WO2024022402A1 - 一种包含光伏电池和薄膜电化学器件的集成器件 - Google Patents

一种包含光伏电池和薄膜电化学器件的集成器件 Download PDF

Info

Publication number
WO2024022402A1
WO2024022402A1 PCT/CN2023/109391 CN2023109391W WO2024022402A1 WO 2024022402 A1 WO2024022402 A1 WO 2024022402A1 CN 2023109391 W CN2023109391 W CN 2023109391W WO 2024022402 A1 WO2024022402 A1 WO 2024022402A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
nanofiber
thin film
film structure
Prior art date
Application number
PCT/CN2023/109391
Other languages
English (en)
French (fr)
Inventor
刁一凡
吴兆
解俊杰
孙朱行
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024022402A1 publication Critical patent/WO2024022402A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G17/00Structural combinations of capacitors or other devices covered by at least two different main groups of this subclass with other electric elements, not covered by this subclass, e.g. RC combinations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of solar energy, and specifically to an integrated device including a photovoltaic cell and a thin film electrochemical device.
  • photovoltaic integrated devices have many problems in actual industrial applications. Different from the common device integration of external photovoltaic cells, photovoltaic integrated devices are integrated devices of photovoltaic cells and thin film devices formed by integrating photovoltaic and thin film devices through inter-layer electrical connections. Such integrated devices can reduce a large number of additional equipment and circuits and directly realize the functional set of solar energy collection, power conversion, and electrical device applications, which is a major direction for photovoltaic applications.
  • the above-mentioned integrated devices require great attention to the stability of the entire system, especially the structural stability of the connection locations between photovoltaic cells and thin film electrochemical devices.
  • the structure is unstable, changes in external conditions such as climate, temperature, and ultraviolet radiation may cause unstable device connections at the interface, which may also lead to deterioration of the interlayer electrical connections between photovoltaic cells and thin-film electrochemical devices. This may lead to severe carrier recombination on the surface of the photovoltaic cell, reduce the effective current available for thin film electrochemical devices, and adversely affect the life of the device.
  • the actual performance of thin film electrochemical devices is also reduced due to the thinning of the devices. How to ensure the performance of thin film electrochemical devices in integrated devices of photovoltaic cells and thin film electrochemical devices is also a need for such photovoltaic integrated devices. Solved puzzle.
  • the integrated device includes a photovoltaic cell and a thin film electrochemical device.
  • the thin film electrochemical device contains a nanofiber electrode, and the surface of the nanofiber electrode has The textured structure or comb structure can enhance the contact surface and connection in the thin film electrochemical device, improve the reactivity of the internal reaction medium, reduce the system resistance, improve the efficiency of the electrochemical reaction, and at the same time form an anchoring effect on the contact structure. Improving the stability of the internal structure is beneficial to improving the structural stability and service life of the device.
  • the present application provides an integrated device, which includes a stacked photovoltaic cell and a thin film electrochemical device, wherein the thin film electrochemical device contains a nanofiber electrode, and the thin film electrochemical device is connected to the nanofiber electrode through the nanofiber electrode.
  • Photovoltaic cell contact, the nanofiber electrode has a thin film structure;
  • the surface of one side of the thin film structure has a textured structure, and at least part of the internal reaction medium of the thin film electrochemical device is disposed on the textured surface to be in contact with the thin film structure; or, the The surface of one side of the film structure has comb-shaped nanofibers integrally formed with the body of the film structure, and at least part of the internal reaction medium of the film electrochemical device is filled between the comb-shaped nanofibers on the surface of the film structure. in the gap; the surface on the other side of the thin film structure contacts the surface of the photovoltaic cell and forms an interlayer electrical connection.
  • the surface of the other side of the film structure has a suede structure or the surface of the other side has comb-shaped nanofibers integrally formed with the film structure.
  • the film structure is a film structure formed by tightly stacking nanofibers, and the suede structure or the comb-shaped nanofibers are the nanofibers of the film structure. Formed by an integrated extension.
  • the aspect ratio of a single fiber of the comb-like structure is >100, and the diameter of a single fiber is ⁇ 300 nm.
  • the maximum dimension extending in the interlayer direction of the nanofiber electrode is 0.05-14 ⁇ m.
  • the material of the nanofiber electrode is PEDOT, PPy, PANi or P3HT.
  • the photovoltaic cell includes a light-transmitting layer, a first carrier transport functional layer, a photovoltaic absorption layer and a second carrier transport functional layer in order, and the second carrier transport functional layer
  • the flow transport functional layer is in contact with the surface of the other side of the thin film structure.
  • the photovoltaic cell includes a light-transmitting layer, a first carrier transport functional layer, a photovoltaic absorption layer, a second carrier transport functional layer and a conductive connection layer in order
  • a thin film structure is laminated on the conductive connection layer, and the surface of the other side of the thin film structure is connected to the conductive connection layer.
  • the interlayer conductivity of the conductive connection layer is >10 S/cm.
  • the conductive connection layer extends within the layer
  • the conductivity in the direction is more than 50 times the interlayer conductivity.
  • the nanofiber electrode since it has the nanofiber electrode, the nanofiber electrode has a thin film structure; wherein, the surface of one side of the thin film structure has a textured structure, and the thin film electrochemical device At least part of the internal reaction medium is disposed on the textured surface to be in contact with the film structure; or, the surface of one side of the film structure has comb-shaped nanofibers integrally formed with the body of the film structure, so At least part of the internal reaction medium of the thin film electrochemical device is filled in the gaps between the comb-shaped nanofibers on the surface of the thin film structure; the surface on the other side of the thin film structure is in contact with the surface of the photovoltaic cell and forms a layer electrical connection between.
  • the textured structure or comb-like nanofiber structure of the nanofiber electrode can greatly enhance the contact reaction area between the electrode itself and the internal reaction medium, and has an anchoring effect on the internal reaction medium, which can ensure the stability of its physical structure.
  • the current of the photovoltaic cell is directly and fully provided to the internal reaction medium to promote the internal reaction of the thin film electrochemical device.
  • this application further explores the appropriate comb structure size of the nanofiber electrode, which can further improve the anchoring effect on the internal reaction medium and enhance its conductive contact area and depth.
  • the other side surface of the nanofiber electrode connected to the photovoltaic cell is also set as a textured surface with a thin film structure or an integrally connected comb structure, which can promote the carrier derivation of the photovoltaic cell itself and reduce the transmission in the stacking direction to
  • the series resistance of the thin film electrochemical device can also produce an anchoring effect on its carrier transport layer structure, enhance its physical stability, reduce possible carrier recombination at the interface, and improve device stability and service life.
  • this application also uses a conductive connection layer to reduce the possible surface carrier recombination when the nanofiber electrode is directly connected, and selects the interlayer conductivity >10S/cm or the intra-layer extension of the conductive connection layer
  • the conductive connection layer with a directional conductivity of more than 50 times the interlayer conductivity is used as the current extraction surface of the photovoltaic cell. It can ensure the lateral conduction between the layers during the process of connecting the nanofiber electrodes and reduce the interlayer conductivity. dark current recombination.
  • Figure 1 is a schematic structural diagram of a nanofiber electrode, in which a is a schematic diagram of the film structure, and c and d are schematic diagrams of the composite of the film structure and the comb structure.
  • Figure 2 is a schematic diagram of a photovoltaic cell-supercapacitor integrated device according to a specific embodiment of the present application.
  • Figures 3A, 3B, 3D, and 3E are scanning electron microscope diagrams of a composite of a thin film structure and a comb structure.
  • Figure 3C is a schematic diagram of a scanning electron microscope of a film structure with textured surface.
  • Figure 4A is a schematic diagram of a photovoltaic cell-supercapacitor integrated device according to a specific embodiment of the present application.
  • Figure 4B is a schematic diagram of another photovoltaic cell-supercapacitor integrated device according to a specific embodiment of the present application.
  • Figure 5 is a scanning electron microscope diagram of a single fiber with a comb-like structure.
  • Figure 6 is a schematic diagram of another photovoltaic cell-supercapacitor integrated device according to a specific embodiment of the present application.
  • Figure 7 is a schematic diagram of another photovoltaic cell-supercapacitor integrated device according to a specific embodiment of the present application.
  • Figure 8 is a schematic diagram of the electrochromic phenomenon.
  • A is a cyclic voltammetry curve diagram
  • B is the color of the electrochromic electrode changing to light blue at 1.4V
  • C is the color changing of the electrochromic electrode at -1.8V. Deep purple.
  • Figure 9 is a schematic structural diagram of an electrochromic device, wherein a in Figure 9 is a schematic diagram of an electrochromic device containing a second electrode, and b in Figure 9 is a schematic diagram of an electrochromic device without a second electrode.
  • Figure 10 is a schematic diagram of a photovoltaic cell-electrochromic device integrated device according to a specific embodiment of the present application.
  • Figure 11 is a schematic diagram of another photovoltaic cell-electrochromic device integrated device according to a specific embodiment of the present application.
  • Figure 12 is a schematic diagram of a photovoltaic cell-chemical reaction device integrated device according to a specific embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a membrane electrode type electrolytic cell.
  • Figure 14 is a schematic structural diagram of an electrolytic cell type electrolytic cell.
  • Figure 15 is a schematic structural diagram of a carbon dioxide reduction electrolytic cell.
  • Figure 16 is a schematic diagram of a nanofiber electrode also serving as an electrode layer.
  • Figure 17 is a schematic diagram of a photovoltaic cell-chemical reaction device integrated device with different external circuits in a specific embodiment of the present application.
  • Figure 18 is a schematic diagram of another photovoltaic cell-chemical reaction device integrated device with different external circuits in the specific embodiment of the present application.
  • Figure 19 is a schematic diagram of another photovoltaic cell-chemical reaction device integrated device with different external circuits in the specific embodiment of the present application.
  • Figure 20 is a schematic diagram of a photovoltaic cell-chemical reaction device integrated device in a specific embodiment of the present application.
  • Figure 21 is a schematic diagram of another photovoltaic cell-chemical reaction device integrated device in a specific embodiment of the present application.
  • Figure 22 is a schematic diagram of another photovoltaic cell-chemical reaction device integrated device in a specific embodiment of the present application.
  • Figure 23 is a schematic diagram of another photovoltaic cell-chemical reaction device integrated device in a specific embodiment of the present application.
  • Figure 24 is a schematic diagram of another photovoltaic cell-chemical reaction device integrated device in a specific embodiment of the present application.
  • Figure 25 is a schematic structural diagram of a photovoltaic cell.
  • the main ways to improve its reaction efficiency include improving the conductivity of the electrode (reducing resistance) and the specific surface area of the electrode (increasing contact area).
  • the conductivity
  • n the carrier concentration
  • q the carrier charge
  • the carrier mobility
  • the migration rate of carriers in the crystal structure is 0.1-20cm 2 /Vs, while the migration rate in the amorphous structure is ⁇ 0.1- 20cm 2 /Vs, so obtaining heavily doped and high crystallinity materials is the key to obtaining high conductivity materials.
  • the present application provides an integrated device.
  • the integrated device includes a stacked photovoltaic cell and a thin film electrochemical device.
  • the thin film electrochemical device contains a nanofiber electrode.
  • the thin film electrochemical device communicates with the nanofiber electrode through the nanofiber electrode.
  • the photovoltaic cell contacts, the nanofiber electrode has a thin film structure; wherein, the surface of one side of the thin film structure has a textured structure, and the At least part of the internal reaction medium of the thin film electrochemical device is disposed on the textured surface to be in contact with the thin film structure; or, the surface of one side of the thin film structure has a comb shape integrally formed with the body of the thin film structure.
  • Nanofibers at least a part of the internal reaction medium of the thin film electrochemical device is filled in the gaps between the comb-shaped nanofibers on the surface of the thin film structure; the surface of the other side of the thin film structure and the surface of the photovoltaic cell contact and form electrical connections between layers.
  • the thin film electrochemical device refers to a thin film device that requires an internal reaction medium to perform an electrochemical reaction, such as a chemical reaction device that can perform a chemical reaction or an electrochromic reaction device that performs an electrochromic reaction or is used to store electrical energy.
  • an electrochemical reaction such as a chemical reaction device that can perform a chemical reaction or an electrochromic reaction device that performs an electrochromic reaction or is used to store electrical energy.
  • the nanofiber electrode it can be a thin film structure with a textured structure on one side of the surface, as shown in a in Figure 1 , or it can be a thin film structure with a texture on one side of the surface and is integrally formed with the body of the thin film structure.
  • Comb-shaped nanofibers that is, a composite of film structure and comb-shaped nanofibers, as shown in b and c in Figure 1.
  • the photovoltaic cell further includes a conductive connection layer.
  • the conductive connection layer is in contact with the nanofiber electrode, and is connected to the thin film electrochemical device through the nanofiber electrode; preferably, the interlayer conductivity of the conductive connection layer is >10 S/cm or the layer of the conductive connection layer
  • the electrical conductivity in the inner extension direction is more than 50 times the interlayer electrical conductivity.
  • the interlayer conductivity refers to the conductivity in the stacking direction of photovoltaic cells and integrated devices.
  • the conductive connection layer can be inorganic, organic, carbon materials and/or metal materials.
  • the inorganic substance may be a metal oxide (such as zinc oxide, titanium oxide, tin oxide, tunneling silicon oxide, etc.);
  • the organic substance may be an organic small molecule (such as PCBM) or an organic polymer such as The same material as the nanofiber electrode;
  • the carbon material can be graphene, fullerene, graphite and other carbon materials
  • the metal material may be copper, aluminum, etc.
  • the conductive connection layer can enhance the current derivation of the photovoltaic cell, further promote the introduction of current to the nanofiber electrode in this application, and can reduce the cross-sectional recombination of the photovoltaic cell in certain structures, such as common TCO layers or electron tunneling.
  • the composite layer is used as a conductive connection layer, which has strong inter-layer electronic conductivity and can reduce carrier recombination.
  • a conductive film layer formed of metal material or sintered by metal paste can also be used to promote conductive connection between the layers.
  • the conductive connection layer in this application is not limited to the above-mentioned materials or structures. Conductivity >10S/cm can meet the conductive requirements of integrated devices.
  • the conductivity in the extending direction of the conductive connection layer within the layer is more than 50 times the interlayer conductivity, better interlayer conductivity can be obtained and the surface load of the photovoltaic cell caused by intralayer conduction can be prevented to a certain extent. Liuzi compound.
  • the nanofiber electrode formed by the thin film structure alone, at least one side of its two sides has a textured structure (as shown in Figure 3C). Since the film structure of the present application is formed by densely stacking nanofibers, the surface is prone to locally forming convex structures where some nanofibers extend and overlap. These convex structures have irregular distribution, thus forming uneven roughness on the surface of the film structure. Suede. First, the surface on the inner side of the thin film electrochemical device has a textured surface. Secondly, a textured structure can also be formed at the interface that is in electrical contact with the surface of the photovoltaic cell to make better electrical contact with the carrier conductive material of the photovoltaic cell. .
  • the suede structure is a knitted-like textured surface or a defective surface with widely distributed undulations, pits, and concavities that can be formed on the surface of the film when the fiber is densely structured.
  • the defect-free crystal face of a normal solid crystal has a considerable degree of roughness, which can enhance the contact area of the surface filling material, especially increase the reaction area of the filled internal reaction medium, and form an anchoring effect on the surface filling material, promoting Structural stability.
  • the nanofiber electrode whose film structure is integrated with comb-shaped nanofibers is also similar. At least one side of its two sides has comb-shaped nanofibers.
  • the surface of the internal side of the device has comb-shaped nanofibers.
  • comb-shaped nanofibers can also be formed at the interface that is in electrical contact with the surface of the photovoltaic cell to make better electrical contact with the carrier conductive material of the photovoltaic cell.
  • the comb-shaped nanofibers formed on the film structure have similar effects to the suede structure.
  • the comb-shaped nanofibers can also enhance the contact area of the surface filling material, especially increase the reaction area of the filled internal reaction medium, and Forms an anchoring effect on surface filling materials to promote structural stability. Moreover, compared to the contact with the suede structure, the comb-like nanofiber structure can further increase the contact area and improve the anchoring effect.
  • the nanofiber structure electrode is composed of a thin film structure and a comb-like nanofiber structure (as shown in Figures 3A, 3B, 3D, and 3E).
  • the thickness of the thin film structure is 0.05-4 ⁇ m, and the comb-like nanofiber structure The length is 0.5-10 ⁇ m.
  • the thin film structure must be larger than 50nm to facilitate the blocking of the reaction medium inside the thin film electrochemical device and at the same time improve the stability of the structure, while less than 4 ⁇ m can moderately reduce the series resistance.
  • An overly thick thin film structure is not suitable for the device. Necessarily, the above thickness range is suitable for nanofibers formed from a single layer of film with textured structure.
  • the textured structure does not cause a particularly large change in the maximum size of the film extending in the interlayer direction when the size is less than 0.5 ⁇ m.
  • the maximum dimension extending in the interlayer direction of the comb-like nanofiber structure is 0.5-10 ⁇ m.
  • the structure of the comb-like nanofibers is at least a short comb-like fiber structure with a size of 0.5 ⁇ m or more (as shown in Figure 3D) extending from the film structure matrix to a height greater than the height of the suede structure.
