WO2024029115A1 - Liquid level sensor - Google Patents

Liquid level sensor Download PDF

Info

Publication number
WO2024029115A1
WO2024029115A1 PCT/JP2023/008218 JP2023008218W WO2024029115A1 WO 2024029115 A1 WO2024029115 A1 WO 2024029115A1 JP 2023008218 W JP2023008218 W JP 2023008218W WO 2024029115 A1 WO2024029115 A1 WO 2024029115A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
liquid level
level sensor
arm
base member
Prior art date
Application number
PCT/JP2023/008218
Other languages
French (fr)
Japanese (ja)
Inventor
利恵 黒澤
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2024029115A1 publication Critical patent/WO2024029115A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/32Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements
    • G01F23/38Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements using magnetically actuated indicating means

Definitions

  • the present invention relates to a liquid level sensor that measures the liquid level in a container using a float.
  • Patent Document 1 and Patent Document 2 disclose liquid level sensors that measure the liquid level in a container using a float.
  • an arm connected to the float is also displaced. Since the arm is held at its held portion by the holding portion of the holder that rotates with respect to the base member, displacement of the arm results in rotation of the holder with respect to the base member. By measuring this rotation angle, the liquid level is measured.
  • the float connected to the arm vibrates due to the vibration of the container in the usage environment, and this tendency is noticeable when this container is a gasoline tank for a motorcycle.
  • This vibration of the float is transmitted to the arm and applied as an external force of twisting or rotation to the held part held by the holding part.
  • this positional deviation may be measured as a change in the rotation angle of the holder with respect to the base member. Measurement errors in the rotation angle based on such positional deviations cause noise and offset in liquid level measurement, resulting in a decrease in measurement precision and measurement accuracy.
  • a liquid level sensor that measures the liquid level in a container using a float, which includes a base member connectable to the container, and a float. an arm connectable to the holder, a holder having a holding part for holding a held part of the arm and rotatably attached to the base member around a first axis, and a detection mechanism for detecting rotation of the holder;
  • a liquid level sensor is provided.
  • the arm has a protrusion that protrudes from the holder along the extending direction of the held part, and the base member locks the protrusion to stop rotation of the holder at a predetermined position. It has a locking part.
  • the protruding part protrudes along the extending direction of the held part, that is, there is no bending part between the protruding part and the held part, so that the rotation of the arm is caused by the holder relative to the base member.
  • the holding portion of the holder is set such that the held portion has a predetermined length along the direction in which the arm extends. Thereby, the extending direction of the held portion is set.
  • a liquid level sensor provided as another aspect (second aspect) of the present invention is a liquid level sensor that measures the liquid level in a container using a float, and includes a base member connectable to the container and a float.
  • the base includes a holder that has a holding part that holds a held part of a connectable arm and is rotatably attached to a base member around a first axis, and a detection mechanism that detects rotation of the holder.
  • the member has a locking portion for locking a protrusion that is a portion of the arm that projects from the holder to stop rotation of the holder at a predetermined position, and when the holder is at a predetermined position, the locking portion
  • the receiving surface of the holding portion is located along the extending direction of the receiving surface of the holding portion.
  • the receiving surface of the locking part (the contact surface with the protruding part when the protruding part is locked with the locking part) is aligned along the extending direction of the receiving surface of the holding part (the contact surface of the arm with the held part). Even if the held part of the arm that contacts the receiving surface of the holding part is misaligned with respect to the holding part, the protruding part that contacts the receiving surface of the locking part also remains in position relative to the holding part. A similar positional shift occurs. This makes it difficult for the detection mechanism to detect a positional shift of the held part with respect to the holding part as a change in the rotation angle of the holder with respect to the base member.
  • the above liquid level sensor can detect this misalignment.
  • the effect on rotation detection in the mechanism is suppressed.
  • a liquid level sensor provided as another aspect (third aspect) of the present invention is a liquid level sensor that measures the liquid level in a container using a float, and includes a base member connectable to the container, and a float.
  • the base member has a locking portion that locks a protruding portion of the arm that projects from the holder to stop rotation of the holder at a predetermined position
  • the holder includes a plurality of holding portions and a plurality of holding portions. The portions are provided on the holder such that the held portion intersects with the first axis and the rotation of the holder is stopped at mutually different positions.
  • the liquid level sensor disclosed in Patent Document 2 is provided with a plurality of insertion holes for inserting the tip of the arm, and by selecting these insertion holes, the measurement range of the rotation angle can be changed.
  • the fixed body corresponding to the base member is provided with a regulating part that regulates the movement of the tip of the arm inserted into the insertion hole, and the measurement range is set by this regulating part.
  • two restriction parts are provided for each insertion hole, so by changing the insertion hole into which the arm is inserted, both measurement limit values of the measurement range are changed. Ru. When both measurement limit values of the measurement range are changed in this way, it is necessary to newly set the method for calculating the rotation angle from the measurement data. This causes an increase in the calculation load in the calculation section that calculates the rotation angle.
  • the holder of the liquid level sensor according to the third aspect includes a plurality of holding parts, by selecting a holding part, the rotation stop position of the holder with respect to the base member can be moved, and the liquid level sensor disclosed in Patent Document 2 can be moved. Like position sensors, it is possible to change the measurement range.
  • selecting the holding part and moving the rotation stop position will only change the measurement limit value on one side of the measurement range, and the measurement limit value on the other side of the measurement range will change depending on which of the holding parts. It remains constant regardless of the selection.
  • the detection mechanism The method for calculating the rotation angle (the relative position of the holder with respect to the base member) from the data obtained can be made common, and the calculation load on the calculation unit that calculates the rotation angle is less likely to increase.
  • a liquid level sensor provided as another aspect (fourth aspect) of the present invention is a liquid level sensor that measures the liquid level in a container using a float, and includes a base member connectable to the container, and a float. a holder having a holding part for holding the arm and rotatably attached to the base member around a first axis; a detection mechanism for detecting rotation of the holder; The shaft body has a connecting portion that sets a relative position with respect to the arm, and is interlocked with the holder via the arm.
  • the rotation mechanism that allows the holder to rotate relative to the base member may have a shaft body along the first axis.
  • This shaft requires high machining accuracy and preferably has excellent wear resistance.
  • the shaft body is made of a separate member from other members, it is possible to manufacture the shaft body independently. At this time, if the shaft body is made of a member different from other members, for example, a metal-based material, it may be easier to improve the machining accuracy and durability of the bearing structure portion.
  • the connecting portion may have an insertion hole into which an arm extending in a direction intersecting the first axis is inserted.
  • This insertion hole may be a through hole. It may be preferable that the receiving surface of the arm in the insertion hole (through hole) is located on an extension of the receiving surface of the holding part of the holder. In this case, the shaft body and the holder can be substantially integrated through the arm.
  • the liquid level sensor according to the first aspect or the second aspect described above like the liquid level sensor according to the third aspect, has a holder including a plurality of holding parts, and each of the plurality of holding parts has a held part.
  • the holder may be provided so as to intersect with the first axis and stop rotation of the holder at mutually different positions.
  • the base member and the holder may have a stopper that stops the rotation of the holder at a predetermined position.
  • This stopper has the function of stopping the rotation of the holder in the same manner as the locking part by direct contact between the base member and the holder.
  • a specific example of the stopper is a case where one of the base member and the holder has a protrusion and the other has a recess. A protrusion provided on either one may abut on the other.
  • the liquid level sensor has the above-mentioned stopper, and that the stop position based on the stopper is different from the stop position based on the locking part.
  • the stop position based on the stopper is different from the stop position based on the locking part.
  • the stopper may stop the rotation of the holder in the direction in which the protruding part moves away from the locking part, or may stop the rotation in the direction in which the protrusion comes into contact with the locking part, It may be possible to stop the rotation of both.
  • the range in which the holder can rotate is between the stop position based on the lock part and the stop position based on the stopper, and this range is the rotation range in the detection mechanism.
  • This is the angle measurement range.
  • one measurement limit value is set by the stop position based on the locking part
  • the other measurement limit value is set by the stop position based on the stopper. Ru. Even if the holder has a plurality of holding parts, such as in the liquid level sensor according to the third aspect, so that a plurality of measurement limit values are set for one of the measurement limits, the other measurement limit is set by the stop position based on the stopper. Since the values are common, the calculation load for the rotation angle is less likely to increase.
  • the stopper may include a protrusion projecting in the radial direction of the holder and a locking part.
  • the detection mechanism includes a magnetic generating body provided on one side of the holder and the base member, and a magnetic measuring section that measures the magnetic field from the magnetic generating body provided on the other side of the holder and the base member.
  • the magnetic measurement unit has a magnetoresistive element, and the direction in which the magnetic generator and the magnetoresistive element are arranged is non-parallel to the first axis, and as a specific example, perpendicular to the direction along the first axis. In some cases, the height (thickness) of the liquid level sensor in the direction along the first axis can be reduced.
  • the above magnetic measurement section may include two full bridge circuits each having a magnetoresistive element.
  • the magnetic resistance is set so that when one midpoint output outputs a sine wave, the other midpoint output outputs a sine wave whose phase is shifted by 90 degrees from the sine wave.
  • the sensitivity axis of the effect element is set.
  • the holder may further include an auxiliary holding part for holding the arm, which is provided at a different position from the holding part.
  • an auxiliary holding part for holding the arm, which is provided at a different position from the holding part.
  • the receiving surface of the auxiliary holding part be located off the extension of the receiving surface of the holding part. If the arm has a bent part between the part held by the holding part and the part held by the auxiliary holding part, the receiving surface of the auxiliary holding part is not located on an extension of the receiving surface of the holding part. structure can be easily accommodated. In the case of this structure, even if the arm attempts to rotate (rotate) at the held portion held by the holding portion, the auxiliary holding portion suppresses the rotation, making it difficult for the arm to rotate.
  • the protruding portion of the liquid level sensor described above may be located on the side of the arm to which the float is connected across the held portion, or may be located on the opposite side thereof. In the latter case, even if the arm swings due to vibrations from the float, the movement is relaxed in the held portion held by the holder, and therefore is difficult to be transmitted to the protruding portion side. Therefore, the latter configuration is more likely to stabilize the contact between the protruding part and the locking part, and may be preferable.
  • the specific configuration of the detection mechanism is not limited.
  • One specific example includes a case in which a resistor is provided on one of the holder and the base member, and a sliding contact is provided on the other of the holder and the base member and contacts the resistor.
  • Other specific examples include a case where the holder and the base member are provided with a transmitter provided on one side, and a receiver provided on the other side of the holder and the base member to receive a signal from the transmitter, or a case where the holder and the base member are provided with a transmitter that receives a signal from the transmitter.
  • the signal in these cases may be a signal made of electromagnetic waves such as light or radio waves, or may be an acoustic signal.
  • a liquid level sensor that has a structure that is less susceptible to disturbances such as vibrations of a container.
  • FIG. 1 is an explanatory diagram (perspective view) showing a first example of a liquid level sensor according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram (perspective view) disassembled in the Z1-Z2 direction of the liquid level sensor according to the first example of the first embodiment. 2 is an explanatory diagram showing a cross section (YZ plane) taken along line A-A' in FIG. 1.
  • FIG. It is an explanatory view (perspective view) of a holder of a liquid level sensor concerning a 1st embodiment. It is an explanatory view (perspective view) of a holder of a liquid level sensor concerning a 1st embodiment.
  • FIG. 8 is an explanatory diagram showing a cross section (VZ plane) taken along line B-B' in FIG. 7.
  • FIG. 8 is an explanatory diagram showing a cross section (VW plane) taken along line CC' in FIG. 7.
  • FIG. 2 is an explanatory diagram (plan view) of the operation of the liquid level sensor according to the first example of the first embodiment.
  • FIG. 2 is an explanatory diagram (perspective view) of the operation of the liquid level sensor according to the first example of the first embodiment. It is an explanatory view (perspective view) of a locking part of a liquid level sensor concerning a 1st example of a 1st embodiment. It is an explanatory view (side view) of a locking part of a liquid level sensor concerning a 1st example of a 1st embodiment.
  • FIG. 2 is an explanatory diagram of a locking portion of a liquid level sensor having a structure according to the prior art in a normal state.
  • FIG. 2 is an explanatory diagram when a swinging phenomenon occurs in a locking portion of a liquid level sensor having a structure according to the prior art.
  • FIG. 7 is an explanatory diagram (plan view) of the operation of the liquid level sensor according to the second example of the first embodiment.
  • FIG. 7 is an explanatory diagram (plan view) of the operation of the liquid level sensor according to the third example of the first embodiment. It is a circuit diagram explaining the magnetism measurement part of the liquid level sensor concerning a 1st embodiment.
  • FIG. 3 is an explanatory diagram of data output from the magnetic measurement section of the liquid level sensor according to the first embodiment.
  • FIG. 3 is a diagram illustrating the positional relationship between a magnetic generator and a magnetic measuring section of the liquid level sensor according to the first embodiment. It is a graph showing the relationship between the angle of the magnetic field reaching the measurement circuit from the magnetic generator and the rotation angle of the holder in the liquid level sensor according to the first embodiment.
  • FIG. 6 is an explanatory diagram (plan view) of the operation of the liquid level sensor according to the first example of the second embodiment.
  • FIG. 7 is an operation explanatory diagram (plan view) of a liquid level sensor according to a second example of the second embodiment.
  • FIG. 7 is an operation explanatory diagram (plan view) of a liquid level sensor according to a third example of the second embodiment.
  • FIG. 7 is an explanatory diagram (plan view) of the operation of a liquid level sensor according to a fourth example of the second embodiment.
  • FIG. 7 is an explanatory diagram (perspective view) of the operation of a liquid level sensor according to a fourth example of the second embodiment.
  • FIG. 1 is an explanatory diagram (perspective view) showing a first example of a liquid level sensor according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram (perspective view) of the liquid level sensor according to the first example of the first embodiment, exploded in the Z1-Z2 direction.
  • FIG. 3 is an explanatory diagram showing a cross section (YZ plane) taken along line AA' in FIG.
  • the liquid level sensor 100 is for measuring the liquid level in a container using a float (not shown).
  • the liquid level sensor 100 has a base member 10 that can be connected to a container (not shown), an arm 20 that can be connected to a float, and a holding part 32 that holds a held part 222 of the arm 20.
  • the device includes a holder 30 rotatably attached around a first axis AX1, and a detection mechanism that detects rotation of the holder 30.
  • the float is displaced based on a change in the liquid level within the container, the arm 20 connected to the float is also displaced.
  • the holder 30 that holds the arm 20 rotates around the first axis AX1.
  • the liquid level is measured by setting a rotatable range by providing a starting point and an end point in the rotation range of the holder 30, and detecting the rotation angle of the holder 30 in this rotatable range with a detection mechanism.
  • the base member 10 includes a holder receiving part 12 through which the first axis AX1 passes and where the holder 30 is arranged, a box-shaped base main body part 11, and a holder receiving part 11 located on the Y1 side of the holder receiving part 12 in the Y1-Y2 direction.
  • the container connecting portion 13 is located on the Y2 side of the portion 12 in the Y1-Y2 direction and is fixed to the container.
  • the holder receiving portion 12 has a flat plate-shaped portion along the XY plane, and the holder 30 is located on the Z1 side of this portion in the Z1-Z2 direction.
  • the holder receiving portion 12 is provided with a base through hole 121 through which the shaft 40 interlocking with the holder 30 passes.
  • the box-shaped base main body part 11 is hollow inside, and a board 60 is disposed inside it, and a magnetic detection section 61 and a control device 62 for the magnetic detection section 61 are mounted on the board 60.
  • a wiring 70 having a metal wiring 71 covered with a covering part 72 is connected to the substrate 60, and measurement data detected by the magnetic detection part 61 and processed by the control device 62 is output from the wiring 70 to the outside.
  • the magnetic detection unit 61 is connected to the magnetic generating body 50 housed inside the holder 30 in a direction non-parallel to the first axis AX1, in this example, laterally (specifically, in the Z1-Z2 direction along the first axis AX1). They are arranged so as to be located on the Y1 side in the orthogonal Y1-Y2 direction. Therefore, it is possible to reduce the length (thickness) of the liquid level sensor 100 in the first axis AX1 direction. When the magnetic detection section 61 includes a magnetoresistive element, such an arrangement may be facilitated. Details of the detection method of the magnetic detection section 61 will be described later.
  • the specific structure of the container connection part 13 is not limited. It may have a hole for being screwed to the container, or it may have an adhesive surface for being adhered to the container.
  • the arm 20 is machined from a rod-shaped member with a circular cross-sectional shape, and is held by the first arm part 21 to which the float is connected and the holder 30 with the bent part 23 in between.
  • the second arm portion 22 is provided with a second arm portion 22 on which a held portion 222 is located.
  • the second arm portion 22 does not have any particular bent portion, and is a straight shaft body whose central axis AX2 extends in a fixed direction.
  • the second arm portion 22 has a protrusion 223 that protrudes from the holder 30.
  • the protruding portion 223 can be locked to the locking portion 111 provided on the base body portion 11. Since the arm 20 is held by the holder 30 in the held part 222 connected to the protrusion 223, the locking part 111 of the base member 10 prevents the rotation of the holder 30 by locking the protrusion 223. It can be stopped at a predetermined position.
  • the rotation direction of the holder 30 around the first axis AX1 in which the protruding portion 223 is brought into contact with the locking portion 111, counterclockwise in this example is referred to as the "first rotation direction”
  • This opposite rotational direction that is, the rotation in which the protrusion 223 moves away from the locking portion 111 (clockwise in this example) is referred to as a "second rotational direction.”
  • the stop position defined by the protrusion 223 protruding from the holder 30 sets a measurement limit value in the first rotation direction of the rotation range of the detection mechanism.
  • the holder 30 has a holder main body 301 having a ring-shaped outline and a bottom surface whose normal line extends in the Z1-Z2 direction.
  • the holder main body 301 has a hollow opening on the Z2 side in the Z1-Z2 direction, and the magnetic generator 50 is housed inside the hollow.
  • the magnetism generator 50 is a ring-shaped permanent magnet and is magnetized in the radial direction.
  • the permanent magnet serving as the magnetic field generating body 50 is provided with a chamfered portion 51 so that its relative position with respect to the holder main body portion 301 around the first axis AX1 is fixed.
  • 4 and 5 are explanatory views (perspective views) of the holder of the liquid level sensor according to the first embodiment.
  • FIG. 6 is an explanatory diagram (side view) of the holder of the liquid level sensor according to the first embodiment. Note that the definition of the V1-V2 direction shown in FIG. 6 will be described later.
  • the holder 30 includes a holder through hole 31 through which a shaft body 41 extending in the Z1-Z2 direction is inserted in the shaft body 40.
  • a base portion 42 having a larger outer diameter than the shaft body 41 is provided on the Z2 side of the shaft body 41 in the Z1-Z2 direction in the shaft body 40, and this base portion 42 contacts the holder receiving portion 12 of the base member 10. come into contact with Thereby, the shaft body 40 can rotate around the first axis AX1 while its relative position in the X1-X2 direction, Y1-Y2 direction, and Z1-Z2 direction is defined with respect to the base member 10. During this rotation of the shaft body 40 around the first axis AX1, the inner surface of the base through hole 121 slides on the outer surface of the shaft body 40.
  • a shaft through hole 411 which is an insertion hole into which the arm 20 is inserted, is provided on the Z1 side of the shaft body 41 in the shaft 40 in the direction intersecting the first axis AX1.
  • the through axis of the shaft body through hole 411 is along the in-plane direction of the XY plane.
  • the shaft body through hole 411 is a connecting portion that connects the arm 20 and the shaft body 40 , and when the second arm portion 22 of the arm 20 passes through the shaft body through hole 411 , the shaft body 40 is fixed relative to the arm 20 . The position is set.
  • the hole diameter of the shaft body through hole 411 is set according to the shaft diameter of the arm 20, so the shaft body abutting portion 221 of the second arm portion 22 fits into the shaft body through hole 411, Thereby, the relative position of the shaft body 40 with respect to the arm 20 is fixed.
  • the position (height) of the shaft body through hole 411 in the direction along the first axis AX1 (Z1-Z2 direction) is the first holder insertion hole provided in the first holding part 321 of the holder 30. Since the height matches the height of the hole 321h, when the second arm part 22 of the arm 20 is inserted, the second arm part 22 is prevented from coming off by the holder 30 via the shaft body 40. Thereby, the arm 20 is integrated with the holder 30 and the shaft body 40, and stably interlocks with the base member 10.
  • the shaft body 40 interlocks with the holder 30 via the arm 20. Specifically, when the shaft body 40, which can rotate around the first axis AX1 with respect to the base member 10, rotates around the first axis AX1 based on the movement of the arm 20, the holder 30 is interlocked via the arm 20. and rotates around the first axis AX1.
  • the holding part 32 provided on the Z1 side in the Z1-Z2 direction of the holder main body part 301 is a first holding part 321 having a first holder insertion hole 321h and a second holding part having a second holder insertion hole 322h. 322, and both of the holding parts (first holding part 321, second holding part 322) are set so that the held part 222 of the arm 20 intersects with the first axis AX1.
  • the stop positions based on the respective holding parts 32 are set to be different from each other.
  • the second holding part 322 is set so that the protruding part 223 protrudes from the holder 30 at a position shifted by 30 degrees in the second rotation direction (clockwise). Therefore, the measurement limit value in the first rotation direction of the measurement range of the rotation angle of the detection mechanism also increases by 30 degrees.
  • FIG. 7 is an explanatory diagram (perspective view) showing a state in which an arm is held by a holder regarding the liquid level sensor according to the first example of the first embodiment.
  • FIG. 8 is an explanatory diagram showing a cross section (VZ plane) taken along line B-B' in FIG.
  • FIG. 9 is an explanatory diagram showing a cross section (VW plane) taken along line C-C' in FIG.
  • the second arm portion 22 includes the held portion 222 held by the holding portion 32 (in this example, the first holding portion 321), the protruding portion 223 protruding from the holder 30, the bent portion 23, and the held portion 222, which is held by the holding portion 32 (in this example, the first holding portion 321).
  • a shaft contact portion 221 that is inserted through the shaft through hole 411 is provided between the holding portion 222 and the shaft contact portion 221 .
  • the surface that receives the held part 222 inside the first holder insertion hole 321h of the first holding part 321 is defined as the receiving surface (first holding and receiving surface 321A).
  • the direction in which the first holding and receiving surface 321A extends along the second arm portion 22 of the arm 20 is defined as the holding portion extending direction, and is shown as the V1-V2 direction in the figure.
  • the second arm portion 22 has a rod-like shape with the same circular cross-sectional shape, and its central axis AX2 is included in the in-plane direction of the XY plane.
  • the V1-V2 direction shown is included in the in-plane direction of the XY plane, and the central axis AX2 of the second arm portion 22 is along the V1-V2 direction. Note that the direction perpendicular to the V1-V2 direction on the XY plane is referred to as the W1-W2 direction.
  • the protrusion direction of the protrusion 223 protruding from the holder 30 is along the holding part extension direction (V1-V2 direction). Since the protruding portion 223 is along the extending direction of the holding portion, the vibration of the container is transmitted through the first arm portion 21 and reaches the second arm portion 22, and the second arm portion 22 is caused to move against the holder 30. Even if a relative positional shift occurs, the protruding portion 223 is displaced relative to the locking portion 111 in response to the positional shift, making it difficult for the holder 30 to rotate.
  • FIG. 10 is an operation explanatory diagram (plan view) of the liquid level sensor according to the first example of the first embodiment.
  • FIG. 11 is an explanatory diagram (perspective view) of the operation of the liquid level sensor according to the first example of the first embodiment.
  • the holder 30 is at the rotation limit position in the first rotation direction. It is in a stopping position. This stop position sets a measurement limit value in the first rotation direction of the rotation range of the detection mechanism.
  • the surface of the receiving surface of the locking portion 111 located on the Z1 side in the Z1-Z2 direction that is, the protruding portion of the locking portion 111
  • the contact surface with 223 is located along the extending direction of the receiving surface (first holding receiving surface 321A) of the first holding part 321 of the holder 30 (holding part extending direction, V1-V2 direction).
  • the first holding and receiving surface 321A is a part of the inner surface of the annular body, and the rotation axis of the annular body is This is the extending direction of the holding portion (V1-V2 direction).
  • the first locking receiving surface 111A has a planar shape, and the holding portion extending direction (V1-V2 direction) is one of the in-plane directions. Therefore, the first locking and receiving surface 111A is located along the extending direction (V1-V2 direction) of the first holding and receiving surface 321A.
  • the holder 30 Displacement that would cause rotation of the protrusion 223 is unlikely to occur.
  • the protrusion 223 moves in the V1-V2 direction with respect to the first locking and receiving surface 111A.
  • the holder 30 is not rotated around the first axis AX1.
  • the protruding portion 223 is also engaged with the first locking portion.
  • the displacement of the protruding portion 223 in this case also does not cause the holder 30 to rotate around the first axis AX1.
  • the first locking and receiving surface 111A is located on an extension of the first holding and receiving surface 321A. This relationship is established when the second arm portion 22 is rod-shaped and the cross section of the held portion 222 and the cross section of the protruding portion 223 are not limited to a circle but have a certain shape.
  • FIG. 12 is an explanatory diagram (perspective view) of the locking portion of the liquid level sensor according to the first example of the first embodiment.
  • FIG. 13 is an explanatory diagram (side view) of the locking portion of the liquid level sensor according to the first example of the first embodiment. Note that FIG. 13 is a view seen from the extending direction of the holding portion (V1-V2 direction).
  • the first holding and receiving surface 321A of the holder 30 and the protruding part 223 of the second arm part 22 are located at different positions (heights) in the direction along the first axis AX (Z1-Z2 direction).
  • FIG. 14 is an explanatory diagram of a locking portion of a liquid level sensor having a structure according to the prior art in a normal state.
  • FIG. 15 is an explanatory diagram when a swinging phenomenon occurs in a locking portion of a liquid level sensor having a structure according to the prior art.
  • a rotating body rotatably supported by a fixed body corresponding to the base member 10 of this example
  • the liquid level is measured by measuring the rotation angle of the holder 30 (corresponding to the holder 30 in this example).
