WO2024026800A1 - 一种侧行链路sl波束失败恢复方法/装置/设备及存储介质 - Google Patents

一种侧行链路sl波束失败恢复方法/装置/设备及存储介质 Download PDF

Info

Publication number
WO2024026800A1
WO2024026800A1 PCT/CN2022/110388 CN2022110388W WO2024026800A1 WO 2024026800 A1 WO2024026800 A1 WO 2024026800A1 CN 2022110388 W CN2022110388 W CN 2022110388W WO 2024026800 A1 WO2024026800 A1 WO 2024026800A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
configuration
recovery
beam failure
bfd
Prior art date
Application number
PCT/CN2022/110388
Other languages
English (en)
French (fr)
Inventor
杨星
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/110388 priority Critical patent/WO2024026800A1/zh
Priority to CN202280002563.7A priority patent/CN115516902A/zh
Publication of WO2024026800A1 publication Critical patent/WO2024026800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an SL beam failure recovery, device, equipment and storage medium.
  • SL Sidelink
  • the SL beam failure recovery method, device, equipment and storage medium proposed in this disclosure are to solve the technical problem in related technologies that SL transmission does not support beam failure recovery.
  • embodiments of the present disclosure provide a SL beam failure recovery method, which is executed by a first terminal device and includes:
  • Determine configuration information which includes at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, the second terminal device communicating with the first terminal device through SL;
  • At least one SL beam corresponds to the sidelink beam failure detection reference signal SL-BFD-RS carried;
  • At least one first configuration is used to perform sidelink beam failure detection SL-BFD;
  • At least one second configuration is used for sidelink beam failure recovery SL-BFR;
  • an SL beam failure recovery process is triggered.
  • a SL beam failure recovery method determines configuration information.
  • the configuration information includes at least one of the following: at least one for indicating SL between the first terminal device and the second terminal device.
  • the first indication information of the beam the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least A second configuration, the second configuration is used to perform SL-BFR.
  • the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • determining the SL beam failure based on the configuration information includes:
  • the first indication information is a transmission configuration indication TCI corresponding to the SL beam.
  • the first configuration includes at least one of the following:
  • the first threshold value is used: when it is measured that the number of BF occurrences reaches the first threshold value, or when it is measured that the number of BF occurrences within the preset time period reaches the first threshold value , it is determined that SL beam failure has occurred.
  • the second configuration includes at least one of the following:
  • At least one candidate recovery beam corresponds to the reference signal carried
  • different SL-BFD-RS correspond to different first configurations
  • Different SL-BFD-RS correspond to different second configurations.
  • the determined configuration information includes at least one of the following:
  • measuring the SL-BFD-RS and determining whether the number of BF occurrences meets preset conditions includes:
  • measuring the SL-BFD-RS and determining whether the number of BF occurrences meets preset conditions includes:
  • a timer is started, and the timing duration of the timer is the preset duration;
  • the method also includes:
  • the count value of the number of BF occurrences is set to zero.
  • the method also includes:
  • a measurement result is obtained, where the measurement result is a measurement result obtained by measuring the reference signal corresponding to the candidate recovery beam.
  • the triggering SL beam failure recovery process includes:
  • the SL-BFR indication includes at least one of the following:
  • the triggering SL beam failure recovery process includes:
  • the measurement results include at least one of the following:
  • embodiments of the present disclosure provide a SL beam failure recovery method, which is executed by a second terminal device and includes:
  • the configuration information includes at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, wherein the second terminal device communicates with the first terminal device through SL;
  • At least one SL beam corresponds to the SL-BFD-RS carried
  • At least one first configuration is used to perform SL-BFD;
  • At least one second configuration for performing SL-BFR At least one second configuration for performing SL-BFR.
  • the determined configuration information includes:
  • the first indication information is a transmission configuration indication TCI corresponding to the SL beam.
  • the first configuration includes at least one of the following:
  • the first threshold value is used: when it is measured that the number of BF occurrences reaches the first threshold value, or when it is measured that the number of BF occurrences within the preset time period reaches the first threshold value , it is determined that SL beam failure has occurred.
  • the second configuration includes at least one of the following:
  • At least one candidate recovery beam corresponds to the reference signal carried
  • different SL-BFD-RS correspond to different first configurations
  • Different SL-BFD-RS correspond to different second configurations.
  • the method also includes:
  • sending the configuration information to the first terminal device includes:
  • the configuration information is sent to the first terminal device corresponding to the identification.
  • the method also includes:
  • the SL-BFR indication includes at least one of the following:
  • the method also includes:
  • the second terminal device autonomously determines the candidate recovery beam to be activated.
  • the method further includes:
  • the second indication information includes at least one of the following:
  • the identifier of the activated candidate recovery beam independently determined by the second terminal device
  • the method further includes:
  • the SL-BFR indicates the identity of the corresponding first terminal device.
  • the method also includes:
  • the method also includes:
  • the beam activation indication includes an identifier of the activated candidate recovery beam
  • embodiments of the present disclosure provide a SL beam failure recovery method, which is executed by a network device and includes:
  • configuration information includes at least one of the following:
  • At least one SL beam corresponds to the sidelink beam failure detection reference signal SL-BFD-RS carried;
  • At least one first configuration is used to perform sidelink beam failure detection SL-BFD;
  • At least one second configuration for performing sidelink beam failure recovery SL-BFR At least one second configuration for performing sidelink beam failure recovery SL-BFR.
  • the first indication information is a transmission configuration indication TCI corresponding to the SL beam.
  • the first configuration includes at least one of the following:
  • the first threshold value is used: when it is measured that the number of BF occurrences reaches the first threshold value, or when it is measured that the number of BF occurrences within the preset time period reaches the first threshold value , it is determined that SL beam failure has occurred.
  • the second configuration includes at least one of the following:
  • At least one candidate recovery beam corresponds to the reference signal carried
  • different SL-BFD-RS correspond to different first configurations
  • Different SL-BFD-RS correspond to different second configurations.
  • the method also includes:
  • the method also includes:
  • the identifier of the activated candidate recovery beam independently determined by the second terminal device
  • the method also includes:
  • the SL-BFR indicates the identity of the corresponding first terminal device
  • the SL-BFR indication includes at least one of the following:
  • the method also includes:
  • the activation beam information includes an identifier of the activated candidate recovery beam.
  • an embodiment of the present disclosure provides a communication device, which is configured in a first terminal device and includes:
  • a processing module used to determine configuration information, where the configuration information includes at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, the second terminal device communicating with the first terminal device through SL;
  • At least one SL beam corresponds to the sidelink beam failure detection reference signal SL-BFD-RS carried;
  • At least one first configuration is used to perform sidelink beam failure detection SL-BFD;
  • At least one second configuration is used for sidelink beam failure recovery SL-BFR;
  • the processing module is further configured to trigger an SL beam failure recovery process in response to determining that the SL beam fails based on the configuration information.
  • an embodiment of the present disclosure provides a communication device, which is configured in a second terminal device and includes:
  • a transceiver module configured to receive the SL-BFR indication sent by the first terminal device, and the second terminal device communicates with the first terminal device through SL;
  • the SL-BFR indication includes at least one of the following:
  • an embodiment of the present disclosure provides a communication device, which is configured in a network device and includes:
  • a transceiver module configured to send configuration information to the first terminal device, where the configuration information includes at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, the second terminal device communicating with the first terminal device through SL;
  • At least one SL beam corresponds to the sidelink beam failure detection reference signal SL-BFD-RS carried;
  • At least one first configuration is used to perform sidelink beam failure detection SL-BFD;
  • At least one second configuration for performing sidelink beam failure recovery SL-BFR At least one second configuration for performing sidelink beam failure recovery SL-BFR.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the third aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Perform the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Perform the method described in the third aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the third aspect above.
  • an embodiment of the present disclosure provides a communication system, which includes the communication device described in the fourth aspect to the communication device described in the sixth aspect, or the system includes the communication device described in the seventh aspect to The communication device according to the ninth aspect, or the system includes the communication device according to the tenth aspect to the communication device according to the twelfth aspect, or the system includes the communication device according to the thirteenth aspect through the tenth aspect.
  • the communication device described in the five aspects includes the communication device described in the fourth aspect to the communication device described in the sixth aspect, or the system includes the communication device described in the seventh aspect to The communication device according to the ninth aspect, or the system includes the communication device according to the tenth aspect to the communication device according to the twelfth aspect, or the system includes the communication device according to the thirteenth aspect through the tenth aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned network device and/or the above-mentioned terminal device.
  • the network device is caused to execute the above-mentioned The method described in the first aspect, and/or causing the terminal device to perform the method described in the second aspect, and/or causing the terminal device to perform the method described in the third aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in any one of the above-mentioned first to third aspects.
  • the present disclosure provides a chip system.
  • the chip system includes at least one processor and an interface, and is used to support a network device to implement the functions involved in the method described in the first aspect, and/or to support a terminal device.
  • Implement the functions involved in the method described in the second aspect, and/or support the terminal device to implement the functions involved in the method described in the third aspect for example, determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data of the source secondary node.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to perform the method described in any one of the above-mentioned first to third aspects.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of SL beam failure recovery provided by another embodiment of the present disclosure.
  • Figure 3 is a schematic flowchart of SL beam failure recovery provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 5 is an interactive schematic diagram of SL beam failure recovery provided by an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 7 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 8 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 9 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 10 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 11 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 12 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 13 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 14 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 15 is a schematic flowchart of SL beam failure recovery provided by yet another embodiment of the present disclosure.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 17 is a schematic structural diagram of a communication device provided by another embodiment of the present disclosure.
  • Figure 18 is a schematic structural diagram of a communication device provided by another embodiment of the present disclosure.
  • Figure 19 is a block diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 20 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • Sidelink communication is divided into two modes, one is called discovery between UEs (dicovery), and the other is called communication between UEs.
  • Sidelink uses uplink resources and uplink physical channels similar to cellular networks (LTE) for data interactive transmission.
  • LTE cellular networks
  • RRC signaling can provide parameter configuration functions for the underlying protocol entities of the access network; it is responsible for measurement, control and other functions related to mobility management of terminal equipment.
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to a network device, a first terminal device and a second terminal device, wherein the first terminal device and the second terminal device communicate through SL.
  • the number and form of devices shown in Figure 1 are only The examples are not intended to limit the embodiments of the present disclosure. Practical applications may include two or more network devices and two or more terminal devices.
  • the communication system shown in Figure 1 includes a network device 11, a first terminal device 12, and a second terminal device 13 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission reception point (TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Base stations or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • CU-DU is used.
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the
  • the first terminal device 12 and the second terminal device 13 in the embodiment of the present disclosure may be an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • the mentioned “obtained from” or “obtained sent from” can be understood as “received from” or “Received...sent”.
