WO2024027637A1 - 资源确定方法、装置、终端及网络侧设备 - Google Patents

资源确定方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2024027637A1
WO2024027637A1 PCT/CN2023/110195 CN2023110195W WO2024027637A1 WO 2024027637 A1 WO2024027637 A1 WO 2024027637A1 CN 2023110195 W CN2023110195 W CN 2023110195W WO 2024027637 A1 WO2024027637 A1 WO 2024027637A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
starting
pusch
uplink subband
domain resource
Prior art date
Application number
PCT/CN2023/110195
Other languages
English (en)
French (fr)
Inventor
司倩倩
赵越
邢艳萍
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024027637A1 publication Critical patent/WO2024027637A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a resource determination method, device, terminal and network side equipment.
  • the frequency domain resource allocation information in DCI scrambled by RAR UL grant or TC-RNTI cannot indicate the PUSCH transmitted in the uplink subband, making it impossible to implement the PUSCH in the uplink. Problems with intra-subband transmission.
  • the purpose of this disclosure is to provide a resource determination method, device, terminal and network side equipment to solve the problem that the frequency domain resource allocation information in the existing technology RAR UL grant or TC-RNTI scrambled DCI cannot indicate the uplink subband.
  • PUSCH is transmitted within the uplink subband, so that the PUSCH cannot be transmitted within the uplink subband.
  • embodiments of the present disclosure provide a resource determination method, which is applied to a terminal and includes:
  • the PUSCH is the PUSCH scheduled by the random access response RAR or the temporary cell
  • the wireless network temporary identifier TC-RNTI scrambles the downlink control information DCI scheduled PUSCH.
  • the determination is based on at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP.
  • the frequency domain resource location of the physical uplink shared channel PUSCH includes:
  • the target method determines the frequency domain resource location of PUSCH.
  • the target method includes one of the following methods:
  • the corresponding PRB number is n + the starting RB number of the uplink subband - the starting RB number of the active UL BWP, as described
  • the carrier is the carrier where the uplink subband, the initial UL BWP and the active UL BWP are located; or
  • the corresponding PRB number is n + the starting RB number of the uplink subband + the starting RB number of the initial UL BWP - The starting RB number of active UL BWP;
  • the corresponding PRB number is n + the starting RB number of the uplink subband.
  • the method also includes:
  • frequency domain resource allocation instructions are obtained.
  • obtaining the frequency domain resource allocation indication based on the bandwidth of the uplink subband includes:
  • the frequency domain bits and/or other information domain bits are allocated according to the bandwidth of the uplink subband and the frequency domain resource of the RAR. Domain resource allocation indication; or
  • FDRA domain bits and/or are allocated according to the bandwidth of the uplink subband and the frequency domain resource of the DCI. or other information domain bits to obtain frequency domain resource allocation indication.
  • the frequency domain resource allocation FDRA is based on the bandwidth of the uplink subband and the frequency domain resource of the RAR.
  • domain bits and/or other information domain bits to obtain frequency domain resource allocation instructions including:
  • the frequency domain resources of the RAR are allocated in the FDRA domain.
  • the low-order information bits are used as frequency domain resource allocation instructions, and N is a default value greater than 0. Indicates the bandwidth size of the uplink subband; or
  • bandwidth of the uplink subband is greater than N, then in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication,
  • the number of bits used to indicate frequency hopping in the FDRA domain of the RAR, and is determined by the frequency hopping identifier of the first preset information field in the RAR and the number of PRBs included in the initial UL BWP bandwidth, k is greater than The default value of 0; or
  • the FDRA field bits of the RAR and other information fields of the RAR are bits together as frequency domain resource allocation indication.
  • obtaining the frequency domain resource allocation indication based on the bandwidth of the uplink subband and the frequency domain resource allocation FDRA domain bits and/or other information domain bits of the DCI includes:
  • the frequency domain resources of the DCI are allocated in the FDRA domain.
  • a low-order information bit is used as a frequency domain resource allocation indication
  • bits 0 are inserted into the high bits after bits as frequency domain resource allocation indication, where, The number of bits used to indicate frequency hopping in the FDRA domain of the DCI, and is determined by the frequency hopping identifier of the second preset information field in the DCI and the number of PRBs included in the initial UL BWP bandwidth, Indicates the bandwidth size of the uplink subband, Indicates the bandwidth size of initial UL BWP; or
  • the FDRA domain bits of the DCI and the m bits in other information domains of the DCI are used as frequency domain resource allocation instructions.
  • the starting RB position of the active UL BWP and the starting RB position of the initial UL BWP At least one of the following, determine the frequency domain resource location of PUSCH in a targeted manner, including:
  • mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband, the starting RB position of the active UL BWP and the starting RB position of the initial UL BWP At least one of the following, determine the frequency domain resources of PUSCH through a target approach Source location.
  • the target conditions include one of the following conditions:
  • the uplink subband part is included in all Within the bandwidth of the active UL BWP described above; or
  • the uplink subband is not included in the active UL BWP range.
  • the uplink subband is not included in the initial UL BWP bandwidth range.
  • the method also includes:
  • the PUSCH When the PUSCH is located in the time domain resource corresponding to the uplink subband, when mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband and the starting RB position of the active UL BWP and at least one of the starting RB positions of the initial UL BWP, and determine the frequency domain resource position of the PUSCH in a target manner.
  • the method also includes:
  • determining whether the PUSCH is located in the time domain resource corresponding to the uplink subband by displaying an indication method includes:
  • a reserved bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • the PUSCH When the PUSCH is the PUSCH scheduled by the DCI, indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband by adding a new information domain bit; or
  • the PUSCH is the PUSCH scheduled by the DCI, indicating whether the PUSCH is located in the time domain resource corresponding to the uplink subband by multiplexing part of the information domain bits in the DCI;
  • Whether the PUSCH is located in the time domain resource corresponding to the uplink subband is determined based on the PRACH resource corresponding to the PUSCH.
  • the method also includes:
  • the frequency domain resource of the uplink subband is determined through the notification message sent by the network side device.
  • the frequency domain resource of the uplink subband includes the starting RB position of the uplink subband and the bandwidth of the uplink subband.
  • embodiments of the present disclosure also provide a resource determination method, which is applied to network side equipment, including:
  • the PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • the frequency domain resource location of the shared channel PUSCH includes:
  • the target method determines the frequency domain resource location of PUSCH.
  • the target method includes one of the following methods:
  • the corresponding PRB number is n + the starting RB number of the uplink subband - the starting RB number of the active UL BWP
  • the carrier is the carrier where the uplink subband, the initial UL BWP and the active UL BWP are located; or
  • the corresponding PRB number is n + the starting RB number of the uplink subband + the starting RB number of the initial UL BWP - The starting RB number of active UL BWP;
  • the starting RB number of the uplink subband is referenced to the starting position of the active UL BWP, and the VRB When the number is n, the corresponding PRB number is n + the starting RB number of the uplink subband.
  • the method also includes:
  • frequency domain resource allocation instructions are obtained.
  • obtaining the frequency domain resource allocation indication based on the bandwidth of the uplink subband includes:
  • the frequency domain bits and/or other information domain bits are allocated according to the bandwidth of the uplink subband and the frequency domain resource of the RAR. Domain resource allocation indication; or
  • FDRA domain bits and/or are allocated according to the bandwidth of the uplink subband and the frequency domain resource of the DCI. or other information domain bits to obtain frequency domain resource allocation indication.
  • obtaining the frequency domain resource allocation indication based on the bandwidth of the uplink subband and the frequency domain resource allocation FDRA domain bits and/or other information domain bits of the RAR includes:
  • the frequency domain resources of the RAR are allocated in the FDRA domain.
  • the low-order information bits are used as frequency domain resource allocation instructions, and N is a default value greater than 0. Indicates the bandwidth size of the uplink subband; or
  • bandwidth of the uplink subband is greater than N, then in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication,
  • the number of bits used to indicate frequency hopping in the FDRA domain of the RAR, and is determined by the frequency hopping identifier of the first preset information field in the RAR and the number of PRBs included in the initial UL BWP bandwidth, k is greater than The default value of 0; or
  • the FDRA field bits of the RAR and other information fields of the RAR are bits together as frequency domain resource allocation indication.
  • obtaining the frequency domain resource allocation indication based on the bandwidth of the uplink subband and the frequency domain resource allocation FDRA domain bits and/or other information domain bits of the DCI includes:
  • the frequency domain resources of the DCI are allocated in the FDRA domain.
  • a low-order information bit is used as a frequency domain resource allocation indication
  • bandwidth of the uplink subband is greater than the initial UL BWP, then in the FDRA domain of the DCI m bits 0 are inserted into the high bits after bits as frequency domain resource allocation indication, where, The number of bits used to indicate frequency hopping in the FDRA domain of the DCI, and is determined by the second preset information field in the DCI
  • the frequency hopping identifier and the number of PRBs included in the initial UL BWP bandwidth are determined, Indicates the bandwidth size of the uplink subband, Indicates the bandwidth size of initial UL BWP; or
  • the FDRA domain bits of the DCI and the m bits in other information domains of the DCI are used as frequency domain resource allocation instructions.
  • the starting RB position of the active UL BWP and the starting RB position of the initial UL BWP At least one of the following, determine the frequency domain resource location of PUSCH in a targeted manner, including:
  • mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband, the starting RB position of the active UL BWP and the starting RB position of the initial UL BWP At least one of the above determines the frequency domain resource location of PUSCH in a target manner.
  • the target conditions include one of the following conditions:
  • the uplink subband part is included in all Within the bandwidth of the active UL BWP described above; or
  • the uplink subband is not included in the active UL BWP range.
  • the uplink subband is not included in the initial UL BWP bandwidth range.
  • the method also includes:
  • the PUSCH When the PUSCH is located in the time domain resource corresponding to the uplink subband, when mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband and the starting RB position of the active UL BWP and at least one of the starting RB positions of the initial UL BWP, and determine the frequency domain resource position of the PUSCH in a target manner.
  • the method also includes:
  • determining whether the PUSCH is located in the time domain resource corresponding to the uplink subband by displaying an indication method includes:
  • a reserved bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • the PUSCH When the PUSCH is the PUSCH scheduled by the DCI, indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband by adding a new information domain bit; or
  • the PUSCH is the PUSCH scheduled by the DCI, indicating whether the PUSCH is located in the time domain resource corresponding to the uplink subband by multiplexing part of the information domain bits in the DCI; or
  • Whether the PUSCH is located in the time domain resource corresponding to the uplink subband is determined based on the PRACH resource corresponding to the PUSCH.
  • the method also includes:
  • the notification message is used to enable the terminal to determine the frequency domain resource of the uplink subband.
  • the frequency domain resource of the uplink subband includes the starting RB position of the uplink subband and the starting RB position of the uplink subband. bandwidth.
  • an embodiment of the present disclosure also provides a terminal, including: a memory, a transceiver, and a processor: a memory for storing computer programs; a transceiver for sending and receiving data under the control of the processor; and processing A processor for reading the computer program in said memory and performing the following operations:
  • the PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • an embodiment of the present disclosure also provides a resource determination device, including:
  • the first resource determination unit is used to determine the starting resource block RB position of the uplink subband, the starting RB position of the active uplink bandwidth part active UL BWP, and the initial uplink bandwidth part initial UL BWP. At least one of the starting RB positions determines the frequency domain resource position of the physical uplink shared channel PUSCH;
  • the PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • an embodiment of the present disclosure also provides a network side device, including: a memory, a transceiver, and a processor: a memory for storing computer programs; a transceiver for sending and receiving under the control of the processor Data; processor for reading a computer program in said memory and performing the following operations:
  • the PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • embodiments of the present disclosure also provide a resource determination device, including:
  • the second resource determination unit is configured to determine at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP. , determine the frequency domain resource location of the physical uplink shared channel PUSCH;
  • the PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • an embodiment of the present disclosure also provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, the computer program is used to cause the processor to execute the above-mentioned resources Identify the steps of the method.
  • At least one of the starting resource block RB position of the uplink subband, the starting RB position of the active uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP is used.
  • One item determine the frequency domain resource location of the physical uplink shared channel PUSCH, where the PUSCH is the PUSCH scheduled by the random access response RAR or the downlink control information DCI scheduled by the temporary cell radio network temporary identifier TC-RNTI, In this way, for RAR scheduled PUSCH or TC-RNTI scrambled DCI scheduled PUSCH, the above method can be used to determine the frequency domain resource location of the PUSCH, so as to realize the transmission of the PUSCH within the uplink subband range.
  • Figure 1 is one of the schematic diagrams of the location of frequency domain resources where the uplink subband is located according to an embodiment of the present disclosure
  • Figure 2 is a second schematic diagram of the frequency domain resource location of the uplink subband according to an embodiment of the present disclosure
  • Figure 3 is the third schematic diagram of the frequency domain resource location where the uplink subband is located according to an embodiment of the present disclosure
  • Figure 4 is one of the flow diagrams of a resource determination method according to an embodiment of the present disclosure.
  • Figure 5 is a second schematic flowchart of a resource determination method according to an embodiment of the present disclosure.
  • Figure 6 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • Figure 7 is one of the module schematic diagrams of the resource determination device according to an embodiment of the present disclosure.
  • Figure 8 is a structural block diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 9 is the second module schematic diagram of the resource determination device according to an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone. these three situations.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar to it.
  • TDD and FDD refer to the two duplex communication modes in mobile communication technology.
  • Mode. TDD refers to time division duplex mode
  • FDD refers to frequency division duplex mode.
  • TDD mode transmits and receives at different times on the same frequency channel, that is, the carrier, and distinguishes uplink and downlink transmission resources by time;
  • FDD mode transmits and receives at the same time on different frequency channels, and distinguishes uplink and downlink transmission resources by frequency.