  • it further matches the needs of partially integrated thin film electrochemical devices to further expand the reaction contact surface and stabilize its internal structure.
  • the ends of the fibers are easy to bend (as shown in Figure 3E).
  • the bent comb-like fibers are stacked to form a comb-like fiber structure with many pores.
  • the interlayers of the comb-like fiber structure When the maximum dimension length extending in the direction is greater than 10 ⁇ m, the bottom pores of the porous comb-like fiber structure will be difficult to be fully filled with the medium, resulting in the conductive contact deterioration in some areas of the nanofiber electrode and the structural stability also deteriorating.
  • the maximum dimension extending in the interlayer direction of the comb-like nanofiber structure is 0.5-10 ⁇ m. Therefore, the maximum dimension extending in the interlayer direction of the nanofiber electrode may be 0.05-14 ⁇ m.
  • the preparation method of the thin film structure can be prepared by conventional methods in the art.
  • it can be prepared by the following method:
  • PEDOT as an example: deposit an iron oxide (Fe 2 O 3 ) layer with a thickness of 10-100 nm on the second carrier transport functional layer or conductive connection layer, and use a weather polymerization method using an acid-resistant and organic solvent-resistant reactor.
  • the reaction temperature range is 110°C-150°C
  • the reaction time is usually 0.5-1h;
  • the glass reactor contains reactants: 5-10 ⁇ L concentrated hydrochloric acid and 100-200 ⁇ L 1.56M hole material (EDOT) polymerized monomer and organic solutions (benzene, chlorobenzene and toluene).
  • EDOT hole material
  • Use 6-12M hydrochloric acid to rinse away the FeCl impurities in the hole transport layer to obtain a pure PEDOT film.
  • the preparation method of the film structure and comb structure composite there is no restriction on the preparation method of the film structure and comb structure composite.
  • the prepared film structure and comb structure can be combined using conventional methods to obtain a composite.
  • the preparation method is as follows: Taking PEDOT as an example, it is:
  • an iron oxide (Fe 2 O 3 ) layer with a thickness of >200 nm on the second carrier transport functional layer or conductive connection layer using a weather polymerization method using an acid-resistant and organic solvent-resistant reactor, and the reaction temperature range is 120°C -130°C, reaction time is usually 1-2h; the glass reactor contains reactants: 10-20 ⁇ L concentrated hydrochloric acid and 100-500 ⁇ L 1.56M hole material (EDOT) polymerized monomer and organic solution (benzene, chlorobenzene and toluene). Use 6-12M hydrochloric acid to rinse away the FeCl 2 in the hole transport layer impurities, and a pure PEDOT film and nanofiber composite was obtained.
  • EDOT hole material
  • the aspect ratio of a single fiber of the comb-like structure is >100, and the diameter of a single fiber is ⁇ 300 nm.
  • the aspect ratio refers to the ratio of the diameter of an individual fiber to the length of that fiber.
  • Figure 1a is a thin film electrode, and its conductivity is 500S/cm measured using conventional methods in this field.
  • Figure 1b is a thin film structure with an aspect ratio of 100.
  • the aspect ratio and nanofiber diameter of the nanofiber electrode are limited to the above range, so that the conductivity S>1000S/cm can be achieved, thereby improving the reaction efficiency.
  • this application limits the aspect ratio of the nanofibers of the nanofiber electrode to the above range, and its specific surface, that is, the chemical reaction contact surface or activation area, will be greatly increased.
  • the specific surface, that is, the chemical reaction contact surface or activation area will be greatly increased.
  • the conductivity is greatly increased, the system resistance is reduced, and the efficiency and yield of the electrochemical reaction are improved.
  • the material of the nanofiber electrode is PEDOT (poly3,4-ethylenedioxythiophene), PPy (polypyrrole), PANi (polyaniline) or P3HT (poly3-hexylthiophene).
  • the thin film electrochemical device includes an electrode, a first electrode layer in contact with the electrode, a nanofiber electrode, and an electrolyte disposed between the first electrode layer and the nanofiber electrode.
  • the thickness of the electrolyte between an electrode layer and the nanofiber electrode is less than 10 ⁇ m.
  • the thickness of the electrolyte is controlled within the stated range to ensure that the ion diffusion distance is short and the device will not short-circuit. In addition, it is to prevent device short circuit caused by contact between the first electrode layer and the nanofiber electrode.
  • the first electrode layer is a nanofiber electrode
  • the nanofiber electrode is a film structure with a suede surface or a composite of a film structure and a comb structure.
  • it can be Preparation method: Take PEDOT as an example:
  • the reaction temperature range is 110°C-150°C, and the reaction time is usually 0.5-1h; the glass reactor contains reactants: 5-10 ⁇ L concentrated hydrochloric acid and 100-200 ⁇ L 1.56M hole Materials (EDOT) polymerized monomers and organic solutions (benzene, chlorobenzene and toluene).
  • EDOT hole Materials
  • the first electrode layer is an ion storage layer.
  • the thin film electrochemical device further includes an electrochromic reaction electrode layer, and an electrolyte layer is disposed between the first electrode layer and the electrochromic electrode layer.
  • the thin film electrochemical device further includes a second electrode, and the second electrode is in contact with the nanofiber electrode; preferably, the nanofiber electrode also serves as the second electrode. In some embodiments, the nanofiber electrode doubles as a second electrode and an electrochromic electrode.
  • the thin film electrochemical device is a thin film device or a chemical reaction device.
  • the thin film device is a supercapacitor or an electrochromic reaction device;
  • the chemical reaction device is a hydrogen production electrolytic cell or a carbon dioxide reduction electrolytic cell.
  • the hydrogen production electrolytic cell is a membrane electrode type electrolytic cell or an electrolytic tank type electrolytic cell.
  • Figure 2 is an integrated device of a specific embodiment provided by the present application, wherein the thin film device is a supercapacitor (not shown in the figure), and the integrated device includes a photovoltaic cell (not shown in the figure) and a supercapacitor (not shown in the figure), the supercapacitor includes an electrode 7, a first electrode layer 61 in contact with the electrode 7, a nanofiber electrode 42, and an electrolyte 5 disposed between the first electrode layer 61 and the nanofiber electrode 42.
  • the first electrode layer 61 is a nanofiber electrode.
  • the photovoltaic cell further includes a conductive connection layer 4-1-2 that is in contact with the nanofiber electrode 42 and is in contact with the second current-carrying layer of the photovoltaic cell, such as the photovoltaic cell.
  • the sub-transmission functional layer 41 contacts.
  • the nanofiber electrodes 42 and 61 may have a thin film structure, as shown in a in Figure 1 , or a composite of a thin film structure and a comb structure, as shown in b and c in Figure 1 .
  • the scanning electron microscope image of the thin film structure is shown in Figure 3C
  • the scanning electron microscope image of the composite of the thin film structure and the comb structure is shown in Figures 3A, 3B, 3D and 3E.
  • the electrode 7 can be a metal electrode or an inorganic transparent electrode.
  • the electrode 7 be made of gold (Au), silver (Ag), platinum (Pt), fluorine-doped tin oxide (FTO) and other materials with low resistance.
  • nanofiber electrodes 61 and 42 they are prepared by the following method:
  • a solution containing a strong polar acid and a monomer is contacted with the oxidizing agent to react to obtain a nanofiber structure.
  • the monomer may be, for example, EDOT (3,4-ethylenedioxythiophene), 3HT (3-hexylthiophene), Py (pyrrole), or Ani (aniline).
  • the oxidant is an oxidant with an oxidation potential of 0.7-1V.
  • This application does not impose any restrictions on the oxidant with an oxidation potential of 0.7-1V, as long as it can achieve the corresponding function.
  • the oxidant can be a substance containing iron oxide. , silver ion (Ag+), chlorite (OCl 2 -), hypochlorite (OCl-) or hypobromite (OBr-).
  • This application does not place any restrictions on the thickness of the deposited oxidant, as long as it can be operated to achieve the described effect.
  • oxidants such as substances containing iron oxide, such as concentrated hydrochloric acid, concentrated nitric acid, formic acid, acetic acid, etc.
  • the volume of the strong polar acid is 10-40 ⁇ L.
  • the volume of the strong polar acid is 10 ⁇ L, 15 ⁇ L, 20 ⁇ L, 25 ⁇ L, 30 ⁇ L, 35 ⁇ L, 40 ⁇ L, or any range therebetween.
  • the volume of the monomer is 100-200 ⁇ L.
  • the monomer can be 100 ⁇ L, 110 ⁇ L, 120 ⁇ L, 130 ⁇ L, 140 ⁇ L, 150 ⁇ L, 160 ⁇ L, 170 ⁇ L, 180 ⁇ L, 190 ⁇ L, 200 ⁇ L, or any range therebetween.
  • the monomer concentration is 0.8-2M.
  • the concentration of the monomer can be 0.8M, 0.9M, 1.0M, 1.1M, 1.2M, 1.3M, 1.4M, 1.5M, 1.6M, 1.7M, 1.8M, 1.9M, 2.0M or other any range in between.
  • the solution containing strong acid and monomer is an organic solution containing strong acid and monomer, such as benzene solution, chlorobenzene solution or toluene solution.
  • the reaction temperature is 110-150°C and the reaction time is 1-2h.
  • a step of using an inorganic acid to flush impurities from the nanofiber structure is further included.
  • hydrochloric acid preferably 6-12M hydrochloric acid
  • the electrolyte 5 can be a quasi-solid (gel) electrolyte, which can be used in three categories: aqueous phase (H 2 SO 4 /HCl/Na 2 SO 4 /NaCl/LiClO 4 -PVA-H 2 O), Organic phase (Na 2 SO 4 /NaCl/LiClO 4 -PVA-acetonitrile, propylene carbonate) and ionic phase (such as 1-butyl-3-methylimidazole tetrafluoroborate-polyvinylidene fluoride (BMIBF 4 -PVDF)) gel.
  • aqueous phase H 2 SO 4 /HCl/Na 2 SO 4 /NaCl/LiClO 4 -PVA-H 2 O
  • Organic phase Na 2 SO 4 /NaCl/LiClO 4 -PVA-acetonitrile, propylene carbonate
  • ionic phase such as 1-butyl-3-
  • the fluidity of the electrolyte is limited by the polymer molecular chains in the solute, it still has a certain fluidity as the temperature increases.
  • the nanostructure of the nanofiber electrode can effectively increase the flow resistance of the gel electrolyte, thereby increasing the stability of the gel electrolyte.
  • the diameter of a single fiber of the comb-like structure is 100-1000 nm, and the surface of the nanofiber structure is rough (electron micrograph (JEOL 7001LVF FE-SEM)) as shown in Figure 5.
  • the rough suede or comb-like contact structure formed on the surface of the film structure allows the electrolyte 5 to more fully contact and conduct electricity with the nanofiber structure, thereby further improving the electrode activity in the integrated supercapacitor; at the same time, a larger Surface area enhances the supercapacitor's charging capacity.
  • the diameter of a single fiber of the comb-like structure may be 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm or any range therebetween.
  • the photovoltaic cell sequentially includes a light-transmitting layer 1, a first carrier transport functional layer 2, a photovoltaic cell absorption layer 3, a second carrier transport functional layer 41 and a conductive Connect layer 4-1-2.
  • the functional layer refers to one or multi-layer structures that may include a passivation layer, a transmission layer and/or an anti-reflection layer.
  • the transport layer is used to transport carriers, and may be a carrier transport layer, for example.
  • the anti-reflection layer is a conventional structure in the field, and may include one or more layers of common anti-reflection layers such as silicon nitride, silicon oxide, silicon oxynitride, aluminum nitride, titanium nitride, aluminum oxide, titanium oxide, etc. opposite
  • part of the anti-reflection layer has field passivation or chemical passivation function.
  • the passivation layer can be doped amorphous silicon, doped polysilicon, aluminum-doped zinc oxide, indium tin oxide, etc.
  • the passivation layer can be doped amorphous silicon, doped polysilicon, aluminum-doped zinc oxide, indium tin oxide, etc.
  • wide bandgap transmission materials with low free carrier concentration and high carrier mobility, such as zinc oxide, tin oxide, nickel oxide, titanium nitride, and molybdenum oxide. wait.
  • the first carrier transport functional layer 2 is a part of the silicon substrate on the surface of the silicon crystal cell substrate that implements carrier collection or a part of the silicon substrate that has been further doped.
  • any other additional functional layers that realize carrier transport such as additional tunneling transmission film layers, transparent conductive film layers, and doped or intrinsic amorphous or polycrystalline silicon film layers.
  • the first carrier transport functional layer 2 can also be a tunneling composite structure with carrier transport; in a conventional HIT battery, the first carrier transport functional layer 2 can also be Among them, there is a doped amorphous silicon film layer or a transparent conductive material film layer.
  • the film layers that can realize the carrier transport function in the prior art are all film layers that can be used for the first carrier transport functional layer 2 .
  • the first carrier transport functional layer 2 adopts a transparent conductive film layer
  • the light-transmitting layer 1 on the surface can be the same film layer as the first carrier transport functional layer 2, or it can be a further anti-reflection layer.
  • film such as silicon nitride film.
  • the first carrier transport functional layer 2 is the first carrier transport layer
  • the second carrier transport functional layer is the second carrier transport layer, as shown in Figure 2 .
  • the first carrier transport functional layer 2 is the first carrier transport layer 2
  • it can be an electron transport layer (ETL) or a hole transport layer (HTL).
  • ETL electron transport layer
  • HTL hole transport layer
  • the light-transmitting layer 1 for the light-transmitting layer 1, this application does not impose any restrictions on the materials used, as long as it achieves the corresponding function.
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • ZnO ZnO
  • an absorption layer material with an absorption spectrum of 300nm-1200nm can be used.
  • the absorption layer material such as perovskite absorption layer material, Inorganic absorption layer material or organic absorption layer material.
  • the perovskite absorption layer material can be MAPbCl 3 , MAPbCl 2.4 Br 0.6 or MAPbBr 3 ;
  • the inorganic absorption layer material can be Si, selenium sulfide (CdS), gallium phosphide (GaP) or Gallium arsenide (GaAs);
  • the organic absorption layer material is PTB7/PC 70 BM, etc.
  • the present application provides a photovoltaic cell of another specific embodiment.
  • the photovoltaic cell sequentially includes a first light-transmitting electrode 101, a first carrier transport functional layer 102, a photovoltaic cell
  • the absorption layer 103, the second carrier transport functional layer 104 and the second light-transmitting electrode 105 wherein, for the first carrier transport functional layer and the second carrier transport functional layer, they are consistent with the above definition of photovoltaic cells. same.
  • the material of the first light-transmitting electrode 101 can be indium tin oxide (ITO) or fluorine-doped tin oxide (FTO); the second light-transmitting electrode 105 is preferably made of metal, and secondly, silicon material or aluminum paste can be used for sintering or TCO materials, etc.
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • the second light-transmitting electrode 105 is preferably made of metal, and secondly, silicon material or aluminum paste can be used for sintering or TCO materials, etc.
  • the conductive connection layer is in contact with the second light-transmissive electrode 105 .
  • the operating temperature of the integrated device is ⁇ 70°C (which is the operating temperature range of the photovoltaic cell). This temperature range meets the stable operating temperature of both the electrode material and the electrolyte.
  • This application uses nanofiber structure electrodes, whose specific surface, that is, the chemical reaction contact area or activation area, will be greatly increased, and the nanofiber electrode has a large aspect ratio, which greatly increases the conductivity, thereby accelerating the supercapacitor electrolyte.
  • the movement rate of ions in the supercapacitor increases the power density and fast cycling efficiency of the supercapacitor.
  • nanofiber electrodes are prepared in traditional methods, such as PEDOT
  • the traditional PEDOT nanofiber synthesis method is difficult to synthesize uniform and dense nanofiber electrodes on the electrode plate.
  • This application replaces the optical film with nanofiber electrodes.
  • An important function of the fiber film is to improve the light absorption performance of the right electrode layer 61 .
  • This application provides a method for preparing the integrated device, which includes:
  • the present application provides an integrated device according to a specific embodiment.
  • the integrated device includes a photovoltaic cell (not shown in the figure) and a supercapacitor (not shown in the figure).
  • the supercapacitor includes an electrode 7, a first electrode layer 6 in contact with the electrode, a nanofiber electrode 42, and a nanofiber electrode 42 disposed on the first electrode. Electrolyte 5 between layer 61 and nanofiber electrode 42.
  • the nanofiber electrode 42 is a composite of a thin film structure and a comb-like structure.
  • the first electrode layer 61 is a nanofiber electrode.
  • the nanofiber electrode is a thin film. structure.
  • the preparation method of the above integrated device is the same as the above preparation method.
  • the present application provides another photovoltaic cell-supercapacitor integrated device, as shown in Figure 6.
  • the integrated device includes a photovoltaic cell (not shown in the figure) and a supercapacitor (not shown in the figure).
  • the supercapacitor It includes an electrode 7, a first electrode layer 6 in contact with the electrode, a nanofiber electrode 42, and an electrolyte 5 disposed between the first electrode layer 6 and the nanofiber electrode 42.