  • the liquid level measurement range is set as follows.
  • the arm connected to the float is held by a rotating body, and the end of the arm to which the float is not connected has a protrusion that projects from the rotating body.
  • the position where the rotation of the rotating body stops when this protrusion comes into contact with the restriction part (corresponding to the locking part 111 in this example) of the fixed part becomes the limit position of the measurement range.
  • the regulating part corresponding to the locking part 111 is located below the position where the arm is held by the rotating body.
  • the fixed body in order to be able to set measurement ranges for a plurality of rotation angles, the fixed body is provided with a hollow portion that opens toward the rotating body, and this hollow portion This is due to the fact that a plurality of restriction parts corresponding to a plurality of measurement ranges are provided on the inner wall of the sensor.
  • a bent part is provided on the protruding part of the arm.
  • the liquid level detection device of Patent Document 2 makes it possible to measure the rotation angle in multiple ranges, but in order to avoid interference between the arm and the regulating part of other measurement ranges, the protruding part of the arm is The structure is such that only the tip of the bent portion contacts the regulating portion of the fixed body.
  • FIG. 14 conceptually shows the structure of the locking portion of this liquid level detection device, and is a view of the portion where the arm 620 is held by the rotating body, viewed from the extending direction.
  • the protruding portion 623 of the arm 620 has a bent portion 623B, and has a structure in which a tip portion 623C located beyond the bent portion 623B is locked to the regulating portion 611 of the fixed body.
  • FIG. 14 conceptually shows the structure of the locking portion of this liquid level detection device, and is a view of the portion where the arm 620 is held by the rotating body, viewed from the extending direction.
  • the protruding portion 623 of the arm 620 has a bent portion 623B, and has a structure in which a tip portion 623C located beyond the bent portion 623B is locked to the regulating portion 611 of the fixed body.
  • the tip central axis OX2 is tilted with respect to the rotation axis OX1, as shown in FIG. 15, and a swinging phenomenon occurs in the tip 623C.
  • a swinging phenomenon occurs, in one example, the tip 623C moves ahead of its original position (displaces to the right in FIG. 15). Therefore, in a state where the rotating body is located before the position where it should originally stop (on the left side in FIG. 15), the protruding portion 623 is engaged with the regulating portion 611, and the rotation of the rotating body is stopped. Therefore, in the liquid level detection device in the state shown in FIG. 15, the liquid level measurement range becomes narrower than in the normal state.
  • the liquid level sensor 100 according to the present example can avoid such changes in the measurement range caused by the rotation of the arm 20.
  • the holder 30 is provided at a different position from the holding part 32 (first holding part 321 in this example), and further includes an auxiliary holding part 34 for holding the first arm part 21 of the arm 20.
  • the auxiliary holding part 34 includes a first auxiliary holding part 341 that has a snap-fit structure and grips the first arm part 21, and a first auxiliary holding part 341 that has a snap-fit structure and grips the first arm part 21; 21.
  • the second arm portion 22 is fitted into the shaft body through hole 411 and the first holding portion 321, in this example, the second arm portion 22 is rod-shaped with the same circular cross section, so that It can rotate (rotate).
  • the arm 20 is provided with the bent part 23 between the first arm part 21 and the second arm part 22, the receiving surface of the second auxiliary holding part 342 (auxiliary holding receiving surface 342A), that is, the The part of the second auxiliary holding part 342 that the first arm part 21 comes into contact with is located off the extension of the receiving surface of the holding part 32 (the first holding and receiving surface 321A). Therefore, when the auxiliary holding part 34 holds the first arm part 21, the rotation (rotation) of the second arm part 22 around the central axis AX2 can be suppressed.
  • the holder 30 has a plurality of protrusions that protrude in the radial direction from the outer surface of the holder main body 301.
  • these protrusions when viewed along the first axis AX1 (in the Z1-Z2 direction), the proximal protrusion to the protrusion 223 is called the first protrusion 331, and the distal protrusion to the protrusion 223 is called the second protrusion.
  • a protrusion 332 is provided. Their roles are different, and the second protrusion 332 will be explained below first.
  • the second rotation direction side surface (second projection surface 332A) of the second protrusion 332 moves toward the X2 side of the base body 11 in the X1-X2 direction.
  • the rotation of the holder 30 in the second rotation direction (clockwise) is stopped by contacting the surface (base contact surface 112A) on the Y1 side in the Y1-Y2 direction of the provided contact portion (base contact portion 112). do. That is, the base member 10 and the holder 30 have the base contact portion 112 and the second protrusion as a stopper that stops the rotation of the holder 30 (rotation in the second rotation direction in this example) at a predetermined position without using the arm 20. It has 332. Since the base contact part 112 is provided on the opposite side (X2 side) in the X1-X2 direction in comparison with the locking part 111, the stop position based on this stopper allows A measurement limit value in the direction of rotation is set.
  • FIG. 10 shows this timing, when the holder 30 has reached the end point of the rotation angle measurement range. Therefore, as shown in FIG. 10, in this example (first example of the first embodiment), the measurement range of the rotation angle of the holder 30 is 60 degrees.
  • the rotation range of the protrusion 223 is shown on the right by a double-dashed double arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dashed double arrow.
  • FIG. 16 is an operation explanatory diagram (plan view) of the liquid level sensor according to the second example of the first embodiment.
  • the protruding portion 223 is locked to the locking portion 111 provided on the X1 side in the X1-X2 direction of the base body portion 11, so that the holder 30 is rotated in the first rotation direction. It is at the stop position, which is the limit position of rotation. This stop position sets a measurement limit value in the first rotation direction of the rotation range of the detection mechanism.
  • the liquid level sensor 100A according to the second example of the first embodiment has a different arm shape in comparison with the liquid level sensor 100 according to the first example of the first embodiment.
  • the first arm part 21 and the second arm part 22 form an angle of 90 degrees due to the bent part 23, whereas the arm 201 of the liquid level sensor 100A has the bent part 23.
  • 23 have different bending angles, and the first arm portion 21 and the second arm portion 22 form an angle of 60°.
  • the held portion 222 of the second arm portion 22 is held by the second holding portion 322 provided at a position shifted by 30° from the first holding portion 321 in the second rotation direction.
  • the holding part extending direction (V1-V2 direction) is the direction in which the receiving surface of the second holding part 322 (second holding receiving surface 322A) extends. .
  • the distance between the base contact surface 112A and the second protrusion surface 332A in the liquid level sensor 100A is the same as the distance between the base contact surface 112A and the second protrusion surface 332A in the liquid level sensor 100. It's farther than the distance.
  • the measurement range of the rotation angle of the liquid level sensor 100A is wider than the measurement range of the rotation angle of the liquid level sensor 100.
  • the measurement range of the liquid level sensor 100 is 60°, but the measurement range of the liquid level sensor 100A is increased by 30° to 90° (see FIG. 16).
  • the rotation range of the protrusion 223 is shown on the right by a double-dot chain arrow
  • the rotation range of the second protrusion 332 is shown on the left by a double-dot chain arrow.
  • the held part 222 is aligned with the first axis. Since the holder 30 is provided so that it intersects with AX1 and different stop positions are set, the measuring range of the rotation angle of the holder 30 can be easily changed by changing the shape of the arm 20 held by the holder 30. be able to.
  • the base contact portion 112 that provides a common measurement limit value in a plurality of measurement ranges may be used as a starting point in liquid level measurement, that is, as a lower limit of the liquid level measurement range. In this case, if the capacity of the tank is small, the liquid level sensor 100 with a measurement range of 60 degrees may be used, and if the capacity of the tank is large, the liquid level sensor 100A with a measurement range of 90 degrees may be used.
  • FIG. 17 is an operation explanatory diagram (plan view) of the liquid level sensor according to the third example of the first embodiment.
  • the liquid level sensor 100B according to the third example of the first embodiment is different from the liquid level sensor 100 according to the first example of the first embodiment in the shape of the arm portion.
  • the arm 20 of the liquid level sensor 100 has a protrusion 223 on the second arm part 22.
  • the length of the second arm part 22 is relatively short, and as a result, the protrusion 223 does not have.
  • first projection surface 331A the surface of the first projection 331 on the first rotation direction side
  • second locking receiving surface 111B the surface of the first projection 331 on the first rotation direction side
  • both the stop position in the first rotation direction and the stop position in the second rotation direction are , which is a stop position set by a stopper between the base member 10 and the holder 30.
  • the stop position in the first rotation direction is a position shifted by 60° in the second rotation direction with respect to the stop position in the first example of the first embodiment.
  • the measurement range of the rotation angle of the liquid level sensor 100B is 120° (see FIG. 17).
  • the rotation range of the first protrusion 331 is shown on the right by a double-dot chain arrow
  • the rotation range of the second protrusion 332 is shown on the left by a double-dot chain arrow.
  • the protruding part 223 when a part of the arm 20 (the protruding part 223) is made to protrude from the holder 30, the protruding part 223 The rotation of the holder 30 is stopped by contacting the surface 111A. At this time, the rotatable angle of the holder 30 is changed by changing the protruding position of the protruding part 223, specifically by selecting which of the first holding part 321 and the second holding part 322 is used. can do. Furthermore, when the arm 20 is not protruded from the holder 30, the height The first protrusion 331 provided on the holder 30 comes into contact with the second lock receiving surface 111B, which is the lower part, and stops the rotation of the holder 30.
  • liquid level sensors 100, 100A, and 100B according to the present embodiment, more types of measurement ranges can be set by combining whether or not the arm 20 is protruded with the selection of the mounting angle of the arm 20. What is possible is being realized.
  • FIG. 18 is a circuit diagram illustrating the magnetic measurement section of the liquid level sensor according to the first embodiment.
  • FIG. 19 is an explanatory diagram of data output from the magnetic measurement section of the liquid level sensor according to the first embodiment.
  • FIG. 20 is a diagram illustrating the positional relationship between the magnetic generating body and the magnetic measuring section of the liquid level sensor according to the first embodiment.
  • FIG. 21 is a graph showing the relationship between the angle of the magnetic field from the magnetic generator and the rotation angle of the holder in the liquid level sensor according to the first embodiment.
  • FIG. 18 is a circuit diagram illustrating the magnetic measurement section of the liquid level sensor according to the first embodiment.
  • FIG. 19 is an explanatory diagram of data output from the magnetic measurement section of the liquid level sensor according to the first embodiment.
  • FIG. 20 is a diagram illustrating the positional relationship between the magnetic generating body and the magnetic measuring section of the liquid level sensor according to the first embodiment.
  • FIG. 21 is a graph showing the relationship between the angle of the magnetic field from the magnetic generator and the rotation
  • 22 is a graph showing the relationship between the angle of the magnetic field from the magnetic generator and the measurement range of the detection mechanism in the liquid level sensor according to the first embodiment. 21 and 22, the horizontal axis is the rotation angle of the holder 30, and the vertical axis is the angle of the magnetic field from the magnetic generator 50.
  • the detection mechanism for the rotation angle of the holder 30 with respect to the base member 10 includes a permanent magnet (magnetic generator 50) disposed inside the holder main body 301 and a magnetic detection section 61, as described above. .
  • the magnetic detection section 61 has a measurement circuit 63 made up of a plurality of bridge circuits each having a magnetoresistive element.
  • the permanent magnet (magnetism generator 50) inside the holder 30 rotates.
  • the relative angle between the magnetic pole of the permanent magnet (magnetic generator 50) and the magnetoresistive element in the measurement circuit 63 changes, and the magnetization direction of the free magnetic layer of the magnetoresistive element changes 50) depending on the direction of the magnetic field.
  • the relative angle between the free magnetic layer and the pinned magnetic layer changes, and the resistance value of the magnetoresistive element changes.
  • the output signal from the bridge circuit changes based on this change in resistance value, and this signal is output from the measurement circuit 63.
  • a first full-bridge circuit FB1 and a second full-bridge circuit FB2 are arranged in parallel between the power supply side end VDD and the ground side end GND.
  • the first full bridge circuit FB1 includes a first half bridge in which a magnetoresistive element S11 and a magnetoresistive element S21 are connected in series, and a magnetoresistive element S22 and a magnetoresistive element S12 are connected in series.
  • a second half bridge is arranged in parallel between the power supply side end VDD side and the ground side end GND. The potential difference between the midpoint output OP1 of the first half bridge and the midpoint output OP2 of the second half bridge is measured as first measured potential data VD1.
  • the second full bridge circuit FB2 includes a third half bridge in which a magnetoresistive element S31 and a magnetoresistive element S41 are connected in series, and a third half bridge in which a magnetoresistive element S42 and a magnetoresistive element S32 are connected in series.
  • a fourth half bridge is arranged in parallel between the power supply side end VDD side and the ground side end GND. The potential difference between the midpoint output OP3 of the third half bridge and the midpoint output OP4 of the fourth half bridge is measured as second measured potential data VD2.
  • the direction and orientation of the sensitivity axes of the magnetoresistive element S11 and the magnetoresistive element S12 are the same.
  • the magnetoresistive element S21 and the magnetoresistive element S22 have the same sensitivity axes in the same direction, and in relation to the magnetoresistive element S11, the sensitivity axes have the same direction but opposite directions.
  • the magnetoresistive element S31 and the magnetoresistive element S32 have the same direction and orientation of their sensitivity axes, and the directions of their sensitivity axes are orthogonal in relation to the magnetoresistive element S11.
  • the magnetoresistive element S41 and the magnetoresistive element S42 have the same direction and orientation of their sensitivity axes, and in relation to the magnetoresistive element S31, their sensitivity axes have the same direction but opposite directions.
  • one midpoint output (for example, the midpoint output OP1 of the first full bridge circuit FB1) is a sine wave as the first measured potential data VD1.
  • the other midpoint output (midpoint output OP2 of the second full bridge circuit FB2) outputs a sine wave whose phase is shifted by 90 degrees from the sine wave output by the midpoint output OP1 as the second measured potential data.
  • FIG. 19 shows this relationship.
  • the magnetoresistive element may be a giant magnetoresistive element (GMR element) or a tunnel magnetoresistive element (TMR element), and in either case, a plurality of films (a fixed magnetic layer, a nonmagnetic material layer, It consists of a laminate in which free magnetic layers, etc.) are laminated. If the compositions and thicknesses of the films constituting this stack differ, the device characteristics (sensitivity, temperature characteristics, etc.) will differ. Therefore, it is preferable that the eight magnetoresistive elements included in the measurement circuit 63 have the same film configuration (the laminated structure of the laminated body is common). In this case, the characteristics of the eight magnetoresistive elements, especially the temperature characteristics, are likely to be uniform.
  • GMR element giant magnetoresistive element
  • TMR element tunnel magnetoresistive element
  • the temperature dependence of the first measured potential data VD1 and the temperature dependence of the second measured potential data VD2 have the same tendency.
  • the rotation angle RA when calculating the rotation angle RA, the ratio of the first measured potential data VD1 and the second measured potential data VD2 is taken, so by this calculation, the temperature dependence of each is canceled and calculated.
  • the rotation angle RA remains constant without being affected by temperature.
  • the eight magnetoresistive elements be manufactured in a common film forming process, and the film forming substrate in the film forming process is More preferably, they are common.
  • the magnetism generator 50 is made of a ring-shaped permanent magnet magnetized in the radial direction, and when the holder 30 rotates, its magnetization direction rotates within the XY plane.
  • the measurement circuit 63 serving as the measurement point is located within the XY plane created by the rotation of the magnetization direction of the holder 30, at a predetermined distance D from the first axis AX1, which is the rotation axis of the holder 30 (see FIG. 20). ). Therefore, as shown in FIG. 21, the relationship between the angle of the magnetic field emitted from the magnetic generator 50 (permanent magnet) and reaching the measuring circuit 63 and the rotation angle of the holder 30 is not linear (straight line) but sinusoidal. The waves overlap to form a wavy waveform.
  • the output signal from the magnetic detection section 61 in the liquid level sensor 100 according to the first embodiment deviates from the ideal state as shown in FIG. 20 and has a waveform in which a sine wave is modulated. Since the modulation to the first measured potential data VD1 and the modulation to the second measured potential data VD2 are not the same, when their waveforms are compared, the difference becomes larger than a mere phase shift. Even if the above equation (1) is applied in this state, the rotation angle RA cannot be determined accurately.
  • the first measured potential data VD1 and the second measured potential data VD2 output from the magnetic detection section 61 are input to the control device 62, and the waveforms are corrected.
  • the liquid level sensors 100, 100A, and 100B according to each example of the present embodiment have different rotation angle measurement ranges, the measurement limit value of one of them (on the second rotation direction side) is the same as that of the second protrusion 332. This is the stop position based on the second protrusion surface 332A coming into contact with the base contact surface 112A of the base body portion 11. Therefore, when the measurement range of each liquid level sensor is superimposed on FIG. 21, as shown in FIG.
  • the liquid level sensors 100 and 100A are included, and both measurement ranges have a common angle as one measurement limit value (30° in FIG.
  • the control device 62 If a waveform correction program is prepared for the liquid level sensor 100B according to the third example of one embodiment, the liquid level sensors 100 and 100A according to other examples can use the correction program as is.
  • FIG. 23 is an explanatory diagram (perspective view) showing a first example of a liquid level sensor according to a second embodiment of the present invention.
  • FIG. 24 is an operation explanatory diagram (plan view) of the liquid level sensor according to the first example of the second embodiment.
  • FIG. 25 is an operation explanatory diagram (plan view) of the liquid level sensor according to the second example of the second embodiment.
  • FIG. 26 is an operation explanatory diagram (plan view) of the liquid level sensor according to the third example of the second embodiment.
  • FIG. 27 is an operation explanatory diagram (plan view) of the liquid level sensor according to the fourth example of the second embodiment.
  • FIG. 24 is an operation explanatory diagram (plan view) of the liquid level sensor according to the first example of the second embodiment.
  • FIG. 25 is an operation explanatory diagram (plan view) of the liquid level sensor according to the second example of the second embodiment.
  • FIG. 26 is an operation explanatory diagram (plan view) of the liquid level sensor according to the third example of the second embodiment.
  • the liquid level sensors 101, 101A, 101B, 101C according to the second embodiment of the present invention have the same basic structure as the liquid level sensors 100, 100A, 100B according to the first embodiment, so only the differences will be explained. do.
  • the holding part 32 had the first holding part 321 and the second holding part 322, but the liquid level sensor according to the second embodiment
  • the holding part 32 has a first holding part 321, a second holding part 322, and a third holding part 323.
  • the holding parts 32 are provided on the holder 30 so that the held part 222 intersects with the first axis AX1 and different stopping positions are set.
  • the liquid level sensors 101, 101A, 101B, and 101C according to the second embodiment can set three types of measurement ranges for the rotation angle of the holder 30 using the protrusion 223.
  • the liquid level sensor 101 uses an arm 20 in which the bending portion 23 has a bending angle of 90°, similar to the liquid level sensor 100.
  • the second arm portion 22 of the arm 20 is held by the first holding portion 321.
  • the measurement range of the rotation angle of the holder 30 set in this case is 60 degrees, as shown in FIG. 24.
  • the rotation range of the protrusion 223 is shown on the right by a double-dashed double arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dashed double arrow.
  • an arm 201 with a bending portion 23 having a bending angle of 60° is used, similarly to the liquid level sensor 100A.
  • the second arm portion 22 is held by a second holding portion 322.
  • the measurement range of the rotation angle of the holder 30 set in this case is 90 degrees, as shown in FIG. 25.
  • the rotation range of the protrusion 223 is shown on the right by a double-dashed double arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dashed double arrow.
  • an arm 203 with a bending part 23 having a bending angle of 30 degrees is used, and the second arm part 22 of the arm 203 is It is held by a third holding part 323 having a third holding and receiving surface 323A.
  • the measurement range of the rotation angle of the holder 30 set in this case is 120 degrees, as shown in FIG. 26.
  • the rotation range of the protrusion 223 is shown on the right by a double-dashed double arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dashed double arrow.
  • the holder 30 of the liquid level sensor 100, 100A, 100B according to the first embodiment had the first protrusion 331 and the second protrusion 332, but the liquid level sensor 101, 101A, 101B according to the second embodiment,
  • the holder 30 of 101C has only the second protrusion 332.
  • the second protrusion surface 332A of the second protrusion 332 comes into contact with the base abutting surface 112A of the base abutting part 112 and rotates during the second rotation.
  • the holder 30 rotating in the direction (clockwise) is stopped (stop position based on the stopper).
  • the holder receiving portion 12 of the base member 10 of the liquid level sensors 101, 101A, 101B, and 101C according to the second embodiment is provided with a convex portion 122 that protrudes toward the Z1 side in the Z1-Z2 direction.
  • the liquid level sensor 101C according to the fourth example of the second embodiment has a protrusion 223, like the liquid level sensor 100B according to the third example of the first embodiment.
  • An arm 202 is used that does not. Therefore, in the liquid level sensor 100B, the surface of the second protrusion 332 on the first rotational direction side (the second protrusion second surface 332B) is the same as the surface of the second protrusion 332 on the second rotational direction side of the protrusion 122 provided on the holder receiving part 12.
  • the contact surface (convex contact surface 122A) stops the rotation of the holder 30 in the first rotation direction (stop position based on the stopper).
  • the measurement range of the rotation angle of the holder 30 set in this case is 150°, as shown in FIG. 27.
  • the measurement range of the rotation angle of the holder 30 is set by the second protrusion 332, unlike other examples, in FIG. has been done.
  • the second arm portion 22 has a rod shape with a cross section of the same circle, but the present invention is not limited to this.
  • the protruding portion 223 and the held portion 222 may have different radii.
  • the radius of the cross-sectional circle of the protruding portion 223 may be larger or smaller than the radius of the cross-sectional circle of the held portion 222.
  • the cross-sectional shape of the second arm portion 22 is not limited to a circle, but may be an ellipse, a polygon, an irregular shape, or the like. Further, the cross-sectional shape of the protruding portion 223 and the cross-sectional shape of the held portion 222 may be different.
  • the protruding portion 223 is located on the opposite side of the held portion 222 from the side to which the float is connected in the arms 20, 201, 202, 203, but the projecting portion 223 is not limited thereto.
  • a float may be connected to the tip of the portion where the protruding portion 223 is provided when viewed from the holding portion 222 .
  • the vibration from the float is transmitted to the protruding part 223 before being relaxed in the held part 222, so the stop position is set by the protruding part 223 being engaged with the locking part 111.
  • the protruding portion 223 is located on the arm 20, 201, 202, 203 on the opposite side of the held portion 222 from the side to which the float is connected.
  • the holding part 32 of the holder 30 is composed of a through hole through which the second arm part 22 is inserted, but the present invention is not limited to this.
  • it may have a snap-fit structure like the auxiliary holding part 34.
  • the holding part 32 has a hollow part that opens on the Z1 side in the Z1-Z2 direction, and after placing the second arm part 22 in this hollow part, the second arm part 22 is held from the Z1 side in the Z1-Z2 direction.
  • the second arm portion 22 may be held by a member.
  • the stopper formed by the base member 10 and the holder 30 is configured by the projections (first projection 331, second projection 332) provided on the holder 30 coming into contact with the base member 10.
  • the holder 30 is provided with a concave portion recessed in the direction along the first axis AX1 (Z1-Z2 direction) along the circumferential direction on the outer surface
  • the base member 10 is provided with a concave portion recessed in the direction along the first axis AX1 (Z1-Z2 direction)
  • the base member 10 is provided with a concave portion recessed in the direction along the first axis AX1 (Z1-Z2 direction).
  • a convex portion projecting in the direction may be provided.
  • the stopper has a portion that protrudes toward the mating member, the protruding direction of that portion may be along the Z1-Z2 direction.
  • the shaft body 40 had the shaft through hole 411 as a connecting portion through which the second arm portion 22 is inserted, but the shape of the connecting portion is not limited. Similar to the modification of the holding part 32 of the holder 30, the arm 20 and the shaft body 40 may be connected using a snap-fit structure or an open hollow part and a pressing member. Further, in each of the above embodiments, the shaft abutting portion 221 of the second arm portion 22 is fitted into the shaft through hole 411, but if the held portion 222 is properly held by the holder 30, the shaft The contact portion 221 may be loosely fitted into the shaft through hole 411.
  • the detection mechanism included a magnetism generator 50 made of a permanent magnet magnetized in the radial direction, and a magnetic detection section 61 provided with a measurement circuit 63 having a magnetoresistive element.
  • the magnetism generating body 50 does not need to be a permanent magnet, and the magnetization direction may also be in the axial direction.
  • the magnetic detection section 61 includes a Hall element.
  • the magnetic detection section 61 may be provided on the holder 30 side, and the magnetic generator 50 may be provided on the base member 10.
  • the base member 10 may be provided with the magnetic generating body 50 and the magnetic detecting section 61, and the holder 30 may be provided with a yoke, so that a magnetic circuit passing through the yoke may be configured based on the magnetic generating body 50.
  • the magnetic flux density passing through the magnetic circuit changes as the holder 30 rotates, and the magnetic detection unit 61 may detect this change in magnetic flux density.
  • the detection mechanism detects magnetism, but the detection mechanism is not limited to this.
  • the detection mechanism may include a resistor provided on one of the holder 30 and the base member 10, and a sliding contact provided on the other of the holder 30 and the base member 10 and in contact with the resistor.
  • Another example of the detection mechanism includes a transmitter provided on one of the holder 30 and the base member 10, and a receiver provided on the other of the holder 30 and the base member 10 to receive a signal from the transmitter. You can. Examples of signal sources emitted by the transmitter in this case include light, electromagnetic waves such as radio waves, and sound.
  • Examples of other detection mechanisms include a transmitter provided on one of the holder 30 and the base member 10 and a receiver that receives a signal from the transmitter, and a receiver provided on the other of the holder 30 and the base member 10 that transmits a signal.
  • the receiver may also include a reflector that reflects the signal from the receiver to the receiver.
  • Examples of signal sources emitted by the transmitter in this case include electromagnetic waves such as light and radio waves.
  • the base contact portion 112 that provides a common measurement limit value in a plurality of measurement ranges is used as the starting point (lower limit of the liquid level measurement range) in liquid level measurement, but it is limited to this. Not done.
  • the base contact portion 112 may be used as the end point (upper limit of the liquid level measurement range) in liquid level measurement.
  • Liquid level sensor 10 Base member 11: Base main body portion 12: Holder receiving portion 13: Container connection portion 20, 201, 202, 203: Arm 21: First arm Part 22 : Second arm part 23 : Bent part 30 : Holder 31 : Holder through hole 32 : Holding part 34 : Auxiliary holding part 40 : Shaft body 41 : Shaft body 42 : Base part 50 : Magnetism generating body 51 : Chamfered part 60 : Substrate 61 : Magnetic detection unit 62 : Control device 63 : Measurement circuit 70 : Wiring 71 : Metal wiring 72 : Coating part 111 : Locking part 111A : First locking receiving surface 111B : Second locking receiving surface 112 : Base Contact portion 112A: Base contact surface 121: Base through hole 122: Convex portion 122A: Convex contact surface 221: Shaft contact portion 222: Held portion 223: Projecting portion 301