  • 5G NR will support full duplex with non-overlapping subbands in the Rel-18 stage, that is, the base station can pass different channels in a Time Domain Duplex (TDD) frequency band/carrier/bandwidth part (BandWidth Part, BWP) at the same time.
  • TDD Time Domain Duplex
  • BWP Bandwidth Part
  • Subbands are used for transmission and reception simultaneously, and there is no overlap between the subbands used for transmission and reception.
  • the uplink subband exists in some symbols and does not overlap with other frequency domain resources.
  • Random Access Response Random Access Response
  • UpLink grant Physical Uplink Shared Channel
  • UL grant scheduled physical uplink shared channel
  • Temporary Cell-Radio Network Temporary Identifier, TC-RNTI Temporary Cell-Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PUSCH Physical Uplink Shared Channel
  • Frequency Domain Resource Allocation Frequency Domain Resource Allocation, FDRA
  • the frequency domain resource allocation (Frequency Domain Resource Allocation, FDRA) field in the RAR UL grant fixedly contains 14 bits of information (for licensed spectrum resources), which is used to indicate the frequency domain resources of the PUSCH scheduled by the RAR UL grant.
  • Frequency domain resource allocation uses resource allocation type 1.
  • the low-order information bits serve as frequency domain resource allocation indications.
  • Bit 0 is used as a frequency domain resource allocation indication, where N UL,hop is used to indicate the number of frequency hopping bits in the FDRA domain.
  • the bandwidth of the initial UL BWP is used to interpret the FDRA domain.
  • the FDRA field in the TC-RNTI scrambled DCI format 0_0 determines the number of bits based on the bandwidth size of the initial UL BWP, and can only indicate Physical Resource Block (PRB) resources within the bandwidth range of the initial UL BWP.
  • PRB Physical Resource Block
  • Case 1 For the initial UL BWP and active UL BWP are the same, or the initial UL BWP is within the active UL BWP range and the subcarrier spacing (SubCarrier Space, SCS) and cyclic prefix (Cyclic Predix, CP) are the same, then frequency domain resource allocation
  • the Virtual Resource Block (VRB) index is based on the initial UL BWP indication (that is, VRB indicates the starting RB position and length within the initial UL BWP range), and an offset is added when mapping from VRB to PRB. Shift, that is, the offset between the initial UL BWP starting RB and the active UL BWP starting RB. Assuming that the VRB number is n, the corresponding PRB number is n+initial UL BWP starting RB number-active UL BWP starting RB number.
  • Case 2 For other cases except Case 1, the frequency domain resource allocation of PUSCH is based on the starting RB position of active UL BWP and the bandwidth allocation of initial UL BWP. Assuming that the VRB number is n, the corresponding PRB number is n.
  • embodiments of the present application provide a resource determination method and device Terminal and network-side equipment, in which the method and the device are based on the same application concept. Since the method and the device solve problems in similar principles, the implementation of the device and the method can be referred to each other, and repeated details will not be repeated.
  • a schematic flowchart of a resource determination method provided by an embodiment of the present disclosure is applied to a terminal.
  • the method may include:
  • Step 401 Determine the physical uplink sharing based on at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP
  • the starting RB position of the uplink subband is determined through a notification message sent by the network side.
  • the method of the embodiment of the present application may also include:
  • the frequency domain resources of the uplink subband are determined through the notification message sent by the network side device.
  • the frequency domain resources of the uplink subband include the starting RB position of the uplink subband and the bandwidth of the uplink subband.
  • the frequency domain resources of the uplink subband are determined through the notification message sent by the network side device, and the starting RB position of the uplink subband is also determined.
  • step 401 may specifically include:
  • the frequency domain resource allocation indication is used to indicate the starting RB number of the VRB and the number of allocated consecutive RBs;
  • the PUSCH frequency is determined in a target manner based on at least one of the starting RB position of the uplink subband, the starting RB position of the active UL BWP, and the starting RB position of the initial UL BWP. Domain resource location.
  • the target method includes one of the following methods:
  • the VRB number is The carrier on which the subband, initial UL BWP and active UL BWP are located;
  • the corresponding PRB number is n + the starting RB number of the uplink subband + the starting RB number of the initial UL BWP - The starting RB number of the active UL BWP;
  • the corresponding PRB number is n + the starting RB number of the uplink subband.
  • the uplink subband is used as active UL BWP
  • the above target method of determining the frequency domain resource location of PUSCH is equivalent to one of the following methods:
  • the starting RB number of the uplink subband is based on the starting position of the carrier, and the VRB number is n, the corresponding PRB number is n, and the carrier is the carrier where the uplink subband is located;
  • the corresponding PRB number is n+the starting RB number of the initial UL BWP;
  • the corresponding PRB number is n + the starting RB number of the uplink subband (or active UL BWP).
  • the starting position used as a reference for the starting RB number of the uplink subband may be notified or indicated by the network side device (such as the base station), or agreed by the protocol.
  • the method of the embodiment of the present disclosure may also include :
  • a frequency domain resource allocation indication is obtained.
  • frequency domain resource allocation instructions are obtained.
  • the bandwidth of the uplink subband can be determined through a notification message sent by the network side device.
  • obtaining the frequency domain resource allocation indication based on the bandwidth of the uplink subband may specifically include:
  • the frequency domain resource allocation indication is obtained according to the bandwidth of the uplink subband and the RAR's frequency domain resource allocation FDRA domain bits and/or other information domain bits.
  • this step may include:
  • bandwidth of the uplink subband is less than or equal to N, allocate the RAR frequency domain resources to the FDRA domain
  • the low-order information bits are used as frequency domain resource allocation instructions, and N is a default value greater than 0. Indicates the bandwidth size of the uplink subband.
  • N is a preset value greater than 0, which can also be understood as a predefined value in the protocol.
  • bandwidth of the uplink subband is greater than N, then in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as frequency domain resource allocation instruct,
  • the number of bits used to indicate frequency hopping in the FDRA domain of RAR is determined by the frequency hopping identifier of the first preset information field in RAR and the number of PRBs included in the initial UL BWP bandwidth.
  • k is a preset greater than 0. value.
  • the value can be 0,1,2.
  • k is a preset value greater than 0, which can also be understood as a predefined value in the protocol.
  • N is 180 and k is 14. That is, 14bit corresponds to 180 RBs.
  • bandwidth of the uplink subband is greater than N, then combine the FDRA field bits of the RAR and the other information fields of the RAR. bits together as frequency domain resource allocation indication.
  • the base station schedules a PUSCH for transmission in the uplink subband through RAR.
  • the RAR passes the FDRA domain
  • the low-order information bits indicate transmission within the 50 RB range of the uplink subband.
  • the uplink subband occupies 200 RBs, it is in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication; or, 1 bit of information in the RAR is reused together with the FDRA domain bits of the RAR as a frequency domain resource allocation indication.
  • FDRA domain bits and/or other information domain bits are allocated according to the bandwidth of the uplink subband and the frequency domain resources of DCI. Obtain frequency domain resource allocation instructions.
  • this step may include:
  • the base station schedules a PUSCH transmitted in the uplink subband through TC-RNTI scrambled DCI format 0_0, and the bandwidth of the initial UL BWP is 100 RBs.
  • the uplink subband occupies 50 RBs, then the FDRA domain in the DCI
  • the low-order information bits indicate transmission within the 50 RB range of the uplink subband.
  • the uplink subband occupies 200 RBs, then in the FDRA domain of DCI High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication; or, 1 bit of information in the DCI is reused together with the FDRA domain bit of the RAR as a frequency domain resource allocation indication.
  • mapping from VRB to physical resource block PRB according to at least one of the starting RB position of the uplink subband, the starting RB position of the active UL BWP and the starting RB position of the initial UL BWP Item, determine the frequency domain resource location of PUSCH through the target method, which may specifically include:
  • mapping from VRB to physical resource block PRB according to at least one of the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB position of initial UL BWP, Determine the frequency domain resource location of PUSCH through a target method.
  • the target conditions include one of the following conditions:
  • the uplink subband part is included in the active UL BWP bandwidth;
  • the uplink subband is not included in the initial UL BWP bandwidth range of the active UL BWP starting from the starting RB;
  • the uplink subband is not included in the initial UL BWP bandwidth range.
  • the method of the embodiment of the present disclosure may also include:
  • PUSCH When PUSCH is located in the time domain resource corresponding to the uplink subband, when mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB of initial UL BWP At least one item in the location determines the frequency domain resource location of PUSCH in a target manner.
  • the method of the embodiment of the present disclosure may also include:
  • the PUSCH is located in the time unit corresponding to the uplink subband, that is, whether it is located in a time slot/symbol in which uplink and downlink transmission occur simultaneously (subbands do not overlap, full duplex (Subband Non-overlapping full duplex, SBFD) symbol).
  • this step may specifically include:
  • the reserved bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband.
  • a new information field bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband.
  • part of the information field bits in the DCI are multiplexed to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband.
  • the resource determination method of the embodiment of the present disclosure is based on at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP. item, determine the frequency domain resource location of the physical uplink shared channel PUSCH, where PUSCH is the PUSCH scheduled by the random access response RAR or the downlink control information DCI scheduled by the temporary cell radio network temporary identity TC-RNTI.
  • the frequency domain resource location of the PUSCH can be determined using the above method to achieve transmission of the PUSCH within the uplink subband range.
  • a schematic flow chart of a resource determination method provided by an embodiment of the present disclosure is applied to a network side device.
  • the method may include:
  • Step 501 Determine the physical uplink sharing based on at least one of the starting resource block RB position of the uplink subband, the starting RB position of the active uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP The frequency domain resource location of the channel PUSCH, where the PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identity TC-RNTI.
  • the resource determination method of the embodiment of the present disclosure is based on at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part iinitial UL BWP. item, determine the frequency domain resource location of the physical uplink shared channel PUSCH, where PUSCH is the PUSCH scheduled by the random access response RAR or the downlink control information DCI scheduled by the temporary cell radio network temporary identity TC-RNTI.
  • the frequency domain resource location of the PUSCH can be determined using the above method to achieve transmission of the PUSCH within the uplink subband range.
  • step 501 may specifically include:
  • the PUSCH frequency is determined in a target manner based on at least one of the starting RB position of the uplink subband, the starting RB position of the active UL BWP, and the starting RB position of the initial UL BWP. Domain resource location.
  • the target method includes one of the following methods:
  • the corresponding PRB number is n + the starting RB number of the uplink subband - the starting RB number of the active UL BWP
  • the carrier is The carrier where the uplink subband, initial UL BWP and active UL BWP are located; or
  • the corresponding PRB number is n + the starting RB number of the uplink subband + the starting RB number of the initial UL BWP - The starting RB number of active UL BWP;
  • the corresponding PRB number is n + the starting RB number of the uplink subband.
  • the starting position of the starting RB number of the uplink subband as a reference can be determined by the network side device (such as the base station), and notified or indicated to the terminal, or agreed by the protocol.
  • the method of the embodiment of the present disclosure may also include :
  • a frequency domain resource allocation indication is obtained.
  • obtaining the frequency domain resource allocation indication based on the bandwidth of the uplink subband may specifically include:
  • the frequency domain resource allocation indication is obtained according to the bandwidth of the uplink subband and the RAR's frequency domain resource allocation FDRA domain bits and/or other information domain bits.
  • this step may include:
  • bandwidth of the uplink subband is less than or equal to N, allocate the RAR frequency domain resources to the FDRA domain
  • the low-order information bits are used as frequency domain resource allocation instructions, and N is a default value greater than 0. Indicates the bandwidth size of the uplink subband.
  • N is a preset value greater than 0, which can also be understood as a predefined value in the protocol.
  • d-2 If the bandwidth of the uplink subband is greater than N, then in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication, The number of bits used to indicate frequency hopping in the FDRA domain of RAR, and is determined by the frequency hopping identifier of the first preset information field in RAR and the number of PRBs included in the initial UL BWP bandwidth. k is a preset greater than 0. value.
  • the value can be 0,1,2.
  • k is a preset value greater than 0, which can also be understood as a predefined value in the protocol.
  • N is 180 and k is 14. That is, 14bit corresponds to 180 RBs.
  • bandwidth of the uplink subband is greater than N, then combine the FDRA field bits of the RAR and the other information fields of the RAR. bits together as frequency domain resource allocation indication.
  • FDRA domain bits and/or other information domain bits are allocated according to the bandwidth of the uplink subband and the frequency domain resources of DCI. Obtain frequency domain resource allocation instructions.
  • this step may include:
  • bandwidth of the uplink subband is less than or equal to the initial UL BWP, allocate the DCI frequency domain resources to the FDRA domain A low-order information bit is used as a frequency domain resource allocation indication;
  • bandwidth of the uplink subband is greater than the initial UL BWP, then in the FDRA domain of DCI m bits 0 are inserted into the high bits after bits as frequency domain resource allocation indication, where, The number of bits used to indicate frequency hopping in the FDRA domain of DCI, and is determined by the frequency hopping identifier of the second preset information field in DCI and the number of PRBs included in the initial UL BWP bandwidth, Indicates the upstream subband the bandwidth size, Indicates the bandwidth size of initial UL BWP;
  • mapping from VRB to physical resource block PRB according to at least one of the starting RB position of the uplink subband, the starting RB position of the active UL BWP and the starting RB position of the initial UL BWP Item, determine the frequency domain resource location of PUSCH through the target method, which may specifically include:
  • mapping from VRB to physical resource block PRB according to at least one of the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB position of initial UL BWP, Determine the frequency domain resource location of PUSCH through a target method.
  • the target conditions include one of the following conditions:
  • the uplink subband part is included in the active UL BWP bandwidth;
  • the uplink subband is not included in the initial UL BWP bandwidth range of the active UL BWP starting from the starting RB;
  • the uplink subband is not included in the initial UL BWP bandwidth range.