  • the first electrode layer 6 is a nanofiber electrode.
  • the nanofiber electrode is a composite of film structure and comb structure.
  • the first electrode layer 6 and the electrolyte 5 refer to the above description.
  • the second carrier transport functional layer 41 its material can be a polymer, a carbon material or a transition metal oxide.
  • the polymer is P3HT or PCBM
  • the carbon material is graphene oxide
  • the transition metal oxide It is nickel oxide, molybdenum oxide, tungsten oxide or vanadium oxide.
  • the photovoltaic cell includes a light-transmitting layer 1 , a first carrier transport functional layer 2 , a photovoltaic cell absorption layer 3 and a second carrier transport functional layer 41 in sequence.
  • the photovoltaic cell is a perovskite cell
  • the absorption layer 3 is a perovskite absorption layer
  • the perovskite absorption layer needs to be sealed first before preparing the nanofiber electrode to avoid the perovskite absorption layer being used in the preparation of nanofibers.
  • the electrode layer is corroded during the gas phase synthesis process.
  • the preparation method of the above integrated device is the same as the preparation method of the above integrated device.
  • the surface of the other side of the thin film structure of the present application contacts the surface of the photovoltaic cell and forms an interlayer electrical connection.
  • the thin film The surface of the other side of the structure also has a suede structure or the surface of the other side has comb-shaped nanofibers integrally formed with the film structure.
  • the PEDOT nanofiber electrode as an example, based on the structure of Figure 4A, repeat the experimental steps of nanofibers or film nanofiber composites on the film plane side of 42, and obtain the textured surface or film nanofiber composite on both sides shown in Figure 4B. Structure of nanofibers.
  • a nanofiber electrode can be grown on a substrate with a concave and convex texture, so that both the surface side and the back side have corresponding texture structures.
  • the integrated device includes a photovoltaic A cell (not shown in the figure) and a supercapacitor (not shown in the figure), the supercapacitor includes an electrode 7, a first electrode layer 6 in contact with the electrode, a nanofiber electrode 42, and a first electrode layer 6 and the electrolyte 5 between the nanofiber electrode 42, the first electrode layer 6 is a nanofiber electrode, the nanofiber electrode is a composite of a film structure and a comb-like structure, and the nanofiber electrode 42 is a film structure.
  • the preparation method of the above integrated device is the same as the preparation method of the above integrated device.
  • the electrode when the thin film device is an electrochromic reaction device, the electrode is a first transparent electrode. In some embodiments, the first electrode layer is an ion storage layer. In some embodiments, the electrochromic reaction device further includes an electrochromic reaction electrode layer, and an electrolyte layer is disposed between the first electrode layer and the electrochromic electrode layer. In some embodiments, the thin film device further includes a second electrode. In some embodiments, the nanofiber electrode doubles as a second electrode. In some embodiments, the nanofiber electrode doubles as a second electrode and an electrochromic electrode. In some embodiments, the length of the nanofiber electrode is 50-500 nm, preferably 50-100 nm.
  • the electrochromism refers to the phenomenon of stable and reversible color changes of electrode materials under the action of an external electric field, which is manifested as reversible changes in color and transparency in appearance.
  • the discoloration mechanism is a stable and reversible redox reaction of the electrode material.
  • the energy level of the material changes, which is manifested as a color change.
  • the rate of electrochromism is controlled by the stable and reversible redox reaction rate, and the resistance of the electrode material participating in the reaction is one of the determining factors. Reducing the resistance can effectively increase the reaction rate, thus accelerating the color change.
  • FIG. 8 the electrode is PEDOT
  • Figure A is a schematic diagram of the cyclic voltammetry curve. The peaks appearing at the positive and negative voltages represent the oxidation reaction and the reduction reaction respectively, which shows that the PEDOT electrode operates at +1.4V and -1.8V. The voltage range can cycle stably; Figure B and Figure C show the color change of the PEDOT electrode at 1.4V and -1.8V. Figure B shows that the PEDOT electrode is light blue when the voltage is 1.4V, and Figure C is The PEDOT electrode is dark purple at a voltage of -1.8V.
  • the material of the ion storage layer can be a metal oxide or a composite material.
  • the metal oxide can be, for example, nickel oxide (NiO), iron oxide (Fe 2 O 3 ), cobalt oxide (Co 3 O 4 ), etc.; the composite material may be, for example, nickel oxide/reduced graphene oxide (NiO/rGO).
  • the electrochromic reaction device sequentially includes nano Nanofiber electrode (not shown in the figure), second electrode layer 301, electrochromic electrode layer 302, electrolyte layer 303, ion storage layer 304 and first transparent electrode layer 305, the nanofiber electrode is arranged in the photovoltaic cell and the second electrode layer 301.
  • the electrochromic reaction device sequentially includes a nanofiber electrode also serving as a second electrode, an electrochromic electrode layer 302, an electrolyte layer 303, an ion storage layer 304 and a second Electrode layer 305, the photovoltaic cell shown is connected to the thin film electrochemical device through a nanofiber electrode that also serves as a second electrode.
  • the electrolyte layer 303 can be an aqueous electrolyte layer or an organic phase electrolyte layer.
  • the aqueous electrolyte can be H 2 SO 4 /HCl/Na 2 SO 4 /NaCl/LiClO. 4 -PVA-H 2 O
  • the organic phase electrolyte can be Na 2 SO 4 /NaCl/LiClO 4 -PVA-acetonitrile, propylene carbonate.
  • the working principle is: using the electric energy generated by the photovoltaic cell to change the voltage of the electrochromic electrode layer 302, as shown in Figures 10 and 11, when the first switch circuit 12 and the second switch circuit 13 respectively When connected to the second external circuit 11 and the first external circuit 10, through the control of the sliding rheostat 13, the electrochromic material undergoes continuous oxidation-reduction reactions, thereby achieving the function of continuous color change.
  • the color changing rate generally refers to the rate of switching between two same colors, which can be measured by a timer.
  • the maximum reversible cycling rate determined by cyclic voltammetry (CV) can also be reflected.
  • CV cyclic voltammetry
  • the first switch circuit 12 and the second switch circuit 13 need to be connected to the second external circuit 11 and the first external circuit 10 respectively to control the direction of the current to change the electrochromic reaction device.
  • the oxidized or reduced state of a color-changing material thereby increasing its color span.
  • the electrolyte layer 303 is an organic phase electrolyte layer, which has a wider open circuit voltage, so that the electrochromic layer undergoes more redox reactions, thereby bringing about more color changes.
  • the nanofiber electrode doubles as a second electrode and an electrochromic electrode (As shown in Figure 11), preferably, the conductivity of the nanofiber electrode is ⁇ 1 ⁇ 102S/m, that is, in order to make full use of heat to enhance the semiconductor conductivity, the nanofiber electrode can be closely attached to the electrochromic electrode layer .
  • the length of the nanofiber electrode is 50-500 nm, preferably 50-100 nm.
  • the nanofiber electrode doubles as an electrochromic electrode layer, which allows the electrochromic material to undergo continuous oxidation-reduction reactions, thereby achieving the function of continuous color change.
  • the nanofiber electrode structure described in this application has a thin film structure, and the surface on one side of the thin film structure is a suede surface or a composite of a thin film structure and a comb-like structure, which can further increase the contact conductive area of the electrode and fully increase the contact with the electrolyte layer 303 Therefore, under the same incident light irradiation and charging voltage, the reaction area between the reactive ions and the electrode is larger, and the electrolyte layer 303 can more fully contact and conduct electricity with the nano conductive structure of the electrode layer with a nano fiber structure.
  • a larger surface area can enhance the electrochemical reaction area of the electrochromic device, which is more conducive to further improving the color reaction speed and color development of the electrochromic device. uniformity.
  • the present application provides a method for preparing the above-mentioned integrated device, which includes:
  • a first electrode layer (ion storage layer) is prepared on the first transparent electrode, and an electrolyte is used to connect the photovoltaic cell to the first electrode layer (ion storage layer) so that the nanofiber electrode, the electrolyte, and the first electrode layer (ion storage layer)
  • the storage layer) and the first transparent electrode form a thin film device and form an integrated device.
  • the chemical reaction device has a nanofiber electrode, an electrocatalytic material layer and a reaction chamber, at least a portion of the electrocatalytic material layer is exposed in the reaction chamber, and the reaction chamber has two Above the openings, the photovoltaic cells are in contact with the nanofiber electrodes of the chemical reaction device.
  • the integrated device includes a photovoltaic cell 100 and a chemical reaction device 300.
  • the chemical reaction device has a nanofiber electrode 200, an electrocatalytic material layer and a reaction chamber (not shown in the figure). shown), at least a portion of the electrocatalytic material layer is exposed in a reaction cavity, and the reaction cavity has more than two openings, and the photovoltaic cell 100 is in contact with the nanofiber electrode 200 of the chemical reaction device 300,
  • the nanofiber electrode 200 may be a thin film structure or a composite of a thin film structure and a comb structure.
  • the chemical reaction device has two symmetrically arranged electrode layers, and the nanofiber electrode is located outside the electrode layer close to the side of the photovoltaic cell and in contact with the photovoltaic cell.
  • the chemical reaction device has two symmetrically arranged electrode layers.
  • the nanofiber electrode also serves as an electrode layer close to the photovoltaic cell and is in contact with the photovoltaic cell. For example, it can be used in a membrane electrode type electrolytic cell. the first electrode layer 311.
  • the thickness of the nanofiber electrode of the chemical reaction device is 200nm-10 ⁇ m.
  • the thickness of the nanofiber electrode of the chemical reaction device can be 200nm, 500nm, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, etc.
  • the reaction chamber is composed of a gas diffusion layer or an electrolytic cell and a film-like material, and the film-like material is disposed in the middle of the reaction chamber.
  • the membrane-like substance is an ion exchange membrane or a membrane; preferably, the ion exchange membrane is a proton exchange membrane or an anion exchange membrane.
  • the gas diffusion layer has a porous structure.
  • the gas diffusion layer is porous carbon or magneti phase titanium suboxide.
  • the reaction chamber is composed of a gas diffusion layer and a membrane-like substance
  • its schematic diagram is 310 in Figure 13.
  • the chemical reaction device is a membrane electrode type electrolytic cell, and the membrane-like substance is an ion exchange membrane 314.
  • the ion exchange membrane It can be a proton exchange membrane, such as a perfluorosulfonic acid membrane, such as a Nafion membrane, or an anion exchange membrane, such as quaternized polystyrene.
  • the gas diffusion layers are symmetrically arranged and are respectively the first gas diffusion layer 312 and the second gas diffusion layer 316 .
  • the gas diffusion layer has a porous structure, preferably, The gas diffusion layer is porous carbon or magneti phase titanium suboxide.
  • the electrocatalytic material layer includes a first catalytic material layer 313 and a second catalytic material layer 315.
  • the first catalytic material layer 313 and the second catalytic material layer 315 are symmetrically arranged inside the reaction chamber and are connected with the first catalytic material layer 313.
  • a gas diffusion layer 312 is in contact with the second gas diffusion layer 316, and the ion exchange membrane 314 is located between the first catalytic material layer 313 and the second catalytic material layer 315.
  • the material of the first catalytic material layer 313 is selected from the group consisting of ruthenium, iridium, palladium, platinum, nickel, cobalt, manganese, One or more of iron, lithium, tin, lanthanum and strontium or their alloys or their composite oxides, hydroxides, hydroperoxides, phosphides, phosphates (phosphorus oxides) phosphorus oxides , nitride, boride or sulfide.
  • the material of the second catalytic material layer 315 is selected from one or more than two substances selected from platinum, palladium, iridium, rhenium, rhodium, nickel, cobalt, tungsten, copper, silver, gold, bismuth, iron and zinc, or Its alloy or its composite oxide, hydroxide, hydroperoxide, phosphide, phosphate (phosphorus oxide), nitride, boride or sulfide
  • the second catalytic material layer 315 serves as the cathode catalyst layer; when the first catalytic material layer 313 serves as the cathode catalyst layer , then the second catalytic material layer 315 is the anode catalyst layer.
  • the reaction chamber has a gas outlet and a water inlet.
  • a gas outlet is provided at one end of the gas diffusion layer, and at One end of the second catalytic material layer is provided with a water inlet, and the gas outlet and the water inlet are located at the same end of the reaction chamber, as shown at 310 in Figure 13, respectively in the first gas diffusion layer 312 and the second gas diffusion layer.
  • An air outlet 318 is symmetrically provided at one end of the diffusion layer 316, and a water inlet 319 is provided at one end of the second catalytic material layer 315. The air outlet 318 and the water inlet 319 are located at the same end of the reaction chamber.
  • the membrane electrode type electrolytic cell further includes a first electrode layer and a second electrode layer, as shown at 310 in Figure 13 , the first electrode layer 311 and the second electrode layer 317 are symmetrically arranged on The outer sides of the first gas diffusion layer 312 and the second gas diffusion layer 316 are in contact with the first gas diffusion layer 312 and the second gas diffusion layer 316 respectively.
  • This application does not impose any restrictions on the materials used for the first electrode layer 311 and the second electrode layer 317.
  • metal such as platinum (Pt) can be used.
  • the nanofiber electrode also serves as an electrode layer on the side close to the photovoltaic cell, as shown in 200 & 311 in Figure 16 .
  • the integrated device also includes an external circuit 400 (as shown in Figure 12).
  • the external circuit is used to provide the electrical energy of the photovoltaic cell to the chemical reaction device.
  • the external circuit has three connections.
  • one of the connection methods is as shown in Figure 17.
  • the first transparent electrode 101 of the photovoltaic cell and the first electrode layer 311 of the membrane electrode type electrolytic cell are connected through the first wire 401.
  • the second light-transmitting electrode 105 and the membrane electrode type electrolytic The second electrode layer 317 of the cell is connected by a second wire 402;
  • FIG. 18 Another connection method is shown in Figure 18, in which the first transparent electrode 101 of the photovoltaic cell and the second electrode layer 317 of the membrane electrode type electrolytic cell are connected through a third wire 403.
  • the photoelectrode 105 is connected to the first electrode layer 311 of the membrane electrode type electrolytic cell through a fourth wire 404;
  • connection method In the membrane electrode type electrolytic cell, another connection method is shown in Figure 19, in which the first transparent electrode 101 of the photovoltaic cell and the second electrode layer of the membrane electrode type electrolytic cell are connected through the fifth wire 405.
  • the connection method needs to meet the energy level matching of the second light-transmitting electrode 105 of the photovoltaic cell, the nanofiber electrode 200 and the first electrode layer 311 of the membrane electrode type electrolytic cell to ensure that carriers can be transmitted normally.
  • the nanofiber electrode when the nanofiber electrode also serves as the first electrode layer 311 of the membrane electrode type electrolytic cell, its connection method is the same as above.
  • the working principle of the membrane electrode electrolytic cell 310 is as follows: electrolyte such as water flows from the water inlet 319 of the membrane electrode electrolytic cell through the second catalyst layer 315, and some ions flow into the first catalyst layer 313 through the ion exchange membrane 314. . Under the action of the external electric field provided by the photovoltaic cell, oxygen and hydrogen are generated on the surface of the catalyst layer, and are transported out and collected through the first gas diffusion layer 312 and the second gas diffusion layer 316 and through the gas outlet 318 of the membrane electrode type electrolytic cell.
  • the preparation method is as follows:
  • the first catalyst layer 313 and the second catalyst layer 315 are respectively coated on both sides of the ion exchange membrane 314 to form a reaction chamber, and then the first gas diffusion layer 312 and the second gas diffusion layer 316 are symmetrically pressed in the reaction chamber by hot pressing. both sides of the body; then encapsulate the first transparent electrode 311, the nanofiber electrode and the second electrode 317.
  • the reaction chamber when the reaction chamber is composed of an electrolytic tank and a film-like substance, as shown in 320 in Figure 14, this application does not impose any restrictions on the electrode tank 323, as long as it can achieve the corresponding Function is sufficient.
  • the electrolytic tank 323 can be a stainless steel electrolytic tank.
  • the film-like substance can be a separator 324, which is not limited in this application.
  • it can be an insulating but ion-conducting separator, such as any one of polypropylene (PP) and polyethylene film (PE), Or a double-layer or multi-layer separator formed by mixing them, such as Celgard separator, preferably Celgard3501 and Celgard2400 separator.
  • the electrocatalytic material layer includes a third catalytic material layer 322 and a fourth catalytic material layer 322.
  • Chemical material layer 326, the third catalytic material layer 322 and the fourth catalytic material layer 326 are symmetrically arranged outside the reaction chamber and in contact with the electrolytic tank 323.
  • the material of the third catalytic material layer 322 it is the same as the material of the first catalytic material layer 313;
  • the material of the fourth catalytic material layer 326 it is the same as the material of the second catalytic material layer 315;
  • the fourth catalytic material layer 326 serves as the cathode catalyst layer; when the third catalytic material layer 322 serves as the cathode catalyst layer , then the fourth catalytic material layer 326 is the anode catalyst layer.
  • the reaction chamber has an air outlet and a water inlet.
  • an air outlet is provided at one end of the electrolytic cell and is located at the end of the electrolytic cell.
