WO2024024320A1 - Composition and cured product thereof - Google Patents

Composition and cured product thereof Download PDF

Info

Publication number
WO2024024320A1
WO2024024320A1 PCT/JP2023/022343 JP2023022343W WO2024024320A1 WO 2024024320 A1 WO2024024320 A1 WO 2024024320A1 JP 2023022343 W JP2023022343 W JP 2023022343W WO 2024024320 A1 WO2024024320 A1 WO 2024024320A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
group
polymer
amino group
parts
Prior art date
Application number
PCT/JP2023/022343
Other languages
French (fr)
Japanese (ja)
Inventor
涼平 前田
順啓 前田
潤一 中村
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2024024320A1 publication Critical patent/WO2024024320A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen

Definitions

  • the present invention relates to a composition and a cured product thereof. More specifically, the present invention relates to a composition containing an amino group-containing polysiloxane and a specific polymer, and a cured product obtained by curing the composition.
  • the insulating film is required to have heat resistance during the manufacturing process and use of electrical and electronic devices. Furthermore, in flexible devices such as flexible displays, the demand for which is rapidly increasing, materials are required for insulating films that have high strength against deformation such as tension and bending, for example, high elongation. Conventionally, polyimide-based materials and the like have been proposed as insulating film materials for such electric/electronic devices (for example, Patent Documents 1 and 2).
  • Patent Document 1 as a laminated polyimide film that covers a conductor in a multilayer insulated wire, only a laminated polyimide film having a dielectric constant of about 3.5 at a measurement frequency of 1 MHz, and 3.45 in the lowest example, is shown in the examples. Not yet.
  • Patent Document 2 the physical properties of a cured coating film made of a thermosetting polyimide resin composition using a specific polyimide resin are shown in Table 3, etc., and the glass transition temperature (Tg) is shown. It's hard to say that it's sexual enough.
  • Tg glass transition temperature
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a composition capable of forming a cured product having a low dielectric constant, excellent heat resistance, and elongation.
  • a composition comprising an amino group-containing polysiloxane (A) and a polymer (B) having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester.
  • a composition according to [1] above further comprising inorganic particles.
  • a cured product obtained by curing the composition described in [1] or [2] above.
  • the cured product according to [3] above, wherein the cured product is an insulating film.
  • the composition of the present invention contains an amino group-containing polysiloxane (A) and a polymer (B) having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester, the composition has a low dielectric constant, A cured product with excellent heat resistance and elongation can be formed. Therefore, the composition of the present invention can be preferably used for insulating film materials in various technical fields, including electrical and electronic devices that use high frequencies.
  • (meth)acrylate means “acrylate” or “methacrylate”
  • (meth)acrylic means “acrylic” or “methacrylic”
  • (meth)acryloyl ” means “acryloyl” or “methacryloyl”.
  • (Meth)acrylate is also sometimes referred to as (meth)acrylic acid ester.
  • composition of the present disclosure is characterized by containing an amino group-containing polysiloxane (A) and a polymer (B) having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester.
  • A amino group-containing polysiloxane
  • B polymer having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester.
  • the amino group-containing polysiloxane (A) in the composition of the present disclosure means that the main chain has a polysiloxane skeleton, and at least one of the silicon atoms constituting the polysiloxane skeleton contains an amino group. It means a polymer formed by bonding groups.
  • the polysiloxane skeleton may have a linear structure, such as a branched structure, or a cyclic structure. Among these, a chain structure is preferred, and a linear structure is more preferred.
  • the amino group-containing group is not particularly limited as long as it is an organic group containing an amino group. In the amino group-containing group, it is preferable that the amino group is bonded to the silicon atom constituting the polysiloxane skeleton via a divalent organic group.
  • the amino group-containing group is preferably a hydrocarbon group containing an amino group as a substituent.
  • the hydrocarbon group is preferably an alkyl group, an aryl group, or an aralkyl group, and more preferably an alkyl group.
  • the amino group in the amino group-containing group may be any of a primary amino group, a secondary amino group, and a tertiary amino group.
  • the amino group-containing group includes one or more of these. Among the amino groups, primary amino groups and secondary amino groups are preferred, and primary amino groups are more preferred.
  • amino group-containing group examples include an amino group-containing group represented by the following general formula (1), an amino group-containing group represented by the following general formula (2), and an amino group-containing group represented by the following general formula (3). It is preferable that it is at least one selected from the group consisting of amino group-containing groups.
  • -R a NH 2 (1) In general formula (1), R a is a divalent hydrocarbon group or a group represented by -ROR-, and the two R's are the same or different and are divalent hydrocarbon groups.
  • -R a NHR b (2) In general formula (2), R a is a divalent hydrocarbon group or a group represented by -ROR-, and the two R's are the same or different and are divalent hydrocarbon groups.
  • R b is a monovalent hydrocarbon group or a group represented by -ROR', R is a divalent hydrocarbon group, and R' is a monovalent hydrocarbon group. represent.) -R a NHR c NH 2 (3) (In general formula (3), R a and R c are the same or different and are a divalent hydrocarbon group or a group represented by -ROR-, and the two R's are the same or different represents a divalent hydrocarbon group.)
  • the divalent hydrocarbon groups represented by R a , R c , and R in the above general formulas (1) to (3) include alkylene groups, arylene groups, aralkylene groups, and the like. Among these, an alkylene group is preferred, an alkylene group having 1 to 18 carbon atoms is more preferred, an alkylene group having 1 to 8 carbon atoms is even more preferred, and an alkylene group having 1 to 6 carbon atoms is even more preferred.
  • Examples of the monovalent hydrocarbon group represented by R b and R' in the above general formula (2) include an alkyl group, an aryl group, an aralkyl group, and the like. Among these, an alkyl group is preferred, an alkyl group having 1 to 18 carbon atoms is preferred, an alkyl group having 1 to 8 carbon atoms is more preferred, and an alkyl group having 1 to 6 carbon atoms is even more preferred.
  • the divalent hydrocarbon groups represented by R a , R c , and R and the monovalent hydrocarbon groups represented by R b and R' each have a substituent.
  • the substituent is not particularly limited, but preferably includes, for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom; hydrophilic groups such as hydroxyl group and mercapto group.
  • the bonding position of the amino group-containing group in the amino group-containing polysiloxane (A) is not particularly limited.
  • the amino group-containing group may be bonded to a terminal silicon atom of the polysiloxane skeleton, may be bonded to a silicon atom other than the terminal, or may be bonded to a terminal silicon atom or a silicon atom other than the terminal. You can leave it there.
  • One preferred form is form (1) in which an amino group-containing group is bonded to at least one terminal silicon atom of the polysiloxane skeleton.
  • a particularly preferred form is one in which an amino group-containing group is bonded to each silicon atom at the two ends.
  • Another preferred form is a form (2) in which an amino group-containing group is bonded to some or all of the silicon atoms other than the ends of the polysiloxane skeleton, so-called a form in which an amino group-containing group is bonded as a side chain in the polysiloxane skeleton.
  • An example is a combined form.
  • an amino group-containing group is bonded to at least one terminal silicon atom of the polysiloxane skeleton, and the silicon atom other than the terminal of the polysiloxane skeleton is A form in which an amino group-containing group is bonded to part or all of is also included.
  • the content of amino groups in the amino group-containing polysiloxane (A) is not particularly limited, but from the viewpoint of mechanical strength of the cured product obtained from the composition of the present disclosure, the amino group equivalent is 300 to 20,000 g/mol. It is preferable that More preferably, it is 500 to 10,000 g/mol, and still more preferably 1,000 to 5,000 g/mol.
  • a value obtained by a measuring method based on the method described in JIS K 2501:2003 JIS K 7237 can be adopted.
  • the amino group equivalent can be specifically determined by the method described below, and it is preferable to use the value obtained by the method described below.
  • the amino group equivalent can be determined by calculating the number of moles of amino groups per unit mass from the total amine value and taking the reciprocal.
  • the weight average molecular weight of the amino group-containing polysiloxane (A) is not particularly limited, but from the viewpoint of solubility in solvents, it is preferably from 100 to 1,000,000, more preferably from 500 to 500,000, even more preferably is 1000 to 100000.
  • the above weight average molecular weight can be measured by GPC (gel permeation chromatography) using a high-speed GPC device HLC-8320GPC (manufactured by Tosoh Corporation) using polystyrene as a standard substance and a 1mM triethylamine-tetrahydrofuran solution as an eluent. It can be measured by GPC (gel permeation chromatography) using TSKgel SuperHZ4000 and TSKgel SuperHZ2000 (manufactured by Tosoh Corporation) as columns.
  • atoms or functional groups other than the oxygen atom and the amino group-containing group constituting the siloxane bond are bonded to some or all of the silicon atoms constituting the polysiloxane skeleton. It is preferable.
  • functional groups are preferred. Examples of the above atoms include hydrogen atoms and halogen atoms, with halogen atoms being preferred.
  • the functional group include a hydroxyl group and an organic group. Examples of the organic group include a hydrocarbon group and an alkoxy group, which may have a substituent.
  • the hydrocarbon group is preferably an alkyl group, an aryl group, or an aralkyl group, more preferably an alkyl group or an aryl group, even more preferably a methyl group or a phenyl group, and particularly preferably a methyl group.
  • the organic group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • the above atoms or functional groups are bonded to all silicon atoms among the silicon atoms constituting the polysiloxane skeleton.
  • each silicon atom other than the silicon atom to which the amino group-containing group is bonded has a total of 2 or 3 atoms or functional groups other than the above amino group-containing group.
  • they are bonded.
  • the atoms or functional groups bonded to the silicon atoms constituting the polysiloxane skeleton may be the same or different.
  • a particularly preferred form of the polysiloxane skeleton is a structure in which two methyl groups are bonded to each silicon atom constituting the polysiloxane skeleton (however, two methyl groups are bonded to the terminal silicon atom). structure in which two or three atoms are bonded), and has a dimethylpolysiloxane skeleton.
  • a particularly preferred form of the above amino group-containing polysiloxane (A) is one having the above dimethylpolysiloxane skeleton, with amino group-containing groups bonded to both ends of the skeleton.
  • the method for producing the amino group-containing polysiloxane (A) is not particularly limited, and can be produced by conventionally known methods.
  • the amino group-containing polysiloxane (A) can be obtained by hydrolyzing and condensing an alkoxysilane compound having an amino group-containing group in a hydrous alcohol in the presence of an acid catalyst.
  • an acid catalyst it is possible to hydrolyze and condense only one or more alkoxysilane compounds having an amino group-containing group, one or more alkoxysilane compounds having an amino group-containing group and an amino group-containing group may be used. It is preferable to co-hydrolyze and condense one or more alkoxysilane compounds other than the alkoxysilane compound having (hereinafter also referred to as other alkoxysilane compounds).
  • alkoxysilane compounds having an amino group-containing group examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N- Trialkoxysilane compounds such as phenyl-3-aminopropyltrimethoxysilane, (N-phenylamino)methyltrimethoxysilane, diethylaminomethyltriethoxysilane; 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, Examples include dialkoxysilane compounds such as N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane and N-(2-aminoethyl)-3-aminopropylmethyldiethoxysilane. Among them, dialkoxysilane compounds are preferred.
  • alkoxysilane compounds mentioned above include, but are not particularly limited to, tetraalkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane; methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, methyltriethoxysilane, and phenyltrimethoxysilane; Trialkoxysilane compounds such as methoxysilane, benzyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane; dimethyldimethoxysilane, methylphenyldimethoxysilane, cyclohexylmethyldimethoxysilane, vinylmethyldimethoxysilane, 3-glycidoxypropylmethyl Examples include dialkoxysilane compounds such as dimethoxysilane, (3-mercaptopropyl)methyldimethoxys
  • amino group-containing polysiloxane (A) used in the composition of the present disclosure commercially available products can be used.
  • commercially available products known as amino-modified silicones are preferred.
  • Preferred commercial products include, for example, KF-8008, KF-8010, KF-8012, X-22-161A, X-22-161B, X-22-1660B-3, X-22-9409, KF-864, KF-865, KF-868, KF-859, KF-860, KF-880, KF-393, KF-8004, KF-8002, KF-8005, KF-867, KF-8021, KF-869, KF- 861 (manufactured by Shin-Etsu Chemical Co., Ltd.), DOWSIL BY 16-853U, DOWSIL BY 16-871, DOWSIL BY 16-879B, DOWSIL BY 16-892 (manufactured by Dow-Toray Industries, Inc.), and the like.
  • Polymer (B) having structural unit (U) derived from unsaturated aliphatic dicarboxylic acid monoester a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester is simply referred to as a "structural unit (U)", and has a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester.
  • Polymer (B) may also be simply referred to as “polymer (B).”
  • the polymer (B) has a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester as a structural unit.
  • the unsaturated aliphatic dicarboxylic acid is not particularly limited, and examples thereof include maleic acid, fumaric acid, citraconic acid, mesaconic acid, 2-pentenioic acid, methylenesuccinic acid, 2,4-hexadienioic acid, acetylene dicarboxylic acid, etc.
  • Preferred examples include unsaturated aliphatic dicarboxylic acids having 4 to 6 carbon atoms. Among them, maleic acid is more preferred. One or more of these can be used.
  • the unsaturated aliphatic dicarboxylic acid monoester is not particularly limited, and examples thereof include monoalkyl esters and monoaryl esters of the unsaturated aliphatic dicarboxylic acid. These can be obtained, for example, by reacting an unsaturated aliphatic dicarboxylic acid or an unsaturated aliphatic dicarboxylic acid anhydride with a compound containing a hydroxy group such as alcohol or phenol. Among these, monoalkyl esters are preferred.
  • the alkyl group in the monoalkyl ester is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, and preferably an alkyl group having 1 to 8 carbon atoms. is more preferred, and an alkyl group having 1 to 6 carbon atoms is particularly preferred.
  • the polymer (B) is preferably a polymer having a plurality of the above structural units (U) as structural units, and is also preferably a polymer having the above structural units (U) as repeating units. It is more preferable that the polymer (B) is a polymer having a plurality of the above structural units (U) as repeating units.
  • the polymer (B) may be a polymer having only the structural unit (U) as a structural unit, but preferably further has other structural units.
  • Other structural units are not particularly limited, but are preferably structural units derived from polymerizable monomers having ethylenically unsaturated double bonds, and among them, structural units derived from unsaturated aliphatic dicarboxylic acids, unsaturated More preferred are structural units derived from saturated aliphatic dicarboxylic acid anhydrides, structural units derived from styrene monomers, and structural units derived from (meth)acrylic monomers.
  • the polymer (B) preferably has one or more of these as other structural units.
  • the unsaturated aliphatic dicarboxylic acids are as described above, and are preferably unsaturated aliphatic dicarboxylic acids having 4 to 6 carbon atoms, with maleic acid being more preferred, and containing one or more of these. It is preferable.
  • the unsaturated aliphatic dicarboxylic acid anhydride the above-mentioned preferred unsaturated aliphatic dicarboxylic acid anhydrides are preferably mentioned, and it is preferable to include one or more of these.
  • styrenic monomer is not particularly limited, but examples include styrene, ⁇ -methylstyrene, p-methylstyrene, tert-methylstyrene, chlorostyrene, vinyltoluene, 2-styrylethyltrimethoxysilane, and the like. , it is preferable to include one or more of these.
  • Styrenic monomers have functional groups such as alkyl groups such as methyl groups and tert-butyl groups, nitro groups, nitrile groups, alkoxy groups, acyl groups, sulfone groups, hydroxy groups, and halogen atoms on the benzene ring. It may be.
  • a polyfunctional styrene monomer can also be used as the styrene monomer.
  • Preferred examples of the polyfunctional styrenic monomer include divinylbenzene. Styrene is particularly preferred as the styrenic monomer.
  • the above-mentioned (meth)acrylic monomer is not particularly limited, and includes conventionally known (meth)acrylic acid, (meth)acrylic acid ester, (meth)acrylamide, (meth)acrylonitrile, etc. It is preferable to include one species or two or more species.
  • As the (meth)acrylic ester a polyfunctional (meth)acrylate can also be used.
  • As the (meth)acrylic monomer (meth)acrylic acid is preferable.
  • the polymer (B) preferably has a structural unit derived from a styrene monomer as the other structural unit, and particularly preferably has a structural unit derived from styrene.
  • a structural unit derived from a styrene monomer curing shrinkage during curing tends to be suppressed.
  • the polymer (B) preferably has as a structural unit a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester and another structural unit, and the structural unit It is more preferable that the polymer has (U) and a structural unit derived from a (meth)acrylic monomer and/or a structural unit derived from a styrene monomer.
  • a polymer having a structural unit derived from styrene is more preferable, and a polymer having the structural unit (U) and a structural unit derived from styrene is particularly preferable.
  • the content of the structural unit (U) in the polymer (B) is preferably 20 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of all structural units constituting the polymer.
  • the lower limit is more preferably 25 parts by mass or more, and even more preferably 30 parts by mass or more.
  • the upper limit is more preferably 80 parts by mass or less, and even more preferably 70 parts by mass or less. That is, the content of the structural unit (U) is preferably 20 to 100 parts by mass, 25 to 80 parts by mass, and 30 to 70 parts by mass, based on 100 parts by mass of all structural units of the polymer (B). Part by mass.
  • the ratio of the structural unit (U) and the other structural unit in the polymer (B) is not particularly limited, but the ratio of the structural unit (U) to 100 parts by mass of the other structural unit is 20 parts by mass or more. , preferably 500 parts by mass or less.
  • the lower limit is more preferably 25 parts by mass or more, and even more preferably 30 parts by mass or more.
  • the upper limit is more preferably 400 parts by mass or less, and even more preferably 300 parts by mass or less. That is, the ratio of the structural unit (U) to 100 parts by mass of the above other structural units is preferably 20 to 500 parts by mass, more preferably 25 to 400 parts by mass, and even more preferably 30 to 300 parts by mass. be.
  • the content of the structural unit derived from the styrene monomer in the polymer (B) is preferably 0 to 80 parts by mass, and preferably 20 to 80 parts by mass, based on 100 parts by mass of all structural units constituting the polymer. It is more preferably 75 parts by mass, and even more preferably 30 to 70 parts by mass.
  • the content of the structural unit derived from the (meth)acrylic monomer in the polymer (B) is preferably 0 to 80 parts by mass based on 100 parts by mass of all structural units constituting the polymer. , more preferably 20 to 75 parts by weight, and still more preferably 30 to 70 parts by weight.
  • the content of the structural unit derived from the unsaturated aliphatic dicarboxylic acid in the polymer (B) is preferably 0 to 80 parts by mass, and 20 parts by mass, based on 100 parts by mass of all structural units constituting the polymer.
  • the amount is more preferably 75 parts by weight, and even more preferably 30 to 70 parts by weight.
  • the content of the structural unit derived from the unsaturated aliphatic dicarboxylic acid anhydride in the polymer (B) is preferably 0 to 90 parts by mass based on 100 parts by mass of all structural units constituting the polymer. , more preferably 20 to 85 parts by weight, and still more preferably 30 to 80 parts by weight.
  • the above polymer (B) includes the above structural unit (U), a structural unit derived from an unsaturated aliphatic dicarboxylic acid, a structural unit derived from an unsaturated aliphatic dicarboxylic acid anhydride, and a structure derived from a styrene monomer. It may further have another structural unit other than the unit and the structural unit derived from the (meth)acrylic monomer.
  • the content thereof is preferably 10 parts by mass or less, and 7 parts by mass, based on 100 parts by mass of all structural units constituting the polymer. It is more preferably at most 5 parts by mass, and even more preferably at most 5 parts by mass.
  • the structural unit (U) derived from the unsaturated aliphatic dicarboxylic acid monoester has a carboxy group (COOH) and/or a carboxylate salt (COOM), and preferably has a carboxy group.
  • the unesterified carboxy group of the unsaturated aliphatic dicarboxylic acid in the structural unit (U) contained in the polymer (B) is a carboxy group or a salt thereof, but preferably a carboxy It is the basis.
  • the polymer (B) preferably contains a structural unit (U) having a carboxyl group as the structural unit (U).
  • the proportion of the structural unit (U) having a carboxyl group in the polymer (B) is not particularly limited, but is preferably 50 moles or more based on 100 moles of the total amount of structural units (U) contained in the polymer (B). More preferably 80 moles or more, particularly preferably 100 moles.
  • the carboxy group equivalent of the polymer (B) is not particularly limited, but is preferably 100 to 500 g/mol.
  • the lower limit is more preferably 125 g/mol or more, and even more preferably 150 g/mol or more.
  • the upper limit is more preferably 450 g/mol or less, and even more preferably 400 g/mol or less. That is, the carboxy group equivalent of the polymer (B) is more preferably 125 to 450 g/mol, and still more preferably 150 to 400 g/mol.
  • a value obtained by a measuring method based on the method described in JIS K 2501:2003 can be adopted.
  • the carboxyl group equivalent can be determined by the method described below, and it is preferable to use the value obtained by the method described below.
  • Method for measuring carboxy group equivalent Accurately weigh the amount of sample whose acid value is to be measured, dissolve it in a titration solvent, immerse a glass electrode and a reference electrode, and titrate with a 0.1 mol/L 2-propanolic potassium hydroxide standard solution. Plot the relationship between the readings of the potentiometer or pH meter and the corresponding titration of the 2-propanolic potassium hydroxide standard solution, and use the inflection point obtained on the titration curve as the end point. The total acid value is calculated by the amount of 0.1 mol/L 2-propanolic potassium hydroxide standard solution consumed.
  • the carboxy group equivalent can be determined by calculating the number of moles of carboxy groups per unit mass from the total acid value and taking the reciprocal.
  • the molecular weight of the polymer (B) is not particularly limited, but from the viewpoint of mechanical strength and solvent solubility, the weight average molecular weight is preferably 3,000 to 120,000. From the viewpoint of mechanical strength, the lower limit of the weight average molecular weight is more preferably 4,000 or more, even more preferably 5,000 or more, and the upper limit is more preferably 100,000 or less, even more preferably from the viewpoint of solvent solubility. is less than 80,000. That is, the weight average molecular weight of the polymer (B) is more preferably 4,000 to 100,000, and even more preferably 5,000 to 80,000.
  • the above weight average molecular weight can be measured by GPC (gel permeation chromatography) using a high-speed GPC device HLC-8320GPC (manufactured by Tosoh Corporation) using polystyrene as a standard substance and tetrahydrofuran as an eluent, and using TSKgel SuperHZ as a column. -N (manufactured by Tosoh Corporation), it can be measured by GPC (gel permeation chromatography) method.
  • the method for producing the polymer (B) is not particularly limited, and it can be produced by conventionally known polymerization methods such as solution polymerization, emulsion polymerization, and suspension polymerization. Among these, a method using solution polymerization is preferred.
  • a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid monoester is subjected to radical polymerization in a single or mixed solvent such as an ether such as dioxane, a hydrocarbon such as toluene, or a ketone such as acetone.
  • a polymer (B) having a structural unit (U) can be obtained by carrying out a radical polymerization reaction using an initiator.
  • the monomer composition may consist only of one or more unsaturated aliphatic dicarboxylic acid monoesters, or may further include unsaturated aliphatic dicarboxylic anhydrides, unsaturated aliphatic dicarboxylic acid anhydrides, and unsaturated aliphatic dicarboxylic acid monoesters. , (meth)acrylic monomers, styrene monomers, and other monomers that serve as raw materials for the other structural units mentioned above.
  • a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid anhydride is used instead of a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid monoester, and in the same manner as above, After obtaining a polymer (b) having a structural unit derived from an unsaturated aliphatic dicarboxylic acid anhydride by a radical polymerization reaction, in order to convert a part or all of the structural unit into a structural unit (U). Polymer (B) can be obtained by performing an esterification reaction.
  • the monomer composition in this case may consist only of one or more unsaturated aliphatic dicarboxylic acid anhydrides, and may further include (meth)acrylic monomers, styrene monomers, etc. It may also contain monomers that serve as raw materials for the other structural units mentioned above, such as bodies.
  • Examples of the esterification reaction include a method in which the polymer (b) is reacted with a compound containing a hydroxyl group such as alcohol or phenol.
  • a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid is used instead of a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid anhydride, and radical polymerization is carried out in the same manner as above.
  • a polymer (b) having a structural unit derived from an unsaturated aliphatic dicarboxylic acid is obtained, and then an esterification reaction is performed to convert some or all of the structural units into the structural unit (U).
  • Polymer (B) can also be obtained by performing the following steps.
  • a commercially available product may be used as it is, or a commercially available acid anhydride may be esterified.
  • commercially available products of the polymer (B) include Alastair 700 (manufactured by Arakawa Chemical Industries, Ltd.), XIRAN1440, XIRAN2625, XIRAN17352, XIRAN3840 (manufactured by POLYSCOPE), and one or more of these Two or more types can be preferably used.