  • the method of the embodiment of the present disclosure may also include:
  • PUSCH When PUSCH is located in the time domain resource corresponding to the uplink subband, when mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB of initial UL BWP At least one item in the location determines the frequency domain resource location of PUSCH in a target manner.
  • the method of the embodiment of the present disclosure may also include:
  • the PUSCH is located in the time unit corresponding to the uplink subband, that is, whether it is located in a time slot/symbol in which both uplink and downlink transmissions occur (Subband Non-overlapping full duplex, SBFD ) symbol) in.
  • SBFD Subband Non-overlapping full duplex
  • this step may specifically include:
  • the reserved bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband.
  • a new information field bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband.
  • part of the information field bits in the DCI are multiplexed to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband.
  • the method of the embodiment of the present disclosure may further include:
  • a notification message is sent to the terminal.
  • the notification message is used to enable the terminal to determine frequency domain resources of the uplink subband.
  • the frequency domain resources of the uplink subband include the starting RB position of the uplink subband and the bandwidth of the uplink subband.
  • the resource determination method of the embodiment of the present disclosure is based on at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP. item, determine the frequency domain resource location of the physical uplink shared channel PUSCH, where PUSCH is the PUSCH scheduled by the random access response RAR or the downlink control information DCI scheduled by the temporary cell radio network temporary identity TC-RNTI.
  • the frequency domain resource location of the PUSCH can be determined using the above method to achieve transmission of the PUSCH within the uplink subband range.
  • the embodiment of the present disclosure also provides a terminal, including: a memory 620, a transceiver 610, and a processor 600: the memory 620 is used to store program instructions; the transceiver 610 is used to execute the operation on the processor. Send and receive data under the control of 600; processor 600, used to read the program instructions in the memory 620 and perform the following operations:
  • PUSCH Physical uplink shared channel PUSCH according to at least one of the starting resource block RB position of the uplink subband, the starting RB position of the active uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP.
  • Frequency domain resource location where PUSCH is a random
  • the machine accesses the PUSCH scheduled in response to the RAR scheduled PUSCH or the downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors 600 represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, etc. Transmission medium.
  • the user interface 630 can also be an interface capable of externally connecting internal and external required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 can be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD), the processor 600 can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor 600 is configured to execute any of the methods provided by the embodiments of the present application according to the obtained executable instructions by calling the program instructions stored in the memory.
  • the processor 600 and the memory 620 may also be physically separated.
  • processor 600 is also used to:
  • the PUSCH frequency is determined in a target manner based on at least one of the starting RB position of the uplink subband, the starting RB position of the active UL BWP, and the starting RB position of the initial UL BWP. Domain resource location.
  • the target method includes one of the following methods:
  • the corresponding PRB number is n + the starting RB number of the uplink subband - the starting RB number of the active UL BWP
  • the carrier is The carrier where the uplink subband, initial UL BWP and active UL BWP are located; or
  • the corresponding PRB number is n + the starting RB number of the uplink subband + the starting RB number of the initial UL BWP - The starting RB number of active UL BWP;
  • the corresponding PRB number is n + the starting RB number of the uplink subband.
  • processor 600 is also used to:
  • frequency domain resource allocation instructions are obtained.
  • processor 600 is also used to:
  • the PUSCH When the PUSCH is a PUSCH scheduled by the RAR and transmitted in the uplink subband, obtain the frequency domain resource allocation indication according to the bandwidth of the uplink subband and the RAR's frequency domain resource allocation FDRA domain bits and/or other information domain bits; or
  • FDRA domain bits and/or other information domain bits are allocated according to the bandwidth of the uplink subband and the frequency domain resources of DCI. Obtain frequency domain resource allocation instructions.
  • processor 600 is also used to:
  • bandwidth of the uplink subband is less than or equal to N, allocate the RAR frequency domain resources to the FDRA domain.
  • the low-order information bits are used as frequency domain resource allocation instructions, and N is a default value greater than 0. Indicates the bandwidth size of the uplink subband; or
  • bandwidth of the uplink subband is greater than N, then in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication,
  • the number of bits used to indicate frequency hopping in the FDRA domain of RAR is determined by the frequency hopping identifier of the first preset information field in RAR and the number of PRBs included in the initial UL BWP bandwidth.
  • k is a preset greater than 0. value; or
  • the FDRA field bits of the RAR and the other information fields of the RAR are bits together as frequency domain resource allocation indication.
  • processor 600 is also used to:
  • the frequency domain resources of DCI are allocated in the FDRA domain. low-order information bits as frequency domain resources allocation instructions; or
  • the bandwidth of the uplink subband is greater than the initial UL BWP, it is in the FDRA domain of the DCI m bits 0 are inserted into the high bits after bits as frequency domain resource allocation indication, where, The number of bits used to indicate frequency hopping in the FDRA domain of DCI, and is determined by the frequency hopping identifier of the second preset information field in DCI and the number of PRBs included in the initial UL BWP bandwidth, Indicates the bandwidth size of the uplink subband, Indicates the bandwidth size of initial UL BWP; or
  • the FDRA domain bits of the DCI and the m bits in other information domains of the DCI are used as frequency domain resource allocation instructions.
  • processor 600 is also used to:
  • mapping from VRB to physical resource block PRB according to at least one of the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB position of initial UL BWP, Determine the frequency domain resource location of PUSCH through a target method.
  • the target conditions include one of the following conditions:
  • the uplink subband part is included in the active UL BWP bandwidth;
  • the uplink subband is not included in the initial UL BWP bandwidth range of the active UL BWP starting from the starting RB;
  • the uplink subband is not included in the initial UL BWP bandwidth range.
  • processor 600 is also used to:
  • PUSCH When PUSCH is located in the time domain resource corresponding to the uplink subband, when mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB of initial UL BWP At least one item in the location determines the frequency domain resource location of PUSCH in a target manner.
  • processor 600 is also used to:
  • processor 600 is also used to:
  • the reserved bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • a new information field bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • the PUSCH When the PUSCH is the PUSCH scheduled by DCI, indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband by multiplexing part of the information field bits in the DCI; or
  • processor 600 is also used to:
  • the frequency domain resources of the uplink subband are determined through the notification message sent by the network side device.
  • the frequency domain resources of the uplink subband include the starting RB position of the uplink subband and the bandwidth of the uplink subband.
  • the terminal in the embodiment of the present disclosure according to at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP, Determine the frequency domain resource location of the physical uplink shared channel PUSCH, where PUSCH is the PUSCH scheduled by the random access response RAR or the downlink control information DCI scheduled by the temporary cell wireless network temporary identity TC-RNTI.
  • the frequency domain resource location of the PUSCH can be determined using the above method to achieve transmission of the PUSCH within the uplink subband range.
  • this embodiment of the present disclosure also provides a resource determination device, including:
  • the first resource determination unit 701 is configured to determine at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP. Item, determine the frequency domain resource location of the physical uplink shared channel PUSCH, where the PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • the first resource determining unit 701 is specifically used to:
  • the virtual resource block VRB is determined based on the frequency domain resource allocation indication, which is used to indicate Indicates the starting RB number of VRB and the number of allocated consecutive RBs;
  • the PUSCH frequency is determined in a target manner based on at least one of the starting RB position of the uplink subband, the starting RB position of the active UL BWP, and the starting RB position of the initial UL BWP. Domain resource location.
  • the target method includes one of the following methods:
  • the corresponding PRB number is n + the starting RB number of the uplink subband - the starting RB number of the active UL BWP
  • the carrier is The carrier where the uplink subband, initial UL BWP and active UL BWP are located; or
  • the corresponding PRB number is n + the starting RB number of the uplink subband + the starting RB number of the initial UL BWP - The starting RB number of active UL BWP;
  • the corresponding PRB number is n + the starting RB number of the uplink subband.
  • the resource determination device in this embodiment of the present disclosure also includes:
  • the first acquisition unit is used to obtain the frequency domain resource allocation indication based on the bandwidth of the uplink subband;
  • the second acquisition unit is used to obtain the frequency domain resource allocation indication based on the initial UL BWP.
  • the first acquisition unit is specifically used for:
  • the PUSCH When the PUSCH is a PUSCH scheduled by the RAR and transmitted in the uplink subband, obtain the frequency domain resource allocation indication according to the bandwidth of the uplink subband and the RAR's frequency domain resource allocation FDRA domain bits and/or other information domain bits; or
  • FDRA domain bits and/or other information domain bits are allocated according to the bandwidth of the uplink subband and the frequency domain resources of DCI. Obtain frequency domain resource allocation instructions.
  • the first acquisition unit is specifically used for:
  • bandwidth of the uplink subband is less than or equal to N, allocate the RAR frequency domain resources to the FDRA domain.
  • the low-order information bits are used as frequency domain resource allocation instructions, and N is a default value greater than 0. Indicates the bandwidth size of the uplink subband; or
  • the bandwidth of the uplink subband is greater than N, then in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication,
  • the number of bits used to indicate frequency hopping in the FDRA domain of the RAR and is determined by the frequency hopping identifier of the first preset information field in the RAR and the number of PRBs included in the initial UL BWP bandwidth.
  • k is a large the default value of 0; or
  • the FDRA field bits of the RAR and the other information fields of the RAR are bits together as frequency domain resource allocation indication.
  • the first acquisition unit is specifically used for:
  • the frequency domain resources of DCI are allocated in the FDRA domain.
  • a low-order information bit is used as a frequency domain resource allocation indication
  • the bandwidth of the uplink subband is greater than the initial UL BWP, it is in the FDRA domain of the DCI m bits 0 are inserted into the high bits after bits as frequency domain resource allocation indication, where, The number of bits used to indicate frequency hopping in the FDRA domain of DCI, and is determined by the frequency hopping identifier of the second preset information field in DCI and the number of PRBs included in the initial UL BWP bandwidth, Indicates the bandwidth size of the uplink subband, Indicates the bandwidth size of initial UL BWP; or
  • the FDRA domain bits of the DCI and the m bits in other information domains of the DCI are used as frequency domain resource allocation instructions.
  • the first resource determining unit 701 is specifically used to:
  • mapping from VRB to physical resource block PRB according to at least one of the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB position of initial UL BWP item, determine the frequency domain resource location of PUSCH through the target method.
  • the target conditions include one of the following conditions:
  • the uplink subband part is included in the active UL BWP bandwidth;
  • the uplink subband is not included in the initial UL BWP bandwidth range of the active UL BWP starting from the starting RB;
  • the uplink subband is not included in the initial UL BWP bandwidth range.
  • the first resource determining unit 701 is specifically used to:
  • PUSCH When PUSCH is located in the time domain resource corresponding to the uplink subband, when mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB of initial UL BWP At least one of the positions, determined by the target PUSCH frequency domain resource location.
  • the resource determination device in this embodiment of the present disclosure also includes:
  • a first determination unit configured to determine whether the PUSCH is located in the time domain resource corresponding to the uplink subband based on the higher layer signaling configuration
  • the second determination unit is configured to determine whether the PUSCH is located in the time domain resource corresponding to the uplink subband through a display indication method.
  • the second determination unit is specifically used to:
  • the reserved bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • a new information field bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • the PUSCH When the PUSCH is the PUSCH scheduled by DCI, indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband by multiplexing part of the information field bits in the DCI; or
  • the resource determination device in this embodiment of the present disclosure also includes:
  • the third determination unit is configured to determine the frequency domain resource of the uplink subband through the notification message sent by the network side device.
  • the frequency domain resource of the uplink subband includes the starting RB position of the uplink subband and the bandwidth of the uplink subband.
  • the resource determination device in the embodiment of the present disclosure determines according to at least one of the starting resource block RB position of the uplink subband, the starting RB position of the active uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP. item, determine the frequency domain resource location of the physical uplink shared channel PUSCH, where PUSCH is the PUSCH scheduled by the random access response RAR or the downlink control information DCI scheduled by the temporary cell radio network temporary identity TC-RNTI.
  • the frequency domain resource location of the PUSCH can be determined using the above method to achieve transmission of the PUSCH within the uplink subband range.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • a processor-readable storage medium stores program instructions, and the program instructions are used to cause the processor to perform the following steps:
  • PUSCH Physical uplink shared channel PUSCH according to at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP.
  • Frequency domain resource location where PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identity TC-RNTI.
  • an embodiment of the present disclosure also provides a network side device, including: a memory 820, a transceiver 810, a processor 800: a memory 820 for storing computer programs; Computer 810 is used to send and receive data under the control of the processor 800; the processor 800 is used to read the computer program in the memory 820 and perform the following operations:
  • PUSCH Physical uplink shared channel PUSCH according to at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP.
  • Frequency domain resource location where PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identity TC-RNTI.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 800 and various circuits of the memory represented by memory 820 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 810 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 can store data used by the processor 800 when performing operations.
  • the processor 800 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • processor 800 is also used to:
  • the PUSCH frequency is determined in a target manner based on at least one of the starting RB position of the uplink subband, the starting RB position of the active UL BWP, and the starting RB position of the initial UL BWP. Domain resource location.
  • the target method includes one of the following methods:
  • the carrier is the carrier where the uplink subband, initial UL BWP and active UL BWP are located; or
  • the corresponding PRB number is n + the starting RB number of the uplink subband + the starting RB number of the initial UL BWP - The starting RB number of active UL BWP;
  • the corresponding PRB number is n + the starting RB number of the uplink subband.
  • processor 800 is also used to:
  • frequency domain resource allocation instructions are obtained.
  • processor 800 is also used to:
  • the PUSCH When the PUSCH is a PUSCH scheduled by the RAR and transmitted in the uplink subband, obtain the frequency domain resource allocation indication according to the bandwidth of the uplink subband and the RAR's frequency domain resource allocation FDRA domain bits and/or other information domain bits; or
  • FDRA domain bits and/or other information domain bits are allocated according to the bandwidth of the uplink subband and the frequency domain resources of DCI. Obtain frequency domain resource allocation instructions.