  • FIG. 2 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the first terminal device. As shown in Figure 2, the SL beam failure recovery may include the following steps:
  • Step 201 Determine configuration information.
  • the configuration information may include at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, wherein the second terminal device communicates with the first terminal device through SL;
  • At least one SL beam corresponds to the sidelink beam failure detection reference signal (Sidelink Beam Failure Detection Reference Signal, SL-BFD-RS) carried;
  • SL-BFD-RS Sidelink Beam Failure Detection Reference Signal
  • the first configuration is used for sidelink beam failure detection (Sidelink Beam Failure Detection, SL-BFD);
  • the second configuration is used for sidelink beam failure recovery (Sidelink Beam Failure Recovery, SL-BFR).
  • the above-mentioned first indication information may be a (SL) transmission configuration indicator (Transmission Configuration Indicator, TCI) corresponding to the SL beam.
  • SL transmission Configuration Indicator
  • the above-mentioned first configuration may include at least one of the following:
  • the first threshold value (for example, it can be the maximum beam failure value);
  • the first threshold value is used: when it is measured that the number of occurrences of beam failure (Beam Failure, BF) reaches the first threshold value, or when it is measured that the number of occurrences of BF within the preset time period reaches the first threshold value, If the threshold value is exceeded, it is determined that SL beam failure has occurred.
  • Beam Failure, BF Beam Failure
  • the above-mentioned second configuration may include at least one of the following:
  • At least one candidate recovery beam corresponds to the reference signal carried
  • the second threshold value may be specifically used to determine an activated candidate recovery beam from the candidate recovery beams, so that when an SL beam failure occurs, beam transmission can be resumed based on the activated candidate recovery beam. For example, any one or more candidate recovery beams whose measurement results are greater than the second threshold value may be determined as activated candidate recovery beams.
  • different SL-BFD-RSs may correspond to different first configurations; and/or different SL-BFD-RSs may correspond to different second configurations.
  • Each first configuration is used to perform SL-BFD on its corresponding SL-BFD-RS
  • each second configuration is used to perform SL-BFR on its corresponding SL-BFD-RS.
  • SL-BFD-RS#1 can correspond to the first configuration #1 and the second configuration #1;
  • SL-BFD-RS#2 can correspond to the first configuration #2 and the second configuration #2.
  • the first configuration #1 can be used to perform SL-BFD on SL-BFD-RS#1 (that is, the preset duration and/or the first threshold value in the first configuration #1 can be used to perform SL-BFD on SL-BFD-RS#1.
  • the second configuration #1 can be used to perform SL-BFR on SL-BFD-RS#1 (that is, the candidate recovery beams in the second configuration #1 and/or the second threshold value to perform SL-BFD on SL-BFD-RS#1)
  • the first configuration #2 can be used to perform SL-BFD on SL-BFD-RS#2 (that is, the preset value in the first configuration #2 can be used.
  • the second configuration #2 can be used to perform SL-BFR on SL-BFD-RS#2 (that is, the second configuration can be used to perform SL-BFD on SL-BFD-RS#2).
  • Step 202 In response to determining that the SL beam fails based on the configuration information, trigger an SL beam failure recovery process.
  • the method for determining SL beam failure based on configuration information may be:
  • the SL-BFD-RS may be measured based on the first configuration to determine whether the number of BF occurrences satisfies the preset condition.
  • the preset condition may be: the number of BF occurrences exceeds the first threshold, and/or the number of BF occurrences exceeds the first threshold within the preset time period.
  • the first terminal device can detect whether BF occurs and count the number of BF occurrences.
  • the physical layer of the first terminal device receives the When the SL Beam Failure Indication (BFI) is sent by other layers, it is confirmed that the occurrence of BF has been detected. Therefore, the number of BF occurrences can be counted by counting the number of times the first terminal device receives the SL BFI indication. .
  • the number of BF occurrences reaches the first threshold value, it is determined that the preset condition is met; otherwise, it is determined that the preset condition is not met.
  • the first terminal device detects that BF occurs for the first time during the measurement of SL-BFD-RS, it starts a timer and starts counting the number of BF transmissions, where the timing length of the timer is the above-mentioned preset length. , and, when the number of BF occurrences reaches the first threshold value during the start of the timer, it is determined that the preset condition is met, otherwise, it is determined that the preset condition is not met.
  • the count value of the number of BF occurrences will be set to zero to prevent the current count value of the number of BF occurrences from affecting the next SL -Count of the number of BF occurrences during BFD-RS measurement.
  • the SL beam failure recovery process needs to be triggered for beam recovery. Specifically, how the first terminal device triggers the SL beam failure recovery The details of the process will be introduced in subsequent embodiments.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG. 3 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the first terminal device. As shown in Figure 3, the SL beam failure recovery may include the following steps:
  • Step 301 Receive configuration information sent by the network device.
  • the first terminal device may receive the configuration information sent by the network device through system information and/or RRC reconfiguration messages.
  • the network device should also synchronize to the network device connected to the first terminal device SL.
  • the second terminal device sends the configuration information (for example, the configuration information can be sent to the second terminal device through system information and/or RRC reconfiguration messages), so that both the first terminal device and the second terminal device know the configuration information, so that the second terminal device A terminal device and a second terminal device may subsequently perform beam management based on the configuration information to implement a beam failure recovery process.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG. 4 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the first terminal device. As shown in Figure 4, the SL beam failure recovery may include the following steps:
  • Step 401 Receive configuration information sent by the second terminal device.
  • the first terminal device may receive the configuration information sent by the network device through the SL RRC message.
  • the configuration information at the second terminal device may be sent by the network device.
  • the network device when the network device sends the configuration information to the second terminal device, it may also synchronously send the identification of the first terminal device to which the configuration information applies to the second terminal device, so that the second terminal device The terminal device may send the configuration information to the corresponding first terminal device based on the identification.
  • the network device may not send the identification of the first terminal device to which the configuration information is applicable to the second terminal device. In this case, it means that the configuration information is applicable to the device connected to the second terminal device SL. Any one or more first terminal devices.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG. 5 is a schematic flowchart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the first terminal device. As shown in Figure 5, the SL beam failure recovery may include the following steps:
  • Step 501 Obtain a measurement result, which is a measurement result obtained by measuring the reference signal corresponding to the candidate recovery beam.
  • the first terminal device may determine the identity of at least one candidate recovery beam and the reference signal corresponding to the at least one candidate recovery beam based on the second configuration, and then, the first terminal device may Measure the reference signal carried by the at least one candidate recovery beam to obtain a measurement result.
  • the measurement result may include at least one of the following:
  • RSRP Reference Signal Received Power
  • SINR Signal-to-Interference plus Noise Ratio
  • this step 501 there is no sequence between this step 501 and the step of "determining SL beam failure based on configuration information" in the above embodiment.
  • this step 501 can be performed before or after "determining that the SL beam fails based on the configuration information", or can be performed at the same time.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG. 6 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the first terminal device. As shown in Figure 6, the SL beam failure recovery may include the following steps:
  • Step 601 Send an SL-BFR indication to the second terminal device.
  • the SL-BFR indication may be used to indicate that an SL beam failure occurs in the first terminal device. And, in an embodiment of the present disclosure, when the first terminal device determines that SL beam failure has occurred, the SL-BFR indication may be sent to the second terminal device.
  • the SL-BFR indication may include at least one of the following:
  • the identification of candidate recovery beams with measurement results (that is, only the identification of candidate recovery beams is sent without sending the measurement results of candidate recovery beams, and only the identification of candidate recovery beams with measurement results is sent without sending the identification of candidate recovery beams with no measurement results). Identification of candidate recovery beams);
  • the identification of the candidate recovery beams with measurement results can be as follows:
  • the measurement results (such as the measured beam signal strengths) are arranged in order from high to low or from low to high. Therefore, the second terminal device can know the relationship between the candidate recovery beams based on the order of identification of the candidate recovery beams.
  • the arrangement order of the measurement results so that the second terminal device can subsequently determine the specifically activated candidate recovery beam based on the arrangement order.
  • the measurement result is higher than the second threshold value.
  • the identifiers of the candidate recovery beams can be arranged in order from high to low or from low to high according to the measurement results. Therefore, the second terminal device can know the measurements between the candidate recovery beams based on the order of the identifiers of the candidate recovery beams. The results are arranged in an order, so that the second terminal device can subsequently determine specifically activated candidate recovery beams based on the order.
  • Step 602 Receive the beam activation indication sent by the second terminal device.
  • the beam activation indication includes an identifier of the activated candidate recovery beam.
  • the activated candidate recovery beam may be the candidate recovery beam with the best measurement result, or it may be any one or any of the candidate recovery beams with the top measurement results. Multiple candidate recovery beams, or any one or more candidate recovery beams whose measurement results are greater than the second threshold.
  • Step 603 Determine activated candidate recovery beams based on the beam activation indication.
  • the first terminal device may determine the activated candidate restoration beam based on the identification of the activated candidate restoration beam included in the beam activation indication.
  • Step 604 Communicate with the second terminal device based on the activated candidate recovery beam.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG. 7 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the second terminal device. As shown in Figure 7, the SL beam failure recovery may include the following steps:
  • Step 701 Receive the SL-BFR indication sent by the first terminal device.
  • the SL-BFR indication may include at least one of the following:
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG 8 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the second terminal device. As shown in Figure 8, the SL beam failure recovery may include the following steps:
  • Step 801 Determine configuration information.
  • this step 801 may be performed before the above step 701.
  • the above method of determining configuration information may include:
  • the second terminal device may receive the configuration information sent by the network device through the system information and/or the RRC reconfiguration message and the identification of the first terminal device to which the configuration information applies.
  • the configuration information may include at least one of the following:
  • At least one SL beam corresponds to the SL-BFD-RS carried
  • At least one first configuration is used to perform SL-BFD;
  • At least one second configuration for performing SL-BFR At least one second configuration for performing SL-BFR.
  • the second terminal device if the second terminal device only receives the configuration information indicated by the network device, but does not receive the identification of the first terminal device indicated by the network device, it means that the configuration information is suitable for All first terminal devices connected to the second terminal device SL.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG. 9 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the second terminal device. As shown in Figure 9, the SL beam failure recovery may include the following steps:
  • Step 901 Send configuration information to the first terminal device.
  • this step 901 may be performed before the above-mentioned step 701 and after the above-mentioned step 801.
  • the second terminal device may send configuration information to the first terminal device through an SL RRC message.
  • the second terminal device when the second terminal device receives the identification of the first terminal device indicated by the network device in the above step 801, the second terminal device may send the identification to the identification in step 901. The corresponding first terminal device sends the configuration information.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG 10 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the second terminal device. As shown in Figure 10, the SL beam failure recovery may include the following steps:
  • Step 1001 The second terminal device independently determines the candidate recovery beam to be activated.