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

A liquid level sensor 100 according to an embodiment of the present invention uses a float to measure a liquid level in a container, and comprises a base member 10, an arm 20 that can be connected to the float, a holder 30 which has a holding portion 32 for holding a held portion 222 of the arm and which is attached to the base member 10 so as to be rotatable about a first axis AX1, and a detecting mechanism for detecting rotation of the holder 30, wherein the arm 20 includes a projecting portion 223 that projects from the holder 30 in an extension direction (V1-V2 direction) of the held portion 222, and the base member 10 includes an engaging portion 111 for engaging the projecting portion 223 to stop the rotation of the holder 30 in a predetermined position, as a result of which the liquid level sensor is resistant to the effects of disturbances such as vibration of the container.

Description

液位センサliquid level sensor
 本発明は、フロートを用いて容器内の液位を測定する液位センサに関する。 The present invention relates to a liquid level sensor that measures the liquid level in a container using a float.
 特許文献1や特許文献2にはフロートを用いて容器内の液位を測定する液位センサが開示されている。これらの液位センサでは、容器内の液位の変化に基づいてフロートが変位すると、フロートに接続されたアームも変位する。アームは、その被保持部において、ベース部材に対して回転するホルダの保持部に保持されているため、アームの変位はホルダのベース部材に対する回転となる。この回転角度を測定することにより、液位が測定される。 Patent Document 1 and Patent Document 2 disclose liquid level sensors that measure the liquid level in a container using a float. In these liquid level sensors, when the float is displaced based on a change in the liquid level within the container, an arm connected to the float is also displaced. Since the arm is held at its held portion by the holding portion of the holder that rotates with respect to the base member, displacement of the arm results in rotation of the holder with respect to the base member. By measuring this rotation angle, the liquid level is measured.
特開2001-124616号公報Japanese Patent Application Publication No. 2001-124616 特開2015-200607号公報Japanese Patent Application Publication No. 2015-200607
 特許文献1に開示される液位センサのように、回転するホルダがベース部材に直接的に接触して回転が停止する場合は問題ないが、特許文献2に開示される液位センサのように、アームの一部がホルダから突出する突出部分を有し、この突出部分がベース部材に係止してホルダの回転を停止させる場合には、ホルダとアームとの相対位置のずれが回転角度の測定に影響を及ぼす。 There is no problem if the rotating holder comes into direct contact with the base member and stops rotating, as in the liquid level sensor disclosed in Patent Document 1, but as in the liquid level sensor disclosed in Patent Document 2, there is no problem. , when a part of the arm has a protruding part that protrudes from the holder, and this protruding part locks with the base member to stop the rotation of the holder, the deviation in the relative position between the holder and the arm will cause the rotation angle to change. Affects measurements.
 アームに接続されるフロートは、使用環境では容器の振動に基づき振動し、この容器が自動二輪車のガソリンタンクである場合は、この傾向が顕著である。このフロートの振動はアームに伝達され、保持部に保持される被保持部に対してねじれや回転の外力として付与される。この外力に基づいて保持部と被保持部とに相対位置ずれが生じると、この位置ずれがベース部材に対するホルダの回転角度の変化として計測される場合がある。こうした位置ずれに基づく回転角度の計測誤差は、液位計測におけるノイズやオフセットなど、計測精度の低下や計測正確性の低下の原因となる。 The float connected to the arm vibrates due to the vibration of the container in the usage environment, and this tendency is noticeable when this container is a gasoline tank for a motorcycle. This vibration of the float is transmitted to the arm and applied as an external force of twisting or rotation to the held part held by the holding part. When a relative positional deviation occurs between the holding part and the held part based on this external force, this positional deviation may be measured as a change in the rotation angle of the holder with respect to the base member. Measurement errors in the rotation angle based on such positional deviations cause noise and offset in liquid level measurement, resulting in a decrease in measurement precision and measurement accuracy.
 特に特許文献2などのように、被保持部から延びた突出部が折れ曲がり部を有し、その折れ曲がり部の先に位置する先端部がベース部材に係止する構造の場合には、被保持部において棒状のアームがその軸周りに回転すると(自転すると)、先端部の位置がずれる(首振り現象)ため、測定液位がオフセットしたり、測定範囲のずれが生じたりする。前述のようにガソリンタンクの容量計測を目的とする液位センサの場合には、タンク容量の測定範囲の下限がずれることは、運転中の想定外のエンジン停止など、深刻な不具合の原因となり得る。 In particular, as in Patent Document 2, when the protrusion extending from the held part has a bent part and the tip located beyond the bent part is locked to the base member, the held part When the rod-shaped arm rotates around its axis (rotates on its own axis), the position of the tip shifts (oscillation phenomenon), causing an offset in the measured liquid level or a shift in the measurement range. As mentioned above, in the case of a liquid level sensor whose purpose is to measure the capacity of a gasoline tank, deviations from the lower limit of the tank capacity measurement range can cause serious problems such as unexpected engine stoppages during driving. .
 本発明は、かかる事情を背景として、容器の振動などの外乱の影響を受けにくい構造を有する液位センサを提供することを目的とする。 Against this background, it is an object of the present invention to provide a liquid level sensor having a structure that is less susceptible to disturbances such as vibrations of a container.
 上記の課題を解決するための本発明は、一態様(第1態様)において、フロートを用いて容器内の液位を測定する液位センサであって、容器に接続可能なベース部材と、フロートに接続可能なアームと、アームの被保持部を保持する保持部を有し、ベース部材に対して第1軸周りに回転可能に取り付けられたホルダと、ホルダの回転を検知する検知機構と、を備える液位センサを提供する。かかる液位センサにおいて、アームは、被保持部の延在方向に沿ってホルダから突出する突出部を有し、ベース部材は、突出部を係止してホルダの回転を所定の位置で停止させる係止部を有する。 In one aspect (first aspect) of the present invention for solving the above problems, there is provided a liquid level sensor that measures the liquid level in a container using a float, which includes a base member connectable to the container, and a float. an arm connectable to the holder, a holder having a holding part for holding a held part of the arm and rotatably attached to the base member around a first axis, and a detection mechanism for detecting rotation of the holder; A liquid level sensor is provided. In such a liquid level sensor, the arm has a protrusion that protrudes from the holder along the extending direction of the held part, and the base member locks the protrusion to stop rotation of the holder at a predetermined position. It has a locking part.
 上記の液位センサでは、突出部分が被保持部の延在方向に沿って突出する、すなわち、突出部分と被保持部分との間に屈曲部を有しないため、アームの自転がベース部材に対するホルダの回転として計測される可能性を低減させることができる。なお、アームの保持を安定化させる観点から、ホルダの保持部は、被保持部がアームの延びる方向に沿って所定の長さを有するように設定される。これにより、被保持部の延在方向が設定される。 In the above liquid level sensor, the protruding part protrudes along the extending direction of the held part, that is, there is no bending part between the protruding part and the held part, so that the rotation of the arm is caused by the holder relative to the base member. This can reduce the possibility that it will be measured as a rotation. Note that, from the viewpoint of stabilizing the holding of the arm, the holding portion of the holder is set such that the held portion has a predetermined length along the direction in which the arm extends. Thereby, the extending direction of the held portion is set.
 本発明が他の一態様(第2態様)として提供する液位センサは、フロートを用いて容器内の液位を測定する液位センサであって、容器に接続可能なベース部材と、フロートに接続可能なアームの被保持部を保持する保持部を有し、ベース部材に対して第1軸周りに回転可能に取り付けられたホルダと、ホルダの回転を検知する検知機構と、を備え、ベース部材は、アームにおけるホルダから突出する部分である突出部を係止して、ホルダの回転を所定の位置で停止させるための係止部を有し、ホルダが所定の位置にあるとき、係止部の受け面は、保持部の受け面の延在方向に沿って位置する。 A liquid level sensor provided as another aspect (second aspect) of the present invention is a liquid level sensor that measures the liquid level in a container using a float, and includes a base member connectable to the container and a float. The base includes a holder that has a holding part that holds a held part of a connectable arm and is rotatably attached to a base member around a first axis, and a detection mechanism that detects rotation of the holder. The member has a locking portion for locking a protrusion that is a portion of the arm that projects from the holder to stop rotation of the holder at a predetermined position, and when the holder is at a predetermined position, the locking portion The receiving surface of the holding portion is located along the extending direction of the receiving surface of the holding portion.
 係止部の受け面(突出部が係止部に係止したときの突出部との接触面)が、保持部の受け面(アームの被保持部との接触面)の延在方向に沿って位置することにより、保持部の受け面に接触するアームの被保持部が保持部に対して位置ずれを生じたとしても、係止部の受け面に接触する突出部も係止部に対して同様の位置ずれを生じる。このため、被保持部の保持部に対する位置ずれがホルダのベース部材に対する回転角度の変化として検知機構に検出されにくくなる。それゆえ、上記の液位センサは、容器の振動などに起因するフロートの振動がアームに伝達して、保持部と被保持部との位置ずれが生じることがあっても、この位置ずれが検知機構での回転検出に影響することが抑制される。係止部の受け面が保持部の受け面の延長上に位置する場合には、より安定的に位置ずれの影響を抑制することができる場合がある。 The receiving surface of the locking part (the contact surface with the protruding part when the protruding part is locked with the locking part) is aligned along the extending direction of the receiving surface of the holding part (the contact surface of the arm with the held part). Even if the held part of the arm that contacts the receiving surface of the holding part is misaligned with respect to the holding part, the protruding part that contacts the receiving surface of the locking part also remains in position relative to the holding part. A similar positional shift occurs. This makes it difficult for the detection mechanism to detect a positional shift of the held part with respect to the holding part as a change in the rotation angle of the holder with respect to the base member. Therefore, even if vibrations of the float caused by vibrations of the container are transmitted to the arm and misalignment between the holding part and the held part occurs, the above liquid level sensor can detect this misalignment. The effect on rotation detection in the mechanism is suppressed. When the receiving surface of the locking portion is located on an extension of the receiving surface of the holding portion, it may be possible to suppress the influence of positional shift more stably.
 本発明が別の一態様(第3態様)として提供する液位センサは、フロートを用いて容器内の液位を測定する液位センサであって、容器に接続可能なベース部材と、フロートに接続可能なアームと、アームの被保持部を保持する保持部を有し、ベース部材に対して第1軸周りに回転可能に取り付けられたホルダと、ホルダの回転を検知する検知機構と、を備え、ベース部材は、アームにおけるホルダから突出する部分である突出部を係止してホルダの回転を所定の位置で停止させる係止部を有し、ホルダは保持部を複数備え、複数の保持部は、いずれについても、被保持部が第1軸と交わり、かつ互いに異なる位置でホルダの回転を停止させるように、ホルダに設けられる。 A liquid level sensor provided as another aspect (third aspect) of the present invention is a liquid level sensor that measures the liquid level in a container using a float, and includes a base member connectable to the container, and a float. A connectable arm, a holder having a holding part for holding a held part of the arm and rotatably attached to a base member around a first axis, and a detection mechanism for detecting rotation of the holder. The base member has a locking portion that locks a protruding portion of the arm that projects from the holder to stop rotation of the holder at a predetermined position, and the holder includes a plurality of holding portions and a plurality of holding portions. The portions are provided on the holder such that the held portion intersects with the first axis and the rotation of the holder is stopped at mutually different positions.
 特許文献2に開示される液位センサでは、アームの先端部を挿入するための複数の挿入孔が設けられ、これらの挿入孔の選択により、回転角度の測定範囲を変更することができる。ベース部材に相当する固定体には、挿入孔に挿入されたアームの先端部の移動を規制する規制部が設けられ、この規制部によって測定範囲が設定されている。しかしながら、特許文献2に開示される構造では、挿入孔ごとに2つの規制部が設けられているため、アームを挿入する挿入孔を変更することにより、測定範囲の両方の測定限界値が変更される。このように測定範囲の両方の測定限界値が変更されると、測定データから回転角度を算出する方法を新たに設定し直す必要がある。これは回転角度を計算する演算部において、演算負荷の増加要因となる。 The liquid level sensor disclosed in Patent Document 2 is provided with a plurality of insertion holes for inserting the tip of the arm, and by selecting these insertion holes, the measurement range of the rotation angle can be changed. The fixed body corresponding to the base member is provided with a regulating part that regulates the movement of the tip of the arm inserted into the insertion hole, and the measurement range is set by this regulating part. However, in the structure disclosed in Patent Document 2, two restriction parts are provided for each insertion hole, so by changing the insertion hole into which the arm is inserted, both measurement limit values of the measurement range are changed. Ru. When both measurement limit values of the measurement range are changed in this way, it is necessary to newly set the method for calculating the rotation angle from the measurement data. This causes an increase in the calculation load in the calculation section that calculates the rotation angle.
 上記の第3態様に係る液位センサのホルダは保持部を複数備えるため、保持部を選択することにより、ホルダのベース部材に対する回転の停止位置を移動させて、特許文献2に開示される液位センサのように、測定範囲を変更することが可能である。ここで、保持部を選択して回転の停止位置を移動させることは、測定範囲の一方の測定限界値のみを変更することになり、測定範囲の他方の測定限界値は、保持部のいずれを選択しても一定である。このように、第3態様に係る液位センサでは、いずれの保持部を選択したときも、測定範囲により設定される2つの測定限界値のうちの1つは共通であるから、検知機構が測定したデータから回転角度(ベース部材に対するホルダの相対位置)を算出する方法を共通とすることができ、回転角度を計算する演算部の演算負荷が高まりにくい。 Since the holder of the liquid level sensor according to the third aspect includes a plurality of holding parts, by selecting a holding part, the rotation stop position of the holder with respect to the base member can be moved, and the liquid level sensor disclosed in Patent Document 2 can be moved. Like position sensors, it is possible to change the measurement range. Here, selecting the holding part and moving the rotation stop position will only change the measurement limit value on one side of the measurement range, and the measurement limit value on the other side of the measurement range will change depending on which of the holding parts. It remains constant regardless of the selection. In this way, in the liquid level sensor according to the third aspect, no matter which holding part is selected, one of the two measurement limit values set by the measurement range is common, so the detection mechanism The method for calculating the rotation angle (the relative position of the holder with respect to the base member) from the data obtained can be made common, and the calculation load on the calculation unit that calculates the rotation angle is less likely to increase.
 本発明がまた別の一態様(第4態様)として提供する液位センサは、フロートを用いて容器内の液位を測定する液位センサであって、容器に接続可能なベース部材と、フロートに接続可能なアームと、アームを保持する保持部を有し、ベース部材に対して第1軸周りに回転可能に取り付けられたホルダと、ホルダの回転を検知する検知機構と、第1軸に沿う軸体と、を備え、軸体は、アームに対する相対位置を設定する連結部を有し、アームを介してホルダと連動する。 A liquid level sensor provided as another aspect (fourth aspect) of the present invention is a liquid level sensor that measures the liquid level in a container using a float, and includes a base member connectable to the container, and a float. a holder having a holding part for holding the arm and rotatably attached to the base member around a first axis; a detection mechanism for detecting rotation of the holder; The shaft body has a connecting portion that sets a relative position with respect to the arm, and is interlocked with the holder via the arm.
 ホルダがベース部材に対して回転することを実現する回転機構が、第1軸に沿った軸体を有する場合がある。この軸体は高い加工精度が必要であり、耐摩耗性などにも優れることが好ましい。上記の第4態様に係る液位センサでは、軸体が他の部材と別部材からなるため、軸体を独立で製造することが可能である。このとき、軸体を他の部材とは異なる部材、例えば金属系材料から構成すれば、軸受構造部分の加工精度や耐久性を高めることが容易となる場合がある。 The rotation mechanism that allows the holder to rotate relative to the base member may have a shaft body along the first axis. This shaft requires high machining accuracy and preferably has excellent wear resistance. In the liquid level sensor according to the fourth aspect described above, since the shaft body is made of a separate member from other members, it is possible to manufacture the shaft body independently. At this time, if the shaft body is made of a member different from other members, for example, a metal-based material, it may be easier to improve the machining accuracy and durability of the bearing structure portion.
 上記の液位センサにおいて、連結部は、第1軸に交差した方向に延びるアームが挿入される挿入孔を有してもよい。この挿入孔は貫通孔であってもよい。挿入孔(貫通孔)におけるアームの受け面は、ホルダの保持部の受け面の延長上に位置することが好ましい場合がある。この場合には、アームを介して、軸体とホルダとを実質的に一体化させることができる。 In the above liquid level sensor, the connecting portion may have an insertion hole into which an arm extending in a direction intersecting the first axis is inserted. This insertion hole may be a through hole. It may be preferable that the receiving surface of the arm in the insertion hole (through hole) is located on an extension of the receiving surface of the holding part of the holder. In this case, the shaft body and the holder can be substantially integrated through the arm.
 上記の第1態様または第2態様に係る液位センサは、第3態様に係る液位センサのように、ホルダは保持部を複数備え、複数の保持部は、いずれについても、被保持部が第1軸と交わり、かつ互いに異なる位置でホルダの回転を停止させるように、ホルダに設けられていてもよい。 The liquid level sensor according to the first aspect or the second aspect described above, like the liquid level sensor according to the third aspect, has a holder including a plurality of holding parts, and each of the plurality of holding parts has a held part. The holder may be provided so as to intersect with the first axis and stop rotation of the holder at mutually different positions.
 上記の各態様に係る液位センサにおいて、ベース部材およびホルダは、ホルダの回転を所定の位置に停止させるストッパを有していてもよい。このストッパは、ベース部材とホルダとが直接的に当接することにより、係止部と同様にホルダの回転を停止させる機能を有する。ストッパの具体例として、ベース部材とホルダとの一方に突起部があり他方に凹部がある場合が挙げられる。いずれか一方に設けられた突起部が他方に当接してもよい。 In the liquid level sensor according to each of the above aspects, the base member and the holder may have a stopper that stops the rotation of the holder at a predetermined position. This stopper has the function of stopping the rotation of the holder in the same manner as the locking part by direct contact between the base member and the holder. A specific example of the stopper is a case where one of the base member and the holder has a protrusion and the other has a recess. A protrusion provided on either one may abut on the other.
 第1態様から第3態様に係る液位センサについては、上記のストッパを有し、ストッパに基づく停止位置が係止部に基づく停止位置とは異なる位置であることが好ましい場合がある。突出部を用いてホルダの回転を停止させる構造とは別に、ベース部材とホルダとの当接によって回転を停止させる構造を有することにより、ホルダの回転の測定範囲を複数設定することが容易になる。 Regarding the liquid level sensor according to the first to third aspects, it may be preferable that the liquid level sensor has the above-mentioned stopper, and that the stop position based on the stopper is different from the stop position based on the locking part. In addition to the structure that uses the protrusion to stop the rotation of the holder, by having a structure that stops the rotation by contact between the base member and the holder, it becomes easy to set multiple measurement ranges for the rotation of the holder. .
 上記のストッパは、ホルダの回転のうち、突出部が係止部から離れる向きの回転を停止させてもよいし、突出部を係止部に当接させる向きの回転を停止させてもよく、双方の回転を停止可能であってもよい。 The stopper may stop the rotation of the holder in the direction in which the protruding part moves away from the locking part, or may stop the rotation in the direction in which the protrusion comes into contact with the locking part, It may be possible to stop the rotation of both.
 突出部が係止部から離れる向きの回転を停止させる場合には、係止部に基づく停止位置とストッパに基づく停止位置との間がホルダの回転可能な範囲となり、この範囲が検知機構における回転角度の測定範囲である。具体的には、回転角度の測定範囲における2つの測定限界値のうち、係止部に基づく停止位置により一方の測定限界値が設定され、ストッパに基づく停止位置により他方の測定限界値が設定される。第3態様に係る液位センサのように、ホルダが保持部を複数有することにより一方の測定限界値が複数設定される場合であっても、ストッパに基づく停止位置により設定される他方の測定限界値は共通となるため、回転角度の演算負荷が高まりにくい。 When the projection part stops rotating away from the locking part, the range in which the holder can rotate is between the stop position based on the lock part and the stop position based on the stopper, and this range is the rotation range in the detection mechanism. This is the angle measurement range. Specifically, among the two measurement limit values in the rotation angle measurement range, one measurement limit value is set by the stop position based on the locking part, and the other measurement limit value is set by the stop position based on the stopper. Ru. Even if the holder has a plurality of holding parts, such as in the liquid level sensor according to the third aspect, so that a plurality of measurement limit values are set for one of the measurement limits, the other measurement limit is set by the stop position based on the stopper. Since the values are common, the calculation load for the rotation angle is less likely to increase.
 突出部を係止部に当接させる向きの回転を停止させる場合には、突出部によるホルダの回転停止とは別に、同じ向きの回転を停止させる構造を有するため、ホルダの回転の測定範囲を複数設定することが容易になる。この場合において、ストッパは、ホルダにおいて径方向に突出する突起部と、係止部とから構成されていてもよい。 When stopping the rotation in the direction in which the protrusion comes into contact with the locking part, the measurement range of the rotation of the holder must be It becomes easy to set multiple settings. In this case, the stopper may include a protrusion projecting in the radial direction of the holder and a locking part.
 上記の液位センサにおいて、検知機構は、ホルダとベース部材との一方に設けられた磁気発生体と、ホルダとベース部材との他方に設けられ磁気発生体からの磁界を測定する磁気測定部と、を備えてもよい。この場合において、磁気測定部は磁気抵抗効果素子を有し、磁気発生体と磁気抵抗効果素子との並び方向は、第1軸に非平行、具体的な一例として第1軸に沿う方向に直交な方向、とすれば、液位センサの第1軸に沿った方向の高さ(厚さ)を小さくすることができる場合がある。 In the above liquid level sensor, the detection mechanism includes a magnetic generating body provided on one side of the holder and the base member, and a magnetic measuring section that measures the magnetic field from the magnetic generating body provided on the other side of the holder and the base member. , may be provided. In this case, the magnetic measurement unit has a magnetoresistive element, and the direction in which the magnetic generator and the magnetoresistive element are arranged is non-parallel to the first axis, and as a specific example, perpendicular to the direction along the first axis. In some cases, the height (thickness) of the liquid level sensor in the direction along the first axis can be reduced.
 上記の磁気測定部は、磁気抵抗効果素子を有するフルブリッジ回路を2つ備えていてもよい。この場合において、2つのフルブリッジ回路について、一方の中点出力が正弦波を出力するときに、他方の中点出力が正弦波から90°位相がずれた正弦波を出力するように、磁気抵抗効果素子の感度軸は設定されることが好ましい。このように設定することにより、出力データから回転角度を求める際に、測定温度の変化に基づく磁気抵抗効果素子の抵抗値の変化がキャンセルされる。それゆえ、検知機構において測定された回転角度は測定温度の影響を受けず、測定精度が低下しにくい。 The above magnetic measurement section may include two full bridge circuits each having a magnetoresistive element. In this case, for two full-bridge circuits, the magnetic resistance is set so that when one midpoint output outputs a sine wave, the other midpoint output outputs a sine wave whose phase is shifted by 90 degrees from the sine wave. Preferably, the sensitivity axis of the effect element is set. With this setting, when determining the rotation angle from the output data, changes in the resistance value of the magnetoresistive element due to changes in the measured temperature are canceled. Therefore, the rotation angle measured by the detection mechanism is not affected by the measurement temperature, and the measurement accuracy is unlikely to deteriorate.
 上記の液位センサにおいて、ホルダは、保持部とは異なる位置に設けられアームを保持するための補助保持部をさらに備えていてもよい。保持部に加えて補助保持部を備えることにより、ホルダによるアームの保持を安定化させることができる。 In the above liquid level sensor, the holder may further include an auxiliary holding part for holding the arm, which is provided at a different position from the holding part. By providing the auxiliary holding part in addition to the holding part, it is possible to stabilize the holding of the arm by the holder.
 この場合において、補助保持部の受け面は、保持部の受け面の延長上から外れて位置することが好ましい。アームは、保持部に保持される部分と補助保持部に保持される部分との間に折れ曲がり部分を有していれば、補助保持部の受け面が保持部の受け面の延長上に位置しない構造に容易に対応することができる。この構造の場合には、アームが保持部に保持される被保持部分において回転(自転)しようとしても、補助保持部がその回転を抑えることになり、アームの回転が生じにくくなる。 In this case, it is preferable that the receiving surface of the auxiliary holding part be located off the extension of the receiving surface of the holding part. If the arm has a bent part between the part held by the holding part and the part held by the auxiliary holding part, the receiving surface of the auxiliary holding part is not located on an extension of the receiving surface of the holding part. structure can be easily accommodated. In the case of this structure, even if the arm attempts to rotate (rotate) at the held portion held by the holding portion, the auxiliary holding portion suppresses the rotation, making it difficult for the arm to rotate.
 上記の液位センサの突出部は、アームにおいて、被保持部を挟んでフロートが接続される側に位置していてもよいし、その反対側に位置していてもよい。後者の場合には、フロートからの振動によりアームが揺動しても、その動きはホルダに保持される被保持部において緩和されるため、突出部側に伝達しにくい。それゆえ、後者の構成の方が、突出部と係止部との接触が安定化しやすく、好ましい場合がある。 The protruding portion of the liquid level sensor described above may be located on the side of the arm to which the float is connected across the held portion, or may be located on the opposite side thereof. In the latter case, even if the arm swings due to vibrations from the float, the movement is relaxed in the held portion held by the holder, and therefore is difficult to be transmitted to the protruding portion side. Therefore, the latter configuration is more likely to stabilize the contact between the protruding part and the locking part, and may be preferable.
 上記の液位センサにおいて、検知機構の具体的な構成は限定されない。具体例の一つに、ホルダとベース部材との一方に設けられた抵抗体と、ホルダとベース部材との他方に設けられ抵抗体に接触する摺動接点と、を備える場合が挙げられる。他の具体例として、ホルダとベース部材との一方に設けられた発信器と、ホルダとベース部材との他方に設けられ発信器からの信号を受ける受信器と、を備える場合や、ホルダとベース部材との一方に設けられた発信器および当該発信器からの信号を受信する受信器と、ホルダとベース部材との他方に設けられ発信器からの信号を受信器へと反射する反射部と、を備える場合が挙げられる。これらの場合における信号は、光や電波などの電磁波からなる信号でもよいし、音響信号であってもよい。 In the above liquid level sensor, the specific configuration of the detection mechanism is not limited. One specific example includes a case in which a resistor is provided on one of the holder and the base member, and a sliding contact is provided on the other of the holder and the base member and contacts the resistor. Other specific examples include a case where the holder and the base member are provided with a transmitter provided on one side, and a receiver provided on the other side of the holder and the base member to receive a signal from the transmitter, or a case where the holder and the base member are provided with a transmitter that receives a signal from the transmitter. a transmitter provided on one side of the holder and a receiver that receives a signal from the transmitter; and a reflecting section that is provided on the other side of the holder and the base member and reflects the signal from the transmitter to the receiver; One example is the case where the The signal in these cases may be a signal made of electromagnetic waves such as light or radio waves, or may be an acoustic signal.
 本発明によれば、容器の振動などの外乱の影響を受けにくい構造を有する液位センサが提供される。 According to the present invention, a liquid level sensor is provided that has a structure that is less susceptible to disturbances such as vibrations of a container.