  • processor 800 is also used to:
  • bandwidth of the uplink subband is less than or equal to N, allocate the RAR frequency domain resources to the FDRA domain.
  • the low-order information bits are used as frequency domain resource allocation instructions, and N is a default value greater than 0. Indicates the bandwidth size of the uplink subband; or
  • bandwidth of the uplink subband is greater than N, then in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication,
  • the number of bits used to indicate frequency hopping in the FDRA domain of RAR is determined by the frequency hopping identifier of the first preset information field in RAR and the number of PRBs included in the initial UL BWP bandwidth.
  • k is a preset greater than 0. value; or
  • the FDRA field bits of the RAR and the other information fields of the RAR are bits together as frequency domain resource allocation indication.
  • processor 800 is also used to:
  • the frequency domain resources of DCI are allocated in the FDRA domain.
  • a low-order information bit is used as a frequency domain resource allocation indication
  • the bandwidth of the uplink subband is greater than the initial UL BWP, it is in the FDRA domain of the DCI indivual m bits 0 are inserted into the high bits after the bit as frequency domain resource allocation indication, where, The number of bits used to indicate frequency hopping in the FDRA domain of DCI, and is determined by the frequency hopping identifier of the second preset information field in DCI and the number of PRBs included in the initial UL BWP bandwidth, Indicates the bandwidth size of the uplink subband, Indicates the bandwidth size of initial UL BWP; or
  • the FDRA domain bits of the DCI and the m bits in other information domains of the DCI are used as frequency domain resource allocation instructions.
  • processor 800 is also used to:
  • mapping from VRB to physical resource block PRB according to at least one of the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB position of initial UL BWP, Determine the frequency domain resource location of PUSCH through a target method.
  • the target conditions include one of the following conditions:
  • the uplink subband part is included in the active UL BWP bandwidth;
  • the uplink subband is not included in the initial UL BWP bandwidth range of the active UL BWP starting from the starting RB;
  • the uplink subband is not included in the initial UL BWP bandwidth range.
  • processor 800 is also used to:
  • PUSCH When PUSCH is located in the time domain resource corresponding to the uplink subband, when mapping from VRB to physical resource block PRB, according to the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB of initial UL BWP At least one item in the location determines the frequency domain resource location of PUSCH in a target manner.
  • processor 800 is also used to:
  • processor 800 is also used to:
  • the reserved bit is used to indicate whether the PUSCH Located in the time domain resource corresponding to the uplink subband;
  • a new information field bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • the PUSCH When the PUSCH is the PUSCH scheduled by DCI, indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband by multiplexing part of the information field bits in the DCI; or
  • transceiver 810 is used to:
  • a notification message is sent to the terminal.
  • the notification message is used to enable the terminal to determine frequency domain resources of the uplink subband.
  • the frequency domain resources of the uplink subband include the starting RB position of the uplink subband and the bandwidth of the uplink subband.
  • the network side device of the embodiment of the present disclosure determines the frequency domain resource location of the physical uplink shared channel PUSCH, where PUSCH is the PUSCH scheduled by the random access response RAR or the downlink control information DCI scheduled by the temporary cell radio network temporary identity TC-RNTI.
  • the frequency domain resource location of the PUSCH can be determined using the above method to achieve transmission of the PUSCH within the uplink subband range.
  • the implementation of the present disclosure also provides a resource determination device, including:
  • the second resource determination unit 901 is configured to determine at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP. Item, determine the frequency domain resource location of the physical uplink shared channel PUSCH, where the PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • the second resource determining unit 901 is specifically used to:
  • the PUSCH frequency is determined in a target manner based on at least one of the starting RB position of the uplink subband, the starting RB position of the active UL BWP, and the starting RB position of the initial UL BWP. Domain resource location.
  • the target method includes one of the following methods:
  • the corresponding PRB number is n + the starting RB number of the uplink subband - the starting RB number of the active UL BWP
  • the carrier is The carrier where the uplink subband, initial UL BWP and active UL BWP are located; or
  • the corresponding PRB number is n + the starting RB number of the uplink subband + the starting RB number of the initial UL BWP - The starting RB number of active UL BWP;
  • the corresponding PRB number is n + the starting RB number of the uplink subband.
  • the resource determination device in this embodiment of the present disclosure also includes:
  • the third acquisition unit is used to obtain the frequency domain resource allocation indication based on the bandwidth of the uplink subband;
  • the fourth acquisition unit is used to obtain the frequency domain resource allocation indication based on the initial UL BWP.
  • the third acquisition unit is specifically used for:
  • the PUSCH When the PUSCH is a PUSCH scheduled by the RAR and transmitted in the uplink subband, obtain the frequency domain resource allocation indication according to the bandwidth of the uplink subband and the RAR's frequency domain resource allocation FDRA domain bits and/or other information domain bits; or
  • FDRA domain bits and/or other information domain bits are allocated according to the bandwidth of the uplink subband and the frequency domain resources of DCI. Obtain frequency domain resource allocation instructions.
  • the third acquisition unit is specifically used for:
  • bandwidth of the uplink subband is less than or equal to N, allocate the RAR frequency domain resources to the FDRA domain.
  • the low-order information bits are used as frequency domain resource allocation instructions, and N is a default value greater than 0. Indicates the bandwidth size of the uplink subband; or
  • bandwidth of the uplink subband is greater than N, then in the FDRA domain of the RAR High-order bits inserted after bits Bit 0 is used as a frequency domain resource allocation indication,
  • the number of bits used to indicate frequency hopping in the FDRA domain of RAR is determined by the frequency hopping identifier of the first preset information field in RAR and the number of PRBs included in the initial UL BWP bandwidth.
  • k is a preset greater than 0. value; or
  • the FDRA field bits of the RAR and other information of the RAR are in the breath field bits together as frequency domain resource allocation indication.
  • the third acquisition unit is specifically used for:
  • the frequency domain resources of DCI are allocated in the FDRA domain.
  • a low-order information bit is used as a frequency domain resource allocation indication
  • the bandwidth of the uplink subband is greater than the initial UL BWP, it is in the FDRA domain of the DCI m bits 0 are inserted into the high bits after bits as frequency domain resource allocation indication, where, The number of bits used to indicate frequency hopping in the FDRA domain of DCI, and is determined by the frequency hopping identifier of the second preset information field in DCI and the number of PRBs included in the initial UL BWP bandwidth, Indicates the bandwidth size of the uplink subband, Indicates the bandwidth size of initial UL BWP; or
  • the FDRA domain bits of the DCI and the m bits in other information domains of the DCI are used as frequency domain resource allocation instructions.
  • the second resource determining unit 901 is specifically used to:
  • mapping from VRB to physical resource block PRB according to at least one of the starting RB position of the uplink subband, the starting RB position of active UL BWP and the starting RB position of initial UL BWP, Determine the frequency domain resource location of PUSCH through a target method.
  • the target conditions include one of the following conditions:
  • the uplink subband part is included in the active UL BWP bandwidth;
  • the uplink subband is not included in the initial UL BWP bandwidth range of the active UL BWP starting from the starting RB;
  • the uplink subband is not included in the initial UL BWP bandwidth range.
  • the second resource determining unit 901 is specifically used to:
  • the starting RB position of active UL BWP and the starting RB position of initial UL BWP At least one of the starting RB positions is used to determine the frequency domain resource position of PUSCH in a targeted manner.
  • the resource determination device in this embodiment of the present disclosure also includes:
  • the fourth determination unit is used to determine whether the PUSCH is located in the time domain resource corresponding to the uplink subband based on the higher layer signaling configuration; or
  • the fifth determination unit is used to determine whether the PUSCH is located in the time domain resource corresponding to the uplink subband through display indication.
  • the fifth determination unit is specifically used for:
  • the reserved bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • a new information field bit is used to indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband;
  • the PUSCH When the PUSCH is the PUSCH scheduled by DCI, indicate whether the PUSCH is located in the time domain resource corresponding to the uplink subband by multiplexing part of the information field bits in the DCI; or
  • the resource determination device in this embodiment of the present disclosure also includes:
  • the sending unit is configured to send a notification message to the terminal.
  • the notification message is used to enable the terminal to determine the frequency domain resource of the uplink subband.
  • the frequency domain resource of the uplink subband includes the starting RB position of the uplink subband and the bandwidth of the uplink subband.
  • the resource determination device of the embodiment of the present disclosure determines according to at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP. item, determine the frequency domain resource location of the physical uplink shared channel PUSCH, where PUSCH is the PUSCH scheduled by the random access response RAR or the downlink control information DCI scheduled by the temporary cell radio network temporary identity TC-RNTI.
  • the frequency domain resource location of the PUSCH can be determined using the above method to achieve transmission of the PUSCH within the uplink subband range.
  • each functional unit in the embodiment can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • a processor-readable storage medium stores program instructions, and the program instructions are used to cause the processor to perform the following steps:
  • PUSCH Physical uplink shared channel PUSCH according to at least one of the starting resource block RB position of the uplink subband, the starting RB position of the activated uplink bandwidth part active UL BWP, and the starting RB position of the initial uplink bandwidth part initial UL BWP.
  • Frequency domain resource location where PUSCH is the PUSCH scheduled by the random access response RAR or the PUSCH scheduled by the downlink control information DCI scrambled by the temporary cell radio network temporary identity TC-RNTI.
  • the program When the program is executed by the processor, it can implement all the implementation methods in the above method embodiments applied to the network side device side as shown in Figure 5. To avoid duplication, they will not be described again here.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Long Term Evolution Advanced
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide interoperability for Microwave Access
  • 5G New Radio, NR 5G New Radio, NR
  • the terminal device involved in the embodiments of this application may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, etc.
  • the names of terminal equipment may also be different.
  • the terminal equipment may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks via the Radio Access Network (RAN)
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal device, for example, it can be a portable, pocket-sized, handheld, A mobile device built into a computer or mounted in a vehicle that exchanges voice and/or data with a wireless access network.
  • a mobile terminal device such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal device, for example, it can be a portable, pocket-sized, handheld, A mobile device built into a computer or mounted in a vehicle that exchanges voice and/or data with a wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • Wireless terminal equipment can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point.
  • remote terminal equipment remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user
  • the network side device involved in the embodiment of this application may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface. device, or another name.
  • the network side device can be used to exchange received air frames and Internet Protocol (IP) packets with each other, serving as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include Internet Protocol (IP) communications network.
  • IP Internet Protocol
  • the network side device can also coordinate the attribute management of the air interface.
  • the network-side device involved in the embodiment of the present application may be a network-side device (Base Transceiver Station) in the Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA).
  • BTS Global System for Mobile communications
  • BTS can also be the network side device (NodeB) in the Wide-band Code Division Multiple Access (WCDMA), or it can be the evolution in the Long Term Evolution (LTE) system network side equipment (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), or home evolved base station (Home evolved Node B, HeNB), relay node (relay node), home base station (femto), pico base station (pico), etc., are not limited in the embodiments of this application.
  • network-side devices may include centralized unit (Centralized Unit, CU) nodes and distributed unit (Distributed Unit, DU) nodes. The centralized unit and distributed unit may also be arranged geographically
  • Network side equipment and terminal equipment can each use one or more antennas for multiple input multiple output (Multi Input Multi Output, MIMO) transmission.
  • MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user.
  • MIMO Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO or massive-MIMO, or it can be diversity transmission, precoding transmission or beamforming transmission, etc.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, magnetic disk storage and optical storage, etc.) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage and optical storage, etc.
  • These computer-executable instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a process or processes of a flowchart and/or a block or blocks of a block diagram.