  • the second terminal device can autonomously determine the candidate recovery to be activated based on the SL-BFR indication. beam.
  • the activated candidate recovery beam may be the candidate recovery beam with the best measurement result, or it may be any one or more candidate recovery beams among the top candidate recovery beams with measurement results, or it may be It is any one or any plurality of candidate recovery beams whose measurement results are greater than the second threshold value.
  • Step 1002 Send a beam activation indication to the first terminal device, where the beam activation indication includes the identifier of the activated candidate recovery beam.
  • Step 1003 Communicate with the first terminal device based on the activated candidate recovery beam.
  • Step 1004 In response to the second terminal device meeting the specific condition, send second instruction information to the network device.
  • the specific condition may include at least one of the following:
  • the second terminal device is in a connected state
  • the second terminal device allocates SL transmission resources based on dynamic scheduling of the network device.
  • the second indication information may include at least one of the following:
  • the identifier of the activated candidate recovery beam independently determined by the second terminal device
  • the second terminal device reports second indication information indicating the selected activated candidate recovery beam to the network device, so that the network device knows which recovery candidate is specifically activated between the first terminal device and the second terminal device. beam to restore beam communication, thereby facilitating the network device to subsequently schedule SL resources for the first terminal device and the second terminal device based on the activated candidate restoration beam.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG 11 is a schematic flow chart of SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by the second terminal device. As shown in Figure 11, the SL beam failure recovery may include the following steps:
  • Step 1101 In response to the second terminal device meeting a specific condition, send third indication information to the network device.
  • the specific condition may include at least one of the following:
  • the second terminal device is in a connected state
  • the second terminal device allocates SL transmission resources based on dynamic scheduling of the network device.
  • the third indication information is sent to the network device.
  • the third indication information may include at least one of the following:
  • SL-BFR indicates the identity of the corresponding first terminal device.
  • Step 1102 Obtain the activation beam information sent by the network device.
  • the activation beam information includes the identifier of the activated candidate recovery beam.
  • the activation beam information may further include an identification of the first terminal device to which the activated candidate recovery beam is applicable.
  • the activation beam information does not include the identification of the first terminal device, it means that the activated candidate recovery beam is suitable for any one or more second terminals connected to the second terminal device SL. equipment.
  • Step 1103 Send a beam activation indication to the first terminal device, where the beam activation indication includes the identifier of the activated candidate recovery beam.
  • the second terminal device in response to the activation beam information sent by the network device in the above step 1102 including the identification of the first terminal device, the second terminal device should send a message to the corresponding first terminal based on the identification. The device sends this beam activation indication.
  • Step 1104 Communicate with the first terminal device based on the activated candidate recovery beam.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG 12 is a schematic flowchart of an SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 12, the SL beam failure recovery may include the following steps:
  • Step 1201 Send configuration information to the first terminal device.
  • the configuration information includes at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, the second terminal device communicating with the first terminal device through SL;
  • At least one SL beam corresponds to the sidelink beam failure detection reference signal SL-BFD-RS carried;
  • At least one first configuration is used to perform sidelink beam failure detection SL-BFD;
  • At least one second configuration for performing sidelink beam failure recovery SL-BFR At least one second configuration for performing sidelink beam failure recovery SL-BFR.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG. 13 is a schematic flowchart of an SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 13, the SL beam failure recovery may include the following steps:
  • Step 1301 Send configuration information and/or the identification of the first terminal device to which the configuration information applies to the second terminal device.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG 14 is a schematic flowchart of an SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 14, the SL beam failure recovery may include the following steps:
  • Step 1401 Receive second instruction information sent by the second terminal device.
  • the second indication information includes at least one of the following:
  • the identifier of the activated candidate recovery beam independently determined by the second terminal device
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • FIG. 15 is a schematic flowchart of an SL beam failure recovery provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 15, the SL beam failure recovery may include the following steps:
  • Step 1501 Receive third indication information sent by the second terminal device.
  • the third indication information includes at least one of the following:
  • the SL-BFR indicates the identity of the corresponding first terminal device
  • the SL-BFR indication includes at least one of the following:
  • Step 1502 Determine the activated candidate recovery beam
  • Step 1503 Send activation beam information to the second terminal device, where the activation beam information includes an identifier of the activated candidate recovery beam.
  • the first terminal device determines configuration information, and the configuration information includes at least one of the following: at least one used to indicate the first terminal device and the second terminal First indication information of SL beams between devices, the second terminal device communicates with the first terminal device through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL-BFD; at least one second configuration, the second configuration is used to perform SL-BFR. And, in response to the first terminal device determining that the SL beam fails based on the configuration information, the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure. As shown in Figure 16, the device may include:
  • a processing module used to determine configuration information, where the configuration information includes at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, the second terminal device communicating with the first terminal device through SL;
  • At least one SL beam corresponds to the sidelink beam failure detection reference signal SL-BFD-RS carried;
  • At least one first configuration is used to perform sidelink beam failure detection SL-BFD;
  • At least one second configuration is used for sidelink beam failure recovery SL-BFR;
  • the processing module is further configured to trigger an SL beam failure recovery process in response to determining that the SL beam fails based on the configuration information.
  • the first terminal device determines the configuration information, and the configuration information includes at least one of the following: at least one for indicating the configuration between the first terminal device and the second terminal device.
  • the first indication information of the SL beams between the second terminal equipment and the first terminal equipment communicates through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL- BFD; at least one second configuration, the second configuration is used to perform SL-BFR.
  • the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • the processing module is also used to:
  • the first indication information is a transmission configuration indication TCI corresponding to the SL beam.
  • the first configuration includes at least one of the following:
  • the first threshold value is used: when it is measured that the number of BF occurrences reaches the first threshold value, or when it is measured that the number of BF occurrences within the preset time period reaches the first threshold value , it is determined that SL beam failure has occurred.
  • the second configuration includes at least one of the following:
  • At least one candidate recovery beam corresponds to the reference signal carried
  • different SL-BFD-RS correspond to different first configurations
  • Different SL-BFD-RS correspond to different second configurations.
  • the processing module is also used to:
  • the processing module is also used to:
  • the processing module is also used to:
  • a timer is started, and the timing duration of the timer is the preset duration;
  • the device is also used for:
  • the count value of the number of BF occurrences is set to zero.
  • the device is also used for:
  • a measurement result is obtained, where the measurement result is a measurement result obtained by measuring the reference signal corresponding to the candidate recovery beam.
  • the processing module is also used to:
  • the SL-BFR indication includes at least one of the following:
  • the processing module is also used to:
  • the measurement results include at least one of the following:
  • Figure 17 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure. As shown in Figure 17, the device may include:
  • a processing module used to determine configuration information; the configuration information includes at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, wherein the second terminal device communicates with the first terminal device through SL;
  • At least one SL beam corresponds to the SL-BFD-RS carried
  • At least one first configuration is used to perform SL-BFD;
  • At least one second configuration for performing SL-BFR At least one second configuration for performing SL-BFR.
  • the first terminal device determines the configuration information, and the configuration information includes at least one of the following: at least one for indicating the configuration between the first terminal device and the second terminal device.
  • the first indication information of the SL beams between the second terminal equipment and the first terminal equipment communicates through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL- BFD; at least one second configuration, the second configuration is used to perform SL-BFR.
  • the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • the device is also used for:
  • the first indication information is a transmission configuration indication TCI corresponding to the SL beam.
  • the first configuration includes at least one of the following:
  • the first threshold value is used: when it is measured that the number of BF occurrences reaches the first threshold value, or when it is measured that the number of BF occurrences within the preset time period reaches the first threshold value , it is determined that SL beam failure has occurred.
  • the second configuration includes at least one of the following:
  • At least one candidate recovery beam corresponds to the reference signal carried
  • different SL-BFD-RS correspond to different first configurations
  • Different SL-BFD-RS correspond to different second configurations.
  • the device is also used for:
  • the transceiver module is also used to:
  • the configuration information is sent to the first terminal device corresponding to the identification.
  • the method further includes:
  • the SL-BFR indication includes at least one of the following:
  • the device is also used for:
  • the second terminal device autonomously determines the candidate recovery beam to be activated.
  • the apparatus in response to the second terminal device being in a connected state and/or the second terminal device allocating SL transmission resources based on dynamic scheduling of network devices, the apparatus Also used for:
  • the second indication information includes at least one of the following:
  • the identifier of the activated candidate recovery beam independently determined by the second terminal device
  • the device in response to the second terminal device being in the connected state, and/or the second terminal device allocating SL transmission resources based on dynamic scheduling of network devices, in the After receiving the SL-BFR indication sent by the first terminal equipment, the device is also used to:
  • the SL-BFR indicates the identity of the corresponding first terminal device.
  • the device is also used for:
  • the device is also used for:
  • the beam activation indication includes an identifier of the activated candidate recovery beam
  • Figure 18 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure. As shown in Figure 18, the device may include:
  • a transceiver module configured to send configuration information to the first terminal device, where the configuration information includes at least one of the following:
  • At least one first indication information for indicating the SL beam between the first terminal device and the second terminal device, the second terminal device communicating with the first terminal device through SL;
  • At least one SL beam corresponds to the sidelink beam failure detection reference signal SL-BFD-RS carried;
  • At least one first configuration is used to perform sidelink beam failure detection SL-BFD;
  • At least one second configuration for performing sidelink beam failure recovery SL-BFR At least one second configuration for performing sidelink beam failure recovery SL-BFR.
  • the first terminal device determines the configuration information, and the configuration information includes at least one of the following: at least one for indicating the configuration between the first terminal device and the second terminal device.
  • the first indication information of the SL beams between the second terminal equipment and the first terminal equipment communicates through SL; at least one SL beam corresponds to the SL-BFD-RS carried; at least one first configuration, the first configuration is used to perform SL- BFD; at least one second configuration, the second configuration is used to perform SL-BFR.
  • the first terminal device triggers the SL beam failure recovery process.
  • embodiments of the present disclosure provide a SL beam failure recovery method between directly connected SL terminal devices, so that SL transmission can support beam failure recovery.
  • the first indication information is a transmission configuration indication TCI corresponding to the SL beam.
  • the first configuration includes at least one of the following:
  • the first threshold value is used: when it is measured that the number of BF occurrences reaches the first threshold value, or when it is measured that the number of BF occurrences within the preset time period reaches the first threshold value , it is determined that SL beam failure has occurred.
  • the second configuration includes at least one of the following:
  • At least one candidate recovery beam corresponds to the reference signal carried
  • different SL-BFD-RS correspond to different first configurations
  • Different SL-BFD-RS correspond to different second configurations.
