WO2024023987A1 - Terminal, base station, and wireless communication method - Google Patents

Terminal, base station, and wireless communication method Download PDF

Info

Publication number
WO2024023987A1
WO2024023987A1 PCT/JP2022/029001 JP2022029001W WO2024023987A1 WO 2024023987 A1 WO2024023987 A1 WO 2024023987A1 JP 2022029001 W JP2022029001 W JP 2022029001W WO 2024023987 A1 WO2024023987 A1 WO 2024023987A1
Authority
WO
WIPO (PCT)
Prior art keywords
sbfd
pusch
pucch
transmission power
closed loop
Prior art date
Application number
PCT/JP2022/029001
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 栗田
浩樹 原田
チーピン ピ
ジン ワン
ラン チン
チャオピン チェン
ヨン リ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/029001 priority Critical patent/WO2024023987A1/en
Publication of WO2024023987A1 publication Critical patent/WO2024023987A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to a terminal, a base station, and a wireless communication method.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ 6th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • 3GPP Rel.15 3GPP Rel.15
  • uplink (UL) resources are insufficient compared to downlink (DL) resources.
  • one of the purposes of the present disclosure is to provide a terminal, a base station, and a wireless communication method that improve resource usage efficiency.
  • One aspect of the present disclosure is to set a first transmission power in a SBFD (Subband non-overlapping Full Duplex) operation according to a first transmission power setting, and set a second transmission power in a non-SBFD operation according to a second transmission power setting. and a transmitter that transmits an uplink channel with the first transmission power in the SBFD operation and transmits an uplink channel with the second transmission power in the non-SBFD operation.
  • Other aspects of the present disclosure set a first transmit power in SBFD (Subband non-overlapping Full Duplex) operation according to a first closed loop, and set a second transmit power in non-SBFD operation according to a second closed loop.
  • the present invention relates to a terminal having a control unit, and a transmitting unit that transmits an uplink channel with the first transmission power in the SBFD operation and transmits an uplink channel with the second transmission power in the non-SBFD operation.
  • Another aspect of the present disclosure is to set the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation according to a first power calculation formula, and set the second transmission power in non-SBFD operation according to a second power calculation formula.
  • a control unit that sets power; and a transmitting unit that transmits an uplink channel with the first transmission power in the SBFD operation and transmits the uplink channel with the second transmission power in the non-SBFD operation.
  • FIG. 1 is a block diagram showing the functional configuration of a base station (gNB) according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing the functional configuration of a terminal (UE) according to an embodiment of the present disclosure.
  • 3A and 3B are diagrams illustrating an example of arrangement of radio resources of XDD (Cross Division Duplex) or SBFD (Subband non-overlapping Full Duplex) according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating XDD or SBFD operation according to an embodiment of the present disclosure.
  • 5A and 5B are diagrams illustrating TDD and SBFD according to one embodiment of the present disclosure.
  • 6A-6E are diagrams illustrating pure time units and SBFD time units according to one embodiment of the present disclosure.
  • FIGS. 7A and 7B are diagrams illustrating cross-link interference (CLI) according to one embodiment of the present disclosure.
  • 8A and 8B are diagrams illustrating a PUSCH-Config information element (IE) according to one embodiment of the present disclosure.
  • 9A and 9B are diagrams illustrating the PUSCH-Config IE according to an embodiment of the present disclosure.
  • 10A and 10B are diagrams illustrating the PUSCH-PowerControl IE according to an embodiment of the present disclosure.
  • 11A and 11B are diagrams illustrating the PUCCH-PowerControl IE according to one embodiment of the present disclosure.
  • 12A and 12B are diagrams illustrating the RACH-ConfigGeneric IE according to one embodiment of the present disclosure.
  • FIG. 13A and 13B are diagrams illustrating the RACH-ConfigGenericTwoStepRA-r16 IE according to an embodiment of the present disclosure.
  • 14A and 14B are diagrams illustrating the PUSCH-ConfigCommon IE according to an embodiment of the present disclosure.
  • FIG. 15 is a diagram illustrating the PUSCH-PowerControl IE according to an embodiment of the present disclosure.
  • FIG. 16 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure.
  • FIG. 17 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure.
  • FIG. 18 is a diagram illustrating the SRI-PUSCH-PowerControl IE according to an embodiment of the present disclosure.
  • FIG. 19 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure.
  • FIG. 20 is a diagram illustrating closed-loop mapping according to an embodiment of the present disclosure.
  • FIG. 21 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure.
  • FIG. 22 is a diagram illustrating the SRI-PUSCH-PowerControl IE according to an embodiment of the present disclosure.
  • FIG. 23 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure.
  • FIG. 24 is a diagram illustrating power adjustment according to one embodiment of the present disclosure.
  • FIG. 25 is a diagram illustrating power adjustment according to one embodiment of the present disclosure.
  • FIG. 26 is a diagram illustrating power adjustment according to one embodiment of the present disclosure.
  • FIG. 27 is a block diagram showing the hardware configuration of a base station and a terminal according to an embodiment of the present disclosure.
  • FIG. 28 is a block diagram showing the hardware configuration of a vehicle according to an embodiment of the present disclosure.
  • Wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • Wireless communication systems include Long Term Evolution (LTE), which is specified by the Third Generation Partnership Project (3GPP), and 5th generation mobile communication system Ne. w Radio (5G NR), realizing communication using these successor wireless communication systems, etc. It may be a system that
  • the wireless communication system may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), N Dual connectivity between R and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), N Dual connectivity between R and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC N Dual connectivity between R and LTE
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • a wireless communication system has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). ) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • the wireless communication system may include a base station forming a macro cell C1 with relatively wide coverage, and a base station forming a small cell C2 that is located within the macro cell C1 and narrower than the macro cell C1.
  • a terminal may be located within at least one cell. The arrangement, number, etc. of each cell and terminal are not limited to a specific aspect.
  • a terminal may connect to at least one of the plurality of base stations.
  • the terminal may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be in a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be in a frequency band above 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the terminal may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between two base stations, the base station that corresponds to the upper station is called the Integrated Access Backhaul (IAB) donor, and the base station that corresponds to the relay station is called the integrated access backhaul (IAB) donor. , may be called an IAB node.
  • IAB Integrated Access Backhaul
  • IAB integrated access backhaul
  • a base station may be connected to the core network via another base station or directly.
  • the core network may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the terminal may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, 5G, and 6G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform. Note that in the wireless communication system, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL wireless access methods.
  • downlink channels include a physical downlink shared channel (PDSCH) shared by each terminal, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical Downlink Control Channel (PDCCH)) etc. may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH physical Downlink Control Channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each terminal, a physical uplink control channel (PUCCH), and a random access channel ( Physical Random Access Channel (PRACH) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted via the PDSCH.
  • User data, upper layer control information, etc. may be transmitted via PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONTROL REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates.
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates that correspond to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space (SS) set.
  • search space search space
  • search space set search space setting
  • search space set setting search space set setting
  • CORESET search space set setting
  • CORESET setting etc. in the present disclosure may be read interchangeably.
  • PUCCH provides channel state information (CSI), delivery confirmation information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK /NACK, etc.) and scheduling request (Scheduling Request).
  • CSI channel state information
  • delivery confirmation information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK /NACK, etc.
  • Scheduling Request scheduling request
  • Uplink Control Information (UCI) including at least one of SR) may be transmitted.
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • DL-RS includes a cell-specific reference signal (CRS) and a channel state information reference signal (CSI-RS).
  • demodulation reference signal (DeModulation Reference signal A positioning reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • DMRS positioning reference signal
  • PRS positioning reference signal
  • PTRS phase tracking reference signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may be referred to as a UE-specific reference signal (UE-specific Reference Signal).
  • the gNB 100 and the UE 200 include functions that implement the embodiments described below. However, the gNB 100 and the UE 200 may each have only some of the functions in the embodiment.
  • FIG. 1 is a diagram showing an example of the functional configuration of the gNB 100.
  • the gNB 100 includes a receiving section 101, a transmitting section 102, and a control section 103.
  • the functional configuration shown in FIG. 1 is only an example. As long as the operations according to the embodiments of the present invention can be carried out, the functional divisions and functional parts may have any names.
  • the receiving unit 101 includes a function of receiving various signals transmitted from the UE 200 and acquiring, for example, information on a higher layer from the received signals.
  • the transmitting unit 102 includes a function of generating a signal to be transmitted to the UE 200 and transmitting the signal by wire or wirelessly.
  • the control unit 103 stores preset setting information and various setting information to be transmitted to the UE 200 in a storage device, and reads them from the storage device as necessary. Further, the control unit 103 executes processing related to communication with the UE 200.
  • a functional unit related to signal transmission in the control unit 103 may be included in the transmitting unit 102, and a functional unit related to signal reception in the control unit 103 may be included in the receiving unit 101.
  • FIG. 2 is a diagram showing an example of the functional configuration of the UE 200.
  • the UE 200 includes a transmitter 201, a receiver 202, and a controller 203.
  • the functional configuration shown in FIG. 2 is only an example. As long as the operations according to the embodiments of the present invention can be carried out, the functional divisions and functional parts may have any names.
  • the transmitter 201 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 202 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 202 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL control signal, reference signal, etc. transmitted from the gNB 100.
  • the control unit 203 stores various setting information received from the gNB 100 by the receiving unit 202 in a storage device, and reads it from the storage device as necessary. Further, the control unit 203 executes processing related to communication with the gNB 100.
  • a functional unit related to signal transmission in the control unit 203 may be included in the transmitting unit 201, and a functional unit related to signal reception in the control unit 203 may be included in the receiving unit 202.
  • the division duplex method may be called XDD (Cross Division Duplex) or subband non-overlapping Full Duplex (SBFD).
  • XDD or SBFD may refer to a duplex method in which DL and UL are frequency division multiplexed within one component carrier (CC) of the TDD band (DL and UL can be used simultaneously).
  • CC component carrier
  • FIG. 3A shows Rel. 16 is a diagram illustrating an example of TDD settings defined up to No. 16.
  • FIG. 3A TDD slots or symbols are configured for the UE in the bandwidth of one component carrier (CC) (cell, may also be called serving cell), bandwidth portion (BWP), etc. .
  • CC component carrier
  • BWP bandwidth portion
  • the time ratio of DL slots and UL slots is 4:1.
  • FIG. 3B is a diagram showing an example of the configuration of the SBFD.
  • the resources used for DL reception and the resources used for UL transmission overlap in time. According to such a resource configuration, more UL resources can be secured, and resource utilization efficiency can be improved.
  • both ends of the frequency domain may be set as DL resources, and a UL resource may be sandwiched between these DL resources.
  • a guard area may be set at the boundary between the DL resource and the UL resource.
  • FIG. 4 is a diagram showing an example of SBFD operation.
  • part of the DL resources of the TDD band is set as the UL resource, and the DL and UL are configured to partially overlap in the time domain.
  • each of the plurality of UEs 200 receives a DL channel/signal.
  • one UE 200 receives the DL channel/signal
  • another UE 200 receives the DL channel/signal.
  • the base station 100 performs simultaneous transmission and reception of DL and UL.
  • each of the plurality of UEs 200 (UE#1 and UE#2 in FIG. 4) transmits a UL channel/signal.
  • DL frequency resources and UL frequency resources in the UE carrier are configured as DL BWP and UL BWP, respectively.
  • Multiple BWP configurations and BWP adaptation mechanisms are required to switch one DL/UL frequency resource to another DL/UL frequency resource.
  • the time resources (time units such as symbols and slots) in the TDD carrier for UE 200 are configured as at least one of DL, UL, and flexible (FL) in the TDD configuration. Ru.
  • SBFD symbols may be advertised or configured as UL (or DL) on some frequency resources, or advertised or configured for UL transmission (or DL reception) while on other frequency resources, as shown in FIG. 5B.
  • On the frequency resource it may be notified or set as DL (or UL), or it may be a symbol notified or set for DL reception (or UL transmission).
  • the SBFD symbol may be a symbol that is notified or configured as UL (or DL) in a part of the frequency resource, or a symbol that is notified or configured for UL transmission (or DL reception).
  • the SBFD symbol may be notified or set as DL (or UL) in a part of the frequency resource, or may be a symbol notified or set for DL reception (or UL transmission).
  • the time unit may be a symbol level, a slot/subslot level, or a group of symbols/slots/subslots. That is, an SBFD time unit may be an SBFD symbol, a slot/subslot that includes or overlaps the SBFD symbol, or a group of symbols/slots/subslots that includes or overlaps the SBFD symbol.
  • a pure time unit is a non-SBFD symbol (i.e., a symbol that is not an SBFD symbol), a slot/subslot that does not contain or overlap an SBFD symbol, or a symbol/slot/subslot that does not contain or overlap an SBFD symbol. It may be a group of subslots and may be referred to as a non-SBFD time unit.
  • a pure time unit may be referred to as a time unit consisting only of DL on a frequency resource, as shown in FIG. 6A, or as a time unit consisting of only DL on a frequency resource, as shown in FIG. 6B. It may also be referred to as a time unit consisting of.
  • DL resources and UL resources may have various arrangement patterns in the frequency domain.
  • the SBFD time units of frequency domain pattern #1 may have an arrangement pattern as shown in FIG. 6C.
  • the SBFD time units of frequency domain pattern #2 may have an arrangement pattern as shown in FIG. 6D.
  • the SBFD time units of frequency domain pattern #3 may have an arrangement pattern as shown in FIG. 6E.
  • the frequency domain pattern for the SBFD time unit may mean a resource repetition pattern in the frequency domain for the SBFD time unit.
  • Transmission opportunity i may be a PUSCH, PUCCH, SRS, or PRACH transmission opportunity.
  • Transmission opportunity i has a slot index n s, f ⁇ for subcarrier interval setting ⁇ in a frame having a system frame number (SFN), and the first symbol in the slot (the first symbol of transmission opportunity i). index) S and the number L of consecutive symbols.
  • SFN system frame number
  • the transmission power of the PUSCH is controlled based on the TPC command (also referred to as a value, increase/decrease value, correction value, etc.) indicated by the value of a predetermined field (also referred to as a TPC command field, first field, etc.) in the DCI.
  • TPC command also referred to as a value, increase/decrease value, correction value, etc.
  • a predetermined field also referred to as a TPC command field, first field, etc.
  • PUSCH transmission opportunity For example, if a UE transmits PUSCH on BWP b of carrier f in cell c with a parameter set (e.g., open loop parameter set) with index j, index l of power control adjustment state, then PUSCH transmission opportunity
  • the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) in i may be expressed by the following formula (1).
  • P CMAX,f,c (i) is, for example, the transmission power (for example, also referred to as maximum transmission power) of UE 200 set for carrier f of cell c in transmission opportunity i.
  • P O_PUSCH, b, f, c (j) is, for example, a parameter related to the target received power set for BWP b of carrier f of cell c in transmission opportunity i (e.g., a parameter related to transmit power offset, a transmit power offset (also referred to as PO, target received power parameter, etc.).
  • M PUSCH RB,b,f,c (i) is, for example, the number of resource blocks (bandwidth) allocated to PUSCH for transmission opportunity i in uplink BWP b of cell c and carrier f with subcarrier spacing ⁇ .
  • ⁇ b,f,c (j) are values provided by upper layer parameters (eg, also referred to as msg3-Alpha, p0-PUSCH-Alpha, fractional factor, etc.).
  • PL b, f, c (q d ) is, for example, a path loss (path loss compensation) calculated by the UE using an index q d of a reference signal for downlink BWP associated with uplink BWP b of carrier f of cell c. It is.
  • ⁇ TF,b,f,c (i) is a Transmission Power Adjustment Component (eg, also referred to as offset, transmission format compensation, etc.) for uplink BWP b of carrier f of cell c.
  • a Transmission Power Adjustment Component eg, also referred to as offset, transmission format compensation, etc.
  • f b,f,c (i,l) is a TPC command-based value (e.g., cumulative value of TPC commands, closed loop value).
  • the cumulative value of TPC commands may be expressed by a predetermined formula.
  • the TPC command may be determined based on the value of a predetermined field (also referred to as a TPC command field, first field, etc.) in the DCI used for PUSCH or PDSCH scheduling. These DCIs may be referred to as DCI formats 0_0, 0_1.
  • the power control information may be called a TPC command (also referred to as a value, increase/decrease value, correction value, etc.).
  • NR supports the DCI format (for example, DCI format 2_2) used for transmitting at least one TPC command of PUCCH and PUSCH.
  • UE 200 may control the transmission power of at least one of PUCCH and PUSCH based on the value indicated by the TPC command in the DCI format.
  • the DCI format used for transmitting TPC commands may have a configuration that is not used for PDSCH or PUSCH scheduling (does not include scheduling information).
  • TPC commands specified by DCI for example, at least one of DCI formats 0_0, 0_1, and 2_2) for each PUSCH or PUCCH transmission may be accumulated (tpc-Accumulation).
  • the UE 200 may be configured by the network (for example, the base station 100) as to whether or not to store TPC commands.
  • the base station 100 may notify the UE 200 of whether TPC commands are accumulated using upper layer signaling (eg, TPC-Accumulation).
  • the UE 200 may determine the transmission power in consideration of the TPC commands notified on a predetermined DCI (or PDCCH). Further, the TPC command may be included in one of the parameters of the power control adjustment state defined by a predetermined formula (for example, as part of the predetermined formula).
  • the transmission power of the PUCCH is controlled based on the TPC command (also referred to as a value, increase/decrease value, correction value, etc.) indicated by the value of a predetermined field (also referred to as a TPC command field, first field, etc.) in the DCI.
  • TPC command also referred to as a value, increase/decrease value, correction value, etc.
  • a predetermined field also referred to as a TPC command field, first field, etc.
  • PUCCH transmission power (P PUCCH, b, f, c (i, q u , q d , l)) may be expressed by equation (2).
  • the power control adjustment state may be set to have a plurality of states (for example, two states) or a single state by upper layer parameters. Further, when a plurality of power control adjustment states are set, one of the plurality of power control adjustment states may be identified by an index l (for example, l ⁇ 0,1 ⁇ ).
  • the power control adjustment state may be referred to as a PUCCH power control adjustment state, a first state, a second state, or the like.
  • the PUCCH transmission opportunity i is a predetermined period during which the PUCCH is transmitted, and may be composed of one or more symbols, one or more slots, etc., for example.
  • P CMAX,f,c (i) is, for example, the transmission power (also referred to as maximum transmission power) of the UE 200 set for carrier f of cell c in transmission opportunity i.
  • P O_PUCCH,b,f,c (q u ) is, for example, a parameter related to the target received power (for example, a parameter related to the transmit power offset, a parameter related to the transmit power (also referred to as offset P0 or target received power parameter).
  • M PUCCH RB,b,f,c (i) is, for example, the number of resource blocks (bandwidth) allocated to PUCCH for transmission opportunity i in uplink BWP b of cell c and carrier f with subcarrier spacing ⁇ .
  • PL b, f, c (q d ) is, for example, a path loss calculated by the UE 200 using the index q d of the reference signal for downlink BWP associated with uplink BWP b of carrier f of cell c.
  • ⁇ F_PUCCH (F) is an upper layer parameter given for each PUCCH format.
  • ⁇ TF,b,f,c (i) is the Transmission Power Adjustment Component (offset) for uplink BWP b of carrier f of cell c.
  • g b, f, c (i, l) is the TPC command-based value (e.g., cumulative value of TPC commands) of the uplink BWP power control adjustment state index l of carrier f of cell c and transmission opportunity i .
  • the cumulative value of TPC commands may be expressed by a predetermined formula.
  • transmission power is determined for uplink channels (for example, at least one of PUSCH and PUCCH) based on parameters notified from the network (for example, base station 100).
  • equations (1) and (2) are merely examples, and are not limited thereto.
  • the UE 200 only needs to control the transmission power of the PUSCH and PUCCH based on at least one parameter illustrated in equations (1) and (2), and may include additional parameters or some parameters. may be omitted.
  • the transmission power of PUSCH and PUCCH is controlled for each BWP of a certain carrier in a certain cell, but the invention is not limited to this. At least some of the cells, carriers, BWPs, and power control adjustment states may be omitted.
  • the transmission power of UE 200 is controlled using open loop transmission power control and/or closed loop transmission power control.
  • UE 200 corrects open-loop control errors using closed-loop control using TPC commands received from base station 100.
  • uplink shared channels e.g., PUSCH
  • uplink control channels e.g., PUCCH
  • sounding reference signals SRS
  • random access channels e.g., PRACH
  • NR specifies that a maximum of two closed loops are supported for each carrier in the serving cell.
  • the transmission power of the PUSCH in the transmission period i for the bandwidth part (BWP) b of the carrier f of the serving cell c may be expressed by the above equation (1).
  • the transmission period may be, for example, any time unit such as a symbol, slot, subframe, or frame.
  • f b, f, c (i, l) are values based on TPC commands (for example, cumulative values based on TPC commands).
  • the UE 200 may determine that two power control states are applied to the transmission power control of the PUSCH. Furthermore, when the RRC parameter "two PUCCH-PC-AdjustmentStates" is set for the PUCCH, the UE may determine that two power control states are applied to the transmission power control of the PUCCH.
  • Uplink signals can also determine transmit power using multiple power control adjustment states, similar to PUSCH and/or PUCCH, although the parameters utilized are different. .
  • closed loop and power control adjustment state may be read interchangeably.
  • TPC commands can be notified to multiple UEs at once.
  • DCI Downlink Control Information
  • DCI format 2_2 transmitted in the common search space is used to transmit a TPC command for at least one of PUCCH and PUSCH.
  • DCI format 2_2 may be called DCI for UE group common TPC command.
  • the TPC command notified by DCI format 2_2 may be called a group common TPC command.
  • the DCI format 2_2 may be cyclic redundancy check (CRC) scrambled by the PUSCH TPC identifier (TPC-PUSCH-RNTI (Radio Network Temporary Identifier)). PUCCH TPC identifier (TPC -PUCCH-RNTI).
  • CRC cyclic redundancy check
  • inter-gNB cross-link interference (CLI) and inter-UE CLI need to be considered.
  • the aggressor UE's uplink signal may cause interference to downlink reception at the victim UE, as shown in FIG. 7A. From the victim UE's perspective, it may be desirable to reduce the uplink transmit power of the aggressor UE to reduce interference to reception at the victim UE.
  • the downlink signal to the aggressor UE may cause interference to the uplink signal from the victim UE to the gNB.
  • the victim UE's gNB From the perspective of the victim UE's gNB, it may be desirable to increase the victim UE's uplink transmit power in order to improve the received signal power.
  • SBFD operation different UEs will perform uplink transmission and downlink reception in the same time unit, such as the same symbol/slot, which may result in inter-UE CLI and/or inter-gNB CLI.
  • the transmission power control of the UE is defined by specifications, may be configured semi-statically by RRC configuration, etc., and/or may be notified dynamically by DCI notification.
  • Proposals 1 to 3 below discuss the power control of uplink signals in SBFD symbols/slots through specifications that support both SBFD and non-SBFD operations, RRC configuration, and/or DCI notification.
  • a separate power control application is proposed for SBFD operation.
  • transmission power control IEs such as PUSCH-PowerControl IE and PUCCH-PowerControl IE
  • separate transmission power control IEs for example, PUSCH-PowerControl IE
  • PUSCH-PowerControl-SBFD, PUCCH-PowerControl and PUCCH-PowerControl-SBFD may be set.
  • fields related to power control in PUSCH-PowerControl IE, PUCCH-PowerControl IE, etc. are set to separate transmission power control fields for SBFD operation and non-SBFD operation (for example, p0-NominalWithGrant and p0-NominalWithGrant).
  • SBFD subcarrier-PowerControl
  • non-SBFD operation for example, p0-NominalWithGrant and p0-NominalWithGrant.
  • tGrant -SBFD, p0-Set and p0-Set-SBFD may be set.
  • the maximum number to be configured is expanded to X, and at most two closed loops among the X can be configured for non-SBFD operation, and the others can be applied for SBFD operation.
  • the closed loop for SBFD operation is not explicitly set, and the closed loop for SBFD operation can be mapped in response to the setting for non-SBFD operation.
  • a single SRI/closed loop index can be commonly mapped for SBFD and SBFD operations.
  • a single closed-loop index can be commonly mapped for SBFD and SBFD operations.
  • a method for calculating transmission power in SBFD operation may be defined.
  • scaling factors for SBFD operation may be defined, configured, notified and/or applied.
  • a power offset for SBFD operation may be defined, configured, notified and/or applied.
  • a reference resource block (RB) size for SBFD operation may be defined, configured, notified and/or applied.
  • the UE transmits the uplink channel in SBFD operation with the transmit power set according to the PUSCH and/or PUCCH transmit power setting for SBFD operation, and according to the PUSCH and/or PUCCH transmit power setting for non-SBFD operation. Transmit the uplink channel in non-SBFD operation with the configured transmit power. That is, the PUSCH and/or PUCCH transmission power is semi-statically set via RRC configuration or the like according to the PUSCH and/or PUCCH transmission power setting for SBFD operation and the PUSCH and/or PUCCH transmission power setting for non-SBFD operation. .
  • separate PUSCH and/or PUCCH transmit power settings for SBFD and non-SBFD operations may be defined, configured, notified and/or applied.
  • SBFD operation and non-SBFD operation are settings (eg, p0-NominalWithoutGrant and p0-NominalWithoutGrant-SBFD, and/or p0-Set and p0-Set-SBFD, etc.) may be defined, configured, notified, and/or applied.
  • power control related parameters in RACH-ConfigGeneric e.g. preambleReceivedTargetPower
  • power control related parameters in RACH-ConfigGenericTwoStepRA e.g.
  • msgA-PreambleReceivedTargetPower er
  • power control related parameters in PUSCH-ConfigCommon for example, msg3 -DeltaPreamble, p0-NominalWithGrant
  • separate settings may be prescribed, configured, notified, and/or applied for SBFD and non-SBFD operations.
  • Option 1 provides separate PUSCH and/or PUCCH transmit power settings for SBFD and non-SBFD operations (e.g., PUSCH-PowerControl IE and PUSCH-PowerControl-SBFD IE, and/or PUCCH-PowerControl IE and PUCCH-Power Control - SBFD IE, etc.) may be defined, configured, notified and/or applied.
  • SBFD and non-SBFD operations e.g., PUSCH-PowerControl IE and PUSCH-PowerControl-SBFD IE, and/or PUCCH-PowerControl IE and PUCCH-Power Control - SBFD IE, etc.
  • PUSCH and/or PUCCH in SBFD operation means PUSCH and/or PUCCH that overlaps with SBFD time units such as SBFD symbols and SBFD slots.
  • PUSCH and/or PUCCH in non-SBFD operation means PUSCH and/or PUCCH that do not overlap with SBFD time units such as SBFD symbols and SBFD slots.
  • additional fields such as PUSCH-PowerControl-SBFD may be set in the PUSCH-Config IE.
  • PUSCH-PowerControl-SBFD may be additionally set as the PUSCH power control IE for SBFD operation. That is, "pusch-PowerControl-SBFD” as a PUSCH power control IE for SBFD operation and "pusch-PowerControl” as a PUSCH power control IE for non-SBFD operation may be set in the PUSCH-Config IE. .
  • the UE may transmit the PUSCH using the transmission power of the push-PowerControl-SBFD IE in SBFD operation, and may transmit the PUSCH using the transmission power of the push-PowerControl IE in non-SBFD operation.
  • This makes it possible to set different PUSCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. Can be done.
  • PUCCH-PowerControl-SBFD may be set in PUCCH-Config.
  • PUCCH-Config IE in the existing NR, as shown in FIG. 9A, "pucch-PowerControl” is set as the PUCCH power control IE in PUCCH-Config.
  • PUCCH-Config IE in the existing NR, as shown in FIG. 9A, "pucch-PowerControl” is set as the PUCCH power control IE in PUCCH-Config.
  • PUCCH-PowerControl-SBFD may be additionally set as the PUCCH power control IE for SBFD operation. That is, "pucch-PowerControl-SBFD" as a PUCCH power control IE for SBFD operation and "pucch-PowerControl" as a PUCCH power control IE for non-SBFD operation may be set in the PUCCH-Config IE. .
  • the UE may transmit the PUCCH using the transmission power from the pucch-PowerControl-SBFD IE in SBFD operation, and may transmit the PUCCH using the transmission power from the pucch-PowerControl IE during non-SBFD operation.
  • This makes it possible to set different PUCCH transmission powers to the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing UE-to-UE CLI and/or gNB-to-gNB CLI during SBFD operation. Can be done.
  • option 1 it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, resulting in inter-UE CLI and/or inter-gNB CLI during SBFD operation. The possibility can be reduced.
  • additional fields such as "p0-NominalWithoutGrant-SBFD” and "p0-AlphaSets-SBFD” may be set in the PUSCH-PowerControl IE.
  • “p0-NominalWithoutGrant”, “p0-AlphaSets”, etc. are set as PUSCH power control fields in the PUSCH-PowerControl IE.
  • “p0-NominalWithoutGrant-SBFD” and “p0-AlphaSets-SBFD” may be additionally set as PUSCH power control fields for SBFD operation.
  • p0-NominalWithoutGrant-SBFD and “p0-AlphaSets-SBFD” as PUSCH power control fields for SBFD operation
  • p0-NominalWithoutGrant and “p0-AlphaS” as PUSCH power control fields for non-SBFD operation.
  • ets may be set in the PUSCH-PowerControl IE.
  • the UE transmits PUSCH with the transmission power according to the PUSCH power control field such as "p0-NominalWithoutGrant-SBFD”, “p0-AlphaSets-SBFD” in SBFD operation, and "p0-NominalWithoutGrant”, "p0-AlphaSets-SBFD” in non-SBFD operation.
  • -AlphaSets PUSCH may be transmitted using the transmission power. This makes it possible to set different PUSCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. Can be done.
  • additional fields such as "p0-Set-SBFD” may be set in the PUCCH-PowerControl IE.
  • "p0-Set” etc. are set as the PUCCH power control field in the PUCCH-PowerControl IE.
  • “p0-Set-SBFD” may be additionally set as a PUCCH power control field for SBFD operation. That is, "p0-Set-SBFD” as a PUCCH power control field for SBFD operation and "p0-Set” as a PUCCH power control field for non-SBFD operation may be set in the PUCCH-PowerControl IE. .
  • the UE transmits the PUCCH with the transmit power according to the PUCCH power control field such as "p0-Set-SBFD", and in non-SBFD operation, the UE transmits the PUCCH with the transmit power according to the PUCCH power control field such as "p0-Set”. may also be sent.
  • the PUCCH power control field such as "p0-Set”.
  • additional fields such as "preambleReceivedTargetPower-SBFD” may be set in the RACH-ConfigGeneric IE.
  • “preambleReceivedTargetPower” and the like are set as the RACH power control field in the RACH-ConfigGeneric IE.
  • “preambleReceivedTargetPower-SBFD” may be additionally set as the RACH power control field for SBFD operation.
  • preambleReceivedTargetPower-SBFD as a RACH power control field for SBFD operation
  • preambleReceivedTargetPower as a RACH power control field for non-SBFD operation
  • RACH-ConfigGeneric It may be set in IE.
  • the UE transmits the PRACH with the transmit power according to the PRACH power control field such as "preambleReceivedTargetPower-SBFD" in SBFD operation, and transmits PRACH with the transmit power according to the PRACH power control field such as "preambleReceivedTargetPower" in non-SBFD operation. to send H You can also do this.
  • additional fields such as "msgA-PreambleReceivedTargetPower-SBFD” may be set in the RACH-ConfigGenericTwoStepRA IE.
  • a PRACH power control field such as "msgA-PreambleReceivedTargetPower” is set in the RACH-ConfigGenericTwoStepRA IE.
  • “msgA-PreambleReceivedTargetPower-SBFD” may be additionally set as a PRACH power control field for SBFD operation.
  • msgA-PreambleReceivedTargetPower-SBFD as the RACH power control field for SBFD operation
  • msgA-PreambleReceivedTargetPower as the RACH power control field for non-SBFD operation
  • PRACH by transmit power by control field may also be sent.
  • additional fields such as "msg3-DeltaPreamble-SBFD” and "p0-NominalWithGrant-SBFD” may be set in the PUSCH-ConfigCommon IE.
  • “msg3-DeltaPreamble”, "p0-NominalWithGrant”, etc. are set as PUSCH power control fields in the PUSCH-ConfigCommon IE.
  • “msg3-DeltaPreamble-SBFD” and "p0-NominalWithGrant-SBFD” may be additionally set as the PUSCH power control field for SBFD operation.
  • the UE transmits the PUSCH with the transmission power according to the PUSCH power control field such as "msg3-DeltaPreamble-SBFD” and “p0-NominalWithGrant-SBFD” in SBFD operation, and "msg3-DeltaPreamble” and "p0 NominalWithGrant-SBFD” in non-SBFD operation.
  • PUSCH may be transmitted using the transmission power according to the PUSCH power control field such as "-NominalWithGrant”. This makes it possible to set different PUSCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. Can be done.
  • the PUSCH and/or PUCCH power control field is not limited to the above-mentioned fields, and may include "p0-NominalWithGrant”, “p0-PUSCH-Alpha”, “p0-AlphaSets", “delta-MCS”, and “deltaF-PUCCH”.
  • -f0 “deltaF-PUCCH-f1”, “deltaF-PUCCH-f2”, “deltaF-PUCCH-f3”, “deltaF-PUCCH-f4”, etc. also for other PUSCH/PUCCH power control fields.
  • separate settings for SBFD and non-SBFD operations may be defined, configured, notified, and/or applied.
  • option 2 it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, resulting in inter-UE CLI and/or inter-gNB CLI during SBFD operation. The possibility can be reduced.