  • processor-executable instructions may also be stored in a processor-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the generation of instructions stored in the processor-readable memory includes the manufacture of the instruction means product, the instruction device implements the function specified in one process or multiple processes in the flow chart and/or one block or multiple blocks in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby causing the computer or other programmable device to
  • the instructions that are executed provide steps for implementing the functions specified in a process or processes of the flowchart diagrams and/or a block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种资源确定方法、装置、终端及网络侧设备,解决现有技术RAR UL grant或者TC-RNTI加扰的DCI中的频域资源分配信息无法指示在上行子带内传输的PUSCH,从而无法实现该PUSCH在上行子带内传输的问题。本公开的方法:根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,确定PUSCH的频域资源位置,其中,PUSCH为RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH。

Description

资源确定方法、装置、终端及网络侧设备
本公开要求于2022年08月02日提交中国专利局、申请号为202210922186.0、申请名称为“资源确定方法、装置、终端及网络侧设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种资源确定方法、装置、终端及网络侧设备。
背景技术
在第五代移动通信技术(5th Generation Mobile Communication Technology,5G)新无线(New Radio,NR)的R18版本中,将支持子带不重叠的全双工。
但是在子带不重叠的全双工场景下,存在RAR UL grant或者TC-RNTI加扰的DCI中的频域资源分配信息无法指示在上行子带内传输的PUSCH,从而无法实现该PUSCH在上行子带内传输的问题。
发明内容
本公开的目的在于提供一种资源确定方法、装置、终端及网络侧设备,用以解决现有技术RAR UL grant或者TC-RNTI加扰的DCI中的频域资源分配信息无法指示在上行子带内传输的PUSCH,从而无法实现该PUSCH在上行子带内传输的问题。
为了实现上述目的,本公开实施例提供一种资源确定方法,应用于终端,包括:
根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区 无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
可选地,所述根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,包括:
基于频域资源分配指示确定虚拟资源块VRB,所述频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,所述目标方式包括下述方式之一:
当上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,所述载波是所述上行子带、所述initial UL BWP和所述active UL BWP所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
可选地,所述方法还包括:
基于上行子带的带宽,获得频域资源分配指示;或
基于initial UL BWP,获得频域资源分配指示。
可选地,所述基于上行子带的带宽,获得频域资源分配指示,包括:
当所述PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
当所述PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
可选地,所述根据上行子带的带宽,以及所述RAR的频域资源分配FDRA 域比特和/或其他信息域比特,获得频域资源分配指示,包括:
若所述上行子带的带宽小于或者等于N,则将所述RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
若所述上行子带的带宽大于N,则在所述RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示所述RAR的FDRA域中跳频的比特数量,且由所述RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值;或
若所述上行子带的带宽大于N,则将所述RAR的FDRA域比特和所述RAR的其他信息域中的个比特一并作为频域资源分配指示。
可选地,所述根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示,包括:
若所述上行子带的带宽小于或者等于initial UL BWP,则将所述DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
若所述上行子带的带宽大于initial UL BWP,则在所述DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中, 用于指示所述DCI的FDRA域中跳频的比特数量,且由所述DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
若所述上行子带的带宽大于initial UL BWP,则将所述DCI的FDRA域比特和所述DCI的其他信息域中的m个比特一并作为频域资源分配指示。
可选地,所述从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置,包括:
当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资 源位置。
可选地,所述目标条件包括下述条件之一:
当所述initial UL BWP和所述active UL BWP相同,或者所述initial UL BWP在所述active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,所述上行子带部分包含在所述active UL BWP带宽范围内;或
当所述initial UL BWP未包含在所述active UL BWP范围内,或者所述initial UL BWP和所述active UL BWP的CSC和CP不同时,所述上行子带未包含在所述active UL BWP从起始RB开始的initial UL BWP带宽范围内;或
所述上行子带未包含在所述initial UL BWP带宽范围内。
可选地,所述方法还包括:
当所述PUSCH位于所述上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,所述方法还包括:
基于高层信令配置确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中。
可选地,所述通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中,包括:
当所述PUSCH为所述RAR调度的PUSCH时,通过预留比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
当所述PUSCH为所述DCI调度的PUSCH时,通过新增信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
当所述PUSCH为所述DCI调度的PUSCH时,通过复用所述DCI中的部分信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;
通过所述PUSCH对应的物理随机接入信道PRACH序列确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
通过所述PUSCH对应的PRACH资源确定所述PUSCH是否位于所述上行子带对应的时域资源中。
可选地,所述方法还包括:
通过网络侧设备发送的通知消息,确定上行子带的频域资源,所述上行子带的频域资源包括所述上行子带的起始RB位置和所述上行子带的带宽。
为了实现上述目的,本公开实施例还提供一种资源确定方法,应用于网络侧设备,包括:
根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
可选地,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,包括:
基于频域资源分配指示确定虚拟资源块VRB,所述频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,所述目标方式包括下述方式之一:
当所述上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,所述载波是所述上行子带、所述initial UL BWP和所述active UL BWP所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB 编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
可选地,所述方法还包括:
基于上行子带的带宽,获得频域资源分配指示;或
基于initial UL BWP,获得频域资源分配指示。
可选地,所述基于上行子带的带宽,获得频域资源分配指示,包括:
当所述PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
当所述PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
可选地,所述根据上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示,包括:
若所述上行子带的带宽小于或者等于N,则将所述RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
若所述上行子带的带宽大于N,则在所述RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示所述RAR的FDRA域中跳频的比特数量,且由所述RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值;或
若所述上行子带的带宽大于N,则将所述RAR的FDRA域比特和所述RAR的其他信息域中的个比特一并作为频域资源分配指示。
可选地,所述根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示,包括:
若所述上行子带的带宽小于或者等于initial UL BWP,则将所述DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
若所述上行子带的带宽大于initial UL BWP,则在所述DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中, 用于指示所述DCI的FDRA域中跳频的比特数量,且由所述DCI中第二预设信息域 的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
若所述上行子带的带宽大于initial UL BWP,则将所述DCI的FDRA域比特和所述DCI的其他信息域中的m个比特一并作为频域资源分配指示。
可选地,所述从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置,包括:
当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,所述目标条件包括下述条件之一:
当所述initial UL BWP和所述active UL BWP相同,或者所述initial UL BWP在所述active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,所述上行子带部分包含在所述active UL BWP带宽范围内;或
当所述initial UL BWP未包含在所述active UL BWP范围内,或者所述initial UL BWP和所述active UL BWP的CSC和CP不同时,所述上行子带未包含在所述active UL BWP从起始RB开始的initial UL BWP带宽范围内;或
所述上行子带未包含在所述initial UL BWP带宽范围内。
可选地,所述方法还包括:
当所述PUSCH位于所述上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,所述方法还包括:
基于高层信令配置确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中。
可选地,所述通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中,包括:
当所述PUSCH为所述RAR调度的PUSCH时,通过预留比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
当所述PUSCH为所述DCI调度的PUSCH时,通过新增信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
当所述PUSCH为所述DCI调度的PUSCH时,通过复用所述DCI中的部分信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
通过所述PUSCH对应的物理随机接入信道PRACH序列确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
通过所述PUSCH对应的PRACH资源确定所述PUSCH是否位于所述上行子带对应的时域资源中。
可选地,所述方法还包括:
向终端发送通知消息,所述通知消息用于使终端确定上行子带的频域资源,所述上行子带的频域资源包括所述上行子带的起始RB位置和所述上行子带的带宽。
为了实现上述目的,本公开实施例还提供一种终端,包括:存储器、收发机,处理器:存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
为了实现上述目的,本公开实施例还提供一种资源确定装置,包括:
第一资源确定单元,用于根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP 的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
为了实现上述目的,本公开实施例还提供了一种网络侧设备,包括:存储器、收发机,处理器:存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
为了实现上述目的,本公开实施例还提供了一种资源确定装置,包括:
第二资源确定单元,用于根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
为了实现上述目的,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述所述的资源确定方法的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开实施例的上述技术方案中,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH, 如此,针对RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH,采用上述方法能够确定该PUSCH的频域资源位置,以实现该PUSCH在上行子带范围内的传输。
附图说明
图1为本公开实施例的上行子带所在频域资源位置示意图之一;
图2为本公开实施例的上行子带所在频域资源位置示意图之二;
图3为本公开实施例的上行子带所在频域资源位置示意图之三;
图4为本公开实施例的资源确定方法的流程示意图之一;
图5为本公开实施例的资源确定方法的流程示意图之二;
图6为本公开实施例的终端的结构框图;
图7为本公开实施例的资源确定装置的模块示意图之一;
图8为本公开实施例的网络侧设备的结构框图;
图9为本公开实施例的资源确定装置的模块示意图之二。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在对本申请实施例进行说明之前,首先对相关技术点进行说明:
一、双工模式
5G NR支持时分双工(Time Domain Duplex,TDD)和频分双工(Frequency Domain Duplex,FDD),TDD和FDD指移动通信技术中的两种双工通信模 式。TDD指时分双工模式,FDD指频分双工模式。TDD模式在同一频率信道即载波的不同时刻进行发送和接收,通过时间来区分上行和下行传输的资源;FDD模式在不同频率信道同时进行发送和接收,通过频率来区分上行和下行传输的资源。
5G NR在Rel-18阶段将支持子带不重叠的全双工,即基站可以同时在一个时分双工(Time Domain Duplex,TDD)频带/载波/带宽部分(BandWidth Part,BWP)内通过不同的子带同时进行发送和接收,用于发送和接收的子带之间不重叠。如图1所示,上行子带在部分符号中存在,并且和其它频域资源不重叠。
二、频域资源确定
R15-R17协议中,对于随机接入响应(Random Access Response,RAR)上行链路授权(UpLink grant,UL grant)调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或者临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identifier,TC-RNTI)加扰的下行控制信息
(Downlink Control Information,DCI)format 0_0调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输,频域资源确定相关的信息如下:
a)FDRA域
RAR UL grant中的频域资源分配(Frequency Domain Resource Allocation,FDRA)域中固定包含14比特信息(对于授权频谱资源),用于指示RAR UL grant调度的PUSCH的频域资源。频域资源分配使用资源分配类型1。
对于初始上行带宽部分(initial UpLink Bandwidth Part,initial UL BWP)的带宽小于或者等于180个资源块(Resource Block,RB)的情况,使用其中个低位的信息比特作为频域资源分配指示。
对于initial UL BWP的带宽大于180个RB的情况,则在FDRA域中NUL,hop个比特之后的高位***个比特0作为频域资源分配指示,其中NUL,hop用于指示FDRA域中跳频的比特数量。
在确定激活上行带宽部分active UL BWP内RAR UL grant调度的PUSCH的频域资源分配时,使用initial UL BWP的带宽去解读FDRA域。
TC-RNTI加扰的DCI format 0_0中的FDRA域以initial UL BWP的带宽大小确定比特数,并且仅能指示initial UL BWP带宽范围内的物理资源块(Physical Resource Block,PRB)资源。
b)虚拟资源块(Virtual RB,VRB)到物理资源块(Physical RB,PRB)的映射
Case 1:对于initial UL BWP和active UL BWP相同,或者initial UL BWP在active UL BWP范围内并且子载波间隔(SubCarrier Space,SCS)和循环前缀(Cyclic Predix,CP)相同,这时频域资源分配的虚拟资源块(Virtual Resource Block,VRB)index是基于initial UL BWP指示的(即VRB指示的是initial UL BWP范围内的起始RB位置和长度),从VRB到PRB映射时会加上一个偏移,即initial UL BWP起始RB和active UL BWP起始RB之间的偏移。假设VRB编号为n,则对应的PRB编号为n+initial UL BWP起始RB编号-active UL BWP起始RB编号。
Case 2:对于除了Case 1之外的其它情况,那么PUSCH的频域资源分配基于active UL BWP的起始RB位置,按照initial UL BWP的带宽分配。假设VRB编号为n,则对应的PRB编号为n。
对于Case 1,如果上行子带的位置没有在initial UL BWP带宽范围内,如图2所示,根据现有技术RAR UL grant或者TC-RNTI加扰的DCI format 0_0中的频域资源分配信息无法指示在上行子带内传输的PUSCH。
对于Case 2,如果上行子带的位置没有在active UL BWP的前N个RB中,如图3所示,其中N为initial UL BWP的RB个数,根据现有技术RAR UL grant或者TC-RNTI加扰的DCI format 0_0中的频域资源分配信息无法指示在上行子带内传输的PUSCH。
也即,在子带不重叠的全双工场景下,对RAR UL grant调度的PUSCH或者,TC-RNTI加扰的DCI调度的PUSCH,当PUSCH被调度在上行子带上且上行子带没有在initial UL BWP带宽范围内或者上行子带的位置没有在active UL BWP的前N个RB中,则无法指示在上行子带内传输的PUSCH,从而无法实现该PUSCH在上行子带内传输。
为了解决上述技术问题,本申请实施例提供了一种资源确定方法、装置 终端及网络侧设备,其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图4所示,为本公开实施例提供的一种资源确定方法的流程示意图,应用于终端,该方法可包括:
步骤401,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
可选地,上行子带的起始RB位置通过网络侧发送的通知消息确定。
在一可选地实现方式中,本申请实施例的方法还可包括:
通过网络侧设备发送的通知消息,确定上行子带的频域资源,上行子带的频域资源包括上行子带的起始RB位置和上行子带的带宽。
即通过网络侧设备发送的通知消息确定了上行子带的频域资源,也就确定了上行子带的起始RB位置。
作为一可选地实现方式,步骤401可具体包括:
基于频域资源分配指示确定虚拟资源块VRB,频域资源分配指示用于指示指示VRB的起始RB编号和所分配的连续RB的个数;
从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标方式包括下述方式之一:
当上行子带的起始RB编号以载波起始位置为参考,且VRB编号为时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,载波是上行子带、initial UL BWP和active UL BWP所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
需要说明的是,如果将上行子带作为active UL BWP,则上述确定PUSCH的频域资源位置的目标方式等价于下列方式之一:
当上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n,载波是上行子带所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+initial UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带(或者active UL BWP)的起始RB编号。
需要说明的是,上行子带的起始RB编号以哪个起始位置为参考可由网络侧设备(如基站)通知或者指示,或者由协议约定。
需要说明的是,由上述基于频域资源分配指示确定VRB可知,想要确定VRB,需要先获得频域资源分配指示,因此在一可选地实现方式中,本公开实施例的方法还可包括:
基于上行子带的带宽,获得频域资源分配指示。或