  • the device is also used for:
  • the device is also used for:
  • the identifier of the activated candidate recovery beam independently determined by the second terminal device
  • the device is also used for:
  • the SL-BFR indicates the identity of the corresponding first terminal device
  • the SL-BFR indication includes at least one of the following:
  • the device is also used for:
  • the activation beam information includes an identifier of the activated candidate recovery beam.
  • FIG 19 is a schematic structural diagram of a communication device 1900 provided by an embodiment of the present application.
  • the communication device 1900 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method.
  • Processor etc. The device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1900 may include one or more processors 1901.
  • the processor 1901 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1900 may also include one or more memories 1902, on which a computer program 1904 may be stored.
  • the processor 1901 executes the computer program 1904, so that the communication device 1900 performs the steps described in the above method embodiments. method.
  • the memory 1902 may also store data.
  • the communication device 1900 and the memory 1902 can be provided separately or integrated together.
  • the communication device 1900 may also include a transceiver 1905 and an antenna 1906.
  • the transceiver 1905 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1905 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1900 may also include one or more interface circuits 1907.
  • the interface circuit 1907 is used to receive code instructions and transmit them to the processor 1901 .
  • the processor 1901 executes the code instructions to cause the communication device 1900 to perform the method described in the above method embodiment.
  • the processor 1901 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1901 may store a computer program 1903, and the computer program 1903 runs on the processor 1901, causing the communication device 1900 to perform the method described in the above method embodiment.
  • the computer program 1903 may be solidified in the processor 1901, in which case the processor 1901 may be implemented by hardware.
  • the communication device 1900 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 19 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 20 refer to the schematic structural diagram of the chip shown in FIG. 20 .
  • the chip shown in Figure 20 includes a processor 2001 and an interface 2002.
  • the number of processors 2001 may be one or more, and the number of interfaces 2002 may be multiple.
  • the chip also includes a memory 2003, which is used to store necessary computer programs and data.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种SL波束失败恢复方法、装置、设备及存储介质,方法包括:确定配置信息,配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;至少一个第一配置,第一配置用于进行侧行链路波束失败检测SL-BFD;至少一个第二配置,第二配置用于进行侧行链路波束失败恢复SL-BFR;响应于基于配置信息确定SL波束失败,触发SL波束失败恢复流程。

Description

一种侧行链路SL波束失败恢复方法/装置/设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种SL波束失败恢复、装置、设备及存储介质。
背景技术
在通信***中,通过引入侧行链路(Sidelink,SL)通信方式,来实现终端设备之间的直接通信。同时,在通信***中,设备之间通常会基于波束进行通信,以此来提高数据传输速率,降低干扰。
相关技术中,当设备之间发生波束失败时,通常需要触发波束恢复流程以恢复波束。
但是,目前针对SL传输还未引入具体的波束失败恢复流程,使得SL传输目前不支持波束失败恢复。
发明内容
本公开提出的SL波束失败恢复方法、装置、设备及存储介质,以解决相关技术中的SL传输不支持波束失败恢复的技术问题。
第一方面,本公开实施例提供一种SL波束失败恢复,该方法被第一终端设备执行,包括:
确定配置信息,所述配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR;
响应于基于所述配置信息确定SL波束失败,触发SL波束失败恢复流程。
本公开中,提供了一种SL波束失败恢复方法,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
可选的,所述基于所述配置信息确定SL波束失败,包括:
测量所述SL-BFD-RS并确定波束失败BF发生次数是否满足预设条件;
响应于确定BF发生次数满足预设条件,确定SL波束失败。
可选的,所述第一指示信息为所述SL波束对应的传输配置指示TCI。
可选的,所述第一配置包括以下至少一种:
预设时长;
第一门限值;
其中,所述第一门限值用于:当测量到BF发生次数达到所述第一门限值,或者,当测量到在所述预设时长内BF发生次数达到所述第一门限值,确定发生SL波束失败。
可选的,所述第二配置包括以下至少一种:
至少一个候选恢复波束的标识;
至少一个候选恢复波束对应承载的参考信号;
用于波束恢复的第二门限值。
可选的,不同SL-BFD-RS对应不同的第一配置;和/或,
不同SL-BFD-RS对应不同的第二配置。
可选的,所述确定配置信息,包括以下至少一种:
接收网络设备发送的所述配置信息;
接收第二终端设备发送的所述配置信息。
可选的,所述测量所述SL-BFD-RS并确定BF发生次数是否满足预设条件,包括:
在测量所述SL-BFD-RS的过程中,检测是否发生BF;
对BF发生次数进行计数;
响应于BF发生次数达到所述第一门限值,确定满足所述预设条件。
可选的,所述测量所述SL-BFD-RS并确定BF发生次数是否满足预设条件,包括:
在测量所述SL-BFD-RS的过程中,响应于初次发生BF,启动定时器,所述定时器的定时时长为所述预设时长;
对BF发生次数进行计数;
响应于定时器启动期间,BF发生次数达到所述第一门限值,确定满足所述预设条件。
可选的,所述方法还包括:
响应于所述定时器超时,将所述BF发生次数的计数值置零。
可选的,所述方法还包括:
获取测量结果,所述测量结果为对所述候选恢复波束对应承载的参考信号进行测量获得的测量结果。
可选的,所述触发SL波束失败恢复流程,包括:
向第二终端设备发送SL-BFR指示;
所述SL-BFR指示包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识;
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
可选的,所述触发SL波束失败恢复流程,包括:
接收所述第二终端设备发送的波束激活指示,所述波束激活指示中包括激活的候选恢复波束的标识;
基于所述波束激活指示确定激活的候选恢复波束;
基于所述激活的候选恢复波束与第二终端设备通信。
可选的,所述测量结果包括以下至少一种:
参考信号接收功率RSRP;
参考信号接收质量SINR。
第二方面,本公开实施例提供一种SL波束失败恢复,该方法被第二终端设备执行,包括:
确定配置信息;所述配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,其中,所述第二终端设备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行SL-BFD;
至少一个第二配置,所述第二配置用于进行SL-BFR。
可选的,所述确定配置信息,包括:
接收网络设备发送的配置信息;或者
接收网络设备发送的配置信息和所述配置信息适用的第一终端设备的标识。
可选的,所述第一指示信息为所述SL波束对应的传输配置指示TCI。
可选的,所述第一配置包括以下至少一种:
预设时长;
第一门限值;
其中,所述第一门限值用于:当测量到BF发生次数达到所述第一门限值,或者,当测量到在所述预设时长内BF发生次数达到所述第一门限值,确定发生SL波束失败。
可选的,所述第二配置包括以下至少一种:
至少一个候选恢复波束的标识;
至少一个候选恢复波束对应承载的参考信号;
用于波束恢复的第二门限值。
可选的,不同SL-BFD-RS对应不同的第一配置;和/或,
不同SL-BFD-RS对应不同的第二配置。
可选的,所述方法还包括:
向第一终端设备发送所述配置信息。
可选的,所述向第一终端设备发送所述配置信息,包括:
响应于所述网络设备向所述第二终端设备发送了所述配置信息适用的第一终端设备的标识,向所述标识对应的第一终端设备发送所述配置信息。
可选的,所述方法还包括:
接收第一终端设备发送的SL-BFR指示;
所述SL-BFR指示包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识;
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
可选的,所述方法还包括:
所述第二终端设备自主确定要激活的候选恢复波束。
可选的,响应于所述第二终端设备处于连接态,和/或,所述第二终端设备基于网络设备的动态调度分配SL发送资源,所述方法还包括:
向所述网络设备发送第二指示信息;所述第二指示信息包括以下至少一种:
所述第一终端设备对应的标识;
所述第二终端设备自主确定的激活的候选恢复波束的标识;
所述激活的候选恢复波束对应的测量结果。
可选的,响应于所述第二终端设备处于连接态,和/或,所述第二终端设备基于网络设备的动态调度分配SL发送资源,所述方法还包括:
向所述网络设备发送第三指示信息,所述第三指示信息包括以下至少一种:
所述SL-BFR指示;
所述SL-BFR指示对应的第一终端设备的标识。
可选的,所述方法还包括:
获取所述网络设备发送的激活波束信息,所述激活波束信息中包括激活的候选恢复波束的标识。
可选的,所述方法还包括:
向所述第一终端设备发送波束激活指示,所述波束激活指示中包括激活的候选恢复波束的标识;
基于所述激活的候选恢复波束与第一终端设备通信。
第三方面,本公开实施例提供一种SL波束失败恢复,该方法被网络设备执行,包括:
向第一终端设备发送配置信息,所述配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设 备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR。
可选的,所述第一指示信息为所述SL波束对应的传输配置指示TCI。
可选的,所述第一配置包括以下至少一种:
预设时长;
第一门限值;
其中,所述第一门限值用于:当测量到BF发生次数达到所述第一门限值,或者,当测量到在所述预设时长内BF发生次数达到所述第一门限值,确定发生SL波束失败。
可选的,所述第二配置包括以下至少一种:
至少一个候选恢复波束的标识;
至少一个候选恢复波束对应承载的参考信号;
用于波束恢复的第二门限值。
可选的,不同SL-BFD-RS对应不同的第一配置;和/或,
不同SL-BFD-RS对应不同的第二配置。
可选的,所述方法还包括:
向所述第二终端设备发送配置信息和/或所述配置信息适用的第一终端设备的标识。
可选的,所述方法还包括:
接收所述第二终端设备发送的第二指示信息;所述第二指示信息包括以下至少一种:
所述第一终端设备对应的标识;