  • polymers containing structural units derived from acid anhydrides of unsaturated aliphatic dicarboxylic acids include XIRAN1000, XIRAN2000, XIRAN2500, XIRAN3000, XIRAN3500, XIRAN3600, XIRAN4000, XIRAN6000, , EF30, EF40, Examples include EF41, EF61, EF80 (manufactured by POLYSCOPE), and monoesterification of one or more of these can be used as the polymer (B).
  • the blending ratio of the amino group-containing polysiloxane (A) and the polymer (B) is not particularly limited; (B) contains the amino group-containing polysiloxane (A) and the polymer (B) so that the proportion of the structural unit (U) in the molar ratio is 1/3 to 3/1. is preferred.
  • the molar ratio is more preferably 1/2 to 2/1, and even more preferably 1/1.
  • the ratio of the carboxy groups possessed by the polymer (B) to the amino groups possessed by the amino group-containing polysiloxane (A) is the same as the above molar ratio.
  • the total content of the amino group-containing polysiloxane (A) and the polymer (B) in the composition of the present disclosure is not particularly limited, but is 5 to 100 parts by mass based on 100 parts by mass of the composition of the present disclosure. It is preferably 10 to 80 parts by weight, still more preferably 15 to 70 parts by weight, and particularly preferably 20 to 60 parts by weight.
  • the content of the amino group-containing polysiloxane (A) in the composition of the present disclosure is not particularly limited, but is preferably from 1 to 70 parts by mass based on 100 parts by mass of the composition of the present disclosure.
  • the amount is more preferably 5 to 60 parts by weight, and even more preferably 10 to 50 parts by weight.
  • the composition of the present disclosure may contain a solvent in addition to the amino group-containing polysiloxane (A) and the polymer (B).
  • the above solvent is not particularly limited.
  • polar substances such as water, alcohols, glycols, glycol derivatives, ethers, esters, ketones, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, ⁇ -butyrolactone, etc.
  • Solvent examples include hydrocarbon solvents. One or more of these can be used. Among these, it is preferable to include a polar solvent and a hydrocarbon solvent.
  • glycols are preferred, and glycol derivatives are more preferred.
  • the alcohols mentioned above are not particularly limited, but methanol, ethanol, isopropyl alcohol, 1-propanol, 1-butanol, cyclohexanol and the like are preferred.
  • the above-mentioned glycols are not particularly limited, but ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, glycerin, etc. are preferable.
  • glycol derivatives are not particularly limited, but include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether , glycol monoalkyl ethers such as propylene glycol monobutyl ether; glycol monoacetates such as ethylene glycol monoacetate and propylene glycol monoacetate; ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate.
  • glycol monoalkyl ethers are preferred.
  • the hydrocarbon solvent is not particularly limited, but includes, for example, aliphatic hydrocarbons such as 1-hexane, 1-heptane, and cyclohexane; aromatic hydrocarbons such as toluene and xylene; and terpenes such as limonene. .
  • aromatic hydrocarbons and terpenes are preferred, and terpenes are more preferred.
  • the content of the solvent in the composition of the present disclosure is not particularly limited, but for example, the total content of the amino group-containing polysiloxane (A) and the polymer (B) in the composition of the present disclosure is 100% by mass.
  • the amount is preferably 25 to 400 parts by mass. More preferably, it is 50 parts by mass or more, and still more preferably 70 parts by mass or more.
  • the upper limit is more preferably 250 parts by mass or less, and even more preferably 150 parts by mass or less. That is, the content of the solvent is more preferably 50 to 250 parts by mass, and even more preferably The amount is 70 to 150 parts by mass.
  • the composition of the present disclosure contains a solvent within the above range, when the composition of the present disclosure is used as a coating composition, a film with excellent film thickness uniformity can be easily obtained.
  • Compositions of the present disclosure can contain inorganic particles.
  • the inorganic particles preferably have a low dielectric constant, and preferably have a dielectric constant of 4.0 or less at 10 GHz. More preferably it is 3.5 or less, still more preferably 3.0 or less.
  • the lower limit is not particularly limited, but is, for example, 0.5 or more. That is, the dielectric constant of the inorganic particles at 10 GHz is preferably 0.5 to 4.0, more preferably 0.5 to 3.5, and even more preferably 0.5 to 3.0.
  • the above dielectric constant can be determined as follows.
  • Method for measuring dielectric constant of inorganic particles Using a cell filled with inorganic particles as a measurement sample, the dielectric constant is measured at a frequency of 10 GHz using the cavity resonator perturbation method.
  • the atmosphere at the time of measurement was a temperature of 25° C. and a humidity of 50%.
  • the above measurement sample was obtained by cutting a polytetrafluoroethylene tube into a length of 10 cm, filling one side with 3 to 5 mm of sealing tape to create a tightly sealed cell, and filling the cell with inorganic particles.
  • the filling rate of the inorganic particles is calculated from the true density, weight, and volume of the inorganic particles, and the dielectric constant of the inorganic particles is determined using the measurement result using a cell not filled with inorganic particles as a blank.
  • the inorganic particles may be crystalline or amorphous in terms of X-ray diffraction, but are preferably amorphous.
  • the structure of the inorganic particles is not particularly limited, and may be a porous structure or a dense structure. It may also have a hollow shape.
  • the shape of the inorganic particles is not particularly limited and may be amorphous, granular, plate-like, columnar, acicular, etc., but granular is preferable, and among granules, spherical is preferable. Note that the above-mentioned granular shape means a uniform shape with an aspect ratio of 1.5 or less.
  • the inorganic particles preferably have organic groups introduced onto their surfaces. By introducing an organic group, the dispersibility of the inorganic particles in the composition of the present disclosure tends to be excellent.
  • organic groups include, but are not particularly limited to, hydrocarbon groups such as alkyl groups and aryl groups, (meth)acrylic groups, vinyl groups, and amino groups, among which aryl groups and (meth)acrylic groups are mentioned. preferable.
  • the method for introducing an organic group onto the surface of the inorganic particles is not particularly limited, but a method of reacting the silane coupling agent having the organic group, a compound having a phosphoric acid group, or alcohol onto the surface of the inorganic particles is preferred. Examples include a method of reacting with hydroxyl groups or alkoxy groups present on the surface of inorganic particles.
  • the average particle diameter of the inorganic particles is not particularly limited, but is preferably in the range of 1 nm to 1000 nm. When the average particle diameter of the inorganic particles is within the above range, a thin film with excellent homogeneity of physical properties such as dielectric constant tends to be easily obtained.
  • the average particle diameter of the inorganic particles is more preferably 100 nm or less, even more preferably 50 nm or less, and particularly preferably 20 nm or less. More preferably, the lower limit is 5 nm or more. That is, the average particle diameter of the inorganic particles is more preferably 5 to 100 nm, still more preferably 5 to 50 nm, particularly preferably 5 to 20 nm.
  • the above-mentioned average particle diameter is determined by observing the above-mentioned inorganic particles with a SEM (magnification of 1000 to 100,000 times, preferably 10,000 times) and analyzing the obtained image to determine the size of about 10 to 1000 individual particles ( It can be determined by determining the particle diameter (diameter equivalent to circular area) of the primary particles) and evaluating the 50% particle diameter in the number-based particle size distribution.
  • SEM magnification of 1000 to 100,000 times, preferably 10,000 times
  • analyzing the obtained image to determine the size of about 10 to 1000 individual particles ( It can be determined by determining the particle diameter (diameter equivalent to circular area) of the primary particles) and evaluating the 50% particle diameter in the number-based particle size distribution.
  • known image analysis software for example, Mac-View manufactured by Mountech
  • the material constituting the inorganic particles examples include inorganic oxides, inorganic nitrides, inorganic carbides, inorganic sulfides, and inorganic hydroxides.
  • the above-mentioned inorganic particles may be composed of one kind of these materials, or may contain two or more kinds.
  • the material constituting the inorganic particles is preferably silica, boron nitride, alumina, titania, or zirconia, more preferably silica or alumina, and particularly preferably silica.
  • the silica may be crystalline silica or amorphous silica, but amorphous silica is preferred.
  • the content of the inorganic particles is not particularly limited, but for example, from the viewpoint of easily obtaining a cured product with improved mechanical strength, the content of the inorganic particles is determined by the amino groups in the composition of the present disclosure.
  • the content is preferably 5 to 100 parts by weight based on 100 parts by weight of the total content of the polysiloxane (A) and the polymer (B). More preferably it is 15 parts by mass or more, and even more preferably 25 parts by mass or more.
  • the upper limit is more preferably 60 parts by mass or less, and even more preferably 50 parts by mass or less. That is, the content of the inorganic particles is more preferably 15 to 60 parts by mass, and even more preferably is 25 to 50 parts by mass.
  • compositions of the present disclosure may also contain antioxidants.
  • the antioxidant is not particularly limited, and conventionally known antioxidants can be used, such as phenolic antioxidants, thioether antioxidants, phosphite antioxidants, and the like. In order to more effectively exhibit antioxidant performance, it is preferable to use a phenolic antioxidant and a thioether antioxidant in combination.
  • the content of the antioxidant is equal to the total content of the amino group-containing polysiloxane (A) and the polymer (B) in the composition of the present disclosure.
  • the amount is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 2 parts by weight.
  • the composition of the present disclosure may contain a thickener to improve processability and stability.
  • a thickener high viscosity polymers or clays that are soluble or dispersed in organic solvents can be used, such as polyester thickeners, polyamide thickeners, polyimide thickeners, polyamic acids (polyamic acid Examples include acid)-based thickeners, montmorillonite clay-based thickeners, and the like.
  • polyimide thickeners and polyamic acid thickeners are preferred from the viewpoint of maintaining or reducing the heat resistance and dielectric constant of the cured product after heating.
  • the content of the thickener is equal to the total content of the amino group-containing polysiloxane (A) and the polymer (B) in the composition of the present disclosure.
  • the amount is preferably 1 to 40 parts by weight, more preferably 2.5 to 35 parts by weight, and still more preferably 5 to 30 parts by weight.
  • composition of the present disclosure may contain additives such as a curing accelerator within a range that does not impair the effects of the present invention.
  • the method for preparing the composition of the present disclosure is not particularly limited, and the composition can be prepared by mixing each component using a conventionally known method.
  • the composition of the present disclosure can be obtained by mixing the amino group-containing polysiloxane (A) and the polymer (B) in a predetermined ratio, but when the amino group-containing polysiloxane is liquid; may be used for mixing as is, or may be used for mixing in the form of a solution dissolved in the above-mentioned preferred solvent.
  • the amino group-containing polysiloxane is a solid, it is preferably mixed in the form of a solution dissolved in the above-mentioned preferred solvent.
  • the above-mentioned mixing method is not particularly limited, and conventionally known mixing methods such as stirring may be employed.
  • the inorganic particles are mixed in the mixture of the above amino group-containing polysiloxane (A) and the above polymer (B) in the form of a dispersion dispersed in a solvent. It is preferable to do so.
  • the solvent for dispersing the inorganic particles it is preferable to use the above-mentioned preferred solvents.
  • the dispersion method is not particularly limited, and for example, conventionally known methods such as a melt kneading method, a method using a mixer, a ball mill, a jet mill, a disper, a sand mill, a roll mill, a pot mill, a paint shaker, etc. Examples include mixing and dispersing methods. A dispersant or the like may be added as appropriate.
  • the composition of the present disclosure contains additives such as an antioxidant and a curing accelerator, these additives are added directly or as a solution dissolved in a solvent to the amino group-containing polysiloxane (A) and the polymer. What is necessary is just to mix it at the time of mixing with union (B), or after mixing it.
  • compositions of the present disclosure can be prepared by the methods described above.
  • a defoaming treatment By performing the defoaming treatment, it is possible to suppress the incorporation of air bubbles into a cured product obtained by curing the composition of the present disclosure.
  • the composition of the present disclosure is preferably used as a curable composition.
  • the cured product of the present disclosure is a cured product obtained by curing the composition of the present disclosure described above.
  • the method for producing a cured product of the present disclosure is not particularly limited as long as it is a method of producing a cured product by curing the composition of the present disclosure, but it preferably includes the following steps 1 and 2 in this order. .
  • Step 1 Coating step of applying the composition of the present disclosure to a substrate
  • Step 2 Curing step of curing the applied composition
  • the method of coating the base material in step 1 is not particularly limited.
  • methods such as a spin coating method, a slit coating method, a spray method, a roll coating method, an inkjet method, a screen printing method, a gravure printing method, a flexo printing method, a dipping method, etc. can be used.
  • the thickness of the coating film is not particularly limited, but is preferably 10 to 250 ⁇ m. More preferably, it is 20 ⁇ m or more, and still more preferably 30 ⁇ m or more.
  • the upper limit is more preferably 200 ⁇ m or less, still more preferably 150 ⁇ m or less. That is, the thickness of the coating film is more preferably 20 to 200 ⁇ m, and even more preferably 30 to 150 ⁇ m. It is preferable to adjust the thickness of the coating film so that it becomes a preferable film thickness as a cured product, which will be described later.
  • Examples of the base material include metal base materials, silicon/inorganic base materials, and composite materials.
  • Examples of the metal base material include base materials whose surface is mainly composed of metal such as aluminum, copper, gold, silver, titanium, and molybdenum.
  • Examples of the above-mentioned silicon/inorganic base material include base materials whose main components are silicon-related materials such as silicon, silicon nitride, and silicon oxide, and inorganic materials such as glass and quartz.
  • Examples of the above-mentioned composite base material include a base material made of resin, silicon, silicon nitride, silicon oxide, glass, quartz, etc., and a thin metal film or the like is provided on a part or all of the surface of the base material.
  • the shape of the base material is not particularly limited.
  • a plate shape, a linear shape, etc. are preferable.
  • base materials silicon/inorganic base materials and metal base materials are preferred, and metal base materials are more preferred, from the viewpoint that a cured product with excellent adhesion to the cured product of the present disclosure tends to be obtained.
  • the curing method in step 2 is preferably a heating method.
  • the heating temperature can be appropriately selected depending on the type of substrate, heating time, etc., but is usually preferably in the range of 100 to 400°C, more preferably in the range of 150 to 350°C.
  • the heating time can be appropriately selected depending on the type of substrate, heating temperature, etc., but is usually preferably 1 minute to 10 hours, more preferably 10 minutes or more, and even more preferably 30 minutes or more. The upper limit is more preferably 5 hours or less. Heating may also be carried out by continuously increasing the temperature at a predetermined rate and maintaining the temperature at a predetermined temperature. For example, the first heating may be performed at a temperature of 100°C or more and less than 200°C for a predetermined period of time.
  • the heating temperature is increased stepwise, such as performing second heating at a temperature of 200°C or more and less than 300°C for a predetermined time, and then performing third heating at a temperature of 300°C or more and less than 400°C for a predetermined time.
  • the atmosphere for heating is not particularly limited, but it is preferable to conduct the heating in an inert atmosphere such as a nitrogen gas atmosphere or an oxidizing atmosphere such as air.
  • step 2 is performed after the step 1, a method of performing the step 2 simultaneously with the step 1 can also be adopted. This method is achieved, for example, by applying the coating while heating the base material in step 1.
  • Step 3 Solvent removal step in which part or all of the solvent is removed from the applied composition
  • the solvent may be removed by heating, reducing pressure (degassing), or a combination thereof.
  • a method is preferably adopted. Therefore, in the solvent removal step, part or all of the solvent is distilled off from the film of the composition applied to the base material by heating and/or reduced pressure (degassing).
  • the heating temperature in the solvent removal step is preferably 50 to 150°C, more preferably 120°C or less, and even more preferably less than 100°C.
  • the heating time is preferably 30 seconds to 2 hours, more preferably 10 minutes to 1 hour.
  • the above step 3 is preferably carried out after the above step 1, but it can also be carried out simultaneously with the above step 1. Moreover, although it is preferable that the above step 3 is performed before the above step 2, it can also be performed simultaneously with the above step 2.
  • a preferred method is to perform Step 1 above, then heat the substrate and the composition applied to the substrate, and then perform Steps 2 and 3 continuously. As described above, a cured product obtained by curing the composition of the present disclosure is formed on the surface and/or inside of various substrates.
  • the thickness of the cured product is not particularly limited, but is preferably 5 to 500 ⁇ m. More preferably, it is 10 ⁇ m or more, and still more preferably 15 ⁇ m or more.
  • the upper limit is more preferably 400 ⁇ m or less, still more preferably 300 ⁇ m or less. That is, the film thickness of the cured product is more preferably 10 to 400 ⁇ m, and even more preferably 15 to 300 ⁇ m.
  • the above film thickness can be measured using a micrometer.
  • the dielectric constant of the cured product is not particularly limited, but the dielectric constant at 10 GHz is preferably 2.0 or more and 2.9 or less. It is more preferably 2.7 or less, still more preferably 2.6 or less, particularly preferably 2.5 or less.
  • the lower limit is more preferably 2.1 or more. That is, the dielectric constant of the cured product at 10 GHz is more preferably 2.1 to 2.7, still more preferably 2.1 to 2.6, particularly preferably 2.1 to 2.5. be.
  • the above dielectric constant can be measured by the cavity resonator perturbation method using network analyzer E8361A (manufactured by Agilent Technologies) under the conditions of temperature 25 ° C., humidity 50%, and frequency 10 GHz. It is preferable to adopt the value.
  • the cured product has excellent heat resistance.
  • the temperature at which weight loss begins is high.
  • the temperature at which the weight loss is 5% by mass when the temperature of the cured product is raised from room temperature at a heating rate of 10° C./min in an air atmosphere is referred to as the 5% weight loss temperature.
  • the 5% weight loss temperature of the cured product is preferably 340°C or higher.
  • the temperature is more preferably 360°C or higher, and still more preferably 380°C or higher.
  • the upper limit is not particularly limited, it is usually 450°C or lower.
  • the 5% weight loss temperature of the cured product is preferably 340 to 450°C, more preferably 360 to 450°C, and still more preferably 380 to 450°C.
  • the above 5% weight loss temperature can be measured using a TG-DTA device, and it is preferable to use the value obtained by this method.
  • TG-DTA device As the TG-DTA device, TG-DTA2000SR (manufactured by NESZTCH) and MTC1000SA (manufactured by Bruker) are recommended.
  • the elongation of the cured product is not particularly limited, but is preferably 5 to 100%. It is more preferably 10% or more, still more preferably 20% or more, even more preferably 30% or more, and particularly preferably 40% or more.
  • the upper limit is more preferably 150% or less. That is, the elongation of the cured product is more preferably 10 to 150%, still more preferably 20 to 150%, even more preferably 30 to 150%, particularly preferably 40 to 150%.
  • the above-mentioned elongation means the elongation at break when a tensile test is performed, and can be measured by the method described below, and it is preferable to employ the value obtained by this method.
  • the cured product is preferably an insulating film.
  • Preferred aspects of the insulating film such as film thickness, dielectric constant, elongation, and 5% weight loss temperature, are the same as the respective preferred aspects of the cured product.
  • composition of the present disclosure a cured product obtained by curing the composition, and an insulating film is not particularly limited, and can be used for various purposes.
  • the composition of the present disclosure is preferably used to form an insulating film for electrical/electronic devices, such as electronic equipment such as computers, communication equipment such as mobile phones, network-related electronic equipment such as servers, etc. .
  • electrical/electronic devices such as electronic equipment such as computers, communication equipment such as mobile phones, network-related electronic equipment such as servers, etc.
  • insulated wires used in electrical equipment with high applied voltages such as motors used at high voltages, are required to improve the corona discharge starting voltage, and reducing the dielectric constant of the insulating layer in insulated wires is effective. It is said that Therefore, the composition of the present disclosure can be suitably used to form an insulating layer of an insulated wire that constitutes an electric coil included in the motor.
  • Step 1A 16,500 g of methanol, 3,200 g of water, 1,300 g of 25% aqueous ammonia, and 110 g of acetone were added to a 50 L SUS container equipped with a stirrer, a dripping port, and a thermometer, and stirred for 30 minutes to obtain a uniform mixed solution.
  • the temperature of the above mixed solution was adjusted to 49 to 51° C., and while stirring, 5700 g of tetramethyl orthosilicate (TMOS) was added dropwise from the dropping port over 90 minutes. After the dropwise addition was completed, stirring was continued for 30 minutes while maintaining the above liquid temperature to obtain an alcoholic solution suspension of silica particles (suspension 1A).
  • TMOS tetramethyl orthosilicate
  • Step 1C Using a commercially available ultrafiltration membrane equipped with a ceramic tubular ultrafiltration membrane with a molecular weight cutoff of about 10,000, the suspension 1B obtained in step 1B was subjected to solvent replacement at room temperature while adding methanol as appropriate. By concentrating the mixture until the SiO 2 concentration reached approximately 11%, a methanol suspension (suspension 1C) of silica particles having methacrylic groups on the particle surface was obtained.
  • Step 1E By weighing 1800 g of the suspension 1D obtained in the step 1D and concentrating the solvent by vacuum distillation at 40 ° C. with a rotary evaporator at a reduced pressure of 30 to 300 hPa, propylene glycol monomethyl ether (PGM) was successively added. By replacing the solvent of the suspension with PGM and concentrating the suspension so that the SiO 2 concentration was approximately 50%, a PGM dispersion (dispersion 1) of silica particles having methacrylic groups on the particle surface was obtained. The average particle diameter of the silica particles in the dispersion was 24 nm.
  • the average particle diameter is determined by measuring the diameter of 50 arbitrary particles from the SEM image taken with a scanning electron microscope JSM-7600F manufactured by JEOL with a caliper, and calculating the arithmetic mean value of the 50 diameters. Adopted. In addition, when taking photographs with a scanning electron microscope, the measurement magnification was set so that 50 to 100 particles were found in the field of view of one photograph.
  • Example 1 In a vial, as the amino group-containing polysiloxane (A), 3.44 g of KF-8012 (manufactured by Shin-Etsu Chemical Co., Ltd., functional group equivalent: 2200 g/mol), which is an amino-modified silicone, and as the polymer (B), styrene/ 1.00 g of a solution of Alastar 700 (manufactured by Arakawa Chemical Industries, Ltd., carboxyl group equivalent: 175-200 g/mol), which is a maleic acid half ester copolymer, dissolved in propylene glycol monopropyl ether to a concentration of 50% by mass.
  • Alastar 700 manufactured by Arakawa Chemical Industries, Ltd., carboxyl group equivalent: 175-200 g/mol
  • the resulting composition (1) was applied to a flat PTFE plate with a constant thickness and heated at 100°C for 30 minutes, 200°C for 30 minutes, 250°C for 30 minutes, and 300°C for 1 hour.
  • a cured film (1) with a thickness of 100 to 150 ⁇ m was formed on a PTFE plate by heat curing, and an independent film of the cured film (1) was obtained by peeling off the PTFE plate.
  • the dielectric constant and other properties of the cured film (1) were evaluated. The results are shown in Table 2.
  • Example 2 was carried out in the same manner as in Example 1, except that the types and amounts of each component such as the amino group-containing polysiloxane (A) and the polymer (B) in Example 1 were changed as shown in Table 1. -7 compositions were prepared, respectively. Using each of the obtained compositions, cured films (2) to (7) were obtained in the same manner as in Example 1. On the other hand, in the compositions of Comparative Examples 1 and 2, phase separation and gelation occurred, making it impossible to obtain a uniform composition and making it impossible to form a cured product film. The dielectric constant, 5% weight loss temperature, and elongation of each cured film obtained in each of these Examples were evaluated. The results are shown in Table 2.
  • - Alastair 700 manufactured by Arakawa Chemical Industry Co., Ltd., styrene-maleic acid resin half ester, acid value 175-200.
  • ⁇ ADEKA STAB AO-30 Manufactured by ADEKA, phenolic antioxidant, - ADEKA STAB AO-503: manufactured by ADEKA, thioether antioxidant Also, the value (100) of the total (parts by mass) in Table 1 is the value rounded to the first decimal place.
  • Thickener synthesis example 1 2.5 g of XIRAN 3500 (manufactured by POLYSCOPE, styrene-maleic anhydride copolymer) and 2.5 g of butyl acetate were placed in a vial and dissolved while heating at 60° C. with stirring. A solution prepared by dissolving 0.8 g of 2-ethylhexylamine in 0.8 g of butyl acetate and 2.0 g of propylene glycol monopropyl ether was added dropwise to the obtained solution to obtain a thickener (1).
  • Example 8 4 parts by mass of the thickener (1) obtained above was added to 100 parts by mass of the composition (1) obtained in Example 1, and the mixture was stirred to obtain a composition (8).
  • the viscosity of the obtained composition (8) and composition (1) was measured at 25°C using an E-type viscometer (TPE-100, manufactured by Toki Sangyo Co., Ltd.), and the viscosity was 1010 mPa ⁇ s and 300 mPa, respectively. ⁇ It was s.
  • the resulting composition (8) was applied to a flat PTFE plate with a constant thickness and heated at 100°C for 30 minutes, 200°C for 30 minutes, 250°C for 30 minutes, and 300°C for 1 hour.
  • a cured film (8) having a thickness of 150 ⁇ m was formed on a PTFE plate by heat curing, and an independent film of the cured film (8) was obtained by peeling off the PTFE plate.
  • the dielectric constant of the cured film (8) was 2.69, and the 5% weight loss temperature was 380°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