  • the other end of the electrolytic tank is provided with a water inlet, as shown at 320 in Figure 14
  • the air outlet 328 is symmetrically provided at one end of the electrolytic tank 323
  • the air inlet 325 is provided at the other end of the electrolytic tank 323 .
  • the electrolytic cell type electrolytic cell further includes a third electrode layer and a fourth electrode layer, as shown at 320 in Figure 14 , the third electrode layer 321 and the fourth electrode layer 327 are symmetrically arranged on The third catalytic material layer 322 and the fourth catalytic material layer 326 are outside the third catalytic material layer 322 and the fourth catalytic material layer 326 respectively.
  • This application does not impose any restrictions on the materials used for the third electrode layer 321 and the fourth electrode layer 327.
  • metal such as platinum (Pt) can be used.
  • the chemical reaction device when the chemical reaction device is an electrolytic cell type electrolytic cell, its connection method is the same as that of a membrane electrode type electrolytic cell.
  • the working principle of the electrolytic cell type electrolytic cell 320 is: electrolyte such as water enters the electrolytic cell 323 from the electrolytic cell water inlet 325, and under the action of the external electric field provided by the photovoltaic cell, oxygen and hydrogen are generated in the first The surface of the catalyst layer 322 and the second catalyst layer 326 is transported out and collected through the electrolytic cell outlet 328 of the electrolytic cell.
  • the preparation method is as follows:
  • the third catalyst layer 322 and the fourth catalyst layer 326 are respectively coated on both sides of the electrolytic cell 323 to form a reaction chamber, and then the third transparent electrode 321, the nanofiber electrode and the second electrode 327 are packaged to form an electrolytic cell type electrolytic cell 320.
  • the preparation method is the same as that of the electrolytic cell type electrolytic cell.
  • the water inlet can be provided on one side of the oxygen production electrode.
  • the chemical reaction device when the chemical reaction device is carbon dioxide reduction electrolysis, it is shown as 300 in Figure 15 and includes a third electrode layer 321, a third catalyst layer 322, an electrolytic cell 323, a separator 324, and a fourth catalyst layer. 326 and the fourth electrode layer 327, an electrolytic cell electrolytic cell air outlet 328 is provided at one end of the electrolytic cell 323, and a carbon dioxide air inlet 329 is provided at the other end of the electrolytic cell 323.
  • the nanofiber electrode also serves as the electrode layer on the side close to the photovoltaic cell, that is, the nanofiber electrode 200 can also serve as the first electrode layer 311 (as shown in Figure 16), the third electrode layer 321 or carbon dioxide. Restore the third electrode layer (not shown in the figure) in the electrolytic cell.
  • the nanofiber electrode 200 is conductive.
  • the nanofiber electrode can be a film structure or a comb-like structure or a composite of a film structure and a comb-like structure. body.
  • the photovoltaic cell-chemical reaction device integrated device includes a photovoltaic cell and a chemical reaction device.
  • the chemical reaction device has a nanofiber electrode 200, an electrocatalytic material layer and a reaction chamber.
  • the electrocatalytic material layer At least a part of the reaction cavity is exposed in the reaction cavity, and the reaction cavity has more than two openings.
  • the photovoltaic cell is in contact with the nanofiber electrode 200 of the chemical reaction device.
  • the photovoltaic cell includes in turn The first transparent electrode 101, the first carrier transport layer 102, the photovoltaic absorption layer 103, the second carrier transport layer 104 and the second light-transmitting electrode 105, the chemical reaction device is a membrane electrode type electrolytic cell, the The membrane electrode type electrolytic cell sequentially includes a reaction chamber composed of a first gas diffusion layer 312, a second gas diffusion layer 316 and an ion exchange membrane 314.
  • the electrocatalytic material layer includes a first catalyst layer 313 and a second catalyst layer 315. , the first catalyst layer 313 and the second catalyst layer 315 are arranged in the reaction chamber and are in contact with the first gas diffusion layer 312 and the second gas diffusion layer 316 respectively.
  • a first electrode is symmetrically arranged outside the reaction chamber. layer 311 and a second electrode layer 317.
  • the nanofiber electrode 200 is disposed on the first electrode layer 311 close to the photovoltaic cell, and is respectively disposed at the same end of the first gas diffusion layer 312 and the second gas diffusion layer 316.
  • a membrane electrode type electrolytic cell air outlet (not shown in the figure) is provided at the end of the second catalyst layer 315 with a membrane electrode type electrolytic cell water inlet (not shown in the figure), which is connected to the membrane electrode type electrolytic cell air outlet.
  • the integrated device also includes an external circuit (not shown in the figure), in which the first transparent electrode 101 of the photovoltaic cell is connected to the membrane electrode type through a first wire 401
  • the first electrode layer 311 in the electrolytic cell is connected, and the second light-transmitting electrode 105 is connected to the second electrode layer 317 through the second wire 402.
  • the nanofiber electrode 200 has a thin film structure.
  • the photovoltaic cell-chemical reaction device integrated device includes a photovoltaic cell and a chemical reaction device.
  • the chemical reaction device has a nanofiber electrode 200, an electrocatalytic material layer and a reaction chamber.
  • the electrocatalytic material layer At least a part of the reaction cavity is exposed in the reaction cavity, and the reaction cavity has more than two openings.
  • the photovoltaic cell is in contact with the nanofiber electrode 200 of the chemical reaction device.
  • the photovoltaic cell includes in turn The first transparent electrode 101, the first carrier transport layer 102, the photovoltaic absorption layer 103, the second carrier transport layer 104 and the second light-transmitting electrode 105, the chemical reaction device is an electrolytic cell type electrolytic cell, the The electrolytic cell type electrolytic cell includes a reaction chamber composed of an electrolytic cell 323 and a diaphragm 324.
  • the third catalyst layer 322 and the fourth catalyst layer 326 are arranged outside the reaction chamber and are in contact with the electrolytic cell 323 respectively.
  • a third electrode layer 321 and a fourth electrode layer 327 are respectively provided outside 322 and the fourth catalyst layer 326.
  • the nanofiber electrode 200 is provided on the third electrode layer 321 close to the photovoltaic cell and is symmetrical at one end of the electrolytic tank 323.
  • An electrolytic cell type electrolytic cell air outlet (not shown in the figure) is provided, and an electrolytic cell type electrolytic cell water inlet (not shown in the figure) is provided at the other end of the electrolytic cell 323.
  • the integrated device also includes an external circuit ( (not shown in the figure), wherein the first transparent electrode 101 of the photovoltaic cell is connected to the third electrode layer 321 through the first wire 401, and the second light-transmitting electrode 105 is connected to the fourth electrode layer 327 through the second wire 402, so
  • the nanofiber electrode 200 has a thin film structure.
  • the photovoltaic cell-chemical reaction device integrated device includes a photovoltaic cell and a chemical reaction device.
  • the chemical reaction device has a nanofiber electrode that serves as an electrode layer close to the photovoltaic cell, an electrocatalytic material layer, and a reaction chamber. , at least part of the electrocatalytic material layer is exposed in the reaction cavity, and the reaction cavity has more than two openings, and the photovoltaic cell and the chemical reaction device also serve as nanofiber electrodes close to the photovoltaic cell electrode layer Contact, as shown in Figure 22, the nanofiber electrodes that also serve as electrode layers close to the photovoltaic cell are 200&311, and they also serve as the first electrode layer.
  • the photovoltaic cell sequentially includes a first transparent electrode 101, a first carrier The transmission layer 102, the photovoltaic absorption layer 103, the second carrier transmission layer 104 and the second light-transmitting electrode 105
  • the chemical reaction device is a membrane electrode type electrolytic cell
  • the membrane electrode type electrolytic cell includes a first gas diffusion
  • the first catalyst layer 313 and the second catalyst layer 315 are arranged in the reaction chamber and are respectively connected with the first gas diffusion layer 312 and the second gas diffusion layer 312.
  • the diffusion layer 316 contacts, and is symmetrically arranged outside the reaction chamber and serves as the first
  • the nanofiber electrodes 200&311 of the electrode layer and the second electrode layer 317 are respectively provided with membrane electrode type electrolytic cell gas outlets (not shown in the figure) at the same ends of the first gas diffusion layer 312 and the second gas diffusion layer 316.
  • a membrane electrode type electrolytic cell water inlet (not shown in the figure) is provided at the end of the second catalyst layer 315, which is located at the same end as the membrane electrode type electrolytic cell air outlet.
  • the integrated device also includes an external circuit (Fig.
  • the first transparent electrode 101 of the photovoltaic cell is connected to the second electrode layer 317 in the membrane electrode type electrolytic cell through a third wire 403, and the second light-transmitting electrode 105 is connected to the membrane electrode type electrolytic cell through a fourth wire 404.
  • the nanofiber electrodes 200 & 311 of the first electrode layer are connected, and the nanofiber electrodes 200 & 311 have a thin film structure.
  • the photovoltaic cell-chemical reaction device integrated device includes a photovoltaic cell and a chemical reaction device.
  • the chemical reaction device has a nanofiber electrode that serves as an electrode layer close to the photovoltaic cell, an electrocatalytic material layer, and a reaction chamber. , at least part of the electrocatalytic material layer is exposed in the reaction cavity, and the reaction cavity has more than two openings, and the photovoltaic cell and the chemical reaction device also serve as nanofiber electrodes close to the photovoltaic cell electrode layer Contact, as shown in Figure 23, the nanofiber electrodes 200&311 that are close to the electrode layer of the photovoltaic cell also serve as the first electrode layer.
  • the photovoltaic cell includes a first transparent electrode 101 and a first carrier transport layer in sequence.
  • the chemical reaction device is a membrane electrode type electrolytic cell.
  • the membrane electrode type electrolytic cell includes a first gas diffusion layer 312 , a reaction chamber composed of an ion exchange membrane 314 and a second gas diffusion layer 316.
  • the first catalyst layer 313 and the second catalyst layer 315 are arranged in the reaction chamber and are respectively connected with the first gas diffusion layer 312 and the second gas diffusion layer.
  • 316 contact, the nanofiber electrodes 200 & 311 that also serve as the first electrode layer and the second electrode layer 317 are symmetrically arranged outside the reaction chamber, and are located at the same ends of the first gas diffusion layer 312 and the second gas diffusion layer 316 respectively.
  • a membrane electrode type electrolytic cell air outlet (not shown in the figure) is provided, and a membrane electrode type electrolytic cell water inlet (not shown in the figure) is provided at the end of the second catalyst layer 315, which is connected to the membrane electrode type electrolytic cell.
  • the air outlet is located at the same end, and the integrated device also includes an external circuit (not shown in the figure), in which the first transparent electrode 101 of the photovoltaic cell communicates with the second electrode in the membrane electrode type electrolytic cell through a third wire 403
  • the layer 317 is connected, and the second light-transmitting electrode 105 is connected to the nanofiber electrodes 200 & 311 that also serve as the first electrode layer through the fourth wire 404.
  • the nanofiber electrodes 200 & 311 are a composite of a film structure and a comb structure.
  • the photovoltaic cell-chemical reaction device integrated device includes a photovoltaic cell and a chemical reaction device, and the chemical reaction device has a nano-electrode layer close to the photovoltaic cell electrode layer.
  • the nanofiber electrodes 200&311 also serve as the nanofiber electrodes 200&311 close to the photovoltaic cell electrode layer, which also serve as the third electrode layer of the carbon dioxide reduction electrolytic cell.
  • the photovoltaic cell sequentially includes a first transparent electrode 101, a first carrier transport layer 102, a photovoltaic absorption layer 103, a second carrier transport layer 104 and a second light-transmitting electrode 105.
  • the chemical reaction device is a carbon dioxide reduction electrolytic cell.
  • the carbon dioxide reduction electrolytic cell includes a reaction chamber composed of an electrolytic cell 323 and a diaphragm 324.
  • the third catalyst layer 322 and the fourth catalyst layer 326 are arranged outside the reaction cavity and are in contact with the electrolytic cell 323 respectively.
  • the catalyst layer 322 and the fourth catalyst layer 326 are respectively provided with nanofiber electrodes 200 & 311 and a fourth electrode layer 327 that serve as electrode layers on the outside.
  • An electrolytic cell electrolytic cell air outlet 328 is symmetrically provided at one end of the electrolytic cell 323.
  • the other end of 323 is provided with a carbon dioxide inlet 329.
  • the integrated device also includes an external circuit (not shown in the figure), in which the first transparent electrode 101 of the photovoltaic cell passes through the first wire 401 and the nanometer that also serves as the electrode layer.
  • the fiber electrodes 200 & 311 are connected, and the second light-transmitting electrode 105 is connected to the fourth electrode layer 327 through the second wire 402.
  • the nanofiber electrodes 200 & 311, which also serve as electrode layers, are a composite of a film structure and a comb-like structure.
  • the present application provides a method for preparing the above-mentioned integrated device, which includes:
  • a chemical reaction device including a nanofiber electrode, an electrocatalytic material layer and a reaction chamber is prepared, and the nanofiber electrode of the chemical reaction device is connected to the second electrode of the photovoltaic cell to obtain the integrated device.
  • the nanofiber electrode of the chemical reaction device (such as a membrane electrode type electrolytic cell or an electrolytic tank type electrolytic cell or a carbon dioxide reduction electrolytic cell) prepared above is connected to the second carrier transport layer of the photovoltaic cell to obtain the integrated device.
  • % means wt%, that is, weight percentage. If the manufacturer of the reagents or instruments used is not indicated, they are all conventional reagent products that can be purchased commercially.
  • the first carrier transport functional layer 2 is the first current carrier.
  • the second carrier transport functional layer 41 is the second carrier transport layer 41.
  • the structure of the perovskite cell-supercapacitor integrated device is shown in Figure 4A, in which the light-transmitting layer 1 is an ITO transparent electrode, the first carrier transport layer 2 is HTL, and the photovoltaic cell absorption layer 3 is perovskite MAPbBr 3
  • the absorption layer has an absorption spectrum range of 300-550nm
  • the second carrier transport layer 41 is PCBM
  • the nanofiber electrode 42 is a PEDOT nanofiber electrode, which is a composite of a film structure and a comb structure (as shown in Figure 3A )
  • the thickness of the film structure is 100nm
  • the length of a single fiber of the comb-like structure is 800nm
  • the diameter of a single PEDOT fiber is 100nm (as shown in Figure 5)
  • the electrolyte 5 is H 2 SO 4 / PVA gel
  • the first electrode layer 61 is a PEDOT film structure
  • the electrode 7 is an Ag electrode.
  • the energy storage efficiency of the perovskite battery-supercapacitor integrated device described in this application and the integrated device obtained without using the supercapacitor electrode with a nanofiber structure was measured.
  • the energy storage efficiency refers to the increase in capacitance.
  • C is the capacitance
  • V is the operating voltage
  • t is the discharge time. All parameters can be obtained through the galvanostatic charge and discharge test (GCD) to obtain the energy density or power density. After measurement, it is the same as that without using nanofiber electrodes. Compared with the integrated device obtained from the supercapacitor electrode, the power density of the prepared perovskite battery-supercapacitor integrated device is increased by 22.5% and the energy density is increased by 15%.
  • GCD galvanostatic charge and discharge test
  • the structure of the perovskite cell-supercapacitor integrated device is shown in Figure 6, in which the light-transmitting layer 1 is a ZnO transparent electrode, the first carrier transport layer 2 is ETL, and the photovoltaic cell absorption layer 3 is perovskite
  • the mineral MAPbBr 3 absorption layer has an absorption spectrum range of 300-550nm
  • the second carrier transport layer 41 is P3HT
  • the nanofiber electrode 42 is a PEDOT nanofiber electrode, which is a composite of a film structure and a comb structure, as described
  • the thickness of the film structure is 100nm
  • the length of a single fiber of the comb-like structure is 800nm
  • the diameter of a single PEDOT fiber is 100nm (as shown in Figure 5)
  • the electrolyte 5 is H 2 SO 4 /PVA gel
  • the first electrode layer 61 is a PPy nanofiber electrode, which is a composite of a PPy film structure and a PPy comb structure
  • the thickness of the PPy film structure is 200nm, and the length of a single fiber of the PPy nanofiber is 500nm.
  • the diameter of the PPy fiber is 200nm (as shown in Figure 5), and the electrode 7 is an FTO electrode.
  • the preparation method is the same as Example 1.
  • the power density of the prepared perovskite battery-supercapacitor integrated device increased by 30%. Energy density increased by 20%.
  • the structure of the perovskite cell-supercapacitor integrated device is shown in Figure 7, in which the light-transmitting layer 1 is an FTO transparent electrode, the first carrier transport layer 2 is ETL, and the photovoltaic cell absorption layer 3 is perovskite MAPbCl 3
  • the absorption layer has an absorption spectrum range of 300-420nm
  • the second carrier transport layer 41 is P3HT
  • the second electrode layer 42 is a PEDOT film structure
  • the electrolyte 5 is H 2 SO 4 /PVA gel
  • the first electrode layer 6 is a PEDOT nanofiber electrode, which is a composite of a film structure and a comb-like structure.
  • the thickness of the film structure is 50nm.
  • the length of a single fiber of the comb-like structure is 1200nm.