  • the UE may set the transmission power in SBFD operation according to the transmission power setting for SBFD, and may set the transmission power in non-SBFD operation according to the transmission power setting for non-SBFD.
  • the transmission power setting for SBFD and/or the transmission power setting for non-SBFD is defined by the specifications, semi-statically set by RRC settings, etc., or dynamically notified by DCI notification etc. It's okay.
  • the transmission power setting for SBFD and/or the transmission power setting for non-SBFD may be specified, set, notified, or applied explicitly or implicitly.
  • option 1 and option 2 may or may not be used together.
  • the UE may transmit the uplink channel with the transmission power according to the SBFD transmission power setting in SBFD operation, and may transmit the uplink channel with the transmission power according to the non-SBFD transmission power setting in non-SBFD operation.
  • the transmit power settings for SBFD and the transmit power settings for non-SBFD are separate transmit power settings information elements for SBFD and non-SBFD operations (e.g., PUSCH-PowerControl-SBFD IE and PUSCH -PowerControl IE, PUCCH-PowerControl-SBFD IE, PUCCH-PowerControl IE, etc.).
  • the UE determines the PUSCH and/or PUCCH transmission power according to the PUSCH-PowerControl-SBFD IE and/or the PUCCH-PowerControl-SBFD IE in the SBFD operation, and in the non-SBFD operation, the UE determines the PUSCH-PowerControl-SBFD IE and/or the PUCCH-PowerControl-SBFD IE.
  • the PUSCH and/or PUCCH transmission power may be determined according to the PUCCH-PowerControl IE.
  • the transmit power setting for SBFD and the transmit power setting for non-SBFD are the transmit power parameter for SBFD operation and the transmit power parameter for non-SBFD operation in the same transmit power setting information element.
  • p0-Nominal Without Grant in IE PUSCH transmission power may be determined according to p0-AlphaSets or the like.
  • the UE determines PUCCH transmission power according to p0-Set-SBFD, etc. in PUCCH-PowerControl IE, and in non-SBFD operation, determines PUCCH transmission power according to p0-Set, etc. in PUCCH-PowerControl IE. You may.
  • the uplink channel may also include one or more of an uplink shared channel, an uplink control channel, and a random access channel.
  • the UE may transmit the PUSCH, PUCCH and/or PRACH according to the PUSCH transmission power setting, the PUCCH transmission power setting and/or the PRACH transmission power setting.
  • the gNB may set the transmission power for SBFD operation to the UE according to the transmission power setting for SBFD, and may set the transmission power for non-SBFD operation to the UE according to the transmission power setting for non-SBFD.
  • the transmission power setting for SBFD and/or the transmission power setting for non-SBFD is either specified by the specifications, semi-statically set by RRC settings, or dynamically notified by MAC CE etc. It's okay.
  • the transmission power setting for SBFD and/or the transmission power setting for non-SBFD may be specified, set, notified, or applied explicitly or implicitly.
  • the gNB may receive an uplink channel transmitted from the UE with a transmission power for SBFD in SBFD operation, and may receive an uplink channel transmitted from the UE with transmission power for non-SBFD in non-SBFD operation.
  • the transmit power settings for SBFD and the transmit power settings for non-SBFD are separate transmit power settings information elements for SBFD and non-SBFD operations (e.g., PUSCH-PowerControl-SBFD IE and PUSCH -PowerControl IE, PUCCH-PowerControl-SBFD IE, PUCCH-PowerControl IE, etc.).
  • the gNB sets the PUSCH and/or PUCCH transmission power for SBFD operation to the UE according to the PUSCH-PowerControl-SBFD IE and/or the PUCCH-PowerControl-SBFD IE, and UCCH-PowerControl IE Accordingly, the PUSCH and/or PUCCH transmission power for non-SBFD operation may be set in the UE.
  • the transmit power setting for SBFD and the transmit power setting for non-SBFD are the transmit power parameter for SBFD operation and the transmit power parameter for non-SBFD operation in the same transmit power setting information element.
  • the gNB sets the PUSCH transmission power in the SBFD operation to the UE using p0-NominalWithoutGrant-SBFD, p0-AlphaSets-SBFD, etc. in the PUSCH-PowerControl IE, and p0 in the PUSCH-PowerControl IE.
  • PUSCH transmission power in SBFD operation may be set in the UE.
  • the gNB sets the PUCCH transmission power in SBFD operation to the UE using p0-Set-SBFD etc. in the PUCCH-PowerControl IE, and sets the PUCCH transmission power in non-SBFD operation to the UE using p0-Set etc. in the PUCCH-PowerControl IE. You may.
  • the uplink channel may also include one or more of an uplink shared channel, an uplink control channel, and a random access channel.
  • the gNB may receive the PUSCH, PUCCH, and/or PRACH transmitted from the UE according to the PUSCH transmission power setting, the PUCCH transmission power setting, and/or the PRACH transmission power setting.
  • the UE may report the UE capability regarding whether to support separate PUSCH and/or PUCCH transmission power settings for SBFD operation and non-SBFD operation to the gNB.
  • the gNB may determine whether to perform separate PUSCH and/or PUCCH transmission power settings for SBFD operation and non-SBFD operation based on the acquired UE capability.
  • the UE transmits the uplink channel in SBFD operation with the transmission power adjusted by the PUSCH and/or PUCCH closed loop for SBFD operation, and the transmission adjusted by the PUSCH and/or PUCCH closed loop for non-SBFD operation. Transmit uplink channel in non-SBFD operation by power. That is, PUSCH and/or PUCCH transmit power is dynamically adjusted according to closed loop for SBFD operation and closed loop for non-SBFD operation via DCI notification or the like.
  • the setting of PUSCH and/or PUCCH closed loop in cell SBFD operation is considered as Problem 1.
  • the mapping relationship between uplink transmission beams eg, SRI and/or PUCCH spatial relation info, etc.
  • PUSCH and/or PUCCH closed loop index is considered as issue 2.
  • the mapping relationship between the PUSCH configuration of a configured grant eg, Configured Grant
  • the PUSCH closed-loop index is considered as issue 3.
  • up to two PUSCH and/or PUCCH closed loops may be configured for a cell, one closed loop being applied for SBFD operation and the other closed loop being applied for non-SBFD operation. That is, in Alt-a, up to two PUSCH and/or PUCCH closed loops may be configured for a cell according to the restrictions of Release 15/16/17.
  • the UE may determine that twoPUSCH-PC-AdjustmentStates and/or twoPUCCH-PC-AdjustmentStates are PUSCH-PowerControl IE and/or PUCCH-PowerCo of a serving cell or BWP with SBFD operation. ntrol Assuming that it is always set in IE Good too.
  • which closed loop among up to two closed loops is set for SBFD operation and/or non-SBFD operation is determined by the specifications, or is set semi-statically by RRC settings, etc. It may be dynamically notified by DCI notification or the like, or it may be determined by the UE according to predetermined rules. Furthermore, which closed loop of up to two closed loops is configured for SBFD operation and/or non-SBFD operation may be explicitly or implicitly defined, configured, notified, or applied.
  • a total of up to X PUSCH and/or PUCCH closed loops may be configured, and up to 2 of the X PUSCH and/or PUCCH closed loops may be configured for non-SBFD operation.
  • the value of X may be greater than two.
  • the number of PUSCH and/or PUCCH closed loops for SBFD operation may be smaller than 2, may be equal to 2, or may be larger than 2.
  • the value of X may be explicitly or implicitly defined, set, notified, or applied.
  • which closed loops among up to It may be dynamically notified, such as by notification, or may be determined by the UE according to predetermined rules.
  • which closed loop among up to X closed loops is set for SBFD operation and/or non-SBFD operation may be explicitly or implicitly defined, set, notified, or applied.
  • the number of PUSCH closed loops for non-SBFD operation is set by the existing twoPUSCH-PC-AdjustmentStates field in the PUSCH-PowerControl IE
  • the number of PUSCH closed loops for SBFD operation is set by the PUSCH- May be set by the new SBFD-PUSCH-PC-AdjustmentStates field in the PowerControl IE.
  • PUSCH closed loop index #0, #1 may indicate a closed loop for non-SBFD operation
  • PUSCH closed loop index #2, #3 may indicate a closed loop for SBFD operation.
  • the number of PUCCH closed loops for non-SBFD operation is set by the existing two PUCCH-PC-AdjustmentStates field in the PUCCH-PowerControl IE
  • the number of PUCCH closed loops for SBFD operation is set by the existing two PUCCH-PC-AdjustmentStates field in the PUCCH-PowerControl IE.
  • New SBFD in It may be set by the PUCCH-PC-AdjustmentStates field.
  • PUCCH closed loop index #0, #1 may indicate a closed loop for non-SBFD operation
  • PUCCH closed loop index #2, #3 may indicate a closed loop for SBFD operation.
  • the number of PUSCH and/or PUCCH closed loops for SBFD operation is defined by the specifications, semi-statically set by RRC settings, etc., dynamically notified by DCI notification, etc., or determined by a predetermined number. It may be determined by the UE according to rules.
  • the number of PUSCH and/or PUCCH closed loops for SBFD operation may be greater than, equal to, or smaller than the number of PUSCH and/or PUCCH closed loops for non-SBFD operation.
  • the UE determines whether twoStates is SBFD-PUSCH-PC-AdjustmentStates and/or SBF Must be set in D-PUCCH-PC-AdjustmentStates.
  • OneState is set to SBFD-PUSCH-PC-AdjustmentStates and/or SBFD-PUCCH-PC-AdjustmentStates
  • the UE sets twoPUSCH-PC-AdjustmentStates and/or two PUCCH-PC-AdjustmentStates must be set. There is no need to assume that
  • the PUSCH and/or PUCCH closed loop for SBFD operation is not explicitly configured, but one-to-one mapping from the PUSCH and/or PUCCH closed loop configured for non-SBFD operation.
  • PUSCH and/or PUCCH closed loop for SBFD operation is not explicitly configured, but one-to-one mapping from the PUSCH and/or PUCCH closed loop configured for non-SBFD operation.
  • the UE adjusts the PUSCH and/or PUCCH transmit power by the PUSCH and/or PUCCH closed loop for non-SBFD operation, and in SBFD operation, the UE adjusts the PUSCH and/or PUCCH transmit power implicitly from the PUSCH and/or PUCCH closed loop for non-SBFD operation.
  • the PUSCH and/or PUCCH transmission power may be adjusted according to the PUSCH and/or PUCCH closed loop for SBFD operation configured as follows.
  • PUSCH closed-loop index #i0 for non-SBFD operation
  • PUSCH closed-loop index #i1 or #i2 is set for SBFD operation.
  • PUSCH closed-loop index #i0 for non-SBFD operation may be associated with PUSCH closed-loop index #i1 or #i2 for SBFD operation. Note that the wording "#i1 or #i2" is used because it is not certain whether the PUSCH closed loop for SBFD operation starts from i2 or i1.
  • PUSCH closed-loop index #i0 and #i1 are set for non-SBFD operation
  • PUSCH closed-loop index #i2 or #i3 is set for SBFD operation.
  • PUSCH closed loop index #i0 for non-SBFD operation is associated with PUSCH closed loop index #i1 for SBFD operation
  • the PUSCH closed-loop index #i1 for operation may be associated with the PUSCH closed-loop index #i3 for SBFD operation.
  • PUCCH closed loop index #i0 for non-SBFD operation may be associated with PUCCH closed loop index #i1 or #i2 for SBFD operation. Note that the wording "#i1 or #i2" is used because it is not certain whether the PUCCH closed loop for SBFD operation starts from i2 or i1.
  • PUCCH closed-loop index #i0 and #i1 are set for non-SBFD operation
  • PUCCH closed-loop index #i2 or #i3 is set for SBFD operation.
  • Implicitly means that the PUCCH closed-loop index #i0 for non-SBFD operation is associated with the PUCCH closed-loop index #i1 for SBFD operation, and the PUCCH closed-loop index #i1 for non-SBFD operation may be associated with PUCCH closed loop index #i3 for SBFD operation.
  • the one-to-one mapping may be defined by specifications, semi-statically configured by RRC configuration, etc., dynamically notified by DCI notification, etc., or determined by the UE according to predetermined rules. . Additionally, one-to-one mapping may be explicitly or implicitly defined, configured, notified, or applied. In addition, multiple different one-to-one mappings are defined, and which one-to-one mapping is applied is either defined by the specifications, semi-statically set by RRC settings, or dynamically notified by DCI notifications, etc. or may be determined by the UE according to predetermined rules. Further, which one-to-one mapping is applied may be explicitly or implicitly defined, set, notified, or applied.
  • the existing closed-loop configuration can be applied to provide a closed-loop for SBFD operation and a closed-loop for non-SBFD operation, and PUSCH and/or PUCCH transmission by the UE via DCI. It becomes possible to dynamically control power.
  • mapping between uplink transmit beam indexes such as SRI and/or PUCCH spatial relation info and PUSCH and/or PUCCH closed loop indexes may be considered.
  • one SRI and/or uplink transmit beam index such as PUCCH spatial relation info is mapped to one PUSCH and/or PUCCH closed loop index for either non-SBFD operation or SBFD operation. It's okay.
  • each candidate value of the sri-PUSCH-ClosedLoopIndex field in the SRI-PUSCH-PowerControl IE may be a PUSCH closed-loop index for either non-SBFD operation or SBFD operation.
  • each candidate value of the pucch-ClosedLoopIndex-r17 field in the PUCCH-PowerControlSetInfo-r17 IE may be a PUCCH closed-loop index for either non-SBFD operation or SBFD operation.
  • each candidate value of the sri-PUSCH-ClosedLoopIndex field and/or the pucch-ClosedLoopIndex-r17 field is still the same as that of ⁇ i0, i1 ⁇ . You can leave it as is.
  • SRI #m may be mapped to PUSCH closed loop #i0 for non-SBFD operation
  • SRI #n may be mapped to PUSCH closed loop #i1 for SBFD operation.
  • each candidate value of the sri-PUSCH-ClosedLoopIndex field and/or pucch-ClosedLoopIndex-r17 field is set to ⁇ i0, i1, i2, i3 ⁇ . It can be.
  • each candidate value of the sri-PUSCH-ClosedLoopIndex field can be ⁇ i0, i1, i2, i3 ⁇ , as shown in FIG.
  • SRI #m may be mapped to PUSCH closed loop #i0 for non-SBFD operation
  • SRI #n may be mapped to PUSCH closed loop #i3 for SBFD operation.
  • Alt-b is applied to problem 1 mentioned above, the following several cases can be considered.
  • the candidate value of sri-PUSCH-ClosedLoopIndex is ⁇ i0, i1 ⁇ or ⁇ i0, i2 ⁇ . Note that it is not known whether the PUSCH closed loop for SBFD operation starts from i2 or i1.
  • the candidate value of sri-PUSCH-ClosedLoopIndex is ⁇ i0, i1, i2 ⁇ or ⁇ i0, i2, i3 ⁇ . Note that it is not known whether the PUSCH closed loop for SBFD operation starts from i2 or i1.
  • the candidate value of sri-PUSCH-ClosedLoopIndex is ⁇ i0, i1, i2 ⁇ . sell.
  • the candidate value of sri-PUSCH-ClosedLoopIndex is ⁇ i0, i1, i2, i3 ⁇ . sell.
  • each candidate value of pucch-ClosedLoopIndex-r17 can be ⁇ i0, i1, i2, i3 ⁇ . In this case as well, the following several cases may be considered.
  • the candidate value of pucch-ClosedLoopIndex-r17 is ⁇ i0, i1 ⁇ or ⁇ i0, i2 ⁇ . Note that it is not known whether the PUCCH closed loop for SBFD operation starts from i2 or i1.
  • the candidate value of pucch-ClosedLoopIndex-r17 is ⁇ i0, i1, i2 ⁇ or ⁇ i0, i2, i3 ⁇ . Note that it is not known whether the PUCCH closed loop for SBFD operation starts from i2 or i1.
  • the candidate value of pucch-ClosedLoopIndex-r17 is ⁇ i0, i1, i2 ⁇ . sell.
  • the candidate value of pucch-ClosedLoopIndex-r17 is ⁇ i0, i1, i2, i3 ⁇ . sell.
  • ⁇ Modification #1 If the SRI is mapped to the PUSCH closed loop index for non-SBFD operation, the UE may not assume that the SRI is signaled for PUSCH on the SBFD.
  • the UE may not assume that the SRI is signaled for PUSCH on non-SBFD.
  • ⁇ Modification #3 The UE does not have to assume DCI formats that schedule PUSCH on non-SBFD and other DCI formats that schedule PUSCH on SBFD due to the SRI field reporting the same TPC loop index.
  • ⁇ Modification #4 The UE does not have to assume DCI formats for scheduling PUSCH on non-SBFD and other DCI formats for scheduling PUSCH on non-SBFD due to the SRI field reporting different TPC loop indexes.
  • ⁇ Variation #5 The UE does not have to assume the DCI format for scheduling PUSCH on SBFD and other DCI formats for scheduling PUSCH on SBFD due to the SRI field reporting different TPC loop indexes.
  • the UE assumes a DCI format that notifies the PUCCH resource on a non-SBFD and another DCI format that notifies the PUCCH resource on a non-SBFD. You don't have to.
  • Modifications #3 to #8 may be applicable to cases where any PUSCH and/or PUCCH closed loop is for SBFD operation or non-SBFD operation, or is transparent or non-transparent.
  • an example mapping between uplink transmit beam index, such as SRI and/or PUCCH spatial relation info, and PUSCH and/or PUCCH closed loop index may be provided.
  • the uplink transmit beam index such as one SRI and/or PUCCH spatial relation info is one PUSCH and/or PUCCH closed loop index for non-SBFD operation and one PUSCH and/or PUCCH closed loop index for SBFD operation.
  • PUCCH closed loop index For example, as shown in FIG. 20, SRI #m is mapped to PUSCH closed loop #i0 for non-SBFD operation and PUSCH closed loop #i3 for SBFD operation, and SRI #n is mapped to PUSCH closed loop #i1 for non-SBFD operation. and PUSCH closed loop #i2 for SBFD operation.
  • a case can be assumed in which SRI is notified in DCI format 0_1/0_2 for scheduling PUSCH, or a case in which PUCCH resources are notified or determined for PUCCH according to specific PUCCH spatial relation info.
  • the PUSCH and/or PUCCH is on the SBFD
  • the associated PUSCH and/or PUCCH closed-loop index for SBFD operation may be applied to the PUSCH and/or PUCCH power calculation.
  • the PUSCH and/or PUCCH is on a non-SBFD
  • the associated PUSCH and/or PUCCH closed-loop index for non-SBFD operation may be applied to the PUSCH and/or PUCCH power calculation.
  • Opt-a and Opt-b may be executed for DCI format 0_1/0_2 in which the TPC adjustment command field exists.
  • the notified adjustment may be applied only to the PUSCH closed-loop index for the SBFD operation associated with the notified SRI.
  • the notified adjustment may be applied only to the PUSCH closed-loop index for non-SBFD operations associated with the notified SRI.
  • the advertised adjustment is the PUSCH closed-loop index for SBFD operations associated with the advertised SRI and PUSCH closed loop index for operation.
  • Opt-a and Opt-b may be executed for DCI format 1_1/1_2 in which the TPC adjustment command field exists.
  • Opt-a when the notified PUCCH is on SBFD, the notified adjustment is applied only to the PUCCH closed loop index for SBFD operation related to the PUCCH spatial relation info of the notified PUCCH resource. Good too.
  • the notified PUCCH is on a non-SBFD, the notified adjustment may be applied only to the PUCCH closed loop index for non-SBFD operations associated with the PUCCH spatial relation info of the notified PUCCH resource. good.
  • the notified adjustment is made on the PUCCH for SBFD operation related to the PUCCH spatial relation info of the notified PUCCH resource. It may be applied to the closed loop index and the PUCCH closed loop index for non-SBFD operations.
  • the TPC adjustment command field exists in DCI #1 and DCI #2.
  • the adjustment notified by DCI #1 may be applied only to PUSCH closed loop #i3, and the adjustment notified by DCI #2 may be applied only to PUSCH closed loop #i1.
  • the adjustment notified by DCI #1 is applied only to PUSCH closed loop #i0, #i3, and the adjustment notified by DCI #2 is applied only to PUSCH closed loop #i1, #i3. good.
  • sri-PUSCH-ClosedLoopIndex-SBFD and/or pucch-ClosedLoopIndex-r17-SBFD are added to the PUSCH and/or PUC for the corresponding SBFD operation for the SRI and/or PUCCH spatial relation info.
  • sri-PUSCH-ClosedLoopIndex is used to notify the PUSCH closed-loop index for non-SBFD operation
  • sri-PUSCH-ClosedLoopIndex is used to notify the PUSCH closed-loop index for SBFD operation.
  • sri-PUSCH-ClosedLoopIndex-SBFD may be set.
  • One SRI can be mapped to a PUSCH closed-loop index for SBFD operations and a PUSCH closed-loop index for non-SBFD operations.
  • the UE determines whether the SRI and/or PUCCH spatial relation info is PUSC on SBFD. Notified to H and/or PUCCH You don't have to assume that.
  • sri-PUSCH-ClosedLoopIndex is set as i0
  • SRI uses PUSCH closed loop index #i0 for non-SBFD operation and It may implicitly mean that it is mapped to PUSCH closed loop index #i1 or #i2. Note that it is not known whether the PUSCH closed loop index for SBFD operation starts from i2 or i1.
  • SRI is the PUSCH closed loop index #i0 or #i1 for non-SBFD operation; It may implicitly mean that it is mapped to PUSCH closed loop index #i2 or #i3 for SBFD operation.
  • SRI#m is associated with PUSCH closed-loop index #i0 for non-SBFD operation and PUSCH closed-loop index #i2 for SBFD operation
  • SRI#n is associated with PUSCH closed-loop index #i2 for non-SBFD operation.
  • PUCCH resource is the PUCCH closed-loop index #i0 for non-SBFD operation; It may implicitly mean that it is mapped to PUCCH closed loop index #i1 or #i2 for SBFD operation. Note that it is not known whether the PUCCH closed loop index for SBFD operation starts from i2 or i1.
  • pucch-ClosedLoopIndex-r17 is set as i0 or i1
  • the PUCCH resource is configured as PUCCH closed loop index #i0 or #i1 for non-SBFD operation.
  • the CG PUSCH configuration may be configured with one PUSCH closed-loop index for either SBFD operation or non-SBFD operation.
  • each candidate value of the powerControlLoopToUse field in the ConfiguredGrantConfig IE may be PUSCH closed loop for SBFD operation or PUSCH closed loop for non-SBFD operation.
  • the explanation in Alt-2 of problem 2 can be reused by replacing sri-PUSCH-ClosedLoopIndex with powerControlLoopToUse.
  • each candidate value of the powerControlLoopToUse field in the ConfiguredGrantConfig IE may be a PUSCH closed loop index for either non-SBFD operation or SBFD operation.
  • each candidate value of the powerControlLoopToUse field may remain ⁇ i0, i1 ⁇ .
  • each candidate value of the powerControlLoopToUse field can be ⁇ i0, i1, i2, i3 ⁇ .
  • the CG PUSCH configuration may be configured with one PUSCH closed-loop index for SBFD operation and one PUSCH closed-loop index for non-SBFD operation.
  • a new parameter powerControlLoopToUse-SBFD field may be utilized to signal the corresponding PUSCH closed loop index for SBFD operation on CG PUSCH.
  • the ConfiguredGrantConfig IE even if powerControlLoopToUse for notifying the PUSCH closed-loop index for non-SBFD operation and powerControlLoopToUse-SBFD for notifying the PUSCH closed-loop index for SBFD operation are set, Good.
  • One CG PUSCH can be mapped to a PUSCH closed-loop index for SBFD operation and a PUSCH closed-loop index for non-SBFD operation.
  • the UE may set the transmit power in SBFD operation according to the closed loop for SBFD, and may set the transmit power in non-SBFD operation according to the closed loop for non-SBFD.
  • the closed loop for SBFD and/or the closed loop for non-SBFD may be defined by specifications, semi-statically configured by RRC settings, or dynamically notified by DCI notification or the like. Further, the closed loop for SBFD and/or the closed loop for non-SBFD may be specified, configured, notified, or applied explicitly or implicitly.
  • the UE may transmit an uplink channel with closed-loop transmission power for SBFD in SBFD operation, and may transmit an uplink channel with closed-loop transmission power for non-SBFD in non-SBFD operation.
  • the total number of closed loops is configured, and the UE configures the transmit power in SBFD operation according to the closed loop for SBFD among the configured total number of closed loops.
  • the transmit power in non-SBFD operation may be set according to the closed loop for non-SBFD.
  • the UE may set the transmit power in SBFD operation and set the transmit power in non-SBFD operation according to the mapping between the uplink transmit beam and the closed-loop index. Also, related to issue 3, the UE configures the transmit power in SBFD operation and configures the transmit power in non-SBFD operation according to the mapping between the uplink shared channel configuration and the closed loop index in the configured grant. It's okay.
  • the gNB may set the transmission power in the SBFD operation to the UE using the closed loop for SBFD, and may set the transmission power in the non-SBFD operation to the UE using the closed loop for non-SBFD.
  • the closed loop for SBFD and/or the closed loop for non-SBFD may be defined by specifications, semi-statically configured by RRC settings, or dynamically notified by DCI notification or the like. Further, the closed loop for SBFD and/or the closed loop for non-SBFD may be specified, configured, notified, or applied explicitly or implicitly.
  • the gNB may receive an uplink channel transmitted from the UE with a transmission power for SBFD in SBFD operation, and may receive an uplink channel transmitted from the UE with transmission power for non-SBFD in non-SBFD operation.
  • the total number of closed loops is set, and the gNB sets the transmission power in the SBFD operation according to the closed loop for SBFD among the set total number of closed loops.
  • the transmit power in non-SBFD operation may be set according to the closed loop for non-SBFD.
  • the gNB may set the transmit power in SBFD operation and set the transmit power in non-SBFD operation according to the mapping between the uplink transmit beam and the closed-loop index. Also, related to issue 3, the gNB configures the transmit power in SBFD operation and configures the transmit power in non-SBFD operation according to the mapping between the uplink shared channel configuration and the closed loop index in the configured grant. It's okay.
  • the UE may report the UE capability regarding whether to support separate PUSCH and/or PUCCH closed loops for SBFD and non-SBFD operations to the gNB.
  • the gNB may determine whether to perform separate PUSCH and/or PUCCH closed-loop control for SBFD operation and non-SBFD operation based on the acquired UE capability.
  • the UE may also report the UE capability to the gNB regarding whether one SRI is simultaneously mapped to the PUSCH closed loop for SBFD operation and non-SBFD operation.
  • the UE may report to the gNB the UE capability regarding whether one PUCCH spatial relationship info is mapped to the PUCCH closed loop of SBFD operation and non-SBFD operation at the same time.
  • proposal 3 the UE transmits the uplink channel in SBFD operation with the transmit power set according to the transmit power formula for SBFD operation, and the UE transmits the uplink channel in SBFD operation with the transmit power set according to the transmit power formula for non-SBFD operation.
  • the uplink channel in operation may be transmitted.
  • a scaling factor for PUSCH and/or PUCCH transmit power calculation for SBFD operation may be applied.
  • the PUSCH and/or PUCCH transmission power for non-SBFD operation by existing NR may be increased by multiplication with a scaling factor.
  • the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (3).
  • equation (3) the scaling factor ⁇ for calculating PUSCH transmission power for SBFD operation is multiplied by the second argument of the min function in equation (1) for calculating PUSCH transmission power described above.
  • the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (4).
  • the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (5).
  • equation (5) the output of the min function of the above-mentioned PUSCH transmission power calculation equation (1) is multiplied by the scaling factor ⁇ for calculating the PUSCH transmission power for SBFD operation, and the product and P CMAX,f , c (i) is set.
  • the scaling factor ⁇ is defined by the specifications, semi-statically set by RRC settings, etc., dynamically notified by DCI notifications, or specified by a specific rule (for example, PUSCH on SBFD). RB size and/or PUSCH repetition number, etc.). Further, the scaling factor ⁇ may be explicitly or implicitly defined, set, notified, or applied.
  • a power offset for PUSCH and/or PUCCH transmit power calculation for SBFD operation may be applied.
  • the PUSCH and/or PUCCH transmission power for non-SBFD operation by existing NR may be increased by addition with a power offset.
  • the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following equation (6).
  • the power offset ⁇ for calculating the PUSCH transmission power for SBFD operation is added to the second argument of the min function of the above-mentioned PUSCH transmission power calculation formula (1).
  • the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (7).
  • equation (7) the power offset ⁇ for calculating the PUSCH transmission power for SBFD operation is added to the output of the min function of the above-mentioned PUSCH transmission power calculation equation (1). Note that when the power offset ⁇ is larger than 0, equation (7) may not be applicable.
  • the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (8).
  • the power offset ⁇ for calculating the PUSCH transmission power for SBFD operation is added to the output of the min function of the above-mentioned PUSCH transmission power calculation equation (1), and the sum and P CMAX,f , c (i) is set.
  • the power offset ⁇ is defined by the specification, semi-statically set by RRC settings, etc., dynamically notified by DCI notification etc., or specified by a specific rule (for example, PUSCH on SBFD). RB size and/or PUSCH repetition number, etc.). Further, the power offset ⁇ may be explicitly or implicitly defined, set, notified, or applied.
  • a reference RB size for PUSCH and/or PUCCH transmit power calculation for SBFD operation may be used.
  • a reference RB size corresponding to the uplink frequency band portion in SBFD may be used for PUSCH transmission power calculation for SBFD operation.
  • the actual RB size of PUSCH on SBFD is not applied as the parameters M RB, b, f, c PUSCH in calculation formula (1) of PUSCH transmission power, and option 3-1 or 3-2 is may be applied.
  • the parameters M RB, b, f, c PUSCH are independent of the actual RB size of PUSCH on SBFD, such as the RB size of other PUSCH repeats on non-SBFD, if present. It's okay.
  • the parameters M RB, b, f, c PUSCH are defined by the specifications, semi-statically set by RRC settings, etc., dynamically notified by DCI notifications, or determined by specific rules (e.g. PUSCH RB size and/or PUSCH repetition number on SBFD).
  • the parameters M RB, b, f, c PUSCH may be explicitly or implicitly defined, configured, notified, or applied.
  • the parameters M RB, b, f, c PUSCH are fixed RB size offset based on the actual PUSCH RB size, scaling factor based on the actual PUSCH RB size, offset based on the actual PUSCH RB size The value may depend on the actual RB size of PUSCH on the SBFD.
  • a fixed RB size offset may be specified by the specification, set semi-statically such as by RRC configuration, dynamically notified such as by DCI notification, or specified by a specific rule (e.g. PUSCH on SBFD). RB size and/or PUSCH repetition number, etc.). Additionally, the fixed RB size offset may be explicitly or implicitly defined, configured, notified, or applied.
  • the gNB may directly notify or set the RB size offset value.
  • “fixed The mapping relationship to "RB size offset” is defined by the specification, semi-statically set by RRC settings, dynamically notified by DCI notifications, or determined by specific rules (for example, on SBFD). may be determined by the UE according to the PUSCH RB size and/or the number of PUSCH repetitions, etc.).
  • the scaling factor based on the actual PUSCH RB size may be specified by the specification, semi-statically set by RRC settings, etc., dynamically notified by DCI notification, etc., or determined by specific rules (e.g. , PUSCH on SBFD, RB size and/or PUSCH repetition number, etc.).
  • the fixed RB size offset may be explicitly or implicitly defined, configured, notified, or applied.
  • scaling factor can be calculated from “actual PUSCH RB size”, “ratio of actual PUSCH RB size to BWP size (or UL subband size on SBFD symbol/slot)”, and/or “PUSCH repetition number”. The mapping relationship to and/or the number of PUSCH repetitions, etc.).
  • the parameters in options 1 to 3 may also be cell-specific or common to multiple UEs in a cell.
  • one common parameter for improving uplink power in SBFD operation may be applied.
  • two common parameters may be applied, one parameter to improve uplink power in SBFD operation and one parameter to reduce uplink power in SBFD operation.
  • proposal 3 may be applied with common PUSCH and/or PUCCH closed loop constraints for SBFD and non-SBFD operations.
  • suggestions 2 and 3 may be applied together.
  • the UE may set the transmission power in SBFD operation according to the power calculation formula for SBFD, and may set the transmission power in non-SBFD operation according to the power calculation formula for non-SBFD.
  • the power calculation formula for SBFD may be defined by specifications, semi-statically set by RRC settings, or dynamically notified by DCI notification or the like. Further, the power calculation formula for SBFD may be specified, set, notified, or applied explicitly or implicitly.
  • the UE may transmit an uplink channel with SBFD transmission power in SBFD operation, and may transmit an uplink channel with non-SBFD transmission power in non-SBFD operation.
  • the power calculation formula for SBFD may be derived by multiplying the power calculation formula for non-SBFD by a scaling factor.
  • the power calculation formula for SBFD may be derived by adding an offset value to the power calculation formula for non-SBFD.
  • the power calculation formula for SBFD may be calculated by applying the reference resource block size instead of the actual resource block size to the power calculation formula for non-SBFD.
  • the gNB may set the transmission power in the SBFD operation to the UE using the power calculation formula for SBFD, and may set the transmission power in the non-SBFD operation to the UE using the power calculation formula for non-SBFD.
  • the power calculation formula for SBFD may be defined by specifications, semi-statically set by RRC settings, or dynamically notified by DCI notification or the like. Further, the power calculation formula for SBFD may be specified, set, notified, or applied explicitly or implicitly.
  • the gNB may receive an uplink channel transmitted from the UE with a transmission power for SBFD in SBFD operation, and may receive an uplink channel transmitted from the UE with transmission power for non-SBFD in non-SBFD operation.