The present invention provides a composition that makes it possible to form a cured product having a low dielectric constant and excellent heat resistance and elongation. The present invention is a composition characterized by containing an amino group-containing polysiloxane (A) and a polymer (B) having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester.

Description

組成物およびその硬化物Composition and cured product thereof
本発明は、組成物およびその硬化物に関する。より詳しくは、アミノ基含有ポリシロキサンおよび特定の重合体を含む組成物、および該組成物を硬化した硬化物に関する。 The present invention relates to a composition and a cured product thereof. More specifically, the present invention relates to a composition containing an amino group-containing polysiloxane and a specific polymer, and a cured product obtained by curing the composition.
近年、携帯電話等の通信機器、サーバー等のネットワーク関連、コンピュータ等の電子機器等の電気・電子デバイスにおいては、高周波数化が進み、これらの電気・電子デバイスに用いられる材料には高周波数化への対応が求められる。中でもこれらの電気・電子デバイスに用いられる絶縁膜には、伝送損失低減の観点から、誘電率が低い材料が使用されているが、近年の高周波数化に伴い一層誘電率の低い材料が要求される。 In recent years, the frequency of electrical and electronic devices such as communication equipment such as mobile phones, network-related devices such as servers, and electronic equipment such as computers has been increasing, and the materials used in these electrical and electronic devices are increasing in frequency. It is necessary to respond to In particular, materials with low dielectric constants are used for the insulating films used in these electrical and electronic devices from the perspective of reducing transmission loss, but with the recent trend toward higher frequencies, materials with even lower dielectric constants are required. Ru.
さらに、絶縁膜には、電機・電子デバイスの製造過程や使用時において耐熱性が必要とされる。さらに需要が急速に拡大しつつある、フレキシブルディスプレイ等のフレキシブルデバイスでは、絶縁膜に対しても引張や曲げ等の変形に対する強度、例えば、伸度が大きい材料が求められる。従来、このような電気・電子デバイス用の絶縁膜材料として、ポリイミド系材料等が提案されている(例えば、特許文献1、2)。 Furthermore, the insulating film is required to have heat resistance during the manufacturing process and use of electrical and electronic devices. Furthermore, in flexible devices such as flexible displays, the demand for which is rapidly increasing, materials are required for insulating films that have high strength against deformation such as tension and bending, for example, high elongation. Conventionally, polyimide-based materials and the like have been proposed as insulating film materials for such electric/electronic devices (for example, Patent Documents 1 and 2).
特開2015-130281号公報Japanese Patent Application Publication No. 2015-130281 特開2008-195966号公報Japanese Patent Application Publication No. 2008-195966
しかしながら、特許文献1には、多層絶縁電線において導体を被覆する積層ポリイミドフィルムとして、実施例には、測定周波数1MHzにおける誘電率が3.5程度、最も低い例で3.45のものしか示されていない。特許文献2には、特定のポリイミド樹脂を用いた熱硬化性ポリイミド樹脂組成物からなる硬化塗膜の物性が第3表等に示され、ガラス転移温度(Tg)が示されているが、耐熱性としては十分とは言い難い。このように、電機・電子デバイスにおける高周波数化、フレキシブル化に対応できる絶縁膜に求められる、耐熱性、高周波領域における誘電率および伸度のいずれをも満足し得る材料は未だ知られていない。 However, in Patent Document 1, as a laminated polyimide film that covers a conductor in a multilayer insulated wire, only a laminated polyimide film having a dielectric constant of about 3.5 at a measurement frequency of 1 MHz, and 3.45 in the lowest example, is shown in the examples. Not yet. In Patent Document 2, the physical properties of a cured coating film made of a thermosetting polyimide resin composition using a specific polyimide resin are shown in Table 3, etc., and the glass transition temperature (Tg) is shown. It's hard to say that it's sexual enough. As described above, there is still no known material that can satisfy all of the heat resistance, dielectric constant, and elongation in the high frequency range required for an insulating film that can respond to high frequencies and flexibility in electrical and electronic devices.
本発明は、上記課題に鑑みてなされたものであり、誘電率が低く、耐熱性、および伸度に優れる硬化物を形成することができる、組成物を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a composition capable of forming a cured product having a low dielectric constant, excellent heat resistance, and elongation.
本発明者は、上記目的を達成する為に種々検討を行ない、本発明に想到した。すなわち本開示の目的は、下記[1]~[4]により達成される。
[1]アミノ基含有ポリシロキサン(A)と、不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)を有する重合体(B)とを含むことを特徴とする組成物。
[2]さらに無機粒子を含む、上記[1]に記載の組成物。
[3]上記[1]または[2]に記載の組成物を硬化した硬化物。
[4]上記硬化物が絶縁膜である、上記[3]に記載の硬化物。
In order to achieve the above object, the present inventor conducted various studies and came up with the present invention. That is, the object of the present disclosure is achieved by the following [1] to [4].
[1] A composition comprising an amino group-containing polysiloxane (A) and a polymer (B) having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester.
[2] The composition according to [1] above, further comprising inorganic particles.
[3] A cured product obtained by curing the composition described in [1] or [2] above.
[4] The cured product according to [3] above, wherein the cured product is an insulating film.
本発明の組成物は、アミノ基含有ポリシロキサン(A)と、不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)を有する重合体(B)とを含むことから、誘電率が低く、耐熱性、および伸度に優れる硬化物を形成することができる。よって、本発明の組成物は、高い周波数が使用される電気・電子デバイスを始め、種々の技術分野における絶縁膜材料に好ましく使用することができる。 Since the composition of the present invention contains an amino group-containing polysiloxane (A) and a polymer (B) having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester, the composition has a low dielectric constant, A cured product with excellent heat resistance and elongation can be formed. Therefore, the composition of the present invention can be preferably used for insulating film materials in various technical fields, including electrical and electronic devices that use high frequencies.
以下、本発明を詳細に説明する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を意味し、「(メタ)アクリル」は、「アクリル」または「メタクリル」を意味し、「(メタ)アクリロイル」は「アクリロイル」または「メタクリロイル」を意味する。また(メタ)アクリレートを(メタ)アクリル酸エステルということもある。
The present invention will be explained in detail below.
Note that a combination of two or more of the individual preferred embodiments of the present invention described below is also a preferred embodiment of the present invention. In addition, in this specification, "(meth)acrylate" means "acrylate" or "methacrylate", "(meth)acrylic" means "acrylic" or "methacrylic", "(meth)acryloyl ” means “acryloyl” or “methacryloyl”. (Meth)acrylate is also sometimes referred to as (meth)acrylic acid ester.
[本開示の組成物]
本開示の組成物は、アミノ基含有ポリシロキサン(A)と、不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)を有する重合体(B)とを含むことを特徴とする。
本開示の組成物が、誘電率が低く、耐熱性、および伸度に優れる硬化物を形成できるのは、分極が少ない構造とシロキサン由来の柔軟性が両立されているためと考えられる。
[Composition of the present disclosure]
The composition of the present disclosure is characterized by containing an amino group-containing polysiloxane (A) and a polymer (B) having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester.
The reason why the composition of the present disclosure is able to form a cured product with a low dielectric constant, excellent heat resistance, and elongation is thought to be because a structure with little polarization and flexibility derived from siloxane are compatible.
 <アミノ基含有ポリシロキサン(A)>
本開示の組成物における、アミノ基含有ポリシロキサン(A)とは、主鎖がポリシロキサン骨格を有し、該ポリシロキサン骨格を構成するケイ素原子の内、少なくとも1つのケイ素原子に、アミノ基含有基が結合してなるポリマーを意味する。
ポリシロキサン骨格は直鎖状、分岐状等の鎖状構造であってもよいし、環状構造であってもよい。中でも、鎖状構造が好ましく、直鎖状構造がより好ましい。
<Amino group-containing polysiloxane (A)>
The amino group-containing polysiloxane (A) in the composition of the present disclosure means that the main chain has a polysiloxane skeleton, and at least one of the silicon atoms constituting the polysiloxane skeleton contains an amino group. It means a polymer formed by bonding groups.
The polysiloxane skeleton may have a linear structure, such as a branched structure, or a cyclic structure. Among these, a chain structure is preferred, and a linear structure is more preferred.
アミノ基含有基は、アミノ基を含有する有機基であれば、特に制限されない。アミノ基含有基は、アミノ基が2価の有機基を介してポリシロキサン骨格を構成するケイ素原子に結合していることが好ましい。アミノ基含有基としては、置換基としてアミノ基を含む炭化水素基が好ましい。上記炭化水素基としては、アルキル基、アリール基、アラルキル基が好ましく、アルキル基がより好ましい。
アミノ基含有基における、アミノ基は1級アミノ基、2級アミノ基、3級アミノ基のいずれであってもよい。アミノ基含有基は、これらの1種または2種以上を含む。アミノ基の中でも、1級アミノ基、2級アミノ基が好ましく、1級アミノ基がより好ましい。
The amino group-containing group is not particularly limited as long as it is an organic group containing an amino group. In the amino group-containing group, it is preferable that the amino group is bonded to the silicon atom constituting the polysiloxane skeleton via a divalent organic group. The amino group-containing group is preferably a hydrocarbon group containing an amino group as a substituent. The hydrocarbon group is preferably an alkyl group, an aryl group, or an aralkyl group, and more preferably an alkyl group.
The amino group in the amino group-containing group may be any of a primary amino group, a secondary amino group, and a tertiary amino group. The amino group-containing group includes one or more of these. Among the amino groups, primary amino groups and secondary amino groups are preferred, and primary amino groups are more preferred.
アミノ基含有基は、例えば、下記一般式(1)で表されるアミノ基含有基、下記一般式(2)で表されるアミノ基含有基、および、下記一般式(3)で表されるアミノ基含有基からなる群から選択される少なくとも1種であることが好ましい。
-RNH  (1)
(一般式(1)において、Rは、2価の炭化水素基または-R-O-R-で表される基であり、2つのRは、同一または異なって、2価の炭化水素基を表す。)
-RNHR  (2)
(一般式(2)において、Rは、2価の炭化水素基または-R-O-R-で表される基であり、2つのRは、同一または異なって、2価の炭化水素基を表す。Rは、1価の炭化水素基または-R-O-R’で表される基であり、Rは2価の炭化水素基を表し、R’は1価の炭化水素基を表す。)
-RNHRNH (3)
(一般式(3)において、RおよびRは、同一または異なって、2価の炭化水素基または-R-O-R-で表される基であり、2つのRは、同一または異なって、2価の炭化水素基を表す。)
Examples of the amino group-containing group include an amino group-containing group represented by the following general formula (1), an amino group-containing group represented by the following general formula (2), and an amino group-containing group represented by the following general formula (3). It is preferable that it is at least one selected from the group consisting of amino group-containing groups.
-R a NH 2 (1)
(In general formula (1), R a is a divalent hydrocarbon group or a group represented by -ROR-, and the two R's are the same or different and are divalent hydrocarbon groups. )
-R a NHR b (2)
(In general formula (2), R a is a divalent hydrocarbon group or a group represented by -ROR-, and the two R's are the same or different and are divalent hydrocarbon groups. R b is a monovalent hydrocarbon group or a group represented by -ROR', R is a divalent hydrocarbon group, and R' is a monovalent hydrocarbon group. represent.)
-R a NHR c NH 2 (3)
(In general formula (3), R a and R c are the same or different and are a divalent hydrocarbon group or a group represented by -ROR-, and the two R's are the same or different represents a divalent hydrocarbon group.)
上記一般式(1)~(3)においてR、R、Rで示される2価の炭化水素基としては、アルキレン基、アリーレン基、アラルキレン基等が挙げられる。なかでもアルキレン基が好ましく、炭素数1~18のアルキレン基がより好ましく、炭素数1~8のアルキレン基がさらに好ましく、炭素数1~6のアルキレン基がより更に好ましい。 The divalent hydrocarbon groups represented by R a , R c , and R in the above general formulas (1) to (3) include alkylene groups, arylene groups, aralkylene groups, and the like. Among these, an alkylene group is preferred, an alkylene group having 1 to 18 carbon atoms is more preferred, an alkylene group having 1 to 8 carbon atoms is even more preferred, and an alkylene group having 1 to 6 carbon atoms is even more preferred.
上記一般式(2)においてR、R’で示される1価の炭化水素基としては、アルキル基、アリール基、アラルキル基等が挙げられる。なかでもアルキル基が好ましく、炭素数1~18のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~6のアルキル基がさらに好ましい。 Examples of the monovalent hydrocarbon group represented by R b and R' in the above general formula (2) include an alkyl group, an aryl group, an aralkyl group, and the like. Among these, an alkyl group is preferred, an alkyl group having 1 to 18 carbon atoms is preferred, an alkyl group having 1 to 8 carbon atoms is more preferred, and an alkyl group having 1 to 6 carbon atoms is even more preferred.
上記一般式(1)~(3)において、R、R、Rで示される2価の炭化水素基と、R、R’で示される1価の炭化水素基は、それぞれ置換基を有していてもよい。置換基としては、特に制限されないが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;水酸基、メルカプト基等の親水性基が好ましく挙げられる。 In the above general formulas (1) to (3), the divalent hydrocarbon groups represented by R a , R c , and R and the monovalent hydrocarbon groups represented by R b and R' each have a substituent. may have. The substituent is not particularly limited, but preferably includes, for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom; hydrophilic groups such as hydroxyl group and mercapto group.
上記アミノ基含有ポリシロキサン(A)におけるアミノ基含有基の結合位置は特に制限されない。アミノ基含有基は、ポリシロキサン骨格の末端のケイ素原子に結合していてもよいし、末端以外のケイ素原子に結合していてもよいし、末端のケイ素原子および末端以外のケイ素原子に結合していてもよい。好ましい一形態としては、ポリシロキサン骨格の少なくとも一つの末端のケイ素原子にアミノ基含有基が結合してなる形態(1)が挙げられる。ポリシロキサン骨格が直鎖状構造である場合、2つの末端の各ケイ素原子にアミノ基含有基が結合してなる形態は特に好ましい形態である。好ましい別の一形態としては、ポリシロキサン骨格の末端以外のケイ素原子の一部または全部にアミノ基含有基が結合してなる形態(2)、いわゆるポリシロキサン骨格における側鎖としてアミノ基含有基が結合してなる形態が挙げられる。上記形態(1)または(2)の形態におけるより好ましい形態として、ポリシロキサン骨格の少なくとも一つの末端のケイ素原子にアミノ基含有基が結合してなり、且つ、ポリシロキサン骨格の末端以外のケイ素原子の一部または全部にアミノ基含有基が結合してなる形態も挙げられる。 The bonding position of the amino group-containing group in the amino group-containing polysiloxane (A) is not particularly limited. The amino group-containing group may be bonded to a terminal silicon atom of the polysiloxane skeleton, may be bonded to a silicon atom other than the terminal, or may be bonded to a terminal silicon atom or a silicon atom other than the terminal. You can leave it there. One preferred form is form (1) in which an amino group-containing group is bonded to at least one terminal silicon atom of the polysiloxane skeleton. When the polysiloxane skeleton has a linear structure, a particularly preferred form is one in which an amino group-containing group is bonded to each silicon atom at the two ends. Another preferred form is a form (2) in which an amino group-containing group is bonded to some or all of the silicon atoms other than the ends of the polysiloxane skeleton, so-called a form in which an amino group-containing group is bonded as a side chain in the polysiloxane skeleton. An example is a combined form. As a more preferable form of the form (1) or (2) above, an amino group-containing group is bonded to at least one terminal silicon atom of the polysiloxane skeleton, and the silicon atom other than the terminal of the polysiloxane skeleton is A form in which an amino group-containing group is bonded to part or all of is also included.
上記アミノ基含有ポリシロキサン(A)におけるアミノ基の含有量は、特に制限されないが、本開示の組成物より得られる硬化物の機械的強度の観点から、アミノ基当量が、300~20000g/molであることが好ましい。より好ましくは、500~10000g/molであり、さらに好ましくは1000~5000g/molである。上記アミノ基当量は、JIS K 2501:2003JIS K 7237に記載された方法に準拠した測定方法で得られた値を採用することができる。上記アミノ基当量は、具体的には下記の方法により求めることができ、下記の方法により得られる値を採用することが好ましい。 The content of amino groups in the amino group-containing polysiloxane (A) is not particularly limited, but from the viewpoint of mechanical strength of the cured product obtained from the composition of the present disclosure, the amino group equivalent is 300 to 20,000 g/mol. It is preferable that More preferably, it is 500 to 10,000 g/mol, and still more preferably 1,000 to 5,000 g/mol. For the above amino group equivalent, a value obtained by a measuring method based on the method described in JIS K 2501:2003 JIS K 7237 can be adopted. The amino group equivalent can be specifically determined by the method described below, and it is preferable to use the value obtained by the method described below.
(アミノ基当量の測定方法)
試料である上記アミノ基含有ポリシロキサン(A)を、o-ニトロトルエン及び酢酸の混合溶剤(v/v=9/2)に溶かし、ガラス電極と比較電極を用いて、0.1mol/l過塩素酸酢酸溶液で滴定する。電位差計又はpH計の読みと、これに対応する0.1mol/l過塩素酸酢酸溶液の滴定量との関係を作図し、滴定曲線に得られた変曲点を終点とする。消費した0.1mol/l過塩素酸酢酸溶液の量によって全アミン価を算出する。全アミン価から単位質量当たりのアミノ基のモル数を算出し、その逆数をとることでアミノ基当量を求めることができる。
(Method for measuring amino group equivalent)
The sample amino group-containing polysiloxane (A) was dissolved in a mixed solvent of o-nitrotoluene and acetic acid (v/v = 9/2), and 0.1 mol/l perchlorine was added using a glass electrode and a reference electrode. Titrate with acid acetic acid solution. The relationship between the readings of the potentiometer or pH meter and the corresponding titration of 0.1 mol/l perchloric acid/acetic acid solution is plotted, and the inflection point obtained on the titration curve is taken as the end point. The total amine value is calculated by the amount of 0.1 mol/l perchloric acid acetic acid solution consumed. The amino group equivalent can be determined by calculating the number of moles of amino groups per unit mass from the total amine value and taking the reciprocal.
上記アミノ基含有ポリシロキサン(A)の重量平均分子量は、特に制限されないが、溶剤への溶解性の観点から、100~1000000であることが好ましく、より好ましくは、500~500000であり、さらに好ましくは1000~100000である。
上記重量平均分子量はGPC(ゲル浸透クロマトグラフィー)法により測定することができ、ポリスチレンを標準物質とし、1mMトリエチルアミン-テトラヒドロフラン溶液を溶離液として、高速GPC装置HLC-8320GPC(東ソー社製)を用い、カラムとしてTSKgel SuperHZ4000およびTSKgel SuperHZ2000(東ソー社製)を用いる、GPC(ゲル浸透クロマトグラフィー)法により測定することができる。
The weight average molecular weight of the amino group-containing polysiloxane (A) is not particularly limited, but from the viewpoint of solubility in solvents, it is preferably from 100 to 1,000,000, more preferably from 500 to 500,000, even more preferably is 1000 to 100000.
The above weight average molecular weight can be measured by GPC (gel permeation chromatography) using a high-speed GPC device HLC-8320GPC (manufactured by Tosoh Corporation) using polystyrene as a standard substance and a 1mM triethylamine-tetrahydrofuran solution as an eluent. It can be measured by GPC (gel permeation chromatography) using TSKgel SuperHZ4000 and TSKgel SuperHZ2000 (manufactured by Tosoh Corporation) as columns.
上記アミノ基含有ポリシロキサン(A)において、ポリシロキサン骨格を構成するケイ素原子の一部または全部には、シロキサン結合を構成する酸素原子およびアミノ基含有基以外の原子または官能基が結合してなることが好ましい。上記原子または官能基の中でも、官能基が好ましい。上記原子としては、水素原子、ハロゲン原子が挙げられ、ハロゲン原子が好ましい。上記官能基としては、水酸基、有機基が挙げられる。上記有機基としては、炭化水素基、アルコキシ基が挙げられ、これらは置換基を有していてもよい。上記炭化水素基としては、アルキル基、アリール基、アラルキル基が好ましく、アルキル基、アリール基がより好ましく、メチル基、フェニル基がさらに好ましく、メチル基が特に好ましい。
上記有機基の炭素数は、好ましくは1~12であり、より好ましくは1~6であり、更に好ましくは1~4である。
In the above amino group-containing polysiloxane (A), atoms or functional groups other than the oxygen atom and the amino group-containing group constituting the siloxane bond are bonded to some or all of the silicon atoms constituting the polysiloxane skeleton. It is preferable. Among the atoms or functional groups mentioned above, functional groups are preferred. Examples of the above atoms include hydrogen atoms and halogen atoms, with halogen atoms being preferred. Examples of the functional group include a hydroxyl group and an organic group. Examples of the organic group include a hydrocarbon group and an alkoxy group, which may have a substituent. The hydrocarbon group is preferably an alkyl group, an aryl group, or an aralkyl group, more preferably an alkyl group or an aryl group, even more preferably a methyl group or a phenyl group, and particularly preferably a methyl group.
The organic group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
上記アミノ基含有ポリシロキサン(A)において、ポリシロキサン骨格を構成するケイ素原子の内、すべてのケイ素原子に上記原子または官能基が結合していることが好ましい。ポリシロキサン骨格を構成するケイ素原子の内、アミノ基含有基が結合するケイ素原子以外のすべてのケイ素原子の各々に、上記アミノ基含有基以外の原子または官能基が合計数で2個または3個結合していることが好ましい。ポリシロキサン骨格を構成するケイ素原子に結合する、上記原子または官能基は同一であっても異なっていてもよい。 In the above amino group-containing polysiloxane (A), it is preferable that the above atoms or functional groups are bonded to all silicon atoms among the silicon atoms constituting the polysiloxane skeleton. Of the silicon atoms constituting the polysiloxane skeleton, each silicon atom other than the silicon atom to which the amino group-containing group is bonded has a total of 2 or 3 atoms or functional groups other than the above amino group-containing group. Preferably, they are bonded. The atoms or functional groups bonded to the silicon atoms constituting the polysiloxane skeleton may be the same or different.