  • the diameter of a single PEDOT fiber is 100nm.
  • electrode 7 is a Pt electrode.
  • the preparation method is the same as Example 1.
  • the power density of the prepared perovskite battery-supercapacitor integrated device is increased by 30% compared with the integrated device without using supercapacitor electrodes with nanofiber structures. Energy density increased by 20%.
  • the structure of the integrated device of the perovskite cell-electrochromic reaction device is shown in Figure 9b and Figure 11.
  • the light-transmitting layer of the photovoltaic cell 100 is an ITO transparent electrode
  • the first carrier transport layer is HTL
  • the volt-absorption layer uses MAPbBr 3 with an absorption spectrum range of 300-550nm
  • the second carrier transport layer is PCBM
  • the electrolyte is BMIBF 4 /PVDF gel
  • the nanofiber electrodes (electrochromic layer) 200 & 302 are 100nm PEDOT Thin film layer
  • the solid electrolyte is aqueous LiClO 4 -PVA-acetonitrile gel
  • the ion storage 304 is nickel oxide
  • the second electrode 305 is FTO.
  • the photovoltaic cell includes: the photovoltaic absorption layer 103 is perovskite MAPbBr 3 , and its absorption spectrum range is 300nm-550nm; the first light-transmitting electrode 101 and the second light-transmitting electrode 105 is ITO; the first carrier transport layer 102 and the second carrier transport layer 104 are PCBM and Spiro-OMeTAD respectively; the chemical reaction device is a membrane electrode type electrolytic cell, which includes: a first gas diffusion layer 312 , a reaction chamber composed of a second gas diffusion layer 316 and an ion exchange membrane 314.
  • the electrocatalytic material layer includes a first catalyst layer 313 and a second catalyst layer 315.
  • the first gas diffusion layer 312 and the second gas diffusion layer 316 is porous carbon; the first catalyst layer 313 and the second catalyst layer 315 are arranged in the reaction chamber and are in contact with the first gas diffusion layer 312 and the second gas diffusion layer 316 respectively, and are symmetrically arranged outside the reaction chamber.
  • the nanofiber electrode 200 is disposed on the first electrode layer 311 close to the photovoltaic cell.
  • the nanofiber electrode 200 has a thin film structure and is a PPy thin film layer with a thickness of 400 nm.
  • a membrane electrode type electrolytic cell gas outlet (not shown in the figure) is provided at the same end of the first gas diffusion layer 312 and the second gas diffusion layer 316, and a membrane electrode type electrolytic cell is provided at the end of the second catalyst layer 315.
  • the water inlet of the electrolytic cell (not shown in the figure) is located at the same end as the air outlet of the membrane electrode type electrolytic cell.
  • the integrated device also includes an external circuit (not shown in the figure), wherein the first part of the photovoltaic cell
  • the light-transmitting electrode 101 is connected to the first electrode layer 311 in the membrane electrode type electrolytic cell through a first wire 401, and the second light-transmitting electrode 105 is connected to the second electrode layer 317 through a second wire 402.
  • the first electrode layer 311 and the second electrode layer 317 are connected to each other through a second wire 402.
  • the two electrode layers 317 are Pt; the first catalyst layer 313 and the second catalyst layer 315 are Pt and BiVO 4 respectively; the ion exchange membrane 314 is Nafion, and its photovoltaic hydrogen production efficiency (STH) is compared with devices without nanofiber electrodes. Improved by 10%.
  • STH electrolysis hydrogen production efficiency * photovoltaic power generation efficiency, respectively measure the electrolysis production efficiency of integrated devices.
  • the hydrogen efficiency and photovoltaic power generation efficiency are obtained, and the electrolysis hydrogen production efficiency and photovoltaic power generation efficiency are measured using conventional methods in this field.
  • the photovoltaic cell includes: the photovoltaic absorption layer 103 is perovskite MAPbCl 3 , its absorption spectrum range is 300nm-760nm, the first light-transmitting electrode 101 and the second light-transmitting electrode 105 are ITO; The first carrier transport layer 102 and the second carrier transport layer 104 are PCBM and Spiro-OMeTAD respectively; the chemical reaction device is an electrolytic cell type electrolytic cell, which includes: an electrolytic cell 323 and a separator 324. In the reaction chamber, the third catalyst layer 322 and the fourth catalyst layer 326 are arranged outside the reaction chamber and are respectively in contact with the electrolytic cell 323.
  • a third electrode is respectively arranged outside the third catalyst layer 322 and the fourth catalyst layer 326.
  • layer 321 and the fourth electrode layer 327, the nanofibers 200 are arranged on the third electrode layer 321 close to the photovoltaic cell, and an electrolytic tank type electrolytic cell air outlet (not shown in the figure) is symmetrically provided at one end of the electrolytic tank 323.
  • an electrolytic cell type electrolytic cell water inlet (not shown in the figure) is provided at the other end of the electrolytic cell 323, and an electrolytic cell type electrolytic cell air outlet (not shown in the figure) is symmetrically provided at one end of the electrolytic cell 323.
  • the other end of the electrolytic tank 323 is provided with an electrolytic tank type electrolytic cell water inlet (not shown in the figure).
  • the integrated device also includes an external circuit (not shown in the figure), wherein the first transparent electrode of the photovoltaic cell 101 is connected to the third electrode layer 321 in the electrolytic cell type electrolytic cell through the first wire 401, the second light-transmitting electrode 105 is connected to the fourth electrode layer 327 through the second wire 402, the third electrode layer 321 and the fourth electrode layer 327 is Pt; the third catalyst layer 322 and the fourth catalyst layer 326 are Pt and BiVO 4 respectively; the electrolytic cell 323 is a stainless steel electrolytic cell; the separator 324 is Celgard3501, a nanofiber electrode disposed between the photovoltaic cell and the electrolytic cell type electrolytic cell. 200 is a thin film structure, which is a PPy thin film structure of 400 nm. It is measured according to the same method as Example 1, and the hydrogen production efficiency is increased by 10%.
  • the photovoltaic cell includes: the photovoltaic absorption layer 103 is perovskite MAPbBr 3 , and its absorption spectrum range is 300nm-550nm; the first light-transmitting electrode 101 and the second light-transmitting electrode 105 are ITO; The first carrier transport layer 102 and the second carrier transport layer 104 are MoS 2 and TiO 2 respectively; the chemical reaction device is a membrane electrode type electrolytic cell, which includes: a first gas diffusion layer 312, ions
  • the reaction chamber composed of the exchange membrane 314 and the second gas diffusion layer 316 is A catalyst layer 313 and a second catalyst layer 315 are arranged in the reaction chamber and are in contact with the first gas diffusion layer 312 and the second gas diffusion layer 316 respectively.
  • a catalytic layer that also serves as the first electrode layer is symmetrically arranged outside the reaction chamber.
  • the nanofiber electrodes 200&311 and the second electrode layer 317 are respectively provided with membrane electrode type electrolytic cell gas outlets (not shown in the figure) at the same ends of the first gas diffusion layer 312 and the second gas diffusion layer 316.
  • a membrane electrode type electrolytic cell water inlet (not shown in the figure) is provided at the end of the two catalyst layers 315, which is located at the same end as the membrane electrode type electrolytic cell air outlet.
  • the integrated device also includes an external circuit (not shown in the figure) (out), in which the first transparent electrode 101 of the photovoltaic cell is connected to the second electrode layer 317 in the membrane electrode type electrolytic cell through the third wire 403, and the second light-transmitting electrode 105 is connected to the first electrode through the fourth wire 404.
  • the layers of nanofiber electrodes 200&311 are connected, the second electrode layer 317 is Au; the first gas diffusion layer 312 and the second gas diffusion layer 316 are Ebonex; the first catalyst layer 313 and the second catalyst layer 315 are Fe 2 O 3 and Pd; the ion exchange membrane 314 is quaternized polystyrene; the nanofiber electrodes 200&311, which are arranged between the photovoltaic cell and the membrane electrode type electrolytic cell and serve as the first electrode layer, are thin film structures, which are 400nm PEDOT:PSS thin film structures. , measured according to the same method as Example 1, the hydrogen production efficiency is increased by 15%.
  • the photovoltaic cell includes: the photovoltaic absorption layer 103 is GaAs, and its absorption spectrum range is 300nm-800nm; the first light-transmitting electrode 101 and the second light-transmitting electrode 105 are FTO; the first current carrying The sub-transport layer 102 and the second carrier transport layer 104 are PCBM and Spiro-OMeTAD respectively; the chemical reaction device is a membrane electrode type electrolytic cell, which includes: a first gas diffusion layer 312, an ion exchange membrane 314 and a third The reaction chamber is composed of two gas diffusion layers 316.
  • the first catalyst layer 313 and the second catalyst layer 315 are arranged in the reaction chamber and are in contact with the first gas diffusion layer 312 and the second gas diffusion layer 316 respectively.
  • the nanofiber electrodes 200 & 311 that also serve as the first electrode layer and the second electrode layer 317 are symmetrically arranged on the outside, and membrane electrode electrolytic cells are respectively arranged at the same ends of the first gas diffusion layer 312 and the second gas diffusion layer 316
  • the gas outlet (not shown in the figure) is provided with a membrane electrode electrolytic cell water inlet (not shown in the figure) at the end of the second catalyst layer 315, which is located at the same end as the membrane electrode electrolytic cell gas outlet, so
  • the integrated device also includes an external circuit (not shown in the figure), in which the first transparent electrode 101 of the photovoltaic cell is connected to the second electrode layer 317 in the membrane electrode type electrolytic cell through a third wire 403.
  • the photoelectrode 105 is connected to the nanofiber electrodes 200&311 that also serve as the first electrode layer through the fourth wire 404.
  • the two electrode layers 317 are Au; the first gas diffusion layer 312 and the second gas diffusion layer 316 are porous carbon; the first catalyst layer 313 and the second catalyst layer 315 are IrO 2 and CuO 2 respectively; the ion exchange membrane 314 is Nafion;
  • the nanofiber electrodes 200&311, which are arranged between the photovoltaic cell and the membrane electrode type electrolytic cell and serve as the first electrode layer, are a composite of a thin film structure and a comb-like structure.
  • the thin-film structure is a 500nm-thick PEDOT thin film structure, and a single fiber in the comb-like structure
  • the diameter of the PEDOT fiber is 200 nm, and the length of a single fiber is 10 ⁇ m. It is measured according to the same method as Example 1, and the hydrogen production efficiency is increased by 20%.
  • the photovoltaic cell includes: the photovoltaic absorption layer 103 is perovskite MAPbCl 3 and its absorption spectrum range is 300nm-760nm.
  • the first light-transmitting electrode 101 and the second light-transmitting electrode 105 are ITO;
  • the first carrier transport layer 102 and the second carrier transport layer 104 are PCBM and Spiro-OMeTAD respectively;
  • the chemical reaction device is a carbon dioxide reduction electrolytic cell, which includes: an electrolytic cell 323 and a separator 324 In the reaction chamber, the third catalyst layer 322 and the fourth catalyst layer 326 are arranged outside the reaction chamber and are in contact with the electrolytic cell 323 respectively.
  • the nanofiber electrodes 200&311 of the electrode layer and the fourth electrode layer 327 are symmetrically provided with an electrolytic cell electrolytic cell air outlet 328 at one end of the electrolytic cell 323, and a carbon dioxide air inlet 329 is provided at the other end of the electrolytic cell 323.
  • the integrated device It also includes an external circuit (not shown in the figure), in which the first transparent electrode 101 of the photovoltaic cell is connected to the nanofiber electrodes 200&311 that also serve as electrode layers through a first wire 401, and the second light-transmitting electrode 105 is connected through a second wire 402
  • the nanofiber electrodes 200&311 and the fourth electrode layer 327, which are connected to the fourth electrode layer 327 and serve as the first electrode layer, are Pt;
  • the third catalyst layer 322 and the fourth catalyst layer 326 are Pt and BiVO 4 respectively;
  • the electrolytic tank 323 is Stainless steel electrolytic cell;
  • the separator 324 is Celgard3501, and the nanofiber electrodes 200&311, which are arranged between the photovoltaic cell and the electrolytic cell type electrolytic cell and serve as the first electrode layer, are a composite of a thin film structure and a comb-like structure.
  • the thin film structure is 500nm thick.
  • PEDOT film structure, the diameter of a single PEDOT fiber in the comb structure is 200 nm, and the length of a single fiber is 15 ⁇ m.