所述第二终端设备自主确定的激活的候选恢复波束的标识;
所述激活的候选恢复波束对应的测量结果。
可选的,所述方法还包括:
接收所述第二终端设备发送的第三指示信息,所述第三指示信息包括以下至少一种:
所述SL-BFR指示;
所述SL-BFR指示对应的第一终端设备的标识;
其中,所述SL-BFR指示包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识;
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
可选的,所述方法还包括:
确定激活的候选恢复波束;
向所述第二终端设备发送激活波束信息,所述激活波束信息中包括激活的候选恢复波束的标识。
第四方面,本公开实施例提供一种通信装置,该装置被配置在第一终端设备中,包括:
处理模块,用于确定配置信息,所述配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR;
所述处理模块,还用于响应于基于所述配置信息确定SL波束失败,触发SL波束失败恢复流程。
第五方面,本公开实施例提供一种通信装置,该装置被配置在第二终端设备中,包括:
收发模块,用于接收第一终端设备发送的SL-BFR指示,所述第二终端设备与所述第一终端设备通过SL通信;
所述SL-BFR指示包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识;
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
第六方面,本公开实施例提供一种通信装置,该装置被配置在网络设备中,包括:
收发模块,用于向第一终端设备发送配置信息,所述配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第三方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第十一方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第十二方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第三方面所述的方法。
第十三方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十四方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十五方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第三方面所述的方法。
第十六方面,本公开实施例提供一种通信***,该***包括第四方面所述的通信装置至第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置至第九方面所述的通信装置,或者,该***包括第十方面所述的通信装置至第十二方面所述的通信装置,或者,该***包括第十三方面所述的通信装置至第十五方面所述的通信装置。
第十七方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备和/或上述终端设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第一方面所述的方法,和/或,使 所述终端设备执行上述第二方面所述的方法,和/或,使所述终端设备执行上述第三方面所述的方法。
第十八方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面的任一方面所述的方法。
第十九方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第一方面至所述的方法所涉及的功能,和/或,支持终端设备实现第二方面所述的方法所涉及的功能,和/或,支持终端设备实现第三方面所述的方法所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存源辅节点必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面的任一方面所述的方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种通信***的架构示意图;
图2为本公开另一个实施例所提供的SL波束失败恢复的流程示意图;
图3为本公开一个实施例所提供的SL波束失败恢复的流程示意图;
图4为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图5为本公开实施例所提供的一种SL波束失败恢复的交互示意图;
图6为本公开再一个实施例所提供的SL波束失败恢复的流程示意图;
图7为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图8为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图9为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图10为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图11为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图12为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图13为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图14为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图15为本公开又一个实施例所提供的SL波束失败恢复的流程示意图;
图16为本公开一个实施例所提供的通信装置的结构示意图;
图17为本公开另一个实施例所提供的通信装置的结构示意图;
图18为本公开另一个实施例所提供的通信装置的结构示意图;
图19是本公开一个实施例所提供的一种通信装置的框图;
图20为本公开一个实施例所提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、侧行链路(Sidelink,SL)
Sidelink通信分为两种模式,一种叫做UE之间的发现(dicovery),另外一种叫做UE之间的通信(communication)。Sidelink使用了上行资源以及与蜂窝网络(LTE)类似的上行物理信道进行数据交互传输。
2、无线资源控制(Ratio Resource Control,RRC)信令
RRC信令可以对接入网的底层协议实体提供参数配置的功能;负责终端设备移动性管理相关的测量、控制等功能。
为了更好的理解本申请实施例公开的一种确定侧链路时长的方法,下面首先对本申请实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备、一个第一终端设备和一个第二终端设备,其中,第一终端设备与第二终端设备通过SL通信,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11、一个第一终端设备12、一个第二终端设备13为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的第一终端设备12和第二终端设备13可以是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
以及,在本公开实施例之中,所提到的“从.....获取”或者“获取.....发送的”的意思均可以理解为 “从.....接收”或者“接收.....发送的”。
以及,在本公开实施例之中,所提到的“基于”的意思均可以理解为“根据”或者“考虑”。
下面参考附图对本公开实施例所提供的SL波束失败恢复、装置、设备及存储介质进行详细描述。
图2为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第一终端设备执行,如图2所示,该SL波束失败恢复可以包括以下步骤:
步骤201、确定配置信息。
在本公开的一个实施例之中,该配置信息可以包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,其中,该第二终端设备与第一终端设备通过SL通信;
至少一个SL波束对应承载的侧行链路波束失败检测参考信号(Sidelink Beam Failure Detection Reference Signal,SL-BFD-RS);
至少一个第一配置,该第一配置用于进行侧行链路波束失败检测(Sidelink Beam Failure Detection,SL-BFD);
至少一个第二配置,该第二配置用于进行侧行链路波束失败恢复(Sidelink Beam Failure Recovery,SL-BFR)。
其中,在本公开的一个实施例之中,上述的第一指示信息可以为SL波束对应的(SL)传输配置指示(Transmission Configuration Indicator,TCI)。
上述的第一配置可以包括以下至少一种:
预设时长;
第一门限值(如可以为波束失败最大值);
其中,该第一门限值用于:当测量到波束失败(Beam Failure,BF)发生次数达到该第一门限值,或者,当测量到在该预设时长内BF发生次数达到该第一门限值,则确定发生SL波束失败。
上述的第二配置可以包括以下至少一种:
至少一个候选恢复波束的标识;
至少一个候选恢复波束对应承载的参考信号;
用于波束恢复的第二门限值。
其中,该第二门限值具体可以用于从候选恢复波束中确定出激活的候选恢复波束,以便当发生SL波束失败时,可以基于该激活的候选恢复波束来恢复波束传输。示例的,如可以将测量结果大于第二门限值的候选恢复波束中的任一个或任多个候选恢复波束确定为激活的候选恢复波束。
进一步地,在本公开的一个实施例之中,不同的SL-BFD-RS可以对应不同的第一配置;和/或,不同的SL-BFD-RS可以对应不同的第二配置。其中,每个第一配置用于对其对应的SL-BFD-RS进行SL-BFD,每个第二配置用于对其对应的SL-BFD-RS进行SL-BFR。
示例的,如SL-BFD-RS#1可以对应第一配置#1和第二配置#1;SL-BFD-RS#2可以对应第一配置#2和第二配置#2。则此时,第一配置#1可以用于对SL-BFD-RS#1进行SL-BFD(即可以用第一配置#1中的预设时长和/或第一门限值来对SL-BFD-RS#1进行SL-BFD),第二配置#1可以用于对SL-BFD-RS#1进行SL-BFR(即可以用第二配置#1中的候选恢复波束和/或第二门限值来对SL-BFD-RS#1进行SL-BFD),第一配置#2可以用于对SL-BFD-RS#2进行SL-BFD(即可以用第一配置#2中的预设时长和/或第一门限值来对SL-BFD-RS#2进行SL-BFD),第二配置#2可以用于对SL-BFD-RS#2进行SL-BFR(即可以用第二配置#2中的候选恢复波束和/或第二门限值来对SL-BFD-RS#2进行SL-BFD)。
步骤202、响应于基于配置信息确定SL波束失败,触发SL波束失败恢复流程。
其中,在本公开的一个实施例之中,该基于配置信息确定SL波束失败的方法可以为:
测量SL-BFD-RS并确定BF发生次数是否满足预设条件,响应于确定BF发生次数满足预设条件,确定SL波束失败。
其中,在本公开的一个实施例之中,具体可以基于第一配置来测量SL-BFD-RS以确定BF发生次数是否满足预设条件。该预设条件可以为:BF发生次数超过第一门限值,和/或,在预设时长内BF发 生次数超过第一门限值。
具体的,第一终端设备在测量SL-BFD-RS的过程中,可以检测是否发生了BF,并对BF发生次数进行计数,其中,当第一终端设备的物理层接收到第一终端设备的其他层发送的SL波束失败指示(Beam Failure Indication,BFI)时,则确认检测到发生了BF,由此,通过统计第一终端设备接收到SL BFI指示的次数即可实现对BF发生次数的计数。其中,当BF发生次数达到第一门限值时,则确定满足预设条件,否则,确定不满足预设条件。
或者,第一终端设备在测量SL-BFD-RS的过程中,若检测到初次发生BF,则启动定时器并开始对BF发送次数进行计数,其中,该定时器的定时时长为上述预设时长,以及,当定时器启动期间,BF发生次数达到第一门限值时,则确定满足预设条件,否则,确定不满足预设条件。需要说明的是,当基于定时器测量SL-BFD-RS时,若该定时器超时,则会将BF发生次数的计数值置零,以防止此次的BF发生次数的计数值影响下一次SL-BFD-RS测量过程中的BF发生次数的计数。
以及,当确定出BF发生次数满足预设条件时,则说明发生SL波束失败,此时即需要触发SL波束失败恢复流程以进行波束恢复,其中,关于第一终端设备具体如何触发SL波束失败恢复流程的详细内容会在后续实施例进行介绍。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图3为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第一终端设备执行,如图3所示,该SL波束失败恢复可以包括以下步骤:
步骤301、接收网络设备发送的配置信息。
其中,在本公开的一个实施例之中,第一终端设备可以接收网络设备通过***信息和/或RRC重配消息发送的该配置信息。
以及,需要说明的是,在本公开的一个实施例之中,若第一终端设备是通过网络设备的发送来确定配置信息的,则该网络设备应当同步也向与第一终端设备SL连接的第二终端设备发送该配置信息(如可以通过***信息和/或RRC重配消息向第二终端设备发送该配置信息),以便第一终端设备和第二终端设备均知晓该配置信息,从而第一终端设备和第二终端设备后续可以基于该配置信息进行波束管理以实现波束失败恢复流程。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图4为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第一终端设备执行,如图4所示,该SL波束失败恢复可以包括以下步骤:
步骤401、接收第二终端设备发送的配置信息。
其中,在本公开的一个实施例之中,第一终端设备可以接收网络设备通过SL RRC消息发送的该配置信息。
以及,需要说明的是,第二终端设备处的该配置信息可以是由网络设备发送的。并且,在本公开的一个实施例之中,网络设备向第二终端设备发送该配置信息时,还可以同步向第二终端设备发送该配置信息所适用的第一终端设备的标识,以便第二终端设备可以基于该标识向对应的第一终端设备发送该配置信息。在本公开的另一个实施例之中,网络设备也可以不向第二终端设备发送配置信息适用的第一终端设备的标识,此时,说明该配置信息适用于与第二终端设备SL连接的任一个或任多个第一终端设备。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图5为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第一终端设备执行,如图5所示,该SL波束失败恢复可以包括以下步骤:
步骤501、获取测量结果,该测量结果为对所述候选恢复波束对应承载的参考信号进行测量获得的测量结果。
其中,在本公开的一个实施例之中,第一终端设备可以基于第二配置确定出至少一个候选恢复波束的标识以及该至少一个候选恢复波束对应承载的参考信号,之后,第一终端设备可以测量该至少一个候选恢复波束对应承载的参考信号得到测量结果。
在本公开的一个实施例之中,该测量结果可以包括以下至少一种:
参考信号接收功率(Reference Signal Received Power,RSRP);
信干噪比(Signal-to-Interference plus Noise Ratio,SINR)。
需要说明的是,在本公开的一个实施例之中,该步骤501与上述实施例中“基于配置信息确定SL波束失败”的步骤之间无先后顺序。其中,该步骤501可以在“基于配置信息确定SL波束失败”之前或之后执行,也可以同时执行。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图6为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第一终端设备执行,如图6所示,该SL波束失败恢复可以包括以下步骤:
步骤601、向第二终端设备发送SL-BFR指示。
其中,在本公开的一个实施例之中,该SL-BFR指示可以用于指示第一终端设备发生SL波束失败。以及,在本公开的一个实施例之中,可以是当第一终端设备确定其发生了SL波束失败时,向第二终端设备发送SL-BFR指示。
在本公开的一个实施例之中,该SL-BFR指示可以包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识(即仅发送候选恢复波束的标识,而不发送候选恢复波束的测量结果,且仅发送存在测量结果的候选恢复波束的标识,而不发送不存在测量结果的候选恢复波束的标识);
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
需要说明的是,在本公开的一个实施例之中,当该SL-BFR指示中包括上述的“存在测量结果的候选恢复波束的标识”时,该存在测量结果的候选恢复波束的标识可以按照测量结果(如测量得到的波束信号强度)从高到低或从低到高的顺序进行排列,由此,第二终端设备即可基于候选恢复波束的标识的排列顺序知晓各个候选恢复波束之间的测量结果的排列顺序,以便后续第二终端设备可以基于该排列顺序来确定具体激活的候选恢复波束。
在本公开的一个实施例之中,当该SL-BFR指示中包括上述的“测量结果高于第二门限值的候选恢复波束的标识”时,该测量结果高于第二门限值的候选恢复波束的标识可以按照测量结果从高到低或从低到高的顺序进行排列,由此,第二终端设备即可基于候选恢复波束的标识的排列顺序知晓各个候选恢复波束之间的测量结果的排列顺序,以便后续第二终端设备可以基于该排列顺序来确定具体激活的候选恢复波束。
步骤602、接收第二终端设备发送的波束激活指示。
其中,在本公开的一个实施例之中,该波束激活指示中包括激活的候选恢复波束的标识。
以及,在本公开的一个实施例之中,该激活的候选恢复波束可以是测量结果最好的候选恢复波束,或者,也可以是测量结果排名前几位的候选恢复波束中的任一个或任多个候选恢复波束,或者,也可以是测量结果大于第二门限值的候选恢复波束中的任一个或任多个候选恢复波束。
步骤603、基于波束激活指示确定激活的候选恢复波束。
具体的,在本公开的一个实施例之中,第一终端设备可以基于波束激活指示中包括的激活的候选恢复波束的标识来确定激活的候选恢复波束。
步骤604、基于激活的候选恢复波束与第二终端设备通信。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图7为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第二终端设备执行,如图7所示,该SL波束失败恢复可以包括以下步骤:
步骤701、接收第一终端设备发送的SL-BFR指示。
其中,在本公开的一个实施例之中,该SL-BFR指示可以包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识(即仅发送存在测量结果的候选恢复波束的标识,而不发送不存在测量结果的候选恢复波束的标识);
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
以及,关于SL-BFR指示的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图8为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第二终端设备执行,如图8所示,该SL波束失败恢复可以包括以下步骤:
步骤801、确定配置信息。
其中,在本公开的一个实施例之中,本步骤801可以是在上述步骤701之前执行的。
以及,在本公开的一个实施例之中,上述的确定配置信息的方法可以包括:
接收网络设备发送的配置信息;或者
接收网络设备发送的配置信息和所述配置信息适用的第一终端设备的标识。
具体的,在本公开的一个实施例之中,第二终端设备可以接收网络设备通过***信息和/或RRC重配消息发送的配置信息以及配置信息适用的第一终端设备的标识。
以及,该配置信息可以包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息;
至少一个SL波束对应承载的SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行SL-BFD;
至少一个第二配置,所述第二配置用于进行SL-BFR。
其中,关于配置信息的详细介绍可以参考上述实施例描述。
以及,在本公开的一个实施例之中,若第二终端设备仅接收到网络设备指示的配置信息,而未接收到网络设备指示的第一终端设备的标识,则说明该配置信息是适用于与第二终端设备SL连接的所有第一终端设备。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图9为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第二终端设备执行,如图9所示,该SL波束失败恢复可以包括以下步骤:
步骤901、向第一终端设备发送配置信息。
其中,在本公开的一个实施例之中,本步骤901可以是在上述步骤701之前以及上述步骤801之后执行的。
以及,在本公开的一个实施例之中,第二终端设备可以通过SL RRC消息向第一终端设备发送配置信息。
以及,在本公开的一个实施例之中,当第二终端设备在上述步骤801中接收到网络设备指示的第一 终端设备的标识时,则本步骤901中该第二终端设备可以向该标识对应的第一终端设备发送该配置信息。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图10为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第二终端设备执行,如图10所示,该SL波束失败恢复可以包括以下步骤:
步骤1001、第二终端设备自主确定要激活的候选恢复波束。
其中,在本公开的一个实施例之中,当第二终端设备接收到第一终端设备发送的SL-BFR指示之后,第二终端设备可以基于该SL-BFR指示自主确定出要激活的候选恢复波束。其中,该激活的候选恢复波束可以是测量结果最好的候选恢复波束,或者,也可以是测量结果排名前几位的候选恢复波束中的任一个或任多个候选恢复波束,或者,也可以是测量结果大于第二门限值的候选恢复波束中的任一个或任多个候选恢复波束。
步骤1002、向第一终端设备发送波束激活指示,该波束激活指示中包括激活的候选恢复波束的标识。
步骤1003、基于激活的候选恢复波束与第一终端设备通信。
其中,关于步骤1002-1003的详细介绍可以参考上述实施例描述。
步骤1004、响应于第二终端设备满足特定条件,向网络设备发送第二指示信息。
其中,在本公开的一个实施例之中,该特定条件可以包括以下至少一种:
该第二终端设备处于处于连接态;
第二终端设备基于网络设备的动态调度分配SL发送资源。
以及,在本公开的一个实施例之中,该第二指示信息可以包括以下至少一种:
第一终端设备对应的标识;
第二终端设备自主确定的激活的候选恢复波束的标识;
激活的候选恢复波束对应的测量结果。
其中,第二终端设备通过向网络设备上报指示其所选的激活的候选恢复波束的第二指示信息,以使得网络设备知晓第一终端设备和第二终端设备之间具体是激活的哪个候选恢复波束来恢复波束通信,从而方便网络设备后续基于该激活的候选恢复波束来为第一终端设备和第二终端设备调度SL资源。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图11为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由第二终端设备执行,如图11所示,该SL波束失败恢复可以包括以下步骤:
步骤1101、响应于第二终端设备满足特定条件,向网络设备发送第三指示信息。
其中,在本公开的一个实施例之中,该特定条件可以包括以下至少一种:
该第二终端设备处于处于连接态;
第二终端设备基于网络设备的动态调度分配SL发送资源。
以及,在本公开的一个实施例之中,可以是当第二终端设备接收到SL-BFR指示后,若第二终端设备满足特定条件,则向网络设备发送第三指示信息。
在本公开的一个实施例之中,该第三指示信息可以包括以下至少一种:
SL-BFR指示;
SL-BFR指示对应的第一终端设备的标识。
步骤1102、获取网络设备发送的激活波束信息,该激活波束信息中包括激活的候选恢复波束的标识。
其中,在本公开的一个实施例之中,该激活波束信息中还可以进一步包括激活的候选恢复波束所适用的第一终端设备的标识。
以及,需要说明的是,当该激活波束信息中不包括第一终端设备的标识时,则说明该激活的候选恢复波束适用于与第二终端设备SL连接的任一个或任多个第二终端设备。
步骤1103、向第一终端设备发送波束激活指示,该波束激活指示中包括激活的候选恢复波束的标识。
其中,在本公开的一个实施例之中,响应于上述步骤1102中网络设备发送的激活波束信息中包括有第一终端设备的标识,则第二终端设备应当基于该标识向对应的第一终端设备发送该波束激活指示。
步骤1104、基于激活的候选恢复波束与第一终端设备通信。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图12为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由网络设备执行,如图12所示,该SL波束失败恢复可以包括以下步骤:
步骤1201、向第一终端设备发送配置信息。
其中,该配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得 SL传输可以支持波束失败恢复。
图13为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由网络设备执行,如图13所示,该SL波束失败恢复可以包括以下步骤:
步骤1301、向第二终端设备发送配置信息和/或配置信息适用的第一终端设备的标识。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图14为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由网络设备执行,如图14所示,该SL波束失败恢复可以包括以下步骤:
步骤1401、接收所述第二终端设备发送的第二指示信息。
所述第二指示信息包括以下至少一种:
所述第一终端设备对应的标识;
所述第二终端设备自主确定的激活的候选恢复波束的标识;
所述激活的候选恢复波束对应的测量结果。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图15为本公开实施例所提供的一种SL波束失败恢复的流程示意图,该方法由网络设备执行,如图15所示,该SL波束失败恢复可以包括以下步骤:
步骤1501、接收所述第二终端设备发送的第三指示信息。
所述第三指示信息包括以下至少一种:
所述SL-BFR指示;
所述SL-BFR指示对应的第一终端设备的标识;
其中,所述SL-BFR指示包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识;
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
步骤1502、确定激活的候选恢复波束;
步骤1503、向所述第二终端设备发送激活波束信息,所述激活波束信息中包括激活的候选恢复波束的标识。
综上所述,本公开实施例提供的SL波束失败恢复方法之中,第一终端设备会确定配置信息,该配 置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
图16为本公开实施例所提供的一种通信装置的结构示意图,如图16所示,装置可以包括:
处理模块,用于确定配置信息,所述配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR;
所述处理模块,还用于响应于基于所述配置信息确定SL波束失败,触发SL波束失败恢复流程。
综上所述,在本公开实施例提供的通信装置之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
测量所述SL-BFD-RS并确定波束失败BF发生次数是否满足预设条件;
响应于确定BF发生次数满足预设条件,确定SL波束失败。
可选的,在本公开的一个实施例之中,所述第一指示信息为所述SL波束对应的传输配置指示TCI。
可选的,在本公开的一个实施例之中,所述第一配置包括以下至少一种:
预设时长;
第一门限值;
其中,所述第一门限值用于:当测量到BF发生次数达到所述第一门限值,或者,当测量到在所述预设时长内BF发生次数达到所述第一门限值,确定发生SL波束失败。
可选的,在本公开的一个实施例之中,所述第二配置包括以下至少一种:
至少一个候选恢复波束的标识;
至少一个候选恢复波束对应承载的参考信号;
用于波束恢复的第二门限值。
可选的,在本公开的一个实施例之中,不同SL-BFD-RS对应不同的第一配置;和/或,
不同SL-BFD-RS对应不同的第二配置。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
接收网络设备发送的所述配置信息;
接收第二终端设备发送的所述配置信息。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
在测量所述SL-BFD-RS的过程中,检测是否发生BF;
对BF发生次数进行计数;
响应于BF发生次数达到所述第一门限值,确定满足所述预设条件。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