上記アミノ基含有ポリシロキサン(A)において、ポリシロキサン骨格の特に好ましい形態は、ポリシロキサン骨格を構成する各ケイ素原子にメチル基が2つ結合した構造(ただし末端のケイ素原子にはメチル基が2個または3個結合した構造)、ジメチルポリシロキサン骨格である。 In the above amino group-containing polysiloxane (A), a particularly preferred form of the polysiloxane skeleton is a structure in which two methyl groups are bonded to each silicon atom constituting the polysiloxane skeleton (however, two methyl groups are bonded to the terminal silicon atom). structure in which two or three atoms are bonded), and has a dimethylpolysiloxane skeleton.
上記アミノ基含有ポリシロキサン(A)の特に好ましい形態としては、上記ジメチルポリシロキサン骨格を有し、該骨格の両末端にアミノ基含有基が結合してなる形態である。 A particularly preferred form of the above amino group-containing polysiloxane (A) is one having the above dimethylpolysiloxane skeleton, with amino group-containing groups bonded to both ends of the skeleton.
上記アミノ基含有ポリシロキサン(A)の製法は特に制限されず、従来公知の方法で製造することができる。例えば、アミノ基含有基を有するアルコキシシラン化合物を含水アルコール中、酸触媒存在下で、加水分解、縮合させることによりアミノ基含有ポリシロキサン(A)を得ることができる。アミノ基含有基を有するアルコキシシラン化合物の1種または2種以上のみを加水分解、縮合させてもよいが、アミノ基含有基を有するアルコキシシラン化合物の1種または2種以上と、アミノ基含有基を有するアルコキシシラン化合物以外のアルコキシシラン化合物(以下、他のアルコキシシラン化合物とも称する)の1種または2種以上とを、共加水分解・縮合させることが好ましい。 The method for producing the amino group-containing polysiloxane (A) is not particularly limited, and can be produced by conventionally known methods. For example, the amino group-containing polysiloxane (A) can be obtained by hydrolyzing and condensing an alkoxysilane compound having an amino group-containing group in a hydrous alcohol in the presence of an acid catalyst. Although it is possible to hydrolyze and condense only one or more alkoxysilane compounds having an amino group-containing group, one or more alkoxysilane compounds having an amino group-containing group and an amino group-containing group may be used. It is preferable to co-hydrolyze and condense one or more alkoxysilane compounds other than the alkoxysilane compound having (hereinafter also referred to as other alkoxysilane compounds).
上記アミノ基含有基を有するアルコキシシラン化合物としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、(N-フェニルアミノ)メチルトリメトキシシラン、ジエチルアミノメチルトリエトキシシラン等のトリアルコキシシラン化合物;3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラ、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン等のジアルコキシシラン化合物等が挙げられる。中でもジアルコキシシラン化合物が好ましい。 Examples of the alkoxysilane compounds having an amino group-containing group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N- Trialkoxysilane compounds such as phenyl-3-aminopropyltrimethoxysilane, (N-phenylamino)methyltrimethoxysilane, diethylaminomethyltriethoxysilane; 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, Examples include dialkoxysilane compounds such as N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane and N-(2-aminoethyl)-3-aminopropylmethyldiethoxysilane. Among them, dialkoxysilane compounds are preferred.
上記他のアルコキシシラン化合物としては、特に制限されないが、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン化合物;メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、ベンジルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン等のトリアルコキシシラン化合物;ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ビニルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、(3-メルカプトプロピル)メチルジメトキシシラン、ジフェニルジメトキシシラン等のジアルコキシシラン化合物等が挙げられる。中でも、ジアルコキシシラン化合物が好ましく、炭化水素基がケイ素原子に結合してなるジアルコキシシラン化合物が好ましい。 Other alkoxysilane compounds mentioned above include, but are not particularly limited to, tetraalkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane; methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, methyltriethoxysilane, and phenyltrimethoxysilane; Trialkoxysilane compounds such as methoxysilane, benzyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane; dimethyldimethoxysilane, methylphenyldimethoxysilane, cyclohexylmethyldimethoxysilane, vinylmethyldimethoxysilane, 3-glycidoxypropylmethyl Examples include dialkoxysilane compounds such as dimethoxysilane, (3-mercaptopropyl)methyldimethoxysilane, and diphenyldimethoxysilane. Among these, dialkoxysilane compounds are preferred, and dialkoxysilane compounds in which a hydrocarbon group is bonded to a silicon atom are preferred.
本開示の組成物に用いるアミノ基含有ポリシロキサン(A)としては、市販品を用いることができる。中でも、アミノ変性シリコーンとして知られる市販品が好ましい。好ましい市販品としては、例えば、KF-8008、KF-8010、KF-8012、X-22-161A、X-22-161B、X-22-1660B-3、X-22-9409、KF-864、KF-865、KF-868、KF-859、KF-860、KF-880、KF-393、KF-8004、KF-8002、KF-8005、KF-867、KF-8021、KF-869、KF-861(以上、信越化学工業社製)、DOWSIL BY 16-853U、DOWSIL BY 16-871、DOWSIL BY 16-879B、DOWSIL BY 16-892(以上、ダウ・東レ社製)等が挙げられる。 As the amino group-containing polysiloxane (A) used in the composition of the present disclosure, commercially available products can be used. Among these, commercially available products known as amino-modified silicones are preferred. Preferred commercial products include, for example, KF-8008, KF-8010, KF-8012, X-22-161A, X-22-161B, X-22-1660B-3, X-22-9409, KF-864, KF-865, KF-868, KF-859, KF-860, KF-880, KF-393, KF-8004, KF-8002, KF-8005, KF-867, KF-8021, KF-869, KF- 861 (manufactured by Shin-Etsu Chemical Co., Ltd.), DOWSIL BY 16-853U, DOWSIL BY 16-871, DOWSIL BY 16-879B, DOWSIL BY 16-892 (manufactured by Dow-Toray Industries, Inc.), and the like.
<不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)を有する重合体(B)>
本明細書においては、不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)を単に「構造単位(U)」といい、不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)を有する重合体(B)を単に「重合体(B)」ということもある。
<Polymer (B) having structural unit (U) derived from unsaturated aliphatic dicarboxylic acid monoester>
In this specification, a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester is simply referred to as a "structural unit (U)", and has a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester. Polymer (B) may also be simply referred to as "polymer (B)."
上記重合体(B)は、構造単位として不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)を有する。上記不飽和脂肪族ジカルボン酸としては、特に制限されないが、例えば、マレイン酸、フマル酸、シトラコン酸、メサコン酸、2-ペンテンニ酸、メチレンコハク酸、2,4-ヘキサジエンニ酸、アセチレンジカルボン酸などの炭素数4~6の不飽和脂肪族ジカルボン酸が好ましく挙げられる。中でもマレイン酸がより好ましい。これらの1種または2種以上を用いることができる。 The polymer (B) has a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester as a structural unit. The unsaturated aliphatic dicarboxylic acid is not particularly limited, and examples thereof include maleic acid, fumaric acid, citraconic acid, mesaconic acid, 2-pentenioic acid, methylenesuccinic acid, 2,4-hexadienioic acid, acetylene dicarboxylic acid, etc. Preferred examples include unsaturated aliphatic dicarboxylic acids having 4 to 6 carbon atoms. Among them, maleic acid is more preferred. One or more of these can be used.
上記不飽和脂肪族ジカルボン酸モノエステルとしては、特に制限されないが、例えば、上記不飽和脂肪族ジカルボン酸のモノアルキルエステル、モノアリールエステル等が挙げられる。これらは、例えば、不飽和脂肪族ジカルボン酸、不飽和脂肪族ジカルボン酸無水物とアルコール、フェノール等のヒドロキシ基を含む化合物との反応により得ることができる。中でも、モノアルキルエステルが好ましい。さらに該モノアルキルエステルにおけるアルキル基は、炭素数1~18のアルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましく、炭素数1~8のアルキル基であることが更に好ましく、炭素数1~6のアルキル基であることが特に好ましい。 The unsaturated aliphatic dicarboxylic acid monoester is not particularly limited, and examples thereof include monoalkyl esters and monoaryl esters of the unsaturated aliphatic dicarboxylic acid. These can be obtained, for example, by reacting an unsaturated aliphatic dicarboxylic acid or an unsaturated aliphatic dicarboxylic acid anhydride with a compound containing a hydroxy group such as alcohol or phenol. Among these, monoalkyl esters are preferred. Furthermore, the alkyl group in the monoalkyl ester is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, and preferably an alkyl group having 1 to 8 carbon atoms. is more preferred, and an alkyl group having 1 to 6 carbon atoms is particularly preferred.
上記重合体(B)としては、構造単位として、上記構造単位(U)を複数有する重合体であることが好ましく、上記構造単位(U)を繰返し単位として有する重合体であることもまた好ましい。上記重合体(B)は、上記構造単位(U)を繰返し単位として複数有する重合体であることがより好ましい。 The polymer (B) is preferably a polymer having a plurality of the above structural units (U) as structural units, and is also preferably a polymer having the above structural units (U) as repeating units. It is more preferable that the polymer (B) is a polymer having a plurality of the above structural units (U) as repeating units.
上記重合体(B)は、構造単位として、構造単位(U)のみを有する重合体であってもよいが、更に他の構造単位を有することが好ましい。他の構造単位としては、特に制限されないが、エチレン性不飽和二重結合を有する重合性単量体由来の構造単位であることが好ましく、中でも、不飽和脂肪族ジカルボン酸由来の構造単位、不飽和脂肪族ジカルボン酸無水物由来の構造単位、スチレン系単量体由来の構造単位、(メタ)アクリル系単量体由来の構造単位であることがより好ましい。上記重合体(B)は、他の構造単位として、これらの1種または2種以上を有することが好ましい。 The polymer (B) may be a polymer having only the structural unit (U) as a structural unit, but preferably further has other structural units. Other structural units are not particularly limited, but are preferably structural units derived from polymerizable monomers having ethylenically unsaturated double bonds, and among them, structural units derived from unsaturated aliphatic dicarboxylic acids, unsaturated More preferred are structural units derived from saturated aliphatic dicarboxylic acid anhydrides, structural units derived from styrene monomers, and structural units derived from (meth)acrylic monomers. The polymer (B) preferably has one or more of these as other structural units.
上記不飽和脂肪族ジカルボン酸としては、上述したとおりであり、炭素数4~6の不飽和脂肪族ジカルボン酸が好ましく挙げられ、中でもマレイン酸がより好ましく、これらの1種または2種以上を含むことが好ましい。
上記不飽和脂肪族ジカルボン酸無水物としては、上記の好ましい不飽和脂肪族ジカルボン酸の無水物が好ましく挙げられ、これらの1種または2種以上を含むことが好ましい。
The unsaturated aliphatic dicarboxylic acids are as described above, and are preferably unsaturated aliphatic dicarboxylic acids having 4 to 6 carbon atoms, with maleic acid being more preferred, and containing one or more of these. It is preferable.
As the unsaturated aliphatic dicarboxylic acid anhydride, the above-mentioned preferred unsaturated aliphatic dicarboxylic acid anhydrides are preferably mentioned, and it is preferable to include one or more of these.
上記スチレン系単量体としては、特に制限されないが、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、tert-メチルスチレン、クロロスチレン、ビニルトルエン、2-スチリルエチルトリメトキシシランなどが挙げられ、これらの1種または2種以上を含むことが好ましい。スチレン系単量体は、ベンゼン環にメチル基、tert-ブチル基などのアルキル基、ニトロ基、ニトリル基、アルコキシ基、アシル基、スルホン基、ヒドロキシ基、ハロゲン原子などの官能基が存在するものであってもよい。上記スチレン系単量体として、多官能スチレン系単量体を用いることもできる。多官能スチレン系単量体としてはジビニルベンゼンが好ましく挙げられる。上記スチレン系単量体としてはスチレンが特に好ましい。 The above-mentioned styrenic monomer is not particularly limited, but examples include styrene, α-methylstyrene, p-methylstyrene, tert-methylstyrene, chlorostyrene, vinyltoluene, 2-styrylethyltrimethoxysilane, and the like. , it is preferable to include one or more of these. Styrenic monomers have functional groups such as alkyl groups such as methyl groups and tert-butyl groups, nitro groups, nitrile groups, alkoxy groups, acyl groups, sulfone groups, hydroxy groups, and halogen atoms on the benzene ring. It may be. A polyfunctional styrene monomer can also be used as the styrene monomer. Preferred examples of the polyfunctional styrenic monomer include divinylbenzene. Styrene is particularly preferred as the styrenic monomer.
上記(メタ)アクリル系単量体としては、特に制限されず、従来公知の(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミド、(メタ)アクリロニトリルなどが挙げられ、これらの1種または2種以上を含むことが好ましい。(メタ)アクリル酸エステルとしては、多官能(メタ)アクリレートを用いることもできる。上記(メタ)アクリル系単量体としては、(メタ)アクリル酸が好ましい。 The above-mentioned (meth)acrylic monomer is not particularly limited, and includes conventionally known (meth)acrylic acid, (meth)acrylic acid ester, (meth)acrylamide, (meth)acrylonitrile, etc. It is preferable to include one species or two or more species. As the (meth)acrylic ester, a polyfunctional (meth)acrylate can also be used. As the (meth)acrylic monomer, (meth)acrylic acid is preferable.
上記重合体(B)は、上記他の構造単位として、スチレン系単量体由来の構造単位を有することが好ましく、特にスチレン由来の構造単位を有することが好ましい。スチレン系単量体由来の構造単位を有することにより、硬化時の硬化収縮を抑制できる傾向がある。 The polymer (B) preferably has a structural unit derived from a styrene monomer as the other structural unit, and particularly preferably has a structural unit derived from styrene. By having a structural unit derived from a styrene monomer, curing shrinkage during curing tends to be suppressed.
上述したように、上記重合体(B)は、構造単位として不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)と他の構造単位とを有する重合体であることが好ましく、該構造単位(U)と(メタ)アクリル系単量体由来の構造単位および/またはスチレン系単量体由来の構造単位とを有する重合体であることがより好ましく、該構造単位(U)とスチレン系単量体由来の構造単位とを有する重合体であることがさらに好ましく、該構造単位(U)とスチレン由来の構造単位とを有する重合体であることが特に好ましい。 As mentioned above, the polymer (B) preferably has as a structural unit a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester and another structural unit, and the structural unit It is more preferable that the polymer has (U) and a structural unit derived from a (meth)acrylic monomer and/or a structural unit derived from a styrene monomer. A polymer having a structural unit derived from styrene is more preferable, and a polymer having the structural unit (U) and a structural unit derived from styrene is particularly preferable.
上記重合体(B)における上記構造単位(U)の含有量は、重合体を構成する全構造単位100質量部に対して、20質量部以上、100質量部以下であることが好ましい。下限値は、機械的強度の観点から、25質量部以上がより好ましく、30質量部以上がさらに好ましい。上限値は硬化収縮抑制の観点から、80質量部以下がより好ましく、70質量部以下がさらに好ましい。すなわち、上記構造単位(U)の含有量は、重合体(B)の全構造単位100質量部に対して、好ましくは20~100質量部であり、25~80質量部であり、30~70質量部である。 The content of the structural unit (U) in the polymer (B) is preferably 20 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of all structural units constituting the polymer. From the viewpoint of mechanical strength, the lower limit is more preferably 25 parts by mass or more, and even more preferably 30 parts by mass or more. From the viewpoint of suppressing curing shrinkage, the upper limit is more preferably 80 parts by mass or less, and even more preferably 70 parts by mass or less. That is, the content of the structural unit (U) is preferably 20 to 100 parts by mass, 25 to 80 parts by mass, and 30 to 70 parts by mass, based on 100 parts by mass of all structural units of the polymer (B). Part by mass.
上記重合体(B)における構造単位(U)と上記他の構造単位との割合は、特に制限されないが、上記他の構造単位100質量部に対する構造単位(U)の割合が、20質量部以上、500質量部以下であることが好ましい。下限値は、機械的強度の観点から、25質量部以上がより好ましく、30質量部以上がさらに好ましい。上限値は硬化収縮抑制の観点から、400質量部以下がより好ましく、300質量部以下がさらに好ましい。すなわち、上記他の構造単位100質量部に対する構造単位(U)の割合は、好ましくは20~500質量部であり、より好ましくは25~400質量部であり、更に好ましくは30~300質量部である。 The ratio of the structural unit (U) and the other structural unit in the polymer (B) is not particularly limited, but the ratio of the structural unit (U) to 100 parts by mass of the other structural unit is 20 parts by mass or more. , preferably 500 parts by mass or less. From the viewpoint of mechanical strength, the lower limit is more preferably 25 parts by mass or more, and even more preferably 30 parts by mass or more. From the viewpoint of suppressing curing shrinkage, the upper limit is more preferably 400 parts by mass or less, and even more preferably 300 parts by mass or less. That is, the ratio of the structural unit (U) to 100 parts by mass of the above other structural units is preferably 20 to 500 parts by mass, more preferably 25 to 400 parts by mass, and even more preferably 30 to 300 parts by mass. be.
上記重合体(B)における上記スチレン系単量体由来の構造単位の含有量は、重合体を構成する全構造単位100質量部に対して、0~80質量部であることが好ましく、20~75質量部であることがより好ましく、30~70質量部であることが更に好ましい。 The content of the structural unit derived from the styrene monomer in the polymer (B) is preferably 0 to 80 parts by mass, and preferably 20 to 80 parts by mass, based on 100 parts by mass of all structural units constituting the polymer. It is more preferably 75 parts by mass, and even more preferably 30 to 70 parts by mass.
上記重合体(B)における上記(メタ)アクリル系単量体由来の構造単位の含有量は、重合体を構成する全構造単位100質量部に対して、0~80質量部であることが好ましく、20~75質量部であることがより好ましく、30~70質量部であることが更に好ましい。 The content of the structural unit derived from the (meth)acrylic monomer in the polymer (B) is preferably 0 to 80 parts by mass based on 100 parts by mass of all structural units constituting the polymer. , more preferably 20 to 75 parts by weight, and still more preferably 30 to 70 parts by weight.
上記重合体(B)における上記不飽和脂肪族ジカルボン酸由来の構造単位の含有量は、重合体を構成する全構造単位100質量部に対して、0~80質量部であることが好ましく、20~75質量部であることがより好ましく、30~70質量部であることが更に好ましい。 The content of the structural unit derived from the unsaturated aliphatic dicarboxylic acid in the polymer (B) is preferably 0 to 80 parts by mass, and 20 parts by mass, based on 100 parts by mass of all structural units constituting the polymer. The amount is more preferably 75 parts by weight, and even more preferably 30 to 70 parts by weight.
上記重合体(B)における上記不飽和脂肪族ジカルボン酸無水物由来の構造単位の含有量は、重合体を構成する全構造単位100質量部に対して、0~90質量部であることが好ましく、20~85質量部であることがより好ましく、30~80質量部であることが更に好ましい。 The content of the structural unit derived from the unsaturated aliphatic dicarboxylic acid anhydride in the polymer (B) is preferably 0 to 90 parts by mass based on 100 parts by mass of all structural units constituting the polymer. , more preferably 20 to 85 parts by weight, and still more preferably 30 to 80 parts by weight.
また、上記重合体(B)は、上記の構造単位(U)、不飽和脂肪族ジカルボン酸由来の構造単位、不飽和脂肪族ジカルボン酸無水物由来の構造単位、スチレン系単量体由来の構造単位、及び、(メタ)アクリル系単量体由来の構造単位以外の、別の構造単位を更に有していてもよい。
上記重合体(B)が、更に別の構造単位を有する場合、その含有量は、重合体を構成する全構造単位100質量部に対して、10質量部以下であることが好ましく、7質量部以下であることがより好ましく、5質量部以下であることが更に好ましい。
In addition, the above polymer (B) includes the above structural unit (U), a structural unit derived from an unsaturated aliphatic dicarboxylic acid, a structural unit derived from an unsaturated aliphatic dicarboxylic acid anhydride, and a structure derived from a styrene monomer. It may further have another structural unit other than the unit and the structural unit derived from the (meth)acrylic monomer.
When the polymer (B) has another structural unit, the content thereof is preferably 10 parts by mass or less, and 7 parts by mass, based on 100 parts by mass of all structural units constituting the polymer. It is more preferably at most 5 parts by mass, and even more preferably at most 5 parts by mass.
上記不飽和脂肪族ジカルボン酸モノエステルに由来する構造単位(U)は、カルボキシ基(COOH)および/またはカルボン酸塩(COOM)を有するが、カルボキシ基を有するものであることが好ましい。言い換えれば、重合体(B)に含まれる構造単位(U)において不飽和脂肪族ジカルボン酸のエステル化されていない方のカルボキシ基はカルボキシ基であるか、またはその塩であるが、好ましくはカルボキシ基である。上記重合体(B)は、構造単位(U)としてカルボキシ基を有する構造単位(U)を含むことが好ましい。重合体(B)における、カルボキシ基を有する構造単位(U)の割合は、特に制限されないが、重合体(B)に含まれる構造単位(U)全量100モルに対する割合で50モル以上が好ましく、80モル以上がより好ましく、100モルが特に好ましい。 The structural unit (U) derived from the unsaturated aliphatic dicarboxylic acid monoester has a carboxy group (COOH) and/or a carboxylate salt (COOM), and preferably has a carboxy group. In other words, the unesterified carboxy group of the unsaturated aliphatic dicarboxylic acid in the structural unit (U) contained in the polymer (B) is a carboxy group or a salt thereof, but preferably a carboxy It is the basis. The polymer (B) preferably contains a structural unit (U) having a carboxyl group as the structural unit (U). The proportion of the structural unit (U) having a carboxyl group in the polymer (B) is not particularly limited, but is preferably 50 moles or more based on 100 moles of the total amount of structural units (U) contained in the polymer (B). More preferably 80 moles or more, particularly preferably 100 moles.
上記重合体(B)のカルボキシ基当量は、特に制限されないが、100~500g/molであることが好ましい。下限値は、機械的強度の観点から、125g/mol以上がより好ましく、150g/mol以上がさらに好ましい。上限値は、硬化収縮抑制の観点から、450g/mol以下がより好ましく、400g/mol以下がさらに好ましい。
すなわち、上記重合体(B)のカルボキシ基当量は、より好ましくは125~450g/molであり、更に好ましくは150~400g/molである。
上記カルボキシ基当量は、JIS K 2501:2003に記載された方法に準拠した測定方法で得られた値を採用することができる。上記カルボキシ基当量は、具体的には下記の方法により求めることができ、下記の方法により得られた値を採用することが好ましい。