  • the power calculation formula for SBFD may be derived by multiplying the power calculation formula for non-SBFD by a scaling factor.
  • the power calculation formula for SBFD may be derived by adding an offset value to the power calculation formula for non-SBFD.
  • the power calculation formula for SBFD may be calculated by applying the reference resource block size instead of the actual resource block size to the power calculation formula for non-SBFD.
  • the UE may report the UE capability regarding whether to support the PUSCH and/or PUCCH power calculation formula adjusted for SBFD to the gNB.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 27 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment of the present disclosure.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in FIG. 27, or may be configured not to include some of the devices.
  • Each function in the base station 10 and user terminal 20 is performed by loading predetermined software (programs) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the baseband signal processing section 104, call processing section 105, etc. described above may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated on the processor 1001, and other functional blocks may be similarly realized.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, or a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 103 may be implemented as a transmitter 103a and a receiver 103b that are physically or logically separated.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the user terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). It may be configured to include hardware, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xth generation mobile communication system
  • xG xG (x is, for example, an integer or decimal)
  • FRA Fluture Radio Access
  • NR new Radio
  • New radio access NX
  • Future generation radio access FX
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Userltra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802 .16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark
  • the specific operations performed by the base station in this disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.).
  • MME mobile phone
  • S-GW network node
  • Information can be output from the upper layer (or lower layer) to the lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).
  • RRHs small indoor base stations
  • Communication services may also be provided by a remote radio head).
  • the term "cell” or “sector” refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • FIG. 28 shows an example of the configuration of the vehicle 1.
  • the vehicle 1 includes a drive unit 2, a steering unit 3, an accelerator pedal 4, a brake pedal 5, a shift lever 6, left and right front wheels 7, left and right rear wheels 8, an axle 9, an electronic control unit 10, various It includes sensors 21 to 29, an information service section 12, and a communication module 13.
  • the drive unit 2 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 3 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also referred to as a steering wheel
  • the electronic control unit 10 is composed of a microprocessor 31, memory (ROM, RAM) 32, and communication port (IO port) 33. Signals from various sensors 21 to 27 provided in the vehicle are input to the electronic control unit 10.
  • the electronic control unit 10 may also be called an ECU (Electronic Control Unit).
  • the signals from the various sensors 21 to 28 include a current signal from the current sensor 21 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by the rotation speed sensor 22, and a front wheel rotation speed signal obtained by the air pressure sensor 23. and a rear wheel air pressure signal, a vehicle speed signal obtained by the vehicle speed sensor 24, an acceleration signal obtained by the acceleration sensor 25, an accelerator pedal depression amount signal obtained by the accelerator pedal sensor 29, and a signal obtained by the brake pedal sensor 26.
  • These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 27, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 28.
  • the information service unit 12 controls various devices such as a car navigation system, audio system, speakers, television, and radio for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 12 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 13 or the like.
  • the information service unit 12 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device (for example, (display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device for example, (display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 30 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 30 transmits and receives various information via the communication module 13, and realizes a driving support function or an automatic driving function.
  • the communication module 13 can communicate with the microprocessor 31 and the components of the vehicle 1 via the communication port.
  • the communication module 13 communicates via the communication port 33 with the drive unit 2, steering unit 3, accelerator pedal 4, brake pedal 5, shift lever 6, left and right front wheels 7, left and right rear wheels 8, which are included in the vehicle 1.
  • Data is transmitted and received between the axle 9, the microprocessor 31 and memory (ROM, RAM) 32 in the electronic control unit 10, and the sensors 21-28.
  • the communication module 13 is a communication device that can be controlled by the microprocessor 31 of the electronic control unit 10 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 13 may be located either inside or outside the electronic control unit 10.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 13 receives signals from the various sensors 21 to 28 described above that are input to the electronic control unit 10, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 12. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 10, various sensors 21-28, information service unit 12, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 13 may include information based on the above input.
  • the communication module 13 receives various information (traffic information, signal information, inter-vehicle distance information, etc.) transmitted from external devices, and displays it on the information service section 12 provided in the vehicle.
  • the information service unit 12 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 13). may be called.
  • the communication module 13 also stores various information received from external devices into a memory 32 that can be used by the microprocessor 31. Based on the information stored in the memory 32, the microprocessor 31 controls the drive unit 2, steering unit 3, accelerator pedal 4, brake pedal 5, shift lever 6, left and right front wheels 7, and left and right rear wheels provided in the vehicle 1. 8, the axle 9, sensors 21 to 28, etc. may be controlled.
  • the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first transmission power setting, and the first transmission power is set according to the second transmission power setting.
  • a control unit configured to set a second transmission power in a non-SBFD operation, transmitting an uplink channel with the first transmission power in the SBFD operation, and transmitting an uplink channel with the second transmission power in the non-SBFD operation;
  • a terminal having a transmitting unit for transmitting data is provided.
  • the first transmit power setting and the second transmit power setting may be defined by separate transmit power setting information elements for the SBFD operation and the non-SBFD operation. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
  • the first transmit power setting and the second transmit power setting are a first transmit power parameter for the SBFD operation and a first transmit power parameter for the non-SBFD operation in the same transmit power setting information element. and a second transmission power parameter.
  • the uplink channel may include one or more of an uplink shared channel, an uplink control channel, and a random access channel. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
  • the first transmission power setting sets the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation to the terminal, and the second transmission power setting sets the terminal to perform non-SBFD operation.
  • a control unit configured to set a second transmission power to a terminal in the SBFD operation; and a receiving unit for receiving an uplink channel transmitted from the terminal.
  • the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first transmission power setting
  • the first transmission power in non-SBFD operation is set according to the second transmission power setting. transmitting an uplink channel with the first transmit power in the SBFD operation and transmitting an uplink channel with the second transmit power in the non-SBFD operation;
  • a wireless communication method performed by a terminal is provided.
  • the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first closed loop
  • the second transmission power in non-SBFD operation is set according to the second closed loop.
  • a transmitter that transmits an uplink channel with the first transmission power in the SBFD operation and transmits an uplink channel with the second transmission power in the non-SBFD operation. is provided.
  • a total number of closed loops is set, and the control unit sets a first transmission power in the SBFD operation according to the first closed loop of the set total number of closed loops, and The second transmission power in the non-SBFD operation may be set according to the second closed loop among the total number of closed loops.
  • the controller sets the first transmit power in the SBFD operation and the second transmit power in the non-SBFD operation according to a mapping between an uplink transmit beam and a closed-loop index. Good too. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
  • the controller configures a first transmission power in the SBFD operation according to a mapping between an uplink shared channel configuration and a closed-loop index of a configured grant, and configures a first transmission power in the SBFD operation and a second transmission power in the non-SBFD operation. You may also set the power.
  • the first closed loop sets the first transmission power in the SBFD (Subband non-overlapping Full Duplex) operation to the terminal
  • the second closed loop sets the second transmission power in the non-SBFD operation.
  • a control unit that sets a transmission power to a terminal; and a controller that receives an uplink channel transmitted from the terminal with the first transmission power in the SBFD operation, and receives an uplink channel transmitted from the terminal with the second transmission power in the non-SBFD operation.
  • a base station is provided having a receiving unit for receiving a transmitted uplink channel.
  • the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first closed loop
  • the second transmission power in non-SBFD operation is set according to the second closed loop. and transmitting an uplink channel with the first transmit power in the SBFD operation and transmitting an uplink channel with the second transmit power in the non-SBFD operation.
  • a wireless communication method is provided.
  • the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first power calculation formula
  • the first transmission power in non-SBFD operation is set according to the second power calculation formula.
  • a control unit that sets a transmission power of 2; and a transmitter that transmits an uplink channel with the first transmission power in the SBFD operation and transmits the uplink channel with the second transmission power in the non-SBFD operation.
  • the first power calculation formula may be derived by multiplying the second power calculation formula by a scaling factor. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
  • the first power calculation formula may be derived by adding an offset value to the second power calculation formula. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
  • the first power calculation formula may be calculated by applying a reference resource block size to the second power calculation formula. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
  • the first power calculation formula sets the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation to the terminal
  • the second power calculation formula sets the first transmission power in the non-SBFD operation.
  • a control unit configured to set a second transmission power to a terminal in the SBFD operation; and a receiving unit for receiving an uplink channel transmitted from the terminal.
  • the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first power calculation formula
  • the first transmission power in non-SBFD operation is set according to the second power calculation formula. transmitting an uplink channel with the first transmit power in the SBFD operation and transmitting an uplink channel with the second transmit power in the non-SBFD operation;
  • a wireless communication method performed by a terminal is provided.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in LTE Rel. 8-12
  • a TTI that is shorter than a normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI e.g., regular TTI, subframe, etc.
  • short TTI e.g., shortened TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. good.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the "maximum transmit power” described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power).
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • Wireless communication system 100 Base station (gNB) 200 Terminal (UE)
  • gNB Base station
  • UE Terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

According to an embodiment of the present disclosure, provided is a terminal having a control unit that sets first transmission power in a subband non-overlapping full duplex (SBFD) operation in accordance with a first closed loop and sets second transmission power in a non-SBFD operation in accordance with a second closed loop, and a transmission unit that transmits an uplink channel using the first transmission power in the SBFD operation and transmits an uplink channel using the second transmission power in the non-SBFD operation.

Description

端末、基地局及び無線通信方法Terminals, base stations and wireless communication methods
 本開示は、端末、基地局及び無線通信方法に関する。 The present disclosure relates to a terminal, a base station, and a wireless communication method.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delay, etc. In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9). .
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems of LTE (for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system m (6G), New Radio (NR), 3GPP Rel.15 or later) are also being considered. .
 将来の無線通信システム(例えば、NR)において、複数のユーザ端末(user terminal,User Equipment(UE))が、超高密度かつ高トラヒックな環境下で通信を行うことが想定される。 In future wireless communication systems (for example, NR), it is assumed that a plurality of user terminals (user terminals, user equipment (UE)) will communicate in an ultra-high-density and high-traffic environment.
 このような環境下において、ダウンリンク(DL)のリソースと比較し、アップリンク(UL)のリソースが不足することが想定される。 Under such an environment, it is assumed that uplink (UL) resources are insufficient compared to downlink (DL) resources.
 しかしながら、これまでのNR仕様においては、アップリンクのリソースを増大させる方法について、十分検討がなされていない。当該方法を適切に制御できなければ、遅延の増大やカバレッジ性能の低下など、システム性能が低下するおそれがある。 However, in the existing NR specifications, sufficient consideration has not been given to methods for increasing uplink resources. If the method cannot be properly controlled, system performance may deteriorate, such as increased delay and reduced coverage performance.
 そこで、本開示は、リソースの利用効率を高める端末、基地局及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal, a base station, and a wireless communication method that improve resource usage efficiency.
 本開示の一態様は、第1の送信電力設定に従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の送信電力設定に従って非SBFD動作における第2の送信電力を設定する制御部と、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信する送信部と、を有する端末に関する。
 本開示の他の態様は、第1の閉ループに従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の閉ループに従って非SBFD動作における第2の送信電力を設定する制御部と、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信する送信部と、を有する端末に関する。
 本開示の他の態様は、第1の電力算出式に従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の電力算出式に従って非SBFD動作における第2の送信電力を設定する制御部と、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信する送信部と、を有する端末に関する。
One aspect of the present disclosure is to set a first transmission power in a SBFD (Subband non-overlapping Full Duplex) operation according to a first transmission power setting, and set a second transmission power in a non-SBFD operation according to a second transmission power setting. and a transmitter that transmits an uplink channel with the first transmission power in the SBFD operation and transmits an uplink channel with the second transmission power in the non-SBFD operation. Regarding.
Other aspects of the present disclosure set a first transmit power in SBFD (Subband non-overlapping Full Duplex) operation according to a first closed loop, and set a second transmit power in non-SBFD operation according to a second closed loop. The present invention relates to a terminal having a control unit, and a transmitting unit that transmits an uplink channel with the first transmission power in the SBFD operation and transmits an uplink channel with the second transmission power in the non-SBFD operation.
Another aspect of the present disclosure is to set the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation according to a first power calculation formula, and set the second transmission power in non-SBFD operation according to a second power calculation formula. a control unit that sets power; and a transmitting unit that transmits an uplink channel with the first transmission power in the SBFD operation and transmits the uplink channel with the second transmission power in the non-SBFD operation. Regarding the terminal.
図1は、本開示の一実施例による基地局(gNB)の機能構成を示すブロック図である。FIG. 1 is a block diagram showing the functional configuration of a base station (gNB) according to an embodiment of the present disclosure. 図2は、本開示の一実施例による端末(UE)の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a terminal (UE) according to an embodiment of the present disclosure. 図3A及び3Bは、本開示の一実施例によるXDD(Cross Division Duplex)又はSBFD(Subband non-overlapping Full Duplex)の無線リソースの配置例を示す図である。3A and 3B are diagrams illustrating an example of arrangement of radio resources of XDD (Cross Division Duplex) or SBFD (Subband non-overlapping Full Duplex) according to an embodiment of the present disclosure. 図4は、本開示の一実施例によるXDD動作又はSBFD動作を示す図である。FIG. 4 is a diagram illustrating XDD or SBFD operation according to an embodiment of the present disclosure. 図5A及び5Bは、本開示の一実施例によるTDD及びSBFDを示す図である。5A and 5B are diagrams illustrating TDD and SBFD according to one embodiment of the present disclosure. 図6A~6Eは、本開示の一実施例によるピュア時間単位及びSBFD時間単位を示す図である。6A-6E are diagrams illustrating pure time units and SBFD time units according to one embodiment of the present disclosure. 図7A及び7Bは、本開示の一実施例によるクロスリンク干渉(CLI)を示す図である。7A and 7B are diagrams illustrating cross-link interference (CLI) according to one embodiment of the present disclosure. 図8A及び8Bは、本開示の一実施例によるPUSCH-Config情報要素(IE)を示す図である。8A and 8B are diagrams illustrating a PUSCH-Config information element (IE) according to one embodiment of the present disclosure. 図9A及び9Bは、本開示の一実施例によるPUSCH-Config IEを示す図である。9A and 9B are diagrams illustrating the PUSCH-Config IE according to an embodiment of the present disclosure. 図10A及び10Bは、本開示の一実施例によるPUSCH-PowerControl IEを示す図である。10A and 10B are diagrams illustrating the PUSCH-PowerControl IE according to an embodiment of the present disclosure. 図11A及び11Bは、本開示の一実施例によるPUCCH-PowerControl IEを示す図である。11A and 11B are diagrams illustrating the PUCCH-PowerControl IE according to one embodiment of the present disclosure. 図12A及び12Bは、本開示の一実施例によるRACH-ConfigGeneric IEを示す図である。12A and 12B are diagrams illustrating the RACH-ConfigGeneric IE according to one embodiment of the present disclosure. 図13A及び13Bは、本開示の一実施例によるRACH-ConfigGenericTwoStepRA-r16 IEを示す図である。13A and 13B are diagrams illustrating the RACH-ConfigGenericTwoStepRA-r16 IE according to an embodiment of the present disclosure. 図14A及び14Bは、本開示の一実施例によるPUSCH-ConfigCommon IEを示す図である。14A and 14B are diagrams illustrating the PUSCH-ConfigCommon IE according to an embodiment of the present disclosure. 図15は、本開示の一実施例によるPUSCH-PowerControl IEを示す図である。FIG. 15 is a diagram illustrating the PUSCH-PowerControl IE according to an embodiment of the present disclosure. 図16は、本開示の一実施例による閉ループマッピングを示す図である。FIG. 16 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure. 図17は、本開示の一実施例による閉ループマッピングを示す図である。FIG. 17 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure. 図18は、本開示の一実施例によるSRI-PUSCH-PowerControl IEを示す図である。FIG. 18 is a diagram illustrating the SRI-PUSCH-PowerControl IE according to an embodiment of the present disclosure. 図19は、本開示の一実施例による閉ループマッピングを示す図である。FIG. 19 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure. 図20は、本開示の一実施例による閉ループマッピングを示す図である。FIG. 20 is a diagram illustrating closed-loop mapping according to an embodiment of the present disclosure. 図21は、本開示の一実施例による閉ループマッピングを示す図である。FIG. 21 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure. 図22は、本開示の一実施例によるSRI-PUSCH-PowerControl IEを示す図である。FIG. 22 is a diagram illustrating the SRI-PUSCH-PowerControl IE according to an embodiment of the present disclosure. 図23は、本開示の一実施例による閉ループマッピングを示す図である。FIG. 23 is a diagram illustrating closed-loop mapping according to one embodiment of the present disclosure. 図24は、本開示の一実施例による電力調整を示す図である。FIG. 24 is a diagram illustrating power adjustment according to one embodiment of the present disclosure. 図25は、本開示の一実施例による電力調整を示す図である。FIG. 25 is a diagram illustrating power adjustment according to one embodiment of the present disclosure. 図26は、本開示の一実施例による電力調整を示す図である。FIG. 26 is a diagram illustrating power adjustment according to one embodiment of the present disclosure. 図27は、本開示の一実施例による基地局及び端末のハードウェア構成を示すブロック図である。FIG. 27 is a block diagram showing the hardware configuration of a base station and a terminal according to an embodiment of the present disclosure. 図28は、本開示の一実施例による車両のハードウェア構成を示すブロック図である。FIG. 28 is a block diagram showing the hardware configuration of a vehicle according to an embodiment of the present disclosure.
 以下、図面を参照して本開示の実施の形態を説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 (無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。無線通信システムは、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)、これらの後継の無線通信システムなどを用いて通信を実現するシステムであってもよい。
(Wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof. Wireless communication systems include Long Term Evolution (LTE), which is specified by the Third Generation Partnership Project (3GPP), and 5th generation mobile communication system Ne. w Radio (5G NR), realizing communication using these successor wireless communication systems, etc. It may be a system that
 また、無線通信システムは、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), N Dual connectivity between R and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システムは、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 A wireless communication system has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). ) may be supported.
 無線通信システムは、比較的カバレッジの広いマクロセルC1を形成する基地局と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局と、を備えてもよい。端末(UE)は、少なくとも1つのセル内に位置してもよい。各セル及び端末の配置、数などは、特定の態様に限定されない。 The wireless communication system may include a base station forming a macro cell C1 with relatively wide coverage, and a base station forming a small cell C2 that is located within the macro cell C1 and narrower than the macro cell C1. A terminal (UE) may be located within at least one cell. The arrangement, number, etc. of each cell and terminal are not limited to a specific aspect.
 端末は、複数の基地局のうち、少なくとも1つに接続してもよい。端末は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 A terminal may connect to at least one of the plurality of base stations. The terminal may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えば、FR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be in a frequency band below 6 GHz (sub-6 GHz), and FR2 may be in a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、端末は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the terminal may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、2つの基地局間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局は、Integrated Access Backhaul(IAB)ドナーと呼ばれ、中継局(リレー)に該当する基地局は、IABノードと呼ばれてもよい。 The plurality of base stations may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between two base stations, the base station that corresponds to the upper station is called the Integrated Access Backhaul (IAB) donor, and the base station that corresponds to the relay station is called the integrated access backhaul (IAB) donor. , may be called an IAB node.
 基地局は、他の基地局を介して、又は直接コアネットワークに接続されてもよい。コアネットワークは、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 A base station may be connected to the core network via another base station or directly. The core network may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 端末は、LTE、LTE-A、5G、6Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The terminal may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, 5G, and 6G.
 無線通信システムにおいては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、ダウンリンク(DL)及びアップリンク(UL)の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In a wireless communication system, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA) or the like may be used.
 無線アクセス方式は、波形と呼ばれてもよい。なお、無線通信システムにおいては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL wireless access methods.
 無線通信システムでは、ダウンリンクチャネルとして、各端末で共有されるダウンリンク共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、ダウンリンク制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In wireless communication systems, downlink channels include a physical downlink shared channel (PDSCH) shared by each terminal, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical Downlink Control Channel (PDCCH)) etc. may be used.
 また、無線通信システムでは、アップリンクチャネルとして、各端末で共有されるアップリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))、アップリンク制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In a wireless communication system, uplink channels include a physical uplink shared channel (PUSCH) shared by each terminal, a physical uplink control channel (PUCCH), and a random access channel ( Physical Random Access Channel (PRACH) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが送信される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが送信されてもよい。また、PBCHによって、Master Information Block(MIB)が送信されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted via the PDSCH. User data, upper layer control information, etc. may be transmitted via PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が送信されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含むダウンリンク制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタリングしてもよい。 A control resource set (CONTROL REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates. One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベルに該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペース(SS)セットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates that correspond to one or more aggregation levels. One or more search spaces may be referred to as a search space (SS) set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含むアップリンク制御情報(Uplink Control Information(UCI))が送信されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが送信されてもよい。 PUCCH provides channel state information (CSI), delivery confirmation information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK /NACK, etc.) and scheduling request (Scheduling Request). Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in the present disclosure, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システムでは、同期信号(Synchronization Signal(SS))、ダウンリンクリファレンス信号(Downlink Reference Signal(DL-RS))などが送信されてもよい。無線通信システムでは、DL-RSとして、セル固有リファレンス信号(Cell-specific Reference Signal(CRS))、チャネル状態情報リファレンス信号(Channel State Information Reference Signal(CSI-RS))、復調用リファレンス信号(DeModulation Reference Signal(DMRS))、位置決定リファレンス信号(Positioning Reference Signal(PRS))、位相トラッキングリファレンス信号(Phase Tracking Reference Signal(PTRS))などが送信されてもよい。 In a wireless communication system, a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted. In a wireless communication system, DL-RS includes a cell-specific reference signal (CRS) and a channel state information reference signal (CSI-RS). , demodulation reference signal (DeModulation Reference signal A positioning reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、リファレンス信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システムでは、アップリンクリファレンス信号(Uplink Reference Signal(UL-RS))として、測定用リファレンス信号(Sounding Reference Signal(SRS))、復調用リファレンス信号(DMRS)などが送信されてもよい。なお、DMRSは、UE固有リファレンス信号(UE-specific Reference Signal)と呼ばれてもよい。 Furthermore, in the wireless communication system, a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), etc. may be transmitted as an uplink reference signal (UL-RS). . Note that DMRS may be referred to as a UE-specific reference signal (UE-specific Reference Signal).
 (装置構成)
 次に、後述される処理及び動作を実行する基地局(gNB)100及び端末(UE)200の機能構成例を説明する。gNB100及びUE200は、後述される実施例を実現する機能を含む。ただし、gNB100及びUE200はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, an example of the functional configuration of the base station (gNB) 100 and the terminal (UE) 200 that execute the processes and operations described below will be described. The gNB 100 and the UE 200 include functions that implement the embodiments described below. However, the gNB 100 and the UE 200 may each have only some of the functions in the embodiment.
 (gNB100)
 図1は、gNB100の機能構成の一例を示す図である。図1に示されるように、gNB100は、受信部101、送信部102及び制御部103を有する。図1に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実施できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
(gNB100)
FIG. 1 is a diagram showing an example of the functional configuration of the gNB 100. As shown in FIG. 1, the gNB 100 includes a receiving section 101, a transmitting section 102, and a control section 103. The functional configuration shown in FIG. 1 is only an example. As long as the operations according to the embodiments of the present invention can be carried out, the functional divisions and functional parts may have any names.
 受信部101は、UE200から送信された各種の信号を受信し、受信した信号から、例えば、より上位のレイヤの情報を取得する機能を含む。送信部102は、UE200に送信する信号を生成し、当該信号を有線又は無線で送信する機能を含む。 The receiving unit 101 includes a function of receiving various signals transmitted from the UE 200 and acquiring, for example, information on a higher layer from the received signals. The transmitting unit 102 includes a function of generating a signal to be transmitted to the UE 200 and transmitting the signal by wire or wirelessly.
 制御部103は、予め設定される設定情報、及び、UE200に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、制御部103は、UE200との通信に係る処理を実行する。制御部103における信号送信に関する機能部を送信部102に含め、制御部103における信号受信に関する機能部を受信部101に含めてもよい。 The control unit 103 stores preset setting information and various setting information to be transmitted to the UE 200 in a storage device, and reads them from the storage device as necessary. Further, the control unit 103 executes processing related to communication with the UE 200. A functional unit related to signal transmission in the control unit 103 may be included in the transmitting unit 102, and a functional unit related to signal reception in the control unit 103 may be included in the receiving unit 101.
 (UE200)
 図2は、UE200の機能構成の一例を示す図である。図2に示されるように、UE200は、送信部201、受信部202及び制御部203を有する。図2に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実施できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
(UE200)
FIG. 2 is a diagram showing an example of the functional configuration of the UE 200. As shown in FIG. 2, the UE 200 includes a transmitter 201, a receiver 202, and a controller 203. The functional configuration shown in FIG. 2 is only an example. As long as the operations according to the embodiments of the present invention can be carried out, the functional divisions and functional parts may have any names.
 送信部201は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部202は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部202は、gNB100から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号又はリファレンス信号等を受信する機能を有する。 The transmitter 201 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 202 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 202 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL control signal, reference signal, etc. transmitted from the gNB 100.
 制御部203は、受信部202によりgNB100から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、制御部203は、gNB100との通信に係る処理を実行する。制御部203における信号送信に関する機能部を送信部201に含め、制御部203における信号受信に関する機能部を受信部202に含めてもよい。 The control unit 203 stores various setting information received from the gNB 100 by the receiving unit 202 in a storage device, and reads it from the storage device as necessary. Further, the control unit 203 executes processing related to communication with the gNB 100. A functional unit related to signal transmission in the control unit 203 may be included in the transmitting unit 201, and a functional unit related to signal reception in the control unit 203 may be included in the receiving unit 202.
 (SBFD動作)
 Rel.16までの時分割複信(Time Division Duplex(TDD))による送受信の時間比(例えば、DL:UL=4:1)を考慮すると、UL信号/チャネルの送信機会が、DL信号/チャネルの受信機会に対して少なくなるケースが考えられる。このようなケースでは、UE200は頻繁にUL信号/チャネルを送信することができず、重要なUL信号/チャネルの送信遅延が発生することが懸念される。また、DL受信機会と比較してUL送信機会が少なくなるため、UL送信機会における信号/チャネルの混雑も懸念される。さらに、TDDでは、UL信号/チャネルを送信できる時間リソースが限定されるため、例えば、繰り返し送信(repetition)によるULカバレッジ拡張技術の適用も限定的となってしまう。
(SBFD operation)
Rel. Considering the transmission/reception time ratio (for example, DL:UL=4:1) by Time Division Duplex (TDD) up to There may be cases where the number of opportunities decreases. In such a case, the UE 200 may not be able to frequently transmit UL signals/channels, and there is a concern that transmission delays of important UL signals/channels may occur. Furthermore, since there are fewer UL transmission opportunities compared to DL reception opportunities, there is also concern about signal/channel congestion during UL transmission opportunities. Furthermore, in TDD, the time resources available for transmitting UL signals/channels are limited, so that the application of UL coverage expansion techniques, such as repetition, is also limited.
 将来の無線通信システム(例えば、Rel.18以降)において、UL及びDLに対してTDDと周波数分割複信(Frequency Division Duplex(FDD))とを組み合わせた分割複信方法が導入されることが検討されている。 In future wireless communication systems (for example, Rel. 18 and later), it is being considered that a division duplexing method that combines TDD and frequency division duplexing (FDD) will be introduced for UL and DL. has been done.
 当該分割複信方法は、XDD(Cross Division Duplex)又はサブバンド非オーバラップ全二重(Subband non-overlapping Full Duplex:SBFD)と呼ばれてもよい。XDD又はSBFDは、TDDバンドの1コンポーネントキャリア(CC)内においてDL及びULを周波数分割多重する(DL及びULを同時に利用可能な)複信方法を意味してもよい。 The division duplex method may be called XDD (Cross Division Duplex) or subband non-overlapping Full Duplex (SBFD). XDD or SBFD may refer to a duplex method in which DL and UL are frequency division multiplexed within one component carrier (CC) of the TDD band (DL and UL can be used simultaneously).
 図3Aは、Rel.16までに規定されるTDDの設定の一例を示す図である。図3Aに示される例では、TDDのスロット又はシンボルが、1つのコンポーネントキャリア(CC)(セル、サービングセルと呼ばれてもよい)、帯域幅部分(BWP)などの帯域幅においてUEに設定される。 FIG. 3A shows Rel. 16 is a diagram illustrating an example of TDD settings defined up to No. 16. FIG. In the example shown in FIG. 3A, TDD slots or symbols are configured for the UE in the bandwidth of one component carrier (CC) (cell, may also be called serving cell), bandwidth portion (BWP), etc. .
 図3Aに示される例では、DLスロットとULスロットの時間比は、4:1である。このような従来のTDDにおけるスロット又はシンボルの設定では、UL時間リソースを十分に確保できず、UL送信遅延の発生やカバレッジ性能低下の恐れがある。 In the example shown in FIG. 3A, the time ratio of DL slots and UL slots is 4:1. With such conventional slot or symbol settings in TDD, sufficient UL time resources cannot be secured, and there is a risk that UL transmission delay will occur and coverage performance will deteriorate.
 図3Bは、SBFDの構成の一例を示す図である。図3Bに示される例では、1つのコンポーネントキャリア(CC)内において、DLの受信に用いられるリソースと、ULの送信に用いられるリソースとが時間的に重複する。このようなリソース構成によると、より多くのULリソースを確保することができ、リソースの利用効率の向上を図ることができる。 FIG. 3B is a diagram showing an example of the configuration of the SBFD. In the example shown in FIG. 3B, within one component carrier (CC), the resources used for DL reception and the resources used for UL transmission overlap in time. According to such a resource configuration, more UL resources can be secured, and resource utilization efficiency can be improved.
 例えば、図3Bに示される例のように、周波数領域の両端をDLリソースに設定し、これらのDLリソースでULリソースを挟むような構成とされてもよい。これにより、近隣のキャリアとのクロスリンク干渉(Cross Link Interference(CLI))の発生を回避及び緩和することができうる。また、DLリソースとULリソースとの境界には、ガードのための領域が設定されてもよい。 For example, as in the example shown in FIG. 3B, both ends of the frequency domain may be set as DL resources, and a UL resource may be sandwiched between these DL resources. Thereby, it is possible to avoid and alleviate the occurrence of cross link interference (CLI) with neighboring carriers. Further, a guard area may be set at the boundary between the DL resource and the UL resource.
 自己干渉の処理の複雑さを考慮すると、基地局100のみがDLリソース及びULリソースを同時に使用することが考えられうる。つまり、DL及びULが時間的に重複している無線リソースでは、あるUE200がDLリソースを使用し、別のUE200がULリソースを使用するようにしてもよい。 Considering the complexity of processing self-interference, it is conceivable that only the base station 100 uses DL resources and UL resources at the same time. That is, in a radio resource where DL and UL overlap in time, one UE 200 may use the DL resource, and another UE 200 may use the UL resource.
 図4は、SBFD動作の一例を示す図である。図4に示される例では、TDDバンドのDLリソースの一部がULリソースに設定され、DLとULとが部分的に時間領域に関して重複するよう構成されている。 FIG. 4 is a diagram showing an example of SBFD operation. In the example shown in FIG. 4, part of the DL resources of the TDD band is set as the UL resource, and the DL and UL are configured to partially overlap in the time domain.
 図4に示される例において、DLのみの期間では、複数のUE200(図4では、UE#1及びUE#2)のそれぞれがDLチャネル/信号を受信する。 In the example shown in FIG. 4, during the DL only period, each of the plurality of UEs 200 (UE#1 and UE#2 in FIG. 4) receives a DL channel/signal.
 また、DLとULとが時間的に重複する期間では、あるUE200(図4の例では、UE#1)がDLチャネル/信号を受信し、別のUE200(図4の例では、UE#2)がULチャネル/信号を送信する。この期間では、基地局100は、DL及びULの同時送受信を行う。 Furthermore, during a period when DL and UL overlap in time, one UE 200 (UE#1 in the example of FIG. 4) receives the DL channel/signal, and another UE 200 (UE#2 in the example of FIG. 4) receives the DL channel/signal. ) transmits the UL channel/signal. During this period, the base station 100 performs simultaneous transmission and reception of DL and UL.
 さらに、ULのみの期間では、複数のUE200(図4では、UE#1及びUE#2)のそれぞれがULチャネル/信号を送信する。 Furthermore, during the UL only period, each of the plurality of UEs 200 (UE#1 and UE#2 in FIG. 4) transmits a UL channel/signal.
 既存の(例えば、Rel.15/16/17までに規定される)NRでは、UE用キャリアにおけるDL周波数リソース及びUL周波数リソースは、それぞれDL BWP及びUL BWPとして設定される。DL/ULの周波数リソースを別のDL/ULの周波数リソースに切り替えるためには、複数のBWPの設定とBWPのアダプテーションのメカニズムとが必要とされる。 In existing NR (for example, defined by Rel. 15/16/17), DL frequency resources and UL frequency resources in the UE carrier are configured as DL BWP and UL BWP, respectively. Multiple BWP configurations and BWP adaptation mechanisms are required to switch one DL/UL frequency resource to another DL/UL frequency resource.
 また、既存のNRでは、図5Aに示されるように、UE200用TDDキャリアにおける時間リソース(シンボル、スロットなど時間単位)は、TDD設定においてDL、UL及びフレキシブル(FL)の少なくとも1つとして設定される。 Furthermore, in the existing NR, as shown in FIG. 5A, the time resources (time units such as symbols and slots) in the TDD carrier for UE 200 are configured as at least one of DL, UL, and flexible (FL) in the TDD configuration. Ru.