本発明の第1実施形態に係る液位センサの第1例を示す説明図(斜視図)である。FIG. 1 is an explanatory diagram (perspective view) showing a first example of a liquid level sensor according to a first embodiment of the present invention. 第1実施形態の第1例に係る液位センサについて、Z1-Z2方向に分解した説明図(斜視図)である。FIG. 2 is an explanatory diagram (perspective view) disassembled in the Z1-Z2 direction of the liquid level sensor according to the first example of the first embodiment. 図1のA-A’線での断面(YZ平面)を示す説明図である。2 is an explanatory diagram showing a cross section (YZ plane) taken along line A-A' in FIG. 1. FIG. 第1実施形態に係る液位センサのホルダの説明図(斜視図)である。It is an explanatory view (perspective view) of a holder of a liquid level sensor concerning a 1st embodiment. 第1実施形態に係る液位センサのホルダの説明図(斜視図)である。It is an explanatory view (perspective view) of a holder of a liquid level sensor concerning a 1st embodiment. 第1実施形態に係る液位センサのホルダの説明図(側面図)である。It is an explanatory view (side view) of a holder of a liquid level sensor concerning a 1st embodiment. 第1実施形態の第1例に係る液位センサについて、ホルダにアームが保持された状態を示す説明図(斜視図)である。It is an explanatory view (perspective view) showing a state where an arm is held by a holder about a liquid level sensor concerning a 1st example of a 1st embodiment. 図7のB-B’線での断面(VZ平面)を示す説明図である。8 is an explanatory diagram showing a cross section (VZ plane) taken along line B-B' in FIG. 7. FIG. 図7のC-C’線での断面(VW平面)を示す説明図である。8 is an explanatory diagram showing a cross section (VW plane) taken along line CC' in FIG. 7. FIG. 第1実施形態の第1例に係る液位センサの動作説明図(平面図)である。FIG. 2 is an explanatory diagram (plan view) of the operation of the liquid level sensor according to the first example of the first embodiment. 第1実施形態の第1例に係る液位センサの動作説明図(斜視図)である。FIG. 2 is an explanatory diagram (perspective view) of the operation of the liquid level sensor according to the first example of the first embodiment. 第1実施形態の第1例に係る液位センサの係止部の説明図(斜視図)である。It is an explanatory view (perspective view) of a locking part of a liquid level sensor concerning a 1st example of a 1st embodiment. 第1実施形態の第1例に係る液位センサの係止部の説明図(側面図)である。It is an explanatory view (side view) of a locking part of a liquid level sensor concerning a 1st example of a 1st embodiment. 従来技術に係る構造を有する液位センサの係止部の正常時の説明図である。FIG. 2 is an explanatory diagram of a locking portion of a liquid level sensor having a structure according to the prior art in a normal state. 従来技術に係る構造を有する液位センサの係止部の首振り現象発生時の説明図である。FIG. 2 is an explanatory diagram when a swinging phenomenon occurs in a locking portion of a liquid level sensor having a structure according to the prior art. 第1実施形態の第2例に係る液位センサの動作説明図(平面図)である。FIG. 7 is an explanatory diagram (plan view) of the operation of the liquid level sensor according to the second example of the first embodiment. 第1実施形態の第3例に係る液位センサの動作説明図(平面図)である。FIG. 7 is an explanatory diagram (plan view) of the operation of the liquid level sensor according to the third example of the first embodiment. 第1実施形態に係る液位センサの磁気測定部を説明する回路図である。It is a circuit diagram explaining the magnetism measurement part of the liquid level sensor concerning a 1st embodiment. 第1実施形態に係る液位センサの磁気測定部から出力されるデータの説明図である。FIG. 3 is an explanatory diagram of data output from the magnetic measurement section of the liquid level sensor according to the first embodiment. 第1実施形態に係る液位センサの磁気発生体と磁気測定部との位置関係を説明する図である。FIG. 3 is a diagram illustrating the positional relationship between a magnetic generator and a magnetic measuring section of the liquid level sensor according to the first embodiment. 第1実施形態に係る液位センサにおける磁気発生体から測定回路に到達する磁界の角度とホルダの回転角との関係を示すグラフである。It is a graph showing the relationship between the angle of the magnetic field reaching the measurement circuit from the magnetic generator and the rotation angle of the holder in the liquid level sensor according to the first embodiment. 第1実施形態に係る液位センサにおける磁気発生体からの磁界の角度と検知機構の測定範囲との関係を示すグラフである。It is a graph showing the relationship between the angle of the magnetic field from the magnetic generator and the measurement range of the detection mechanism in the liquid level sensor according to the first embodiment. 本発明の第2実施形態に係る液位センサの第1例を示す説明図(斜視図)である。It is an explanatory view (perspective view) showing the 1st example of the liquid level sensor concerning a 2nd embodiment of the present invention. 第2実施形態の第1例に係る液位センサの動作説明図(平面図)である。FIG. 6 is an explanatory diagram (plan view) of the operation of the liquid level sensor according to the first example of the second embodiment. 第2実施形態の第2例に係る液位センサの動作説明図(平面図)である。FIG. 7 is an operation explanatory diagram (plan view) of a liquid level sensor according to a second example of the second embodiment. 第2実施形態の第3例に係る液位センサの動作説明図(平面図)である。FIG. 7 is an operation explanatory diagram (plan view) of a liquid level sensor according to a third example of the second embodiment. 第2実施形態の第4例に係る液位センサの動作説明図(平面図)である。FIG. 7 is an explanatory diagram (plan view) of the operation of a liquid level sensor according to a fourth example of the second embodiment. 第2実施形態の第4例に係る液位センサの動作説明図(斜視図)である。FIG. 7 is an explanatory diagram (perspective view) of the operation of a liquid level sensor according to a fourth example of the second embodiment.
 以下、図面を参照しつつ本発明の実施形態について説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same members are given the same reference numerals, and the description of the members that have been described once will be omitted as appropriate.
(第1実施形態)
[第1例]
 図1は、本発明の第1実施形態に係る液位センサの第1例を示す説明図(斜視図)である。図2は、第1実施形態の第1例に係る液位センサについて、Z1-Z2方向に分解した説明図(斜視図)である。図3は、図1のA-A’線での断面(YZ平面)を示す説明図である。
(First embodiment)
[First example]
FIG. 1 is an explanatory diagram (perspective view) showing a first example of a liquid level sensor according to a first embodiment of the present invention. FIG. 2 is an explanatory diagram (perspective view) of the liquid level sensor according to the first example of the first embodiment, exploded in the Z1-Z2 direction. FIG. 3 is an explanatory diagram showing a cross section (YZ plane) taken along line AA' in FIG.
 第1実施形態の第1例に係る液位センサ100は、図示しないフロートを用いて容器内の液位を測定するためのものである。液位センサ100は、容器(図示せず)に接続可能なベース部材10と、フロートに接続可能なアーム20と、アーム20の被保持部222を保持する保持部32を有し、ベース部材10に対して第1軸AX1の周りに回転可能に取り付けられたホルダ30と、ホルダ30の回転を検知する検知機構と、を備える。容器内の液位の変化に基づきフロートが変位すると、フロートに接続されたアーム20も変位する。アーム20が変位すると、アーム20を保持するホルダ30が第1軸AX1の周りに回転する。ホルダ30の回転範囲に起点と終点とを設けて回転可能範囲を設定し、この回転可能範囲におけるホルダ30の回転角度を検知機構で検出することにより、液位が測定される。 The liquid level sensor 100 according to the first example of the first embodiment is for measuring the liquid level in a container using a float (not shown). The liquid level sensor 100 has a base member 10 that can be connected to a container (not shown), an arm 20 that can be connected to a float, and a holding part 32 that holds a held part 222 of the arm 20. The device includes a holder 30 rotatably attached around a first axis AX1, and a detection mechanism that detects rotation of the holder 30. When the float is displaced based on a change in the liquid level within the container, the arm 20 connected to the float is also displaced. When the arm 20 is displaced, the holder 30 that holds the arm 20 rotates around the first axis AX1. The liquid level is measured by setting a rotatable range by providing a starting point and an end point in the rotation range of the holder 30, and detecting the rotation angle of the holder 30 in this rotatable range with a detection mechanism.
 ベース部材10は、第1軸AX1が通り、ホルダ30が配置されるホルダ受け部12と、ホルダ受け部12のY1-Y2方向Y1側に位置し、箱形のベース本体部11と、ホルダ受け部12のY1-Y2方向Y2側に位置し、容器に対して固定する容器接続部13とを備える。 The base member 10 includes a holder receiving part 12 through which the first axis AX1 passes and where the holder 30 is arranged, a box-shaped base main body part 11, and a holder receiving part 11 located on the Y1 side of the holder receiving part 12 in the Y1-Y2 direction. The container connecting portion 13 is located on the Y2 side of the portion 12 in the Y1-Y2 direction and is fixed to the container.
 ホルダ受け部12はXY平面に沿う平板状の部分を有し、この部分のZ1-Z2方向Z1側にホルダ30が位置する。ホルダ受け部12には、ホルダ30と連動する軸体40を貫通させるベース貫通孔121が設けられている。 The holder receiving portion 12 has a flat plate-shaped portion along the XY plane, and the holder 30 is located on the Z1 side of this portion in the Z1-Z2 direction. The holder receiving portion 12 is provided with a base through hole 121 through which the shaft 40 interlocking with the holder 30 passes.
 箱状のベース本体部11は内部が中空であり、その内部に基板60が配置され、基板60には磁気検出部61および磁気検出部61の制御装置62が実装される。被覆部72に覆われた金属配線71を有する配線70が基板60に接続され、配線70から磁気検出部61で検出され制御装置62で処理された測定データが外部へ出力される。 The box-shaped base main body part 11 is hollow inside, and a board 60 is disposed inside it, and a magnetic detection section 61 and a control device 62 for the magnetic detection section 61 are mounted on the board 60. A wiring 70 having a metal wiring 71 covered with a covering part 72 is connected to the substrate 60, and measurement data detected by the magnetic detection part 61 and processed by the control device 62 is output from the wiring 70 to the outside.
 磁気検出部61は、ホルダ30の内部に収納される磁気発生体50と、第1軸AX1に非平行、本例では側方(具体的には、第1軸AX1に沿うZ1-Z2方向に直交するY1-Y2方向Y1側)に位置するように配置される。このため、液位センサ100の第1軸AX1方向の長さ(厚さ)を薄くすることが実現されている。磁気検出部61が磁気抵抗効果素子を有する場合には、このような配置が容易となる場合がある。磁気検出部61の検出方法の詳細は後述する。 The magnetic detection unit 61 is connected to the magnetic generating body 50 housed inside the holder 30 in a direction non-parallel to the first axis AX1, in this example, laterally (specifically, in the Z1-Z2 direction along the first axis AX1). They are arranged so as to be located on the Y1 side in the orthogonal Y1-Y2 direction. Therefore, it is possible to reduce the length (thickness) of the liquid level sensor 100 in the first axis AX1 direction. When the magnetic detection section 61 includes a magnetoresistive element, such an arrangement may be facilitated. Details of the detection method of the magnetic detection section 61 will be described later.
 容器接続部13の具体的な構造は限定されない。容器に対してねじ止めされるための孔を有していてもよいし、容器に対して接着されるための接着面を有していてもよい。 The specific structure of the container connection part 13 is not limited. It may have a hole for being screwed to the container, or it may have an adhesive surface for being adhered to the container.
 アーム20は、本実施形態では、断面形状が円の棒状の部材から加工されたものであり、屈曲部23を挟んで、フロートが接続される第1アーム部21と、ホルダ30に保持される部分である被保持部222が位置する第2アーム部22とを備える。本実施形態では、第2アーム部22は特段の折れ曲がり部を有さず、一定の方向に中心軸AX2が延びる直軸体である。第2アーム部22は、ホルダ30から突出する突出部223を有する。 In this embodiment, the arm 20 is machined from a rod-shaped member with a circular cross-sectional shape, and is held by the first arm part 21 to which the float is connected and the holder 30 with the bent part 23 in between. The second arm portion 22 is provided with a second arm portion 22 on which a held portion 222 is located. In this embodiment, the second arm portion 22 does not have any particular bent portion, and is a straight shaft body whose central axis AX2 extends in a fixed direction. The second arm portion 22 has a protrusion 223 that protrudes from the holder 30.
 突出部223は、ベース本体部11に設けられた係止部111に係止可能とされる。突出部223に連設される被保持部222においてアーム20はホルダ30に保持されているため、ベース部材10の係止部111は、突出部223を係止することにより、ホルダ30の回転を所定の位置で停止させることができる。 The protruding portion 223 can be locked to the locking portion 111 provided on the base body portion 11. Since the arm 20 is held by the holder 30 in the held part 222 connected to the protrusion 223, the locking part 111 of the base member 10 prevents the rotation of the holder 30 by locking the protrusion 223. It can be stopped at a predetermined position.
 本明細書において、ホルダ30の第1軸AX1周りの回転における、突出部223を係止部111に当接させる向きの回転方向、本例では反時計回りを「第1回転方向」といい、この反対向きの回転方向、すなわち、突出部223が係止部111から離れる向きの回転(本例では時計回り)を「第2回転方向」という。ホルダ30から突出する突出部223により定義される停止位置により、検知機構の回転範囲の第1回転方向の測定限界値が設定される。 In this specification, the rotation direction of the holder 30 around the first axis AX1 in which the protruding portion 223 is brought into contact with the locking portion 111, counterclockwise in this example, is referred to as the "first rotation direction", This opposite rotational direction, that is, the rotation in which the protrusion 223 moves away from the locking portion 111 (clockwise in this example) is referred to as a "second rotational direction." The stop position defined by the protrusion 223 protruding from the holder 30 sets a measurement limit value in the first rotation direction of the rotation range of the detection mechanism.
 ホルダ30は、その法線がZ1-Z2方向に延びる底面を有するリング状の概形を有するホルダ本体部301を有する。ホルダ本体部301はZ1-Z2方向Z2側に開口する中空を有し、その内部に磁気発生体50が収納されている。本例において、磁気発生体50は、リング形状の永久磁石であり、径方向に磁化されている。磁気発生体50である永久磁石は、ホルダ本体部301に対する第1軸AX1周りの相対位置が固定されるように、面取り部51が設けられている。 The holder 30 has a holder main body 301 having a ring-shaped outline and a bottom surface whose normal line extends in the Z1-Z2 direction. The holder main body 301 has a hollow opening on the Z2 side in the Z1-Z2 direction, and the magnetic generator 50 is housed inside the hollow. In this example, the magnetism generator 50 is a ring-shaped permanent magnet and is magnetized in the radial direction. The permanent magnet serving as the magnetic field generating body 50 is provided with a chamfered portion 51 so that its relative position with respect to the holder main body portion 301 around the first axis AX1 is fixed.
 以下、図4から図6も参照しつつ、ホルダ30および軸体40の詳細構造について説明する。図4および図5は、第1実施形態に係る液位センサのホルダの説明図(斜視図)である。図6は、第1実施形態に係る液位センサのホルダの説明図(側面図)である。なお、図6に示したV1-V2方向についてはその定義を後述する。 Hereinafter, the detailed structure of the holder 30 and the shaft body 40 will be described with reference to FIGS. 4 to 6. 4 and 5 are explanatory views (perspective views) of the holder of the liquid level sensor according to the first embodiment. FIG. 6 is an explanatory diagram (side view) of the holder of the liquid level sensor according to the first embodiment. Note that the definition of the V1-V2 direction shown in FIG. 6 will be described later.
 ホルダ30は、軸体40においてZ1-Z2方向に延在する軸本体41を挿通させるホルダ貫通孔31を備える。軸体40において軸本体41のZ1-Z2方向Z2側には、軸本体41よりも外径が大きい基底部42が設けられており、この基底部42がベース部材10のホルダ受け部12に当接する。これにより、軸体40は、ベース部材10に対して、X1-X2方向、Y1-Y2方向およびZ1-Z2方向の相対位置が規定されつつ、第1軸AX1周りの回転が可能となる。この軸体40の第1軸AX1周りの回転において、ベース貫通孔121の内側面が軸体40の外側面と摺動する。 The holder 30 includes a holder through hole 31 through which a shaft body 41 extending in the Z1-Z2 direction is inserted in the shaft body 40. A base portion 42 having a larger outer diameter than the shaft body 41 is provided on the Z2 side of the shaft body 41 in the Z1-Z2 direction in the shaft body 40, and this base portion 42 contacts the holder receiving portion 12 of the base member 10. come into contact with Thereby, the shaft body 40 can rotate around the first axis AX1 while its relative position in the X1-X2 direction, Y1-Y2 direction, and Z1-Z2 direction is defined with respect to the base member 10. During this rotation of the shaft body 40 around the first axis AX1, the inner surface of the base through hole 121 slides on the outer surface of the shaft body 40.
 軸体40における軸本体41のZ1-Z2方向Z1側には、第1軸AX1に交差する方向に貫通し、アーム20が挿入される挿入孔である軸体貫通孔411が設けられている。本例では、軸体貫通孔411の貫通軸はXY平面の面内方向に沿う。軸体貫通孔411は、アーム20と軸体40とを連結する連結部であり、アーム20の第2アーム部22が軸体貫通孔411を挿通することにより、軸体40のアーム20に対する相対位置が設定される。本例では、軸体貫通孔411の穴径はアーム20の軸径に合わせて設定されているため、第2アーム部22の軸体当接部221は軸体貫通孔411と嵌合し、これにより、軸体40のアーム20に対する相対位置が固定される。また、本例では、軸体貫通孔411の第1軸AX1に沿った方向(Z1-Z2方向)の位置(高さ)は、ホルダ30の第1保持部321に設けられた第1ホルダ挿通孔321hの高さと一致しているため、アーム20の第2アーム部22を挿通したときに、第2アーム部22はホルダ30に軸体40を介して抜け止めされる。これにより、アーム20はホルダ30および軸体40と一体化し、ベース部材10に対して安定的に連動することが実現されている。 A shaft through hole 411, which is an insertion hole into which the arm 20 is inserted, is provided on the Z1 side of the shaft body 41 in the shaft 40 in the direction intersecting the first axis AX1. In this example, the through axis of the shaft body through hole 411 is along the in-plane direction of the XY plane. The shaft body through hole 411 is a connecting portion that connects the arm 20 and the shaft body 40 , and when the second arm portion 22 of the arm 20 passes through the shaft body through hole 411 , the shaft body 40 is fixed relative to the arm 20 . The position is set. In this example, the hole diameter of the shaft body through hole 411 is set according to the shaft diameter of the arm 20, so the shaft body abutting portion 221 of the second arm portion 22 fits into the shaft body through hole 411, Thereby, the relative position of the shaft body 40 with respect to the arm 20 is fixed. In addition, in this example, the position (height) of the shaft body through hole 411 in the direction along the first axis AX1 (Z1-Z2 direction) is the first holder insertion hole provided in the first holding part 321 of the holder 30. Since the height matches the height of the hole 321h, when the second arm part 22 of the arm 20 is inserted, the second arm part 22 is prevented from coming off by the holder 30 via the shaft body 40. Thereby, the arm 20 is integrated with the holder 30 and the shaft body 40, and stably interlocks with the base member 10.
 そして、アーム20は、被保持部222において、ホルダ30の保持部32に設けられた貫通孔に嵌挿するため、軸体40は、アーム20を介してホルダ30と連動する。具体的には、アーム20の動きに基づき、ベース部材10に対して第1軸AX1周りの回転が可能な軸体40が第1軸AX1周りに回転すると、アーム20を介してホルダ30は連動し、第1軸AX1周りに回転する。 Since the arm 20 is fitted into the through hole provided in the holding part 32 of the holder 30 in the held part 222, the shaft body 40 interlocks with the holder 30 via the arm 20. Specifically, when the shaft body 40, which can rotate around the first axis AX1 with respect to the base member 10, rotates around the first axis AX1 based on the movement of the arm 20, the holder 30 is interlocked via the arm 20. and rotates around the first axis AX1.
 ホルダ本体部301のZ1-Z2方向Z1側に設けられる保持部32は、本実施形態において、第1ホルダ挿通孔321hを有する第1保持部321および第2ホルダ挿通孔322hを有する第2保持部322からなり、いずれの保持部(第1保持部321、第2保持部322)も、アーム20の被保持部222が第1軸AX1と交わるように設定されている。 In this embodiment, the holding part 32 provided on the Z1 side in the Z1-Z2 direction of the holder main body part 301 is a first holding part 321 having a first holder insertion hole 321h and a second holding part having a second holder insertion hole 322h. 322, and both of the holding parts (first holding part 321, second holding part 322) are set so that the held part 222 of the arm 20 intersects with the first axis AX1.
 また、それぞれの保持部32(第1保持部321、第2保持部322)に基づく停止位置は、互いに異なるように設定されている。具体的には、第1保持部321を基準にすると、第2保持部322は突出部223が第2回転方向(時計回り)30°ずれた位置でホルダ30から突出するように設定されているため、検知機構の回転角度の計測範囲の第1回転方向の計測限界値も30°大きくなる。 Further, the stop positions based on the respective holding parts 32 (first holding part 321, second holding part 322) are set to be different from each other. Specifically, with respect to the first holding part 321, the second holding part 322 is set so that the protruding part 223 protrudes from the holder 30 at a position shifted by 30 degrees in the second rotation direction (clockwise). Therefore, the measurement limit value in the first rotation direction of the measurement range of the rotation angle of the detection mechanism also increases by 30 degrees.
 このように、ホルダ30にアーム20の保持構造が複数設けられていることにより、アーム20の形状を選択することで、回転角度の測定範囲を複数設定することができる。この点については、本実施例の他の例として後述する。 In this way, by providing the holder 30 with a plurality of holding structures for the arm 20, by selecting the shape of the arm 20, it is possible to set a plurality of rotation angle measurement ranges. This point will be described later as another example of this embodiment.
 以下、図7から図9も参照しつつ、ホルダ30とアーム20との配置について詳細に説明する。図7は、第1実施形態の第1例に係る液位センサについて、ホルダにアームが保持された状態を示す説明図(斜視図)である。図8は、図7のB-B’線での断面(VZ平面)を示す説明図である。図9は、図7のC-C’線での断面(VW平面)を示す説明図である。 Hereinafter, the arrangement of the holder 30 and the arm 20 will be described in detail with reference to FIGS. 7 to 9. FIG. 7 is an explanatory diagram (perspective view) showing a state in which an arm is held by a holder regarding the liquid level sensor according to the first example of the first embodiment. FIG. 8 is an explanatory diagram showing a cross section (VZ plane) taken along line B-B' in FIG. FIG. 9 is an explanatory diagram showing a cross section (VW plane) taken along line C-C' in FIG.
 前述のように、第2アーム部22は、保持部32(本例では第1保持部321)に保持される被保持部222と、ホルダ30から突出する突出部223と、屈曲部23と被保持部222との間に、軸体貫通孔411を挿通する軸体当接部221とを有する。ここで、ホルダ30が第1回転方向(反時計回り)に回転したときに、第1保持部321の第1ホルダ挿通孔321hの内部で被保持部222を受け止める面を、第1保持部321の受け面(第1保持受け面321A)と定義する。そして、第1保持受け面321Aがアーム20の第2アーム部22に沿って延在する方向を保持部延在方向と定義し、図ではV1-V2方向で示す。本例では、一具体例として、第2アーム部22は断面形状が同一円の棒状の形状を有し、その中心軸AX2はXY平面の面内方向に含まれるため、保持部延在方向を示すV1-V2方向は、XY平面の面内方向に含まれ、第2アーム部22の中心軸AX2はV1-V2方向に沿う。なお、XY平面においてV1-V2方向に直交する方向をW1-W2方向という。 As described above, the second arm portion 22 includes the held portion 222 held by the holding portion 32 (in this example, the first holding portion 321), the protruding portion 223 protruding from the holder 30, the bent portion 23, and the held portion 222, which is held by the holding portion 32 (in this example, the first holding portion 321). A shaft contact portion 221 that is inserted through the shaft through hole 411 is provided between the holding portion 222 and the shaft contact portion 221 . Here, when the holder 30 rotates in the first rotation direction (counterclockwise), the surface that receives the held part 222 inside the first holder insertion hole 321h of the first holding part 321 is is defined as the receiving surface (first holding and receiving surface 321A). The direction in which the first holding and receiving surface 321A extends along the second arm portion 22 of the arm 20 is defined as the holding portion extending direction, and is shown as the V1-V2 direction in the figure. In this example, as a specific example, the second arm portion 22 has a rod-like shape with the same circular cross-sectional shape, and its central axis AX2 is included in the in-plane direction of the XY plane. The V1-V2 direction shown is included in the in-plane direction of the XY plane, and the central axis AX2 of the second arm portion 22 is along the V1-V2 direction. Note that the direction perpendicular to the V1-V2 direction on the XY plane is referred to as the W1-W2 direction.
 本例において、ホルダ30から突出する突出部223の突出方向は、保持部延在方向(V1-V2方向)に沿う。突出部223が保持部延在方向に沿うことにより、容器の振動が第1アーム部21を伝わって第2アーム部22に至ったことに起因して第2アーム部22がホルダ30に対して相対位置ずれを生じたとしても、その位置ずれに対応して、突出部223は係止部111に対して変位するため、ホルダ30の回転が生じにくくなる。 In this example, the protrusion direction of the protrusion 223 protruding from the holder 30 is along the holding part extension direction (V1-V2 direction). Since the protruding portion 223 is along the extending direction of the holding portion, the vibration of the container is transmitted through the first arm portion 21 and reaches the second arm portion 22, and the second arm portion 22 is caused to move against the holder 30. Even if a relative positional shift occurs, the protruding portion 223 is displaced relative to the locking portion 111 in response to the positional shift, making it difficult for the holder 30 to rotate.
 すなわち、容器の振動に起因するホルダ30の回転が生じにくいため、この振動に基づく回転角度の計測範囲のずれなどが生じにくい。なお、ホルダ30と連動する軸体40が嵌合保持されるベース部材10も容器接続部13において容器に対して固定されるため、この経路での容器の振動がホルダ30に伝達される。しかしながら、この振動は、容器の振動がその内部の液体の液位変動をもたらし、この液位変動をフロートが拾うことによりアーム20に伝達される振動とは同一でないため、ホルダ30とアーム20との間には常に振動に基づく外力が付与されている。この外力が第2アーム部22とホルダ30との相対位置ずれをもたらしうる。 That is, since rotation of the holder 30 due to vibration of the container is less likely to occur, deviations in the measurement range of the rotation angle due to this vibration are less likely to occur. Note that since the base member 10 on which the shaft body 40 that interlocks with the holder 30 is fitted and held is also fixed to the container at the container connecting portion 13, vibrations of the container along this path are transmitted to the holder 30. However, this vibration is not the same as the vibration that is transmitted to the arm 20 when the vibration of the container causes a fluctuation in the liquid level inside the container and the float picks up this fluctuation in the liquid level. An external force based on vibration is always applied between them. This external force may cause a relative positional shift between the second arm portion 22 and the holder 30.
 図10は、第1実施形態の第1例に係る液位センサの動作説明図(平面図)である。図11は、第1実施形態の第1例に係る液位センサの動作説明図(斜視図)である。図10および図11では、ベース本体部11のX1-X2方向X1側に設けられた係止部111に突出部223が係止しているため、ホルダ30は第1回転方向の回転の限界位置である停止位置にある。この停止位置により、検知機構の回転範囲の第1回転方向の測定限界値が設定される。 FIG. 10 is an operation explanatory diagram (plan view) of the liquid level sensor according to the first example of the first embodiment. FIG. 11 is an explanatory diagram (perspective view) of the operation of the liquid level sensor according to the first example of the first embodiment. In FIGS. 10 and 11, since the protruding part 223 is locked to the locking part 111 provided on the X1 side in the X1-X2 direction of the base body part 11, the holder 30 is at the rotation limit position in the first rotation direction. It is in a stopping position. This stop position sets a measurement limit value in the first rotation direction of the rotation range of the detection mechanism.
 このようにホルダ30が停止位置にあるとき、係止部111の受け面のうちZ1-Z2方向Z1側に位置する面(第1係止受け面111A)、すなわち、係止部111における突出部223との接触面は、ホルダ30の第1保持部321の受け面(第1保持受け面321A)の延在方向(保持部延在方向、V1-V2方向)に沿って位置する。本例のように、第2アーム部22の被保持部222が円筒状である場合には、第1保持受け面321Aは環状体の内側面の一部からなり、その環状体の回転軸が保持部延在方向(V1-V2方向)となる。一方、第1係止受け面111Aは平面状であって、保持部延在方向(V1-V2方向)を面内方向の一つとする。したがって、第1係止受け面111Aは第1保持受け面321Aの延在方向(V1-V2方向)に沿って位置している。 When the holder 30 is in the stop position as described above, the surface of the receiving surface of the locking portion 111 located on the Z1 side in the Z1-Z2 direction (first locking receiving surface 111A), that is, the protruding portion of the locking portion 111 The contact surface with 223 is located along the extending direction of the receiving surface (first holding receiving surface 321A) of the first holding part 321 of the holder 30 (holding part extending direction, V1-V2 direction). As in this example, when the held portion 222 of the second arm portion 22 is cylindrical, the first holding and receiving surface 321A is a part of the inner surface of the annular body, and the rotation axis of the annular body is This is the extending direction of the holding portion (V1-V2 direction). On the other hand, the first locking receiving surface 111A has a planar shape, and the holding portion extending direction (V1-V2 direction) is one of the in-plane directions. Therefore, the first locking and receiving surface 111A is located along the extending direction (V1-V2 direction) of the first holding and receiving surface 321A.
 それゆえ、容器の振動が第1アーム部21を伝わって第2アーム部22に至ったことに起因して第2アーム部22がホルダ30に対して相対位置ずれを生じたとしても、ホルダ30の回転を生じさせるような変位が突出部223に生じにくい。例えば、被保持部222が第1保持受け面321Aに対してV1-V2方向に移動する位置ずれが生じると、突出部223は第1係止受け面111Aに対してV1-V2方向に移動させるが、このように突出部223が変位しても、ホルダ30には、第1軸AX1周りに回転させる動きが生じない。また、棒状の第2アーム部22がその中心軸AX2周りに回転(自転)して、被保持部222が第1保持受け面321Aに対して摺動すると、突出部223にも第1係止受け面111Aに対して摺動する変位が生じるが、この場合の突出部223の変位も、第1軸AX1周りに回転させる動きをホルダ30に生じさせない。なお、本例では第2アーム部22は断面が同一円の棒状であるから、第1保持受け面321Aの延長上に第1係止受け面111Aは位置する。この関係は、第2アーム部22が棒状であって、被保持部222の断面と突出部223の断面とが円に限らず一定の形状を有する場合に成立する。 Therefore, even if the second arm part 22 is displaced relative to the holder 30 due to the vibration of the container being transmitted through the first arm part 21 and reaching the second arm part 22, the holder 30 Displacement that would cause rotation of the protrusion 223 is unlikely to occur. For example, when a displacement occurs in which the held portion 222 moves in the V1-V2 direction with respect to the first holding and receiving surface 321A, the protrusion 223 moves in the V1-V2 direction with respect to the first locking and receiving surface 111A. However, even if the protrusion 223 is displaced in this way, the holder 30 is not rotated around the first axis AX1. Further, when the rod-shaped second arm portion 22 rotates (rotates) around its central axis AX2 and the held portion 222 slides with respect to the first holding and receiving surface 321A, the protruding portion 223 is also engaged with the first locking portion. Although a sliding displacement occurs with respect to the receiving surface 111A, the displacement of the protruding portion 223 in this case also does not cause the holder 30 to rotate around the first axis AX1. In this example, since the second arm portion 22 is rod-shaped with the same circular cross section, the first locking and receiving surface 111A is located on an extension of the first holding and receiving surface 321A. This relationship is established when the second arm portion 22 is rod-shaped and the cross section of the held portion 222 and the cross section of the protruding portion 223 are not limited to a circle but have a certain shape.
 以下、図12から図15を用いて、従来技術と対比しつつ、本例に係る係止部について詳しく説明する。図12は、第1実施形態の第1例に係る液位センサの係止部の説明図(斜視図)である。図13は、第1実施形態の第1例に係る液位センサの係止部の説明図(側面図)である。なお、図13は、保持部延在方向(V1-V2方向)から見た図となっている。本例では、一具体例として、ホルダ30の第1保持受け面321Aと第2アーム部22の突出部223とは、第1軸AXに沿った方向(Z1-Z2方向)の位置(高さ)が等しい。このため、棒状の第2アーム部22がその中心軸AX2周りに回転しても、ホルダ30の第1保持受け面321Aとベース本体部11の係止部111の第1係止受け面111Aとは高さが等しく、突出部223の係止部111に対する相対位置は変わらない。それゆえ、ホルダ30の第1軸AX1周りの回転は生じない。 Hereinafter, the locking portion according to this example will be explained in detail using FIGS. 12 to 15 in comparison with the conventional technology. FIG. 12 is an explanatory diagram (perspective view) of the locking portion of the liquid level sensor according to the first example of the first embodiment. FIG. 13 is an explanatory diagram (side view) of the locking portion of the liquid level sensor according to the first example of the first embodiment. Note that FIG. 13 is a view seen from the extending direction of the holding portion (V1-V2 direction). In this example, as a specific example, the first holding and receiving surface 321A of the holder 30 and the protruding part 223 of the second arm part 22 are located at different positions (heights) in the direction along the first axis AX (Z1-Z2 direction). ) are equal. Therefore, even if the rod-shaped second arm portion 22 rotates around its central axis AX2, the first holding and receiving surface 321A of the holder 30 and the first locking and receiving surface 111A of the locking portion 111 of the base body portion 11 have the same height, and the relative position of the protruding portion 223 to the locking portion 111 remains unchanged. Therefore, rotation of the holder 30 around the first axis AX1 does not occur.