在测量所述SL-BFD-RS的过程中,响应于初次发生BF,启动定时器,所述定时器的定时时长为所述预设时长;
对BF发生次数进行计数;
响应于定时器启动期间,BF发生次数达到所述第一门限值,确定满足所述预设条件。
可选的,在本公开的一个实施例之中,所述装置还用于:
响应于所述定时器超时,将所述BF发生次数的计数值置零。
可选的,在本公开的一个实施例之中,所述装置还用于:
获取测量结果,所述测量结果为对所述候选恢复波束对应承载的参考信号进行测量获得的测量结果。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
向第二终端设备发送SL-BFR指示;
所述SL-BFR指示包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识;
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
接收所述第二终端设备发送的波束激活指示,所述波束激活指示中包括激活的候选恢复波束的标识;
基于所述波束激活指示确定激活的候选恢复波束;
基于所述激活的候选恢复波束与第二终端设备通信。
可选的,在本公开的一个实施例之中,所述测量结果包括以下至少一种:
参考信号接收功率RSRP;
参考信号接收质量SINR。
图17为本公开实施例所提供的一种通信装置的结构示意图,如图17所示,装置可以包括:
处理模块,用于确定配置信息;所述配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,其中,所述第二终端设备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行SL-BFD;
至少一个第二配置,所述第二配置用于进行SL-BFR。
综上所述,在本公开实施例提供的通信装置之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
可选的,在本公开的一个实施例之中,所述装置还用于:
接收网络设备发送的配置信息;或者
接收网络设备发送的配置信息和所述配置信息适用的第一终端设备的标识。
可选的,在本公开的一个实施例之中,所述第一指示信息为所述SL波束对应的传输配置指示TCI。
可选的,在本公开的一个实施例之中,所述第一配置包括以下至少一种:
预设时长;
第一门限值;
其中,所述第一门限值用于:当测量到BF发生次数达到所述第一门限值,或者,当测量到在所述预设时长内BF发生次数达到所述第一门限值,确定发生SL波束失败。
可选的,在本公开的一个实施例之中,所述第二配置包括以下至少一种:
至少一个候选恢复波束的标识;
至少一个候选恢复波束对应承载的参考信号;
用于波束恢复的第二门限值。
可选的,在本公开的一个实施例之中,不同SL-BFD-RS对应不同的第一配置;和/或,
不同SL-BFD-RS对应不同的第二配置。
可选的,在本公开的一个实施例之中,所述装置还用于:
向第一终端设备发送所述配置信息。
可选的,在本公开的一个实施例之中,所述收发模块还用于:
响应于所述网络设备向所述第二终端设备发送了所述配置信息适用的第一终端设备的标识,向所述标识对应的第一终端设备发送所述配置信息。
可选的,在本公开的一个实施例之中,所述方法还包括:
接收第一终端设备发送的SL-BFR指示;
所述SL-BFR指示包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识;
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
可选的,在本公开的一个实施例之中,所述装置还用于:
所述第二终端设备自主确定要激活的候选恢复波束。
可选的,在本公开的一个实施例之中,响应于所述第二终端设备处于连接态,和/或,所述第二终端设备基于网络设备的动态调度分配SL发送资源,所述装置还用于:
向所述网络设备发送第二指示信息;所述第二指示信息包括以下至少一种:
所述第一终端设备对应的标识;
所述第二终端设备自主确定的激活的候选恢复波束的标识;
所述激活的候选恢复波束对应的测量结果。
可选的,在本公开的一个实施例之中,响应于所述第二终端设备处于连接态,和/或,所述第二终端设备基于网络设备的动态调度分配SL发送资源,在所述接收第一终端设备发送的SL-BFR指示之后,所述装置还用于:
向所述网络设备发送第三指示信息,所述第三指示信息包括以下至少一种:
所述SL-BFR指示;
所述SL-BFR指示对应的第一终端设备的标识。
可选的,在本公开的一个实施例之中,所述装置还用于:
获取所述网络设备发送的激活波束信息,所述激活波束信息中包括激活的候选恢复波束的标识。
可选的,在本公开的一个实施例之中,所述装置还用于:
向所述第一终端设备发送波束激活指示,所述波束激活指示中包括激活的候选恢复波束的标识;
基于所述激活的候选恢复波束与第一终端设备通信。
图18为本公开实施例所提供的一种通信装置的结构示意图,如图18所示,装置可以包括:
收发模块,用于向第一终端设备发送配置信息,所述配置信息包括以下至少一种:
至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR。
综上所述,在本公开实施例提供的通信装置之中,第一终端设备会确定配置信息,该配置信息包括以下至少一种:至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,第二终端设备与第一终端设备通过SL通信;至少一个SL波束对应承载的SL-BFD-RS;至少一个第一配置,第一配置用于进行SL-BFD;至少一个第二配置,第二配置用于进行SL-BFR。以及,响应于第一终端设备基于该配置信息确定SL波束失败时,该第一终端设备会触发SL波束失败恢复流程。由此可知,本公开实施例之中,第一终端设备在与第二终端设备通过SL波束通信时,具体会基于其确定的配置信息来确定是否发生SL波束失败,当确定发生SL波束失败时,会触发SL波束失败恢复流程以进行波束恢复,由此本公开实施例提供了一种SL直连的终端设备间的SL波束失败恢复方法,使得SL传输可以支持波束失败恢复。
可选的,在本公开的一个实施例之中,所述第一指示信息为所述SL波束对应的传输配置指示TCI。
可选的,在本公开的一个实施例之中,所述第一配置包括以下至少一种:
预设时长;
第一门限值;
其中,所述第一门限值用于:当测量到BF发生次数达到所述第一门限值,或者,当测量到在所述预设时长内BF发生次数达到所述第一门限值,确定发生SL波束失败。
可选的,在本公开的一个实施例之中,所述第二配置包括以下至少一种:
至少一个候选恢复波束的标识;
至少一个候选恢复波束对应承载的参考信号;
用于波束恢复的第二门限值。
可选的,在本公开的一个实施例之中,不同SL-BFD-RS对应不同的第一配置;和/或,
不同SL-BFD-RS对应不同的第二配置。
可选的,在本公开的一个实施例之中,所述装置还用于:
向所述第二终端设备发送配置信息和/或所述配置信息适用的第一终端设备的标识。
可选的,在本公开的一个实施例之中,所述装置还用于:
接收所述第二终端设备发送的第二指示信息;所述第二指示信息包括以下至少一种:
所述第一终端设备对应的标识;
所述第二终端设备自主确定的激活的候选恢复波束的标识;
所述激活的候选恢复波束对应的测量结果。
可选的,在本公开的一个实施例之中,所述装置还用于:
接收所述第二终端设备发送的第三指示信息,所述第三指示信息包括以下至少一种:
所述SL-BFR指示;
所述SL-BFR指示对应的第一终端设备的标识;
其中,所述SL-BFR指示包括以下至少一种:
BF发生次数满足预设条件的SL-BFD-RS的标识;
存在测量结果的候选恢复波束的标识;
测量结果高于第二门限值的候选恢复波束的标识;
测量结果最好的候选恢复波束的标识;
候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
可选的,在本公开的一个实施例之中,所述装置还用于:
确定激活的候选恢复波束;
向所述第二终端设备发送激活波束信息,所述激活波束信息中包括激活的候选恢复波束的标识。
请参见图19,图19是本申请实施例提供的一种通信装置1900的结构示意图。通信装置1900可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1900可以包括一个或多个处理器1901。处理器1901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1900中还可以包括一个或多个存储器1902,其上可以存有计算机程序1904,处理器1901执行所述计算机程序1904,以使得通信装置1900执行上述方法实施例中描述的方法。可选的,所述存储器1902中还可以存储有数据。通信装置1900和存储器1902可以单独设置,也可以集成在一起。
可选的,通信装置1900还可以包括收发器1905、天线1906。收发器1905可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1905可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1900中还可以包括一个或多个接口电路1907。接口电路1907用于接收代码指令并传输至处理器1901。处理器1901运行所述代码指令以使通信装置1900执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1901中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1901可以存有计算机程序1903,计算机程序1903在处理器1901上运行,可使得通信装置1900执行上述方法实施例中描述的方法。计算机程序1903可能固化在处理器1901中,该种情况下,处理器1901可能由硬件实现。
在一种实现方式中,通信装置1900可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图19的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图20所示的芯片的结构示意图。图20所示的芯片包括处理器2001和接口2002。其中,处理器2001的数量可以是一个或多个,接口2002的数量可以是多个。
可选的,芯片还包括存储器2003,存储器2003用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域 的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种侧行链路SL波束失败恢复方法,其特征在于,所述方法被第一终端设备执行,所述方法包括:
    确定配置信息,所述配置信息包括以下至少一种:
    至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
    至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
    至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
    至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR;
    响应于基于所述配置信息确定SL波束失败,触发SL波束失败恢复流程。
  2. 如权利要求1所述的方法,其特征在于,所述基于所述配置信息确定SL波束失败,包括:
    测量所述SL-BFD-RS并确定波束失败BF发生次数是否满足预设条件;
    响应于确定BF发生次数满足预设条件,确定SL波束失败。
  3. 如权利要求1所述的方法,其特征在于,所述第一指示信息为所述SL波束对应的传输配置指示TCI。
  4. 如权利要求1所述的方法,其特征在于,所述第一配置包括以下至少一种:
    预设时长;
    第一门限值;
    其中,所述第一门限值用于:当测量到BF发生次数达到所述第一门限值,或者,当测量到在所述预设时长内BF发生次数达到所述第一门限值,确定发生SL波束失败。
  5. 如权利要求1所述的方法,其特征在于,所述第二配置包括以下至少一种:
    至少一个候选恢复波束的标识;
    至少一个候选恢复波束对应承载的参考信号;
    用于波束恢复的第二门限值。
  6. 如权利要求1所述的方法,其特征在于,不同SL-BFD-RS对应不同的第一配置;和/或,
    不同SL-BFD-RS对应不同的第二配置。
  7. 如权利要求1所述的方法,其特征在于,所述确定配置信息,包括以下至少一种:
    接收网络设备发送的所述配置信息;
    接收第二终端设备发送的所述配置信息。
  8. 如权利要求4所述的方法,其特征在于,所述测量所述SL-BFD-RS并确定BF发生次数是否满足预设条件,包括:
    在测量所述SL-BFD-RS的过程中,检测是否发生BF;
    对BF发生次数进行计数;
    响应于BF发生次数达到所述第一门限值,确定满足所述预设条件。
  9. 如权利要求4所述的方法,其特征在于,所述测量所述SL-BFD-RS并确定BF发生次数是否满足预设条件,包括:
    在测量所述SL-BFD-RS的过程中,响应于初次发生BF,启动定时器,所述定时器的定时时长为所述预设时长;
    对BF发生次数进行计数;
    响应于定时器启动期间,BF发生次数达到所述第一门限值,确定满足所述预设条件。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    响应于所述定时器超时,将所述BF发生次数的计数值置零。
  11. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    获取测量结果,所述测量结果为对所述候选恢复波束对应承载的参考信号进行测量获得的测量结果。
  12. 如权利要求11所述的方法,其特征在于,所述触发SL波束失败恢复流程,包括:
    向第二终端设备发送SL-BFR指示;
    所述SL-BFR指示包括以下至少一种:
    BF发生次数满足预设条件的SL-BFD-RS的标识;
    存在测量结果的候选恢复波束的标识;
    测量结果高于第二门限值的候选恢复波束的标识;
    测量结果最好的候选恢复波束的标识;
    候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
  13. 如权利要求1或12所述的方法,其特征在于,所述触发SL波束失败恢复流程,包括:
    接收所述第二终端设备发送的波束激活指示,所述波束激活指示中包括激活的候选恢复波束的标识;
    基于所述波束激活指示确定激活的候选恢复波束;
    基于所述激活的候选恢复波束与第二终端设备通信。
  14. 如权利要求12所述的方法,其特征在于,所述测量结果包括以下至少一种:
    参考信号接收功率RSRP;
    参考信号接收质量SINR。