  • the carbon dioxide reduction efficiency is increased by 25%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种集成器件,所述集成器件包括层叠的光伏电池和薄膜电化学器件,所述薄膜电化学器件含有纳米纤维电极,所述薄膜电化学器件通过纳米纤维电极与所述光伏电池接触,所述纳米纤维电极具有薄膜结构;其中,所述薄膜结构的一侧的表面具有绒面结构,且所述薄膜电化学器件的内部反应介质的至少一部分被配置在所述绒面表面上以与薄膜结构相接触;或者,所述薄膜结构的一侧的表面上具有与薄膜结构的本体一体形成的梳状纳米纤维,所述薄膜电化学器件的内部反应介质的至少一部分配填充在薄膜结构表面上的所述梳状纳米纤维之间的间隙中。本申请的纳米纤维电极的表面结构可以促进接触导电,增加器件内部反应面积,并对内部反应介质形成锚固效应。

Description

一种包含光伏电池和薄膜电化学器件的集成器件
本申请要求在2022年7月27日提交中国专利局、申请号为202210896042.2、申请名称为“一种包含光伏电池和薄膜电化学器件的集成器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能领域,具体涉及一种包含光伏电池和薄膜电化学器件的集成器件。
背景技术
现有的光伏集成器件,实际产业应用时存在较多的问题。与常见的器件外接光伏电池的器件集成不同,光伏集成器件是将光伏与薄膜器件通过层间电连接集成一体,而形成的光伏电池和薄膜器件的集成器件。这样的集成器件可以减少大量附加设备和线路,直接实现太阳能收集、电能转换、用电器件应用的功能集合,是光伏应用的一大方向。
然而,上述集成器件需要非常关注整个***的稳定性,特别是光伏电池与薄膜电化学器件连接位置的结构稳定性。当结构不稳定时,可能由于气候、温度、紫外辐射等外界条件的变化而在界面处导致器件连接不稳定,进而还会导致光伏电池与薄膜电化学器件之间的层间电连接劣化,从而可能导致光伏电池表面产生严重的载流子复合,并且使薄膜电化学器件可获得的有效电流降低,同时对器件的寿命产业不利影响。除此之外,薄膜电化学器件实际的效能也因为其器件薄膜化产生缩减,如何确保光伏电池和薄膜电化学器件的集成器件中的薄膜电化学器件的效能,也是此类光伏集成器件同时需要解决的难题。
申请内容
针对现有技术中存在的技术问题,本申请提供了一种集成器件,所述集成器件包括光伏电池和薄膜电化学器件,所述薄膜电化学器件含有纳米纤维电极,所述纳米纤维电极表面具有绒面结构或梳状结构,可以增强薄膜电化学器件中的接触面和连接,提高内部反应介质的反应活性,使***电阻下降,电化学反应的效率提高,同时可以对接触结构形成锚固效应以提高内部结构的稳定性,有利于器件结构稳定性和使用寿命的提升。
本申请具体技术方案如下:
本申请提供了一种集成器件,所述集成器件包括层叠的光伏电池和薄膜电化学器件,其中,所述薄膜电化学器件含有纳米纤维电极,所述薄膜电化学器件通过纳米纤维电极与所述光伏电池接触,所述纳米纤维电极具有薄膜结构;
其中,所述薄膜结构的一侧的表面具有绒面结构,且所述薄膜电化学器件的内部反应介质的至少一部分被配置在所述绒面表面上以与薄膜结构相接触;或者,所述薄膜结构的一侧的表面上具有与薄膜结构的本体一体形成的梳状纳米纤维,所述薄膜电化学器件的内部反应介质的至少一部分填充在薄膜结构表面上的所述梳状纳米纤维之间的间隙中;所述薄膜结构的另一侧的表面与光伏电池的表面接触并形成层间电连接。
优选地,对于上述所述的集成器件,其中,所述薄膜结构的所述另一侧的表面具有绒面结构或所述另一侧的表面具有与薄膜结构的一体形成的梳状纳米纤维。
优选地,对于上述所述的集成器件,其中,所述薄膜结构为纳米纤维紧密堆嵌形成的薄膜结构,所述绒面结构或所述梳状纳米纤维为所述薄膜结构的所述纳米纤维一体延伸形成。
优选地,对于上述所述的集成器件,其中,所述梳状结构单根纤维的纵横比>100,单根纤维的直径<300nm。
优选地,对于上述所述的集成器件,其中,所述纳米纤维电极的层间方向延伸的最大尺寸为0.05-14μm。
优选地,对于上述所述的集成器件,其中,所述纳米纤维电极的材料为PEDOT、PPy、PANi或P3HT。
优选地,对于上述所述的集成器件,其中,所述光伏电池依次包括透光层、第一载流子传输功能层、光伏吸收层和第二载流子传输功能层,所述第二载流子传输功能层与所述薄膜结构的所述另一侧的表面接触。
或者,对于上述所述的集成器件,其中,所述光伏电池依次包括透光层、第一载流子传输功能层、光伏吸收层、第二载流子传输功能层和导电连接层,所述薄膜结构层叠在所述导电连接层上,且所述薄膜结构的所述另一侧的表面与所述导电连接层连接。
优选地,对于上述所述的集成器件,其中,所述导电连接层的层间电导率>10S/cm。
优选地,对于上述所述的集成器件,其中,所述导电连接层的层内延伸 方向的电导率为层间电导率的50倍以上。
发明的效果
对于本申请所述的集成器件,由于其具有所述纳米纤维电极,所述纳米纤维电极具有薄膜结构;其中,所述薄膜结构的一侧的表面具有绒面结构,且所述薄膜电化学器件的内部反应介质的至少一部分被配置在所述绒面表面上以与薄膜结构相接触;或者,所述薄膜结构的一侧的表面上具有与薄膜结构的本体一体形成的梳状纳米纤维,所述薄膜电化学器件的内部反应介质的至少一部分填充在薄膜结构表面上的所述梳状纳米纤维之间的间隙中;所述薄膜结构的另一侧的表面与光伏电池的表面接触并形成层间电连接。因此,纳米纤维电极的绒面结构或梳状纳米纤维结构,可以大大增强电极本身与内部反应介质的接触反应面积,并且对内部反应介质具有锚固效应,可以在保证其物理结构的稳定性的基础上,将光伏电池的电流并直接充分地提供给内部反应介质,以促进薄膜电化学器件的内部反应。在此基础上,本申请还进一步探究了纳米纤维电极合适的梳状结构尺寸,可以进一步提高对内部反应介质的锚固效应,并增强其导电的接触面积和深度。另外一方面,本申请将纳米纤维电极连接光伏电池的另一侧表面也设置为薄膜结构的绒面或一体连接的梳状结构,可以促进光伏电池本身的载流子导出,减少层叠方向传输至薄膜电化学器件的串联电阻,并且对其载流子传输层结构产生锚固效应,增强其物理的稳定性减少可能存在的载流子在界面处的复合,提升器件稳定性和使用寿命。除此之外,本申请还采用了导电连接层用于减少纳米纤维电极直接连接可能存在的表面载流子复合,并且选择层间电导率>10S/cm或者所述导电连接层的层内延伸方向的电导率为层间电导率的50倍以上的导电连接层用于光伏电池的电流引出表面,可以在于纳米纤维电极连接的过程中,保障其层间的横向导通,并减少其层间的暗电流复合。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下 面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是纳米纤维电极的结构示意图,其中,a是薄膜结构示意图,c和d是薄膜结构和梳状结构的复合体示意图。
图2是本申请具体实施方式的一种光伏电池-超级电容器集成器件的示意图。
图3A、3B、3D、3E是薄膜结构和梳状结构的复合体的扫描电镜示意图。
图3C是表面具有绒面的薄膜结构的扫描电镜示意图。
图4A是本申请具体实施方式的一种光伏电池-超级电容器集成器件的示意图。
图4B是本申请具体实施方式的另一种光伏电池-超级电容器集成器件的示意图。
图5是梳状结构的单个纤维的扫描电镜示意图。
图6是本申请具体实施方式的另一种光伏电池-超级电容器集成器件的示意图。
图7是本申请具体实施方式的另一种光伏电池-超级电容器集成器件的示意图。
图8是电致变色现象示意图,其中,A为循环伏安曲线示意图,B是电致变色电极在1.4V下颜色变为淡蓝色,C是电致变色电极在-1.8V下颜色变为深紫色。
图9是电致变色装置的结构示意图,其中,图9中的a是含有第二电极的电致变色装置示意图,图9中的b是不含有第二电极的电致变色装置示意图。
图10是本申请具体实施方式的一种光伏电池-电致变色装置集成器件的示意图。
图11是本申请具体实施方式的另一种光伏电池-电致变色装置集成器件的示意图。
图12是本申请具体实施方式的一种光伏电池-化学反应装置集成器件的示意图。
图13是膜电极型电解池的结构示意图。
图14是是电解槽型电解池的结构示意图。
图15是二氧化碳还原电解池的结构示意图。
图16是纳米纤维电极兼做电极层的示意图。
图17是本申请具体实施方式中的一种具有不同外接电路的光伏电池-化学反应装置集成器件的示意图。
图18是本申请具体实施方式中的另一种具有不同外接电路的光伏电池-化学反应装置集成器件的示意图。
图19是本申请具体实施方式中的另一种具有不同外接电路的光伏电池-化学反应装置集成器件的示意图。
图20是本申请具体实施方式中的一种光伏电池-化学反应装置集成器件的示意图。
图21是本申请具体实施方式中的另一种光伏电池-化学反应装置集成器件的示意图。
图22是本申请具体实施方式中的另一种光伏电池-化学反应装置集成器件的示意图。
图23是本申请具体实施方式中的另一种光伏电池-化学反应装置集成器件的示意图。
图24是本申请具体实施方式中的另一种光伏电池-化学反应装置集成器件的示意图。
图25是光伏电池的结构示意图。
其中,1-透光层,2和102-第一载流子传输功能层或第一载流子传输层,3和103-光伏电池吸收层,41和104-第二载流子传输功能层或第二载流子传输层,5-电解液层,61-第一电极层,7-电极,8-薄膜结构,42和200-纳米纤维电极,301-第二电极,305-第一透明电极,302-电致变色电极层,303-电致变色反应装置的电解液层,304-离子存储层,100-光伏电池,101-第一透光电极,105-第二透光电极,300-化学反应装置,400-外接电路,310-膜电极型电解池,311-第一电极层,312-第一气体扩散层,313-第一催化剂层,314-离子交换膜,315-第二催化剂层,316-第二气体扩散层,317-第二电极层,318-膜电极型电解池出气口,319-膜电极型电解池进水口,320-电解槽型电解池,321-第三电极层,322-第三催化剂层,323-电解槽,324-隔膜,325-电解槽电解池进水口,327-第四电极层327,326-第四催化剂层,328-电解槽电解池出气口,329-二氧化碳进气口,200&302-兼做电致变色电极层和第二电极的纳米纤维电极,401-第一电线,402-第二电线, 403-第三电线,404-第四电线,405-第五电线,10-第一外接电路,11-第二外接电路,12-第一开关电路,13-第二开关电路,200&311-兼做第一电极层的纳米纤维电极
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异作为区分组件的方式,而是以组件在功能上的差异作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本申请的较佳实施方式,然而所述描述乃以说明书的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
现有技术中作为电化学反应的电极,提高其反应效率的方式主要包括提高电极的导电性(减小电阻)和电极的比表面积(增加接触面积),而根据电导率公式σ=nqμ,其中σ为电导率,n是载流子浓度,q是载流子电荷,μ是载流子迁移率。其中q为常量,n取决于掺杂浓度,μ与材料的形貌特点相关,载流子在晶体结构中的迁移速率0.1-20cm2/Vs,而在非晶结构中的迁移速率<0.1-20cm2/Vs,因此获得重掺和高结晶度材料是获得高电导率材料的关键。
基于此,本申请提供了一种集成器件,所述集成器件包括层叠的光伏电池和薄膜电化学器件,所述薄膜电化学器件含有纳米纤维电极,所述薄膜电化学器件通过纳米纤维电极与所述光伏电池接触,所述纳米纤维电极具有薄膜结构;其中,所述薄膜结构的一侧的表面具有绒面结构,且所述 薄膜电化学器件的内部反应介质的至少一部分被配置在所述绒面表面上以与薄膜结构相接触;或者,所述薄膜结构的一侧的表面上具有与薄膜结构的本体一体形成的梳状纳米纤维,所述薄膜电化学器件的内部反应介质的至少一部分填充在薄膜结构表面上的所述梳状纳米纤维之间的间隙中;所述薄膜结构的另一侧的表面与光伏电池的表面接触并形成层间电连接。
所述薄膜电化学器件指的是需要内部反应介质进行电化学反应的薄膜器件,例如其可以进行化学反应的化学反应装置或者进行电致变色反应的电致变色反应装置或者是用于储存电能的超级电容器等。
对于所述纳米纤维电极,其可以为一侧的表面具有绒面结构的薄膜结构,如图1中的a所示,也可以是在薄膜结构的一侧表面上具有与薄膜结构的本体一体形成的梳状纳米纤维,即薄膜结构和梳状纳米纤维的复合体,如图1中的b和c所示。在一些实施方式中,所述光伏电池还包含导电连接层。所述导电连接层与所述纳米纤维电极接触,并且通过纳米纤维电极与所述薄膜电化学器件连接;优选地,所述导电连接层的层间电导率>10S/cm或导电连接层的层内延伸方向的电导率为层间电导率的50倍以上。
在本申请中,所述层间电导率即是指光伏电池与集成器件叠层方向上的电导率。
在本申请中,对于导电连接层的材料,本申请不作任何限制,其只要能够起到相应的作用即可,例如所述导电连接层可以为无机物、有机物、碳材料和/或金属材料,优选地,所述无机物可以为金属氧化物(如氧化锌、氧化钛、氧化锡、隧穿氧化硅等);所述有机物可以为有机小分子(如PCBM)或有机聚合物如可以为与纳米纤维电极相同的材料;
所述碳材料可以为石墨烯、富勒烯、石墨等碳材料;
所述金属材料可以为铜、铝等。
所述导电连接层可以增强光伏电池的电流导出,更进一步促进电流导入至本申请中的纳米纤维电极,在某些结构中可以减少光伏电池的截面复合,例如,常见的TCO层或电子隧穿复合层用作导电连接层,其具有较强的层间电子导通能力,并且能够减少载流子复合。除此之外,还可以采用金属材料形成或金属浆料烧结后的导电膜层以促进其层间的导电连接。但本申请中的导电连接层并不限于上述材料或结构,所述导电连接层的层间 电导率>10S/cm就可以达到集成器件的导电需求。另一方面,导电连接层的层内延伸方向的电导率为层间电导率的50倍以上,则可以获得较好的层间导电性,并一定程度阻止层内传导而导致的光伏电池表面载流子复合。
在本申请中,对于所述薄膜结构单独形成的纳米纤维电极而言,其两侧表面至少一侧具有绒面结构(如图3C所示)。由于本申请的薄膜结构由纳米纤维密集堆嵌而形成,表面容易有局部形成部分纳米纤维延伸交叠的凸起结构,这些凸起结构具有不规则的分布,从而在薄膜结构表面形成凹凸的粗糙绒面。首先是有限在薄膜电化学器件内部侧的表面具有绒面,其次,在与光伏电池表面电接触的界面也可以形成绒面结构,以与光伏电池的载流子传导材料进行更好的电接触。所述的绒面结构即是在由纤维进行致密的薄膜结构时,在薄膜的表面可以形成的类似针织的织构化表面或具有较广分布的起伏、坑洼、凹凸的缺陷化表面,相对于正常的固态晶体的无缺陷晶面具有相当程度的粗糙性,从而可以增强表面填充材料的接触面积,特别是增大填充的内部反应介质的反应面积,并对表面填充材料形成锚固效应,促进结构稳定性。
除此之外,如图4B所示,薄膜结构与梳状纳米纤维一体形成的纳米纤维电极而言,也是类似的,其两侧表面至少一侧具有梳状纳米纤维,首先是在薄膜电化学器件内部侧的表面具有梳状纳米纤维,其次,在与光伏电池表面电接触的界面也可以形成梳状纳米纤维,以与光伏电池的载流子传导材料进行更好的电接触。在薄膜结构上形成的梳状纳米纤维,具有与所述绒面结构类似的效果,梳状纳米纤维也可以增强表面填充材料的接触面积,特别是增大填充的内部反应介质的反应面积,并对表面填充材料形成锚固效应,促进结构稳定性。而且,相对于绒面结构的接触,梳状纳米纤维结构可以更进一步增大接触面积,提高锚固效应。
在一些实施方式中,所述纳米纤维结构电极由薄膜结构和梳状纳米纤维结构组成(如图3A、3B、3D、3E所示),薄膜结构的厚度为0.05-4μm,梳状纳米纤维结构的长度为0.5-10μm。在本申请中薄膜结构必须大于50nm以便于进行薄膜电化学器件内部反应介质的阻挡,同时提高结构的稳定性,而低于4μm可以适度降低串联电阻,过厚的薄膜结构对于器件而言并不是必要的,上述厚度范围对于单层带绒面结构的薄膜形成的纳米纤维 电极来说也是适用的(如图3C所示),绒面结构相对于纳米纤维结构而言,尺寸在低于0.5μm并不会使薄膜层间方向延伸的最大尺寸发生特别大的改变。除此之外,梳状纳米纤维结构的层间方向延伸的最大尺寸为0.5-10μm。梳状纳米纤维的结构至少是从薄膜结构基体延伸的高度大于所述绒面结构高度形成的尺寸为0.5μm以上的短梳状纤维结构(如图3D所示),可以在绒面结构的基础上,进一步匹配部分集成的薄膜电化学器件的进一步扩充反应接触面、稳定其内部结构的需求。但梳状纤维结构较长的情况下,纤维的末端容易弯曲(如图3E所示),弯曲的梳状纤维堆叠后形成具有众多孔隙的梳状纤维结构,但当梳状纤维结构的层间方向延伸的最大尺寸长度大于10μm时,所示多孔隙的梳状纤维结构的底部孔隙将难以被介质充分填充,从而导致纳米纤维电极的部分区域导电接触劣化,并且结构稳定性也劣化。梳状纳米纤维结构的层间方向延伸的最大尺寸为0.5-10μm。因此,纳米纤维电极的层间方向延伸的最大尺寸可以为0.05-14μm。
在本申请中,对于薄膜结构的制备方法,本申请不作任何限制,其可以采用本领域常规的方法进行制备,例如,可以采用下述方法制备:
例如以PEDOT为例:在第二载流子传输功能层或导电连接层上沉积厚度为10-100nm的氧化铁(Fe2O3)层,使用气象聚合法使用耐酸、耐有机溶剂的反应器,反应温度范围为110℃-150℃,反应时常为0.5-1h;玻璃反应器中包含反应剂:5-10μL的浓盐酸和100-200μL1.56M的空穴材料(EDOT)聚合单体和有机溶液(苯、氯苯和甲苯)。使用6-12M盐酸冲洗掉空穴传输层中的FeCl2杂质,得到纯净的PEDOT薄膜。
在本申请中,对于薄膜结构和梳状结构复合体的制备方法不作任何限制,例如,可以采用常规的方法将制备得到的薄膜结构和梳状结构进行组合得到复合体。制备方法如下:以PEDOT为例,其为:
在第二载流子传输功能层或导电连接层上沉积厚度为>200nm的氧化铁(Fe2O3)层,使用气象聚合法使用耐酸、耐有机溶剂的反应器,反应温度范围为120℃-130℃,反应时常为1-2h;玻璃反应器中包含反应剂:10-20μL的浓盐酸和100-500μL1.56M的空穴材料(EDOT)聚合单体和有机溶液(苯、氯苯和甲苯)。使用6-12M盐酸冲洗掉空穴传输层中的FeCl2 杂质,得到纯净的PEDOT薄膜和纳米纤维的复合体。
在一些实施方式中,所述梳状结构单根纤维的纵横比>100,单根纤维的直径<300nm。在本申请中,所述纵横比指的是单根纤维的直径与该纤维长度的比值。
本申请将不同电极进行电导率的比较,如图1所示,其中,图1a是薄膜电极,采用本领域常规的方法测定其电导率为500S/cm,图1b为纵横比为100的薄膜结构和梳状结构的复合体(纤维直径L1=300nm,纤维长度L2=20μm),其电导率为1500S/cm,图1c是纵横比为1000的薄膜结构和梳状结构的复合体(纤维直径L3=100nm,纤维长度L4=100μm),其电导率为3500S/cm。
因此,本申请将所述纳米纤维电极的纳米纤维的纵横比和纳米纤维直径限定在上述的范围内,可实现电导率S>1000S/cm,从而可以提高反应效率。
并且,本申请将所述纳米纤维电极的纳米纤维的纵横比限定在上述范围内,其比表面即化学反应接触面或活化面积会大大增加,比表面即化学反应接触面或活化面积会大大增加,使得电导率大幅增加,***电阻下降,电化学反应的效率、产率提高。
在一些实施方式中,所述纳米纤维电极的材料为PEDOT(聚3,4-乙烯二氧噻吩)、PPy(聚吡咯)、PANi(聚苯胺)或P3HT(聚3-己基噻吩)。
在一些实施方式中,所述薄膜电化学器件包括电极、与所述电极接触的第一电极层、纳米纤维电极,以及设置在第一电极层和纳米纤维电极之间的电解液,设置在第一电极层和纳米纤维电极之间的电解液的厚度小于10μm。
本申请将电解液的厚度控制在所述范围内,以确保离子扩散距离短的同时,器件不会短路。此外,其是为了防止第一电极层和纳米纤维电极接触而造成的器件短路。
在一些实施方式中,所述第一电极层为纳米纤维电极,所述纳米纤维电极为具有绒面的薄膜结构或是薄膜结构和梳状结构的复合体,优选地,对于薄膜结构,其可以采用方法制备:以PEDOT为例:
在电极上沉积厚度为10-100nm的氧化铁(Fe2O3)层,使用气象聚合法 使用耐酸、耐有机溶剂的反应器,反应温度范围为110℃-150℃,反应时常为0.5-1h;玻璃反应器中包含反应剂:5-10μL的浓盐酸和100-200μL1.56M的空穴材料(EDOT)聚合单体和有机溶液(苯、氯苯和甲苯)。使用6-12M盐酸冲洗掉空穴传输层中的FeCl2杂质,得到纯净的PEDOT薄膜。
在本申请中,对于薄膜结构和梳状结构的复合体的制备方法,其可以按照上述所述的方法制备得到。
在一些实施方式中,所述第一电极层为离子存储层。在一些实施方式中,所述薄膜电化学器件还包含电致变色反应电极层,在第一电极层和电致变色电极层之间设置电解液层。在一些实施方式中,所述薄膜电化学器件还包括第二电极,所述第二电极与所述纳米纤维电极接触;优选地,所述纳米纤维电极兼做第二电极。在一些实施方式中,所述纳米纤维电极兼做第二电极和电致变色电极。
在一些实施方式中,所述薄膜电化学器件为薄膜器件或化学反应装置,优选地,所述薄膜器件为超级电容器或者电致变色反应装置;
优选地,所述化学反应装置为制氢电解池或二氧化碳还原电解池,进一步优选地,所述制氢电解池为膜电极型电解池或电解槽型电解池。
图2是本申请提供的一种具体实施方式的集成器件,其中,所述薄膜器件为超级电容器(图中未示出),所述集成器件包括光伏电池(图中未示出)和超级电容器(图中未示出),所述超级电容器包括电极7、与电极7接触的第一电极层61、纳米纤维电极42以及设置在第一电极层61和纳米纤维电极42之间的电解液5,所述第一电极层61为纳米纤维电极。
在一些实施方式中,所述光伏电池还包含导电连接层4-1-2,所述导电连接层4-1-2与纳米纤维电极42接触,并与光伏电池如光伏电池的第二载流子传输功能层41接触。
所述纳米纤维电极42和61,其可以为薄膜结构,如图1中的a所示,或为薄膜结构和梳状结构的复合体,如图1中的b和c所示。
其中,薄膜结构的扫描电镜图如图3C所示,薄膜结构和梳状结构的复合体的扫描电镜图如图3A、3B、3D和3E所示。
对于电极7,本申请不作任何限制,只要其能实现其功能即可,例如,所述电极7可以为金属电极或者无机透明电极,为了减小电极与第一电极间 的接触电阻,优选电极7使用电阻小的金(Au),银(Ag),铂(Pt),氟掺杂氧化锡(FTO)等材料。
对于纳米纤维电极61和42,其是通过下述方法制备:
在靠近薄膜器件的所述光伏电池的电极上或者导电连接层上或者所述光伏电池的电极和电极7上或者导电连接层和电极7上沉积氧化剂;
将含有强极性酸和单体的溶液与所述氧化剂接触以进行反应得到纳米纤维结构。
所述单体例如可以为EDOT(3,4-乙烯二氧噻吩)、3HT(3-己基噻吩)、Py(吡咯)、Ani(苯胺)。
所述氧化剂为氧化电位为0.7-1V的氧化剂,对于氧化电位为0.7-1V的氧化剂,本申请不作任何限制,只要能实现相应的功能即可,例如,所述氧化剂可以为含有氧化铁的物质、银离子(Ag+),亚氯酸根(OCl2-),次氯酸根(OCl-)或次溴酸根(OBr-)。
对于沉积的氧化剂的厚度,本申请不作任何限制,其只要能够操作达到所述的效果即可。
对于强极性酸,其是用于溶解上述所述的氧化剂例如含有氧化铁的物质,例如可以为浓盐酸、浓硝酸、甲酸、乙酸等。
优选的,所述强极性酸的体积为10-40μL,例如,所述强极性酸的体积为10μL、15μL、20μL、25μL、30μL、35μL、40μL或其之间的任意范围。
优选的,单体的体积为100-200μL,例如单体可以为100μL、110μL、120μL、130μL、140μL、150μL、160μL、170μL、180μL、190μL、200μL或其之间的任意范围。
优选的,单体的浓度为0.8-2M。
例如,所述单体的浓度可以为0.8M、0.9M、1.0M、1.1M、1.2M、1.3M、1.4M、1.5M、1.6M、1.7M、1.8M、1.9M、2.0M或其之间的任意范围。
优选的,含有强酸和单体的溶液为含有强酸和单体的有机溶液,例如可以为苯溶液、氯苯溶液或甲苯溶液。
优选的,反应温度为110-150℃,反应时间为1-2h。
在一个实施方案中,在将含有强酸和单体的溶液与氧化剂接触以进行反应后,还包括使用无机酸冲洗纳米纤维结构的杂质的步骤。
例如使用盐酸优选为6-12M的盐酸进行冲洗以得到纯净的纳米纤维结构电极。
所述电解液5可以为准固态(凝胶)电解液,其可以使用3大类:水相(H2SO4/HCl/Na2SO4/NaCl/LiClO4-PVA-H2O)、有机相(Na2SO4/NaCl/LiClO4-PVA-乙腈、碳酸丙烯酯)和离子相(如1-丁基-3-甲基咪唑四氟硼酸盐-聚偏二氟乙烯(BMIBF4-PVDF))凝胶。虽然电解液的流动性受溶质中聚合物分子链的限制,但随着温度升高,其仍具备一定的流动性。纳米纤维电极所具有的纳米结构可以有效地增加凝胶电解液的流动阻力,使得凝胶电解液稳定性增加。
在一些实施方式中,所述梳状结构的单根纤维的直径为100-1000nm,所述纳米纤维结构表面粗糙(电镜图(JEOL 7001LVF FE-SEM)如图5所示。
所述薄膜结构的表面所形成的表面粗糙绒面或梳状接触结构,电解液5可以更加充分与纳米纤维结构接触导电,从而更进一步提升集成的超级电容器中的电极活性;同时,更大的表面积可以增强超级电容器的充电容量。
对于梳状结构的单根纤维,单根纤维的直径越细,其比表面积越大,可吸附离子越多,使得可储能量越多。
例如,所述梳状结构的单根纤维的直径可以为100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm或其之间的任意范围。
在一些实施方式中,如图2所示,所述光伏电池依次包括透光层1、第一载流子传输功能层2、光伏电池吸收层3、第二载流子传输功能层41以及导电连接层4-1-2。
优选地,所述功能层指的是可以包含钝化层、传输层和/或减反射层的一层或多层结构。
所述传输层用于传输载流子,例如可以为载流子传输层。
所述减反射层为本领域中的一种常规结构,其可以包含氮化硅、氧化硅、氮氧化硅、氮化铝、氮化钛、氧化铝、氧化钛等常见一层或多层减反 射结构,此外,一部分减反射层具备场钝化或化学钝化功能。
以晶硅电池吸收层为例,所述钝化层可以为掺杂非晶硅、掺杂多晶硅、掺铝氧化锌、氧化铟锡等,此外,为减弱前表面由于材料带隙窄造成的本征吸收和自由载流子造成的寄生性吸收,选择具备低自由载流子浓度与高载流子迁移率的宽带隙传输材料,如氧化锌、氧化锡、氧化镍、氮化钛、氧化钼等。
例如,当光伏电池为硅晶电池时,第一载流子传输功能层2为硅晶电池衬底表面的实现载流子收集的硅衬底的一部分或经过进一步掺杂的硅衬底的一部分,以及其他附加的任意实现载流子传输的功能层,例如附加的隧穿传输膜层、透明导电膜层,以及掺杂或本征的非晶或多晶硅膜层。例如在常规的Topcon电池中,第一载流子传输功能层2还可以是具有载流子传输的隧穿复合结构;在常规的HIT电池中,第一载流子传输功能层2还可以为其中的掺杂非晶硅膜层或透明导电材料膜层。总之,现有技术中可以实现载流子传输功能的膜层都属于第一载流子传输功能层2可以采用的膜层。其中,当第一载流子传输功能层2采用透明导电膜层时,表面的透光层1可以与第一载流子传输功能层2是同一膜层,也可以是是进一步施加的减反射膜层,例如氮化硅膜层。
当光伏电池为钙钛矿电池时,第一载流子传输功能层2为第一载流子传输层,第二载流子传输功能层为第二载流子传输层,如图2所示。
对于第一载流子传输功能层2为第一载流子传输层2的情形,其可以电子传输层(ETL)或者为空穴传输层(HTL)。
其中,对于透光层1,本申请对于使用的物质不作任何限制,只要其实现相应的功能即可,例如可以使用氧化铟锡(ITO)、氟掺杂氧化锡(FTO)或ZnO作为透光层1。
对于光伏电池吸收层3,本申请不作任何限制,只要其能实现相应的功能即可,例如可以使用吸收光谱为300nm–1200nm的吸收层材料,所述吸收层材料例如钙钛矿吸收层材料、无机吸收层材料或者有机吸收层材料,钙钛矿吸收层材料可以为MAPbCl3、MAPbCl2.4Br0.6或MAPbBr3;无机吸收层材料可以为Si、硫化硒(CdS)、磷化镓(GaP)或砷化镓(GaAs);有机吸收层材料为PTB7/PC70BM等。
在一些实施方式中,本申请提供了另一种具体实施方式的光伏电池,如图25所示,所述光伏电池依次包括第一透光电极101、第一载流子传输功能层102、光伏吸收层103、第二载流子传输功能层104和第二透光电极105,其中,对于第一载流子传输功能层和第二载流子传输功能层,其与上述的光伏电池的定义相同。所述第一透光电极101的材料可以为氧化铟锡(ITO)或者氟掺杂氧化锡(FTO);所述第二透光电极105优选为金属,其次可以采用硅材料或铝浆烧结或TCO材料等。
在一些实施方式中,当光伏电池含有导电连接层时,所述导电连接层与第二透光电极105接触。
所述集成器件的使用温度<70℃(为光伏电池的工作温度区间),该温度范围既满足电极材料又满足电解液的稳定工作温度。
本申请使用纳米纤维结构电极,其比表面即化学反应接触面积或活化面积会大大增加,并且所述的纳米纤维电极具有较大的纵横比,使得电导率大幅增加,从而加速了超级电容器电解液中离子的运动速率,进而增加了超级电容器的功率密度和快速循环效率。
此外,对于纳米纤维电极,在传统方法中进行制备时,例如以PEDOT为例,传统的PEDOT纳米纤维合成方法难以在电极板上合成均匀致密的纳米纤维电极,本申请将光薄膜替换成具有纳米纤维的薄膜的一个重要作用是,提高右侧电极层61的吸光性能。
本申请提供了所述集成器件的制备方法,其包括:
制备包括第二载流子传输功能层41或第二载流子传输功能层41和导电连接层4-1-2的光伏电池;
在第二载流子传输功能层41上或在导电连接层4-1-2上制备纳米纤维电极42;
在电极7上制备第一电极层61,使用电解液5将光伏电池与所述第一电极层61连接使得纳米纤维电极42、电解液5、第一电极层61和电极7形成超级电容器,并形成集成器件,所述第一电极层61为纳米纤维电极。
对于制备光伏电池的方法,其是本领域常用的制备方法,本申请对其不作任何限制。
如图4A所示,本申请提供了一种具体实施方式的集成器件,所述集成 器件包括光伏电池(图中未示出)和超级电容器(图中未示出),所述超级电容器包括电极7、与电极接触的第一电极层6、纳米纤维电极42以及设置在第一电极层61和纳米纤维电极42之间的电解液5,所述纳米纤维电极42为薄膜结构和梳状结构的复合体,所述第一电极层61为纳米纤维电极,所述纳米纤维电极为薄膜结构。
对于上述集成器件的制备方法,其与上述的制备方法相同。
本申请提供了另一种光伏电池-超级电容器集成器件,如图6所示,所述集成器件包括光伏电池(图中未示出)和超级电容器(图中未示出),所述超级电容器包括电极7、与电极接触的第一电极层6、纳米纤维电极42、以及设置在第一电极层6和纳米纤维电极42之间的电解液5,所述第一电极层6为纳米纤维电极,所述纳米纤维电极为薄膜结构和梳状结构的复合体。
对于电极7、第一电极层6和电解液5,参见上述的说明。
对于第二载流子传输功能层41,其材料可以为聚合物、碳材料或过渡金属氧化物,所述聚合物为P3HT或PCBM,所述碳材料为氧化石墨烯,所述过渡金属氧化物为氧化镍、氧化钼、氧化钨或氧化钒。
在一些实施方式中,所述光伏电池依次包括透光层1、第一载流子传输功能层2、光伏电池吸收层3和第二载流子传输功能层41。
其中,当光伏电池为钙钛矿电池时,当吸收层3为钙钛矿吸收层时,需要先将钙钛矿吸收层密封后再制备纳米纤维电极,避免钙钛矿吸收层在制备纳米纤维电极层过程(气相合成过程)中被腐蚀。
对于上述集成器件的制备方法,其与上述集成器件的制备方法相同。
如图4B所示,在本申请另一实施方式中,不同于附图4A所示的结构,本申请的薄膜结构的另一侧的表面与光伏电池的表面接触并形成层间电连接,薄膜结构的所述另一侧的表面同样具有绒面结构或所述另一侧的表面具有与薄膜结构的一体形成的梳状纳米纤维。以PEDOT纳米纤维电极为例,以附图4A的结构为基础,在42的薄膜平面一侧重复纳米纤维或薄膜纳米纤维复合体的实验步骤,得到图4B所示的两侧皆为绒面或纳米纤维的结构。或者可以采用具有凹凸绒面的基体生长纳米纤维电极,使其表面侧和背面侧均具有对应的绒面结构。
本申请提供了另一种集成器件,如图7所示,所述集成器件包括光伏电 池(图中未示出)和超级电容器(图中未示出),所述超级电容器包括电极7、与电极接触的第一电极层6、纳米纤维电极42、以及设置在第一电极层6和纳米纤维电极42之间的电解液5,所述第一电极层6为纳米纤维电极,所述纳米纤维电极为薄膜结构和梳状结构的复合体,所述纳米纤维电极42为薄膜结构。
对于上述集成器件的制备方法,其与上述集成器件的制备方法相同。
在一些实施方式中,当薄膜器件为电致变色反应装置时,所述电极为第一透明电极。在一些实施方式中,所述第一电极层为离子存储层。在一些实施方式中,所述电致变色反应装置还包含电致变色反应电极层,在第一电极层和电致变色电极层之间设置电解液层。在一些实施方式中,所述薄膜器件还包含第二电极。在一些实施方式中,所述纳米纤维电极兼做第二电极。在一些实施方式中,所述纳米纤维电极兼做第二电极和电致变色电极。在一些实施方式中,所述纳米纤维电极的长度为50-500nm,优选为50-100nm。
所述电致变色是指电极材料在外加电场的作用下发生稳定、可逆的颜色变化的现象,在外观上表现为颜色和透明度的可逆变化。在微观层面,变色的机理是电极材料发生稳定,可逆的氧化还原反应,在反应过程中,材料的能级发生改变,从而表象为颜色的变化。其中电致变色的速率受制于稳定,可逆的氧化还原反应速率,而参与反应的电极材料的电阻是决定因素之一,减小电阻可有效增加反应速率,从而加速变色,其电致变色现象如图8所示(电极为PEDOT),其中,图A是循环伏安曲线示意图,出现在正负电压处的峰分别代表氧化反应和还原反应,其表明了PEDOT电极在+1.4V和-1.8V的电压区间可以稳定循环;图B和图C示出了PEDOT电极在1.4V和-1.8V时的颜色变化,其中,图B为PEDOT电极在电压为1.4V时为淡蓝色,图C为PEDOT电极在电压为-1.8V时为深紫色。
在一些实施方式中,所述离子存储层的材料可以为金属氧化物或复合材料,所述金属氧化物例如可以为氧化镍(NiO),氧化铁(Fe2O3),氧化钴(Co3O4)等;所述复合材料例如可以为氧化镍/还原氧化石墨烯(NiO/rGO)。