 図14は、従来技術に係る構造を有する液位センサの係止部の正常時の説明図である。図15は、従来技術に係る構造を有する液位センサの係止部の首振り現象発生時の説明図である。従来技術に係る構造を有する液位センサの一例である特許文献2に開示される液面検出装置では、固定体(本例のベース部材10に相当する。)に回転可能に支持された回転体(本例のホルダ30に相当する。)の回転角度を計測することにより、液位が測定される。この液面検出装置では、液位の測定範囲は次のように設定される。フロートに接続されたアームは回転体に保持され、アームのフロートが接続されていない方の端部は、回転体から突出する突出部を有する。この突出部が固定部の規制部(本例の係止部111に相当する。)に当接することにより回転体の回転が停止した位置が、測定範囲の限界位置となる。 FIG. 14 is an explanatory diagram of a locking portion of a liquid level sensor having a structure according to the prior art in a normal state. FIG. 15 is an explanatory diagram when a swinging phenomenon occurs in a locking portion of a liquid level sensor having a structure according to the prior art. In the liquid level detection device disclosed in Patent Document 2, which is an example of a liquid level sensor having a structure according to the prior art, a rotating body rotatably supported by a fixed body (corresponding to the base member 10 of this example) is used. The liquid level is measured by measuring the rotation angle of the holder 30 (corresponding to the holder 30 in this example). In this liquid level detection device, the liquid level measurement range is set as follows. The arm connected to the float is held by a rotating body, and the end of the arm to which the float is not connected has a protrusion that projects from the rotating body. The position where the rotation of the rotating body stops when this protrusion comes into contact with the restriction part (corresponding to the locking part 111 in this example) of the fixed part becomes the limit position of the measurement range.
 特許文献2の液面検出装置では、本例に係る液位センサ100と異なり、係止部111に相当する規制部は、アームが回転体に保持される位置よりも下方に位置する。このような配置関係は、特許文献2の液面検出装置では、複数の回転角度の測定範囲を設定可能とするために、固定体には回転体側に開口する中空部が設けられ、この中空部の内壁に、複数の測定範囲に対応した複数の規制部が設けられていることに起因する。1つの回転角度の測定範囲を選択したときに、他の測定範囲に設定するための規制部にアームが接触することを防止するために、アームの突出部には折れ曲がり部が設けられ、折れ曲がり部の先端の先端部だけが固定部の開口内に挿入され、所定の規制部に接触可能となっている。このように、特許文献2の液面検出装置では、複数の範囲での回転角度の計測を可能としている一方、他の測定範囲の規制部とアームとの干渉を避けるために、アームの突出部において折れ曲がり部の先端だけが固定体の規制部と接触する構造となっている。 In the liquid level detection device of Patent Document 2, unlike the liquid level sensor 100 according to the present example, the regulating part corresponding to the locking part 111 is located below the position where the arm is held by the rotating body. In the liquid level detection device of Patent Document 2, in order to be able to set measurement ranges for a plurality of rotation angles, the fixed body is provided with a hollow portion that opens toward the rotating body, and this hollow portion This is due to the fact that a plurality of restriction parts corresponding to a plurality of measurement ranges are provided on the inner wall of the sensor. In order to prevent the arm from coming into contact with the restriction part for setting another measurement range when one rotation angle measurement range is selected, a bent part is provided on the protruding part of the arm. Only the tip of the tip is inserted into the opening of the fixing part, so that it can come into contact with a predetermined regulating part. In this way, the liquid level detection device of Patent Document 2 makes it possible to measure the rotation angle in multiple ranges, but in order to avoid interference between the arm and the regulating part of other measurement ranges, the protruding part of the arm is The structure is such that only the tip of the bent portion contacts the regulating portion of the fixed body.
 図14は、この液面検出装置の係止部の構造を概念的に示しており、アーム620が回転体に保持された部分の延伸方向から見た図である。図14に示されるように、アーム620の突出部623は折れ曲がり部623Bを有し、その折れ曲がり部623Bの先に位置する先端部623Cが固定体の規制部611に係止する構造を有する。図14に示されるように、この構造では、突出部623が適切に位置しているとき(正常時)は、折れ曲がり部623Bの先端に位置する先端部623Cの中心軸(先端中心軸OX2)は、アーム620と連動する回転体の回転軸OX1と平行である。アーム620の延伸方向から見た図14では、回転軸OX1と先端中心軸OX2とは重なっている。 FIG. 14 conceptually shows the structure of the locking portion of this liquid level detection device, and is a view of the portion where the arm 620 is held by the rotating body, viewed from the extending direction. As shown in FIG. 14, the protruding portion 623 of the arm 620 has a bent portion 623B, and has a structure in which a tip portion 623C located beyond the bent portion 623B is locked to the regulating portion 611 of the fixed body. As shown in FIG. 14, in this structure, when the protrusion 623 is properly positioned (normal), the central axis (tip central axis OX2) of the tip 623C located at the tip of the bent portion 623B is , is parallel to the rotation axis OX1 of the rotating body interlocking with the arm 620. In FIG. 14 viewed from the extending direction of the arm 620, the rotation axis OX1 and the tip central axis OX2 overlap.
 この構造において、アーム620が上記の延伸方向周りに回転(自転)すると、図15に示されるように、先端中心軸OX2は、回転軸OX1に対して傾き、先端部623Cに首振り現象が生じる。首振り現象が生じると、その一例において、先端部623Cは本来あるべき位置よりも先行する(図15では右側に変位する)。このため、回転体が本来停止すべき位置より手前(図15では左側)にある状態で、突出部623は規制部611に係止し、回転体の回転が停止してしまう。それゆえ、図15に示される状態となった液面検出装置では、正常時よりも液位の計測範囲が狭くなってしまう。本例に係る液位センサ100では、このようなアーム20の自転に起因する計測範囲の変化を回避することができる。 In this structure, when the arm 620 rotates (rotates) around the above stretching direction, the tip central axis OX2 is tilted with respect to the rotation axis OX1, as shown in FIG. 15, and a swinging phenomenon occurs in the tip 623C. . When a swinging phenomenon occurs, in one example, the tip 623C moves ahead of its original position (displaces to the right in FIG. 15). Therefore, in a state where the rotating body is located before the position where it should originally stop (on the left side in FIG. 15), the protruding portion 623 is engaged with the regulating portion 611, and the rotation of the rotating body is stopped. Therefore, in the liquid level detection device in the state shown in FIG. 15, the liquid level measurement range becomes narrower than in the normal state. The liquid level sensor 100 according to the present example can avoid such changes in the measurement range caused by the rotation of the arm 20.
 ホルダ30は、保持部32(本例では第1保持部321)とは異なる位置に設けられ、アーム20の第1アーム部21を保持するための補助保持部34をさらに備える。本例では、補助保持部34は、スナップフィット構造を有して第1アーム部21を把持する第1補助保持部341と、スナップフィットされた第1アーム部21に当接して第1アーム部21を支持する第2補助保持部342とから構成される。 The holder 30 is provided at a different position from the holding part 32 (first holding part 321 in this example), and further includes an auxiliary holding part 34 for holding the first arm part 21 of the arm 20. In this example, the auxiliary holding part 34 includes a first auxiliary holding part 341 that has a snap-fit structure and grips the first arm part 21, and a first auxiliary holding part 341 that has a snap-fit structure and grips the first arm part 21; 21.
 第2アーム部22は軸体貫通孔411や第1保持部321に嵌合しているものの、本例では第2アーム部22は断面が同一円の棒状であるから、その中心軸AX2周りに回転(自転)しうる。しかしながら、アーム20が第1アーム部21と第2アーム部22との間に屈曲部23が設けられているため、第2補助保持部342の受け面(補助保持受け面342A)、すなわち、第2補助保持部342において第1アーム部21が当接する部分は、保持部32の受け面(第1保持受け面321A)の延長上から外れた位置にある。それゆえ、補助保持部34が第1アーム部21を保持することにより、第2アーム部22の中心軸AX2周りの回転(自転)を抑制することができる。 Although the second arm portion 22 is fitted into the shaft body through hole 411 and the first holding portion 321, in this example, the second arm portion 22 is rod-shaped with the same circular cross section, so that It can rotate (rotate). However, since the arm 20 is provided with the bent part 23 between the first arm part 21 and the second arm part 22, the receiving surface of the second auxiliary holding part 342 (auxiliary holding receiving surface 342A), that is, the The part of the second auxiliary holding part 342 that the first arm part 21 comes into contact with is located off the extension of the receiving surface of the holding part 32 (the first holding and receiving surface 321A). Therefore, when the auxiliary holding part 34 holds the first arm part 21, the rotation (rotation) of the second arm part 22 around the central axis AX2 can be suppressed.
 本実施形態において、ホルダ30は、ホルダ本体部301の外側面から径方向に突出する突起部を複数有する。これらの突起部のうち、第1軸AX1に沿って(Z1-Z2方向に)見たとき、突出部223に近位な突起を第1突起331、突出部223に遠位な突起を第2突起332とする。これらの役割は異なっており、以下、まず、第2突起332について説明する。 In this embodiment, the holder 30 has a plurality of protrusions that protrude in the radial direction from the outer surface of the holder main body 301. Among these protrusions, when viewed along the first axis AX1 (in the Z1-Z2 direction), the proximal protrusion to the protrusion 223 is called the first protrusion 331, and the distal protrusion to the protrusion 223 is called the second protrusion. A protrusion 332 is provided. Their roles are different, and the second protrusion 332 will be explained below first.
 ホルダ30が第2回転方向(時計回り)に回転したときに、第2突起332の第2回転方向側の面(第2突起面332A)が、ベース本体部11のX1-X2方向X2側に設けられた当接部(ベース当接部112)のY1-Y2方向Y1側の面(ベース当接面112A)に当接することにより、ホルダ30の第2回転方向(時計回り)の回転が停止する。すなわち、ベース部材10およびホルダ30は、アーム20を介さずにホルダ30の回転(本例では第2回転方向の回転)を所定の位置に停止させるストッパとして、ベース当接部112および第2突起332を有する。ベース当接部112は、係止部111との対比で、X1-X2方向の反対側(X2側)に設けられているため、このストッパに基づく停止位置により、検知機構の回転範囲の第2回転方向の測定限界値が設定される。 When the holder 30 rotates in the second rotation direction (clockwise), the second rotation direction side surface (second projection surface 332A) of the second protrusion 332 moves toward the X2 side of the base body 11 in the X1-X2 direction. The rotation of the holder 30 in the second rotation direction (clockwise) is stopped by contacting the surface (base contact surface 112A) on the Y1 side in the Y1-Y2 direction of the provided contact portion (base contact portion 112). do. That is, the base member 10 and the holder 30 have the base contact portion 112 and the second protrusion as a stopper that stops the rotation of the holder 30 (rotation in the second rotation direction in this example) at a predetermined position without using the arm 20. It has 332. Since the base contact part 112 is provided on the opposite side (X2 side) in the X1-X2 direction in comparison with the locking part 111, the stop position based on this stopper allows A measurement limit value in the direction of rotation is set.
 以上説明したように、第1実施形態の第1例では、ホルダ30が反時計回り(第1回転方向)に回転した場合には、突出部223が係止部111に当接したときにホルダ30の回転は停止する。一方、ホルダ30が時計回り(第1回転方向)に回転した場合には、第2突起332がベース当接部112に当接したときにホルダ30の回転は停止する。したがって、例えば、第2突起332がベース当接部112に当接している状態をホルダ30の回転角度の測定範囲の起点とした場合には、ホルダ30が反時計回り(第1回転方向)の回転を開始すると、第2突起332はベース当接部112から離れ、ホルダ30の回転角度が測定される。そして、ホルダ30が反時計回り(第1回転方向)に60°回転すると、第2突起332がベース当接部112に当接して、ホルダ30の反時計回り(第1回転方向)の回転は停止する。図10はこのタイミングを示しており、このとき、ホルダ30は回転角度の測定範囲の終点に至っている。したがって、図10に示されるように、本例(第1実施形態の第1例)では、ホルダ30の回転角度の測定範囲は60°である。図10では、右側に突出部223の回転範囲が二点鎖線の両矢印で示され、左側に第2突起332の回転範囲が二点鎖線の両矢印で示されている。 As explained above, in the first example of the first embodiment, when the holder 30 rotates counterclockwise (first rotation direction), when the protruding part 223 comes into contact with the locking part 111, the holder 30 rotation stops. On the other hand, when the holder 30 rotates clockwise (first rotation direction), the rotation of the holder 30 stops when the second protrusion 332 contacts the base contact portion 112. Therefore, for example, if the state in which the second protrusion 332 is in contact with the base contact portion 112 is the starting point of the measurement range of the rotation angle of the holder 30, the holder 30 rotates counterclockwise (first rotation direction). When the rotation starts, the second protrusion 332 separates from the base contact portion 112, and the rotation angle of the holder 30 is measured. Then, when the holder 30 rotates 60 degrees counterclockwise (first rotation direction), the second protrusion 332 contacts the base contact portion 112, and the counterclockwise rotation (first rotation direction) of the holder 30 stops. Stop. FIG. 10 shows this timing, when the holder 30 has reached the end point of the rotation angle measurement range. Therefore, as shown in FIG. 10, in this example (first example of the first embodiment), the measurement range of the rotation angle of the holder 30 is 60 degrees. In FIG. 10, the rotation range of the protrusion 223 is shown on the right by a double-dashed double arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dashed double arrow.
[第2例]
 図16は、第1実施形態の第2例に係る液位センサの動作説明図(平面図)である。図16では、図10などと同様に、ベース本体部11のX1-X2方向X1側に設けられた係止部111に突出部223が係止しているため、ホルダ30は第1回転方向の回転の限界位置である停止位置にある。この停止位置により、検知機構の回転範囲の第1回転方向の測定限界値が設定される。
[Second example]
FIG. 16 is an operation explanatory diagram (plan view) of the liquid level sensor according to the second example of the first embodiment. In FIG. 16, similar to FIG. 10, the protruding portion 223 is locked to the locking portion 111 provided on the X1 side in the X1-X2 direction of the base body portion 11, so that the holder 30 is rotated in the first rotation direction. It is at the stop position, which is the limit position of rotation. This stop position sets a measurement limit value in the first rotation direction of the rotation range of the detection mechanism.
 第1実施形態の第2例に係る液位センサ100Aは、第1実施形態の第1例に係る液位センサ100との対比で、アームの形状が異なる。液位センサ100のアーム20は、屈曲部23により、第1アーム部21と第2アーム部22とが90°の角度をなしているのに対し、液位センサ100Aのアーム201は、屈曲部23の屈曲角が異なり、第1アーム部21と第2アーム部22とは60°の角度をなしている。 The liquid level sensor 100A according to the second example of the first embodiment has a different arm shape in comparison with the liquid level sensor 100 according to the first example of the first embodiment. In the arm 20 of the liquid level sensor 100, the first arm part 21 and the second arm part 22 form an angle of 90 degrees due to the bent part 23, whereas the arm 201 of the liquid level sensor 100A has the bent part 23. 23 have different bending angles, and the first arm portion 21 and the second arm portion 22 form an angle of 60°.
 このため、第2アーム部22の被保持部222は、第1保持部321よりも第2回転方向に30°ずれた位置に設けられた第2保持部322により保持される。このように、使用している保持部が異なるため、保持部延在方向(V1-V2方向)は、第2保持部322の受け面(第2保持受け面322A)の延在する方向となる。 Therefore, the held portion 222 of the second arm portion 22 is held by the second holding portion 322 provided at a position shifted by 30° from the first holding portion 321 in the second rotation direction. In this way, since the holding parts used are different, the holding part extending direction (V1-V2 direction) is the direction in which the receiving surface of the second holding part 322 (second holding receiving surface 322A) extends. .
 それゆえ、図16に示されるように、液位センサ100Aにおけるベース当接面112Aと第2突起面332Aとの距離は、液位センサ100におけるベース当接面112Aと第2突起面332Aとの距離よりも遠くなっている。これにより、液位センサ100Aの回転角度の計測範囲は液位センサ100の回転角度の計測範囲よりも広くなっている。具体的には、液位センサ100では計測範囲が60°であるが、液位センサ100Aでは30°増えて90°である(図16参照。)。図16では、右側に突出部223の回転範囲が二点鎖線の両矢印で示され、左側に第2突起332の回転範囲が二点鎖線の両矢印で示されている。 Therefore, as shown in FIG. 16, the distance between the base contact surface 112A and the second protrusion surface 332A in the liquid level sensor 100A is the same as the distance between the base contact surface 112A and the second protrusion surface 332A in the liquid level sensor 100. It's farther than the distance. Thereby, the measurement range of the rotation angle of the liquid level sensor 100A is wider than the measurement range of the rotation angle of the liquid level sensor 100. Specifically, the measurement range of the liquid level sensor 100 is 60°, but the measurement range of the liquid level sensor 100A is increased by 30° to 90° (see FIG. 16). In FIG. 16, the rotation range of the protrusion 223 is shown on the right by a double-dot chain arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dot chain arrow.
 このように、第1実施形態に係る液位センサ100,100Aでは、複数の保持部32(第1保持部321、第2保持部322)は、いずれについても、被保持部222が第1軸AX1と交わり、かつ互いに異なる停止位置が設定されるようにホルダ30に設けられるため、ホルダ30が保持するアーム20の形状を変更することにより、ホルダ30の回転角度の計測範囲を容易に変更することができる。ここで、複数の測定範囲において共通の計測限界値を与えるベース当接部112を、液位計測における起点、すなわち液位測定範囲の下限として用いてもよい。この場合には、タンクの容量が小さい場合には計測範囲が60°の液位センサ100を用い、タンクの容量が大きい場合には計測範囲が90°の液位センサ100Aを用いればよい。 In this way, in the liquid level sensor 100, 100A according to the first embodiment, in each of the plurality of holding parts 32 (first holding part 321, second holding part 322), the held part 222 is aligned with the first axis. Since the holder 30 is provided so that it intersects with AX1 and different stop positions are set, the measuring range of the rotation angle of the holder 30 can be easily changed by changing the shape of the arm 20 held by the holder 30. be able to. Here, the base contact portion 112 that provides a common measurement limit value in a plurality of measurement ranges may be used as a starting point in liquid level measurement, that is, as a lower limit of the liquid level measurement range. In this case, if the capacity of the tank is small, the liquid level sensor 100 with a measurement range of 60 degrees may be used, and if the capacity of the tank is large, the liquid level sensor 100A with a measurement range of 90 degrees may be used.
[第3例]
 図17は、第1実施形態の第3例に係る液位センサの動作説明図(平面図)である。第1実施形態の第3例に係る液位センサ100Bは、第1実施形態の第1例に係る液位センサ100との対比で、アーム部の形状が異なる。液位センサ100のアーム20は、第2アーム部22に突出部223を有するが、液位センサ100Bのアーム201は、第2アーム部22の長さが相対的に短く、結果、突出部223を有しない。
[Third example]
FIG. 17 is an operation explanatory diagram (plan view) of the liquid level sensor according to the third example of the first embodiment. The liquid level sensor 100B according to the third example of the first embodiment is different from the liquid level sensor 100 according to the first example of the first embodiment in the shape of the arm portion. The arm 20 of the liquid level sensor 100 has a protrusion 223 on the second arm part 22. However, in the arm 201 of the liquid level sensor 100B, the length of the second arm part 22 is relatively short, and as a result, the protrusion 223 does not have.
 このため、ホルダ30は、第1回転方向に回転したとき、係止部111にアーム201の一部が係止せず、第1突起331の第1回転方向側の面(第1突起面331A)が、係止部111の受け面のうちZ1-Z2方向Z2側に位置する面(第2係止受け面111B、図15参照)に当接して、ホルダ30の第1回転方向の回転を停止させている。 Therefore, when the holder 30 rotates in the first rotation direction, a part of the arm 201 is not locked in the locking part 111, and the surface of the first projection 331 on the first rotation direction side (first projection surface 331A) is in contact with the receiving surface of the locking portion 111 located on the Z2 side in the Z1-Z2 direction (second locking receiving surface 111B, see FIG. 15), and stops the rotation of the holder 30 in the first rotation direction. I'm letting you do it.
 すなわち、第1実施形態の第3例では、第1実施形態の第1例および第1実施形態の第2例と異なり、第1回転方向の停止位置および第2回転方向の停止位置はいずれも、ベース部材10とホルダ30とのストッパにより設定される停止位置である。第1回転方向の停止位置は、第1実施形態の第1例の停止位置を基準にすると、第2回転方向に60°ずれた位置であり、これにより、第1実施形態の第3例に係る液位センサ100Bの回転角度の測定範囲は120°となる(図17参照。)。図17では、右側に第1突起331の回転範囲が二点鎖線の両矢印で示され、左側に第2突起332の回転範囲が二点鎖線の両矢印で示されている。 That is, in the third example of the first embodiment, unlike the first example of the first embodiment and the second example of the first embodiment, both the stop position in the first rotation direction and the stop position in the second rotation direction are , which is a stop position set by a stopper between the base member 10 and the holder 30. The stop position in the first rotation direction is a position shifted by 60° in the second rotation direction with respect to the stop position in the first example of the first embodiment. The measurement range of the rotation angle of the liquid level sensor 100B is 120° (see FIG. 17). In FIG. 17, the rotation range of the first protrusion 331 is shown on the right by a double-dot chain arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dot chain arrow.
 本実施形態に係る液位センサ100,100A,100Bでは、ホルダ30からアーム20の一部(突出部223)を突出させた場合には、突出部223が係止部111の第1係止受け面111Aに当接してホルダ30の回転を停止させる。このとき、突出部223の突出位置を変更すること、具体的には第1保持部321と第2保持部322とのいずれを用いるかを選択することにより、ホルダ30の回転可能な角度を変更することができる。さらに、ホルダ30からアーム20を突出させない場合には、第1係止受け面111Aよりも、第1軸AX1に沿った方向(Z1-Z2方向)でホルダ受け部12に近い部分、すなわち高さが低い部分である第2係止受け面111Bに、ホルダ30に設けた第1突起331が当接して、ホルダ30の回転を停止させる。このように、本実施形態に係る液位センサ100,100A,100Bでは、アーム20を突出させるか否かを、アーム20の取付角度の選択と組み合わせることにより、より多くの種類の計測範囲を設定可能とすることが実現されている。 In the liquid level sensors 100, 100A, and 100B according to the present embodiment, when a part of the arm 20 (the protruding part 223) is made to protrude from the holder 30, the protruding part 223 The rotation of the holder 30 is stopped by contacting the surface 111A. At this time, the rotatable angle of the holder 30 is changed by changing the protruding position of the protruding part 223, specifically by selecting which of the first holding part 321 and the second holding part 322 is used. can do. Furthermore, when the arm 20 is not protruded from the holder 30, the height The first protrusion 331 provided on the holder 30 comes into contact with the second lock receiving surface 111B, which is the lower part, and stops the rotation of the holder 30. In this way, in the liquid level sensors 100, 100A, and 100B according to the present embodiment, more types of measurement ranges can be set by combining whether or not the arm 20 is protruded with the selection of the mounting angle of the arm 20. What is possible is being realized.
[測定原理]
 以下、図18から図22を参照しつつ、第1実施形態に係る液位センサにおける回転角度の測定原理について説明する。図18は、第1実施形態に係る液位センサの磁気測定部を説明する回路図である。図19は、第1実施形態に係る液位センサの磁気測定部から出力されるデータの説明図である。図20は、第1実施形態に係る液位センサの磁気発生体と磁気測定部との位置関係を説明する図である。図21は、第1実施形態に係る液位センサにおける磁気発生体からの磁界の角度とホルダの回転角との関係を示すグラフである。図22は、第1実施形態に係る液位センサにおける磁気発生体からの磁界の角度と検知機構の測定範囲との関係を示すグラフである。図21および図22において、横軸はホルダ30の回転角度であり、縦軸は磁気発生体50からの磁界の角度である。
[Measurement principle]
Hereinafter, the principle of measuring the rotation angle in the liquid level sensor according to the first embodiment will be explained with reference to FIGS. 18 to 22. FIG. 18 is a circuit diagram illustrating the magnetic measurement section of the liquid level sensor according to the first embodiment. FIG. 19 is an explanatory diagram of data output from the magnetic measurement section of the liquid level sensor according to the first embodiment. FIG. 20 is a diagram illustrating the positional relationship between the magnetic generating body and the magnetic measuring section of the liquid level sensor according to the first embodiment. FIG. 21 is a graph showing the relationship between the angle of the magnetic field from the magnetic generator and the rotation angle of the holder in the liquid level sensor according to the first embodiment. FIG. 22 is a graph showing the relationship between the angle of the magnetic field from the magnetic generator and the measurement range of the detection mechanism in the liquid level sensor according to the first embodiment. 21 and 22, the horizontal axis is the rotation angle of the holder 30, and the vertical axis is the angle of the magnetic field from the magnetic generator 50.
 本実施形態において、ホルダ30のベース部材10に対する回転角度の検知機構は、前述の通り、ホルダ本体部301の内部に配置された永久磁石(磁気発生体50)と、磁気検出部61とを備える。磁気検出部61は、磁気抵抗効果素子を有する複数のブリッジ回路からなる測定回路63を有する。ホルダ30が回転すると、ホルダ30内の永久磁石(磁気発生体50)が回転する。これにより、永久磁石(磁気発生体50)の磁極と測定回路63内の磁気抵抗効果素子との相対角度が変化し、磁気抵抗効果素子のフリー磁性層の磁化方向は、永久磁石(磁気発生体50)からの磁界の方向に応じて変化する。一方、磁気抵抗効果素子の固定磁性層の磁化方向は外部磁場の影響を受けないため、フリー磁性層と固定磁性層との相対角度が変化し、磁気抵抗効果素子の抵抗値が変化する。この抵抗値の変化に基づきブリッジ回路からの出力信号が変化し、この信号が測定回路63から出力される。 In this embodiment, the detection mechanism for the rotation angle of the holder 30 with respect to the base member 10 includes a permanent magnet (magnetic generator 50) disposed inside the holder main body 301 and a magnetic detection section 61, as described above. . The magnetic detection section 61 has a measurement circuit 63 made up of a plurality of bridge circuits each having a magnetoresistive element. When the holder 30 rotates, the permanent magnet (magnetism generator 50) inside the holder 30 rotates. As a result, the relative angle between the magnetic pole of the permanent magnet (magnetic generator 50) and the magnetoresistive element in the measurement circuit 63 changes, and the magnetization direction of the free magnetic layer of the magnetoresistive element changes 50) depending on the direction of the magnetic field. On the other hand, since the magnetization direction of the pinned magnetic layer of the magnetoresistive element is not affected by an external magnetic field, the relative angle between the free magnetic layer and the pinned magnetic layer changes, and the resistance value of the magnetoresistive element changes. The output signal from the bridge circuit changes based on this change in resistance value, and this signal is output from the measurement circuit 63.
 図18に示されるように、測定回路63において、電源側端部VDDと接地側端部GNDとの間に、第1フルブリッジ回路FB1と第2フルブリッジ回路FB2とが並列に配置されている。第1フルブリッジ回路FB1は、磁気抵抗効果素子S11と磁気抵抗効果素子S21とが直列に接続されてなる第1ハーフブリッジと磁気抵抗効果素子S22と磁気抵抗効果素子S12とが直列に接続されてなる第2ハーフブリッジとが、電源側端部VDD側と接地側端部GNDとの間に並列に配置されてなる。第1ハーフブリッジの中点出力OP1と第2ハーフブリッジの中点出力OP2との間の電位差が第1測定電位データVD1として測定される。 As shown in FIG. 18, in the measurement circuit 63, a first full-bridge circuit FB1 and a second full-bridge circuit FB2 are arranged in parallel between the power supply side end VDD and the ground side end GND. . The first full bridge circuit FB1 includes a first half bridge in which a magnetoresistive element S11 and a magnetoresistive element S21 are connected in series, and a magnetoresistive element S22 and a magnetoresistive element S12 are connected in series. A second half bridge is arranged in parallel between the power supply side end VDD side and the ground side end GND. The potential difference between the midpoint output OP1 of the first half bridge and the midpoint output OP2 of the second half bridge is measured as first measured potential data VD1.
 第2フルブリッジ回路FB2は、磁気抵抗効果素子S31と磁気抵抗効果素子S41とが直列に接続されてなる第3ハーフブリッジと磁気抵抗効果素子S42と磁気抵抗効果素子S32とが直列に接続されてなる第4ハーフブリッジとが、電源側端部VDD側と接地側端部GNDとの間に並列に配置されてなる。第3ハーフブリッジの中点出力OP3と第4ハーフブリッジの中点出力OP4との間の電位差が第2測定電位データVD2として測定される。 The second full bridge circuit FB2 includes a third half bridge in which a magnetoresistive element S31 and a magnetoresistive element S41 are connected in series, and a third half bridge in which a magnetoresistive element S42 and a magnetoresistive element S32 are connected in series. A fourth half bridge is arranged in parallel between the power supply side end VDD side and the ground side end GND. The potential difference between the midpoint output OP3 of the third half bridge and the midpoint output OP4 of the fourth half bridge is measured as second measured potential data VD2.
 ここで、磁気抵抗効果素子S11と磁気抵抗効果素子S12とは感度軸の方向および向きが等しい。磁気抵抗効果素子S21と磁気抵抗効果素子S22とは、感度軸の方向および向きが等しく、磁気抵抗効果素子S11との関係では感度軸の方向は等しいが向きが反対である。磁気抵抗効果素子S31と磁気抵抗効果素子S32とは、感度軸の方向および向きが等しく、磁気抵抗効果素子S11との関係では感度軸の方向が直交している。磁気抵抗効果素子S41と磁気抵抗効果素子S42とは、感度軸の方向および向きが等しく、磁気抵抗効果素子S31との関係では感度軸の方向は等しいが向きが反対である。 Here, the direction and orientation of the sensitivity axes of the magnetoresistive element S11 and the magnetoresistive element S12 are the same. The magnetoresistive element S21 and the magnetoresistive element S22 have the same sensitivity axes in the same direction, and in relation to the magnetoresistive element S11, the sensitivity axes have the same direction but opposite directions. The magnetoresistive element S31 and the magnetoresistive element S32 have the same direction and orientation of their sensitivity axes, and the directions of their sensitivity axes are orthogonal in relation to the magnetoresistive element S11. The magnetoresistive element S41 and the magnetoresistive element S42 have the same direction and orientation of their sensitivity axes, and in relation to the magnetoresistive element S31, their sensitivity axes have the same direction but opposite directions.