The carboxy group equivalent of the polymer (B) is not particularly limited, but is preferably 100 to 500 g/mol. From the viewpoint of mechanical strength, the lower limit is more preferably 125 g/mol or more, and even more preferably 150 g/mol or more. From the viewpoint of suppressing curing shrinkage, the upper limit is more preferably 450 g/mol or less, and even more preferably 400 g/mol or less.
That is, the carboxy group equivalent of the polymer (B) is more preferably 125 to 450 g/mol, and still more preferably 150 to 400 g/mol.
For the above-mentioned carboxyl group equivalent, a value obtained by a measuring method based on the method described in JIS K 2501:2003 can be adopted. Specifically, the carboxyl group equivalent can be determined by the method described below, and it is preferable to use the value obtained by the method described below.
(カルボキシ基当量の測定方法)
酸価を測定したい試料量を正確に秤量し、滴定溶剤に溶解してガラス電極および比較電極を浸漬させ、0.1mol/Lの2-プロパノール性水酸化カリウム標準液によって滴定する。電位差計又はpH計の読みと、これに対応する2-プロパノール性水酸化カリウム標準液の滴定量との関係を作図し、滴定曲線に得られた変曲点を終点とする。消費した0.1mol/Lの2-プロパノール性水酸化カリウム標準液の量によって全酸価を算出する。全酸価から単位質量当たりのカルボキシ基のモル数を算出し、その逆数をとることでカルボキシ基当量を求めることができる。
(Method for measuring carboxy group equivalent)
Accurately weigh the amount of sample whose acid value is to be measured, dissolve it in a titration solvent, immerse a glass electrode and a reference electrode, and titrate with a 0.1 mol/L 2-propanolic potassium hydroxide standard solution. Plot the relationship between the readings of the potentiometer or pH meter and the corresponding titration of the 2-propanolic potassium hydroxide standard solution, and use the inflection point obtained on the titration curve as the end point. The total acid value is calculated by the amount of 0.1 mol/L 2-propanolic potassium hydroxide standard solution consumed. The carboxy group equivalent can be determined by calculating the number of moles of carboxy groups per unit mass from the total acid value and taking the reciprocal.
上記重合体(B)の分子量は、特に制限されないが、機械的強度と溶剤溶解性の観点から、重量平均分子量が3000~120000であることが好ましい。機械的強度の観点から、重量平均分子量の下限値は、より好ましくは4000以上、さらに好ましくは5000以上であり、上限値は、溶剤溶解性の観点から、より好ましくは100000以下であり、さらに好ましくは80000以下である。すなわち、上記重合体(B)の重量平均分子量は、より好ましくは4000~100000であり、さらに好ましくは5000~80000である。
上記重量平均分子量はGPC(ゲル浸透クロマトグラフィー)法により測定することができ、ポリスチレンを標準物質とし、テトラヒドロフランを溶離液として、高速GPC装置HLC-8320GPC(東ソー社製)を用い、カラムとしてTSKgel SuperHZ-N(東ソー社製)を用いる、GPC(ゲル浸透クロマトグラフィー)法により測定することができる。
The molecular weight of the polymer (B) is not particularly limited, but from the viewpoint of mechanical strength and solvent solubility, the weight average molecular weight is preferably 3,000 to 120,000. From the viewpoint of mechanical strength, the lower limit of the weight average molecular weight is more preferably 4,000 or more, even more preferably 5,000 or more, and the upper limit is more preferably 100,000 or less, even more preferably from the viewpoint of solvent solubility. is less than 80,000. That is, the weight average molecular weight of the polymer (B) is more preferably 4,000 to 100,000, and even more preferably 5,000 to 80,000.
The above weight average molecular weight can be measured by GPC (gel permeation chromatography) using a high-speed GPC device HLC-8320GPC (manufactured by Tosoh Corporation) using polystyrene as a standard substance and tetrahydrofuran as an eluent, and using TSKgel SuperHZ as a column. -N (manufactured by Tosoh Corporation), it can be measured by GPC (gel permeation chromatography) method.
上記重合体(B)の製造方法は、特に制限されず、溶液重合、乳化重合、懸濁重合等の従来公知の重合方法により製造することができる。中でも溶液重合を用いる方法が好ましい。
例えば、少なくとも不飽和脂肪族ジカルボン酸モノエステルを含む単量体組成物を、ジオキサン等のエーテル類、トルエン等の炭化水素類、アセトン等のケトン類等の単一または混合溶媒中で、ラジカル重合開始剤を用いてラジカル重合反応させることにより、構造単位(U)を有する重合体(B)を得ることができる。
The method for producing the polymer (B) is not particularly limited, and it can be produced by conventionally known polymerization methods such as solution polymerization, emulsion polymerization, and suspension polymerization. Among these, a method using solution polymerization is preferred.
For example, a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid monoester is subjected to radical polymerization in a single or mixed solvent such as an ether such as dioxane, a hydrocarbon such as toluene, or a ketone such as acetone. A polymer (B) having a structural unit (U) can be obtained by carrying out a radical polymerization reaction using an initiator.
上記単量体組成物は、1種または2種以上の不飽和脂肪族ジカルボン酸モノエステルのみからなるものであってもよいし、さらに不飽和脂肪族ジカルボン酸無水物、不飽和脂肪族ジカルボン酸、(メタ)アクリル系単量体、スチレン系単量体等の上記他の構造単位の原料となる単量体を含むものであってもよい。 The monomer composition may consist only of one or more unsaturated aliphatic dicarboxylic acid monoesters, or may further include unsaturated aliphatic dicarboxylic anhydrides, unsaturated aliphatic dicarboxylic acid anhydrides, and unsaturated aliphatic dicarboxylic acid monoesters. , (meth)acrylic monomers, styrene monomers, and other monomers that serve as raw materials for the other structural units mentioned above.
上記重合方法において、少なくとも不飽和脂肪族ジカルボン酸モノエステルを含む単量体組成物の代わりに、少なくとも不飽和脂肪族ジカルボン酸無水物を含む単量体組成物を用い、上記と同様にして、ラジカル重合反応させることにより、不飽和脂肪族ジカルボン酸無水物に由来する構造単位を有する重合体(b)を得た後、該構造単位の一部または全部を構造単位(U)とするためにエステル化反応を行うことにより、重合体(B)を得ることができる。この場合における単量体組成物は、1種または2種以上の不飽和脂肪族ジカルボン酸無水物のみからなるものであってもよいし、さらに(メタ)アクリル系単量体、スチレン系単量体等の上記他の構造単位の原料となる単量体を含むものであってもよい。また上記エステル化反応としては、例えば、重合体(b)にアルコール、フェノール等のヒドロキシ基を含む化合物を反応させる方法が挙げられる。 In the above polymerization method, a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid anhydride is used instead of a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid monoester, and in the same manner as above, After obtaining a polymer (b) having a structural unit derived from an unsaturated aliphatic dicarboxylic acid anhydride by a radical polymerization reaction, in order to convert a part or all of the structural unit into a structural unit (U). Polymer (B) can be obtained by performing an esterification reaction. The monomer composition in this case may consist only of one or more unsaturated aliphatic dicarboxylic acid anhydrides, and may further include (meth)acrylic monomers, styrene monomers, etc. It may also contain monomers that serve as raw materials for the other structural units mentioned above, such as bodies. Examples of the esterification reaction include a method in which the polymer (b) is reacted with a compound containing a hydroxyl group such as alcohol or phenol.
また上記方法において、少なくとも不飽和脂肪族ジカルボン酸無水物を含む単量体組成物の代わりに、少なくとも不飽和脂肪族ジカルボン酸を含む単量体組成物を用い、上記と同様にして、ラジカル重合反応させることにより、不飽和脂肪族ジカルボン酸に由来する構造単位を有する重合体(b)を得た後、該構造単位の一部または全部を構造単位(U)とするためにエステル化反応を行うことによっても、重合体(B)を得ることができる。 Furthermore, in the above method, a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid is used instead of a monomer composition containing at least an unsaturated aliphatic dicarboxylic acid anhydride, and radical polymerization is carried out in the same manner as above. By reacting, a polymer (b) having a structural unit derived from an unsaturated aliphatic dicarboxylic acid is obtained, and then an esterification reaction is performed to convert some or all of the structural units into the structural unit (U). Polymer (B) can also be obtained by performing the following steps.
本開示の組成物に用いる重合体(B)として、市販品をそのまま、あるいは市販品の酸無水物をエステル化したものを用いることもできる。
例えば、重合体(B)の市販品としては、アラスター700(以上、荒川化学工業社製)、XIRAN1440、XIRAN2625、XIRAN17352、XIRAN3840(以上、POLYSCOPE社製)等が挙げられ、これらのうち1種または2種以上を好ましく用いることができる。
As the polymer (B) used in the composition of the present disclosure, a commercially available product may be used as it is, or a commercially available acid anhydride may be esterified.
For example, commercially available products of the polymer (B) include Alastair 700 (manufactured by Arakawa Chemical Industries, Ltd.), XIRAN1440, XIRAN2625, XIRAN17352, XIRAN3840 (manufactured by POLYSCOPE), and one or more of these Two or more types can be preferably used.
また、不飽和脂肪族ジカルボン酸の酸無水物由来の構造単位を含む重合体の市販品としては、XIRAN1000、XIRAN2000、XIRAN2500、XIRAN3000、XIRAN3500、XIRAN3600、XIRAN4000、XIRAN6000、XIRAN9000、EF10、EF30、EF40、EF41、EF61、EF80、(以上、POLYSCOPE社製)等が挙げられ、これらの1種または2種以上をモノエステル化したものを重合体(B)として用いることができる。 Commercially available polymers containing structural units derived from acid anhydrides of unsaturated aliphatic dicarboxylic acids include XIRAN1000, XIRAN2000, XIRAN2500, XIRAN3000, XIRAN3500, XIRAN3600, XIRAN4000, XIRAN6000, , EF30, EF40, Examples include EF41, EF61, EF80 (manufactured by POLYSCOPE), and monoesterification of one or more of these can be used as the polymer (B).
 <配合比等>
本開示の組成物において、上記アミノ基含有ポリシロキサン(A)と上記重合体(B)との配合比は、特に制限されないが、アミノ基含有ポリシロキサン(A)が有するアミノ基に対する、重合体(B)が有する構造単位(U)の割合が、モル数比で表して、1/3~3/1となるよう、アミノ基含有ポリシロキサン(A)と重合体(B)とを含むことが好ましい。上記モル数比は、より好ましくは1/2~2/1であり、さらに好ましくは1/1である。
また、アミノ基含有ポリシロキサン(A)が有するアミノ基に対する、重合体(B)が有するカルボキシ基の割合が、上記モル数比と同じであることもまた好ましい。
<Mixing ratio, etc.>
In the composition of the present disclosure, the blending ratio of the amino group-containing polysiloxane (A) and the polymer (B) is not particularly limited; (B) contains the amino group-containing polysiloxane (A) and the polymer (B) so that the proportion of the structural unit (U) in the molar ratio is 1/3 to 3/1. is preferred. The molar ratio is more preferably 1/2 to 2/1, and even more preferably 1/1.
Moreover, it is also preferable that the ratio of the carboxy groups possessed by the polymer (B) to the amino groups possessed by the amino group-containing polysiloxane (A) is the same as the above molar ratio.
本開示の組成物における、上記アミノ基含有ポリシロキサン(A)および上記重合体(B)の合計含有量は、特に制限されないが、本開示の組成物100質量部に対し、5~100質量部であることが好ましく、10~80質量部であることがより好ましく、さらに好ましくは15~70質量部であり、特に好ましくは20~60質量部である。 The total content of the amino group-containing polysiloxane (A) and the polymer (B) in the composition of the present disclosure is not particularly limited, but is 5 to 100 parts by mass based on 100 parts by mass of the composition of the present disclosure. It is preferably 10 to 80 parts by weight, still more preferably 15 to 70 parts by weight, and particularly preferably 20 to 60 parts by weight.
本開示の組成物における、上記アミノ基含有ポリシロキサン(A)の含有量は、特に制限されないが、本開示の組成物100質量部に対し、1~70質量部であることが好ましい。より好ましくは5~60質量部であり、さらに好ましくは10~50質量部である。 The content of the amino group-containing polysiloxane (A) in the composition of the present disclosure is not particularly limited, but is preferably from 1 to 70 parts by mass based on 100 parts by mass of the composition of the present disclosure. The amount is more preferably 5 to 60 parts by weight, and even more preferably 10 to 50 parts by weight.
 <その他の成分>
本開示の組成物は、上記アミノ基含有ポリシロキサン(A)、上記重合体(B)の他に、溶媒を含んでもよい。
上記溶媒としては、特に制限されない。例えば、水、アルコール類、グリコール類、グリコール誘導体類、エーテル類、エステル類、ケトン類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルフォキシド、スルホラン、γ-ブチロラクトン等の極性溶媒;炭化水素系溶媒が挙げられる。これらの1種または2種以上を用いることができる。中でも極性溶媒と炭化水素系溶媒とを含むことが好ましい。
<Other ingredients>
The composition of the present disclosure may contain a solvent in addition to the amino group-containing polysiloxane (A) and the polymer (B).
The above solvent is not particularly limited. For example, polar substances such as water, alcohols, glycols, glycol derivatives, ethers, esters, ketones, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, γ-butyrolactone, etc. Solvent: Examples include hydrocarbon solvents. One or more of these can be used. Among these, it is preferable to include a polar solvent and a hydrocarbon solvent.
上記極性溶媒の中でも、アルコール類、グリコール類、グリコール誘導体類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルフォキシド、スルホラン、γ-ブチロラクトンが好ましく、グリコール誘導体類がより好ましい。 Among the above polar solvents, alcohols, glycols, glycol derivatives, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, and γ-butyrolactone are preferred, and glycol derivatives are more preferred.
上記アルコール類としては、特に制限されないが、メタノール、エタノール、イソプロピルアルコール、1-プロパノール、1-ブタノール、シクロヘキサノール等が好ましい。上記グリコール類としては、特に制限されないが、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、グリセリン等が好ましい。
上記グリコール誘導体類としては、特に制限されないが、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のグリコールモノアルキルエーテル;エチレングリコールモノアセテート、プロピレングリコールモノアセテート等のグリコールモノアセテート;エチレングリコールモノメチルエーテルアセテート、プロピレングルコールモノメチルエーテルアセテート等が挙げられる。上記グリコール誘導体類の中でも、グリコールモノアルキルエーテルが好ましい。
The alcohols mentioned above are not particularly limited, but methanol, ethanol, isopropyl alcohol, 1-propanol, 1-butanol, cyclohexanol and the like are preferred. The above-mentioned glycols are not particularly limited, but ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, glycerin, etc. are preferable.
The above glycol derivatives are not particularly limited, but include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether , glycol monoalkyl ethers such as propylene glycol monobutyl ether; glycol monoacetates such as ethylene glycol monoacetate and propylene glycol monoacetate; ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate. Among the above glycol derivatives, glycol monoalkyl ethers are preferred.
上記炭化水素系溶媒としては、特に制限されないが、例えば、1-ヘキサン、1-ヘプタン、シクロヘキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素;リモネン等のテルペン類等が挙げられる。これらの中でも芳香族炭化水素、テルペン類が好ましく、テルペン類がより好ましい。 The hydrocarbon solvent is not particularly limited, but includes, for example, aliphatic hydrocarbons such as 1-hexane, 1-heptane, and cyclohexane; aromatic hydrocarbons such as toluene and xylene; and terpenes such as limonene. . Among these, aromatic hydrocarbons and terpenes are preferred, and terpenes are more preferred.
本開示の組成物における、上記溶媒の含有量は、特に制限されないが、例えば、本開示の組成物中の上記アミノ基含有ポリシロキサン(A)および上記重合体(B)の合計含有量100質量部に対する割合で、25~400質量部であることが好ましい。より好ましくは50質量部以上、さらに好ましくは70質量部以上である。上限は250質量部以下がより好ましく、さらに好ましくは150質量部以下である。すなわち、上記溶媒の含有量は、上記アミノ基含有ポリシロキサン(A)および上記重合体(B)の合計含有量100質量部に対して、より好ましくは50~250質量部であり、さらに好ましくは70~150質量部である。本開示の組成物が上記範囲で溶媒を含有することにより、本開示の組成物を塗布用組成物として用いたときに、膜厚均一性に優れる膜が得られ易くなる。 The content of the solvent in the composition of the present disclosure is not particularly limited, but for example, the total content of the amino group-containing polysiloxane (A) and the polymer (B) in the composition of the present disclosure is 100% by mass. The amount is preferably 25 to 400 parts by mass. More preferably, it is 50 parts by mass or more, and still more preferably 70 parts by mass or more. The upper limit is more preferably 250 parts by mass or less, and even more preferably 150 parts by mass or less. That is, the content of the solvent is more preferably 50 to 250 parts by mass, and even more preferably The amount is 70 to 150 parts by mass. When the composition of the present disclosure contains a solvent within the above range, when the composition of the present disclosure is used as a coating composition, a film with excellent film thickness uniformity can be easily obtained.
本開示の組成物は、無機粒子を含有することができる。無機粒子を含有することにより、機械的強度が向上した硬化物が得られる傾向がある。
上記無機粒子は、誘電率が低いものであることが好ましく、10GHzにおける誘電率が4.0以下であることが好ましい。より好ましくは3.5以下であり、さらに好ましくは3.0以下である。下限は、特に制限されないが、例えば0.5以上である。すなわち、上記無機粒子の10GHzにおける誘電率は、好ましくは0.5~4.0であり、より好ましくは0.5~3.5であり、さらに好ましくは0.5~3.0である。
上記誘電率は、以下のようにして求めることができる。
Compositions of the present disclosure can contain inorganic particles. By containing inorganic particles, a cured product with improved mechanical strength tends to be obtained.
The inorganic particles preferably have a low dielectric constant, and preferably have a dielectric constant of 4.0 or less at 10 GHz. More preferably it is 3.5 or less, still more preferably 3.0 or less. The lower limit is not particularly limited, but is, for example, 0.5 or more. That is, the dielectric constant of the inorganic particles at 10 GHz is preferably 0.5 to 4.0, more preferably 0.5 to 3.5, and even more preferably 0.5 to 3.0.
The above dielectric constant can be determined as follows.
(無機粒子の誘電率の測定方法)
無機粒子を充填したセルを測定試料として、空洞共振器摂動法を用いて、周波数10GHzにて誘電率を測定する。測定時の雰囲気は温度25℃、湿度50%である。上記測定試料は、ポリテトラフルオロエチレン製チューブを長さ10cmに切断し、片側にシールテープを3~5mm詰め込み密栓したセルを作成し、この中に無機粒子を充填したものである。無機粒子の真密度、重量と体積より、無機粒子の充填率を計算し、無機粒子を充填しないセルを用いて測定した結果をブランクとして、無機粒子の誘電率を求める。
(Method for measuring dielectric constant of inorganic particles)
Using a cell filled with inorganic particles as a measurement sample, the dielectric constant is measured at a frequency of 10 GHz using the cavity resonator perturbation method. The atmosphere at the time of measurement was a temperature of 25° C. and a humidity of 50%. The above measurement sample was obtained by cutting a polytetrafluoroethylene tube into a length of 10 cm, filling one side with 3 to 5 mm of sealing tape to create a tightly sealed cell, and filling the cell with inorganic particles. The filling rate of the inorganic particles is calculated from the true density, weight, and volume of the inorganic particles, and the dielectric constant of the inorganic particles is determined using the measurement result using a cell not filled with inorganic particles as a blank.
上記無機粒子は、X線回折学的に結晶性であってもよいし、非晶質であってもよいが、非晶質であることが好ましい。上記無機粒子の構造は、特に制限されず、多孔質構造であってもよいし、緻密な構造であってもよい。また中空形状であってもよい。上記無機粒子の形状は、特に限定されず、不定形、粒状、板状、柱状、針状等のいずれであってもよいが、粒状が好ましく、粒状の中でも球状が好ましい。なお、上記粒状とは、アスペクト比が1.5以下の偏りのない形状を意味する。 The inorganic particles may be crystalline or amorphous in terms of X-ray diffraction, but are preferably amorphous. The structure of the inorganic particles is not particularly limited, and may be a porous structure or a dense structure. It may also have a hollow shape. The shape of the inorganic particles is not particularly limited and may be amorphous, granular, plate-like, columnar, acicular, etc., but granular is preferable, and among granules, spherical is preferable. Note that the above-mentioned granular shape means a uniform shape with an aspect ratio of 1.5 or less.
上記無機粒子は、表面に有機基が導入されたものが好ましい。有機基が導入されることにより、本開示の組成物中における無機粒子の分散性が優れたものとなる傾向がある。上記有機基としては、特に制限されないが、アルキル基、アリール基等の炭化水素基、(メタ)アクリル基、ビニル基、アミノ基等が挙げられ、なかでも、アリール基、(メタ)アクリル基が好ましい。 The inorganic particles preferably have organic groups introduced onto their surfaces. By introducing an organic group, the dispersibility of the inorganic particles in the composition of the present disclosure tends to be excellent. The above-mentioned organic groups include, but are not particularly limited to, hydrocarbon groups such as alkyl groups and aryl groups, (meth)acrylic groups, vinyl groups, and amino groups, among which aryl groups and (meth)acrylic groups are mentioned. preferable.
上記無機粒子の表面に有機基を導入する方法としては、特に制限されないが、上記有機基を有するシランカップリング剤、リン酸基を有する化合物、アルコールを、無機粒子の表面に反応させる方法、好ましくは、無機粒子の表面に存在する水酸基やアルコキシ基に反応させる方法が挙げられる。 The method for introducing an organic group onto the surface of the inorganic particles is not particularly limited, but a method of reacting the silane coupling agent having the organic group, a compound having a phosphoric acid group, or alcohol onto the surface of the inorganic particles is preferred. Examples include a method of reacting with hydroxyl groups or alkoxy groups present on the surface of inorganic particles.
上記無機粒子の平均粒子径は、特に制限されないが、1nm~1000nmの範囲であることが好ましい。上記無機粒子の平均粒子径が上述の範囲であると、誘電率等の物性の均質性に優れる薄膜が得られ易い傾向がある。上記無機粒子の平均粒子径は、100nm以下であることがより好ましく、50nm以下であることがさらに好ましく、20nm以下であることが特に好ましい。下限値は5nm以上であることがより好ましい。すなわち、上記無機粒子の平均粒子径は、より好ましくは5~100nmであり、さらに好ましくは5~50nmであり、特に好ましくは5~20nmである。 The average particle diameter of the inorganic particles is not particularly limited, but is preferably in the range of 1 nm to 1000 nm. When the average particle diameter of the inorganic particles is within the above range, a thin film with excellent homogeneity of physical properties such as dielectric constant tends to be easily obtained. The average particle diameter of the inorganic particles is more preferably 100 nm or less, even more preferably 50 nm or less, and particularly preferably 20 nm or less. More preferably, the lower limit is 5 nm or more. That is, the average particle diameter of the inorganic particles is more preferably 5 to 100 nm, still more preferably 5 to 50 nm, particularly preferably 5 to 20 nm.