基于initial UL BWP,获得频域资源分配指示。
需要说明的是,上行子带的带宽可通过网络侧设备发送的通知消息确定。
其中,作为一可选地实现方式,基于上行子带的带宽,获得频域资源分配指示,可具体包括:
当PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
具体地,本步骤可包括:
1)若上行子带的带宽小于或者等于N,则将RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小。
其中,N为大于0的预设值,也可理解为协议中预定义的值。
或者,2)若上行子带的带宽大于N,则在RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配 指示,用于指示RAR的FDRA域中跳频的比特数量,且由RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值。
需要说明的是,的取值可以是0,1,2。k为大于0的预设值,也可理解为协议中预定义的值。
可选地,N为180,k为14。即14bit对应180个RB。
或者,3)若上行子带的带宽大于N,则将RAR的FDRA域比特和RAR的其他信息域中的个比特一并作为频域资源分配指示。
在一示例中,基站通过RAR调度了一个在上行子带内传输的PUSCH,
如果上行子带占用50个RB,则RAR中通过FDRA域中个低位的信息比特指示上行子带50个RB范围内的传输。
如果上行子带占用200个RB,则在RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示;或者,重用RAR中的1比特信息和RAR的FDRA域比特一起作为频域资源分配指示。
当PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
具体地,本步骤可包括:
a)若上行子带的带宽小于或者等于initial UL BWP,则将DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;
或者,b)若上行子带的带宽大于initial UL BWP,则在DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中, 用于指示DCI的FDRA域中跳频的比特数量,且由DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;
或者,c)若上行子带的带宽大于initial UL BWP,则将DCI的FDRA域比特和DCI的其他信息域中的m个比特一并作为频域资源分配指示。
在一示例中,基站通过TC-RNTI加扰的DCI格式0_0调度了一个在上行子带内传输的PUSCH,initial UL BWP的带宽为100个RB,
如果上行子带占用50个RB,则DCI中FDRA域中 个低位的信息比特指示上行子带50个RB范围内的传输。
如果上行子带占用200个RB,则在DCI的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示;或者,重用DCI中的1比特信息和RAR的FDRA域比特一起作为频域资源分配指示。
在一可选地实现方式中,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置,可具体包括:
当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标条件包括下述条件之一:
当initial UL BWP和active UL BWP相同,或者initial UL BWP在active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,上行子带部分包含在active UL BWP带宽范围内;或
当initial UL BWP未包含在active UL BWP范围内,或者initial UL BWP和active UL BWP的CSC和CP不同时,上行子带未包含在active UL BWP从起始RB开始的initial UL BWP带宽范围内;或
上行子带未包含在initial UL BWP带宽范围内。
作为一可选地实现方式,本公开实施例的方法还可包括:
当PUSCH位于上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
具体地,本公开实施例的方法还可包括:
基于高层信令配置确定PUSCH是否位于上行子带对应的时域资源中。
具体的,基于高层信令确定PUSCH是否位于上行子带对应的时间单元,即是否位于同时存在上行和下行传输的时隙/符号(子带不重叠全双工 (Subband Non-overlapping full duplex,SBFD)符号)中。
或者,通过显示指示方式确定PUSCH是否位于上行子带对应的时域资源中。
可选地,本步骤可具体包括:
1、当PUSCH为RAR调度的PUSCH时,通过预留比特指示PUSCH是否位于上行子带对应的时域资源中。或
2、当PUSCH为DCI调度的PUSCH时,通过新增信息域比特指示PUSCH是否位于上行子带对应的时域资源中。或
3、当PUSCH为DCI调度的PUSCH时,通过复用DCI中的部分信息域比特指示PUSCH是否位于上行子带对应的时域资源中。或
4、通过PUSCH对应的物理随机接入信道PRACH序列确定PUSCH是否位于上行子带对应的时域资源中。或
5、通过PUSCH对应的PRACH资源确定PUSCH是否位于上行子带对应的时域资源中。
本公开实施例的资源确定方法,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH,如此,针对RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH,采用上述方法能够确定该PUSCH的频域资源位置,以实现该PUSCH在上行子带范围内的传输。
如图5所示,为本公开实施例提供的资源确定方法的流程示意图,应用于网络侧设备,该方法可包括:
步骤501,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
本公开实施例的资源确定方法,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分iinitial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH,如此,针对RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH,采用上述方法能够确定该PUSCH的频域资源位置,以实现该PUSCH在上行子带范围内的传输。
作为一可选地实现方式,步骤501可具体包括:
基于频域资源分配指示确定虚拟资源块VRB,频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标方式包括下述方式之一:
当上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,载波是上行子带、initial UL BWP和active UL BWP所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
需要说明的是,上行子带的起始RB编号以哪个起始位置为参考可由网络侧设备(如基站)确定,并通知或指示给终端,或者由协议约定。
需要说明的是,由上述基于频域资源分配指示确定VRB可知,想要确定VRB,需要先获得频域资源分配指示,因此在一可选地实现方式中,本公开实施例的方法还可包括:
基于上行子带的带宽,获得频域资源分配指示。
或者,基于initial UL BWP,获得频域资源分配指示。
其中,作为一可选地实现方式,基于上行子带的带宽,获得频域资源分配指示可具体包括:
当PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
具体地,本步骤可包括:
d-1)若上行子带的带宽小于或者等于N,则将RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小。
其中,N为大于0的预设值,也可理解为协议中预定义的值。
或者,d-2)若上行子带的带宽大于N,则在RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示RAR的FDRA域中跳频的比特数量,且由RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值。
需要说明的是,的取值可以是0,1,2。k为大于0的预设值,也可理解为协议中预定义的值。
可选地,N为180,k为14。即14bit对应180个RB。
或者,d-3)若上行子带的带宽大于N,则将RAR的FDRA域比特和RAR的其他信息域中的个比特一并作为频域资源分配指示。
当PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
具体地,本步骤可包括:
e)若上行子带的带宽小于或者等于initial UL BWP,则将DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;
或者,f)若上行子带的带宽大于initial UL BWP,则在DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中, 用于指示DCI的FDRA域中跳频的比特数量,且由DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带 的带宽大小,表示initial UL BWP的带宽大小;
或者,g)若上行子带的带宽大于initial UL BWP,则将DCI的FDRA域比特和DCI的其他信息域中的m个比特一并作为频域资源分配指示。
在一可选地实现方式中,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置,可具体包括:
当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标条件包括下述条件之一:
当initial UL BWP和active UL BWP相同,或者initial UL BWP在active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,上行子带部分包含在active UL BWP带宽范围内;或
当initial UL BWP未包含在active UL BWP范围内,或者initial UL BWP和active UL BWP的CSC和CP不同时,上行子带未包含在active UL BWP从起始RB开始的initial UL BWP带宽范围内;或
上行子带未包含在initial UL BWP带宽范围内。
作为一可选地实现方式,本公开实施例的方法还可包括:
当PUSCH位于上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
具体地,本公开实施例的方法还可包括:
基于高层信令配置确定PUSCH是否位于上行子带对应的时域资源中。
具体的,基于高层信令确定PUSCH是否位于上行子带对应的时间单元,即是否位于同时存在上行和下行传输的时隙/符号(子带不重叠全双工(Subband Non-overlapping full duplex,SBFD)符号)中。
或者,通过显示指示方式确定PUSCH是否位于上行子带对应的时域资源中。
可选地,本步骤可具体包括:
1、当PUSCH为RAR调度的PUSCH时,通过预留比特指示PUSCH是否位于上行子带对应的时域资源中。或
2、当PUSCH为DCI调度的PUSCH时,通过新增信息域比特指示PUSCH是否位于上行子带对应的时域资源中。或
3、当PUSCH为DCI调度的PUSCH时,通过复用DCI中的部分信息域比特指示PUSCH是否位于上行子带对应的时域资源中。或
4、通过PUSCH对应的物理随机接入信道PRACH序列确定PUSCH是否位于上行子带对应的时域资源中。或
5、通过PUSCH对应的PRACH资源确定PUSCH是否位于上行子带对应的时域资源中。
在一可选地实现方式中,本公开实施例的方法还可包括:
向终端发送通知消息,通知消息用于使终端确定上行子带的频域资源,上行子带的频域资源包括上行子带的起始RB位置和上行子带的带宽。
本公开实施例的资源确定方法,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH,如此,针对RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH,采用上述方法能够确定该PUSCH的频域资源位置,以实现该PUSCH在上行子带范围内的传输。
如图6所示,本公开实施例还提供了一种终端,包括:存储器620、收发机610,处理器600:存储器620,用于存储程序指令;收发机610,用于在所述处理器600的控制下收发数据;处理器600,用于读取所述存储器620中的程序指令并执行以下操作:
根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随 机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器600和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器600也可以采用多核架构。
处理器600通过调用存储器存储的程序指令,用于按照获得的可执行指令执行本申请实施例提供的任一所述方法。处理器600与存储器620也可以物理上分开布置。
可选地,处理器600还用于:
基于频域资源分配指示确定虚拟资源块VRB,频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标方式包括下述方式之一:
当上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,载波是上行子带、initial UL BWP和active UL BWP所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
可选地,处理器600还用于:
基于上行子带的带宽,获得频域资源分配指示;或
基于initial UL BWP,获得频域资源分配指示。
可选地,处理器600还用于:
当PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
当PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
可选地,处理器600还用于:
若上行子带的带宽小于或者等于N,则将RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
若上行子带的带宽大于N,则在RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示RAR的FDRA域中跳频的比特数量,且由RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值;或
若上行子带的带宽大于N,则将RAR的FDRA域比特和RAR的其他信息域中的个比特一并作为频域资源分配指示。
可选地,处理器600还用于:
若上行子带的带宽小于或者等于initial UL BWP,则将DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源 分配指示;或
若上行子带的带宽大于initial UL BWP,则在DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中, 用于指示DCI的FDRA域中跳频的比特数量,且由DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
若上行子带的带宽大于initial UL BWP,则将DCI的FDRA域比特和DCI的其他信息域中的m个比特一并作为频域资源分配指示。
可选地,处理器600还用于:
当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标条件包括下述条件之一:
当initial UL BWP和active UL BWP相同,或者initial UL BWP在active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,上行子带部分包含在active UL BWP带宽范围内;或
当initial UL BWP未包含在active UL BWP范围内,或者initial UL BWP和active UL BWP的CSC和CP不同时,上行子带未包含在active UL BWP从起始RB开始的initial UL BWP带宽范围内;或
上行子带未包含在initial UL BWP带宽范围内。
可选地,处理器600还用于:
当PUSCH位于上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,处理器600还用于:
基于高层信令配置确定PUSCH是否位于上行子带对应的时域资源中;或
通过显示指示方式确定PUSCH是否位于上行子带对应的时域资源中。
可选地,处理器600还用于:
当PUSCH为RAR调度的PUSCH时,通过预留比特指示PUSCH是否位于上行子带对应的时域资源中;或
当PUSCH为DCI调度的PUSCH时,通过新增信息域比特指示PUSCH是否位于上行子带对应的时域资源中;或
当PUSCH为DCI调度的PUSCH时,通过复用DCI中的部分信息域比特指示PUSCH是否位于上行子带对应的时域资源中;或
通过PUSCH对应的物理随机接入信道PRACH序列确定PUSCH是否位于上行子带对应的时域资源中;或
通过PUSCH对应的PRACH资源确定PUSCH是否位于上行子带对应的时域资源中。
可选地,处理器600还用于:
通过网络侧设备发送的通知消息,确定上行子带的频域资源,上行子带的频域资源包括上行子带的起始RB位置和上行子带的带宽。
本公开实施例的终端,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH,如此,针对RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH,采用上述方法能够确定该PUSCH的频域资源位置,以实现该PUSCH在上行子带范围内的传输。
如图7所示,本公开实施例还提供了一种资源确定装置,包括:
第一资源确定单元701,用于根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
可选地,第一资源确定单元701具体用于:
基于频域资源分配指示确定虚拟资源块VRB,频域资源分配指示用于指 示VRB的起始RB编号和所分配的连续RB的个数;
从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标方式包括下述方式之一:
当上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,载波是上行子带、initial UL BWP和active UL BWP所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
可选地,本公开实施例的资源确定装置还包括:
第一获取单元,用于基于上行子带的带宽,获得频域资源分配指示;或
第二获取单元,用于基于initial UL BWP,获得频域资源分配指示。
可选地,第一获取单元具体用于:
当PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
当PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
可选地,第一获取单元具体用于:
若上行子带的带宽小于或者等于N,则将RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
若上行子带的带宽大于N,则在RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示RAR的FDRA域中跳频的比特数量,且由RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大 于0的预设值;或
若上行子带的带宽大于N,则将RAR的FDRA域比特和RAR的其他信息域中的个比特一并作为频域资源分配指示。
可选地,第一获取单元具体用于:
若上行子带的带宽小于或者等于initial UL BWP,则将DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
若上行子带的带宽大于initial UL BWP,则在DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中, 用于指示DCI的FDRA域中跳频的比特数量,且由DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
若上行子带的带宽大于initial UL BWP,则将DCI的FDRA域比特和DCI的其他信息域中的m个比特一并作为频域资源分配指示。
可选地,第一资源确定单元701具体用于:
当确定满足目标条件的情况下,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标条件包括下述条件之一:
当initial UL BWP和active UL BWP相同,或者initial UL BWP在active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,上行子带部分包含在active UL BWP带宽范围内;或
当initial UL BWP未包含在active UL BWP范围内,或者initial UL BWP和active UL BWP的CSC和CP不同时,上行子带未包含在active UL BWP从起始RB开始的initial UL BWP带宽范围内;或
上行子带未包含在initial UL BWP带宽范围内。
可选地,第一资源确定单元701具体用于:
当PUSCH位于上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH 的频域资源位置。
可选地,本公开实施例的资源确定装置还包括:
第一确定单元,用于基于高层信令配置确定PUSCH是否位于上行子带对应的时域资源中;或
第二确定单元,用于通过显示指示方式确定PUSCH是否位于上行子带对应的时域资源中。
可选地,第二确定单元具体用于:
当PUSCH为RAR调度的PUSCH时,通过预留比特指示PUSCH是否位于上行子带对应的时域资源中;或
当PUSCH为DCI调度的PUSCH时,通过新增信息域比特指示PUSCH是否位于上行子带对应的时域资源中;或
当PUSCH为DCI调度的PUSCH时,通过复用DCI中的部分信息域比特指示PUSCH是否位于上行子带对应的时域资源中;或
通过PUSCH对应的物理随机接入信道PRACH序列确定PUSCH是否位于上行子带对应的时域资源中;或
通过PUSCH对应的PRACH资源确定PUSCH是否位于上行子带对应的时域资源中。
可选地,本公开实施例的资源确定装置还包括:
第三确定单元,用于通过网络侧设备发送的通知消息,确定上行子带的频域资源,上行子带的频域资源包括上行子带的起始RB位置和上行子带的带宽。
本公开实施例的资源确定装置,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH,如此,针对RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH,采用上述方法能够确定该PUSCH的频域资源位置,以实现该PUSCH在上行子带范围内的传输。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在本公开的一些实施例中,还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有程序指令,所述程序指令用于使所述处理器执行实现以下步骤:
根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
该程序被处理器执行时能实现上述应用于如图4所示的终端侧的方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图8所示,本公开实施例还提供一种网络侧设备,包括:包括:存储器820、收发机810,处理器800:存储器820,用于存储计算机程序;收发 机810,用于在所述处理器800的控制下收发数据;处理器800,用于读取所述存储器820中的计算机程序并执行以下操作:
根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机810可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器800负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