 SBFDシンボルは、図5Bに示されるように、ある周波数リソース上ではUL(又はDL)として通知又は設定されるか、あるいは、UL送信(又はDL受信)用に通知又は設定される一方、他の周波数リソース上ではDL(又はUL)として通知又は設定されるか、あるいは、DL受信(又はUL送信)用に通知又は設定されるシンボルであってもよい。あるいは、SBFDシンボルは、周波数リソースの一部においてUL(又はDL)として通知又は設定されるか、あるいは、UL送信(又はDL受信)用に通知又は設定されるシンボルであってもよい。あるいは、SBFDシンボルは、周波数リソースの一部においてDL(又はUL)として通知又は設定されるか、あるいは、DL受信(又はUL送信)用に通知又は設定されるシンボルであってもよい。 SBFD symbols may be advertised or configured as UL (or DL) on some frequency resources, or advertised or configured for UL transmission (or DL reception) while on other frequency resources, as shown in FIG. 5B. On the frequency resource, it may be notified or set as DL (or UL), or it may be a symbol notified or set for DL reception (or UL transmission). Alternatively, the SBFD symbol may be a symbol that is notified or configured as UL (or DL) in a part of the frequency resource, or a symbol that is notified or configured for UL transmission (or DL reception). Alternatively, the SBFD symbol may be notified or set as DL (or UL) in a part of the frequency resource, or may be a symbol notified or set for DL reception (or UL transmission).
 ここで、時間単位は、シンボルレベル、スロット/サブスロットレベル、又はシンボル/スロット/サブスロットのグループであってもよい。すなわち、SBFD時間単位は、SBFDシンボル、SBFDシンボルを含む又はオーバラップするスロット/サブスロット、又はSBFDシンボルを含む又はオーバラップするシンボル/スロット/サブスロットのグループであってもよい。 Here, the time unit may be a symbol level, a slot/subslot level, or a group of symbols/slots/subslots. That is, an SBFD time unit may be an SBFD symbol, a slot/subslot that includes or overlaps the SBFD symbol, or a group of symbols/slots/subslots that includes or overlaps the SBFD symbol.
 ピュア時間単位(pure time unit)は、非SBFDシンボル(すなわち、SBFDシンボルでないシンボル)、SBFDシンボルを含まない又はオーバラップしないスロット/サブスロット、又はSBFDシンボルを含まない又はオーバラップしないシンボル/スロット/サブスロットのグループであってもよく、非SBFD時間単位と呼ばれてもよい。例えば、ピュア時間単位は、図6Aに示されるように、周波数リソース上でDLのみから構成される時間単位として参照されてもよく、また、図6Bに示されるように、周波数リソース上でULのみから構成される時間単位として参照されてもよい。 A pure time unit is a non-SBFD symbol (i.e., a symbol that is not an SBFD symbol), a slot/subslot that does not contain or overlap an SBFD symbol, or a symbol/slot/subslot that does not contain or overlap an SBFD symbol. It may be a group of subslots and may be referred to as a non-SBFD time unit. For example, a pure time unit may be referred to as a time unit consisting only of DL on a frequency resource, as shown in FIG. 6A, or as a time unit consisting of only DL on a frequency resource, as shown in FIG. 6B. It may also be referred to as a time unit consisting of.
 また、SBFD時間単位について、DLリソースとULリソースとは、周波数領域において様々な配置パターンを備えてもよい。例えば、周波数領域パターン#1のSBFD時間単位は、図6Cに示されるような配置パターンを有してもよい。また、周波数領域パターン#2のSBFD時間単位は、図6Dに示されるような配置パターンを有してもよい。また、周波数領域パターン#3のSBFD時間単位は、図6Eに示されるような配置パターンを有してもよい。これらの配置パターンは単なる例示であり、他の配置パターンが利用されてもよい。SBFD時間単位の周波数領域パターンは、SBFD時間単位のための周波数領域におけるリソース繰り返しパターンを意味してもよい。 Furthermore, regarding the SBFD time unit, DL resources and UL resources may have various arrangement patterns in the frequency domain. For example, the SBFD time units of frequency domain pattern #1 may have an arrangement pattern as shown in FIG. 6C. Further, the SBFD time units of frequency domain pattern #2 may have an arrangement pattern as shown in FIG. 6D. Further, the SBFD time units of frequency domain pattern #3 may have an arrangement pattern as shown in FIG. 6E. These placement patterns are merely examples, and other placement patterns may be used. The frequency domain pattern for the SBFD time unit may mean a resource repetition pattern in the frequency domain for the SBFD time unit.
 (PUSCHの送信電力制御)
 Rel.15において、UEは、送信機会i毎に送信電力制御(Transmission Power Control:TPC)を行う。送信機会iは、PUSCH、PUCCH、SRS、又はPRACHの送信機会であってもよい。送信機会iは、システムフレーム番号(System Frame Number:SFN)を有するフレーム内のサブキャリア間隔設定μに対するスロットインデックスns,f μと、当該スロット内の最初のシンボル(送信機会iの最初のシンボルのインデックス)Sと、連続シンボル数Lと、によって定義されてもよい。
(PUSCH transmission power control)
Rel. In step 15, the UE performs transmission power control (TPC) for each transmission opportunity i. Transmission opportunity i may be a PUSCH, PUCCH, SRS, or PRACH transmission opportunity. Transmission opportunity i has a slot index n s, f μ for subcarrier interval setting μ in a frame having a system frame number (SFN), and the first symbol in the slot (the first symbol of transmission opportunity i). index) S and the number L of consecutive symbols.
 PUSCHの送信電力は、DCI内の所定フィールド(TPCコマンドフィールド、第1のフィールド等ともいう)の値が示すTPCコマンド(値、増減値、補正値等ともいう)に基づいて制御される。 The transmission power of the PUSCH is controlled based on the TPC command (also referred to as a value, increase/decrease value, correction value, etc.) indicated by the value of a predetermined field (also referred to as a TPC command field, first field, etc.) in the DCI.
 例えば、UEが、インデックスjを有するパラメータセット(例えば、オープンループパラメータセット)、電力制御調整状態のインデックスlを用いて、セルcのキャリアfのBWP b上でPUSCHを送信する場合、PUSCH送信機会(送信期間等ともいう)iにおけるPUSCHの送信電力(PPUSCH,b,f,c(i,j,q,l))は、下記式(1)で表されてもよい。
Figure JPOXMLDOC01-appb-M000001
For example, if a UE transmits PUSCH on BWP b of carrier f in cell c with a parameter set (e.g., open loop parameter set) with index j, index l of power control adjustment state, then PUSCH transmission opportunity The transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) in i (also referred to as transmission period etc.) may be expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
 式(1)において、PCMAX,f,c(i)は、例えば、送信機会iにおけるセルcのキャリアf用に設定されるUE200の送信電力(例えば、最大送信電力ともいう)である。PO_PUSCH,b,f,c(j)は、例えば、送信機会iにおけるセルcのキャリアfのBWP b用に設定される目標受信電力に係るパラメータ(例えば、送信電力オフセットに関するパラメータ、送信電力オフセットPO、目標受信電力パラメータなどともいう)である。 In equation (1), P CMAX,f,c (i) is, for example, the transmission power (for example, also referred to as maximum transmission power) of UE 200 set for carrier f of cell c in transmission opportunity i. P O_PUSCH, b, f, c (j) is, for example, a parameter related to the target received power set for BWP b of carrier f of cell c in transmission opportunity i (e.g., a parameter related to transmit power offset, a transmit power offset (also referred to as PO, target received power parameter, etc.).
 MPUSCH RB,b,f,c(i)は、例えば、セルc及びサブキャリア間隔μのキャリアfのアップリンクBWP bにおける送信機会i用にPUSCHに割り当てられるリソースブロック数(帯域幅)である。αb,f,c(j)は、上位レイヤパラメータによって提供される値(例えば、msg3-Alpha、p0-PUSCH-Alpha、フラクショナル因子などともいう)である。 M PUSCH RB,b,f,c (i) is, for example, the number of resource blocks (bandwidth) allocated to PUSCH for transmission opportunity i in uplink BWP b of cell c and carrier f with subcarrier spacing μ . α b,f,c (j) are values provided by upper layer parameters (eg, also referred to as msg3-Alpha, p0-PUSCH-Alpha, fractional factor, etc.).
 PLb,f,c(q)は、例えば、セルcのキャリアfのアップリンクBWP bに関連付けられる下りBWP用の参照信号のインデックスqを用いてUEで計算されるパスロス(パスロス補償)である。 PL b, f, c (q d ) is, for example, a path loss (path loss compensation) calculated by the UE using an index q d of a reference signal for downlink BWP associated with uplink BWP b of carrier f of cell c. It is.
 ΔTF,b,f,c(i)は、セルcのキャリアfのアップリンクBWP b用の送信電力調整成分(Transmission Power Adjustment Component)(例えば、オフセット、送信フォーマット補償などともいう)である。 Δ TF,b,f,c (i) is a Transmission Power Adjustment Component (eg, also referred to as offset, transmission format compensation, etc.) for uplink BWP b of carrier f of cell c.
 fb,f,c(i,l)は、セルc及び送信機会iのキャリアfのアップリンクBWPの電力制御調整状態インデックスlのTPCコマンドに基づく値(例えば、TPCコマンドの累積値、クローズドループによる値)である。例えば、TPCコマンドの累積値は、所定の式によって表されてもよい。 f b,f,c (i,l) is a TPC command-based value (e.g., cumulative value of TPC commands, closed loop value). For example, the cumulative value of TPC commands may be expressed by a predetermined formula.
 TPCコマンドは、PUSCH又はPDSCHのスケジューリングに利用されるDCI内の所定フィールド(TPCコマンドフィールド、第1のフィールドなどともいう)の値に基づいて決定されてもよい。これらのDCIは、DCIフォーマット0_0、0_1と呼ばれてもよい。電力制御情報は、TPCコマンド(値、増減値、補正値などともいう)と呼ばれてもよい。 The TPC command may be determined based on the value of a predetermined field (also referred to as a TPC command field, first field, etc.) in the DCI used for PUSCH or PDSCH scheduling. These DCIs may be referred to as DCI formats 0_0, 0_1. The power control information may be called a TPC command (also referred to as a value, increase/decrease value, correction value, etc.).
 また、NRでは、PUCCH及びPUSCHの少なくとも1つのTPCコマンドの送信に用いられるDCIフォーマット(例えば、DCIフォーマット2_2)がサポートされる。UE200は、当該DCIフォーマット内のTPCコマンドが示す値に基づいて、PUCCH及びPUSCHの少なくとも1つの送信電力を制御してもよい。TPCコマンドの送信用に用いられるDCIフォーマットは、PDSCH又はPUSCHのスケジューリングには利用されない(スケジューリング情報を含まない)構成であってもよい。 Furthermore, NR supports the DCI format (for example, DCI format 2_2) used for transmitting at least one TPC command of PUCCH and PUSCH. UE 200 may control the transmission power of at least one of PUCCH and PUSCH based on the value indicated by the TPC command in the DCI format. The DCI format used for transmitting TPC commands may have a configuration that is not used for PDSCH or PUSCH scheduling (does not include scheduling information).
 また、各PUSCH又はPUCCH送信に対してそれぞれDCI(例えば、DCIフォーマット0_0、0_1、2_2の少なくとも1つ)で指定されるTPCコマンドは、蓄積されてもよい(tpc-Accumulation)。UE200は、TPCコマンドの蓄積を行うか否かについてネットワーク(例えば、基地局100)から設定されてもよい。基地局100は、上位レイヤシグナリング(例えば、tpc-Accumulation)を利用してUE200にTPCコマンドの蓄積有無を通知してもよい。 Additionally, TPC commands specified by DCI (for example, at least one of DCI formats 0_0, 0_1, and 2_2) for each PUSCH or PUCCH transmission may be accumulated (tpc-Accumulation). The UE 200 may be configured by the network (for example, the base station 100) as to whether or not to store TPC commands. The base station 100 may notify the UE 200 of whether TPC commands are accumulated using upper layer signaling (eg, TPC-Accumulation).
 TPCコマンドの蓄積が適用(enabled)される場合、UE200は、所定のDCI(又はPDCCH)で通知されるTPCコマンドを考慮して送信電力を決定してもよい。また、TPCコマンドは、所定の数式で定義される電力制御調整状態のパラメータの1つ(例えば、所定の数式の一部)に含まれていてもよい。 When accumulation of TPC commands is enabled, the UE 200 may determine the transmission power in consideration of the TPC commands notified on a predetermined DCI (or PDCCH). Further, the TPC command may be included in one of the parameters of the power control adjustment state defined by a predetermined formula (for example, as part of the predetermined formula).
 (PUCCHの送信電力制御)
 PUCCHの送信電力は、DCI内の所定フィールド(TPCコマンドフィールド、第1のフィールド等ともいう)の値が示すTPCコマンド(値、増減値、補正値などともいう)に基づいて制御される。
(PUCCH transmission power control)
The transmission power of the PUCCH is controlled based on the TPC command (also referred to as a value, increase/decrease value, correction value, etc.) indicated by the value of a predetermined field (also referred to as a TPC command field, first field, etc.) in the DCI.
 例えば、電力制御調整状態のインデックスlを用いたセルcのキャリアfのBWP bについての送信機会(送信期間などともいう)iにおけるPUCCHの送信電力(PPUCCH,b,f,c(i,q,q,l))は、式(2)で表されてもよい。
Figure JPOXMLDOC01-appb-M000002
For example, PUCCH transmission power (P PUCCH, b, f, c (i, q u , q d , l)) may be expressed by equation (2).
Figure JPOXMLDOC01-appb-M000002
 ここで、電力制御調整状態は、上位レイヤパラメータによって複数の状態(例えば、2状態)を有するか、又は、単一の状態を有するかが設定されてもよい。また、複数の電力制御調整状態が設定される場合、インデックスl(例えば、l∈{0,1})によって当該複数の電力制御調整状態の1つが識別されてもよい。電力制御調整状態は、PUCCH電力制御調整状態(Power Control Adjustment State)、第1又は第2の状態などと呼ばれてもよい。 Here, the power control adjustment state may be set to have a plurality of states (for example, two states) or a single state by upper layer parameters. Further, when a plurality of power control adjustment states are set, one of the plurality of power control adjustment states may be identified by an index l (for example, lε{0,1}). The power control adjustment state may be referred to as a PUCCH power control adjustment state, a first state, a second state, or the like.
 また、PUCCHの送信機会iは、PUCCHが送信される所定期間であり、例えば、1つ以上のシンボル、1つ以上のスロットなどで構成されてもよい。 Furthermore, the PUCCH transmission opportunity i is a predetermined period during which the PUCCH is transmitted, and may be composed of one or more symbols, one or more slots, etc., for example.
 式(2)において、PCMAX,f,c(i)は、例えば、送信機会iにおけるセルcのキャリアf用に設定されるUE200の送信電力(最大送信電力などともいう)である。PO_PUCCH,b,f,c(q)は、例えば、送信機会iにおけるセルcのキャリアfのBWP b用に設定される目標受信電力に係るパラメータ(例えば、送信電力オフセットに関するパラメータ、送信電力オフセットP0、又は、目標受信電力パラメータなどともいう)である。 In equation (2), P CMAX,f,c (i) is, for example, the transmission power (also referred to as maximum transmission power) of the UE 200 set for carrier f of cell c in transmission opportunity i. P O_PUCCH,b,f,c (q u ) is, for example, a parameter related to the target received power (for example, a parameter related to the transmit power offset, a parameter related to the transmit power (also referred to as offset P0 or target received power parameter).
 MPUCCH RB,b,f,c(i)は、例えば、セルc及びサブキャリア間隔μのキャリアfのアップリンクBWP bにおける送信機会i用にPUCCHに割り当てられるリソースブロック数(帯域幅)である。PLb,f,c(q)は、例えば、セルcのキャリアfのアップリンクBWP bに関連付けられるダウンリンクBWP用の参照信号のインデックスqを用いてUE200で計算されるパスロスである。 M PUCCH RB,b,f,c (i) is, for example, the number of resource blocks (bandwidth) allocated to PUCCH for transmission opportunity i in uplink BWP b of cell c and carrier f with subcarrier spacing μ . PL b, f, c (q d ) is, for example, a path loss calculated by the UE 200 using the index q d of the reference signal for downlink BWP associated with uplink BWP b of carrier f of cell c.
 ΔF_PUCCH(F)は、PUCCHフォーマット毎に与えられる上位レイヤパラメータである。ΔTF,b,f,c(i)は、セルcのキャリアfのアップリンクBWP b用の送信電力調整成分(Transmission Power Adjustment Component)(オフセット)である。 ΔF_PUCCH (F) is an upper layer parameter given for each PUCCH format. Δ TF,b,f,c (i) is the Transmission Power Adjustment Component (offset) for uplink BWP b of carrier f of cell c.
 gb,f,c(i,l)は、セルc及び送信機会iのキャリアfのアップリンクBWPの電力制御調整状態インデックスlのTPCコマンドに基づく値(例えば、TPCコマンドの累積値)である。例えば、TPCコマンドの累積値は、所定の式によって表されてもよい。 g b, f, c (i, l) is the TPC command-based value (e.g., cumulative value of TPC commands) of the uplink BWP power control adjustment state index l of carrier f of cell c and transmission opportunity i . For example, the cumulative value of TPC commands may be expressed by a predetermined formula.
 このように、NRでは、アップリンクチャネル(例えば、PUSCH及びPUCCHの少なくとも1つ)について、ネットワーク(例えば、基地局100)から通知されるパラメータに基づいて送信電力を決定する。 In this way, in NR, transmission power is determined for uplink channels (for example, at least one of PUSCH and PUCCH) based on parameters notified from the network (for example, base station 100).
 なお、式(1)、(2)は例示にすぎず、これに限られない。UE200は、式(1)及び(2)に例示される少なくとも1つのパラメータに基づいて、PUSCH及びPUCCHの送信電力を制御すればよく、追加のパラメータが含まれてもよいし、一部のパラメータが省略されてもよい。また、式(1)及び(2)では、あるセルのあるキャリアのBWP毎にPUSCH及びPUCCHの送信電力が制御されるが、これに限られない。セル、キャリア、BWP、電力制御調整状態の少なくとも一部が省略されてもよい。 Note that equations (1) and (2) are merely examples, and are not limited thereto. The UE 200 only needs to control the transmission power of the PUSCH and PUCCH based on at least one parameter illustrated in equations (1) and (2), and may include additional parameters or some parameters. may be omitted. Furthermore, in Equations (1) and (2), the transmission power of PUSCH and PUCCH is controlled for each BWP of a certain carrier in a certain cell, but the invention is not limited to this. At least some of the cells, carriers, BWPs, and power control adjustment states may be omitted.
 (閉ループ送信電力制御)
 NRでは、UE200の送信電力は、開ループ送信電力制御及び/又は閉ループ送信電力制御を用いて制御される。UE200は、開ループ制御の誤差を、基地局100から受信するTPCコマンドを用いた閉ループ制御で補正する。
(Closed loop transmit power control)
In NR, the transmission power of UE 200 is controlled using open loop transmission power control and/or closed loop transmission power control. UE 200 corrects open-loop control errors using closed-loop control using TPC commands received from base station 100.
 例えば、アップリンク共有チャネル(例えば、PUSCH)、アップリンク制御チャネル(例えば、PUCCH)、サウンディングリファレンス信号(SRS)、ランダムアクセスチャネル(例えば、PRACH)などの送信電力が、送信電力制御の対象となる。 For example, the transmit power of uplink shared channels (e.g., PUSCH), uplink control channels (e.g., PUCCH), sounding reference signals (SRS), random access channels (e.g., PRACH), etc. are subject to transmit power control. .
 NRでは、サービングセルのキャリアごとに、最大2つの閉ループをサポートすることが規定されている。 NR specifies that a maximum of two closed loops are supported for each carrier in the serving cell.
 NRでは、サービングセルcのキャリアfの帯域幅部分(Bandwidth Part:BWP)bについての送信期間iにおけるPUSCHの送信電力は、上述した式(1)で表されてもよい。ここで、送信期間は、例えば、シンボル、スロット、サブフレーム、フレームなどの何れかの時間単位であってもよい。 In NR, the transmission power of the PUSCH in the transmission period i for the bandwidth part (BWP) b of the carrier f of the serving cell c may be expressed by the above equation (1). Here, the transmission period may be, for example, any time unit such as a symbol, slot, subframe, or frame.
 式(1)において、fb,f,c(i,l)はTPCコマンドに基づく値(例えば、TPCコマンドに基づく累積値)である。lは電力制御調整状態のインデックスである。UE200は、例えば、上位レイヤシグナリングを用いて所定のチャネル(例えば、PUSCH、PUCCHなど)の電力制御調整状態を複数(例えば、2つ)維持するよう設定されると、lとして複数の値の少なくとも1つを利用できる(例えば、l∈{0,1})。UE200は、当該設定がない場合、lとして1つの値(例えば、l=0)が利用されると想定してもよい。 In Equation (1), f b, f, c (i, l) are values based on TPC commands (for example, cumulative values based on TPC commands). l is the index of the power control adjustment state. For example, when the UE 200 is set to maintain a plurality (for example, two) of power control adjustment states of a predetermined channel (for example, PUSCH, PUCCH, etc.) using upper layer signaling, the UE 200 sets at least one of a plurality of values as l. One can be used (eg, l∈{0,1}). If there is no such setting, the UE 200 may assume that one value (for example, l=0) is used as l.
 例えば、UE200は、PUSCHについてRRCパラメータ“twoPUSCH-PC-AdjustmentStates”が設定される場合に、当該PUSCHの送信電力制御に2つの電力制御状態が適用されると判断してもよい。また、UEは、PUCCHについてRRCパラメータ“twoPUCCH-PC-AdjustmentStates”が設定される場合に、当該PUCCHの送信電力制御に2つの電力制御状態が適用されると判断してもよい。 For example, when the RRC parameter "twoPUSCH-PC-AdjustmentStates" is set for the PUSCH, the UE 200 may determine that two power control states are applied to the transmission power control of the PUSCH. Furthermore, when the RRC parameter "two PUCCH-PC-AdjustmentStates" is set for the PUCCH, the UE may determine that two power control states are applied to the transmission power control of the PUCCH.
 他のアップリンク信号(例えば、SRS、PRACHなど)もまた、利用するパラメータに違いはあるものの、PUSCH及び/又はPUCCHと同様に、複数の電力制御調整状態を用いて送信電力を決定可能である。 Other uplink signals (e.g., SRS, PRACH, etc.) can also determine transmit power using multiple power control adjustment states, similar to PUSCH and/or PUCCH, although the parameters utilized are different. .
 本開示において、閉ループ及び電力制御調整状態は、互いに読み替えられてもよい。 In this disclosure, closed loop and power control adjustment state may be read interchangeably.
 ところで、NRでは、複数のUEに対してまとめてTPCコマンドが通知されうる。例えば、共通サーチスペースにおいて送信されるダウンリンク制御情報(Downlink Control Information:DCI)フォーマット2_2は、PUCCH及びPUSCHの少なくとも一方のTPCコマンドの送信に用いられる。DCIフォーマット2_2は、UEグループ共通TPCコマンド用DCIと呼ばれてもよい。DCIフォーマット2_2によって通知されるTPCコマンドは、グループ共通TPCコマンドと呼ばれてもよい。 By the way, in NR, TPC commands can be notified to multiple UEs at once. For example, Downlink Control Information (DCI) format 2_2 transmitted in the common search space is used to transmit a TPC command for at least one of PUCCH and PUSCH. DCI format 2_2 may be called DCI for UE group common TPC command. The TPC command notified by DCI format 2_2 may be called a group common TPC command.
 DCIフォーマット2_2は、PUSCHのTPC用の識別子(TPC-PUSCH-RNTI(Radio Network Temporary Identifier))によって巡回冗長検査(Cyclic Redundancy Check:CRC)スクランブルされてもよいし、PUCCHのTPC用の識別子(TPC-PUCCH-RNTI)によってCRCスクランブルされてもよい。 The DCI format 2_2 may be cyclic redundancy check (CRC) scrambled by the PUSCH TPC identifier (TPC-PUSCH-RNTI (Radio Network Temporary Identifier)). PUCCH TPC identifier (TPC -PUCCH-RNTI).
 [課題]
 SBFD動作又はダイナミックTDDによると、gNB間クロスリンク干渉(CLI)及びUE間CLIが考慮される必要がある。UE間CLIについては、図7Aに示されるように、アグレッサUEのアップリンク信号が、ビクティムUEにおけるダウンリンク受信に対して干渉を生じさせうる。ビクティムUEの観点からは、ビクティムUEにおける受信に対する干渉を低減するため、アグレッサUEのアップリンク送信電力が低減されることが所望されうる。
[assignment]
According to SBFD operation or dynamic TDD, inter-gNB cross-link interference (CLI) and inter-UE CLI need to be considered. For UE-to-UE CLI, the aggressor UE's uplink signal may cause interference to downlink reception at the victim UE, as shown in FIG. 7A. From the victim UE's perspective, it may be desirable to reduce the uplink transmit power of the aggressor UE to reduce interference to reception at the victim UE.
 一方、gNB間CLIについては、図7Bに示されるように、アグレッサUEへのダウンリンク信号が、ビクティムUEからgNBへのアップリンク信号に対して干渉を生じさせうる。ビクティムUEのgNBの観点からは、受信信号電力を向上させるため、ビクティムUEのアップリンク送信電力を向上させることが所望されうる。 On the other hand, for inter-gNB CLI, as shown in FIG. 7B, the downlink signal to the aggressor UE may cause interference to the uplink signal from the victim UE to the gNB. From the perspective of the victim UE's gNB, it may be desirable to increase the victim UE's uplink transmit power in order to improve the received signal power.
 特に、SBFD動作では、異なるUEが同一のシンボル/スロットなどの同一の時間単位においてアップリンク送信とダウンリンク受信とを行うことになり、UE間CLI及び/又はgNB間CLIが生じる可能性がある。UEの送信電力制御は、仕様によって規定され、RRC設定などによってセミスタティックに設定され、及び/又は、DCI通知によってダイナミックに通知されうる。以下の提案1~3では、SBFDシンボル/スロットにおけるアップリンク信号の電力制御について、SBFD動作と非SBFD動作との双方をサポートする仕様、RRC設定及び/又はDCI通知を介して、SBFD動作と非SBFD動作に対して別々の電力制御の適用が提案される。 In particular, in SBFD operation, different UEs will perform uplink transmission and downlink reception in the same time unit, such as the same symbol/slot, which may result in inter-UE CLI and/or inter-gNB CLI. . The transmission power control of the UE is defined by specifications, may be configured semi-statically by RRC configuration, etc., and/or may be notified dynamically by DCI notification. Proposals 1 to 3 below discuss the power control of uplink signals in SBFD symbols/slots through specifications that support both SBFD and non-SBFD operations, RRC configuration, and/or DCI notification. A separate power control application is proposed for SBFD operation.
 [提案内容の概略]
 提案1として、SBFD動作と非SBFD動作に対して別々の送信電力設定が適用されてもよい。
[Summary of proposal]
As proposal 1, separate transmit power settings may be applied for SBFD and non-SBFD operations.
 具体的には、オプション1では、PUSCH-PowerControl IE、PUCCH-PowerControl IEなどの送信電力制御用IEについて、SBFD動作と非SBFD動作とに対して別々の送信電力制御用IE(例えば、PUSCH-PowerControlとPUSCH-PowerControl-SBFD、PUCCH-PowerControlとPUCCH-PowerControl-SBFDなど)が設定されてもよい。 Specifically, in option 1, for transmission power control IEs such as PUSCH-PowerControl IE and PUCCH-PowerControl IE, separate transmission power control IEs (for example, PUSCH-PowerControl IE) are used for SBFD operation and non-SBFD operation. and PUSCH-PowerControl-SBFD, PUCCH-PowerControl and PUCCH-PowerControl-SBFD) may be set.
 また、オプション2では、PUSCH-PowerControl IE、PUCCH-PowerControl IEなどにおける電力制御に関するフィールドについて、SBFD動作と非SBFD動作とに対して別々の送信電力制御用フィールド(例えば、p0-NominalWithoutGrantとp0-NominalWithoutGrant-SBFD、p0-Setとp0-Set-SBFDなど)が設定されてもよい。 In addition, in Option 2, fields related to power control in PUSCH-PowerControl IE, PUCCH-PowerControl IE, etc. are set to separate transmission power control fields for SBFD operation and non-SBFD operation (for example, p0-NominalWithGrant and p0-NominalWithGrant). tGrant -SBFD, p0-Set and p0-Set-SBFD) may be set.
 提案2として、SBFD動作と非SBFD動作に対して別々の閉ループが適用されてもよい。 As proposal 2, separate closed loops may be applied for SBFD and non-SBFD operations.
 具体的には、問題点1に対して、SBFD動作におけるPUSCH及び/又はPUCCHの閉ループについて、Alt-aでは、既存の最大で2つの閉ループが設定され、各閉ループがSBFD動作と非SBFD動作との何れか一方に適用されうる。 Specifically, for problem 1, regarding the closed loop of PUSCH and/or PUCCH in SBFD operation, in Alt-a, a maximum of two existing closed loops are set, and each closed loop is divided into SBFD operation and non-SBFD operation. can be applied to either one.
 また、Alt-bによると、設定される最大数がXに拡張され、X個のうち最大で2つの閉ループが非SBFD動作に設定され、その他がSBFD動作に適用されうる。 Also, according to Alt-b, the maximum number to be configured is expanded to X, and at most two closed loops among the X can be configured for non-SBFD operation, and the others can be applied for SBFD operation.
 また、Alt-cによると、SBFD動作用の閉ループは明示的には設定されず、非SBFD動作用の設定に対応して、SBFD動作用の閉ループがマッピングされうる。 Furthermore, according to Alt-c, the closed loop for SBFD operation is not explicitly set, and the closed loop for SBFD operation can be mapped in response to the setting for non-SBFD operation.
 また、問題点2に対して、SRI(SRS(Sounding Reference Signal) Resource Index)と閉ループインデックスとの間のマッピングについて、Atl-1によると、単一のSRI/閉ループインデックスが、非SBFD動作又はSBFD動作に対してマッピングされうる。 Regarding problem 2, regarding the mapping between SRI (SRS (Sounding Reference Signal) Resource Index) and closed-loop index, according to Atl-1, a single SRI/closed-loop index is used for non-SBFD operation or SBFD operation. can be mapped to an action.
 また、Alt-2によると、単一のSRI/閉ループインデックスが、SBFD動作及びSBFD動作に対して共通にマッピングされうる。 Also, according to Alt-2, a single SRI/closed loop index can be commonly mapped for SBFD and SBFD operations.
 また、問題点3に対して、Configured Grant(CG) PUSCHに対する閉ループインデックスについて、Alt-1によると、単一の閉ループインデックスが、非SBFD動作又はSBFD動作に対してマッピングされうる。 Also, regarding problem 3, regarding the closed-loop index for Configured Grant (CG) PUSCH, according to Alt-1, a single closed-loop index can be mapped to non-SBFD operation or SBFD operation.
 Alt-2によると、単一の閉ループインデックスが、SBFD動作及びSBFD動作に対して共通にマッピングされうる。 According to Alt-2, a single closed-loop index can be commonly mapped for SBFD and SBFD operations.
 提案3として、SBFD動作における送信電力の算出方法が規定されてもよい。オプション1によると、SBFD動作用のスケーリングファクタが規定、設定、通知及び/又は適用されてもよい。 As proposal 3, a method for calculating transmission power in SBFD operation may be defined. According to option 1, scaling factors for SBFD operation may be defined, configured, notified and/or applied.
 オプション2によると、SBFD動作用の電力オフセットが規定、設定、通知及び/又は適用されてもよい。 According to option 2, a power offset for SBFD operation may be defined, configured, notified and/or applied.
 オプション3によると、SBFD動作用のリファレンスリソースブロック(RB)サイズが規定、設定、通知及び/又は適用されてもよい。 According to option 3, a reference resource block (RB) size for SBFD operation may be defined, configured, notified and/or applied.
 [提案1]
 提案1では、UEは、SBFD動作用のPUSCH及び/又はPUCCH送信電力設定に従って設定された送信電力によってSBFD動作におけるアップリンクチャネルを送信し、非SBFD動作用のPUSCH及び/又はPUCCH送信電力設定に従って設定された送信電力によって非SBFD動作におけるアップリンクチャネルを送信する。すなわち、PUSCH及び/又はPUCCH送信電力が、RRC設定などを介しSBFD動作用のPUSCH及び/又はPUCCH送信電力設定と非SBFD動作用のPUSCH及び/又はPUCCH送信電力設定とに従ってセミスタティックに設定される。
[Proposal 1]
In proposal 1, the UE transmits the uplink channel in SBFD operation with the transmit power set according to the PUSCH and/or PUCCH transmit power setting for SBFD operation, and according to the PUSCH and/or PUCCH transmit power setting for non-SBFD operation. Transmit the uplink channel in non-SBFD operation with the configured transmit power. That is, the PUSCH and/or PUCCH transmission power is semi-statically set via RRC configuration or the like according to the PUSCH and/or PUCCH transmission power setting for SBFD operation and the PUSCH and/or PUCCH transmission power setting for non-SBFD operation. .
 具体的には、オプション1によると、SBFD動作と非SBFD動作とに対して別々のPUSCH及び/又はPUCCH送信電力設定(例えば、PUSCH-PowerControl IEとPUSCH-PowerControl-SBFD IE、及び/又はPUCCH-PowerControl IEとPUCCH-PowerControl-SBFD IEなど)が、規定、設定、通知及び/又は適用されうる。 Specifically, according to option 1, separate PUSCH and/or PUCCH transmit power settings for SBFD and non-SBFD operations (e.g., PUSCH-PowerControl IE and PUSCH-PowerControl-SBFD IE, and/or PUCCH- PowerControl IE and PUCCH-PowerControl-SBFD IE, etc.) may be defined, configured, notified and/or applied.