 このように測定回路63における磁気抵抗効果素子の感度軸が設定されているため、一方の中点出力(例えば第1フルブリッジ回路FB1の中点出力OP1)が第1測定電位データVD1として正弦波を出力するときに、他方の中点出力(第2フルブリッジ回路FB2の中点出力OP2)は、中点出力OP1が出力する正弦波から90°位相がずれた正弦波を第2測定電位データVD2として出力する。図19はこの関係を示している。 Since the sensitivity axis of the magnetoresistive element in the measurement circuit 63 is set in this way, one midpoint output (for example, the midpoint output OP1 of the first full bridge circuit FB1) is a sine wave as the first measured potential data VD1. When outputting , the other midpoint output (midpoint output OP2 of the second full bridge circuit FB2) outputs a sine wave whose phase is shifted by 90 degrees from the sine wave output by the midpoint output OP1 as the second measured potential data. Output as VD2. FIG. 19 shows this relationship.
 このように、互いに位相が90°ずれた正弦波を出力する理想状態では、回転角度RAは、下記式(1)で表される。
  RA=arctan(VD2/VD1)   (1)
In this ideal state where sine waves whose phases are shifted by 90 degrees from each other are output, the rotation angle RA is expressed by the following equation (1).
RA=arctan(VD2/VD1) (1)
 ここで、磁気抵抗効果素子は、巨大磁気抵抗効果素子(GMR素子)でもトンネル磁気抵抗効果素子(TMR素子)でもよく、いずれの場合においても、複数の膜(固定磁性層、非磁性材料層、フリー磁性層など)が積層された積層体からなる。この積層体を構成する各膜の組成や厚さが異なると、素子特性(感度、温度特性など)が相違する。それゆえ、測定回路63が備える8つの磁気抵抗効果素子は、同一膜構成(積層体の積層構造が共通)であることが好ましい。この場合には8つの磁気抵抗効果素子の特性、特に温度特性が揃いやすい。測定回路63が備える8つの磁気抵抗効果素子の温度特性が揃っている場合には、第1測定電位データVD1の温度依存性と第2測定電位データVD2の温度依存性とが同じ傾向を有する。上記式(1)では回転角度RAの計算において第1測定電位データVD1と第2測定電位データVD2との比を取っているため、この計算により、それぞれの温度依存性がキャンセルされ、算出される回転角度RAは温度の影響を受けず一定となる。 Here, the magnetoresistive element may be a giant magnetoresistive element (GMR element) or a tunnel magnetoresistive element (TMR element), and in either case, a plurality of films (a fixed magnetic layer, a nonmagnetic material layer, It consists of a laminate in which free magnetic layers, etc.) are laminated. If the compositions and thicknesses of the films constituting this stack differ, the device characteristics (sensitivity, temperature characteristics, etc.) will differ. Therefore, it is preferable that the eight magnetoresistive elements included in the measurement circuit 63 have the same film configuration (the laminated structure of the laminated body is common). In this case, the characteristics of the eight magnetoresistive elements, especially the temperature characteristics, are likely to be uniform. When the eight magnetoresistive elements included in the measurement circuit 63 have the same temperature characteristics, the temperature dependence of the first measured potential data VD1 and the temperature dependence of the second measured potential data VD2 have the same tendency. In the above formula (1), when calculating the rotation angle RA, the ratio of the first measured potential data VD1 and the second measured potential data VD2 is taken, so by this calculation, the temperature dependence of each is canceled and calculated. The rotation angle RA remains constant without being affected by temperature.
 なお、このように回転角度RAが温度の影響を受けにくくする観点から、8つの磁気抵抗効果素子は共通の成膜工程で製造されたものであることが好ましく、成膜工程の成膜基板が共通であることがさらに好ましい。 In addition, from the viewpoint of making the rotation angle RA less susceptible to the influence of temperature, it is preferable that the eight magnetoresistive elements be manufactured in a common film forming process, and the film forming substrate in the film forming process is More preferably, they are common.
 本実施形態では、磁気発生体50は径方向に磁化されたリング状の永久磁石からなり、ホルダ30が回転すると、その磁化方向は、XY平面内で回転する。そして、測定点となる測定回路63は、ホルダ30の磁化方向が回転して作るXY平面内に、ホルダ30の回転軸である第1軸AX1から所定の距離D離れて位置する(図20参照)。それゆえ、図21に示されるように、磁気発生体50(永久磁石)から放出され測定回路63に到達する磁界の角度とホルダ30の回転角との関係は、線形(直線)ではなく、正弦波が重畳して波打った波形となる。 In this embodiment, the magnetism generator 50 is made of a ring-shaped permanent magnet magnetized in the radial direction, and when the holder 30 rotates, its magnetization direction rotates within the XY plane. The measurement circuit 63 serving as the measurement point is located within the XY plane created by the rotation of the magnetization direction of the holder 30, at a predetermined distance D from the first axis AX1, which is the rotation axis of the holder 30 (see FIG. 20). ). Therefore, as shown in FIG. 21, the relationship between the angle of the magnetic field emitted from the magnetic generator 50 (permanent magnet) and reaching the measuring circuit 63 and the rotation angle of the holder 30 is not linear (straight line) but sinusoidal. The waves overlap to form a wavy waveform.
 このため、第1実施形態に係る液位センサ100における磁気検出部61からの出力信号は、図20のような理想状態から外れて、正弦波が変調された波形となる。第1測定電位データVD1への変調と第2測定電位データVD2への変調とは同一でないため、互いの波形を対比すると、単なる位相ずれよりも相違が大きくなる。このままの状態で上記式(1)を適用しても、回転角度RAを正確に求めることができない。 Therefore, the output signal from the magnetic detection section 61 in the liquid level sensor 100 according to the first embodiment deviates from the ideal state as shown in FIG. 20 and has a waveform in which a sine wave is modulated. Since the modulation to the first measured potential data VD1 and the modulation to the second measured potential data VD2 are not the same, when their waveforms are compared, the difference becomes larger than a mere phase shift. Even if the above equation (1) is applied in this state, the rotation angle RA cannot be determined accurately.
 それゆえ、磁気検出部61から出力された第1測定電位データVD1および第2測定電位データVD2は、制御装置62へと入力されて波形の補正が行われる。本実施形態の各例に係る液位センサ100,100A,100Bは、回転角度の計測範囲が異なるが、その一方(第2回転方向側)の測定限界値は、いずれも、第2突起332の第2突起面332Aがベース本体部11のベース当接面112Aに当接したことに基づく停止位置である。したがって、各液位センサの測定範囲を図21に重ね合わせると、図22に示されるように、第1実施形態の第3例に係る液位センサ100Bの測定範囲内に、他の例に係る液位センサ100,100Aは含まれ、いずれの測定範囲も共通の角度を一方の測定限界値(図22では30°)とする。ホルダ30の回転角度に対し液位センサの測定値は直線状に変化しないが、本実施形態に係る液位センサ100,100A,100Bでは測定範囲の起点が共通するため、制御装置62は、第1実施形態の第3例に係る液位センサ100Bのための波形の補正プログラムを用意すれば、他の例に係る液位センサ100,100Aはその補正プログラムをそのまま使用することができる。 Therefore, the first measured potential data VD1 and the second measured potential data VD2 output from the magnetic detection section 61 are input to the control device 62, and the waveforms are corrected. Although the liquid level sensors 100, 100A, and 100B according to each example of the present embodiment have different rotation angle measurement ranges, the measurement limit value of one of them (on the second rotation direction side) is the same as that of the second protrusion 332. This is the stop position based on the second protrusion surface 332A coming into contact with the base contact surface 112A of the base body portion 11. Therefore, when the measurement range of each liquid level sensor is superimposed on FIG. 21, as shown in FIG. The liquid level sensors 100 and 100A are included, and both measurement ranges have a common angle as one measurement limit value (30° in FIG. 22). Although the measured value of the liquid level sensor does not change linearly with respect to the rotation angle of the holder 30, since the starting point of the measurement range is common in the liquid level sensors 100, 100A, and 100B according to this embodiment, the control device 62 If a waveform correction program is prepared for the liquid level sensor 100B according to the third example of one embodiment, the liquid level sensors 100 and 100A according to other examples can use the correction program as is.
 これに対し、例えば特許文献2の液位センサのように、回転角度の測定範囲を複数有するが、それぞれの測定範囲の測定限界値が互いに相違する場合には、それぞれの測定範囲で起点が相違する。このため、各測定範囲に合わせて複数の補正プログラムを用意しなければならない。このため、制御装置62と同様の機能を有する装置の演算負荷は、本実施形態に係る液位センサ100,100A,100Bの場合に比べて高くなる。 On the other hand, if the liquid level sensor of Patent Document 2 has a plurality of rotation angle measurement ranges, but the measurement limit values of each measurement range are different from each other, the starting point is different in each measurement range. do. Therefore, multiple correction programs must be prepared for each measurement range. For this reason, the calculation load of a device having the same function as the control device 62 is higher than that of the liquid level sensors 100, 100A, and 100B according to this embodiment.
(第2実施形態)
 図23は、本発明の第2実施形態に係る液位センサの第1例を示す説明図(斜視図)である。図24は、第2実施形態の第1例に係る液位センサの動作説明図(平面図)である。図25は、第2実施形態の第2例に係る液位センサの動作説明図(平面図)である。図26は、第2実施形態の第3例に係る液位センサの動作説明図(平面図)である。図27は、第2実施形態の第4例に係る液位センサの動作説明図(平面図)である。図28は、第2実施形態の第4例に係る液位センサの動作説明図(斜視図)である。本発明の第2実施形態に係る液位センサ101,101A,101B,101Cは、基本構造が、第1実施形態に係る液位センサ100,100A,100Bと共通であるから、相違点のみを説明する。
(Second embodiment)
FIG. 23 is an explanatory diagram (perspective view) showing a first example of a liquid level sensor according to a second embodiment of the present invention. FIG. 24 is an operation explanatory diagram (plan view) of the liquid level sensor according to the first example of the second embodiment. FIG. 25 is an operation explanatory diagram (plan view) of the liquid level sensor according to the second example of the second embodiment. FIG. 26 is an operation explanatory diagram (plan view) of the liquid level sensor according to the third example of the second embodiment. FIG. 27 is an operation explanatory diagram (plan view) of the liquid level sensor according to the fourth example of the second embodiment. FIG. 28 is an explanatory diagram (perspective view) of the operation of the liquid level sensor according to the fourth example of the second embodiment. The liquid level sensors 101, 101A, 101B, 101C according to the second embodiment of the present invention have the same basic structure as the liquid level sensors 100, 100A, 100B according to the first embodiment, so only the differences will be explained. do.
 第1実施形態に係る液位センサ100,100A,100Bのホルダ30は、保持部32が第1保持部321および第2保持部322を有していたが、第2実施形態に係る液位センサ101,101A,101B,101Cのホルダ30は、保持部32が第1保持部321、第2保持部322および第3保持部323を有する。保持部32は、第1実施形態と同様に、いずれについても、被保持部222が第1軸AX1と交わり、かつ互いに異なる停止位置が設定されるようにホルダ30に設けられる。これにより、第2実施形態に係る液位センサ101,101A,101B,101Cは、突出部223を用いて、ホルダ30の回転角度の測定範囲を3種類設定することができる。 In the holder 30 of the liquid level sensors 100, 100A, 100B according to the first embodiment, the holding part 32 had the first holding part 321 and the second holding part 322, but the liquid level sensor according to the second embodiment In the holders 30 of 101, 101A, 101B, and 101C, the holding part 32 has a first holding part 321, a second holding part 322, and a third holding part 323. Similarly to the first embodiment, the holding parts 32 are provided on the holder 30 so that the held part 222 intersects with the first axis AX1 and different stopping positions are set. Thereby, the liquid level sensors 101, 101A, 101B, and 101C according to the second embodiment can set three types of measurement ranges for the rotation angle of the holder 30 using the protrusion 223.
 図23および図24に示されるように、第2実施形態の第1例に係る液位センサ101では、液位センサ100と同様に屈曲部23の屈曲角が90°のアーム20が使用され、アーム20の第2アーム部22は第1保持部321に保持される。この場合に設定されるホルダ30の回転角度の計測範囲は、図24に示されるように、60°である。図24では、右側に突出部223の回転範囲が二点鎖線の両矢印で示され、左側に第2突起332の回転範囲が二点鎖線の両矢印で示されている。 As shown in FIGS. 23 and 24, the liquid level sensor 101 according to the first example of the second embodiment uses an arm 20 in which the bending portion 23 has a bending angle of 90°, similar to the liquid level sensor 100. The second arm portion 22 of the arm 20 is held by the first holding portion 321. The measurement range of the rotation angle of the holder 30 set in this case is 60 degrees, as shown in FIG. 24. In FIG. 24, the rotation range of the protrusion 223 is shown on the right by a double-dashed double arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dashed double arrow.
 図25に示されるように、第2実施形態の第2例に係る液位センサ101Aでは、液位センサ100Aと同様に屈曲部23の屈曲角が60°のアーム201が使用され、アーム201の第2アーム部22は第2保持部322に保持される。この場合に設定されるホルダ30の回転角度の計測範囲は、図25に示されるように、90°である。図25では、右側に突出部223の回転範囲が二点鎖線の両矢印で示され、左側に第2突起332の回転範囲が二点鎖線の両矢印で示されている。 As shown in FIG. 25, in the liquid level sensor 101A according to the second example of the second embodiment, an arm 201 with a bending portion 23 having a bending angle of 60° is used, similarly to the liquid level sensor 100A. The second arm portion 22 is held by a second holding portion 322. The measurement range of the rotation angle of the holder 30 set in this case is 90 degrees, as shown in FIG. 25. In FIG. 25, the rotation range of the protrusion 223 is shown on the right by a double-dashed double arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dashed double arrow.
 図26に示されるように、第2実施形態の第3例に係る液位センサ101Bでは、屈曲部23の屈曲角が30°のアーム203が使用され、アーム203の第2アーム部22は、第3保持受け面323Aを有する第3保持部323に保持される。この場合に設定されるホルダ30の回転角度の計測範囲は、図26に示されるように、120°である。図26では、右側に突出部223の回転範囲が二点鎖線の両矢印で示され、左側に第2突起332の回転範囲が二点鎖線の両矢印で示されている。 As shown in FIG. 26, in the liquid level sensor 101B according to the third example of the second embodiment, an arm 203 with a bending part 23 having a bending angle of 30 degrees is used, and the second arm part 22 of the arm 203 is It is held by a third holding part 323 having a third holding and receiving surface 323A. The measurement range of the rotation angle of the holder 30 set in this case is 120 degrees, as shown in FIG. 26. In FIG. 26, the rotation range of the protrusion 223 is shown on the right by a double-dashed double arrow, and the rotation range of the second protrusion 332 is shown on the left by a double-dashed double arrow.
 第1実施形態に係る液位センサ100,100A,100Bのホルダ30は、第1突起331および第2突起332を有していたが、第2実施形態に係る液位センサ101,101A,101B,101Cのホルダ30は、第2突起332のみを有する。この第2突起332の第2突起面332Aは、第1実施形態に係る液位センサ100,100A,100Bと同様に、ベース当接部112のベース当接面112Aに当接して、第2回転方向(時計回り)に回転するホルダ30を停止させる(ストッパに基づく停止位置)。また、第2実施形態に係る液位センサ101,101A,101B,101Cのベース部材10のホルダ受け部12には、Z1-Z2方向Z1側に突出する凸部122が設けられている。 The holder 30 of the liquid level sensor 100, 100A, 100B according to the first embodiment had the first protrusion 331 and the second protrusion 332, but the liquid level sensor 101, 101A, 101B according to the second embodiment, The holder 30 of 101C has only the second protrusion 332. Similarly to the liquid level sensors 100, 100A, 100B according to the first embodiment, the second protrusion surface 332A of the second protrusion 332 comes into contact with the base abutting surface 112A of the base abutting part 112 and rotates during the second rotation. The holder 30 rotating in the direction (clockwise) is stopped (stop position based on the stopper). Further, the holder receiving portion 12 of the base member 10 of the liquid level sensors 101, 101A, 101B, and 101C according to the second embodiment is provided with a convex portion 122 that protrudes toward the Z1 side in the Z1-Z2 direction.
 図27および図28に示されるように、第2実施形態の第4例に係る液位センサ101Cでは、第1実施形態の第3例に係る液位センサ100Bと同様に、突出部223を有しないアーム202が使用される。このため、液位センサ100Bでは、第2突起332の第1回転方向側の面(第2突起第2面332B)が、ホルダ受け部12に設けられた凸部122の第2回転方向側の面(凸部当接面122A)と当接して、ホルダ30の第1回転方向の回転を停止させる(ストッパに基づく停止位置)。この場合に設定されるホルダ30の回転角度の計測範囲は、図27に示されるように、150°である。本例では、ホルダ30の回転角度の測定範囲は第2突起332によって設定されるため、他の例と異なり、図27では、第2突起332の回転範囲のみが二点鎖線の両矢印によって示されている。 As shown in FIGS. 27 and 28, the liquid level sensor 101C according to the fourth example of the second embodiment has a protrusion 223, like the liquid level sensor 100B according to the third example of the first embodiment. An arm 202 is used that does not. Therefore, in the liquid level sensor 100B, the surface of the second protrusion 332 on the first rotational direction side (the second protrusion second surface 332B) is the same as the surface of the second protrusion 332 on the second rotational direction side of the protrusion 122 provided on the holder receiving part 12. The contact surface (convex contact surface 122A) stops the rotation of the holder 30 in the first rotation direction (stop position based on the stopper). The measurement range of the rotation angle of the holder 30 set in this case is 150°, as shown in FIG. 27. In this example, since the measurement range of the rotation angle of the holder 30 is set by the second protrusion 332, unlike other examples, in FIG. has been done.
(変形例)
 以下、第1実施形態に係る液位センサ100,100A,100B、第2実施形態に係る液位センサ101,101A,101B,101Cの変形例についてまとめて説明する。
(Modified example)
Modifications of the liquid level sensors 100, 100A, 100B according to the first embodiment and the liquid level sensors 101, 101A, 101B, 101C according to the second embodiment will be described below.
 各実施形態において使用されたアーム20,201,202,203はいずれも、第2アーム部22が、同一円を断面とする棒状であったが、これに限定されない。例えば、いずれも断面は円であるが、突出部223が被保持部222との対比で円の半径が相違していてもよい。具体的には、突出部223における断面の円の半径が、被保持部222における断面の円の半径よりも、大きくてもよいし、小さくてもよい。第2アーム部22の断面形状は円に限定されず、楕円、多角形、不定形などであってもよい。また、突出部223の断面形状と被保持部222の断面形状とが相違していてもよい。 In each of the arms 20, 201, 202, and 203 used in each embodiment, the second arm portion 22 has a rod shape with a cross section of the same circle, but the present invention is not limited to this. For example, although each has a circular cross section, the protruding portion 223 and the held portion 222 may have different radii. Specifically, the radius of the cross-sectional circle of the protruding portion 223 may be larger or smaller than the radius of the cross-sectional circle of the held portion 222. The cross-sectional shape of the second arm portion 22 is not limited to a circle, but may be an ellipse, a polygon, an irregular shape, or the like. Further, the cross-sectional shape of the protruding portion 223 and the cross-sectional shape of the held portion 222 may be different.
 上記の各実施形態において、突出部223は、アーム20,201,202,203において、被保持部222を挟んでフロートが接続される側と反対側に位置したが、これに限定されず、被保持部222から見て、突出部223が設けられた部分の先にフロートが接続されてもよい。ただし、この場合には、フロートからの振動は被保持部222において緩和される前に突出部223に伝達されるため、突出部223が係止部111に係止することにより設定される停止位置の安定性が低下することが懸念される。したがって、上記の各実施形態のように、突出部223は、アーム20,201,202,203において、被保持部222を挟んでフロートが接続される側と反対側に位置することが好ましい。 In each of the above embodiments, the protruding portion 223 is located on the opposite side of the held portion 222 from the side to which the float is connected in the arms 20, 201, 202, 203, but the projecting portion 223 is not limited thereto. A float may be connected to the tip of the portion where the protruding portion 223 is provided when viewed from the holding portion 222 . However, in this case, the vibration from the float is transmitted to the protruding part 223 before being relaxed in the held part 222, so the stop position is set by the protruding part 223 being engaged with the locking part 111. There is a concern that the stability of Therefore, as in each of the embodiments described above, it is preferable that the protruding portion 223 is located on the arm 20, 201, 202, 203 on the opposite side of the held portion 222 from the side to which the float is connected.
 上記の各実施形態において、ホルダ30が有する保持部32は第2アーム部22を挿通させる貫通孔から構成されていたが、これに限定されない。例えば、補助保持部34のようにスナップフィット構造を有していてもよい。あるいは、保持部32がZ1-Z2方向Z1側に開口する中空部を有し、第2アーム部22をこの中空部に載置した後、Z1-Z2方向Z1側から第2アーム部22を押さえる部材により、第2アーム部22を保持してもよい。 In each of the embodiments described above, the holding part 32 of the holder 30 is composed of a through hole through which the second arm part 22 is inserted, but the present invention is not limited to this. For example, it may have a snap-fit structure like the auxiliary holding part 34. Alternatively, the holding part 32 has a hollow part that opens on the Z1 side in the Z1-Z2 direction, and after placing the second arm part 22 in this hollow part, the second arm part 22 is held from the Z1 side in the Z1-Z2 direction. The second arm portion 22 may be held by a member.
 上記の各実施形態において、ベース部材10とホルダ30とが作るストッパは、ホルダ30に設けられた突起(第1突起331、第2突起332)がベース部材10に当接することにより構成されたが、これに限定されない。例えば、ホルダ30に、第1軸AX1に沿った方向(Z1-Z2方向)に凹む凹部が外側面に周方向に沿って設けられ、ベース部材10に、この凹部の内部へとホルダ30の径方向に突出する凸部が設けられていてもよい。あるいは、ストッパが相手部材側に突出する部分を有する場合において、その部分の突出方向がZ1-Z2方向に沿っていてもよい。 In each of the above embodiments, the stopper formed by the base member 10 and the holder 30 is configured by the projections (first projection 331, second projection 332) provided on the holder 30 coming into contact with the base member 10. , but not limited to. For example, the holder 30 is provided with a concave portion recessed in the direction along the first axis AX1 (Z1-Z2 direction) along the circumferential direction on the outer surface, and the base member 10 is provided with a concave portion recessed in the direction along the first axis AX1 (Z1-Z2 direction), and the base member 10 is provided with a concave portion recessed in the direction along the first axis AX1 (Z1-Z2 direction). A convex portion projecting in the direction may be provided. Alternatively, when the stopper has a portion that protrudes toward the mating member, the protruding direction of that portion may be along the Z1-Z2 direction.
 上記の各実施形態において、軸体40は、第2アーム部22を挿通させる軸体貫通孔411を連結部として有していたが、連結部の形状は限定されない。ホルダ30の保持部32の変形例と同様に、スナップフィット構造や、開口した中空部と押さえ部材を用いて、アーム20と軸体40とは連結されてもよい。また、上記の各実施形態において第2アーム部22の軸体当接部221は、軸体貫通孔411と嵌合したが、被保持部222においてホルダ30に適切に保持されれば、軸体当接部221は軸体貫通孔411に対して緩やかに嵌められていてもよい。 In each of the above embodiments, the shaft body 40 had the shaft through hole 411 as a connecting portion through which the second arm portion 22 is inserted, but the shape of the connecting portion is not limited. Similar to the modification of the holding part 32 of the holder 30, the arm 20 and the shaft body 40 may be connected using a snap-fit structure or an open hollow part and a pressing member. Further, in each of the above embodiments, the shaft abutting portion 221 of the second arm portion 22 is fitted into the shaft through hole 411, but if the held portion 222 is properly held by the holder 30, the shaft The contact portion 221 may be loosely fitted into the shaft through hole 411.
 上記の各実施形態において、検出機構は、径方向に磁化された永久磁石からなる磁気発生体50と、磁気抵抗効果素子を有する測定回路63が設けられた磁気検出部61とを有していたが、これに限定されない。磁気発生体50は永久磁石でなくてもよく、磁化方向も軸方向であってもよい。この場合には、磁気検出部61はホール素子を有することが好ましい場合がある。また、ホルダ30側に磁気検出部61が設けられ、ベース部材10に磁気発生体50が設けられていてもよい。あるいは、ベース部材10に磁気発生体50および磁気検出部61が設けられ、ホルダ30にはヨークが配置されて、磁気発生体50に基づきヨークを通る磁気回路が構成されていてもよい。この場合には、ホルダ30が回転することにより磁気回路を通る磁束密度が変化し、この磁束密度の変化を磁気検出部61が検出してもよい。 In each of the embodiments described above, the detection mechanism included a magnetism generator 50 made of a permanent magnet magnetized in the radial direction, and a magnetic detection section 61 provided with a measurement circuit 63 having a magnetoresistive element. However, it is not limited to this. The magnetism generating body 50 does not need to be a permanent magnet, and the magnetization direction may also be in the axial direction. In this case, it may be preferable that the magnetic detection section 61 includes a Hall element. Further, the magnetic detection section 61 may be provided on the holder 30 side, and the magnetic generator 50 may be provided on the base member 10. Alternatively, the base member 10 may be provided with the magnetic generating body 50 and the magnetic detecting section 61, and the holder 30 may be provided with a yoke, so that a magnetic circuit passing through the yoke may be configured based on the magnetic generating body 50. In this case, the magnetic flux density passing through the magnetic circuit changes as the holder 30 rotates, and the magnetic detection unit 61 may detect this change in magnetic flux density.
 上記の実施形態では、検知機構は磁気を検出対象としたが、これに限定されない。例えば、検知機構は、ホルダ30とベース部材10との一方に設けられた抵抗体と、ホルダ30とベース部材10との他方に設けられ抵抗体に接触する摺動接点と、を備えてもよい。他の検知機構の例として、ホルダ30とベース部材10との一方に設けられた発信器と、ホルダ30とベース部材10との他方に設けられ発信器からの信号を受ける受信器と、を備えてもよい。この場合の発信器が発信する信号源として、光、電波などの電磁波、音が例示される。別の検知機構の例として、ホルダ30とベース部材10との一方に設けられた発信器およびこの発信器からの信号を受信する受信器と、ホルダ30とベース部材10との他方に設けられ発信器からの信号を受信器へと反射する反射部と、を備えてもよい。この場合の発信器が発信する信号源として、光、電波などの電磁波が例示される。 In the above embodiment, the detection mechanism detects magnetism, but the detection mechanism is not limited to this. For example, the detection mechanism may include a resistor provided on one of the holder 30 and the base member 10, and a sliding contact provided on the other of the holder 30 and the base member 10 and in contact with the resistor. . Another example of the detection mechanism includes a transmitter provided on one of the holder 30 and the base member 10, and a receiver provided on the other of the holder 30 and the base member 10 to receive a signal from the transmitter. You can. Examples of signal sources emitted by the transmitter in this case include light, electromagnetic waves such as radio waves, and sound. Examples of other detection mechanisms include a transmitter provided on one of the holder 30 and the base member 10 and a receiver that receives a signal from the transmitter, and a receiver provided on the other of the holder 30 and the base member 10 that transmits a signal. The receiver may also include a reflector that reflects the signal from the receiver to the receiver. Examples of signal sources emitted by the transmitter in this case include electromagnetic waves such as light and radio waves.
 上記の実施形態では、複数の測定範囲において共通の計測限界値を与えるベース当接部112を液位計測における起点(液位測定範囲の下限)とする場合を具体例としたが、これに限定されない。ベース当接部112を液位計測における終点(液位測定範囲の上限)として用いてもよい。 In the above embodiment, a specific example is given in which the base contact portion 112 that provides a common measurement limit value in a plurality of measurement ranges is used as the starting point (lower limit of the liquid level measurement range) in liquid level measurement, but it is limited to this. Not done. The base contact portion 112 may be used as the end point (upper limit of the liquid level measurement range) in liquid level measurement.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiments is intended to include all design changes and equivalents that fall within the technical scope of the present invention.
100、100A、100B、101、101A、101B、101C  :液位センサ
10   :ベース部材
11   :ベース本体部
12   :ホルダ受け部
13   :容器接続部
20、201、202、203  :アーム
21   :第1アーム部
22   :第2アーム部
23   :屈曲部
30   :ホルダ
31   :ホルダ貫通孔
32   :保持部
34   :補助保持部
40   :軸体
41   :軸本体
42   :基底部
50   :磁気発生体
51   :面取り部
60   :基板
61   :磁気検出部
62   :制御装置
63   :測定回路
70   :配線
71   :金属配線
72   :被覆部
111  :係止部
111A :第1係止受け面
111B :第2係止受け面
112  :ベース当接部
112A :ベース当接面
121  :ベース貫通孔
122  :凸部
122A :凸部当接面
221  :軸体当接部
222  :被保持部
223  :突出部
301  :ホルダ本体部
321  :第1保持部
321A :第1保持受け面
321h :第1ホルダ挿通孔
322  :第2保持部
322A :第2保持受け面
322h :第2ホルダ挿通孔
323  :第3保持部
323A :第3保持受け面
331  :第1突起(ストッパ)
331A :第1突起面
332  :第2突起(ストッパ)
332A :第2突起面
332B :第2突起第2面
341  :第1補助保持部
342  :第2補助保持部
342A :補助保持受け面
411  :軸体貫通孔(連結部)
611  :規制部
620  :アーム
623  :突出部
623B :折れ曲がり部
623C :先端部
AX1  :第1軸
AX2  :中心軸
D    :距離
FB1  :第1フルブリッジ回路
FB2  :第2フルブリッジ回路
GND  :接地側端部
OP1  :中点出力
OP2  :中点出力
OP3  :中点出力
OP4  :中点出力
RA   :回転角度
S11~S42  :磁気抵抗効果素子
VD1  :第1測定電位データ
VD2  :第2測定電位データ
VDD  :電源側端部
OX1  :回転軸
OX2  :先端中心軸
100, 100A, 100B, 101, 101A, 101B, 101C: Liquid level sensor 10: Base member 11: Base main body portion 12: Holder receiving portion 13: Container connection portion 20, 201, 202, 203: Arm 21: First arm Part 22 : Second arm part 23 : Bent part 30 : Holder 31 : Holder through hole 32 : Holding part 34 : Auxiliary holding part 40 : Shaft body 41 : Shaft body 42 : Base part 50 : Magnetism generating body 51 : Chamfered part 60 : Substrate 61 : Magnetic detection unit 62 : Control device 63 : Measurement circuit 70 : Wiring 71 : Metal wiring 72 : Coating part 111 : Locking part 111A : First locking receiving surface 111B : Second locking receiving surface 112 : Base Contact portion 112A: Base contact surface 121: Base through hole 122: Convex portion 122A: Convex contact surface 221: Shaft contact portion 222: Held portion 223: Projecting portion 301: Holder main body portion 321: First Holding portion 321A: First holding and receiving surface 321h: First holder insertion hole 322: Second holding portion 322A: Second holding and receiving surface 322h: Second holder insertion hole 323: Third holding portion 323A: Third holding and receiving surface 331 :1st protrusion (stopper)
331A: First protrusion surface 332: Second protrusion (stopper)
332A: Second protrusion surface 332B: Second protrusion second surface 341: First auxiliary holding part 342: Second auxiliary holding part 342A: Auxiliary holding receiving surface 411: Shaft through hole (connection part)
611: Regulating portion 620: Arm 623: Projecting portion 623B: Bent portion 623C: Tip portion AX1: First axis AX2: Center axis D: Distance FB1: First full bridge circuit FB2: Second full bridge circuit GND: Ground side end Part OP1: Midpoint output OP2: Midpoint output OP3: Midpoint output OP4: Midpoint output RA: Rotation angle S11 to S42: Magnetoresistive element VD1: First measured potential data VD2: Second measured potential data VDD: Power supply Side end OX1: Rotation axis OX2: Tip center axis