处理器800可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
可选地,处理器800还用于:
基于频域资源分配指示确定虚拟资源块VRB,频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标方式包括下述方式之一:
当上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编 号,载波是上行子带、initial UL BWP和active UL BWP所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
可选地,处理器800还用于:
基于上行子带的带宽,获得频域资源分配指示;或
基于initial UL BWP,获得频域资源分配指示。
可选地,处理器800还用于:
当PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
当PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
可选地,处理器800还用于:
若上行子带的带宽小于或者等于N,则将RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
若上行子带的带宽大于N,则在RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示RAR的FDRA域中跳频的比特数量,且由RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值;或
若上行子带的带宽大于N,则将RAR的FDRA域比特和RAR的其他信息域中的个比特一并作为频域资源分配指示。
可选地,处理器800还用于:
若上行子带的带宽小于或者等于initial UL BWP,则将DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
若上行子带的带宽大于initial UL BWP,则在DCI的FDRA域中个 比特之后的高位***m个比特0作为频域资源分配指示,其中, 用于指示DCI的FDRA域中跳频的比特数量,且由DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
若上行子带的带宽大于initial UL BWP,则将DCI的FDRA域比特和DCI的其他信息域中的m个比特一并作为频域资源分配指示。
可选地,处理器800还用于:
当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标条件包括下述条件之一:
当initial UL BWP和active UL BWP相同,或者initial UL BWP在active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,上行子带部分包含在active UL BWP带宽范围内;或
当initial UL BWP未包含在active UL BWP范围内,或者initial UL BWP和active UL BWP的CSC和CP不同时,上行子带未包含在active UL BWP从起始RB开始的initial UL BWP带宽范围内;或
上行子带未包含在initial UL BWP带宽范围内。
可选地,处理器800还用于:
当PUSCH位于上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,处理器800还用于:
基于高层信令配置确定PUSCH是否位于上行子带对应的时域资源中;或
通过显示指示方式确定PUSCH是否位于上行子带对应的时域资源中。
可选地,处理器800还用于:
当PUSCH为RAR调度的PUSCH时,通过预留比特指示PUSCH是否 位于上行子带对应的时域资源中;或
当PUSCH为DCI调度的PUSCH时,通过新增信息域比特指示PUSCH是否位于上行子带对应的时域资源中;或
当PUSCH为DCI调度的PUSCH时,通过复用DCI中的部分信息域比特指示PUSCH是否位于上行子带对应的时域资源中;或
通过PUSCH对应的物理随机接入信道PRACH序列确定PUSCH是否位于上行子带对应的时域资源中;或
通过PUSCH对应的PRACH资源确定PUSCH是否位于上行子带对应的时域资源中。
可选地,收发机810用于:
向终端发送通知消息,通知消息用于使终端确定上行子带的频域资源,上行子带的频域资源包括上行子带的起始RB位置和上行子带的带宽。
本公开实施例的网络侧设备,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH,如此,针对RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH,采用上述方法能够确定该PUSCH的频域资源位置,以实现该PUSCH在上行子带范围内的传输。
如图9所示,本公开实施还提供了一种资源确定装置,包括:
第二资源确定单元901,用于根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
可选地,第二资源确定单元901具体用于:
基于频域资源分配指示确定虚拟资源块VRB,频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标方式包括下述方式之一:
当上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,载波是上行子带、initial UL BWP和active UL BWP所在的载波;或
当上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
当上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
可选地,本公开实施例的资源确定装置还包括:
第三获取单元,用于基于上行子带的带宽,获得频域资源分配指示;或
第四获取单元,用于基于initial UL BWP,获得频域资源分配指示。
可选地,第三获取单元具体用于:
当PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
当PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据上行子带的带宽,以及DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
可选地,第三获取单元具体用于:
若上行子带的带宽小于或者等于N,则将RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
若上行子带的带宽大于N,则在RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示RAR的FDRA域中跳频的比特数量,且由RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值;或
若上行子带的带宽大于N,则将RAR的FDRA域比特和RAR的其他信 息域中的个比特一并作为频域资源分配指示。
可选地,第三获取单元具体用于:
若上行子带的带宽小于或者等于initial UL BWP,则将DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
若上行子带的带宽大于initial UL BWP,则在DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中, 用于指示DCI的FDRA域中跳频的比特数量,且由DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
若上行子带的带宽大于initial UL BWP,则将DCI的FDRA域比特和DCI的其他信息域中的m个比特一并作为频域资源分配指示。
可选地,第二资源确定单元901具体用于:
当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,目标条件包括下述条件之一:
当initial UL BWP和active UL BWP相同,或者initial UL BWP在active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,上行子带部分包含在active UL BWP带宽范围内;或
当initial UL BWP未包含在active UL BWP范围内,或者initial UL BWP和active UL BWP的CSC和CP不同时,上行子带未包含在active UL BWP从起始RB开始的initial UL BWP带宽范围内;或
上行子带未包含在initial UL BWP带宽范围内。
可选地,第二资源确定单元901具体用于:
在PUSCH位于上行子带对应的时域资源中的情况下,从VRB到物理资源块PRB映射时,根据上行子带的起始RB位置、active UL BWP的起始RB位置和initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
可选地,本公开实施例的资源确定装置还包括:
第四确定单元,用于基于高层信令配置确定PUSCH是否位于上行子带对应的时域资源中;或
第五确定单元,用于通过显示指示方式确定PUSCH是否位于上行子带对应的时域资源中。
可选地,第五确定单元具体用于:
当PUSCH为RAR调度的PUSCH时,通过预留比特指示PUSCH是否位于上行子带对应的时域资源中;或
当PUSCH为DCI调度的PUSCH时,通过新增信息域比特指示PUSCH是否位于上行子带对应的时域资源中;或
当PUSCH为DCI调度的PUSCH时,通过复用DCI中的部分信息域比特指示PUSCH是否位于上行子带对应的时域资源中;或
通过PUSCH对应的物理随机接入信道PRACH序列确定PUSCH是否位于上行子带对应的时域资源中;或
通过PUSCH对应的PRACH资源确定PUSCH是否位于上行子带对应的时域资源中。
可选地,本公开实施例的资源确定装置还包括:
发送单元,用于向终端发送通知消息,通知消息用于使终端确定上行子带的频域资源,上行子带的频域资源包括上行子带的起始RB位置和上行子带的带宽。
本公开实施例的资源确定装置,根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH,如此,针对RAR调度的PUSCH或者TC-RNTI加扰的DCI调度的PUSCH,采用上述方法能够确定该PUSCH的频域资源位置,以实现该PUSCH在上行子带范围内的传输。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实 施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在本公开的一些实施例中,还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有程序指令,所述程序指令用于使所述处理器执行实现以下步骤:
根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,其中,PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
该程序被处理器执行时能实现上述应用于如图5所示的网络侧设备侧的方法实施例中的所有实现方式,为避免重复,此处不再赘述。
本申请实施例提供的技术方案可以适用于多种***,尤其是5G***。例如适用的***可以是全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组 无线业务(General Packet Radio Service,GPRS)***、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)***、高级长期演进(Long Term Evolution Advanced,LTE-A)***、通用移动***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide interoperability for Microwave Access,WiMAX)***、5G新空口(New Radio,NR)***等。这多种***中均包括终端设备和网络设备。***中还可以包括核心网部分,例如演进的分组***(Evolved Packet System,EPS)、5G***(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的***中,终端设备的名称可能也不相同,例如在5G***中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网
(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为***、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络侧设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的 设备,或者其它名称。网络侧设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络侧设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络侧设备可以是全球移动通信***(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络侧设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络侧设备(NodeB),还可以是长期演进(Long Term Evolution,LTE)***中的演进型网络侧设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络侧设备可以包括集中单元(Centralized Unit,CU)节点和分布单元(Distributed Unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络侧设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的 流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (55)

  1. 一种资源确定方法,应用于终端,包括:
    根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
    其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
  2. 根据权利要求1所述的方法,其中,所述根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,包括:
    基于频域资源分配指示确定虚拟资源块VRB,所述频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
    从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  3. 根据权利要求2所述的方法,其中,所述目标方式包括下述方式之一:
    当所述上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,所述载波是所述上行子带、所述initial UL BWP和所述active UL BWP所在的载波;或
    当所述上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
    当所述上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
  4. 根据权利要求2所述的方法,其中,所述方法还包括:
    基于上行子带的带宽,获得频域资源分配指示;或
    基于initial UL BWP,获得频域资源分配指示。
  5. 根据权利要求4所述的方法,其中,所述基于上行子带的带宽,获得频域资源分配指示,包括:
    当所述PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
    当所述PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
  6. 根据权利要求5所述的方法,其中,所述根据所述上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示,包括:
    若所述上行子带的带宽小于或者等于N,则将所述RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
    若所述上行子带的带宽大于N,则在所述RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示所述RAR的FDRA域中跳频的比特数量,且由所述RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值;或
    若所述上行子带的带宽大于N,则将所述RAR的FDRA域比特和所述RAR的其他信息域中的个比特一并作为频域资源分配指示。
  7. 根据权利要求5所述的方法,其中,所述根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示,包括:
    若所述上行子带的带宽小于或者等于initial UL BWP,则将所述DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
    若所述上行子带的带宽大于initial UL BWP,则在所述DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中,用于指示所述DCI的FDRA域中跳频的比特数量,且由所述DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示 上行子带的带宽大小,表示initial UL BWP的带宽大小;或
    若所述上行子带的带宽大于initial UL BWP,则将所述DCI的FDRA域比特和所述DCI的其他信息域中的m个比特一并作为频域资源分配指示。
  8. 根据权利要求2所述的方法,其中,所述从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置,包括:
    当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  9. 根据权利要求8所述的方法,其中,所述目标条件包括下述条件之一:
    当所述initial UL BWP和所述active UL BWP相同,或者所述initial UL BWP在所述active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,所述上行子带部分包含在所述active UL BWP带宽范围内;或
    当所述initial UL BWP未包含在所述active UL BWP范围内,或者所述initial UL BWP和所述active UL BWP的CSC和CP不同时,所述上行子带未包含在所述active UL BWP从起始RB开始的initial UL BWP带宽范围内;或所述上行子带未包含在所述initial UL BWP带宽范围内。
  10. 根据权利要求2所述的方法,其中,所述方法还包括:
    当所述PUSCH位于所述上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    基于高层信令配置确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中。
  12. 根据权利要求11所述的方法,其中,所述通过显示指示方式确定所 述PUSCH是否位于所述上行子带对应的时域资源中,包括:
    当所述PUSCH为所述RAR调度的PUSCH时,通过预留比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    当所述PUSCH为所述DCI调度的PUSCH时,通过新增信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    当所述PUSCH为所述DCI调度的PUSCH时,通过复用所述DCI中的部分信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过所述PUSCH对应的物理随机接入信道PRACH序列确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过所述PUSCH对应的PRACH资源确定所述PUSCH是否位于所述上行子带对应的时域资源中。
  13. 根据权利要求1所述的方法,其中,所述方法还包括:
    通过网络侧设备发送的通知消息,确定上行子带的频域资源,所述上行子带的频域资源包括所述上行子带的起始RB位置和所述上行子带的带宽。
  14. 一种资源确定方法,应用于网络侧设备,包括:
    根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
    其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
  15. 根据权利要求14所述的方法,其中,所述根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置,包括:
    基于频域资源分配指示确定虚拟资源块VRB,所述频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
    从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中 的至少一项,通过目标方式确定PUSCH的频域资源位置。
  16. 根据权利要求15所述的方法,其中,所述目标方式包括下述方式之一:
    当所述上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,所述载波是所述上行子带、所述initial UL BWP和所述active UL BWP所在的载波;或
    当所述上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
    当所述上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
  17. 根据权利要求15所述的方法,其中,所述方法还包括:
    基于上行子带的带宽,获得频域资源分配指示;或
    基于initial UL BWP,获得频域资源分配指示。
  18. 根据权利要求17所述的方法,其中,所述基于上行子带的带宽,获得频域资源分配指示,包括:
    当所述PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
    当所述PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
  19. 根据权利要求18所述的方法,其中,所述根据上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示,包括:
    若所述上行子带的带宽小于或者等于N,则将所述RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
    若所述上行子带的带宽大于N,则在所述RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示所述RAR的FDRA域中跳频的比特数量,且由所述RAR 中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值;或
    若所述上行子带的带宽大于N,则将所述RAR的FDRA域比特和所述RAR的其他信息域中的个比特一并作为频域资源分配指示。
  20. 根据权利要求18所述的方法,其中,所述根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示,包括:
    若所述上行子带的带宽小于或者等于initial UL BWP,则将所述DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
    若所述上行子带的带宽大于initial UL BWP,则在所述DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中,用于指示所述DCI的FDRA域中跳频的比特数量,且由所述DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