 また、オプション2によると、PUSCH及び/又はPUCCH送信電力設定(例えば、PUSCH-PowerControl IE及び/又はPUCCH-PowerControl IEなど)における特定のパラメータ又はフィールドに対して、SBFD動作と非SBFD動作とに別々の設定(例えば、p0-NominalWithoutGrantとp0-NominalWithoutGrant-SBFD、及び/又はp0-Setとp0-Set-SBFDなど)が、規定、設定、通知及び/又は適用されうる。さらに又はあるいは、RACH-ConfigGenericにおける電力制御関連パラメータ(例えば、preambleReceivedTargetPower)、RACH-ConfigGenericTwoStepRAにおける電力制御関連パラメータ(例えば、msgA-PreambleReceivedTargetPower)、及び/又は、PUSCH-ConfigCommonにおける電力制御関連パラメータ(例えば、msg3-DeltaPreamble,p0-NominalWithGrant)に対して、SBFD動作と非SBFD動作とに別々の設定が、規定、設定、通知及び/又は適用されうる。 Also, according to option 2, for specific parameters or fields in the PUSCH and/or PUCCH transmit power settings (e.g., PUSCH-PowerControl IE and/or PUCCH-PowerControl IE, etc.), SBFD operation and non-SBFD operation are settings (eg, p0-NominalWithoutGrant and p0-NominalWithoutGrant-SBFD, and/or p0-Set and p0-Set-SBFD, etc.) may be defined, configured, notified, and/or applied. Additionally or alternatively, power control related parameters in RACH-ConfigGeneric (e.g. preambleReceivedTargetPower), power control related parameters in RACH-ConfigGenericTwoStepRA (e.g. msgA-PreambleReceivedTargetPower) er), and/or power control related parameters in PUSCH-ConfigCommon (for example, msg3 -DeltaPreamble, p0-NominalWithGrant), separate settings may be prescribed, configured, notified, and/or applied for SBFD and non-SBFD operations.
 (オプション1)
 オプション1では、SBFD動作と非SBFD動作とに対して別々のPUSCH及び/又はPUCCH送信電力設定(例えば、PUSCH-PowerControl IEとPUSCH-PowerControl-SBFD IE、及び/又はPUCCH-PowerControl IEとPUCCH-PowerControl-SBFD IEなど)が、規定、設定、通知及び/又は適用されてもよい。
(Option 1)
Option 1 provides separate PUSCH and/or PUCCH transmit power settings for SBFD and non-SBFD operations (e.g., PUSCH-PowerControl IE and PUSCH-PowerControl-SBFD IE, and/or PUCCH-PowerControl IE and PUCCH-Power Control - SBFD IE, etc.) may be defined, configured, notified and/or applied.
 なお、以降において、SBFD動作におけるPUSCH及び/又はPUCCHは、SBFDシンボル、SBFDスロットなどのSBFD時間単位とオーバラップするPUSCH及び/又はPUCCHを意味する。また、非SBFD動作におけるPUSCH及び/又はPUCCHは、SBFDシンボル、SBFDスロットなどのSBFD時間単位とオーバラップしないPUSCH及び/又はPUCCHを意味する。 Note that hereinafter, PUSCH and/or PUCCH in SBFD operation means PUSCH and/or PUCCH that overlaps with SBFD time units such as SBFD symbols and SBFD slots. Furthermore, PUSCH and/or PUCCH in non-SBFD operation means PUSCH and/or PUCCH that do not overlap with SBFD time units such as SBFD symbols and SBFD slots.
 具体的には、PUSCH-PowerControl-SBFDなどの追加的なフィールドが、PUSCH-Config IEに設定されてもよい。例えば、既存のNRでは、図8Aに示されるように、PUSCH電力制御IEとして“pusch-PowerControl”が、PUSCH-Config IEにおいて設定されている。一方、オプション1によると、図8Bに示されるように、SBFD動作用のPUSCH電力制御IEとして“pusch-PowerControl-SBFD”が追加的に設定されてもよい。すなわち、SBFD動作用のPUSCH電力制御IEとしての“pusch-PowerControl-SBFD”と、非SBFD動作用のPUSCH電力制御IEとしての“pusch-PowerControl”とが、PUSCH-Config IEにおいて設定されてもよい。UEは、SBFD動作においてはpusch-PowerControl-SBFD IEによる送信電力によってPUSCHを送信し、非SBFD動作においてpusch-PowerControl IEによる送信電力によってPUSCHを送信するようにしてもよい。これにより、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 Specifically, additional fields such as PUSCH-PowerControl-SBFD may be set in the PUSCH-Config IE. For example, in the existing NR, as shown in FIG. 8A, "pusch-PowerControl" is set as the PUSCH power control IE in the PUSCH-Config IE. On the other hand, according to option 1, as shown in FIG. 8B, "pusch-PowerControl-SBFD" may be additionally set as the PUSCH power control IE for SBFD operation. That is, "pusch-PowerControl-SBFD" as a PUSCH power control IE for SBFD operation and "pusch-PowerControl" as a PUSCH power control IE for non-SBFD operation may be set in the PUSCH-Config IE. . The UE may transmit the PUSCH using the transmission power of the push-PowerControl-SBFD IE in SBFD operation, and may transmit the PUSCH using the transmission power of the push-PowerControl IE in non-SBFD operation. This makes it possible to set different PUSCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. Can be done.
 また、PUCCH-PowerControl-SBFDなどの追加的なフィールドが、PUCCH-Configに設定されてもよい。例えば、既存のNRでは、図9Aに示されるように、PUCCH電力制御IEとして“pucch-PowerControl”が、PUCCH-Configにおいて設定されている。一方、オプション1によると、図9Bに示されるように、SBFD動作用のPUCCH電力制御IEとして“pucch-PowerControl-SBFD”が追加的に設定されてもよい。すなわち、SBFD動作用のPUCCH電力制御IEとしての“pucch-PowerControl-SBFD”と、非SBFD動作用のPUCCH電力制御IEとしての“pucch-PowerControl”とが、PUCCH-Config IEにおいて設定されてもよい。UEは、SBFD動作においてはpucch-PowerControl-SBFD IEによる送信電力によってPUCCHを送信し、非SBFD動作においてpucch-PowerControl IEによる送信電力によってPUCCHを送信するようにしてもよい。これにより、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 Additionally, additional fields such as PUCCH-PowerControl-SBFD may be set in PUCCH-Config. For example, in the existing NR, as shown in FIG. 9A, "pucch-PowerControl" is set as the PUCCH power control IE in PUCCH-Config. On the other hand, according to option 1, as shown in FIG. 9B, "pucch-PowerControl-SBFD" may be additionally set as the PUCCH power control IE for SBFD operation. That is, "pucch-PowerControl-SBFD" as a PUCCH power control IE for SBFD operation and "pucch-PowerControl" as a PUCCH power control IE for non-SBFD operation may be set in the PUCCH-Config IE. . The UE may transmit the PUCCH using the transmission power from the pucch-PowerControl-SBFD IE in SBFD operation, and may transmit the PUCCH using the transmission power from the pucch-PowerControl IE during non-SBFD operation. This makes it possible to set different PUCCH transmission powers to the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing UE-to-UE CLI and/or gNB-to-gNB CLI during SBFD operation. Can be done.
 オプション1によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to option 1, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, resulting in inter-UE CLI and/or inter-gNB CLI during SBFD operation. The possibility can be reduced.
 (オプション2)
 オプション2では、PUSCH-PowerControl IE及び/又はPUCCH-PowerControl IEにおける特定のフィールド/パラメータに対して、SBFD動作と非SBFD動作とに別々の設定が、規定、設定、通知及び/又は適用されてもよい。
(Option 2)
In option 2, separate configurations may be specified, configured, notified and/or applied for SBFD and non-SBFD operations for specific fields/parameters in the PUSCH-PowerControl IE and/or PUCCH-PowerControl IE. good.
 具体的には、“p0-NominalWithoutGrant-SBFD”、“p0-AlphaSets-SBFD”などの追加的なフィールドが、PUSCH-PowerControl IEに設定されてもよい。例えば、既存のNRでは、図10Aに示されるように、PUSCH電力制御フィールドとして“p0-NominalWithoutGrant”、“p0-AlphaSets”などが、PUSCH-PowerControl IEにおいて設定されている。一方、オプション2によると、図10Bに示されるように、SBFD動作用のPUSCH電力制御フィールドとして“p0-NominalWithoutGrant-SBFD”及び“p0-AlphaSets-SBFD”が追加的に設定されてもよい。すなわち、SBFD動作用のPUSCH電力制御フィールドとしての“p0-NominalWithoutGrant-SBFD”及び“p0-AlphaSets-SBFD”と、非SBFD動作用のPUSCH電力制御フィールドとしての“p0-NominalWithoutGrant”及び“p0-AlphaSets”とが、PUSCH-PowerControl IEにおいて設定されてもよい。UEは、SBFD動作においては“p0-NominalWithoutGrant-SBFD”、“p0-AlphaSets-SBFD”などのPUSCH電力制御フィールドによる送信電力によってPUSCHを送信し、非SBFD動作においては“p0-NominalWithoutGrant”、“p0-AlphaSets”による送信電力によってPUSCHを送信するようにしてもよい。これにより、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 Specifically, additional fields such as "p0-NominalWithoutGrant-SBFD" and "p0-AlphaSets-SBFD" may be set in the PUSCH-PowerControl IE. For example, in the existing NR, as shown in FIG. 10A, "p0-NominalWithoutGrant", "p0-AlphaSets", etc. are set as PUSCH power control fields in the PUSCH-PowerControl IE. Meanwhile, according to option 2, as shown in FIG. 10B, "p0-NominalWithoutGrant-SBFD" and "p0-AlphaSets-SBFD" may be additionally set as PUSCH power control fields for SBFD operation. That is, "p0-NominalWithoutGrant-SBFD" and "p0-AlphaSets-SBFD" as PUSCH power control fields for SBFD operation, and "p0-NominalWithoutGrant" and "p0-AlphaS" as PUSCH power control fields for non-SBFD operation. ets ” may be set in the PUSCH-PowerControl IE. The UE transmits PUSCH with the transmission power according to the PUSCH power control field such as "p0-NominalWithoutGrant-SBFD", "p0-AlphaSets-SBFD" in SBFD operation, and "p0-NominalWithoutGrant", "p0-AlphaSets-SBFD" in non-SBFD operation. -AlphaSets" PUSCH may be transmitted using the transmission power. This makes it possible to set different PUSCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. Can be done.
 また、“p0-Set-SBFD”などの追加的なフィールドが、PUCCH-PowerControl IEに設定されてもよい。例えば、既存のNRでは、図11Aに示されるように、PUCCH電力制御フィールドとして“p0-Set”などが、PUCCH-PowerControl IEにおいて設定されている。一方、オプション2によると、図11Bに示されるように、SBFD動作用のPUCCH電力制御フィールドとして“p0-Set-SBFD”が追加的に設定されてもよい。すなわち、SBFD動作用のPUCCH電力制御フィールドとしての“p0-Set-SBFD”と、非SBFD動作用のPUCCH電力制御フィールドとしての“p0-Set”とが、PUCCH-PowerControl IEにおいて設定されてもよい。UEは、SBFD動作においては“p0-Set-SBFD”などのPUCCH電力制御フィールドによる送信電力によってPUCCHを送信し、非SBFD動作においては“p0-Set” などのPUCCH電力制御フィールドによる送信電力によってPUCCHを送信するようにしてもよい。これにより、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 Additionally, additional fields such as "p0-Set-SBFD" may be set in the PUCCH-PowerControl IE. For example, in the existing NR, as shown in FIG. 11A, "p0-Set" etc. are set as the PUCCH power control field in the PUCCH-PowerControl IE. Meanwhile, according to option 2, as shown in FIG. 11B, "p0-Set-SBFD" may be additionally set as a PUCCH power control field for SBFD operation. That is, "p0-Set-SBFD" as a PUCCH power control field for SBFD operation and "p0-Set" as a PUCCH power control field for non-SBFD operation may be set in the PUCCH-PowerControl IE. . In SBFD operation, the UE transmits the PUCCH with the transmit power according to the PUCCH power control field such as "p0-Set-SBFD", and in non-SBFD operation, the UE transmits the PUCCH with the transmit power according to the PUCCH power control field such as "p0-Set". may also be sent. This makes it possible to set different PUCCH transmission powers to the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. Can be done.
 また、“preambleReceivedTargetPower-SBFD”などの追加的なフィールドが、RACH-ConfigGeneric IEに設定されてもよい。例えば、既存のNRでは、図12Aに示されるように、RACH電力制御フィールドとして“preambleReceivedTargetPower”などが、RACH-ConfigGeneric IEにおいて設定されている。一方、オプション2によると、図12Bに示されるように、SBFD動作用のRACH電力制御フィールドとして“preambleReceivedTargetPower-SBFD”が追加的に設定されてもよい。すなわち、SBFD動作用のRACH電力制御フィールドとしての“preambleReceivedTargetPower-SBFD”と、非SBFD動作用のRACH電力制御フィールドとしての“preambleReceivedTargetPower”とが、RACH-ConfigGeneric IEにおいて設定されてもよい。UEは、SBFD動作においては“preambleReceivedTargetPower-SBFD”などのPRACH電力制御フィールドによる送信電力によってPRACHを送信し、非SBFD動作においては“preambleReceivedTargetPower”などのPRACH電力制御フィールドによる送信電力によってPRACHを送信するようにしてもよい。これにより、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPRACH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 Also, additional fields such as "preambleReceivedTargetPower-SBFD" may be set in the RACH-ConfigGeneric IE. For example, in the existing NR, as shown in FIG. 12A, "preambleReceivedTargetPower" and the like are set as the RACH power control field in the RACH-ConfigGeneric IE. Meanwhile, according to option 2, as shown in FIG. 12B, "preambleReceivedTargetPower-SBFD" may be additionally set as the RACH power control field for SBFD operation. That is, "preambleReceivedTargetPower-SBFD" as a RACH power control field for SBFD operation and "preambleReceivedTargetPower" as a RACH power control field for non-SBFD operation are RACH-ConfigGeneric. It may be set in IE. The UE transmits the PRACH with the transmit power according to the PRACH power control field such as "preambleReceivedTargetPower-SBFD" in SBFD operation, and transmits PRACH with the transmit power according to the PRACH power control field such as "preambleReceivedTargetPower" in non-SBFD operation. to send H You can also do this. This makes it possible to set different PRACH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing UE-to-UE CLI and/or gNB-to-gNB CLI during SBFD operation. Can be done.
 また、“msgA-PreambleReceivedTargetPower-SBFD”などの追加的なフィールドが、RACH-ConfigGenericTwoStepRA IEに設定されてもよい。例えば、既存のNRでは、図13Aに示されるように、PRACH電力制御フィールドとして“msgA-PreambleReceivedTargetPower”などが、RACH-ConfigGenericTwoStepRA IEにおいて設定されている。一方、オプション2によると、図13Bに示されるように、SBFD動作用のPRACH電力制御フィールドとして“msgA-PreambleReceivedTargetPower-SBFD”が追加的に設定されてもよい。すなわち、SBFD動作用のRACH電力制御フィールドとしての“msgA-PreambleReceivedTargetPower-SBFD”と、非SBFD動作用のRACH電力制御フィールドとしての“msgA-PreambleReceivedTargetPower”とが、RACH-ConfigGenericTwoStepRA IEにおいて設定されてもよい。UEは、SBFD動作においては“msgA-PreambleReceivedTargetPower-SBFD”などのPRACH電力制御フィールドによる送信電力によってPRACHを送信し、非SBFD動作においては“msgA-PreambleReceivedTargetPower”などのPRACH電力制御フィールドによる送信電力によってPRACHを送信するようにしてもよい。これにより、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPRACH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 Additionally, additional fields such as "msgA-PreambleReceivedTargetPower-SBFD" may be set in the RACH-ConfigGenericTwoStepRA IE. For example, in the existing NR, as shown in FIG. 13A, a PRACH power control field such as "msgA-PreambleReceivedTargetPower" is set in the RACH-ConfigGenericTwoStepRA IE. Meanwhile, according to option 2, as shown in FIG. 13B, "msgA-PreambleReceivedTargetPower-SBFD" may be additionally set as a PRACH power control field for SBFD operation. That is, "msgA-PreambleReceivedTargetPower-SBFD" as the RACH power control field for SBFD operation and "msgA-PreambleReceivedTargetPower" as the RACH power control field for non-SBFD operation are gGenericTwoStepRA May be set in IE . The UE transmits the PRACH with the transmission power according to the PRACH power control field such as "msgA-PreambleReceivedTargetPower-SBFD" in SBFD operation, and the PRACH power such as "msgA-PreambleReceivedTargetPower" in non-SBFD operation. PRACH by transmit power by control field may also be sent. This makes it possible to set different PRACH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing UE-to-UE CLI and/or gNB-to-gNB CLI during SBFD operation. Can be done.
 また、“msg3-DeltaPreamble-SBFD”,“p0-NominalWithGrant-SBFD”などの追加的なフィールドが、PUSCH-ConfigCommon IEに設定されてもよい。例えば、既存のNRでは、図14Aに示されるように、PUSCH電力制御フィールドとして“msg3-DeltaPreamble”,“p0-NominalWithGrant”などが、PUSCH-ConfigCommon IEにおいて設定されている。一方、オプション2によると、図14Bに示されるように、SBFD動作用のPUSCH電力制御フィールドとして“msg3-DeltaPreamble-SBFD”及び“p0-NominalWithGrant-SBFD”が追加的に設定されてもよい。すなわち、SBFD動作用のPUSCH電力制御フィールドとしての“msg3-DeltaPreamble-SBFD”及び“p0-NominalWithGrant-SBFD”と、非SBFD動作用のPUSCH電力制御フィールドとしての“msg3-DeltaPreamble”及び“p0-NominalWithGrant”とが、PUSCH-ConfigCommon IEにおいて設定されてもよい。UEは、SBFD動作においては“msg3-DeltaPreamble-SBFD”及び“p0-NominalWithGrant-SBFD”などのPUSCH電力制御フィールドによる送信電力によってPUSCHを送信し、非SBFD動作においては“msg3-DeltaPreamble”及び“p0-NominalWithGrant”などのPUSCH電力制御フィールドによる送信電力によってPUSCHを送信するようにしてもよい。これにより、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 Additionally, additional fields such as "msg3-DeltaPreamble-SBFD" and "p0-NominalWithGrant-SBFD" may be set in the PUSCH-ConfigCommon IE. For example, in the existing NR, as shown in FIG. 14A, "msg3-DeltaPreamble", "p0-NominalWithGrant", etc. are set as PUSCH power control fields in the PUSCH-ConfigCommon IE. Meanwhile, according to option 2, as shown in FIG. 14B, "msg3-DeltaPreamble-SBFD" and "p0-NominalWithGrant-SBFD" may be additionally set as the PUSCH power control field for SBFD operation. That is, "msg3-DeltaPreamble-SBFD" and "p0-NominalWithGrant-SBFD" as PUSCH power control fields for SBFD operation, and "msg3-DeltaPreamble" and "p0-Nominal" as PUSCH power control fields for non-SBFD operation. WithGrant ” may be set in the PUSCH-ConfigCommon IE. The UE transmits the PUSCH with the transmission power according to the PUSCH power control field such as "msg3-DeltaPreamble-SBFD" and "p0-NominalWithGrant-SBFD" in SBFD operation, and "msg3-DeltaPreamble" and "p0 NominalWithGrant-SBFD" in non-SBFD operation. PUSCH may be transmitted using the transmission power according to the PUSCH power control field such as "-NominalWithGrant". This makes it possible to set different PUSCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. Can be done.
 なお、PUSCH及び/又はPUCCH電力制御フィールドは、上述したフィールドに限定されず、“p0-NominalWithGrant”、“p0-PUSCH-Alpha”、“p0-AlphaSets”、“delta-MCS”、“deltaF-PUCCH-f0”、“deltaF-PUCCH-f1”、“deltaF-PUCCH-f2”、“deltaF-PUCCH-f3”、“deltaF-PUCCH-f4”などの他のPUSCH/PUCCH電力制御フィールドに対してもまた、SBFD動作と非SBFD動作との別々の設定が、規定、設定、通知及び/又は適用されてもよい。 Note that the PUSCH and/or PUCCH power control field is not limited to the above-mentioned fields, and may include "p0-NominalWithGrant", "p0-PUSCH-Alpha", "p0-AlphaSets", "delta-MCS", and "deltaF-PUCCH". -f0”, “deltaF-PUCCH-f1”, “deltaF-PUCCH-f2”, “deltaF-PUCCH-f3”, “deltaF-PUCCH-f4”, etc. also for other PUSCH/PUCCH power control fields. , separate settings for SBFD and non-SBFD operations may be defined, configured, notified, and/or applied.
 オプション2によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to option 2, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, resulting in inter-UE CLI and/or inter-gNB CLI during SBFD operation. The possibility can be reduced.
 提案1では、UEは、SBFD用の送信電力設定に従ってSBFD動作における送信電力を設定し、非SBFD用の送信電力設定に従って非SBFD動作における送信電力を設定してもよい。ここで、SBFD用の送信電力設定及び/又は非SBFD用の送信電力設定は、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、あるいは、DCI通知などによってダイナミックに通知されてもよい。また、SBFD用の送信電力設定及び/又は非SBFD用の送信電力設定は、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。また、オプション1とオプション2とは、併用されてもよいし、そうでなくてもよい。 In proposal 1, the UE may set the transmission power in SBFD operation according to the transmission power setting for SBFD, and may set the transmission power in non-SBFD operation according to the transmission power setting for non-SBFD. Here, the transmission power setting for SBFD and/or the transmission power setting for non-SBFD is defined by the specifications, semi-statically set by RRC settings, etc., or dynamically notified by DCI notification etc. It's okay. Further, the transmission power setting for SBFD and/or the transmission power setting for non-SBFD may be specified, set, notified, or applied explicitly or implicitly. Furthermore, option 1 and option 2 may or may not be used together.
 UEは、SBFD動作においてSBFD用の送信電力設定による送信電力によってアップリンクチャネルを送信し、非SBFD動作において非SBFD用の送信電力設定による送信電力によってアップリンクチャネルを送信してもよい。例えば、オプション1では、SBFD用の送信電力設定と非SBFD用の送信電力設定とは、SBFD動作と非SBFD動作のための別々の送信電力設定情報要素(例えば、PUSCH-PowerControl-SBFD IE及びPUSCH-PowerControl IE、PUCCH-PowerControl-SBFD IE及びPUCCH-PowerControl IEなど)によって規定されてもよい。この場合、UEは、SBFD動作においては、PUSCH-PowerControl-SBFD IE及び/又はPUCCH-PowerControl-SBFD IEに従ってPUSCH及び/又はPUCCH送信電力を決定し、非SBFD動作においては、PUSCH-PowerControl IE及び/又はPUCCH-PowerControl IEに従ってPUSCH及び/又はPUCCH送信電力を決定してもよい。 The UE may transmit the uplink channel with the transmission power according to the SBFD transmission power setting in SBFD operation, and may transmit the uplink channel with the transmission power according to the non-SBFD transmission power setting in non-SBFD operation. For example, in option 1, the transmit power settings for SBFD and the transmit power settings for non-SBFD are separate transmit power settings information elements for SBFD and non-SBFD operations (e.g., PUSCH-PowerControl-SBFD IE and PUSCH -PowerControl IE, PUCCH-PowerControl-SBFD IE, PUCCH-PowerControl IE, etc.). In this case, the UE determines the PUSCH and/or PUCCH transmission power according to the PUSCH-PowerControl-SBFD IE and/or the PUCCH-PowerControl-SBFD IE in the SBFD operation, and in the non-SBFD operation, the UE determines the PUSCH-PowerControl-SBFD IE and/or the PUCCH-PowerControl-SBFD IE. IE and/or Alternatively, the PUSCH and/or PUCCH transmission power may be determined according to the PUCCH-PowerControl IE.
 また、オプション2では、SBFD用の送信電力設定と非SBFD用の送信電力設定とは、同一の送信電力設定情報要素におけるSBFD動作のための送信電力パラメータと非SBFD動作のための送信電力パラメータとによって規定されてもよい。例えば、UEは、SBFD動作においては、PUSCH-PowerControl IEにおけるp0-NominalWithoutGrant-SBFD,p0-AlphaSets-SBFDなどに従ってPUSCH送信電力を決定し、非SBFD動作においては、PUSCH-PowerControl IEにおけるp0-NominalWithoutGrant,p0-AlphaSetsなどに従ってPUSCH送信電力を決定してもよい。また、UEは、SBFD動作においては、PUCCH-PowerControl IEにおけるp0-Set-SBFDなどに従ってPUCCH送信電力を決定し、非SBFD動作においては、PUCCH-PowerControl IEにおけるp0-Setなどに従ってPUCCH送信電力を決定してもよい。 In addition, in option 2, the transmit power setting for SBFD and the transmit power setting for non-SBFD are the transmit power parameter for SBFD operation and the transmit power parameter for non-SBFD operation in the same transmit power setting information element. may be defined by For example, in the SBFD operation, the UE determines the PUSCH transmission power according to p0-NominalWithoutGrant-SBFD, p0-AlphaSets-SBFD, etc. in the PUSCH-PowerControl IE, and in the non-SBFD operation, the UE determines the PUSCH transmission power according to the PUSCH-PowerControl IE. p0-Nominal Without Grant in IE, PUSCH transmission power may be determined according to p0-AlphaSets or the like. In addition, in SBFD operation, the UE determines PUCCH transmission power according to p0-Set-SBFD, etc. in PUCCH-PowerControl IE, and in non-SBFD operation, determines PUCCH transmission power according to p0-Set, etc. in PUCCH-PowerControl IE. You may.
 また、アップリンクチャネルは、アップリンク共有チャネル、アップリンク制御チャネル及びランダムアクセスチャネルの1つ以上を含んでもよい。具体的には、UEは、PUSCH送信電力設定、PUCCH送信電力設定及び/又はPRACH送信電力設定に従ってPUSCH、PUCCH及び/又はPRACHを送信してもよい。 The uplink channel may also include one or more of an uplink shared channel, an uplink control channel, and a random access channel. Specifically, the UE may transmit the PUSCH, PUCCH and/or PRACH according to the PUSCH transmission power setting, the PUCCH transmission power setting and/or the PRACH transmission power setting.
 一方、gNBは、SBFD用の送信電力設定に従ってSBFD動作における送信電力をUEに設定し、非SBFD用の送信電力設定に従って非SBFD動作における送信電力をUEに対して設定してもよい。ここで、SBFD用の送信電力設定及び/又は非SBFD用の送信電力設定は、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、あるいは、MAC CEなどによってダイナミックに通知されてもよい。また、SBFD用の送信電力設定及び/又は非SBFD用の送信電力設定は、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 On the other hand, the gNB may set the transmission power for SBFD operation to the UE according to the transmission power setting for SBFD, and may set the transmission power for non-SBFD operation to the UE according to the transmission power setting for non-SBFD. Here, the transmission power setting for SBFD and/or the transmission power setting for non-SBFD is either specified by the specifications, semi-statically set by RRC settings, or dynamically notified by MAC CE etc. It's okay. Further, the transmission power setting for SBFD and/or the transmission power setting for non-SBFD may be specified, set, notified, or applied explicitly or implicitly.
 gNBは、SBFD動作においてSBFD用の送信電力によってUEから送信されたアップリンクチャネルを受信し、非SBFD動作において非SBFD用の送信電力によってUEから送信されたアップリンクチャネルを受信してもよい。例えば、オプション1では、SBFD用の送信電力設定と非SBFD用の送信電力設定とは、SBFD動作と非SBFD動作のための別々の送信電力設定情報要素(例えば、PUSCH-PowerControl-SBFD IE及びPUSCH-PowerControl IE、PUCCH-PowerControl-SBFD IE及びPUCCH-PowerControl IEなど)によって規定されてもよい。この場合、gNBは、PUSCH-PowerControl-SBFD IE及び/又はPUCCH-PowerControl-SBFD IEに従ってSBFD動作用のPUSCH及び/又はPUCCH送信電力をUEに設定し、PUSCH-PowerControl IE及び/又はPUCCH-PowerControl IEに従って非SBFD動作用のPUSCH及び/又はPUCCH送信電力をUEに設定してもよい。 The gNB may receive an uplink channel transmitted from the UE with a transmission power for SBFD in SBFD operation, and may receive an uplink channel transmitted from the UE with transmission power for non-SBFD in non-SBFD operation. For example, in option 1, the transmit power settings for SBFD and the transmit power settings for non-SBFD are separate transmit power settings information elements for SBFD and non-SBFD operations (e.g., PUSCH-PowerControl-SBFD IE and PUSCH -PowerControl IE, PUCCH-PowerControl-SBFD IE, PUCCH-PowerControl IE, etc.). In this case, the gNB sets the PUSCH and/or PUCCH transmission power for SBFD operation to the UE according to the PUSCH-PowerControl-SBFD IE and/or the PUCCH-PowerControl-SBFD IE, and UCCH-PowerControl IE Accordingly, the PUSCH and/or PUCCH transmission power for non-SBFD operation may be set in the UE.
 また、オプション2では、SBFD用の送信電力設定と非SBFD用の送信電力設定とは、同一の送信電力設定情報要素におけるSBFD動作のための送信電力パラメータと非SBFD動作のための送信電力パラメータとによって規定されてもよい。例えば、gNBは、PUSCH-PowerControl IEにおけるp0-NominalWithoutGrant-SBFD,p0-AlphaSets-SBFDなどによってSBFD動作におけるPUSCH送信電力をUEに設定し、PUSCH-PowerControl IEにおけるp0-NominalWithoutGrant,p0-AlphaSetsなどによって非SBFD動作におけるPUSCH送信電力をUEに設定してもよい。また、gNBは、PUCCH-PowerControl IEにおけるp0-Set-SBFDなどによってSBFD動作におけるPUCCH送信電力をUEに設定し、PUCCH-PowerControl IEにおけるp0-Setなどによって非SBFD動作におけるPUCCH送信電力をUEに設定してもよい。 In addition, in option 2, the transmit power setting for SBFD and the transmit power setting for non-SBFD are the transmit power parameter for SBFD operation and the transmit power parameter for non-SBFD operation in the same transmit power setting information element. may be defined by For example, the gNB sets the PUSCH transmission power in the SBFD operation to the UE using p0-NominalWithoutGrant-SBFD, p0-AlphaSets-SBFD, etc. in the PUSCH-PowerControl IE, and p0 in the PUSCH-PowerControl IE. - Nominal Without Grant, p0 - AlphaSets etc. PUSCH transmission power in SBFD operation may be set in the UE. In addition, the gNB sets the PUCCH transmission power in SBFD operation to the UE using p0-Set-SBFD etc. in the PUCCH-PowerControl IE, and sets the PUCCH transmission power in non-SBFD operation to the UE using p0-Set etc. in the PUCCH-PowerControl IE. You may.
 また、アップリンクチャネルは、アップリンク共有チャネル、アップリンク制御チャネル及びランダムアクセスチャネルの1つ以上を含んでもよい。具体的には、gNBは、PUSCH送信電力設定、PUCCH送信電力設定及び/又はPRACH送信電力設定によってUEから送信されたPUSCH、PUCCH及び/又はPRACHを受信してもよい。 The uplink channel may also include one or more of an uplink shared channel, an uplink control channel, and a random access channel. Specifically, the gNB may receive the PUSCH, PUCCH, and/or PRACH transmitted from the UE according to the PUSCH transmission power setting, the PUCCH transmission power setting, and/or the PRACH transmission power setting.
 なお、UEは、SBFD動作と非SBFD動作とに対して別々のPUSCH及び/又はPUCCH送信電力設定をサポートするか否かに関するUE capabilityをgNBに報告してもよい。gNBは、取得したUE capabilityに基づいて、SBFD動作と非SBFD動作とに対して別々のPUSCH及び/又はPUCCH送信電力設定を行うか判断してもよい。 Note that the UE may report the UE capability regarding whether to support separate PUSCH and/or PUCCH transmission power settings for SBFD operation and non-SBFD operation to the gNB. The gNB may determine whether to perform separate PUSCH and/or PUCCH transmission power settings for SBFD operation and non-SBFD operation based on the acquired UE capability.
 このように、提案1では、SBFD動作と非SBFD動作に対して異なる送信電力設定が適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 As described above, in Proposal 1, different transmission power settings are applied to SBFD operation and non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 [提案2]
 提案2では、UEは、SBFD動作用のPUSCH及び/又はPUCCH閉ループにより調整される送信電力によってSBFD動作におけるアップリンクチャネルを送信し、非SBFD動作用のPUSCH及び/又はPUCCH閉ループにより調整される送信電力によって非SBFD動作におけるアップリンクチャネルを送信する。すなわち、PUSCH及び/又はPUCCH送信電力が、DCI通知などを介しSBFD動作用の閉ループと非SBFD動作用の閉ループとに従ってダイナミックに調整される。
[Proposal 2]
In proposal 2, the UE transmits the uplink channel in SBFD operation with the transmission power adjusted by the PUSCH and/or PUCCH closed loop for SBFD operation, and the transmission adjusted by the PUSCH and/or PUCCH closed loop for non-SBFD operation. Transmit uplink channel in non-SBFD operation by power. That is, PUSCH and/or PUCCH transmit power is dynamically adjusted according to closed loop for SBFD operation and closed loop for non-SBFD operation via DCI notification or the like.