Claims (20)

  1.  フロートを用いて容器内の液位を測定する液位センサであって、
     ベース部材と、
     前記フロートに接続可能なアームと、
     前記アームの被保持部を保持する保持部を有し、前記ベース部材に対して第1軸周りに回転可能に取り付けられたホルダと、
     前記ホルダの前記回転を検知する検知機構と、
    を備え、
     前記アームは、前記被保持部の延在方向に沿って前記ホルダから突出する突出部を有し、
     前記ベース部材は、前記突出部を係止して前記ホルダの前記回転を所定の位置で停止させる係止部を有すること
    を特徴とする液位センサ。
    A liquid level sensor that measures the liquid level in a container using a float,
    a base member;
    an arm connectable to the float;
    a holder having a holding part for holding a held part of the arm and rotatably attached to the base member around a first axis;
    a detection mechanism that detects the rotation of the holder;
    Equipped with
    The arm has a protrusion that protrudes from the holder along an extending direction of the held part,
    The liquid level sensor is characterized in that the base member has a locking portion that locks the protrusion and stops the rotation of the holder at a predetermined position.
  2.  フロートを用いて容器内の液位を測定する液位センサであって、
     ベース部材と、
     前記フロートに接続可能なアームの被保持部を保持する保持部を有し、前記ベース部材に対して第1軸周りに回転可能に取り付けられたホルダと、
     前記ホルダの前記回転を検知する検知機構と、
    を備え、
     前記ベース部材は、前記アームにおける前記ホルダから突出する部分である突出部を係止して、前記ホルダの前記回転を所定の位置で停止させるための係止部を有し、
     前記ホルダが前記所定の位置にあるとき、前記係止部の受け面は、前記保持部の受け面の延在方向に沿って位置すること
    を特徴とする液位センサ。
    A liquid level sensor that measures the liquid level in a container using a float,
    a base member;
    a holder having a holding part for holding a held part of an arm connectable to the float and rotatably attached to the base member around a first axis;
    a detection mechanism that detects the rotation of the holder;
    Equipped with
    The base member has a locking portion for locking a protrusion that is a portion of the arm that protrudes from the holder to stop the rotation of the holder at a predetermined position,
    When the holder is in the predetermined position, the receiving surface of the locking portion is located along the extending direction of the receiving surface of the holding portion.
  3.  フロートを用いて容器内の液位を測定する液位センサであって、
     ベース部材と、
     前記フロートに接続可能なアームと、
     前記アームの被保持部を保持する保持部を有し、前記ベース部材に対して第1軸周りに回転可能に取り付けられたホルダと、
     前記ホルダの前記回転を検知する検知機構と、
    を備え、
     前記ベース部材は、前記アームにおける前記ホルダから突出する部分である突出部を係止して前記ホルダの前記回転を所定の位置で停止させる係止部を有し、
     前記ホルダは前記保持部を複数備え、
     複数の前記保持部は、
      いずれについても、前記被保持部が前記第1軸と交わり、かつ
      互いに異なる位置で前記ホルダの回転を停止させるように、
    前記ホルダに設けられること
    を特徴とする液位センサ。
    A liquid level sensor that measures the liquid level in a container using a float,
    a base member;
    an arm connectable to the float;
    a holder that has a holding part that holds the held part of the arm and is rotatably attached to the base member around a first axis;
    a detection mechanism that detects the rotation of the holder;
    Equipped with
    The base member has a locking portion that locks a protrusion that is a portion of the arm that protrudes from the holder to stop the rotation of the holder at a predetermined position,
    The holder includes a plurality of the holding parts,
    The plurality of holding parts are
    In either case, the held portion intersects with the first axis and the rotation of the holder is stopped at mutually different positions;
    A liquid level sensor provided in the holder.
  4.  フロートを用いて容器内の液位を測定する液位センサであって、
     ベース部材と、
     前記フロートに接続可能なアームと、
     前記アームを保持する保持部を有し、前記ベース部材に対して第1軸周りに回転可能に取り付けられたホルダと、
     前記ホルダの前記回転を検知する検知機構と、
     前記第1軸に沿う軸体と、
    を備え、
     前記軸体は、前記アームに対する相対位置を設定する連結部を有し、前記アームを介して前記ホルダと連動すること
    を特徴とする液位センサ。
    A liquid level sensor that measures the liquid level in a container using a float,
    a base member;
    an arm connectable to the float;
    a holder that has a holding part that holds the arm and is rotatably attached to the base member around a first axis;
    a detection mechanism that detects the rotation of the holder;
    a shaft body along the first axis;
    Equipped with
    The liquid level sensor is characterized in that the shaft body has a connection part that sets a relative position with respect to the arm, and is interlocked with the holder via the arm.
  5.  前記連結部は、前記第1軸に交差した方向に延びる前記アームが挿入される挿入孔を有する、請求項4に記載の液位センサ。 The liquid level sensor according to claim 4, wherein the connecting portion has an insertion hole into which the arm extending in a direction intersecting the first axis is inserted.
  6.  前記ホルダは前記保持部を複数備え、
     複数の前記保持部は、
      いずれについても、前記被保持部が前記第1軸と交わり、かつ
      互いに異なる位置で前記ホルダの回転を停止させるように、
    前記ホルダに設けられる、請求項1または請求項2に記載の液位センサ。
    The holder includes a plurality of the holding parts,
    The plurality of holding parts are
    In either case, the held portion intersects with the first axis and the rotation of the holder is stopped at mutually different positions;
    The liquid level sensor according to claim 1 or 2, provided in the holder.
  7.  前記ベース部材および前記ホルダは、前記ホルダの前記回転を所定の位置に停止させるストッパを有する、請求項1から請求項4のいずれか1項に記載の液位センサ。 The liquid level sensor according to any one of claims 1 to 4, wherein the base member and the holder have a stopper that stops the rotation of the holder at a predetermined position.
  8.  前記ベース部材および前記ホルダは、前記ホルダの前記回転を所定の位置に停止させるストッパを有し、
     前記ストッパに基づく停止位置は前記係止部に基づく停止位置とは異なる位置である、請求項1から請求項3のいずれか1項に記載の液位センサ。
    The base member and the holder have a stopper that stops the rotation of the holder at a predetermined position;
    The liquid level sensor according to any one of claims 1 to 3, wherein the stop position based on the stopper is a different position from the stop position based on the locking part.
  9.  前記ストッパは、前記ホルダの前記回転のうち、前記突出部が前記係止部から離れる向きの回転を停止させる、請求項8に記載の液位センサ。 The liquid level sensor according to claim 8, wherein the stopper stops the rotation of the holder in a direction in which the protruding portion moves away from the locking portion.
  10.  前記ストッパは、前記ホルダの前記回転のうち、前記突出部を前記係止部に当接させる向きの回転を停止させる、請求項8に記載の液位センサ。 The liquid level sensor according to claim 8, wherein the stopper stops the rotation of the holder in a direction that brings the protrusion into contact with the locking portion.
  11.  前記ストッパは、前記ホルダにおいて径方向に突出する突起部と、前記係止部とからなる、請求項10に記載の液位センサ。 The liquid level sensor according to claim 10, wherein the stopper includes a protrusion projecting in the radial direction on the holder and the locking portion.
  12.  前記検知機構は、前記ホルダと前記ベース部材との一方に設けられた磁気発生体と、前記ホルダと前記ベース部材との他方に設けられ前記磁気発生体からの磁界を測定する磁気測定部と、を備える、請求項1から請求項4のいずれか1項に記載の液位センサ。 The detection mechanism includes a magnetism generating body provided on one of the holder and the base member, and a magnetism measurement unit that measures the magnetic field from the magnetic field generated on the other of the holder and the base member. The liquid level sensor according to any one of claims 1 to 4, comprising:
  13.  前記磁気測定部は磁気抵抗効果素子を有し、前記磁気発生体と前記磁気抵抗効果素子との並び方向は、前記第1軸に非平行とされる、請求項12に記載の液位センサ。 The liquid level sensor according to claim 12, wherein the magnetic measurement section has a magnetoresistive element, and the direction in which the magnetic generator and the magnetoresistive element are arranged is non-parallel to the first axis.
  14.  前記磁気測定部は、前記磁気抵抗効果素子を有するフルブリッジ回路を2つ備え、
     2つの前記フルブリッジ回路について、一方の中点出力が正弦波を出力するときに、他方の中点出力が前記正弦波から90°位相がずれた正弦波を出力するように、前記磁気抵抗効果素子の感度軸は設定される、請求項13に記載の液位センサ。
    The magnetic measurement unit includes two full bridge circuits each having the magnetoresistive element,
    For the two full bridge circuits, the magnetoresistive effect is such that when one midpoint output outputs a sine wave, the other midpoint output outputs a sine wave whose phase is shifted by 90° from the sine wave. The liquid level sensor according to claim 13, wherein the sensitivity axis of the element is set.
  15.  前記ホルダは、前記保持部とは異なる位置に設けられ前記アームを保持するための補助保持部をさらに備える、請求項1から請求項4のいずれか1項に記載の液位センサ。 The liquid level sensor according to any one of claims 1 to 4, wherein the holder further includes an auxiliary holding part for holding the arm, which is provided at a different position from the holding part.
  16.  前記補助保持部の受け面は、前記保持部の受け面の延長上から外れて位置する、請求項15に記載の液位センサ。 16. The liquid level sensor according to claim 15, wherein the receiving surface of the auxiliary holding part is located off an extension of the receiving surface of the holding part.
  17.  前記突出部は、前記アームにおいて、前記被保持部を挟んで前記フロートが接続される側と反対側に位置する、請求項1から請求項3のいずれか1項に記載の液位センサ。 The liquid level sensor according to any one of claims 1 to 3, wherein the protruding part is located on the opposite side of the arm to the side to which the float is connected, with the held part interposed therebetween.
  18.  前記検知機構は、前記ホルダと前記ベース部材との一方に設けられた抵抗体と、前記ホルダと前記ベース部材との他方に設けられ前記抵抗体に接触する摺動接点と、を備える、請求項1から請求項4のいずれか1項に記載の液位センサ。 The detection mechanism includes a resistor provided on one of the holder and the base member, and a sliding contact provided on the other of the holder and the base member and in contact with the resistor. The liquid level sensor according to any one of claims 1 to 4.
  19.  前記検知機構は、前記ホルダと前記ベース部材との一方に設けられた発信器と、前記ホルダと前記ベース部材との他方に設けられ前記発信器からの信号を受ける受信器と、を備える、請求項1から請求項4のいずれか1項に記載の液位センサ。 The detection mechanism includes a transmitter provided on one of the holder and the base member, and a receiver provided on the other of the holder and the base member to receive a signal from the transmitter. The liquid level sensor according to any one of claims 1 to 4.
  20.  前記検知機構は、前記ホルダと前記ベース部材との一方に設けられた発信器および当該発信器からの信号を受信する受信器と、前記ホルダと前記ベース部材との他方に設けられ前記発信器からの信号を前記受信器へと反射する反射部と、を備える、請求項1から請求項4のいずれか1項に記載の液位センサ。 The detection mechanism includes a transmitter provided on one of the holder and the base member and a receiver that receives a signal from the transmitter, and a receiver provided on the other of the holder and the base member that receives a signal from the transmitter. The liquid level sensor according to any one of claims 1 to 4, further comprising a reflecting portion that reflects a signal of the signal to the receiver.
PCT/JP2023/008218 2022-08-01 2023-03-06 Liquid level sensor WO2024029115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122601 2022-08-01
JP2022122601 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024029115A1 true WO2024029115A1 (en) 2024-02-08