  15. 一种SL波束失败恢复方法,其特征在于,所述方法被第二终端设备执行,所述方法包括:
    确定配置信息;所述配置信息包括以下至少一种:
    至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,其中,所述第二终端设备与所述第一终端设备通过SL通信;
    至少一个SL波束对应承载的SL-BFD-RS;
    至少一个第一配置,所述第一配置用于进行SL-BFD;
    至少一个第二配置,所述第二配置用于进行SL-BFR。
  16. 如权利要求15所述的方法,其特征在于,所述确定配置信息,包括:
    接收网络设备发送的配置信息;或者
    接收网络设备发送的配置信息和所述配置信息适用的第一终端设备的标识。
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    向第一终端设备发送所述配置信息。
  18. 如权利要求17所述的方法,其特征在于,所述向第一终端设备发送所述配置信息,包括:
    响应于所述网络设备向所述第二终端设备发送了所述配置信息适用的第一终端设备的标识,向所述标识对应的第一终端设备发送所述配置信息。
  19. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    接收第一终端设备发送的SL-BFR指示;
    所述SL-BFR指示包括以下至少一种:
    BF发生次数满足预设条件的SL-BFD-RS的标识;
    存在测量结果的候选恢复波束的标识;
    测量结果高于第二门限值的候选恢复波束的标识;
    测量结果最好的候选恢复波束的标识;
    候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备自主确定要激活的候选恢复波束。
  21. 如权利要求20所述的方法,其特征在于,响应于所述第二终端设备处于连接态,和/或,所述第二终端设备基于网络设备的动态调度分配SL发送资源,所述方法还包括:
    向所述网络设备发送第二指示信息;所述第二指示信息包括以下至少一种:
    所述第一终端设备对应的标识;
    所述第二终端设备自主确定的激活的候选恢复波束的标识;
    所述激活的候选恢复波束对应的测量结果。
  22. 如权利要求19所述的方法,其特征在于,响应于所述第二终端设备处于连接态,和/或,所述第二终端设备基于网络设备的动态调度分配SL发送资源,所述方法还包括:
    向所述网络设备发送第三指示信息,所述第三指示信息包括以下至少一种:
    所述SL-BFR指示;
    所述SL-BFR指示对应的第一终端设备的标识。
  23. 如权利要求22所述的方法,其特征在于,所述方法还包括:
    获取所述网络设备发送的激活波束信息,所述激活波束信息中包括激活的候选恢复波束的标识。
  24. 如权利要求20或23所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送波束激活指示,所述波束激活指示中包括激活的候选恢复波束的标识;
    基于所述激活的候选恢复波束与第一终端设备通信。
  25. 一种SL波束失败恢复方法,其特征在于,所述方法被网络设备执行,所述方法包括:
    向第一终端设备发送配置信息,所述配置信息包括以下至少一种:
    至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
    至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
    至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
    至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR。
  26. 如权利要求25所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送配置信息和/或所述配置信息适用的第一终端设备的标识。
  27. 如权利要求25或26所述的方法,其特征在于,所述方法还包括:
    接收所述第二终端设备发送的第二指示信息;所述第二指示信息包括以下至少一种:
    所述第一终端设备对应的标识;
    所述第二终端设备自主确定的激活的候选恢复波束的标识;
    所述激活的候选恢复波束对应的测量结果。
  28. 如权利要求25或26所述的方法,其特征在于,所述方法还包括:
    接收所述第二终端设备发送的第三指示信息,所述第三指示信息包括以下至少一种:
    所述SL-BFR指示;
    所述SL-BFR指示对应的第一终端设备的标识;
    其中,所述SL-BFR指示包括以下至少一种:
    BF发生次数满足预设条件的SL-BFD-RS的标识;
    存在测量结果的候选恢复波束的标识;
    测量结果高于第二门限值的候选恢复波束的标识;
    测量结果最好的候选恢复波束的标识;
    候选恢复波束对应的测量结果以及所述候选恢复波束的标识。
  29. 如权利要求28所述的方法,其特征在于,所述方法还包括:
    确定激活的候选恢复波束;
    向所述第二终端设备发送激活波束信息,所述激活波束信息中包括激活的候选恢复波束的标识。
  30. 一种通信装置,其特征在于,所述装置被配置于第一终端设备中,包括:
    处理模块,用于确定配置信息,所述配置信息包括以下至少一种:
    至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
    至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
    至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
    至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR;
    所述处理模块,还用于响应于基于所述配置信息确定SL波束失败,触发SL波束失败恢复流程。
  31. 一种通信装置,其特征在于,所述装置被配置于第二终端设备中,包括:
    处理模块,用于确定配置信息;所述配置信息包括以下至少一种:
    至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息;
    至少一个SL波束对应承载的SL-BFD-RS;
    至少一个第一配置,所述第一配置用于进行SL-BFD;
    至少一个第二配置,所述第二配置用于进行SL-BFR。
  32. 一种通信装置,其特征在于,所述装置被配置于网络设备中,包括:
    收发模块,用于向第一终端设备发送配置信息,所述配置信息包括以下至少一种:
    至少一个用于指示第一终端设备和第二终端设备之间的SL波束的第一指示信息,所述第二终端设备与所述第一终端设备通过SL通信;
    至少一个SL波束对应承载的侧行链路波束失败检测参考信号SL-BFD-RS;
    至少一个第一配置,所述第一配置用于进行侧行链路波束失败检测SL-BFD;
    至少一个第二配置,所述第二配置用于进行侧行链路波束失败恢复SL-BFR。
  33. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至14中任一项所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求15至24所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求25至29所述的方法。
  34. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至14中任一项所述的方法被实现,或当所述指令被执行时,使如权利要求15至24所述的方法被实现,或当所述指令被执行时,使如权利要求25至29所述的方法被实现。
PCT/CN2022/110388 2022-08-04 2022-08-04 一种侧行链路sl波束失败恢复方法/装置/设备及存储介质 WO2024026800A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/110388 WO2024026800A1 (zh) 2022-08-04 2022-08-04 一种侧行链路sl波束失败恢复方法/装置/设备及存储介质
CN202280002563.7A CN115516902A (zh) 2022-08-04 2022-08-04 一种侧行链路sl波束失败恢复方法/装置/设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110388 WO2024026800A1 (zh) 2022-08-04 2022-08-04 一种侧行链路sl波束失败恢复方法/装置/设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024026800A1 true WO2024026800A1 (zh) 2024-02-08

Family

ID=84513747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110388 WO2024026800A1 (zh) 2022-08-04 2022-08-04 一种侧行链路sl波束失败恢复方法/装置/设备及存储介质

Country Status (2)

Country Link
CN (1) CN115516902A (zh)
WO (1) WO2024026800A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210100059A1 (en) * 2019-09-30 2021-04-01 Comcast Cable Communications, Llc Beam Management and Failure Recovery for Communications
CN113348633A (zh) * 2019-02-01 2021-09-03 联想(新加坡)私人有限公司 侧链故障检测和恢复
US20220007448A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Directional sidelink (sl) beam failure detection
US20220022068A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Techniques for bi-directional sidelink beam failure detection
CN114342443A (zh) * 2019-09-04 2022-04-12 索尼集团公司 通信控制装置、通信控制方法和通信控制程序

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348633A (zh) * 2019-02-01 2021-09-03 联想(新加坡)私人有限公司 侧链故障检测和恢复
CN114342443A (zh) * 2019-09-04 2022-04-12 索尼集团公司 通信控制装置、通信控制方法和通信控制程序
US20210100059A1 (en) * 2019-09-30 2021-04-01 Comcast Cable Communications, Llc Beam Management and Failure Recovery for Communications
US20220007448A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Directional sidelink (sl) beam failure detection
US20220022068A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Techniques for bi-directional sidelink beam failure detection

Also Published As

Publication number Publication date
CN115516902A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023216080A1 (zh) 一种用于触发位置信息上报的方法及其装置
WO2023133736A1 (zh) 一种确定先听后说失败的方法及装置
WO2024031272A1 (zh) 一种上报方法、装置、设备及存储介质
WO2024044991A1 (zh) 测量上报方法和装置
WO2023201754A1 (zh) 一种终端设备的移动性管理方法及装置
WO2024000180A1 (zh) 一种指示方法、装置、设备及存储介质
WO2023201758A1 (zh) 信息上报方法及装置
WO2023201756A1 (zh) 一种用于基于条件的移动性的信息的处理方法及装置
WO2024026800A1 (zh) 一种侧行链路sl波束失败恢复方法/装置/设备及存储介质
WO2024026801A1 (zh) 一种侧行链路sl波束配置方法、装置、设备及存储介质
WO2024060154A1 (zh) 一种上报方法/装置/设备及存储介质
WO2024016245A1 (zh) 一种信息指示方法、装置、设备及存储介质
WO2023245452A1 (zh) 一种***信息配置方法/装置/设备及存储介质
WO2024031373A1 (zh) 一种确定触发连续lbt失败的方法及装置
WO2023201755A1 (zh) 一种移动性管理的配置方法及装置
WO2024060143A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023240418A1 (zh) 一种多小区调度的调度信息的检测方法及其装置
WO2024031721A1 (zh) 一种调度信令的检测方法及其装置
WO2023206572A1 (zh) 小区状态配置方法及其装置
WO2023168576A1 (zh) 确定探测参考信号srs资源配置信息的方法及其装置
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2023133887A9 (zh) 测量方法及装置
WO2024000133A1 (zh) 一种测量配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953609

Country of ref document: EP

Kind code of ref document: A1