 提案2では、セルのSBFD動作におけるPUSCH及び/又はPUCCH閉ループの設定が、問題点1として検討される。また、アップリンク送信ビーム(例えば、SRI及び/又はPUCCH spatial relation infoなど)とPUSCH及び/又はPUCCH閉ループインデックスとの間のマッピング関係が、問題点2として検討される。また、設定済みグラント(例えば、Configured Grant)のPUSCH設定とPUSCH閉ループインデックスとの間のマッピング関係が、問題点3として検討される。 In Proposal 2, the setting of PUSCH and/or PUCCH closed loop in cell SBFD operation is considered as Problem 1. Also, the mapping relationship between uplink transmission beams (eg, SRI and/or PUCCH spatial relation info, etc.) and PUSCH and/or PUCCH closed loop index is considered as issue 2. Additionally, the mapping relationship between the PUSCH configuration of a configured grant (eg, Configured Grant) and the PUSCH closed-loop index is considered as issue 3.
 (問題点1)
 問題点1として、セルのSBFD動作におけるPUSCH及び/又はPUCCH閉ループの設定が検討されうる。
(Problem 1)
As problem 1, the configuration of PUSCH and/or PUCCH closed loop in cell SBFD operation may be considered.
 <Alt-a>
 Alt-aでは、セルに対して2つまでのPUSCH及び/又はPUCCH閉ループが設定され、一方の閉ループがSBFD動作用に適用され、他方の閉ループが非SBFD動作用に適用されてもよい。すなわち、Alt-aでは、リリース15/16/17の制限に従ってセルに対して2つまでのPUSCH及び/又はPUCCH閉ループが設定されうる。例えば、UEは、twoPUSCH-PC-AdjustmentStates及び/又はtwoPUCCH-PC-AdjustmentStatesが、SBFD動作を備えたサービングセル又はBWPのPUSCH-PowerControl IE及び/又はPUCCH-PowerControl IEにおいて常に設定されることを想定してもよい。
<Alt-a>
In Alt-a, up to two PUSCH and/or PUCCH closed loops may be configured for a cell, one closed loop being applied for SBFD operation and the other closed loop being applied for non-SBFD operation. That is, in Alt-a, up to two PUSCH and/or PUCCH closed loops may be configured for a cell according to the restrictions of Release 15/16/17. For example, the UE may determine that twoPUSCH-PC-AdjustmentStates and/or twoPUCCH-PC-AdjustmentStates are PUSCH-PowerControl IE and/or PUCCH-PowerCo of a serving cell or BWP with SBFD operation. ntrol Assuming that it is always set in IE Good too.
 ここで、2つまでの閉ループのうち何れの閉ループがSBFD動作用及び/又は非SBFD動作用に設定されるかは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知される、あるいは、所定のルールに従ってUEによって決定されてもよい。また、2つまでの閉ループのうち何れの閉ループがSBFD動作用及び/又は非SBFD動作用に設定されるかは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 Here, which closed loop among up to two closed loops is set for SBFD operation and/or non-SBFD operation is determined by the specifications, or is set semi-statically by RRC settings, etc. It may be dynamically notified by DCI notification or the like, or it may be determined by the UE according to predetermined rules. Furthermore, which closed loop of up to two closed loops is configured for SBFD operation and/or non-SBFD operation may be explicitly or implicitly defined, configured, notified, or applied.
 Alt-aによると、既存のNRの2つまでの閉ループの設定を適用して、SBFD動作用の閉ループと非SBFD動作の閉ループとを備えることができ、DCI通知を介しUEによるPUSCH及び/又はPUCCH送信電力を動的に制御することが可能になる。 According to Alt-a, up to two closed-loop configurations of the existing NR can be applied to provide a closed-loop for SBFD operation and a closed-loop for non-SBFD operation, and the PUSCH and/or It becomes possible to dynamically control PUCCH transmission power.
 <Alt-b>
 Alt-bでは、合計でX個までのPUSCH及び/又はPUCCH閉ループが設定され、X個のうちの2つまでのPUSCH及び/又はPUCCH閉ループが非SBFD動作用に設定されてもよい。典型的には、Xの値は、2より大きくてもよい。また、SBFD動作用のPUSCH及び/又はPUCCH閉ループの数は、2より小さくてもよいし、2に等しくてもよいし、2より大きくてもよい。
<Alt-b>
In Alt-b, a total of up to X PUSCH and/or PUCCH closed loops may be configured, and up to 2 of the X PUSCH and/or PUCCH closed loops may be configured for non-SBFD operation. Typically, the value of X may be greater than two. Further, the number of PUSCH and/or PUCCH closed loops for SBFD operation may be smaller than 2, may be equal to 2, or may be larger than 2.
 ここで、Xの値は、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知される、あるいは、所定のルールに従ってUEによって決定されてもよい。また、Xの値は、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。また、X個までの閉ループのうち何れの閉ループがSBFD動作用及び/又は非SBFD動作用に設定されるかは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知される、あるいは、所定のルールに従ってUEによって決定されてもよい。また、X個までの閉ループのうち何れの閉ループがSBFD動作用及び/又は非SBFD動作用に設定されるかは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 Here, the value of . Further, the value of X may be explicitly or implicitly defined, set, notified, or applied. Also, which closed loops among up to It may be dynamically notified, such as by notification, or may be determined by the UE according to predetermined rules. Further, which closed loop among up to X closed loops is set for SBFD operation and/or non-SBFD operation may be explicitly or implicitly defined, set, notified, or applied.
 例えば、図15に示されるように、非SBFD動作用のPUSCH閉ループの数は、PUSCH-PowerControl IEにおける既存のtwoPUSCH-PC-AdjustmentStatesフィールドによって設定され、SBFD動作用のPUSCH閉ループの数は、PUSCH-PowerControl IEにおける新規なSBFD-PUSCH-PC-AdjustmentStatesフィールドによって設定されてもよい。例えば、PUSCH閉ループインデックス#0,#1が非SBFD動作用の閉ループを示し、PUSCH閉ループインデックス#2,#3がSBFD動作用の閉ループを示してもよい。 For example, as shown in Figure 15, the number of PUSCH closed loops for non-SBFD operation is set by the existing twoPUSCH-PC-AdjustmentStates field in the PUSCH-PowerControl IE, and the number of PUSCH closed loops for SBFD operation is set by the PUSCH- May be set by the new SBFD-PUSCH-PC-AdjustmentStates field in the PowerControl IE. For example, PUSCH closed loop index #0, #1 may indicate a closed loop for non-SBFD operation, and PUSCH closed loop index #2, #3 may indicate a closed loop for SBFD operation.
 同様に、非SBFD動作用のPUCCH閉ループの数は、PUCCH-PowerControl IEにおける既存のtwoPUCCH-PC-AdjustmentStatesフィールドによって設定され、SBFD動作用のPUCCH閉ループの数は、PUCCH-PowerControl IEにおける新規なSBFD-PUCCH-PC-AdjustmentStatesフィールドによって設定されてもよい。例えば、PUCCH閉ループインデックス#0,#1が非SBFD動作用の閉ループを示し、PUCCH閉ループインデックス#2,#3がSBFD動作用の閉ループを示してもよい。 Similarly, the number of PUCCH closed loops for non-SBFD operation is set by the existing two PUCCH-PC-AdjustmentStates field in the PUCCH-PowerControl IE, and the number of PUCCH closed loops for SBFD operation is set by the existing two PUCCH-PC-AdjustmentStates field in the PUCCH-PowerControl IE. New SBFD in It may be set by the PUCCH-PC-AdjustmentStates field. For example, PUCCH closed loop index #0, #1 may indicate a closed loop for non-SBFD operation, and PUCCH closed loop index #2, #3 may indicate a closed loop for SBFD operation.
 ここで、SBFD動作用のPUSCH及び/又はPUCCH閉ループの数は、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知される、あるいは、所定のルールに従ってUEによって決定されてもよい。 Here, the number of PUSCH and/or PUCCH closed loops for SBFD operation is defined by the specifications, semi-statically set by RRC settings, etc., dynamically notified by DCI notification, etc., or determined by a predetermined number. It may be determined by the UE according to rules.
 なお、SBFD動作用のPUSCH及び/又はPUCCH閉ループの数は、非SBFD動作用のPUSCH及び/又はPUCCH閉ループの数より大きくもよいし、等しくてもよいし、あるいは、小さくてもよい。また、twoPUSCH-PC-AdjustmentStates及び/又はtwoPUCCH-PC-AdjustmentStatesが設定されていない場合、UEは、twoStatesがSBFD-PUSCH-PC-AdjustmentStates及び/又はSBFD-PUCCH-PC-AdjustmentStatesに設定されていることを想定しなくてもよい。また、OneStateがSBFD-PUSCH-PC-AdjustmentStates及び/又はSBFD-PUCCH-PC-AdjustmentStatesに設定されている場合、UEは、twoPUSCH-PC-AdjustmentStates及び/又はtwoPUCCH-PC-AdjustmentStatesが設定されていることを想定しなくてもよい。 Note that the number of PUSCH and/or PUCCH closed loops for SBFD operation may be greater than, equal to, or smaller than the number of PUSCH and/or PUCCH closed loops for non-SBFD operation. In addition, if twoPUSCH-PC-AdjustmentStates and/or twoPUCCH-PC-AdjustmentStates are not set, the UE determines whether twoStates is SBFD-PUSCH-PC-AdjustmentStates and/or SBF Must be set in D-PUCCH-PC-AdjustmentStates. There is no need to assume that Also, if OneState is set to SBFD-PUSCH-PC-AdjustmentStates and/or SBFD-PUCCH-PC-AdjustmentStates, the UE sets twoPUSCH-PC-AdjustmentStates and/or two PUCCH-PC-AdjustmentStates must be set. There is no need to assume that
 Alt-bによると、非SBFD動作については既存のNRの2つまでの閉ループの設定を適用して、SBFD動作用の閉ループと非SBFD動作の閉ループとを備えることができ、DCIを介しUEによるPUSCH及び/又はPUCCH送信電力を動的に制御することが可能になる。 According to Alt-b, for non-SBFD operations, up to two closed-loop configurations of existing NR can be applied to provide a closed loop for SBFD operations and a closed loop for non-SBFD operations, and It becomes possible to dynamically control PUSCH and/or PUCCH transmission power.
 <Alt-c>
 Alt-cでは、SBFD動作用のPUSCH及び/又はPUCCH閉ループは明示的には設定されず、非SBFD動作用に設定されたPUSCH及び/又はPUCCH閉ループからの一対一マッピング(one-to-one mapping)によって暗黙的に設定されてもよい。すなわち、非SBFD動作用のPUSCH及び/又はPUCCH閉ループが設定されると、所定の一対一マッピングに基づいて、設定された非SBFD動作用のPUSCH及び/又はPUCCH閉ループに対応して、SBFD動作用のPUSCH及び/又はPUCCH閉ループが特定される。UEは、非SBFD動作においては、非SBFD動作用のPUSCH及び/又はPUCCH閉ループによってPUSCH及び/又はPUCCH送信電力を調整し、SBFD動作においては、非SBFD動作用のPUSCH及び/又はPUCCH閉ループから暗黙的に設定されたSBFD動作用のPUSCH及び/又はPUCCH閉ループによってPUSCH及び/又はPUCCH送信電力を調整してもよい。
<Alt-c>
In Alt-c, the PUSCH and/or PUCCH closed loop for SBFD operation is not explicitly configured, but one-to-one mapping from the PUSCH and/or PUCCH closed loop configured for non-SBFD operation. ) may be implicitly set by That is, when PUSCH and/or PUCCH closed loop for non-SBFD operation is configured, based on a predetermined one-to-one mapping, corresponding to the configured PUSCH and/or PUCCH closed loop for non-SBFD operation, PUSCH and/or PUCCH closed loops are identified. In non-SBFD operation, the UE adjusts the PUSCH and/or PUCCH transmit power by the PUSCH and/or PUCCH closed loop for non-SBFD operation, and in SBFD operation, the UE adjusts the PUSCH and/or PUCCH transmit power implicitly from the PUSCH and/or PUCCH closed loop for non-SBFD operation. The PUSCH and/or PUCCH transmission power may be adjusted according to the PUSCH and/or PUCCH closed loop for SBFD operation configured as follows.
 例えば、twoPUSCH-PC-AdjustmentStatesが設定されていない場合、すなわち、単一のPUSCH閉ループインデックス#i0が非SBFD動作用に設定されている場合、それは、PUSCH閉ループインデックス#i1又は#i2がSBFD動作用に設定されていることを暗黙的に意味し、非SBFD動作用のPUSCH閉ループインデックス#i0は、SBFD動作用のPUSCH閉ループインデックス#i1又は#i2と関連付けされてもよい。なお、“#i1又は#i2”という文言の使用は、SBFD動作用のPUSCH閉ループがi2又はi1からスタートするか否か確実でないためである。 For example, if twoPUSCH-PC-AdjustmentStates is not set, i.e. if a single PUSCH closed-loop index #i0 is set for non-SBFD operation, it means that PUSCH closed-loop index #i1 or #i2 is set for SBFD operation. PUSCH closed-loop index #i0 for non-SBFD operation may be associated with PUSCH closed-loop index #i1 or #i2 for SBFD operation. Note that the wording "#i1 or #i2" is used because it is not certain whether the PUSCH closed loop for SBFD operation starts from i2 or i1.
 また、例えば、twoPUSCH-PC-AdjustmentStatesが設定されている場合、すなわち、PUSCH閉ループインデックス#i0及び#i1が非SBFD動作用に設定されている場合、それは、PUSCH閉ループインデックス#i2又は#i3がSBFD動作用に設定されていることを暗黙的に意味し、図16に示されるように、非SBFD動作用のPUSCH閉ループインデックス#i0は、SBFD動作用のPUSCH閉ループインデックス#i1と関連付けされ、非SBFD動作用のPUSCH閉ループインデックス#i1は、SBFD動作用のPUSCH閉ループインデックス#i3と関連付けされてもよい。 Also, for example, if twoPUSCH-PC-AdjustmentStates is set, that is, if PUSCH closed-loop index #i0 and #i1 are set for non-SBFD operation, it means that PUSCH closed-loop index #i2 or #i3 is set for SBFD operation. As shown in FIG. 16, PUSCH closed loop index #i0 for non-SBFD operation is associated with PUSCH closed loop index #i1 for SBFD operation, and as shown in FIG. The PUSCH closed-loop index #i1 for operation may be associated with the PUSCH closed-loop index #i3 for SBFD operation.
 同様に、例えば、twoPUCCH-PC-AdjustmentStatesが設定されていない場合、すなわち、単一のPUCCH閉ループインデックス#i0が非SBFD動作用に設定されている場合、それは、PUCCH閉ループインデックス#i1又は#i2がSBFD動作用に設定されていることを暗黙的に意味し、非SBFD動作用のPUCCH閉ループインデックス#i0は、SBFD動作用のPUCCH閉ループインデックス#i1又は#i2と関連付けされてもよい。なお、“#i1又は#i2”という文言の使用は、SBFD動作用のPUCCH閉ループがi2又はi1からスタートするか否か確実でないためである。 Similarly, if, for example, two PUCCH-PC-AdjustmentStates is not set, i.e., a single PUCCH closed-loop index #i0 is configured for non-SBFD operation, it means that the PUCCH closed-loop index #i1 or #i2 is Implicitly meaning that it is configured for SBFD operation, PUCCH closed loop index #i0 for non-SBFD operation may be associated with PUCCH closed loop index #i1 or #i2 for SBFD operation. Note that the wording "#i1 or #i2" is used because it is not certain whether the PUCCH closed loop for SBFD operation starts from i2 or i1.
 また、例えば、twoPUCCH-PC-AdjustmentStatesが設定されている場合、すなわち、PUCCH閉ループインデックス#i0及び#i1が非SBFD動作用に設定されている場合、それは、PUCCH閉ループインデックス#i2又は#i3がSBFD動作用に設定されていることを暗黙的に意味し、非SBFD動作用のPUCCH閉ループインデックス#i0は、SBFD動作用のPUCCH閉ループインデックス#i1と関連付けされ、非SBFD動作用のPUCCH閉ループインデックス#i1は、SBFD動作用のPUCCH閉ループインデックス#i3と関連付けされてもよい。 Also, for example, if two PUCCH-PC-AdjustmentStates is set, that is, if PUCCH closed-loop index #i0 and #i1 are set for non-SBFD operation, it means that PUCCH closed-loop index #i2 or #i3 is set for SBFD operation. Implicitly means that the PUCCH closed-loop index #i0 for non-SBFD operation is associated with the PUCCH closed-loop index #i1 for SBFD operation, and the PUCCH closed-loop index #i1 for non-SBFD operation may be associated with PUCCH closed loop index #i3 for SBFD operation.
 ここで、一対一マッピングは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知される、あるいは、所定のルールに従ってUEによって決定されてもよい。また、一対一マッピングは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。また、複数の異なる一対一マッピングが規定され、何れの一対一マッピングが適用されるかは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知される、あるいは、所定のルールに従ってUEによって決定されてもよい。また、何れの一対一マッピングが適用されるかは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 Here, the one-to-one mapping may be defined by specifications, semi-statically configured by RRC configuration, etc., dynamically notified by DCI notification, etc., or determined by the UE according to predetermined rules. . Additionally, one-to-one mapping may be explicitly or implicitly defined, configured, notified, or applied. In addition, multiple different one-to-one mappings are defined, and which one-to-one mapping is applied is either defined by the specifications, semi-statically set by RRC settings, or dynamically notified by DCI notifications, etc. or may be determined by the UE according to predetermined rules. Further, which one-to-one mapping is applied may be explicitly or implicitly defined, set, notified, or applied.
 Alt-cによると、非SBFD動作については既存の閉ループの設定を適用して、SBFD動作用の閉ループと非SBFD動作の閉ループとを備えることができ、DCIを介しUEによるPUSCH及び/又はPUCCH送信電力を動的に制御することが可能になる。 According to Alt-c, for non-SBFD operation, the existing closed-loop configuration can be applied to provide a closed-loop for SBFD operation and a closed-loop for non-SBFD operation, and PUSCH and/or PUCCH transmission by the UE via DCI. It becomes possible to dynamically control power.
 (問題点2)
 問題点2として、SRI及び/又はPUCCH spatial relation infoなどのアップリンク送信ビームインデックスと、PUSCH及び/又はPUCCH閉ループインデックスとの間のマッピングが検討されうる。
(Problem 2)
As issue 2, mapping between uplink transmit beam indexes such as SRI and/or PUCCH spatial relation info and PUSCH and/or PUCCH closed loop indexes may be considered.
 <Alt-1>
 Alt-1では、1つのSRI及び/又はPUCCH spatial relation infoなどのアップリンク送信ビームインデックスが、非SBFD動作とSBFD動作との何れか一方のための1つのPUSCH及び/又はPUCCH閉ループインデックスにマッピングされてもよい。例えば、SRI-PUSCH-PowerControl IEにおけるsri-PUSCH-ClosedLoopIndexフィールドの各候補値は、非SBFD動作とSBFD動作との何れか一方のためのPUSCH閉ループインデックスであってもよい。同様に、PUCCH-PowerControlSetInfo-r17 IEにおけるpucch-ClosedLoopIndex-r17フィールドの各候補値は、非SBFD動作とSBFD動作との何れか一方のためのPUCCH閉ループインデックスであってもよい。
<Alt-1>
In Alt-1, one SRI and/or uplink transmit beam index such as PUCCH spatial relation info is mapped to one PUSCH and/or PUCCH closed loop index for either non-SBFD operation or SBFD operation. It's okay. For example, each candidate value of the sri-PUSCH-ClosedLoopIndex field in the SRI-PUSCH-PowerControl IE may be a PUSCH closed-loop index for either non-SBFD operation or SBFD operation. Similarly, each candidate value of the pucch-ClosedLoopIndex-r17 field in the PUCCH-PowerControlSetInfo-r17 IE may be a PUCCH closed-loop index for either non-SBFD operation or SBFD operation.
 ここで、例えば、上述した問題点1に対してAlt-aが適用される場合、sri-PUSCH-ClosedLoopIndexフィールド及び/又はpucch-ClosedLoopIndex-r17フィールドの各候補値は、依然として{i0,i1}のままであってもよい。例えば、図17に示されるように、SRI#mが非SBFD動作用のPUSCH閉ループ#i0にマッピングされ、SRI#nがSBFD動作用のPUSCH閉ループ#i1にマッピングされてもよい。 Here, for example, when Alt-a is applied to problem 1 mentioned above, each candidate value of the sri-PUSCH-ClosedLoopIndex field and/or the pucch-ClosedLoopIndex-r17 field is still the same as that of {i0, i1}. You can leave it as is. For example, as shown in FIG. 17, SRI #m may be mapped to PUSCH closed loop #i0 for non-SBFD operation, and SRI #n may be mapped to PUSCH closed loop #i1 for SBFD operation.
 あるいは、上述した問題点1に対してAlt-bが適用される場合、sri-PUSCH-ClosedLoopIndexフィールド及び/又はpucch-ClosedLoopIndex-r17フィールドの各候補値は、{i0,i1,i2,i3}になりうる。例えば、sri-PUSCH-ClosedLoopIndexフィールドの各候補値は、図18に示されるように、{i0,i1,i2,i3}になりうる。また、例えば、図19に示されるように、SRI#mが非SBFD動作用のPUSCH閉ループ#i0にマッピングされ、SRI#nがSBFD動作用のPUSCH閉ループ#i3にマッピングされてもよい。また、上述した問題点1に対してAlt-bが適用される場合、以下のいくつかのケースが考えられうる。 Alternatively, when Alt-b is applied to problem 1 above, each candidate value of the sri-PUSCH-ClosedLoopIndex field and/or pucch-ClosedLoopIndex-r17 field is set to {i0, i1, i2, i3}. It can be. For example, each candidate value of the sri-PUSCH-ClosedLoopIndex field can be {i0, i1, i2, i3}, as shown in FIG. For example, as shown in FIG. 19, SRI #m may be mapped to PUSCH closed loop #i0 for non-SBFD operation, and SRI #n may be mapped to PUSCH closed loop #i3 for SBFD operation. Furthermore, when Alt-b is applied to problem 1 mentioned above, the following several cases can be considered.
 ・twoPUSCH-PC-AdjustmentStatesが設定されておらず、また、SBFD動作用に1つのみのPUSCH閉ループが設定されているケースでは、sri-PUSCH-ClosedLoopIndexの候補値は、{i0,i1}又は{i0,i2}となりうる。なお、SBFD動作用のPUSCH閉ループがi2又はi1からスタートするか否かは分からない。 - In the case where twoPUSCH-PC-AdjustmentStates is not set and only one PUSCH closed loop is set for SBFD operation, the candidate value of sri-PUSCH-ClosedLoopIndex is {i0, i1} or { i0, i2}. Note that it is not known whether the PUSCH closed loop for SBFD operation starts from i2 or i1.
 ・twoPUSCH-PC-AdjustmentStatesが設定されておらず、また、SBFD動作用に2つのPUSCH閉ループが設定されているケースでは、sri-PUSCH-ClosedLoopIndexの候補値は、{i0,i1,i2}又は{i0,i2,i3}となりうる。なお、SBFD動作用のPUSCH閉ループがi2又はi1からスタートするか否かは分からない。 - In the case where twoPUSCH-PC-AdjustmentStates is not set and two PUSCH closed loops are set for SBFD operation, the candidate value of sri-PUSCH-ClosedLoopIndex is {i0, i1, i2} or { i0, i2, i3}. Note that it is not known whether the PUSCH closed loop for SBFD operation starts from i2 or i1.
 ・twoPUSCH-PC-AdjustmentStatesが設定されており、また、SBFD動作用に1つのみのPUSCH閉ループが設定されているケースでは、sri-PUSCH-ClosedLoopIndexの候補値は、{i0,i1,i2}となりうる。 - In the case where twoPUSCH-PC-AdjustmentStates is set and only one PUSCH closed loop is set for SBFD operation, the candidate value of sri-PUSCH-ClosedLoopIndex is {i0, i1, i2}. sell.
 ・twoPUSCH-PC-AdjustmentStatesが設定されており、また、SBFD動作用に2つのPUSCH閉ループが設定されているケースでは、sri-PUSCH-ClosedLoopIndexの候補値は、{i0,i1,i2,i3}となりうる。 - In the case where two PUSCH-PC-AdjustmentStates is set and two PUSCH closed loops are set for SBFD operation, the candidate value of sri-PUSCH-ClosedLoopIndex is {i0, i1, i2, i3}. sell.
 同様に、例えば、pucch-ClosedLoopIndex-r17の各候補値は、{i0,i1,i2,i3}になりうる。この場合もまた、以下のいくつかのケースが考えられうる。 Similarly, for example, each candidate value of pucch-ClosedLoopIndex-r17 can be {i0, i1, i2, i3}. In this case as well, the following several cases may be considered.
 ・twoPUCCH-PC-AdjustmentStatesが設定されておらず、また、SBFD動作用に1つのみのPUCCH閉ループが設定されているケースでは、pucch-ClosedLoopIndex-r17の候補値は、{i0,i1}又は{i0,i2}となりうる。なお、SBFD動作用のPUCCH閉ループがi2又はi1からスタートするか否かは分からない。 - In the case where two PUCCH-PC-AdjustmentStates is not set and only one PUCCH closed loop is set for SBFD operation, the candidate value of pucch-ClosedLoopIndex-r17 is {i0, i1} or { i0, i2}. Note that it is not known whether the PUCCH closed loop for SBFD operation starts from i2 or i1.
 ・twoPUCCH-PC-AdjustmentStatesが設定されておらず、また、SBFD動作用に2つのPUCCH閉ループが設定されているケースでは、pucch-ClosedLoopIndex-r17の候補値は、{i0,i1,i2}又は{i0,i2,i3}となりうる。なお、SBFD動作用のPUCCH閉ループがi2又はi1からスタートするか否かは分からない。 - In the case where two PUCCH-PC-AdjustmentStates is not set and two PUCCH closed loops are set for SBFD operation, the candidate value of pucch-ClosedLoopIndex-r17 is {i0, i1, i2} or { i0, i2, i3}. Note that it is not known whether the PUCCH closed loop for SBFD operation starts from i2 or i1.
 ・twoPUCCH-PC-AdjustmentStatesが設定されており、また、SBFD動作用に1つのみのPUCCH閉ループが設定されているケースでは、pucch-ClosedLoopIndex-r17の候補値は、{i0,i1,i2}となりうる。 - In the case where two PUCCH-PC-AdjustmentStates is set and only one PUCCH closed loop is set for SBFD operation, the candidate value of pucch-ClosedLoopIndex-r17 is {i0, i1, i2}. sell.
 ・twoPUCCH-PC-AdjustmentStatesが設定されており、また、SBFD動作用に2つのPUCCH閉ループが設定されているケースでは、pucch-ClosedLoopIndex-r17の候補値は、{i0,i1,i2,i3}となりうる。 - In the case where two PUCCH-PC-AdjustmentStates is set and two PUCCH closed loops are set for SBFD operation, the candidate value of pucch-ClosedLoopIndex-r17 is {i0, i1, i2, i3}. sell.
 また、以下の各種変形例が想定されうる。
 ・変形例#1
 SRIが非SBFD動作用のPUSCH閉ループインデックスにマッピングされる場合、UEは、SRIがSBFD上のPUSCHに対して通知されることを想定しなくてもよい。
Furthermore, the following various modifications may be envisaged.
Modification #1
If the SRI is mapped to the PUSCH closed loop index for non-SBFD operation, the UE may not assume that the SRI is signaled for PUSCH on the SBFD.
 ・変形例#2
 SRIがSBFD動作用のPUSCH閉ループインデックスにマッピングされる場合、UEは、SRIが非SBFD上のPUSCHに対して通知されることを想定しなくてもよい。
Modification #2
If the SRI is mapped to the PUSCH closed loop index for SBFD operation, the UE may not assume that the SRI is signaled for PUSCH on non-SBFD.
 ・変形例#3
 UEは、同一のTPCループインデックスを通知するSRIフィールドによって、非SBFD上のPUSCHをスケジューリングするDCIフォーマットと、SBFD上のPUSCHをスケジューリングする他のDCIフォーマットとを想定しなくてもよい。
Modification #3
The UE does not have to assume DCI formats that schedule PUSCH on non-SBFD and other DCI formats that schedule PUSCH on SBFD due to the SRI field reporting the same TPC loop index.
 ・変形例#4
 UEは、異なるTPCループインデックスを通知するSRIフィールドによって、非SBFD上のPUSCHをスケジューリングするDCIフォーマットと、非SBFD上のPUSCHをスケジューリングする他のDCIフォーマットとを想定しなくてもよい。
・Modification #4
The UE does not have to assume DCI formats for scheduling PUSCH on non-SBFD and other DCI formats for scheduling PUSCH on non-SBFD due to the SRI field reporting different TPC loop indexes.
 ・変形例#5
 UEは、異なるTPCループインデックスを通知するSRIフィールドによって、SBFD上のPUSCHをスケジューリングするDCIフォーマットと、SBFD上のPUSCHをスケジューリングする他のDCIフォーマットとを想定しなくてもよい。
Variation #5
The UE does not have to assume the DCI format for scheduling PUSCH on SBFD and other DCI formats for scheduling PUSCH on SBFD due to the SRI field reporting different TPC loop indexes.
 ・変形例#6
 2つのPUCCHリソースが同一のPUCCH spatial relation infoによって設定又は通知される場合、UEは、非SBFD上のPUCCHリソースを通知するDCIフォーマットと、SBFD上のPUCCHリソースを通知する他のDCIフォーマットとを想定しなくてもよい。
・Modification #6
If two PUCCH resources are configured or notified by the same PUCCH spatial relation info, the UE assumes a DCI format that notifies PUCCH resources on non-SBFD and another DCI format that notifies PUCCH resources on SBFD. You don't have to.
 ・変形例#7
 2つのPUCCHリソースが異なるPUCCH spatial relation infoによって設定又は通知される場合、UEは、非SBFD上のPUCCHリソースを通知するDCIフォーマットと、非SBFD上のPUCCHリソースを通知する他のDCIフォーマットとを想定しなくてもよい。
Variation #7
If two PUCCH resources are configured or notified by different PUCCH spatial relation info, the UE assumes a DCI format that notifies the PUCCH resource on a non-SBFD and another DCI format that notifies the PUCCH resource on a non-SBFD. You don't have to.
 ・変形例#8
 2つのPUCCHリソースが異なるPUCCH spatial relation infoによって設定又は通知される場合、UEは、SBFD上のPUCCHリソースを通知するDCIフォーマットと、SBFD上のPUCCHリソースを通知する他のDCIフォーマットとを想定しなくてもよい。
Modification #8
When two PUCCH resources are configured or notified by different PUCCH spatial relation info, the UE does not assume the DCI format that reports the PUCCH resource on the SBFD and the other DCI format that reports the PUCCH resource on the SBFD. It's okay.
 なお、変形例#3~#8は、何れのPUSCH及び/又はPUCCH閉ループがSBFD動作用又は非SBFD動作用であるかトランスペアレント又は非トランスペアレントであるケースに適用可能でありうる。 Note that Modifications #3 to #8 may be applicable to cases where any PUSCH and/or PUCCH closed loop is for SBFD operation or non-SBFD operation, or is transparent or non-transparent.
 Alt-1によると、SRI及び/又はPUCCH spatial relation infoなどのアップリンク送信ビームインデックスと、PUSCH及び/又はPUCCH閉ループインデックスとの間の一例となるマッピングを提供することができる。 According to Alt-1, an example mapping between uplink transmit beam index, such as SRI and/or PUCCH spatial relation info, and PUSCH and/or PUCCH closed loop index may be provided.
 <Alt-2>
 Alt-2では、1つのSRI及び/又はPUCCH spatial relation infoなどのアップリンク送信ビームインデックスが、非SBFD動作用の1つのPUSCH及び/又はPUCCH閉ループインデックスと、SBFD動作用の1つのPUSCH及び/又はPUCCH閉ループインデックスとにマッピングされてもよい。例えば、図20に示されるように、SRI#mが非SBFD動作用のPUSCH閉ループ#i0とSBFD動作用のPUSCH閉ループ#i3とにマッピングされ、SRI#nが非SBFD動作用のPUSCH閉ループ#i1とSBFD動作用のPUSCH閉ループ#i2とにマッピングされてもよい。
<Alt-2>
In Alt-2, the uplink transmit beam index such as one SRI and/or PUCCH spatial relation info is one PUSCH and/or PUCCH closed loop index for non-SBFD operation and one PUSCH and/or PUCCH closed loop index for SBFD operation. PUCCH closed loop index. For example, as shown in FIG. 20, SRI #m is mapped to PUSCH closed loop #i0 for non-SBFD operation and PUSCH closed loop #i3 for SBFD operation, and SRI #n is mapped to PUSCH closed loop #i1 for non-SBFD operation. and PUSCH closed loop #i2 for SBFD operation.
 例えば、SRIがPUSCHをスケジューリングするDCIフォーマット0_1/0_2において通知されるケース、又は、特定のPUCCH spatial relation infoによるPUCCHリソースがPUCCHのために通知又は決定されるケースが想定されうる。これらのケースにおいて、PUSCH及び/又はPUCCHがSBFD上にある場合、SBFD動作用の関連するPUSCH及び/又はPUCCH閉ループインデックスが、PUSCH及び/又はPUCCHの電力計算に適用されてもよい。他方、PUSCH及び/又はPUCCHが非SBFD上にある場合、非SBFD動作用の関連するPUSCH及び/又はPUCCH閉ループインデックスが、PUSCH及び/又はPUCCHの電力計算に適用されてもよい。 For example, a case can be assumed in which SRI is notified in DCI format 0_1/0_2 for scheduling PUSCH, or a case in which PUCCH resources are notified or determined for PUCCH according to specific PUCCH spatial relation info. In these cases, if the PUSCH and/or PUCCH is on the SBFD, the associated PUSCH and/or PUCCH closed-loop index for SBFD operation may be applied to the PUSCH and/or PUCCH power calculation. On the other hand, if the PUSCH and/or PUCCH is on a non-SBFD, the associated PUSCH and/or PUCCH closed-loop index for non-SBFD operation may be applied to the PUSCH and/or PUCCH power calculation.