上記平均粒子径は、上記無機粒子をSEM(倍率1000~10万倍、好ましくは1万倍)で観察し、得られた画像を画像解析することにより、約10~1000個の個々の粒子(一次粒子)の粒子径(円面積相当径)を求め、個数基準の粒度分布における50%粒径を評価することにより求めることができる。上記画像解析には、公知の画像解析ソフト(例えば、マウンテック社製Mac-View)を用いることができる。 The above-mentioned average particle diameter is determined by observing the above-mentioned inorganic particles with a SEM (magnification of 1000 to 100,000 times, preferably 10,000 times) and analyzing the obtained image to determine the size of about 10 to 1000 individual particles ( It can be determined by determining the particle diameter (diameter equivalent to circular area) of the primary particles) and evaluating the 50% particle diameter in the number-based particle size distribution. For the above-mentioned image analysis, known image analysis software (for example, Mac-View manufactured by Mountech) can be used.
上記無機粒子を構成する材質としては、例えば、無機酸化物、無機窒化物、無機炭化物、無機硫化物、無機水酸化物等が挙げられる。上記無機粒子は、これらの1種の材質から構成されていてもよいし、2種以上を含んでいてもよい。絶縁性に優れる硬化物が得られ易い観点から、無機粒子を構成する材質としては、シリカ、窒化ホウ素、アルミナ、チタニア、ジルコニアが好ましく、シリカ、アルミナ等がより好ましく、シリカが特に好ましい。シリカとしては結晶性シリカであってもよいし、非晶質シリカであってもよいが、非晶質シリカが好ましい。 Examples of the material constituting the inorganic particles include inorganic oxides, inorganic nitrides, inorganic carbides, inorganic sulfides, and inorganic hydroxides. The above-mentioned inorganic particles may be composed of one kind of these materials, or may contain two or more kinds. From the viewpoint of easily obtaining a cured product with excellent insulation properties, the material constituting the inorganic particles is preferably silica, boron nitride, alumina, titania, or zirconia, more preferably silica or alumina, and particularly preferably silica. The silica may be crystalline silica or amorphous silica, but amorphous silica is preferred.
上記無機粒子の含有量は、特に限定されないが、例えば、機械的強度が向上した硬化物が得られやすいという観点からは、上記無機粒子の含有量は、本開示の組成物中の上記アミノ基含有ポリシロキサン(A)および上記重合体(B)の合計含有量100質量部に対する割合で、5~100質量部であることが好ましい。より好ましくは15質量部以上、さらに好ましくは25質量部以上である。上限は60質量部以下がより好ましく、さらに好ましくは50質量部以下である。すなわち、上記無機粒子の含有量は、上記アミノ基含有ポリシロキサン(A)および上記重合体(B)の合計含有量100質量部に対して、より好ましくは15~60質量部であり、さらに好ましくは25~50質量部である。 The content of the inorganic particles is not particularly limited, but for example, from the viewpoint of easily obtaining a cured product with improved mechanical strength, the content of the inorganic particles is determined by the amino groups in the composition of the present disclosure. The content is preferably 5 to 100 parts by weight based on 100 parts by weight of the total content of the polysiloxane (A) and the polymer (B). More preferably it is 15 parts by mass or more, and even more preferably 25 parts by mass or more. The upper limit is more preferably 60 parts by mass or less, and even more preferably 50 parts by mass or less. That is, the content of the inorganic particles is more preferably 15 to 60 parts by mass, and even more preferably is 25 to 50 parts by mass.
本開示の組成物は、酸化防止剤を含有していてもよい。酸化防止剤としては、特に限定されず、従来公知の酸化防止剤を用いることができ、例えば、フェノール系酸化防止剤、チオエーテル系酸化防止剤、ホスファイト系酸化防止剤等が挙げられる。酸化防止性能をより効果的に発揮するために、フェノール系酸化防止剤とチオエーテル系酸化防止剤とを併用することが好ましい。
本開示の組成物が酸化防止剤を含む場合、酸化防止剤の含有量は、本開示の組成物中の上記アミノ基含有ポリシロキサン(A)および上記重合体(B)の合計含有量100質量部に対して、0.1~5質量部であることが好ましく、より好ましくは0.5~2質量部である。
Compositions of the present disclosure may also contain antioxidants. The antioxidant is not particularly limited, and conventionally known antioxidants can be used, such as phenolic antioxidants, thioether antioxidants, phosphite antioxidants, and the like. In order to more effectively exhibit antioxidant performance, it is preferable to use a phenolic antioxidant and a thioether antioxidant in combination.
When the composition of the present disclosure contains an antioxidant, the content of the antioxidant is equal to the total content of the amino group-containing polysiloxane (A) and the polymer (B) in the composition of the present disclosure. The amount is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 2 parts by weight.
本開示の組成物は、加工性や安定性を高めるために増粘剤を含有していてもよい。増粘剤としては、有機溶剤に可溶もしくは分散する高粘度ポリマーや、粘土を用いることができ、例えば、ポリエステル系増粘剤、ポリアミド系増粘剤、ポリイミド系増粘剤、ポリアミック酸(ポリアミド酸)系増粘剤、モンモリロナイト粘土系増粘剤等が挙げられる。中でも、加熱後の硬化物の耐熱性および誘電率を維持もしくは低減できるという観点から、ポリイミド系増粘剤、ポリアミック酸系増粘剤が好ましい。
本開示の組成物が増粘剤を含む場合、増粘剤の含有量は、本開示の組成物中の上記アミノ基含有ポリシロキサン(A)および上記重合体(B)の合計含有量100質量部に対して、好ましくは1~40質量部であり、より好ましくは2.5~35質量部であり、更に好ましくは5~30質量部である。
The composition of the present disclosure may contain a thickener to improve processability and stability. As the thickener, high viscosity polymers or clays that are soluble or dispersed in organic solvents can be used, such as polyester thickeners, polyamide thickeners, polyimide thickeners, polyamic acids (polyamic acid Examples include acid)-based thickeners, montmorillonite clay-based thickeners, and the like. Among these, polyimide thickeners and polyamic acid thickeners are preferred from the viewpoint of maintaining or reducing the heat resistance and dielectric constant of the cured product after heating.
When the composition of the present disclosure contains a thickener, the content of the thickener is equal to the total content of the amino group-containing polysiloxane (A) and the polymer (B) in the composition of the present disclosure. The amount is preferably 1 to 40 parts by weight, more preferably 2.5 to 35 parts by weight, and still more preferably 5 to 30 parts by weight.
本開示の組成物は、上述した成分以外に、本発明の効果を損なわない範囲において、硬化促進剤等の添加剤を含有していてもよい。 In addition to the above-mentioned components, the composition of the present disclosure may contain additives such as a curing accelerator within a range that does not impair the effects of the present invention.
[本開示の組成物の調製方法]
本開示の組成物の調製方法は、特に制限されず、各成分を従来公知の方法を用いて混合することにより調製することができる。例えば、上記アミノ基含有ポリシロキサン(A)と上記重合体(B)とを所定の割合で混合することにより、本開示の組成物が得られるが、上記アミノ基含有ポリシロキサンが液状である場合は、そのまま混合に供してもよいし、上述した好ましい溶媒に溶解した溶液の形態で混合に供してもよい。上記アミノ基含有ポリシロキサンが固体である場合は、上述した好ましい溶媒に溶解した溶液の形態で混合に供することが好ましい。上記重合体(B)についても同様である。上記混合する方法は、特に限定されず、攪拌等の従来公知の混合方法を採用し得る。
[Method for preparing the composition of the present disclosure]
The method for preparing the composition of the present disclosure is not particularly limited, and the composition can be prepared by mixing each component using a conventionally known method. For example, the composition of the present disclosure can be obtained by mixing the amino group-containing polysiloxane (A) and the polymer (B) in a predetermined ratio, but when the amino group-containing polysiloxane is liquid; may be used for mixing as is, or may be used for mixing in the form of a solution dissolved in the above-mentioned preferred solvent. When the amino group-containing polysiloxane is a solid, it is preferably mixed in the form of a solution dissolved in the above-mentioned preferred solvent. The same applies to the above polymer (B). The above-mentioned mixing method is not particularly limited, and conventionally known mixing methods such as stirring may be employed.
本開示の組成物が上記無機粒子を含む形態である場合、無機粒子は溶媒に分散した分散体の形態で、上記アミノ基含有ポリシロキサン(A)と上記重合体(B)との混合物に混合することが好ましい。上記無機粒子を分散する溶媒としては上述した好ましい溶媒を用いることが好ましい。上記無機粒子を分散するにあたり、分散方法は、特に制限されず、例えば、溶融混錬法、ミキサー、ボールミル、ジェットミル、ディスパー、サンドミル、ロールミル、ポットミル、ペイントシェーカー等を用いる方法等の、従来公知の混合、分散方法が挙げられる。必要に応じて分散剤等を適宜添加してもよい。本開示の組成物が酸化防止剤、硬化促進剤等の添加剤を含む形態である場合、これらの添加剤は直接または溶媒に溶解した溶液として、上記アミノ基含有ポリシロキサン(A)と上記重合体(B)とを混合する際または混合後に混合すればよい。 When the composition of the present disclosure is in a form containing the above inorganic particles, the inorganic particles are mixed in the mixture of the above amino group-containing polysiloxane (A) and the above polymer (B) in the form of a dispersion dispersed in a solvent. It is preferable to do so. As the solvent for dispersing the inorganic particles, it is preferable to use the above-mentioned preferred solvents. In dispersing the above-mentioned inorganic particles, the dispersion method is not particularly limited, and for example, conventionally known methods such as a melt kneading method, a method using a mixer, a ball mill, a jet mill, a disper, a sand mill, a roll mill, a pot mill, a paint shaker, etc. Examples include mixing and dispersing methods. A dispersant or the like may be added as appropriate. When the composition of the present disclosure contains additives such as an antioxidant and a curing accelerator, these additives are added directly or as a solution dissolved in a solvent to the amino group-containing polysiloxane (A) and the polymer. What is necessary is just to mix it at the time of mixing with union (B), or after mixing it.
上述した方法により、本開示の組成物を調製することができる。
本開示の組成物の調製において、さらに、脱泡処理を行うことが好ましい。脱泡処理を行うことにより、本開示の組成物を硬化した硬化物への気泡の混入を抑制することができる。また、上記調製時に混入した異物等を除去する目的で、例えば、孔径0.2~1μm程度のフィルター等を用いてろ過することが好ましい。ろ過を行うことにより、本開示の組成物、および該組成物を用いて得られた硬化物における、異物による品質の低下を抑制することができる。
Compositions of the present disclosure can be prepared by the methods described above.
In preparing the composition of the present disclosure, it is preferable to further perform a defoaming treatment. By performing the defoaming treatment, it is possible to suppress the incorporation of air bubbles into a cured product obtained by curing the composition of the present disclosure. Further, in order to remove foreign substances mixed in during the above preparation, it is preferable to filter using a filter with a pore size of about 0.2 to 1 μm, for example. By performing filtration, it is possible to suppress deterioration in quality due to foreign substances in the composition of the present disclosure and the cured product obtained using the composition.
[本開示の硬化物、絶縁膜]
本開示の組成物は、硬化性組成物として用いることが好ましい。
本開示の硬化物は、上述した本開示の組成物を硬化した硬化物である。本開示の硬化物の製造方法は、本開示の組成物を硬化して硬化物を製造する方法であれば、特に制限はないが、以下の工程1および工程2をこの順で含むことが好ましい。
工程1:本開示の組成物を基材に塗布する塗布工程
工程2:塗布された組成物を硬化する硬化工程
[Cured product and insulating film of the present disclosure]
The composition of the present disclosure is preferably used as a curable composition.
The cured product of the present disclosure is a cured product obtained by curing the composition of the present disclosure described above. The method for producing a cured product of the present disclosure is not particularly limited as long as it is a method of producing a cured product by curing the composition of the present disclosure, but it preferably includes the following steps 1 and 2 in this order. .
Step 1: Coating step of applying the composition of the present disclosure to a substrate Step 2: Curing step of curing the applied composition
上記工程1における、基材への塗布方法は特に限定されない。例えば、スピンコート法、スリットコート法、スプレー法、ロールコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、ディップ法等の方法を用いることができる。塗布膜の厚さは、特に制限されないが、10~250μmであることが好ましい。より好ましくは20μm以上であり、さらに好ましくは30μm以上である。上限はより好ましくは200μm以下であり、さらに好ましくは150μm以下である。すなわち、塗布膜の厚さは、より好ましくは20~200μmであり、さらに好ましくは30~150μmである。塗布膜の厚さは、後述する硬化物としての好ましい膜厚となるよう、調整することが好ましい。 The method of coating the base material in step 1 is not particularly limited. For example, methods such as a spin coating method, a slit coating method, a spray method, a roll coating method, an inkjet method, a screen printing method, a gravure printing method, a flexo printing method, a dipping method, etc. can be used. The thickness of the coating film is not particularly limited, but is preferably 10 to 250 μm. More preferably, it is 20 μm or more, and still more preferably 30 μm or more. The upper limit is more preferably 200 μm or less, still more preferably 150 μm or less. That is, the thickness of the coating film is more preferably 20 to 200 μm, and even more preferably 30 to 150 μm. It is preferable to adjust the thickness of the coating film so that it becomes a preferable film thickness as a cured product, which will be described later.
上記基材としては、金属基材、シリコン・無機基材、複合材料などが挙げられる。上記金属基材としては、表面がアルミニウム、銅、金、銀、チタン、モリブデンなどの金属を主成分とする基材が挙げられる。上記シリコン・無機基材としては、例えば、シリコン、シリコンナイトライド、酸化シリコン等のシリコン関連材料、ガラス、石英等の無機材料を主成分とする基材が挙げられる。上記複合基材としては、樹脂、シリコン、シリコンナイトライド、酸化シリコン、ガラス、石英等よりなる基材の表面の一部または全部に金属の薄膜等が設けられた基材が挙げられる。上記基材の形状は、特に制限されない。例えば、板状、線状等が好ましい。上記基材の中でも、本開示の硬化物との密着性に優れる硬化物が得られる傾向がある観点から、シリコン・無機基材、および金属基材が好ましく、金属基材がより好ましい。 Examples of the base material include metal base materials, silicon/inorganic base materials, and composite materials. Examples of the metal base material include base materials whose surface is mainly composed of metal such as aluminum, copper, gold, silver, titanium, and molybdenum. Examples of the above-mentioned silicon/inorganic base material include base materials whose main components are silicon-related materials such as silicon, silicon nitride, and silicon oxide, and inorganic materials such as glass and quartz. Examples of the above-mentioned composite base material include a base material made of resin, silicon, silicon nitride, silicon oxide, glass, quartz, etc., and a thin metal film or the like is provided on a part or all of the surface of the base material. The shape of the base material is not particularly limited. For example, a plate shape, a linear shape, etc. are preferable. Among the above-mentioned base materials, silicon/inorganic base materials and metal base materials are preferred, and metal base materials are more preferred, from the viewpoint that a cured product with excellent adhesion to the cured product of the present disclosure tends to be obtained.
上記工程2における、硬化する方法は、加熱による方法が好ましい。加熱温度は、基材の種類、加熱時間等により適宜選択することができるが、通常、100~400℃の範囲であることが好ましく、150~350℃の範囲であることがより好ましい。上記加熱時間は基材の種類、加熱温度等により適宜選択することができるが、通常、1分~10時間であることが好ましく、10分以上がより好ましく、30分以上がさらに好ましい。上限は5時間以下がより好ましい。また加熱は所定の昇温速度で連続的に昇温し所定の温度で加熱保持する方法で行ってもよいし、例えば、100℃以上200℃未満の温度で所定時間、第一の加熱を行い、200℃以上300℃未満の温度で所定時間、第二の加熱を行い、さらに300℃以上400℃未満の温度で所定時間、第三の加熱を行うといったように、加熱温度を段階的に上げていく方法を採用することもできる。加熱する際の雰囲気は特に制限されないが、窒素ガス雰囲気などの不活性雰囲気あるいは空気等の酸化性雰囲気で行うことが好ましい。 The curing method in step 2 is preferably a heating method. The heating temperature can be appropriately selected depending on the type of substrate, heating time, etc., but is usually preferably in the range of 100 to 400°C, more preferably in the range of 150 to 350°C. The heating time can be appropriately selected depending on the type of substrate, heating temperature, etc., but is usually preferably 1 minute to 10 hours, more preferably 10 minutes or more, and even more preferably 30 minutes or more. The upper limit is more preferably 5 hours or less. Heating may also be carried out by continuously increasing the temperature at a predetermined rate and maintaining the temperature at a predetermined temperature. For example, the first heating may be performed at a temperature of 100°C or more and less than 200°C for a predetermined period of time. , the heating temperature is increased stepwise, such as performing second heating at a temperature of 200°C or more and less than 300°C for a predetermined time, and then performing third heating at a temperature of 300°C or more and less than 400°C for a predetermined time. You can also adopt the following method. The atmosphere for heating is not particularly limited, but it is preferable to conduct the heating in an inert atmosphere such as a nitrogen gas atmosphere or an oxidizing atmosphere such as air.
上記工程2は、通常、上記工程1の後に行うことが好ましいが、工程1と同時に行う方法も採用できる。該方法は、例えば、工程1において基材を加熱しながら塗布を行うことにより達成される。 Although it is usually preferable that the step 2 is performed after the step 1, a method of performing the step 2 simultaneously with the step 1 can also be adopted. This method is achieved, for example, by applying the coating while heating the base material in step 1.
本開示の組成物が溶媒を含む場合、下記工程3を行うことが好ましい。
工程3:塗布された組成物から溶媒の一部または全部を除去する溶媒除去工程
上記溶媒除去工程において、溶媒を除去する方法としては、加熱による方法、減圧(脱気)による方法またはこれらを組み合わせた方法が好ましく採用される。よって上記溶媒除去工程においては、基材に塗布された組成物の膜から、加熱および/または減圧(脱気)等により、溶媒の一部または全部が留去される。溶媒除去工程における加熱温度は、好ましくは50~150℃であり、より好ましくは120℃以下、さらに好ましくは100℃未満である。加熱時間は好ましくは30秒~2時間であり、より好ましくは10分~1時間である。
When the composition of the present disclosure contains a solvent, it is preferable to perform Step 3 below.
Step 3: Solvent removal step in which part or all of the solvent is removed from the applied composition In the above solvent removal step, the solvent may be removed by heating, reducing pressure (degassing), or a combination thereof. A method is preferably adopted. Therefore, in the solvent removal step, part or all of the solvent is distilled off from the film of the composition applied to the base material by heating and/or reduced pressure (degassing). The heating temperature in the solvent removal step is preferably 50 to 150°C, more preferably 120°C or less, and even more preferably less than 100°C. The heating time is preferably 30 seconds to 2 hours, more preferably 10 minutes to 1 hour.
上記工程3は、上記工程1の後に行うことが好ましいが、工程1と同時に行うこともできる。また上記工程3は、上記工程2の前に行うことが好ましいが、工程2と同時に行うこともできる。上記工程1を行った後、基材および基材に塗布された組成物を加熱し、工程2および3を連続的に行う方法が好ましい。以上のようにして、種々の基材の表面および/または内部に、本開示の組成物を硬化した硬化物が形成される。 The above step 3 is preferably carried out after the above step 1, but it can also be carried out simultaneously with the above step 1. Moreover, although it is preferable that the above step 3 is performed before the above step 2, it can also be performed simultaneously with the above step 2. A preferred method is to perform Step 1 above, then heat the substrate and the composition applied to the substrate, and then perform Steps 2 and 3 continuously. As described above, a cured product obtained by curing the composition of the present disclosure is formed on the surface and/or inside of various substrates.
上記硬化物の膜厚は、特に制限されないが、5~500μmであることが好ましい。より好ましくは10μm以上であり、さらに好ましくは15μm以上である。上限はより好ましくは400μm以下であり、さらに好ましくは300μm以下である。すなわち、上記硬化物の膜厚は、より好ましくは10~400μmであり、さらに好ましくは15~300μmである。
上記膜厚は、マイクロメータを使用して測定することができる。
The thickness of the cured product is not particularly limited, but is preferably 5 to 500 μm. More preferably, it is 10 μm or more, and still more preferably 15 μm or more. The upper limit is more preferably 400 μm or less, still more preferably 300 μm or less. That is, the film thickness of the cured product is more preferably 10 to 400 μm, and even more preferably 15 to 300 μm.
The above film thickness can be measured using a micrometer.
上記硬化物の誘電率は、特に制限されないが、10GHzでの誘電率が、2.0以上、2.9以下であることが好ましい。より好ましくは2.7以下であり、さらに好ましくは2.6以下であり、特に好ましくは2.5以下である。下限はより好ましくは2.1以上である。すなわち、上記硬化物の10GHzでの誘電率は、より好ましくは2.1~2.7であり、さらに好ましくは2.1~2.6であり、特に好ましくは2.1~2.5である。
上記誘電率は、ネットワークアナライザー E8361A(Agilent Technologies社製)を使用し、空洞共振器摂動法で、温度25℃、湿度50%、周波数10GHzの条件で測定することができ、該方法で得られた値を採用することが好ましい。
The dielectric constant of the cured product is not particularly limited, but the dielectric constant at 10 GHz is preferably 2.0 or more and 2.9 or less. It is more preferably 2.7 or less, still more preferably 2.6 or less, particularly preferably 2.5 or less. The lower limit is more preferably 2.1 or more. That is, the dielectric constant of the cured product at 10 GHz is more preferably 2.1 to 2.7, still more preferably 2.1 to 2.6, particularly preferably 2.1 to 2.5. be.
The above dielectric constant can be measured by the cavity resonator perturbation method using network analyzer E8361A (manufactured by Agilent Technologies) under the conditions of temperature 25 ° C., humidity 50%, and frequency 10 GHz. It is preferable to adopt the value.
