳香族炭化水素環である、請求項23又は24に記載の半導体基板の製造方法。 The aromatic ring structure containing Ar 3 is selected from the group consisting of a benzene ring, a naphthalene ring, an anthracene ring, a phenalene ring, a phenanthrene ring, a tetracene ring, a pyrene ring, a fluorene ring, a pentacene ring, a perylene ring, a benzopyrene ring, and a coronene ring. The method for manufacturing a semiconductor substrate according to claim 23 or 24, wherein the semiconductor substrate is at least one aromatic hydrocarbon ring.
  29.  上記レジストパターン形成前に、
     上記レジスト下層膜に対し直接又は間接にケイ素含有膜を形成する工程
     をさらに含む、請求項20~24に記載の半導体基板の製造方法。
    Before forming the above resist pattern,
    25. The method for manufacturing a semiconductor substrate according to claim 20, further comprising the step of forming a silicon-containing film directly or indirectly on the resist underlayer film.
PCT/JP2023/025665 2022-08-01 2023-07-12 Composition, compound, and method for manufacturing semiconductor substrate WO2024029292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022122521 2022-08-01
JP2022-122521 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024029292A1 true WO2024029292A1 (en) 2024-02-08

Family

ID=89849196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025665 WO2024029292A1 (en) 2022-08-01 2023-07-12 Composition, compound, and method for manufacturing semiconductor substrate

Country Status (2)

Country Link
TW (1) TW202406887A (en)
WO (1) WO2024029292A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143426A (en) * 2002-10-25 2004-05-20 Kumho Petrochemical Co Ltd Ladder-type blue light-emitting polymer with excellent thermal stability
JP2008076850A (en) * 2006-09-22 2008-04-03 Toshiba Corp Photosensitive composition and pattern forming method using the same
WO2018164267A1 (en) * 2017-03-10 2018-09-13 Jsr株式会社 Composition for forming resist underlayer film, resist underlayer film, method for producing same, and method for producing patterned substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143426A (en) * 2002-10-25 2004-05-20 Kumho Petrochemical Co Ltd Ladder-type blue light-emitting polymer with excellent thermal stability
JP2008076850A (en) * 2006-09-22 2008-04-03 Toshiba Corp Photosensitive composition and pattern forming method using the same
WO2018164267A1 (en) * 2017-03-10 2018-09-13 Jsr株式会社 Composition for forming resist underlayer film, resist underlayer film, method for producing same, and method for producing patterned substrate

Also Published As

Publication number Publication date
TW202406887A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP7207330B2 (en) Composition for forming resist underlayer film, resist underlayer film, method for forming same, and method for producing patterned substrate
KR102676176B1 (en) Polymer for forming resist lower layer film and method for producing the same, composition for forming resist lower layer film, resist lower layer film, and process for producing patterned substrate
JP7207321B2 (en) Composition for forming resist underlayer film, resist underlayer film and method for forming same, method for producing patterned substrate, and compound
US20240153768A1 (en) Method for manufacturing semiconductor substrate and composition
US20230341778A1 (en) Method for manufacturing semiconductor substrate and composition
TWI838580B (en) Composition, anti-corrosion agent bottom layer film, method for forming anti-corrosion agent bottom layer film, method for manufacturing patterned substrate, and compound
JPWO2019208212A1 (en) Composition for forming a resist underlayer film, a resist underlayer film and a method for forming the same, and a method for forming a pattern.
WO2023162780A1 (en) Semiconductor substrate production method and composition
WO2024029292A1 (en) Composition, compound, and method for manufacturing semiconductor substrate
WO2020171054A1 (en) Method for producing semiconductor substrate and composition for producing semiconductor substrate
WO2023112672A1 (en) Semiconductor substrate production method and composition
WO2024142925A1 (en) Semiconductor substrate production method, composition, and polymer
WO2022191037A1 (en) Method for manufacturing semiconductor substrate, composition, polymer, and method for producing polymer
JP7111115B2 (en) FILM-FORMING COMPOSITION FOR SEMICONDUCTOR LITHOGRAPHY PROCESS, SILICON-CONTAINING FILM AND RESIST PATTERN-FORMING METHOD
CN111542558B (en) Polymer, organic layer composition and method for forming pattern
WO2024085030A1 (en) Method for producing semiconductor substrate and composition
WO2024070728A1 (en) Method for producing semiconductor substrate, composition and polymer
WO2022191062A1 (en) Method for producing semiconductor substrate, composition, polymer and method for producing polymer
WO2023199851A1 (en) Semiconductor substrate manufacturing method, composition, and compound
JP2023059024A (en) Method for producing semiconductor substrate and composition
TW202012485A (en) Resist underlayer film-forming composition, resist underlayer film and formation method therefor, pattern-forming method, and compound and production method therefor
WO2022131002A1 (en) Production method for semiconductor substrate, composition, and resist underlayer film
WO2024070786A1 (en) Resist underlayer film-forming composition, and method for manufacturing semiconductor substrate
WO2024135316A1 (en) Composition, and method for producing semiconductor substrate
JP2022048532A (en) Method for producing patterned substrate, composition and polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849851

Country of ref document: EP

Kind code of ref document: A1