 例えば、TPC調整コマンドフィールドが存在するDCIフォーマット0_1/0_2に対して、以下のOpt-a及びOpt-bが実行されてもよい。Opt-aでは、スケジューリングされたPUSCHがSBFD上にある場合、通知された調整は、通知されたSRIに関連するSBFD動作用のPUSCH閉ループインデックスのみに適用されるようにしてもよい。他方、スケジューリングされたPUSCHが非SBFD上にある場合、通知された調整は、通知されたSRIに関連する非SBFD動作用のPUSCH閉ループインデックスのみに適用されるようにしてもよい。 For example, the following Opt-a and Opt-b may be executed for DCI format 0_1/0_2 in which the TPC adjustment command field exists. In Opt-a, if the scheduled PUSCH is on SBFD, the notified adjustment may be applied only to the PUSCH closed-loop index for the SBFD operation associated with the notified SRI. On the other hand, if the scheduled PUSCH is on a non-SBFD, the notified adjustment may be applied only to the PUSCH closed-loop index for non-SBFD operations associated with the notified SRI.
 また、Opt-bでは、スケジューリングされたPUSCHがSBFD又は非SBFD上にあるか否かにかかわらず、通知された調整は、通知されたSRIに関連するSBFD動作用のPUSCH閉ループインデックスと、非SBFD動作用のPUSCH閉ループインデックスとに適用されるようにしてもよい。 Also, in Opt-b, regardless of whether the scheduled PUSCH is on an SBFD or a non-SBFD, the advertised adjustment is the PUSCH closed-loop index for SBFD operations associated with the advertised SRI and PUSCH closed loop index for operation.
 また、例えば、TPC調整コマンドフィールドが存在するDCIフォーマット1_1/1_2に対して、以下のOpt-a及びOpt-bが実行されてもよい。Opt-aでは、通知されたPUCCHがSBFD上にある場合、通知された調整は、通知されたPUCCHリソースのPUCCH spatial relation infoに関連するSBFD動作用のPUCCH閉ループインデックスのみに適用されるようにしてもよい。他方、通知されたPUCCHが非SBFD上にある場合、通知された調整は、通知されたPUCCHリソースのPUCCH spatial relation infoに関連する非SBFD動作用のPUCCH閉ループインデックスのみに適用されるようにしてもよい。 Furthermore, for example, the following Opt-a and Opt-b may be executed for DCI format 1_1/1_2 in which the TPC adjustment command field exists. In Opt-a, when the notified PUCCH is on SBFD, the notified adjustment is applied only to the PUCCH closed loop index for SBFD operation related to the PUCCH spatial relation info of the notified PUCCH resource. Good too. On the other hand, if the notified PUCCH is on a non-SBFD, the notified adjustment may be applied only to the PUCCH closed loop index for non-SBFD operations associated with the PUCCH spatial relation info of the notified PUCCH resource. good.
 また、Opt-bでは、通知されたPUCCHがSBFD又は非SBFD上にあるか否かにかかわらず、通知された調整は、通知されたPUCCHリソースのPUCCH spatial relation infoに関連するSBFD動作用のPUCCH閉ループインデックスと、非SBFD動作用のPUCCH閉ループインデックスとに適用されるようにしてもよい。 In addition, in Opt-b, regardless of whether the notified PUCCH is on an SBFD or a non-SBFD, the notified adjustment is made on the PUCCH for SBFD operation related to the PUCCH spatial relation info of the notified PUCCH resource. It may be applied to the closed loop index and the PUCCH closed loop index for non-SBFD operations.
 例えば、図21に示される例では、TPC調整コマンドフィールドがDCI#1及びDCI#2に存在している。Opt-aでは、DCI#1によって通知される調整はPUSCH閉ループ#i3のみに適用され、DCI#2によって通知される調整はPUSCH閉ループ#i1のみに適用されてもよい。他方、Opt-bでは、DCI#1によって通知される調整はPUSCH閉ループ#i0,#i3のみに適用され、DCI#2によって通知される調整はPUSCH閉ループ#i1,#i3のみに適用されてもよい。 For example, in the example shown in FIG. 21, the TPC adjustment command field exists in DCI #1 and DCI #2. In Opt-a, the adjustment notified by DCI #1 may be applied only to PUSCH closed loop #i3, and the adjustment notified by DCI #2 may be applied only to PUSCH closed loop #i1. On the other hand, in Opt-b, the adjustment notified by DCI #1 is applied only to PUSCH closed loop #i0, #i3, and the adjustment notified by DCI #2 is applied only to PUSCH closed loop #i1, #i3. good.
 <Alt-2-1>
 新規のパラメータsri-PUSCH-ClosedLoopIndex-SBFD及び/又はpucch-ClosedLoopIndex-r17-SBFDが、SRI及び/又はPUCCH spatial relation infoに対して、対応するSBFD動作用のPUSCH及び/又はPUCCH閉ループインデックスを通知するのに利用されてもよい。例えば、図22に示されるように、SRI-PUSCH-PowerControl IEにおいて、非SBFD動作用のPUSCH閉ループインデックスを通知するためのsri-PUSCH-ClosedLoopIndexと、SBFD動作用のPUSCH閉ループインデックスを通知するためのsri-PUSCH-ClosedLoopIndex-SBFDとが、設定されてもよい。1つのSRIが、SBFD動作用のPUSCH閉ループインデックスと非SBFD動作用のPUSCH閉ループインデックスとにマッピング可能である。
<Alt-2-1>
The new parameters sri-PUSCH-ClosedLoopIndex-SBFD and/or pucch-ClosedLoopIndex-r17-SBFD are added to the PUSCH and/or PUC for the corresponding SBFD operation for the SRI and/or PUCCH spatial relation info. Notify CH closed loop index It may be used for. For example, as shown in FIG. 22, in the SRI-PUSCH-PowerControl IE, sri-PUSCH-ClosedLoopIndex is used to notify the PUSCH closed-loop index for non-SBFD operation, and sri-PUSCH-ClosedLoopIndex is used to notify the PUSCH closed-loop index for SBFD operation. sri-PUSCH-ClosedLoopIndex-SBFD may be set. One SRI can be mapped to a PUSCH closed-loop index for SBFD operations and a PUSCH closed-loop index for non-SBFD operations.
 sri-PUSCH-ClosedLoopIndex-SBFD及び/又はpucch-ClosedLoopIndex-r17-SBFDが設定されていない場合、UEは、SRI及び/又はPUCCH spatial relation infoがSBFD上のPUSCH及び/又はPUCCHに対して通知されることを想定しなくてもよい。 If sri-PUSCH-ClosedLoopIndex-SBFD and/or pucch-ClosedLoopIndex-r17-SBFD are not configured, the UE determines whether the SRI and/or PUCCH spatial relation info is PUSC on SBFD. Notified to H and/or PUCCH You don't have to assume that.
 <Alt-2-2>
 また、上述した問題点1にAlt-cが適用される場合、すなわち、SBFD動作用と非SBFD動作用のPUSCH及び/又はPUCCH閉ループが一対一マッピングである場合、非SBFD動作用のPUSCH及び/又はPUCCH閉ループが既存のsri-PUSCH-ClosedLoopIndex及び/又はpucch-ClosedLoopIndex-r17によって通知されると、それは、SBFD動作用のPUSCH及び/又はPUCCH閉ループインデックスを暗黙的に通知してもよい。
<Alt-2-2>
In addition, when Alt-c is applied to problem 1 mentioned above, that is, when the PUSCH and/or PUCCH closed loop for SBFD operation and non-SBFD operation is a one-to-one mapping, the PUSCH and/or PUCCH closed loop for non-SBFD operation Or when the PUCCH closed loop is signaled by the existing sri-PUSCH-ClosedLoopIndex and/or pucch-ClosedLoopIndex-r17, it may implicitly signal the PUSCH and/or PUCCH closed loop index for SBFD operation.
 例えば、twoPUSCH-PC-AdjustmentStatesが設定されておらず、また、sri-PUSCH-ClosedLoopIndexがi0として設定されている場合、それは、SRIが非SBFD動作用のPUSCH閉ループインデックス#i0と、SBFD動作用のPUSCH閉ループインデックス#i1又は#i2にマッピングされることを暗黙的に意味しうる。なお、SBFD動作用のPUSCH閉ループインデックスがi2又はi1からスタートするかは分かっていない。 For example, if twoPUSCH-PC-AdjustmentStates is not set and sri-PUSCH-ClosedLoopIndex is set as i0, it means that SRI uses PUSCH closed loop index #i0 for non-SBFD operation and It may implicitly mean that it is mapped to PUSCH closed loop index #i1 or #i2. Note that it is not known whether the PUSCH closed loop index for SBFD operation starts from i2 or i1.
 他方、twoPUSCH-PC-AdjustmentStatesが設定されており、また、sri-PUSCH-ClosedLoopIndexがi0又はi1として設定されている場合、それは、SRIが非SBFD動作用のPUSCH閉ループインデックス#i0又は#i1と、SBFD動作用のPUSCH閉ループインデックス#i2又は#i3にマッピングされることを暗黙的に意味しうる。例えば、図23に示される例では、SRI#mが、非SBFD動作用のPUSCH閉ループインデックス#i0と、SBFD動作用のPUSCH閉ループインデックス#i2とに関連付けされ、SRI#nが、非SBFD動作用のPUSCH閉ループインデックス#i1と、SBFD動作用のPUSCH閉ループインデックス#i3とに関連付けされうる。なお、SRI-PUSCH-PowerControlについては、仕様に対して影響はない。 On the other hand, if twoPUSCH-PC-AdjustmentStates is set and sri-PUSCH-ClosedLoopIndex is set as i0 or i1, it means that the SRI is the PUSCH closed loop index #i0 or #i1 for non-SBFD operation; It may implicitly mean that it is mapped to PUSCH closed loop index #i2 or #i3 for SBFD operation. For example, in the example shown in FIG. 23, SRI#m is associated with PUSCH closed-loop index #i0 for non-SBFD operation and PUSCH closed-loop index #i2 for SBFD operation, and SRI#n is associated with PUSCH closed-loop index #i2 for non-SBFD operation. PUSCH closed-loop index #i1 for SBFD operation and PUSCH closed-loop index #i3 for SBFD operation. Note that the specifications of SRI-PUSCH-PowerControl are not affected.
 同様に、例えば、twoPUCCH-PC-AdjustmentStatesが設定されておらず、また、pucch-ClosedLoopIndex-r17がi0として設定されている場合、それは、PUCCHリソースが非SBFD動作用のPUCCH閉ループインデックス#i0と、SBFD動作用のPUCCH閉ループインデックス#i1又は#i2にマッピングされることを暗黙的に意味しうる。なお、SBFD動作用のPUCCH閉ループインデックスがi2又はi1からスタートするかは分かっていない。 Similarly, for example, if twoPUCCH-PC-AdjustmentStates is not set and pucch-ClosedLoopIndex-r17 is set as i0, it means that the PUCCH resource is the PUCCH closed-loop index #i0 for non-SBFD operation; It may implicitly mean that it is mapped to PUCCH closed loop index #i1 or #i2 for SBFD operation. Note that it is not known whether the PUCCH closed loop index for SBFD operation starts from i2 or i1.
 他方、twoPUSCH-PC-AdjustmentStatesが設定されており、また、pucch-ClosedLoopIndex-r17がi0又はi1として設定されている場合、それは、PUCCHリソースが非SBFD動作用のPUCCH閉ループインデックス#i0又は#i1と、SBFD動作用のPUCCH閉ループインデックス#i2又は#i3にマッピングされることを暗黙的に意味しうる。 On the other hand, if twoPUSCH-PC-AdjustmentStates is set and pucch-ClosedLoopIndex-r17 is set as i0 or i1, it means that the PUCCH resource is configured as PUCCH closed loop index #i0 or #i1 for non-SBFD operation. , may implicitly mean being mapped to PUCCH closed loop index #i2 or #i3 for SBFD operation.
 (問題点3)
 問題点3として、Configured Grant(CG) PUSCH設定と、PUSCH閉ループインデックスとの間のマッピング関係が検討されうる。
(Problem 3)
As problem 3, the mapping relationship between the Configured Grant (CG) PUSCH settings and the PUSCH closed loop index may be considered.
 <Alt-1>
 Alt-1では、CG PUSCH設定が、SBFD動作用と非SBFD動作用との何れか一方に対する1つのPUSCH閉ループインデックスにより設定されてもよい。例えば、ConfiguredGrantConfig IEにおけるpowerControlLoopToUseフィールドの各候補値は、SBFD動作用のPUSCH閉ループ又は非SBFD動作用のPUSCH閉ループであってもよい。問題点2のAlt-2における説明が、sri-PUSCH-ClosedLoopIndexをpowerControlLoopToUseに置き換えることによって再利用可能である。
<Alt-1>
In Alt-1, the CG PUSCH configuration may be configured with one PUSCH closed-loop index for either SBFD operation or non-SBFD operation. For example, each candidate value of the powerControlLoopToUse field in the ConfiguredGrantConfig IE may be PUSCH closed loop for SBFD operation or PUSCH closed loop for non-SBFD operation. The explanation in Alt-2 of problem 2 can be reused by replacing sri-PUSCH-ClosedLoopIndex with powerControlLoopToUse.
 すなわち、ConfiguredGrantConfig IEにおけるpowerControlLoopToUseフィールドの各候補値は、非SBFD動作とSBFD動作との何れか一方のPUSCH閉ループインデックスであってもよい。例えば、上述した問題点1に対してAlt-aが適用される場合、powerControlLoopToUseフィールドの各候補値は、依然として{i0,i1}のままであってもよい。 That is, each candidate value of the powerControlLoopToUse field in the ConfiguredGrantConfig IE may be a PUSCH closed loop index for either non-SBFD operation or SBFD operation. For example, when Alt-a is applied to problem 1 described above, each candidate value of the powerControlLoopToUse field may remain {i0, i1}.
 あるいは、上述した問題点1に対してAlt-bが適用される場合、powerControlLoopToUseフィールドの各候補値は、{i0,i1,i2,i3}になりうる。 Alternatively, when Alt-b is applied to problem 1 described above, each candidate value of the powerControlLoopToUse field can be {i0, i1, i2, i3}.
 <Alt-2>
 Alt-2では、CG PUSCH設定が、SBFD動作用の1つのPUSCH閉ループインデックスと、非SBFD動作用の1つのPUSCH閉ループインデックスとにより設定されてもよい。例えば、新規のパラメータpowerControlLoopToUse-SBFDフィールドが、CG PUSCHに対するSBFD動作用の対応するPUSCH閉ループインデックスを通知するのに利用されてもよい。例えば、ConfiguredGrantConfig IEにおいて、非SBFD動作用のPUSCH閉ループインデックスを通知するためのpowerControlLoopToUseと、SBFD動作用のPUSCH閉ループインデックスを通知するためのpowerControlLoopToUse-SBFDとが、設定されてもよい。1つのCG PUSCHが、SBFD動作用のPUSCH閉ループインデックスと非SBFD動作用のPUSCH閉ループインデックスとにマッピング可能である。
<Alt-2>
In Alt-2, the CG PUSCH configuration may be configured with one PUSCH closed-loop index for SBFD operation and one PUSCH closed-loop index for non-SBFD operation. For example, a new parameter powerControlLoopToUse-SBFD field may be utilized to signal the corresponding PUSCH closed loop index for SBFD operation on CG PUSCH. For example, in the ConfiguredGrantConfig IE, even if powerControlLoopToUse for notifying the PUSCH closed-loop index for non-SBFD operation and powerControlLoopToUse-SBFD for notifying the PUSCH closed-loop index for SBFD operation are set, Good. One CG PUSCH can be mapped to a PUSCH closed-loop index for SBFD operation and a PUSCH closed-loop index for non-SBFD operation.
 powerControlLoopToUse-SBFDが設定されていない場合、UEは、CG PUSCHがSBFD上のPUSCHに対して通知されることを想定しなくてもよい。 If powerControlLoopToUse-SBFD is not configured, the UE does not need to assume that CG PUSCH is notified for PUSCH on SBFD.
 また、上述した問題点1にAlt-cが適用される場合、すなわち、SBFD動作用と非SBFD動作用のPUSCH閉ループが一対一マッピングである場合、非SBFD動作用のPUSCH閉ループが既存のpowerControlLoopToUseによって通知されると、それは、SBFD動作用のPUSCH閉ループインデックスを暗黙的に通知してもよいなお、powerControlLoopToUseについては、仕様に対して影響はない。 In addition, when Alt-c is applied to problem 1 mentioned above, that is, when the PUSCH closed loop for SBFD operation and non-SBFD operation is a one-to-one mapping, the PUSCH closed loop for non-SBFD operation is Once signaled, it may implicitly signal the PUSCH closed loop index for SBFD operation. Note that there is no impact on the specification for powerControlLoopToUse.
 提案2では、UEは、SBFD用の閉ループに従ってSBFD動作における送信電力を設定し、非SBFD用の閉ループに従って非SBFD動作における送信電力を設定してもよい。ここで、SBFD用の閉ループ及び/又は非SBFD用の閉ループは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、あるいは、DCI通知などによってダイナミックに通知されてもよい。また、SBFD用の閉ループ及び/又は非SBFD用の閉ループは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 In proposal 2, the UE may set the transmit power in SBFD operation according to the closed loop for SBFD, and may set the transmit power in non-SBFD operation according to the closed loop for non-SBFD. Here, the closed loop for SBFD and/or the closed loop for non-SBFD may be defined by specifications, semi-statically configured by RRC settings, or dynamically notified by DCI notification or the like. Further, the closed loop for SBFD and/or the closed loop for non-SBFD may be specified, configured, notified, or applied explicitly or implicitly.
 UEは、SBFD動作においてSBFD用の閉ループによる送信電力によってアップリンクチャネルを送信し、非SBFD動作において非SBFD用の閉ループによる送信電力によってアップリンクチャネルを送信してもよい。例えば、問題点1に関連して、閉ループの総数が設定され、UEは、設定された総数の閉ループのうちのSBFD用の閉ループに従ってSBFD動作における送信電力を設定し設定された総数の閉ループのうちの非SBFD用の閉ループに従って非SBFD動作における送信電力を設定してもよい。 The UE may transmit an uplink channel with closed-loop transmission power for SBFD in SBFD operation, and may transmit an uplink channel with closed-loop transmission power for non-SBFD in non-SBFD operation. For example, related to problem 1, the total number of closed loops is configured, and the UE configures the transmit power in SBFD operation according to the closed loop for SBFD among the configured total number of closed loops. The transmit power in non-SBFD operation may be set according to the closed loop for non-SBFD.
 また、問題点2に関連して、UEは、アップリンク送信ビームと閉ループインデックスとの間のマッピングに従って、SBFD動作における送信電力を設定し、非SBFD動作における送信電力を設定してもよい。また、問題点3に関連して、UEは、設定済みグラントのアップリンク共有チャネル設定と閉ループインデックスとの間のマッピングに従って、SBFD動作における送信電力を設定し、非SBFD動作における送信電力を設定してもよい。 Also, related to issue 2, the UE may set the transmit power in SBFD operation and set the transmit power in non-SBFD operation according to the mapping between the uplink transmit beam and the closed-loop index. Also, related to issue 3, the UE configures the transmit power in SBFD operation and configures the transmit power in non-SBFD operation according to the mapping between the uplink shared channel configuration and the closed loop index in the configured grant. It's okay.
 一方、gNBは、SBFD用の閉ループによってSBFD動作における送信電力をUEに設定し、非SBFD用の閉ループによって非SBFD動作における送信電力をUEに設定してもよい。ここで、SBFD用の閉ループ及び/又は非SBFD用の閉ループは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、あるいは、DCI通知などによってダイナミックに通知されてもよい。また、SBFD用の閉ループ及び/又は非SBFD用の閉ループは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 On the other hand, the gNB may set the transmission power in the SBFD operation to the UE using the closed loop for SBFD, and may set the transmission power in the non-SBFD operation to the UE using the closed loop for non-SBFD. Here, the closed loop for SBFD and/or the closed loop for non-SBFD may be defined by specifications, semi-statically configured by RRC settings, or dynamically notified by DCI notification or the like. Further, the closed loop for SBFD and/or the closed loop for non-SBFD may be specified, configured, notified, or applied explicitly or implicitly.
 gNBは、SBFD動作においてSBFD用の送信電力によってUEから送信されたアップリンクチャネルを受信し、非SBFD動作において非SBFD用の送信電力によってUEから送信されたアップリンクチャネルを受信してもよい。例えば、問題点1に関連して、閉ループの総数が設定され、gNBは、設定された総数の閉ループのうちのSBFD用の閉ループに従ってSBFD動作における送信電力を設定し設定された総数の閉ループのうちの非SBFD用の閉ループに従って非SBFD動作における送信電力を設定してもよい。 The gNB may receive an uplink channel transmitted from the UE with a transmission power for SBFD in SBFD operation, and may receive an uplink channel transmitted from the UE with transmission power for non-SBFD in non-SBFD operation. For example, in relation to problem 1, the total number of closed loops is set, and the gNB sets the transmission power in the SBFD operation according to the closed loop for SBFD among the set total number of closed loops. The transmit power in non-SBFD operation may be set according to the closed loop for non-SBFD.
 また、問題点2に関連して、gNBは、アップリンク送信ビームと閉ループインデックスとの間のマッピングに従って、SBFD動作における送信電力を設定し、非SBFD動作における送信電力を設定してもよい。また、問題点3に関連して、gNBは、設定済みグラントのアップリンク共有チャネル設定と閉ループインデックスとの間のマッピングに従って、SBFD動作における送信電力を設定し、非SBFD動作における送信電力を設定してもよい。 Also, related to issue 2, the gNB may set the transmit power in SBFD operation and set the transmit power in non-SBFD operation according to the mapping between the uplink transmit beam and the closed-loop index. Also, related to issue 3, the gNB configures the transmit power in SBFD operation and configures the transmit power in non-SBFD operation according to the mapping between the uplink shared channel configuration and the closed loop index in the configured grant. It's okay.
 なお、UEは、SBFD動作と非SBFD動作とに対して別々のPUSCH及び/又はPUCCH閉ループをサポートするか否かに関するUE capabilityをgNBに報告してもよい。gNBは、取得したUE capabilityに基づいて、SBFD動作と非SBFD動作とに対して別々のPUSCH及び/又はPUCCH閉ループ制御を行うか判断してもよい。また、UEは、1つのSRIがSBFD動作と非SBFD動作とのPUSCH閉ループに同時にマッピングされるか否かに関するUE capabilityをgNBに報告してもよい。また、UEは、1つのPUCCH spatial relation infoがSBFD動作と非SBFD動作とのPUCCH閉ループに同時にマッピングされるか否かに関するUE capabilityをgNBに報告してもよい。 Note that the UE may report the UE capability regarding whether to support separate PUSCH and/or PUCCH closed loops for SBFD and non-SBFD operations to the gNB. The gNB may determine whether to perform separate PUSCH and/or PUCCH closed-loop control for SBFD operation and non-SBFD operation based on the acquired UE capability. The UE may also report the UE capability to the gNB regarding whether one SRI is simultaneously mapped to the PUSCH closed loop for SBFD operation and non-SBFD operation. Additionally, the UE may report to the gNB the UE capability regarding whether one PUCCH spatial relationship info is mapped to the PUCCH closed loop of SBFD operation and non-SBFD operation at the same time.
 このように、提案2では、SBFD動作と非SBFD動作に対して異なる閉ループが適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力をダイナミックに通知することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 Thus, in Proposal 2, different closed loops are applied to SBFD operations and non-SBFD operations. Therefore, it becomes possible to dynamically notify the UE of different PUSCH and/or PUCCH transmission powers in each of SBFD operation and non-SBFD operation, and it is possible to generate inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the
 [提案3]
 提案3では、UEは、SBFD動作用の送信電力計算式に従って設定された送信電力によってSBFD動作におけるアップリンクチャネルを送信し、非SBFD動作用の送信電力計算式に従って設定された送信電力によって非SBFD動作におけるアップリンクチャネルを送信してもよい。
[Proposal 3]
In proposal 3, the UE transmits the uplink channel in SBFD operation with the transmit power set according to the transmit power formula for SBFD operation, and the UE transmits the uplink channel in SBFD operation with the transmit power set according to the transmit power formula for non-SBFD operation. The uplink channel in operation may be transmitted.
 (オプション1)
 オプション1では、SBFD動作用のPUSCH及び/又はPUCCH送信電力計算のためのスケーリングファクタが適用されてもよい。例えば、図24に示される例では、既存のNRによる非SBFD動作用のPUSCH及び/又はPUCCH送信電力が、スケーリングファクタとの乗算によって引き上げられてもよい。
(Option 1)
In option 1, a scaling factor for PUSCH and/or PUCCH transmit power calculation for SBFD operation may be applied. For example, in the example shown in FIG. 24, the PUSCH and/or PUCCH transmission power for non-SBFD operation by existing NR may be increased by multiplication with a scaling factor.
 例えば、PUSCHの送信電力(PPUSCH,b,f,c(i,j,q,l))は、下記式(3)で表されてもよい。
Figure JPOXMLDOC01-appb-M000003
For example, the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (3).
Figure JPOXMLDOC01-appb-M000003
 式(3)では、SBFD動作用のPUSCH送信電力計算のためのスケーリングファクタβが、上述したPUSCH送信電力の計算式(1)のmin関数の第2引数に乗算される。 In equation (3), the scaling factor β for calculating PUSCH transmission power for SBFD operation is multiplied by the second argument of the min function in equation (1) for calculating PUSCH transmission power described above.
 また、他の例では、PUSCHの送信電力(PPUSCH,b,f,c(i,j,q,l))は、下記式(4)で表されてもよい。
Figure JPOXMLDOC01-appb-M000004
In another example, the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000004
 式(4)では、SBFD動作用のPUSCH送信電力計算のためのスケーリングファクタβが、上述したPUSCH送信電力の計算式(1)のmin関数の出力に乗算される。なお、スケーリングファクタβが1より大きいとき、式(4)は適用不可とされてもよい。 In formula (4), the output of the min function of the above-mentioned PUSCH transmission power calculation formula (1) is multiplied by the scaling factor β for calculating PUSCH transmission power for SBFD operation. Note that when the scaling factor β is greater than 1, equation (4) may not be applicable.
 また、更なる他の例では、PUSCHの送信電力(PPUSCH,b,f,c(i,j,q,l))は、下記式(5)で表されてもよい。
Figure JPOXMLDOC01-appb-M000005
In still another example, the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (5).
Figure JPOXMLDOC01-appb-M000005
 式(5)では、SBFD動作用のPUSCH送信電力計算のためのスケーリングファクタβが、上述したPUSCH送信電力の計算式(1)のmin関数の出力に乗算され、さらにその積とPCMAX,f,c(i)とのうちのより小さな値が設定される。 In equation (5), the output of the min function of the above-mentioned PUSCH transmission power calculation equation (1) is multiplied by the scaling factor β for calculating the PUSCH transmission power for SBFD operation, and the product and P CMAX,f , c (i) is set.
 なお、上述した式(3)~(5)は、PUSCH送信電力の計算に関するものであるが、スケーリングファクタβが、PUCCH送信電力の計算式に同様に適用されてもよい。 Note that the above-mentioned equations (3) to (5) relate to the calculation of PUSCH transmission power, but the scaling factor β may be similarly applied to the calculation equation of PUCCH transmission power.
 ここで、スケーリングファクタβは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知されるか、あるいは、特定のルール(例えば、SBFD上のPUSCH RBサイズ及び/又はPUSCH繰り返し数など)に従ってUEにより決定されてもよい。また、スケーリングファクタβは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 Here, the scaling factor β is defined by the specifications, semi-statically set by RRC settings, etc., dynamically notified by DCI notifications, or specified by a specific rule (for example, PUSCH on SBFD). RB size and/or PUSCH repetition number, etc.). Further, the scaling factor β may be explicitly or implicitly defined, set, notified, or applied.
 (オプション2)
 オプション2では、SBFD動作用のPUSCH及び/又はPUCCH送信電力計算のための電力オフセットが適用されてもよい。例えば、図25に示される例では、既存のNRによる非SBFD動作用のPUSCH及び/又はPUCCH送信電力が、電力オフセットとの加算によって引き上げられてもよい。
(Option 2)
In option 2, a power offset for PUSCH and/or PUCCH transmit power calculation for SBFD operation may be applied. For example, in the example shown in FIG. 25, the PUSCH and/or PUCCH transmission power for non-SBFD operation by existing NR may be increased by addition with a power offset.
 例えば、PUSCHの送信電力(PPUSCH,b,f,c(i,j,q,l))は、下記式(6)で表されてもよい。
Figure JPOXMLDOC01-appb-M000006
For example, the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
 式(6)では、SBFD動作用のPUSCH送信電力計算のための電力オフセット∇が、上述したPUSCH送信電力の計算式(1)のmin関数の第2引数に加算される。 In formula (6), the power offset ∇ for calculating the PUSCH transmission power for SBFD operation is added to the second argument of the min function of the above-mentioned PUSCH transmission power calculation formula (1).
 また、他の例では、PUSCHの送信電力(PPUSCH,b,f,c(i,j,q,l))は、下記式(7)で表されてもよい。
Figure JPOXMLDOC01-appb-M000007
In another example, the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (7).
Figure JPOXMLDOC01-appb-M000007
 式(7)では、SBFD動作用のPUSCH送信電力計算のための電力オフセット∇が、上述したPUSCH送信電力の計算式(1)のmin関数の出力に加算される。なお、電力オフセット∇が0より大きいとき、式(7)は適用不可とされてもよい。 In equation (7), the power offset ∇ for calculating the PUSCH transmission power for SBFD operation is added to the output of the min function of the above-mentioned PUSCH transmission power calculation equation (1). Note that when the power offset ∇ is larger than 0, equation (7) may not be applicable.
 また、更なる他の例では、PUSCHの送信電力(PPUSCH,b,f,c(i,j,q,l))は、下記式(8)で表されてもよい。
Figure JPOXMLDOC01-appb-M000008
In still another example, the transmission power of PUSCH (P PUSCH, b, f, c (i, j, q d , l)) may be expressed by the following formula (8).
Figure JPOXMLDOC01-appb-M000008
 式(8)では、SBFD動作用のPUSCH送信電力計算のための電力オフセット∇が、上述したPUSCH送信電力の計算式(1)のmin関数の出力に加算され、さらにその和とPCMAX,f,c(i)とのうちのより小さな値が設定される。 In equation (8), the power offset ∇ for calculating the PUSCH transmission power for SBFD operation is added to the output of the min function of the above-mentioned PUSCH transmission power calculation equation (1), and the sum and P CMAX,f , c (i) is set.
 なお、上述した式(6)~(8)は、PUSCH送信電力の計算に関するものであるが、電力オフセット∇が、PUCCH送信電力の計算式に同様に適用されてもよい。 Note that the above-mentioned equations (6) to (8) relate to the calculation of PUSCH transmission power, but the power offset ∇ may be similarly applied to the calculation equation of PUCCH transmission power.
 ここで、電力オフセット∇は、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知されるか、あるいは、特定のルール(例えば、SBFD上のPUSCH RBサイズ及び/又はPUSCH繰り返し数など)に従ってUEにより決定されてもよい。また、電力オフセット∇は、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 Here, the power offset ∇ is defined by the specification, semi-statically set by RRC settings, etc., dynamically notified by DCI notification etc., or specified by a specific rule (for example, PUSCH on SBFD). RB size and/or PUSCH repetition number, etc.). Further, the power offset ∇ may be explicitly or implicitly defined, set, notified, or applied.
 (オプション3)
 オプション3では、SBFD動作用のPUSCH及び/又はPUCCH送信電力計算のためのリファレンスRBサイズが利用されてもよい。例えば、図26に示される例では、PUSCHの実際のRBサイズの代わりに、SBFDにおけるアップリンク周波数帯域部分に対応するリファレンスRBサイズが、SBFD動作用のPUSCH送信電力計算に利用されてもよい。
(Option 3)
In option 3, a reference RB size for PUSCH and/or PUCCH transmit power calculation for SBFD operation may be used. For example, in the example shown in FIG. 26, instead of the actual RB size of PUSCH, a reference RB size corresponding to the uplink frequency band portion in SBFD may be used for PUSCH transmission power calculation for SBFD operation.
 具体的には、PUSCH送信電力の計算式(1)におけるパラメータMRB,b,f,c PUSCHとして、SBFD上のPUSCHの実際のRBサイズを適用せず、オプション3-1又は3-2が適用されてもよい。 Specifically, the actual RB size of PUSCH on SBFD is not applied as the parameters M RB, b, f, c PUSCH in calculation formula (1) of PUSCH transmission power, and option 3-1 or 3-2 is may be applied.
 <オプション3-1>
 オプション3-1では、パラメータMRB,b,f,c PUSCHは、存在する場合には非SBFD上の他PUSCH繰り返しのRBサイズなど、SBFD上のPUSCHの実際のRBサイズから独立したものであってもよい。パラメータMRB,b,f,c PUSCHは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知されるか、あるいは、特定のルール(例えば、SBFD上のPUSCH RBサイズ及び/又はPUSCH繰り返し数など)に従ってUEにより決定されてもよい。また、パラメータMRB,b,f,c PUSCHは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。
<Option 3-1>
In option 3-1, the parameters M RB, b, f, c PUSCH are independent of the actual RB size of PUSCH on SBFD, such as the RB size of other PUSCH repeats on non-SBFD, if present. It's okay. The parameters M RB, b, f, c PUSCH are defined by the specifications, semi-statically set by RRC settings, etc., dynamically notified by DCI notifications, or determined by specific rules (e.g. PUSCH RB size and/or PUSCH repetition number on SBFD). Furthermore, the parameters M RB, b, f, c PUSCH may be explicitly or implicitly defined, configured, notified, or applied.