上記硬化物は耐熱性に優れる。例えば、空気中において、重量減少が開始する温度が高いことが好ましい。具体的には、硬化物を空気雰囲気下で室温から昇温速度10℃/分で昇温した時に重量減少が5質量%となる温度を5%重量減少温度と称する。上記硬化物の該5%重量減少温度は340℃以上であることが好ましい。より好ましくは360℃以上であり、さらに好ましくは380℃以上である。上限は、特に制限されないが、通常、450℃以下である。すなわち、上記硬化物の5%重量減少温度は、好ましくは340~450℃であり、より好ましくは360~450℃であり、さらに好ましくは380~450℃である。
上記5%重量減少温度の測定は、TG-DTA装置を用いて行うことができ、該方法で得られた値を採用することが好ましい。TG-DTA装置としては、TG-DTA2000SR(NESZTCH社製)、MTC1000SA(Bruker社製)が推奨される。
The cured product has excellent heat resistance. For example, in air, it is preferable that the temperature at which weight loss begins is high. Specifically, the temperature at which the weight loss is 5% by mass when the temperature of the cured product is raised from room temperature at a heating rate of 10° C./min in an air atmosphere is referred to as the 5% weight loss temperature. The 5% weight loss temperature of the cured product is preferably 340°C or higher. The temperature is more preferably 360°C or higher, and still more preferably 380°C or higher. Although the upper limit is not particularly limited, it is usually 450°C or lower. That is, the 5% weight loss temperature of the cured product is preferably 340 to 450°C, more preferably 360 to 450°C, and still more preferably 380 to 450°C.
The above 5% weight loss temperature can be measured using a TG-DTA device, and it is preferable to use the value obtained by this method. As the TG-DTA device, TG-DTA2000SR (manufactured by NESZTCH) and MTC1000SA (manufactured by Bruker) are recommended.
上記硬化物の伸度は、特に制限されないが、5~100%であることが好ましい。より好ましくは10%以上であり、さらに好ましくは20%以上であり、一層好ましくは30%以上であり、特に好ましくは40%以上である。上限はより好ましくは150%以下である。すなわち、上記硬化物の伸度は、より好ましくは10~150%であり、さらに好ましくは20~150%であり、一層好ましくは30~150%であり、特に好ましくは40~150%である。
上記伸度は、引張試験を行った時の破断伸度を意味し、下記方法により測定することができ、該方法で得られた値を採用することが好ましい。
(伸度の測定方法)
引張試験を行う部分が幅1cm、長さ3cmとなるよう、硬化物膜をダンベル形状に打ち抜き、打ち抜いたものを試料とする。オートグラフ(島津製作所製、AG-X plus)を使用して5mm/分で引張り、破断した際の試料の長さを測定し、下記式により伸度(%)を算出する。
伸度(%)={(破断時の長さ(cm)-3cm)/3cm}×100
The elongation of the cured product is not particularly limited, but is preferably 5 to 100%. It is more preferably 10% or more, still more preferably 20% or more, even more preferably 30% or more, and particularly preferably 40% or more. The upper limit is more preferably 150% or less. That is, the elongation of the cured product is more preferably 10 to 150%, still more preferably 20 to 150%, even more preferably 30 to 150%, particularly preferably 40 to 150%.
The above-mentioned elongation means the elongation at break when a tensile test is performed, and can be measured by the method described below, and it is preferable to employ the value obtained by this method.
(Method of measuring elongation)
The cured film is punched out into a dumbbell shape so that the portion to be subjected to the tensile test is 1 cm wide and 3 cm long, and the punched piece is used as a sample. Using an autograph (AG-X plus, manufactured by Shimadzu Corporation), the length of the sample is measured when it is stretched at 5 mm/min and broken, and the elongation (%) is calculated using the following formula.
Elongation (%) = {(Length at break (cm) - 3cm)/3cm} x 100
 上記硬化物は、絶縁膜であることが好ましい。絶縁膜における、膜厚、誘電率、伸度、5%重量減少温度等の好ましい態様は、上記硬化物におけるそれぞれの好ましい態様と同様である。 The cured product is preferably an insulating film. Preferred aspects of the insulating film, such as film thickness, dielectric constant, elongation, and 5% weight loss temperature, are the same as the respective preferred aspects of the cured product.
[本開示の組成物の用途]
本開示の組成物、該組成物を硬化した硬化物、絶縁膜の用途は、特に制限されず、種々の用途に用いることができる。本開示の組成物は、例えば、コンピュータ等の電子機器、携帯電話等の通信機器、サーバー等のネットワーク関連の電子機器等が有する、電気・電子デバイス用の絶縁膜を形成するために好ましく用いられる。中でも電気・電子デバイスにおけるシリコン等の基板上に有する金属配線や他の金属配線、導電部材等を絶縁する絶縁膜を形成するために用いることが好ましい。また、高電圧で使用されるモータ等の適用電圧が高い電気機器における絶縁電線においては、コロナ放電開始電圧の向上が求められており、絶縁電線における絶縁層の低誘電率化が効果的であると言われている。よって、本開示の組成物は、上記モータが有する電気コイルを構成する絶縁電線の絶縁層を形成するために、好適に用いることができる。
[Uses of the composition of the present disclosure]
The use of the composition of the present disclosure, a cured product obtained by curing the composition, and an insulating film is not particularly limited, and can be used for various purposes. The composition of the present disclosure is preferably used to form an insulating film for electrical/electronic devices, such as electronic equipment such as computers, communication equipment such as mobile phones, network-related electronic equipment such as servers, etc. . Among these, it is preferable to use it for forming an insulating film that insulates metal wiring, other metal wiring, conductive members, etc. on a substrate such as silicon in an electric/electronic device. In addition, insulated wires used in electrical equipment with high applied voltages, such as motors used at high voltages, are required to improve the corona discharge starting voltage, and reducing the dielectric constant of the insulating layer in insulated wires is effective. It is said that Therefore, the composition of the present disclosure can be suitably used to form an insulating layer of an insulated wire that constitutes an electric coil included in the motor.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。 The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. In addition, unless otherwise specified, "parts" shall mean "parts by mass" and "%" shall mean "% by mass."
 <誘電率の評価>
各実施例、比較例で得られた硬化物膜を試料として、ネットワークアナライザー E8361A(Agilent Technologies社製)を使用し、空洞共振器摂動法で、温度25℃、湿度50%、周波数10GHzの条件で誘電率を測定した。
<Evaluation of permittivity>
Using the cured film obtained in each Example and Comparative Example as a sample, using a network analyzer E8361A (manufactured by Agilent Technologies), the cavity resonator perturbation method was used at a temperature of 25°C, humidity of 50%, and a frequency of 10 GHz. The dielectric constant was measured.
 <耐熱性の評価:5%重量減少温度の測定>
各実施例、比較例で得られた硬化物膜を試料として、TG-DTA2000SR(NESZTCH社製)、MTC1000SA(Bruker社製)で、空気流通下、室温~500℃まで10℃毎分で加熱していき、重量減少が5%となる温度を測定し、該温度を5%重量減少温度とした。
<Evaluation of heat resistance: Measurement of 5% weight loss temperature>
The cured film obtained in each Example and Comparative Example was used as a sample and heated at 10°C per minute from room temperature to 500°C under air circulation using TG-DTA2000SR (manufactured by NESZTCH) and MTC1000SA (manufactured by Bruker). The temperature at which the weight loss was 5% was measured, and this temperature was defined as the 5% weight loss temperature.
 <伸度の評価>
各実施例、比較例で得られた硬化物膜を試料とした。
引張試験を行う部分が幅1cm、長さ3cmとなるよう、硬化物膜をダンベル形状に打ち抜き、打ち抜いたものを試料とした。オートグラフ(島津製作所製、AG-X plus)を使用して5mm/分で引張り、破断した際の伸度を測定した。伸度(%)は下記式により算出した。
伸度(%)={(破断時の長さ(cm)-3cm)/3cm}×100
<Evaluation of elongation>
The cured film obtained in each Example and Comparative Example was used as a sample.
The cured film was punched out into a dumbbell shape so that the portion to be subjected to the tensile test had a width of 1 cm and a length of 3 cm, and the punched out material was used as a sample. Using an autograph (AG-X plus, manufactured by Shimadzu Corporation), it was pulled at 5 mm/min and the elongation at break was measured. Elongation (%) was calculated using the following formula.
Elongation (%) = {(Length at break (cm) - 3cm)/3cm} x 100
[合成例1] 
(工程1A)
攪拌機、滴下口、温度計を備えた50LのSUS製容器にメタノール16500g、水3200g、25%アンモニア水1300g、アセトン110gを加え、30分間撹拌することで均一な混合溶液を得た。上記混合溶液の液温を49~51℃に調整し撹拌しながら、テトラメチルオルトシリケート(TMOS)5700gを滴下口から90分間かけて滴下した。滴下終了後も引き続き上記液温を維持しながら30分間攪拌を行うことで、シリカ粒子のアルコール性溶液懸濁体(懸濁体1A)を得た。
[Synthesis example 1]
(Step 1A)
16,500 g of methanol, 3,200 g of water, 1,300 g of 25% aqueous ammonia, and 110 g of acetone were added to a 50 L SUS container equipped with a stirrer, a dripping port, and a thermometer, and stirred for 30 minutes to obtain a uniform mixed solution. The temperature of the above mixed solution was adjusted to 49 to 51° C., and while stirring, 5700 g of tetramethyl orthosilicate (TMOS) was added dropwise from the dropping port over 90 minutes. After the dropwise addition was completed, stirring was continued for 30 minutes while maintaining the above liquid temperature to obtain an alcoholic solution suspension of silica particles (suspension 1A).
(工程1B)
前記工程1Aで得られた懸濁体1Aを再び攪拌しながら50℃へ昇温し、液温および攪拌を維持しながら、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業製KBM-503)1620gを滴下口から260分間かけて滴下した。滴下終了後も引き続き上記液温を維持しながら15時間攪拌を行うことで、粒子表面にメタクリル基を有するシリカ粒子のアルコール性溶液懸濁体(懸濁体1B)を得た。
(Process 1B)
The temperature of the suspension 1A obtained in step 1A was raised to 50°C while stirring again, and while maintaining the liquid temperature and stirring, 1620 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical) was added. was dripped from the dripping port over 260 minutes. After the dropwise addition was completed, stirring was continued for 15 hours while maintaining the above liquid temperature to obtain an alcoholic solution suspension (suspension 1B) of silica particles having methacrylic groups on the particle surface.
(工程1C)
前記工程1Bで得られた懸濁体1Bを、分画分子量約10000のセラミック製管状限外ろ過膜が装着された市販の限外ろ過膜を用いて、室温でメタノールを適宜加えながら溶媒置換を行い、SiO濃度が約11%になるまで濃縮することで、粒子表面にメタクリル基を有するシリカ粒子のメタノール懸濁体(懸濁体1C)を得た。
(Step 1C)
Using a commercially available ultrafiltration membrane equipped with a ceramic tubular ultrafiltration membrane with a molecular weight cutoff of about 10,000, the suspension 1B obtained in step 1B was subjected to solvent replacement at room temperature while adding methanol as appropriate. By concentrating the mixture until the SiO 2 concentration reached approximately 11%, a methanol suspension (suspension 1C) of silica particles having methacrylic groups on the particle surface was obtained.
(工程1D)
前記工程1Cで得られた懸濁体1Cを、水素型強酸性陽イオン交換樹脂アンバーライトIR-120B(オルガノ社製)を充填したカラムに、室温条件下、1時間あたりの空間速度が3の通液速度で通過させることで、粒子表面にメタクリル基を有するシリカ粒子のメタノール懸濁体(懸濁体1D)を得た。
(Process 1D)
The suspension 1C obtained in the above step 1C was placed in a column packed with hydrogen-type strongly acidic cation exchange resin Amberlite IR-120B (manufactured by Organo) under room temperature conditions at a space velocity of 3 per hour. A methanol suspension (suspension 1D) of silica particles having methacrylic groups on the particle surface was obtained by passing the solution at a high flow rate.
(工程1E)
前記工程1Dで得られた懸濁体1Dを1800g秤量し、ロータリーエバポレーターで減圧度30~300hPa、40℃で溶媒を減圧蒸留により濃縮しながら、プロピレングリコールモノメチルエーテル(PGM)を逐次添加することで懸濁体の溶媒をPGMに置換を行い、SiO濃度が約50%になるよう濃縮することで、粒子表面にメタクリル基を有するシリカ粒子のPGM分散体(分散体1)を得た。分散体中のシリカ粒子の平均粒子径は24nmであった。なお、平均粒子径は、日本電子社製走査型電子顕微鏡JSM-7600Fで撮影し、撮影したSEM像から任意の粒子50個について、直径をノギスで測定し、50個の直径の算術平均値を採用した。なお、走査型電子顕微鏡での写真撮影において、写真1枚の視野の中に粒子が50~100個となるように測定倍率を設定して行った。
(Step 1E)
By weighing 1800 g of the suspension 1D obtained in the step 1D and concentrating the solvent by vacuum distillation at 40 ° C. with a rotary evaporator at a reduced pressure of 30 to 300 hPa, propylene glycol monomethyl ether (PGM) was successively added. By replacing the solvent of the suspension with PGM and concentrating the suspension so that the SiO 2 concentration was approximately 50%, a PGM dispersion (dispersion 1) of silica particles having methacrylic groups on the particle surface was obtained. The average particle diameter of the silica particles in the dispersion was 24 nm. The average particle diameter is determined by measuring the diameter of 50 arbitrary particles from the SEM image taken with a scanning electron microscope JSM-7600F manufactured by JEOL with a caliper, and calculating the arithmetic mean value of the 50 diameters. Adopted. In addition, when taking photographs with a scanning electron microscope, the measurement magnification was set so that 50 to 100 particles were found in the field of view of one photograph.
[実施例1]
バイアルに、アミノ基含有ポリシロキサン(A)として、アミノ変性シリコーンである、KF-8012(信越化学工業社製、官能基当量2200g/mol)を3.44g、重合体(B)として、スチレン/マレイン酸ハーフエステル共重合体である、アラスター700(荒川化学工業社製、カルボキシ基当量175~200g/mol)をプロピレングリコールモノプロピルエーテルに50質量%になるように溶解させた溶液を1.00g、溶媒として、プロピレングリコールモノプロピルエーテルを3.20g、キシレンを2.95g投入し、攪拌することにより均一な溶液を得た。得られた溶液に、上記合成例1において得られた分散体1を3.38g、酸化防止剤としてアデカスタブAO-30(ADEKA社製)を1-ブタノールに20質量%になるよう溶解させた溶液を0.1g、アデカスタブAO-503(ADEKA社製)を1-ブタノールに、20質量%になるよう溶解させた溶液を0.1g、それぞれ添加し、あわとり混錬機(シンキー社製、ARE-300)を用いて2000rpmで3分、脱気工程として2200rpmで2分混錬することにより、組成物(1)を得た。
[Example 1]
In a vial, as the amino group-containing polysiloxane (A), 3.44 g of KF-8012 (manufactured by Shin-Etsu Chemical Co., Ltd., functional group equivalent: 2200 g/mol), which is an amino-modified silicone, and as the polymer (B), styrene/ 1.00 g of a solution of Alastar 700 (manufactured by Arakawa Chemical Industries, Ltd., carboxyl group equivalent: 175-200 g/mol), which is a maleic acid half ester copolymer, dissolved in propylene glycol monopropyl ether to a concentration of 50% by mass. 3.20 g of propylene glycol monopropyl ether and 2.95 g of xylene were added as solvents, and a homogeneous solution was obtained by stirring. To the obtained solution, 3.38 g of the dispersion 1 obtained in the above Synthesis Example 1 and ADEKA STAB AO-30 (manufactured by ADEKA) as an antioxidant were dissolved in 1-butanol to a concentration of 20% by mass. and 0.1 g of a solution prepared by dissolving ADEKA STAB AO-503 (manufactured by ADEKA) in 1-butanol to a concentration of 20% by mass, and using a foam kneader (manufactured by Shinky, ARE). -300) at 2000 rpm for 3 minutes and as a degassing step at 2200 rpm for 2 minutes to obtain composition (1).
得られた組成物(1)を、一定の厚みで平らなPTFE板上に塗布し、100℃で30分、200℃で30分、250℃で30分、300℃で1時間加熱することで熱硬化させ、PTFE板上に膜厚100~150μmの硬化物膜(1)を形成し、PTFE板を剥離することにより、硬化物膜(1)の独立膜を得た。
硬化物膜(1)における誘電率等の評価を行った。その結果を表2に示す。
The resulting composition (1) was applied to a flat PTFE plate with a constant thickness and heated at 100°C for 30 minutes, 200°C for 30 minutes, 250°C for 30 minutes, and 300°C for 1 hour. A cured film (1) with a thickness of 100 to 150 μm was formed on a PTFE plate by heat curing, and an independent film of the cured film (1) was obtained by peeling off the PTFE plate.
The dielectric constant and other properties of the cured film (1) were evaluated. The results are shown in Table 2.
[実施例2~7、比較例1~2]
実施例1におけるアミノ基含有ポリシロキサン(A)、重合体(B)等の各成分の種類、量を表1に示したように変更した以外は、実施例1と同様にして、実施例2~7の組成物をそれぞれ調製した。得られた各組成物を用いて、実施例1と同様にして、硬化物膜(2)~(7)をそれぞれ得た。
一方、比較例1~2の組成物では相分離やゲル化が起きてしまい、均一な組成物を得ることができず、硬化物膜を作成することができなかった。
これらの各実施例で得られた各硬化物膜について誘電率、5%重量減少温度、伸度の評価を行った。その結果を表2に示す。
[Examples 2 to 7, Comparative Examples 1 to 2]
Example 2 was carried out in the same manner as in Example 1, except that the types and amounts of each component such as the amino group-containing polysiloxane (A) and the polymer (B) in Example 1 were changed as shown in Table 1. -7 compositions were prepared, respectively. Using each of the obtained compositions, cured films (2) to (7) were obtained in the same manner as in Example 1.
On the other hand, in the compositions of Comparative Examples 1 and 2, phase separation and gelation occurred, making it impossible to obtain a uniform composition and making it impossible to form a cured product film.
The dielectric constant, 5% weight loss temperature, and elongation of each cured film obtained in each of these Examples were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
各実施例、比較例で用いた市販品等(表1に記載)は以下のとおりである。
・KF-8012:信越化学工業社製、アミノ変性シリコーンオイル(両末端型)、アミノ基当量2200g/mol。
・KF-8010:信越化学工業社製、アミノ変性シリコーンオイル(両末端型)、アミノ基当量430g/mol。
・KF-864:信越化学工業社製、アミノ変性シリコーンオイル(側鎖型)、アミノ基当量3800g/mol。 
・DOWSIL BY 16-879B:ダウ・東レ社製、アミノ変性シリコーンオイル、アミノ基当量7500g/mol。
・アラスター700:荒川化学工業社製、スチレン-マレイン酸樹脂半エステル、酸価175~200。
・XIRAN3500:Polyscope Polymers社製、スチレン-無水マレイン酸共重合体(スチレン由来の構造単位/マレイン酸由来の構造単位=モル比3/1)、重量平均分子量80000。
・アデカスタブ AO-30:ADEKA社製、フェノール系酸化防止剤、
・アデカスタブ AO-503:ADEKA社製、チオエーテル系酸化防止剤
また、表1中の合計(質量部)の値(100)は、小数点以下第1位を四捨五入した値である。
Commercially available products (listed in Table 1) used in each Example and Comparative Example are as follows.
- KF-8012: manufactured by Shin-Etsu Chemical Co., Ltd., amino-modified silicone oil (both terminal type), amino group equivalent: 2200 g/mol.
- KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd., amino-modified silicone oil (both terminal type), amino group equivalent: 430 g/mol.
- KF-864: manufactured by Shin-Etsu Chemical Co., Ltd., amino-modified silicone oil (side chain type), amino group equivalent: 3800 g/mol.
- DOWSIL BY 16-879B: manufactured by Dow Toray Industries, amino-modified silicone oil, amino group equivalent: 7500 g/mol.
- Alastair 700: manufactured by Arakawa Chemical Industry Co., Ltd., styrene-maleic acid resin half ester, acid value 175-200.
- XIRAN3500: manufactured by Polyscope Polymers, styrene-maleic anhydride copolymer (styrene-derived structural unit/maleic acid-derived structural unit = molar ratio 3/1), weight average molecular weight 80,000.
・ADEKA STAB AO-30: Manufactured by ADEKA, phenolic antioxidant,
- ADEKA STAB AO-503: manufactured by ADEKA, thioether antioxidant Also, the value (100) of the total (parts by mass) in Table 1 is the value rounded to the first decimal place.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2に示すように、実施例1~7において得られた硬化物膜はいずれも、5%重量減少温度が高く、周波数10GHzにおける誘電率が低く、伸度が高いことが確認された。よって、本開示の組成物を用いることにより、耐熱性に優れ、高周波領域で測定した誘電率が低く、伸度の高い硬化物が得られることが明らかとなった。 As shown in Table 2, it was confirmed that all of the cured films obtained in Examples 1 to 7 had a high 5% weight loss temperature, a low dielectric constant at a frequency of 10 GHz, and a high elongation. Therefore, it has been revealed that by using the composition of the present disclosure, a cured product with excellent heat resistance, low dielectric constant measured in a high frequency region, and high elongation can be obtained.
(増粘剤合成例1)
バイアルにXIRAN3500(POLYSCOPE社製、スチレン-無水マレイン酸共重合体)2.5gと酢酸ブチル2.5gを入れ、60℃で加熱攪拌しながら溶解させた。得られた溶液に、2-エチルヘキシルアミン0.8gを酢酸ブチル0.8gとプロピレングリコールモノプロピルエーテル2.0gに溶解させた溶液を滴下して、増粘剤(1)を得た。
(Thickener synthesis example 1)
2.5 g of XIRAN 3500 (manufactured by POLYSCOPE, styrene-maleic anhydride copolymer) and 2.5 g of butyl acetate were placed in a vial and dissolved while heating at 60° C. with stirring. A solution prepared by dissolving 0.8 g of 2-ethylhexylamine in 0.8 g of butyl acetate and 2.0 g of propylene glycol monopropyl ether was added dropwise to the obtained solution to obtain a thickener (1).
(実施例8)
実施例1で得られた組成物(1)100質量部に、上記で得られた増粘剤(1)を4質量部添加し、攪拌することにより組成物(8)を得た。得られた組成物(8)と組成物(1)の粘度をE型粘度計(TPE-100、東機産業社製)を使用して、25℃で測定したところ、それぞれ1010mPa・sと300mPa・sであった。
得られた組成物(8)を、一定の厚みで平らなPTFE板上に塗布し、100℃で30分間、200℃で30分間、250℃で30分間、300℃で1時間加熱することで熱硬化させ、PTFE板上に膜厚150μmの硬化物膜(8)を形成し、PTFE板を剥離することにより、硬化物膜(8)の独立膜を得た。
硬化物膜(8)における誘電率は2.69であり、5%重量減少温度は380℃であった。
(Example 8)
4 parts by mass of the thickener (1) obtained above was added to 100 parts by mass of the composition (1) obtained in Example 1, and the mixture was stirred to obtain a composition (8). The viscosity of the obtained composition (8) and composition (1) was measured at 25°C using an E-type viscometer (TPE-100, manufactured by Toki Sangyo Co., Ltd.), and the viscosity was 1010 mPa・s and 300 mPa, respectively.・It was s.
The resulting composition (8) was applied to a flat PTFE plate with a constant thickness and heated at 100°C for 30 minutes, 200°C for 30 minutes, 250°C for 30 minutes, and 300°C for 1 hour. A cured film (8) having a thickness of 150 μm was formed on a PTFE plate by heat curing, and an independent film of the cured film (8) was obtained by peeling off the PTFE plate.
The dielectric constant of the cured film (8) was 2.69, and the 5% weight loss temperature was 380°C.