    若所述上行子带的带宽大于initial UL BWP,则将所述DCI的FDRA域比特和所述DCI的其他信息域中的m个比特一并作为频域资源分配指示。
  21. 根据权利要求15所述的方法,其中,所述从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置,包括:
    当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  22. 根据权利要求21所述的方法,其中,所述目标条件包括下述条件之一:
    当所述initial UL BWP和所述active UL BWP相同,或者所述initial UL BWP在所述active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,所述上行子带部分包含在所述active UL BWP带宽范围内;或
    当所述initial UL BWP未包含在所述active UL BWP范围内,或者所述initial UL BWP和所述active UL BWP的CSC和CP不同时,所述上行子带未包含在所述active UL BWP从起始RB开始的initial UL BWP带宽范围内;或所述上行子带未包含在所述initial UL BWP带宽范围内。
  23. 根据权利要求15所述的方法,其中,所述方法还包括:
    当所述PUSCH位于所述上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  24. 根据权利要求23所述的方法,其中,所述方法还包括:
    基于高层信令配置确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中。
  25. 根据权利要求24所述的方法,其中,所述通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中,包括:
    当所述PUSCH为所述RAR调度的PUSCH时,通过预留比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    当所述PUSCH为所述DCI调度的PUSCH时,通过新增信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    当所述PUSCH为所述DCI调度的PUSCH时,通过复用所述DCI中的部分信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过所述PUSCH对应的物理随机接入信道PRACH序列确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过所述PUSCH对应的PRACH资源确定所述PUSCH是否位于所述上行子带对应的时域资源中。
  26. 根据权利要求14所述的方法,其中,所述方法还包括:
    向终端发送通知消息,所述通知消息用于使终端确定上行子带的频域资 源,所述上行子带的频域资源包括所述上行子带的起始RB位置和所述上行子带的带宽。
  27. 一种终端,包括:存储器、收发机,处理器:存储器,用于存储程序指令;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的程序指令并执行以下操作:
    根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
    其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
  28. 根据权利要求27所述的终端,其中,所述处理器还用于:基于频域资源分配指示确定虚拟资源块VRB,所述频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
    从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  29. 根据权利要求28所述的终端,其中,所述目标方式包括下述方式之一:
    当所述上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,所述载波是所述上行子带、所述initial UL BWP和所述active UL BWP所在的载波;或
    当所述上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
    当所述上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
  30. 根据权利要求28所述的终端,其中,所述处理器还用于:
    基于上行子带的带宽,获得频域资源分配指示;或
    基于initial UL BWP,获得频域资源分配指示。
  31. 根据权利要求30所述的终端,其中,所述处理器还用于:
    当所述PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
    当所述PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
  32. 根据权利要求31所述的终端,其中,所述处理器还用于:
    若所述上行子带的带宽小于或者等于N,则将所述RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
    若所述上行子带的带宽大于N,则在所述RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示所述RAR的FDRA域中跳频的比特数量,且由所述RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,k为大于0的预设值;或
    若所述上行子带的带宽大于N,则将所述RAR的FDRA域比特和所述RAR的其他信息域中的个比特一并作为频域资源分配指示。
  33. 根据权利要求31所述的终端,其中,所述处理器还用于:
    若所述上行子带的带宽小于或者等于initial UL BWP,则将所述DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
    若所述上行子带的带宽大于initial UL BWP,则在所述DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中,用于指示所述DCI的FDRA域中跳频的比特数量,且由所述DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
    若所述上行子带的带宽大于initial UL BWP,则将所述DCI的FDRA域比特和所述DCI的其他信息域中的m个比特一并作为频域资源分配指示。
  34. 根据权利要求28所述的终端,其中,所述处理器还用于:
    当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  35. 根据权利要求34所述的终端,其中,所述目标条件包括下述条件之一:
    当所述initial UL BWP和所述active UL BWP相同,或者所述initial UL BWP在所述active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,所述上行子带部分包含在所述active UL BWP带宽范围内;或
    当所述initial UL BWP未包含在所述active UL BWP范围内,或者所述initial UL BWP和所述active UL BWP的CSC和CP不同时,所述上行子带未包含在所述active UL BWP从起始RB开始的initial UL BWP带宽范围内;或所述上行子带未包含在所述initial UL BWP带宽范围内。
  36. 根据权利要求28所述的终端,其中,所述处理器还用于:
    当所述PUSCH位于所述上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  37. 根据权利要求36所述的终端,其中,所述处理器还用于:
    基于高层信令配置确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中。
  38. 根据权利要求37所述的终端,其中,所述处理器还用于:
    当所述PUSCH为所述RAR调度的PUSCH时,通过预留比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    当所述PUSCH为所述DCI调度的PUSCH时,通过新增信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    当所述PUSCH为所述DCI调度的PUSCH时,通过复用所述DCI中的部分信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过所述PUSCH对应的物理随机接入信道PRACH序列确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过所述PUSCH对应的PRACH资源确定所述PUSCH是否位于所述上行子带对应的时域资源中。
  39. 根据权利要求27所述的终端,其中,所述终端还用于:
    通过网络侧设备发送的通知消息,确定上行子带的频域资源,所述上行子带的频域资源包括所述上行子带的起始RB位置和所述上行子带的带宽。
  40. 一种资源确定装置,包括:
    第一资源确定单元,用于根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
    其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
  41. 一种网络侧设备,包括:存储器、收发机,处理器:存储器,用于存储程序指令;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的程序指令并执行以下操作:
    根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
    其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
  42. 根据权利要求41所述的网络侧设备,其中,所述处理器还用于:
    基于频域资源分配指示确定虚拟资源块VRB,所述频域资源分配指示用于指示VRB的起始RB编号和所分配的连续RB的个数;
    从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、 所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  43. 根据权利要求42所述的网络侧设备,其中,所述目标方式包括下述方式之一:
    当所述上行子带的起始RB编号以载波起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号-active UL BWP的起始RB编号,所述载波是所述上行子带、所述initial UL BWP和所述active UL BWP所在的载波;或
    当所述上行子带的起始RB编号以initial UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号+initial UL BWP的起始RB编号-active UL BWP的起始RB编号;或
    当所述上行子带的起始RB编号以active UL BWP起始位置为参考,且VRB编号为n时,对应的PRB编号为n+上行子带的起始RB编号。
  44. 根据权利要求42所述的网络侧设备,其中,所述处理器还用于:
    基于上行子带的带宽,获得频域资源分配指示;或
    基于initial UL BWP,获得频域资源分配指示。
  45. 根据权利要求44所述的网络侧设备,其中,所述处理器还用于:
    当所述PUSCH为RAR调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述RAR的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示;或
    当所述PUSCH为TC-RNTI加扰的DCI格式0_0调度的、在上行子带内传输的PUSCH时,根据所述上行子带的带宽,以及所述DCI的频域资源分配FDRA域比特和/或其他信息域比特,获得频域资源分配指示。
  46. 根据权利要求45所述的网络侧设备,其中,所述处理器还用于:
    若所述上行子带的带宽小于或者等于N,则将所述RAR的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示,N为大于0的预设值,表示上行子带的带宽大小;或
    若所述上行子带的带宽大于N,则在所述RAR的FDRA域中个比特之后的高位***个比特0作为频域资源分配指示,用于指示所述RAR的FDRA域中跳频的比特数量,且由所述RAR中第一预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数 确定,k为大于0的预设值;或
    若所述上行子带的带宽大于N,则将所述RAR的FDRA域比特和所述RAR的其他信息域中的个比特一并作为频域资源分配指示。
  47. 根据权利要求45所述的网络侧设备,其中,所述处理器还用于:
    若所述上行子带的带宽小于或者等于initial UL BWP,则将所述DCI的频域资源分配FDRA域中个低位的信息比特作为频域资源分配指示;或
    若所述上行子带的带宽大于initial UL BWP,则在所述DCI的FDRA域中个比特之后的高位***m个比特0作为频域资源分配指示,其中,用于指示所述DCI的FDRA域中跳频的比特数量,且由所述DCI中第二预设信息域的跳频标识和initial UL BWP带宽中所包含的PRB的个数确定,表示上行子带的带宽大小,表示initial UL BWP的带宽大小;或
    若所述上行子带的带宽大于initial UL BWP,则将所述DCI的FDRA域比特和所述DCI的其他信息域中的m个比特一并作为频域资源分配指示。
  48. 根据权利要求44所述的网络侧设备,其中,所述处理器还用于:
    当确定满足目标条件时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  49. 根据权利要求48所述的网络侧设备,其中,所述目标条件包括下述条件之一:
    当所述initial UL BWP和所述active UL BWP相同,或者所述initial UL BWP在所述active UL BWP带宽范围内并且子载波间隔CSC和循环前缀CP相同时,所述上行子带部分包含在所述active UL BWP带宽范围内;或
    当所述initial UL BWP未包含在所述active UL BWP范围内,或者所述initial UL BWP和所述active UL BWP的CSC和CP不同时,所述上行子带未包含在所述active UL BWP从起始RB开始的initial UL BWP带宽范围内;或所述上行子带未包含在所述initial UL BWP带宽范围内。
  50. 根据权利要求44所述的网络侧设备,其中,所述处理器还用于:
    当所述PUSCH位于所述上行子带对应的时域资源中时,从VRB到物理资源块PRB映射时,根据所述上行子带的起始RB位置、所述active UL BWP的起始RB位置和所述initial UL BWP的起始RB位置中的至少一项,通过目标方式确定PUSCH的频域资源位置。
  51. 根据权利要求50所述的网络侧设备,其中,所述处理器还用于:
    基于高层信令配置确定所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过显示指示方式确定所述PUSCH是否位于所述上行子带对应的时域资源中。
  52. 根据权利要求51所述的网络侧设备,其中,所述处理器还用于:
    当所述PUSCH为所述RAR调度的PUSCH时,通过预留比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    当所述PUSCH为所述DCI调度的PUSCH时,通过新增信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    当所述PUSCH为所述DCI调度的PUSCH时,通过复用所述DCI中的部分信息域比特指示所述PUSCH是否位于所述上行子带对应的时域资源中;或
    通过所述PUSCH对应的物理随机接入信道PRACH序列确定所述
    PUSCH是否位于所述上行子带对应的时域资源中;或
    通过所述PUSCH对应的PRACH资源确定所述PUSCH是否位于所述上行子带对应的时域资源中。
  53. 根据权利要求41所述的网络侧设备,其中,所述网络侧设备还用于:
    向终端发送通知消息,所述通知消息用于使终端确定上行子带的频域资源,所述上行子带的频域资源包括所述上行子带的起始RB位置和所述上行子带的带宽。
  54. 一种资源确定装置,包括:
    第二资源确定单元,用于根据上行子带的起始资源块RB位置、激活上行带宽部分active UL BWP的起始RB位置、初始上行带宽部分initial UL BWP 的起始RB位置中的至少一项,确定物理上行共享信道PUSCH的频域资源位置;
    其中,所述PUSCH为随机接入响应RAR调度的PUSCH或者临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI调度的PUSCH。
  55. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至13中任一项所述的资源确定方法的步骤,或者执行权利要求14至26中任一项所述的资源确定方法的步骤。
PCT/CN2023/110195 2022-08-02 2023-07-31 资源确定方法、装置、终端及网络侧设备 WO2024027637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210922186.0A CN117560124A (zh) 2022-08-02 2022-08-02 资源确定方法、装置、终端及网络侧设备
CN202210922186.0 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024027637A1 true WO2024027637A1 (zh) 2024-02-08

Family

ID=89809712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110195 WO2024027637A1 (zh) 2022-08-02 2023-07-31 资源确定方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117560124A (zh)
WO (1) WO2024027637A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565461A (zh) * 2019-02-14 2020-08-21 夏普株式会社 由用户设备执行的方法以及用户设备
CN112399589A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种随机接入方法、终端设备和网络设备
WO2021225656A1 (en) * 2020-05-05 2021-11-11 Qualcomm Incorporated Vrb-to-prb allocation for disjoint bwp segments
CN113677013A (zh) * 2020-05-15 2021-11-19 维沃移动通信有限公司 Pusch资源分配方法、装置及电子设备
WO2021242931A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565461A (zh) * 2019-02-14 2020-08-21 夏普株式会社 由用户设备执行的方法以及用户设备
CN112399589A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种随机接入方法、终端设备和网络设备
WO2021225656A1 (en) * 2020-05-05 2021-11-11 Qualcomm Incorporated Vrb-to-prb allocation for disjoint bwp segments
CN113677013A (zh) * 2020-05-15 2021-11-19 维沃移动通信有限公司 Pusch资源分配方法、装置及电子设备
WO2021242931A1 (en) * 2020-05-28 2021-12-02 Qualcomm Incorporated Frequency domain allocation techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Remaining issues on UL signals and channels for NR-U", 3GPP TSG RAN WG1 #101, R1-2004041, 16 May 2020 (2020-05-16), XP051885800 *

Also Published As

Publication number Publication date
CN117560124A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
JP6932776B2 (ja) アップリンクデータを伝送するための方法、端末装置とネットワーク装置
JP6910483B2 (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
US12021795B2 (en) Communication method and network device
EP3637904A1 (en) Resource indication method and device
US20180123759A1 (en) Method for indicating resource of multi-user superposition transmission, base station and user equipment
EP3435554B1 (en) Antenna port indication method and apparatus
WO2019137510A1 (zh) 一种保留资源的指示方法及设备
WO2018081989A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
WO2018228533A1 (zh) 资源映射的方法和装置
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2019214523A1 (zh) 一种通信方法及装置
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN109996339B (zh) 一种通信方法及装置
WO2019137299A1 (zh) 通信的方法和通信设备
CN114158059B (zh) 一种信息处理方法、装置、终端设备及网络侧设备
US20210185671A1 (en) Method for sending control information, method for receiving control information, network device, and terminal device
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
EP4325759A1 (en) Transmission processing method and apparatus in carrier switching
US20220132559A1 (en) Method and device based on duplicate data transmission
WO2024027637A1 (zh) 资源确定方法、装置、终端及网络侧设备
WO2018018418A1 (zh) 信号传输方法和设备
WO2016029486A1 (zh) 一种天线信息的发送、接收方法和设备
WO2024027649A1 (zh) 频域资源确定方法、指示方法、装置、终端及网络设备
WO2022206273A1 (zh) 物理上行共享信道重复传输方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849344

Country of ref document: EP

Kind code of ref document: A1