 <オプション3-2>
 オプション3-2では、パラメータMRB,b,f,c PUSCHは、実際のPUSCH RBサイズに基づく固定的なRBサイズオフセット、実際のPUSCH RBサイズに基づくスケーリングファクタ、実際のPUSCH RBサイズに基づくオフセット値など、SBFD上のPUSCHの実際のRBサイズに依存したものであってもよい。固定的なRBサイズオフセットは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知されるか、あるいは、特定のルール(例えば、SBFD上のPUSCH RBサイズ及び/又はPUSCH繰り返し数など)に従ってUEにより決定されてもよい。また、固定的なRBサイズオフセットは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。
<Option 3-2>
In option 3-2, the parameters M RB, b, f, c PUSCH are fixed RB size offset based on the actual PUSCH RB size, scaling factor based on the actual PUSCH RB size, offset based on the actual PUSCH RB size The value may depend on the actual RB size of PUSCH on the SBFD. A fixed RB size offset may be specified by the specification, set semi-statically such as by RRC configuration, dynamically notified such as by DCI notification, or specified by a specific rule (e.g. PUSCH on SBFD). RB size and/or PUSCH repetition number, etc.). Additionally, the fixed RB size offset may be explicitly or implicitly defined, configured, notified, or applied.
 例えば、gNBは、RBサイズオフセット値を直接的に通知又は設定してもよい。また、“実際のPUSCH RBサイズ”、“BWPサイズ(又はSBFDシンボル/スロット上のULサブバンドサイズ)に対する実際のPUSCH RBサイズのレシオ”、及び/又は、“PUSCH繰り返し数”から“固定的なRBサイズオフセット”へのマッピング関係が、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知されるか、あるいは、特定のルール(例えば、SBFD上のPUSCH RBサイズ及び/又はPUSCH繰り返し数など)に従ってUEにより決定されてもよい。 For example, the gNB may directly notify or set the RB size offset value. In addition, “fixed The mapping relationship to "RB size offset" is defined by the specification, semi-statically set by RRC settings, dynamically notified by DCI notifications, or determined by specific rules (for example, on SBFD). may be determined by the UE according to the PUSCH RB size and/or the number of PUSCH repetitions, etc.).
 また、実際のPUSCH RBサイズに基づくスケーリングファクタは、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知されるか、あるいは、特定のルール(例えば、SBFD上のPUSCH RBサイズ及び/又はPUSCH繰り返し数など)に従ってUEにより決定されてもよい。また、固定的なRBサイズオフセットは、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 In addition, the scaling factor based on the actual PUSCH RB size may be specified by the specification, semi-statically set by RRC settings, etc., dynamically notified by DCI notification, etc., or determined by specific rules (e.g. , PUSCH on SBFD, RB size and/or PUSCH repetition number, etc.). Additionally, the fixed RB size offset may be explicitly or implicitly defined, configured, notified, or applied.
 例えば、gNBは、スケーリングファクタ値を直接的に通知又は設定してもよい。また、“実際のPUSCH RBサイズ”、“BWPサイズ(又はSBFDシンボル/スロット上のULサブバンドサイズ)に対する実際のPUSCH RBサイズのレシオ”、及び/又は、“PUSCH繰り返し数”から“スケーリングファクタ”へのマッピング関係が、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、DCI通知などによってダイナミックに通知されるか、あるいは、特定のルール(例えば、SBFD上のPUSCH RBサイズ及び/又はPUSCH繰り返し数など)に従ってUEにより決定されてもよい。 For example, the gNB may directly notify or set the scaling factor value. In addition, “scaling factor” can be calculated from “actual PUSCH RB size”, “ratio of actual PUSCH RB size to BWP size (or UL subband size on SBFD symbol/slot)”, and/or “PUSCH repetition number”. The mapping relationship to and/or the number of PUSCH repetitions, etc.).
 また、一変形例として、ダウンリンク/アップリンクサブバンドサイズがセル固有であることを考慮して、オプション1~3におけるパラメータ、すなわち、オプション1のスケーリングファクタ、オプション2の電力オフセット、及び/又はオプション3のリファレンスRBサイズもまた、セル固有であってもよく、セルにおいて複数のUEに共通であってもよい。この場合、例えば、SBFD動作におけるアップリンク電力を向上させるための1つの共通のパラメータが適用されてもよい。あるいは、SBFD動作におけるアップリンク電力を向上させるための1つのパラメータと、SBFD動作におけるアップリンク電力を低減させるための1つのパラメータとの2つの共通のパラメータが適用されてもよい。 Also, as a variant, considering that the downlink/uplink subband size is cell-specific, the parameters in options 1 to 3, i.e. the scaling factor in option 1, the power offset in option 2, and/or The reference RB size for option 3 may also be cell-specific or common to multiple UEs in a cell. In this case, for example, one common parameter for improving uplink power in SBFD operation may be applied. Alternatively, two common parameters may be applied, one parameter to improve uplink power in SBFD operation and one parameter to reduce uplink power in SBFD operation.
 また、一変形例として、提案3は、SBFD動作と非SBFD動作とに対して共通のPUSCH及び/又はPUCCH閉ループの制約と共に適用されてもよい。あるいは、提案2と提案3とは一緒に適用されてもよい。 Also, as a variation, proposal 3 may be applied with common PUSCH and/or PUCCH closed loop constraints for SBFD and non-SBFD operations. Alternatively, suggestions 2 and 3 may be applied together.
 提案3では、UEは、SBFD用の電力算出式に従ってSBFD動作における送信電力を設定し、非SBFD用の電力算出式に従って非SBFD動作における送信電力を設定してもよい。ここで、SBFD用の電力算出式は、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、あるいは、DCI通知などによってダイナミックに通知されてもよい。また、SBFD用の電力算出式は、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 In proposal 3, the UE may set the transmission power in SBFD operation according to the power calculation formula for SBFD, and may set the transmission power in non-SBFD operation according to the power calculation formula for non-SBFD. Here, the power calculation formula for SBFD may be defined by specifications, semi-statically set by RRC settings, or dynamically notified by DCI notification or the like. Further, the power calculation formula for SBFD may be specified, set, notified, or applied explicitly or implicitly.
 UEは、SBFD動作においてSBFD用の送信電力によってアップリンクチャネルを送信し、非SBFD動作において非SBFD用の送信電力によってアップリンクチャネルを送信してもよい。例えば、SBFD用の電力算出式は、非SBFD用の電力算出式にスケーリングファクタを乗算することによって導出されてもよい。また、SBFD用の電力算出式は、非SBFD用の電力算出式にオフセット値を加算することによって導出されてもよい。また、SBFD用の電力算出式は、非SBFD用の電力算出式に実際のリソースブロックサイズでなく、リファレンスリソースブロックサイズを適用することによって計算されてもよい。 The UE may transmit an uplink channel with SBFD transmission power in SBFD operation, and may transmit an uplink channel with non-SBFD transmission power in non-SBFD operation. For example, the power calculation formula for SBFD may be derived by multiplying the power calculation formula for non-SBFD by a scaling factor. Further, the power calculation formula for SBFD may be derived by adding an offset value to the power calculation formula for non-SBFD. Further, the power calculation formula for SBFD may be calculated by applying the reference resource block size instead of the actual resource block size to the power calculation formula for non-SBFD.
 一方、gNBは、SBFD用の電力算出式によってSBFD動作における送信電力をUEに設定し、非SBFD用の電力算出式によって非SBFD動作における送信電力をUEに設定してもよい。ここで、SBFD用の電力算出式は、仕様によって規定されるか、RRC設定などによってセミスタティックに設定されるか、あるいは、DCI通知などによってダイナミックに通知されてもよい。また、SBFD用の電力算出式は、明示的又は暗黙的に規定、設定、通知又は適用されてもよい。 On the other hand, the gNB may set the transmission power in the SBFD operation to the UE using the power calculation formula for SBFD, and may set the transmission power in the non-SBFD operation to the UE using the power calculation formula for non-SBFD. Here, the power calculation formula for SBFD may be defined by specifications, semi-statically set by RRC settings, or dynamically notified by DCI notification or the like. Further, the power calculation formula for SBFD may be specified, set, notified, or applied explicitly or implicitly.
 gNBは、SBFD動作においてSBFD用の送信電力によってUEから送信されたアップリンクチャネルを受信し、非SBFD動作において非SBFD用の送信電力によってUEから送信されたアップリンクチャネルを受信してもよい。例えば、SBFD用の電力算出式は、非SBFD用の電力算出式にスケーリングファクタを乗算することによって導出されてもよい。また、SBFD用の電力算出式は、非SBFD用の電力算出式にオフセット値を加算することによって導出されてもよい。また、SBFD用の電力算出式は、非SBFD用の電力算出式に実際のリソースブロックサイズでなく、リファレンスリソースブロックサイズを適用することによって計算されてもよい。 The gNB may receive an uplink channel transmitted from the UE with a transmission power for SBFD in SBFD operation, and may receive an uplink channel transmitted from the UE with transmission power for non-SBFD in non-SBFD operation. For example, the power calculation formula for SBFD may be derived by multiplying the power calculation formula for non-SBFD by a scaling factor. Further, the power calculation formula for SBFD may be derived by adding an offset value to the power calculation formula for non-SBFD. Further, the power calculation formula for SBFD may be calculated by applying the reference resource block size instead of the actual resource block size to the power calculation formula for non-SBFD.
 なお、UEは、SBFD用に調整されたPUSCH及び/又はPUCCHの電力算出式をサポートするか否かに関するUE capabilityをgNBに報告してもよい。 Note that the UE may report the UE capability regarding whether to support the PUSCH and/or PUCCH power calculation formula adjusted for SBFD to the gNB.
 このように、提案3では、SBFD動作と非SBFD動作に対して異なる送信電力計算式が適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力計算式を適用させることが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 As described above, in Proposal 3, different transmission power calculation formulas are applied to SBFD operation and non-SBFD operation. Therefore, it is possible to apply different PUSCH and/or PUCCH transmission power calculation formulas to the UE in SBFD operation and non-SBFD operation, and it is possible to cause inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the
 <ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
<Hardware configuration>
Note that the block diagram used to explain the above embodiments shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図27は、本開示の一実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 27 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment of the present disclosure. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図27に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in FIG. 27, or may be configured not to include some of the devices.
 基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and user terminal 20 is performed by loading predetermined software (programs) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, the baseband signal processing section 104, call processing section 105, etc. described above may be implemented by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated on the processor 1001, and other functional blocks may be similarly realized. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, or a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called an auxiliary storage device. The storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101、アンプ部102、送受信部103、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, the above-described transmitting/receiving antenna 101, amplifier section 102, transmitting/receiving section 103, transmission path interface 106, etc. may be realized by the communication device 1004. The transmitter/receiver 103 may be implemented as a transmitter 103a and a receiver 103b that are physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and the user terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). It may be configured to include hardware, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or decimal)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and systems that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operations performed by the base station in this disclosure may be performed by its upper node. In a network consisting of one or more network nodes including a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.). In the above example, there is one network node other than the base station, but it may be a combination of multiple other network nodes (for example, MME and S-GW).
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information etc. (*Refer to the item "Information, Signal") can be output from the upper layer (or lower layer) to the lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "fixed station," "NodeB," "eNodeB (eNB)," "gNodeB (gNB)," " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " The terms "carrier", "component carrier", etc. may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).The term "cell" or "sector" refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 図28に車両1の構成例を示す。図28に示すように、車両1は駆動部2、操舵部3、アクセルペダル4、ブレーキペダル5、シフトレバー6、左右の前輪7、左右の後輪8、車軸9、電子制御部10、各種センサ21~29、情報サービス部12と通信モジュール13を備える。 FIG. 28 shows an example of the configuration of the vehicle 1. As shown in FIG. 28, the vehicle 1 includes a drive unit 2, a steering unit 3, an accelerator pedal 4, a brake pedal 5, a shift lever 6, left and right front wheels 7, left and right rear wheels 8, an axle 9, an electronic control unit 10, various It includes sensors 21 to 29, an information service section 12, and a communication module 13.
 駆動部2は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。 The drive unit 2 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
 操舵部3は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The steering unit 3 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部10は、マイクロプロセッサ31、メモリ(ROM、RAM)32、通信ポート(IOポート)33で構成される。電子制御部10には、車両に備えられた各種センサ21~27からの信号が入力される。電子制御部10は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 10 is composed of a microprocessor 31, memory (ROM, RAM) 32, and communication port (IO port) 33. Signals from various sensors 21 to 27 provided in the vehicle are input to the electronic control unit 10. The electronic control unit 10 may also be called an ECU (Electronic Control Unit).
 各種センサ21~28からの信号としては、モータの電流をセンシングする電流センサ21からの電流信号、回転数センサ22によって取得された前輪や後輪の回転数信号、空気圧センサ23によって取得された前輪や後輪の空気圧信号、車速センサ24によって取得された車速信号、加速度センサ25によって取得された加速度信号、アクセルペダルセンサ29によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ26によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ27によって取得されたシフトレバーの操作信号、物体検知センサ28によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 21 to 28 include a current signal from the current sensor 21 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by the rotation speed sensor 22, and a front wheel rotation speed signal obtained by the air pressure sensor 23. and a rear wheel air pressure signal, a vehicle speed signal obtained by the vehicle speed sensor 24, an acceleration signal obtained by the acceleration sensor 25, an accelerator pedal depression amount signal obtained by the accelerator pedal sensor 29, and a signal obtained by the brake pedal sensor 26. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 27, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 28.
 情報サービス部12は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部12は、外部装置から通信モジュール13等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service unit 12 controls various devices such as a car navigation system, audio system, speakers, television, and radio for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 12 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 13 or the like.
 情報サービス部12は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 12 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device (for example, (display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部30は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部30は、通信モジュール13を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 30 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 30 transmits and receives various information via the communication module 13, and realizes a driving support function or an automatic driving function.
 通信モジュール13は通信ポートを介して、マイクロプロセッサ31および車両1の構成要素と通信することができる。例えば、通信モジュール13は通信ポート33を介して、車両1に備えられた駆動部2、操舵部3、アクセルペダル4、ブレーキペダル5、シフトレバー6、左右の前輪7、左右の後輪8、車軸9、電子制御部10内のマイクロプロセッサ31及びメモリ(ROM、RAM)32、センサ21~28との間でデータを送受信する。 The communication module 13 can communicate with the microprocessor 31 and the components of the vehicle 1 via the communication port. For example, the communication module 13 communicates via the communication port 33 with the drive unit 2, steering unit 3, accelerator pedal 4, brake pedal 5, shift lever 6, left and right front wheels 7, left and right rear wheels 8, which are included in the vehicle 1. Data is transmitted and received between the axle 9, the microprocessor 31 and memory (ROM, RAM) 32 in the electronic control unit 10, and the sensors 21-28.
 通信モジュール13は、電子制御部10のマイクロプロセッサ31によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール13は、電子制御部10の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 13 is a communication device that can be controlled by the microprocessor 31 of the electronic control unit 10 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 13 may be located either inside or outside the electronic control unit 10. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール13は、電子制御部10に入力された上述の各種センサ21-28からの信号、当該信号に基づいて得られる情報、及び情報サービス部12を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部10、各種センサ21-28、情報サービス部12などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール13によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 13 receives signals from the various sensors 21 to 28 described above that are input to the electronic control unit 10, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 12. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 10, various sensors 21-28, information service unit 12, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 13 may include information based on the above input.
 通信モジュール13は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部12へ表示する。情報サービス部12は、情報を出力する(例えば、通信モジュール13によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 13 receives various information (traffic information, signal information, inter-vehicle distance information, etc.) transmitted from external devices, and displays it on the information service section 12 provided in the vehicle. The information service unit 12 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 13). may be called.
 また、通信モジュール13は、外部装置から受信した種々の情報をマイクロプロセッサ31によって利用可能なメモリ32へ記憶する。メモリ32に記憶された情報に基づいて、マイクロプロセッサ31が車両1に備えられた駆動部2、操舵部3、アクセルペダル4、ブレーキペダル5、シフトレバー6、左右の前輪7、左右の後輪8、車軸9、センサ21~28などの制御を行ってもよい。 The communication module 13 also stores various information received from external devices into a memory 32 that can be used by the microprocessor 31. Based on the information stored in the memory 32, the microprocessor 31 controls the drive unit 2, steering unit 3, accelerator pedal 4, brake pedal 5, shift lever 6, left and right front wheels 7, and left and right rear wheels provided in the vehicle 1. 8, the axle 9, sensors 21 to 28, etc. may be controlled.
 (実施形態のまとめ)
 以上、説明したように、本開示の一態様によれば、第1の送信電力設定に従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の送信電力設定に従って非SBFD動作における第2の送信電力を設定する制御部と、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信する送信部と、を有する端末が提供される。
(Summary of embodiments)
As described above, according to one aspect of the present disclosure, the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first transmission power setting, and the first transmission power is set according to the second transmission power setting. a control unit configured to set a second transmission power in a non-SBFD operation, transmitting an uplink channel with the first transmission power in the SBFD operation, and transmitting an uplink channel with the second transmission power in the non-SBFD operation; A terminal having a transmitting unit for transmitting data is provided.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる送信電力制御パラメータが適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different transmission power control parameters are applied to SBFD operation and non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 一実施例では、前記第1の送信電力設定と前記第2の送信電力設定とは、前記SBFD動作と前記非SBFD動作のための別々の送信電力設定情報要素によって規定されてもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, the first transmit power setting and the second transmit power setting may be defined by separate transmit power setting information elements for the SBFD operation and the non-SBFD operation. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 一実施例では、前記第1の送信電力設定と前記第2の送信電力設定とは、同一の送信電力設定情報要素における前記SBFD動作のための第1の送信電力パラメータと前記非SBFD動作のための第2の送信電力パラメータとによって規定されてもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, the first transmit power setting and the second transmit power setting are a first transmit power parameter for the SBFD operation and a first transmit power parameter for the non-SBFD operation in the same transmit power setting information element. and a second transmission power parameter. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 一実施例では、前記アップリンクチャネルは、アップリンク共有チャネル、アップリンク制御チャネル及びランダムアクセスチャネルの1つ以上を含んでもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, the uplink channel may include one or more of an uplink shared channel, an uplink control channel, and a random access channel. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 また、本開示の一態様によれば、第1の送信電力設定によってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を端末に設定し、第2の送信電力設定によって非SBFD動作における第2の送信電力を端末に設定する制御部と、前記SBFD動作において前記第1の送信電力によって前記端末から送信されたアップリンクチャネルを受信し、前記非SBFD動作において前記第2の送信電力によって前記端末から送信されたアップリンクチャネルを受信する受信部と、を有する基地局が提供される。 Further, according to one aspect of the present disclosure, the first transmission power setting sets the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation to the terminal, and the second transmission power setting sets the terminal to perform non-SBFD operation. a control unit configured to set a second transmission power to a terminal in the SBFD operation; and a receiving unit for receiving an uplink channel transmitted from the terminal.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる送信電力制御パラメータが適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different transmission power control parameters are applied to SBFD operation and non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 また、本開示の一態様によれば、第1の送信電力設定に従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の送信電力設定に従って非SBFD動作における第2の送信電力を設定することと、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信することと、を有する、端末によって実行される無線通信方法が提供される。 Further, according to one aspect of the present disclosure, the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first transmission power setting, and the first transmission power in non-SBFD operation is set according to the second transmission power setting. transmitting an uplink channel with the first transmit power in the SBFD operation and transmitting an uplink channel with the second transmit power in the non-SBFD operation; A wireless communication method performed by a terminal is provided.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる送信電力制御パラメータが適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different transmission power control parameters are applied to SBFD operation and non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 また、本開示の一態様によれば、第1の閉ループに従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の閉ループに従って非SBFD動作における第2の送信電力を設定する制御部と、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信する送信部と、を有する端末が提供される。 Further, according to one aspect of the present disclosure, the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first closed loop, and the second transmission power in non-SBFD operation is set according to the second closed loop. and a transmitter that transmits an uplink channel with the first transmission power in the SBFD operation and transmits an uplink channel with the second transmission power in the non-SBFD operation. is provided.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる閉ループが適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different closed loops are applied to the SBFD operation and the non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 一実施例では、閉ループの総数が設定され、前記制御部は、前記設定された総数の閉ループのうちの前記第1の閉ループに従って前記SBFD動作における第1の送信電力を設定し、前記設定された総数の閉ループのうちの前記第2の閉ループに従って前記非SBFD動作における第2の送信電力を設定してもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, a total number of closed loops is set, and the control unit sets a first transmission power in the SBFD operation according to the first closed loop of the set total number of closed loops, and The second transmission power in the non-SBFD operation may be set according to the second closed loop among the total number of closed loops. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 一実施例では、前記制御部は、アップリンク送信ビームと閉ループインデックスとの間のマッピングに従って、前記SBFD動作における第1の送信電力を設定し、非SBFD動作における第2の送信電力を設定してもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, the controller sets the first transmit power in the SBFD operation and the second transmit power in the non-SBFD operation according to a mapping between an uplink transmit beam and a closed-loop index. Good too. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 一実施例では、前記制御部は、設定済みグラントのアップリンク共有チャネル設定と閉ループインデックスとの間のマッピングに従って、前記SBFD動作における第1の送信電力を設定し、非SBFD動作における第2の送信電力を設定してもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, the controller configures a first transmission power in the SBFD operation according to a mapping between an uplink shared channel configuration and a closed-loop index of a configured grant, and configures a first transmission power in the SBFD operation and a second transmission power in the non-SBFD operation. You may also set the power. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 また、本開示の一態様によれば、第1の閉ループによってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を端末に設定し、第2の閉ループによって非SBFD動作における第2の送信電力を端末に設定する制御部と、前記SBFD動作において前記第1の送信電力によって前記端末から送信されたアップリンクチャネルを受信し、前記非SBFD動作において前記第2の送信電力によって前記端末から送信されたアップリンクチャネルを受信する受信部と、を有する基地局が提供される。 Further, according to one aspect of the present disclosure, the first closed loop sets the first transmission power in the SBFD (Subband non-overlapping Full Duplex) operation to the terminal, and the second closed loop sets the second transmission power in the non-SBFD operation. a control unit that sets a transmission power to a terminal; and a controller that receives an uplink channel transmitted from the terminal with the first transmission power in the SBFD operation, and receives an uplink channel transmitted from the terminal with the second transmission power in the non-SBFD operation. A base station is provided having a receiving unit for receiving a transmitted uplink channel.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる閉ループが適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different closed loops are applied to the SBFD operation and the non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 また、本開示の一態様によれば、第1の閉ループに従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の閉ループに従って非SBFD動作における第2の送信電力を設定することと、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信することと、を有する、端末によって実行される無線通信方法が提供される。 Further, according to one aspect of the present disclosure, the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first closed loop, and the second transmission power in non-SBFD operation is set according to the second closed loop. and transmitting an uplink channel with the first transmit power in the SBFD operation and transmitting an uplink channel with the second transmit power in the non-SBFD operation. A wireless communication method is provided.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる閉ループが適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different closed loops are applied to the SBFD operation and the non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 また、本開示の一態様によれば、第1の電力算出式に従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の電力算出式に従って非SBFD動作における第2の送信電力を設定する制御部と、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信する送信部と、を有する端末が提供される。 Further, according to one aspect of the present disclosure, the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first power calculation formula, and the first transmission power in non-SBFD operation is set according to the second power calculation formula. a control unit that sets a transmission power of 2; and a transmitter that transmits an uplink channel with the first transmission power in the SBFD operation and transmits the uplink channel with the second transmission power in the non-SBFD operation. A terminal having the following is provided.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる送信電力計算式が適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different transmission power calculation formulas are applied to SBFD operation and non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 一実施例では、前記第1の電力算出式は、前記第2の電力算出式にスケーリングファクタを乗算することによって導出されてもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, the first power calculation formula may be derived by multiplying the second power calculation formula by a scaling factor. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 一実施例では、前記第1の電力算出式は、前記第2の電力算出式にオフセット値を加算することによって導出されてもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, the first power calculation formula may be derived by adding an offset value to the second power calculation formula. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 一実施例では、前記第1の電力算出式は、前記第2の電力算出式にリファレンスリソースブロックサイズを適用することによって計算されてもよい。本実施例によると、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 In one embodiment, the first power calculation formula may be calculated by applying a reference resource block size to the second power calculation formula. According to the present embodiment, it becomes possible to set different PUSCH and/or PUCCH transmission powers to the UE in each of SBFD operation and non-SBFD operation, which causes inter-UE CLI and/or inter-gNB CLI during SBFD operation. It is possible to reduce the possibility of
 また、本開示の一態様によれば、第1の電力算出式によってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を端末に設定し、第2の電力算出式によって非SBFD動作における第2の送信電力を端末に設定する制御部と、前記SBFD動作において前記第1の送信電力によって前記端末から送信されたアップリンクチャネルを受信し、前記非SBFD動作において前記第2の送信電力によって前記端末から送信されたアップリンクチャネルを受信する受信部と、を有する基地局が提供される。 Further, according to one aspect of the present disclosure, the first power calculation formula sets the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation to the terminal, and the second power calculation formula sets the first transmission power in the non-SBFD operation. a control unit configured to set a second transmission power to a terminal in the SBFD operation; and a receiving unit for receiving an uplink channel transmitted from the terminal.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる送信電力計算式が適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different transmission power calculation formulas are applied to SBFD operation and non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 また、本開示の一態様によれば、第1の電力算出式に従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の電力算出式に従って非SBFD動作における第2の送信電力を設定することと、前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信することと、を有する、端末によって実行される無線通信方法が提供される。 Further, according to one aspect of the present disclosure, the first transmission power in SBFD (Subband non-overlapping Full Duplex) operation is set according to the first power calculation formula, and the first transmission power in non-SBFD operation is set according to the second power calculation formula. transmitting an uplink channel with the first transmit power in the SBFD operation and transmitting an uplink channel with the second transmit power in the non-SBFD operation; A wireless communication method performed by a terminal is provided.
 上記構成によると、SBFD動作と非SBFD動作に対して異なる送信電力計算式が適用される。従って、SBFD動作と非SBFD動作とのそれぞれにおいてUEに異なるPUSCH及び/又はPUCCH送信電力を設定することが可能になり、SBFD動作時におけるUE間CLI及び/又はgNB間CLIを生じさせる可能性を低減することができる。 According to the above configuration, different transmission power calculation formulas are applied to SBFD operation and non-SBFD operation. Therefore, it becomes possible to configure different PUSCH and/or PUCCH transmission powers for the UE in SBFD operation and non-SBFD operation, reducing the possibility of causing inter-UE CLI and/or inter-gNB CLI during SBFD operation. can be reduced.
 (実施形態の補足)
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
(Supplementary information on the embodiment)
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (e.g., regular TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (e.g., shortened TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. good. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power).
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 10 無線通信システム
 100 基地局(gNB)
 200 端末(UE)
10 Wireless communication system 100 Base station (gNB)
200 Terminal (UE)

Claims (6)

  1.  第1の閉ループに従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の閉ループに従って非SBFD動作における第2の送信電力を設定する制御部と、
     前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信する送信部と、
     を有する端末。
    a control unit that sets a first transmission power in a SBFD (Subband non-overlapping Full Duplex) operation according to a first closed loop, and sets a second transmission power in a non-SBFD operation according to a second closed loop;
    a transmitter that transmits an uplink channel with the first transmission power in the SBFD operation and transmits an uplink channel with the second transmission power in the non-SBFD operation;
    A terminal with
  2.  閉ループの総数が設定され、
     前記制御部は、前記設定された総数の閉ループのうちの前記第1の閉ループに従って前記SBFD動作における第1の送信電力を設定し、前記設定された総数の閉ループのうちの前記第2の閉ループに従って前記非SBFD動作における第2の送信電力を設定する、請求項1に記載の端末。
    The total number of closed loops is set,
    The control unit sets the first transmission power in the SBFD operation according to the first closed loop among the set total number of closed loops, and according to the second closed loop among the set total number of closed loops. The terminal according to claim 1, configured to set a second transmit power in the non-SBFD operation.
  3.  前記制御部は、アップリンク送信ビームと閉ループインデックスとの間のマッピングに従って、前記SBFD動作における第1の送信電力を設定し、非SBFD動作における第2の送信電力を設定する、請求項1に記載の端末。 The controller sets the first transmit power in the SBFD operation and sets the second transmit power in the non-SBFD operation according to a mapping between an uplink transmit beam and a closed-loop index. terminal.
  4.  前記制御部は、設定済みグラントのアップリンク共有チャネル設定と閉ループインデックスとの間のマッピングに従って、前記SBFD動作における第1の送信電力を設定し、非SBFD動作における第2の送信電力を設定する、請求項1に記載の端末。 The control unit configures a first transmit power in the SBFD operation and a second transmit power in a non-SBFD operation according to a mapping between an uplink shared channel configuration and a closed loop index of a configured grant. The terminal according to claim 1.
  5.  第1の閉ループによってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を端末に設定し、第2の閉ループによって非SBFD動作における第2の送信電力を端末に設定する制御部と、
     前記SBFD動作において前記第1の送信電力によって前記端末から送信されたアップリンクチャネルを受信し、前記非SBFD動作において前記第2の送信電力によって前記端末から送信されたアップリンクチャネルを受信する受信部と、
     を有する基地局。
    a control unit that sets a first transmission power in a SBFD (Subband non-overlapping Full Duplex) operation to a terminal in a first closed loop, and sets a second transmission power in a non-SBFD operation to a terminal in a second closed loop;
    a receiving unit that receives an uplink channel transmitted from the terminal with the first transmission power in the SBFD operation, and receives an uplink channel transmitted from the terminal with the second transmission power in the non-SBFD operation; and,
    A base station with
  6.  第1の閉ループに従ってSBFD(Subband non-overlapping Full Duplex)動作における第1の送信電力を設定し、第2の閉ループに従って非SBFD動作における第2の送信電力を設定することと、
     前記SBFD動作において前記第1の送信電力によってアップリンクチャネルを送信し、前記非SBFD動作において前記第2の送信電力によってアップリンクチャネルを送信することと、
     を有する、端末によって実行される無線通信方法。
    Setting a first transmission power in a Subband non-overlapping Full Duplex (SBFD) operation according to a first closed loop, and setting a second transmission power in a non-SBFD operation according to a second closed loop;
    transmitting an uplink channel with the first transmit power in the SBFD operation and transmitting an uplink channel with the second transmit power in the non-SBFD operation;
    A wireless communication method performed by a terminal, comprising:
PCT/JP2022/029001 2022-07-27 2022-07-27 Terminal, base station, and wireless communication method WO2024023987A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029001 WO2024023987A1 (en) 2022-07-27 2022-07-27 Terminal, base station, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029001 WO2024023987A1 (en) 2022-07-27 2022-07-27 Terminal, base station, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2024023987A1 true WO2024023987A1 (en) 2024-02-01

Family

ID=89705672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029001 WO2024023987A1 (en) 2022-07-27 2022-07-27 Terminal, base station, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2024023987A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109136A1 (en) * 2013-01-09 2014-07-17 シャープ株式会社 Wireless communication apparatus and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109136A1 (en) * 2013-01-09 2014-07-17 シャープ株式会社 Wireless communication apparatus and wireless communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (CATT): "Summary #2 of [109-e-R18-Duplex-03] Email discussion on subband non-overlapping full duplex", 3GPP TSG RAN WG1 #109-E R1-2205520, 20 May 2022 (2022-05-20), XP052192146 *
VIVO: "Potential enhancements on dynamic/flexible TDD", 3GPP TSG RAN WG1 #109-E R1-2203559, 29 April 2022 (2022-04-29), XP052153034 *

Similar Documents

Publication Publication Date Title
WO2024023987A1 (en) Terminal, base station, and wireless communication method
WO2024023984A1 (en) Terminal, base station, and wireless communication method
WO2024023994A1 (en) Terminal, base station, and wireless communication method
WO2023209918A1 (en) Base station and wireless communication method
WO2023209919A1 (en) Base station and wireless communication method
WO2023209915A1 (en) Terminal, base station, and wireless communication method
WO2023209911A1 (en) Terminal, base station, and wireless communication method
WO2023209917A1 (en) Terminal, base station, and wireless communication method
WO2023209910A1 (en) Terminal, base station, and wireless communication method
WO2023209913A1 (en) Terminal, base station, and wireless communication method
WO2024095486A1 (en) Terminal and communication method
WO2024100746A1 (en) Terminal, base station, and communication method
WO2024034096A1 (en) Terminal, base station, and wireless communication method
WO2024095487A1 (en) Terminal and communication method
WO2024034097A1 (en) Terminal, base station, and wireless communication method
WO2024034107A1 (en) Terminal, base station, and wireless communication method
WO2024034099A1 (en) Terminal, base station, and wireless communication method
WO2023209916A1 (en) Terminal, base station, and wireless communication method
WO2023209920A1 (en) Terminal, base station, and wireless communication method
WO2024084839A1 (en) Terminal and communication method
WO2024034108A1 (en) Terminal, base station, and wireless communication method
WO2024084829A1 (en) Terminal and communication method
WO2024034100A1 (en) Terminal, base station, and wireless communication method
WO2024106418A1 (en) Terminal, base station, and communication method
WO2024075289A1 (en) Terminal, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953081

Country of ref document: EP

Kind code of ref document: A1