Claims (4)

  1.  アミノ基含有ポリシロキサン(A)と、不飽和脂肪族ジカルボン酸モノエステル由来の構造単位(U)を有する重合体(B)とを含むことを特徴とする組成物。 A composition comprising an amino group-containing polysiloxane (A) and a polymer (B) having a structural unit (U) derived from an unsaturated aliphatic dicarboxylic acid monoester.
  2.  さらに無機粒子を含む、請求項1に記載の組成物。 The composition according to claim 1, further comprising inorganic particles.
  3.  請求項1または2に記載の組成物を硬化した硬化物。 A cured product obtained by curing the composition according to claim 1 or 2.
  4.  前記硬化物が絶縁膜である、請求項3に記載の硬化物。
     
    The cured product according to claim 3, wherein the cured product is an insulating film.
PCT/JP2023/022343 2022-07-28 2023-06-16 Composition and cured product thereof WO2024024320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-120760 2022-07-28
JP2022120760 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024320A1 true WO2024024320A1 (en) 2024-02-01

Family

ID=89706212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022343 WO2024024320A1 (en) 2022-07-28 2023-06-16 Composition and cured product thereof

Country Status (2)

Country Link
TW (1) TW202409730A (en)
WO (1) WO2024024320A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090941A1 (en) * 2010-12-27 2012-07-05 日本ゼオン株式会社 Rubber composition and crosslinked rubber product
JP2014500376A (en) * 2010-12-21 2014-01-09 ワッカー ケミー アクチエンゲゼルシャフト Silicone aspartic acid copolymer
WO2017159623A1 (en) * 2016-03-18 2017-09-21 日本ゼオン株式会社 Nitrile rubber composition and rubber cross-linked product
JP2020143251A (en) * 2019-03-08 2020-09-10 日本ゼオン株式会社 Nitrile rubber composition and rubber crosslinked product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500376A (en) * 2010-12-21 2014-01-09 ワッカー ケミー アクチエンゲゼルシャフト Silicone aspartic acid copolymer
WO2012090941A1 (en) * 2010-12-27 2012-07-05 日本ゼオン株式会社 Rubber composition and crosslinked rubber product
WO2017159623A1 (en) * 2016-03-18 2017-09-21 日本ゼオン株式会社 Nitrile rubber composition and rubber cross-linked product
JP2020143251A (en) * 2019-03-08 2020-09-10 日本ゼオン株式会社 Nitrile rubber composition and rubber crosslinked product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN, QIUFENG ET AL.: "Synthesis and Morphology of Carboxylated Polyether-block- polydimethylsiloxane and the Supermolecule Self-Assembled from It", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 110, 2008, pages 2595 - 2600, XP093089325, DOI: 10.1002/app.28749 *

Also Published As

Publication number Publication date
TW202409730A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
Huang et al. Organic–inorganic nanocomposites from cubic silsesquioxane epoxides: direct characterization of interphase, and thermomechanical properties
JP5298428B2 (en) Thermosetting resin composition and cured film
JP6568121B2 (en) Surface-modified composite silica particles and polyimide film containing the same
EP1858996B8 (en) Coating composition for dielectric insulating film, dielectric insulating film prepared therefrom, and electric or electronic device comprising the same
CN109135554B (en) Polyimide varnish, preparation method and application thereof
Ye et al. Synthesis and properties of low‐dielectric‐constant polyimides with introduced reactive fluorine polyhedral oligomeric silsesquioxanes
JPWO2019163918A1 (en) Highly durable anti-fog coating and coating composition
JPH11322992A (en) Porous film
WO2018181697A1 (en) Resin composition for forming electrodes, chip electronic component and method for producing same
KR100995550B1 (en) Stable composition
JP5048395B2 (en) Inorganic organic composite coating composition
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
JP2005068347A (en) Polyimide composition, method for producing the same and use thereof
WO2006115124A1 (en) Resin composition and semiconductor device using the same
JP2001098218A (en) Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film
JP4255088B1 (en) Hybrid composition
WO2024024320A1 (en) Composition and cured product thereof
CN107964333B (en) Amino-terminated reactive fluorine-containing polymer modified waterborne epoxy coating and preparation and application thereof
JP2003261823A (en) Method for producing coating fluid for forming porous film and the coating fluid, a method for producing porous film and porous film
TWI752350B (en) Electrode-forming resin composition, wafer-type electronic component, and method for producing the same
TWI260332B (en) Compositions, methods of forming low dielectric coefficient film using the composition, low dielectric coefficient films, and electronic components having the film
CN111944172A (en) Nonaqueous dispersion of fluorine-containing resin, heat-curable resin composition of fluorine-containing resin using same, and cured product thereof
JP2000256618A (en) Resin composition and film-forming material comprising same
WO2020105215A1 (en) High-withstand-voltage, heat-dissipating, insulating resin composition and electronic component in which same is used
JP2007138142A (en) Resin composition, method for producing the same, and film-forming material containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846054

Country of ref document: EP

Kind code of ref document: A1