Family

ID=89848954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008218 WO2024029115A1 (en) 2022-08-01 2023-03-06 Liquid level sensor

Country Status (1)

Country Link
WO (1) WO2024029115A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124614A (en) * 1999-10-27 2001-05-11 Yazaki Corp Liquid level sensor
JP2004037196A (en) * 2002-07-02 2004-02-05 Yazaki Corp Non-contact type liquid level sensor
WO2013109317A1 (en) * 2012-01-17 2013-07-25 Rochester Gauges, Inc. Liquid level transducer with isolated sensors
JP2015102501A (en) * 2013-11-27 2015-06-04 日本精機株式会社 Liquid level detection device
WO2016069041A1 (en) * 2014-10-31 2016-05-06 Texas Lfp, Llc Liquid level transducer with pivoting and linear motion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124614A (en) * 1999-10-27 2001-05-11 Yazaki Corp Liquid level sensor
JP2004037196A (en) * 2002-07-02 2004-02-05 Yazaki Corp Non-contact type liquid level sensor
WO2013109317A1 (en) * 2012-01-17 2013-07-25 Rochester Gauges, Inc. Liquid level transducer with isolated sensors
JP2015102501A (en) * 2013-11-27 2015-06-04 日本精機株式会社 Liquid level detection device
WO2016069041A1 (en) * 2014-10-31 2016-05-06 Texas Lfp, Llc Liquid level transducer with pivoting and linear motion

Similar Documents

Publication Publication Date Title
US10309802B2 (en) Angle sensors, systems, and methods
JP7256106B2 (en) Inductive position detection arrangement for indicating stylus position of a measuring device
CN111609872B (en) Sensor system for rotation angle detection and 3D joystick functionality
US8587295B2 (en) Angle detection apparatus and position detection apparatus
JP4729358B2 (en) Rotation angle sensor
US10670425B2 (en) System for measuring angular position and method of stray field cancellation
JP4720233B2 (en) Rotation angle detector
CN106443521B (en) Angle sensing in off-axis configuration
CN101903749B (en) Angular position measuring device
WO2012060216A1 (en) Angle detection device
US20100171488A1 (en) System and method for measuring alignment errors of axles
JP5128120B2 (en) Rotation sensor
US11543231B2 (en) Inductive angle sensor with clearance value ascertainment
US20130314079A1 (en) Rotation angle detection device
JP2005181315A (en) Magnetic position sensor device and method
JP4947250B2 (en) Angle detector
JP2008151629A (en) Rotation sensor
RU2615612C2 (en) Contactless true dual axis shaft encoder
US7710110B2 (en) Rotary sensor with rotary sensing element and rotatable hollow magnet
WO2024029115A1 (en) Liquid level sensor
US8128246B1 (en) Fast steering mirror
JP2009300262A (en) Displacement detector
US20200173811A1 (en) Sensing of a rotational angle
US11162817B2 (en) Flux coupling sensor and target
US20100045287A1 (en) Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849683

Country of ref document: EP

Kind code of ref document: A1