在一些实施方式中,如图9a所示,所述电致变色反应装置依次包括纳 米纤维电极(图中未示出)、第二电极层301、电致变色电极层302、电解液层303、离子存储层304和第一透明电极层305,所述纳米纤维电极设置在光伏电池和第二电极层301之间。
在一些实施方式中,如图9b所示,所述电致变色反应装置依次包括兼做第二电极的纳米纤维电极、电致变色电极层302、电解液层303、离子存储层304和第二电极层305,所示光伏电池通过兼做第二电极的纳米纤维电极与薄膜电化学器件连接。
在一些实施方式中,所述电解液层303可以为水相电解液层或有机相电解液层,优选的,水相电解液可以为H2SO4/HCl/Na2SO4/NaCl/LiClO4–PVA-H2O,有机相电解液可以为Na2SO4/NaCl/LiClO4–PVA-乙腈、碳酸丙烯酯。
使用上述所述的电解液,各有优势,对于水相电解液,其比较环保,但是开路电压较低(<1.23V),而对于有机相电解液,开路电压较高(1.5-3V),但有机溶剂不环保。
在一些实施方式中,其工作原理为:利用光伏电池所产生的电能改变电致变色电极层302的电压,如图10和图11所示,当第一开关电路12和第二开关电路13分别连接到第二外接电路11和第一外接电路10时,通过滑动变阻器13的控制,使得电致变色材料进行连续的氧化还原反应,从而达到连续变色的功能。
所述变色速率一般指在2种相同颜色间切换的速率,计时器可测。此外,通过循环伏安法(CV)确定的最大可逆循环速率也可体现,一般来说,循环速率越大,变色速率越快。
对于电致变色反应装置,在外接电路连接时,需要将第一开关电路12和第二开关电路13分别连接到第二外接电路11和第一外接电路10,从而控制电流方向,以改变电致变色材料氧化或还原的状态从而增加其颜色的跨度。
在一个实施方案中,所述电解液层303为有机相电解液层,其具有更宽的开路电压,从而使得电致变色层经历更多的氧化还原反应,从而带来更多的颜色变化。
在一个实施方案中,所述纳米纤维电极兼做第二电极和电致变色电极 (如图11所示),优选的,所述纳米纤维电极的电导率≥1×102S/m,即为了充分利用热增强半导体电导率,可以将纳米纤维电极紧贴在电致变色电极层上。
当纳米纤维电极的电导率≥1×102S/m时,可稳定发生可逆的氧化还原反应,反应前后颜色变化满足CIE Lab的色差值(ΔE)大于1。
在一些实施方式中,所述纳米纤维电极的长度为50-500nm,优选为50-100nm。
本申请将纳米纤维电极兼做电致变色电极层,可以使电致变色材料进行连续的氧化还原反应,从而达到连续变色的功能。
本申请所述纳米纤维电极结构具有薄膜结构,薄膜结构一侧的表面为绒面或者是薄膜结构和梳状结构的复合体,可以进一步增大电极的接触导电面积,充分增加与电解液层303的接触面,从而在同样的入射光照射和充电电压下,反应离子与电极的之间的反应面积更大,电解液层303可以更加充分与具有纳米纤维结构的电极层的纳米导电结构接触导电,从而更进一步提升集成的电致变色器件中的电极活性;同时,更大的表面积可以增强电致变色器件的电化学反应面积,更有利于进一步提升电致变色器件的变色反应速度和显色的均匀性。
本申请提供了一种制备上述所述集成器件的方法,其包括:
制备含有第二载流子传输功能层或第二载流子传输功能层和导电连接层的光伏电池;
在第二载流子传输功能层上或导电连接层上制备纳米纤维电极;
在第一透明电极上制备第一电极层(离子存储层),使用电解液将光伏电池与所述第一电极层(离子存储层)连接使得纳米纤维电极、电解液、第一电极层(离子存储层)和第一透明电极形成薄膜器件,并形成集成器件。
在一些实施方式中,所述化学反应装置具有纳米纤维电极、电催化材料层和反应腔体,所述电催化材料层的至少一部分暴露在反应腔体中,且所述反应腔体具有两个以上的开口,所述光伏电池与化学反应装置的纳米纤维电极接触。
如图12所示,所述集成器件包括光伏电池100和化学反应装置300,所述化学反应装置具有纳米纤维电极200、电催化材料层和反应腔体(图中未 示出),所述电催化材料层的至少一部分暴露在反应腔体中,且所述反应腔体具有两个以上的开口,所述光伏电池100与化学反应装置300的纳米纤维电极200接触,所述纳米纤维电极200可以为薄膜结构或者为薄膜结构和梳状结构的复合体。
在一些实施方式中,所述化学反应装置具有两个对称设置的电极层,所述纳米纤维电极位于靠近光伏电池一侧的电极层的外侧并与光伏电池接触。在一个实施方式中,所述化学反应装置具有两个对称设置的电极层,所述纳米纤维电极兼做靠近光伏电池一侧的电极层并与光伏电池接触,如其可以做膜电极型电解池中的第一电极层311。
在一些实施方式中,所述化学反应装置的纳米纤维电极的厚度为200nm-10μm,例如所述化学反应装置的纳米纤维电极的厚度可以为200nm、500nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm等。
在一些实施方式中,所述反应腔体由气体扩散层或者电解槽与膜状物质构成,所述膜状物质设置在反应腔体中间。在一些实施方式中,所述膜状物质为离子交换膜或者隔膜;优选地,所述离子交换膜为质子交换膜或阴离子交换膜。在一些实施方式中,所述气体扩散层具有多孔结构,优选地,所述气体扩散层为多孔碳或magneli相亚氧化钛。
当反应腔体由气体扩散层与膜状物质构成时,其示意图如图13的310,该化学反应装置为膜电极型电解池,所述膜状物质为离子交换膜314,所述离子交换膜可以为质子交换膜,例如全氟磺酸膜,如Nafion膜,或者为阴离子交换膜,如季铵化聚苯乙烯。在一些实施方式中,如图13的310所示,所述气体扩散层对称设置,分别为第一气体扩散层312和第二气体扩散层316,所述气体扩散层具有多孔结构,优选地,所述气体扩散层为多孔碳或magneli相亚氧化钛。
所述电催化材料层包含第一催化材料层313和第二催化材料层315,所述第一催化材料层313和所述第二催化材料层315对称设置在所述反应腔体内侧并与第一气体扩散层312和第二气体扩散层316接触,所述离子交换膜314位于第一催化材料层313和第二催化材料层315中间。
所述第一催化材料层313的材料选自钌、铱、钯、铂、镍、钴、锰、 铁、锂、锡、镧和锶中的一种或两种以上的物质或其合金或其复合氧化物、氢氧化物、氢过氧化物、磷化物、磷酸盐(磷氧化物)磷氧化物、氮化物、硼化物或硫化物。
所述第二催化材料层315的材料选自铂、钯、铱、铼、铑、镍、钴、钨、铜、银、金、铋、铁和锌中的一种或两种以上的物质或其合金或其复合氧化物、氢氧化物、氢过氧化物、磷化物、磷酸盐(磷氧化物)、氮化物、硼化物或硫化物
对于第一催化材料层313和第二催化材料层315,当第一催化材料层313作为阳极催化剂层,则第二催化材料层315为阴极催化剂层;当第一催化材料层313作为阴极催化剂层,则第二催化材料层315为阳极催化剂层。
在一些实施方式中,当所述化学反应装置为膜电极型电解池时,所述反应腔体具有出气口和进水口,优选的,在所述气体扩散层的一端设置有出气口,并在所述第二催化材料层的一端设置有进水口,所述出气口和进水口位于反应腔体的同一端,如图13中的310所示,分别在第一气体扩散层312和第二气体扩散层316的一端对称设置出气口318,并在第二催化材料层315的一端设置有进水口319,所述出气口318和进水口319位于反应腔体的同一端。
在一些实施方式中,所述膜电极型电解池还包括第一电极层和第二电极层,如图13中的310所示,所述第一电极层311和第二电极层317对称设置在所述第一气体扩散层312和第二气体扩散层316的外侧,并分别与第一气体扩散层312和第二气体扩散层316接触。
对于第一电极层311和第二电极层317所使用的材料,本申请不作任何限制,例如,可以使用金属如铂(Pt)。
在一些实施方式中,所述纳米纤维电极兼做靠近光伏电池一侧的电极层,如图16所示的200&311。
在一些实施方式中,所述集成器件还包含外接电路400(如图12所示),所述外接电路用于将光伏电池的电能提供给化学反应装置,优选的,所述外接电路有三种连接方式,其中,在膜电极型电解池中,其中的一种连接方式如图17所示,光伏电池的第一透明电极101与膜电极型电解池的第一电极层311通过第一电线401连接,第二透光电极105与膜电极型电解 池的第二电极层317通过第二电线402连接;
在膜电极型电解池中,另一种连接方式如图18所示,其中光伏电池的第一透明电极101与膜电极型电解池的第二电极层317通过第三电线403连接,第二透光电极105与膜电极型电解池的第一电极层311通过第四电线404连接;
在膜电极型电解池中,另一种连接方式如图19所示,其中,光伏电池的第一透明电极101与膜电极型电解池的第二电极层通过第五电线405连接,对于该种连接方式,需要满足光伏电池的第二透光电极105、纳米纤维电极200和膜电极型电解池的第一电极层311的能级匹配,以保证载流子可以正常传输。
在一些实施方式中,当纳米纤维电极兼做膜电极型电解池的第一电极层311时,其连接方式与上述相同。
在一些实施方式中,膜电极型电解池310的工作原理:电解液如水从膜电极型电解池进水口319经第二催化剂层315流入,部分离子通过离子交换膜314流入到第一催化剂层313。在光伏电池提供的外加电场作用下,氧气和氢气产生于催化剂层表面,并通过第一气体扩散层312和第二气体扩散层316以及通过膜电极型电解池出气口318传输出并被收集。
对于膜电极型电解池310,其制备方法如下:
在离子交换膜314两侧分别涂覆第一催化剂层313和第二催化剂层315形成反应腔体,然后通过热压法将第一气体扩散层312和第二气体扩散层316对称压在反应腔体两侧;接着封装第一透明电极311和纳米纤维电极以及第二电极317。
在一些实施方式中,当反应腔体由电解槽与膜状物质构成时,其如图14中的320所示,对于所述电极槽323,本申请不做任何限制,只要其能够实现相应的功能即可,例如,电解槽323可以为不锈钢电解槽。所述膜状物质可以为隔膜324,本申请不做任何限制,例如,其可以为绝缘的但可导离子的隔膜,例如聚丙烯(PP)和聚乙烯薄膜(PE)中得任意之一,或其混合形成的双层或多层隔膜,如Celgard隔膜,优选Celgard3501、Celgard2400隔膜。
在一些实施方式,所述电催化材料层包含第三催化材料层322和第四催 化材料层326,所述第三催化材料层322和所述第四催化材料层326对称设置在所述反应腔体外侧并与电解槽323接触。
对于第三催化材料层322的材料,其与第一催化材料层313的材料相同;
对于第四催化材料层326的材料,其与第二催化材料层315的材料相同;
对于第三催化材料层322和第四催化材料层326,当第三催化材料层322作为阳极催化剂层,则第四催化材料层326为阴极催化剂层;当第三催化材料层322作为阴极催化剂层,则第四催化材料层326为阳极催化剂层。
在一个实施方式中,当所述化学反应装置为膜电极型电解池时,所述反应腔体具有出气口和进水口,优选的,在所述电解槽的一端设置有出气口,并在所述电解槽的另一端设置有进水口,如图14中的320所示,所述出气口328对称设置在所述电解槽323的一端,所述进气口325设置在电解槽323的另一端。
在一些实施方式中,所述电解池型电解池还包括第三电极层和第四电极层,如图14中的320所示,所述第三电极层321和第四电极层327对称设置在所述第三催化材料层322和第四催化材料层326的外侧,并分别与第三催化材料层322和第四催化材料层326。
对于第三电极层321和第四电极层327所使用的材料,本申请不作任何限制,例如,可以使用金属如铂(Pt)。
在一些实施方式中,当化学反应装置为电解槽型电解池时,其连接方式与膜电极型电解池相同。
在一些实施方式中,电解槽型电解池320的工作原理是:电解液如水从电解槽电解池进水口325进入电解槽323,在光伏电池提供的外加电场作用下,氧气和氢气产生于第一催化剂层322和第二催化剂层326表面,并通过电解槽电解池出气口328传输出并被收集。
对于电解槽型电解池320,其制备方法如下:
在电解槽323两侧分别涂覆第三催化剂层322和第四催化剂层326形成反应腔体,接着封装第三透明电极321和纳米纤维电极以及第二电极327形成电解槽型电解池320。
对于二氧化碳还原电解池,其与电解槽型电解池的制备方法相同。
对于上述所述制氢电解池,为了收集干燥的氢气,可以将进水口设置在制氧电极的一侧。
在一些实施方式中,当化学反应装置为二氧化碳还原电解时,其如图15中的300所示,包括第三电极层321、第三催化剂层322、电解槽323、隔膜324、第四催化剂层326和第四电极层327,在电解槽323的一端设置有电解槽电解池出气口328,在电解槽323的另一端设置有二氧化碳进气口329。
在一个实施方式中,所述纳米纤维电极兼做靠近光伏电池一侧的电极层,即纳米纤维电极200可以兼做第一电极层311(如图16所示)、第三电极层321或二氧化碳还原电解池中的第三电极层(图中未示出),所述纳米纤维电极200是导电的,所述纳米纤维电极可以为薄膜结构或梳状结构或者为薄膜结构和梳状结构的复合体。
在一些实施方式中,所述光伏电池-化学反应装置集成器件包括光伏电池和化学反应装置,所述化学反应装置具有纳米纤维电极200、电催化材料层和反应腔体,所述电催化材料层的至少一部分暴露在反应腔体中,且所述反应腔体具有两个以上的开口,所述光伏电池与化学反应装置的纳米纤维电极200接触,如图20所示,所述光伏电池依次包括第一透明电极101、第一载流子传输层102、光伏吸收层103、第二载流子传输层104和第二透光电极105,所述化学反应装置为膜电极型电解池,所述膜电极型电解池依次包括由第一气体扩散层312、第二气体扩散层316和离子交换膜314构成的反应腔体,所述电催化材料层包括第一催化剂层313和第二催化剂层315,所述第一催化剂层313和第二催化剂层315设置在反应腔体中并分别与第一气体扩散层312和第二气体扩散层316接触,在反应腔体的外侧对称设置有第一电极层311和第二电极层317,所述纳米纤维电极200设置在靠近光伏电池的第一电极层311上,并在第一气体扩散层312和第二气体扩散层316的相同端处分别设置有膜电极型电解池出气口(图中未示出),在第二催化剂层315的端处设置有膜电极型电解池进水口(图中未示出),其与膜电极型电解池出气口位于同一端,所述集成器件还包括外接电路(图中未示出),其中,光伏电池的第一透明电极101通过第一电线401与膜电极型 电解池中的第一电极层311连接,第二透光电极105通过第二电线402与第二电极层317连接,所述纳米纤维电极200为薄膜结构。
在一个实施方式中,所述光伏电池-化学反应装置集成器件包括光伏电池和化学反应装置,所述化学反应装置具有纳米纤维电极200、电催化材料层和反应腔体,所述电催化材料层的至少一部分暴露在反应腔体中,且所述反应腔体具有两个以上的开口,所述光伏电池与化学反应装置的纳米纤维电极200接触,如图21所示,所述光伏电池依次包括第一透明电极101、第一载流子传输层102、光伏吸收层103、第二载流子传输层104和第二透光电极105,所述化学反应装置为电解槽型电解池,所述电解槽型电解池包括由电解槽323和隔膜324构成的反应腔体,第三催化剂层322和第四催化剂层326设置在反应腔体外侧,并分别与电解槽323接触,在第三催化剂层322和第四催化剂层326的外侧分别设置有第三电极层321和第四电极层327,所述纳米纤维电极200设置在靠近光伏电池的第三电极层321上,在电解槽323的一端对称设置有电解槽型电解池出气口(图中未示出),在电解槽323的另一端设置有电解槽型电解池进水口(图中未示出),所述集成器件还包括外接电路(图中未示出),其中,光伏电池的第一透明电极101通过第一电线401与第三电极层321连接,第二透光电极105通过第二电线402与第四电极层327连接,所述纳米纤维电极200为薄膜结构。
在一个实施方式中,所述光伏电池-化学反应装置集成器件包括光伏电池和化学反应装置,所述化学反应装置具有兼做靠近光伏电池电极层的纳米纤维电极、电催化材料层和反应腔体,所述电催化材料层的至少一部分暴露在反应腔体中,且所述反应腔体具有两个以上的开口,所述光伏电池与化学反应装置的兼做靠近光伏电池电极层的纳米纤维电极接触,如图22所示,所述兼做靠近光伏电池电极层的纳米纤维电极为200&311,并且其兼做第一电极层,所述光伏电池依次包括第一透明电极101、第一载流子传输层102、光伏吸收层103、第二载流子传输层104和第二透光电极105,所述化学反应装置为膜电极型电解池,所述膜电极型电解池包括由第一气体扩散层312、离子交换膜314和第二气体扩散层316构成的反应腔体,第一催化剂层313和第二催化剂层315设置在反应腔体中并分别与第一气体扩散层312和第二气体扩散层316接触,在反应腔体的外侧对称设置有兼做第一 电极层的纳米纤维电极200&311和第二电极层317,并在第一气体扩散层312和第二气体扩散层316的相同端处分别设置有膜电极型电解池出气口(图中未示出),在第二催化剂层315的端处设置有膜电极型电解池进水口(图中未示出),其与膜电极型电解池出气口位于同一端,所述集成器件还包括外接电路(图中未示出),其中,光伏电池的第一透明电极101通过第三电线403与膜电极型电解池中的第二电极层317连接,第二透光电极105通过第四电线404与兼做第一电极层的纳米纤维电极200&311连接,所述纳米纤维电极200&311为薄膜结构。
在一个实施方式中,所述光伏电池-化学反应装置集成器件包括光伏电池和化学反应装置,所述化学反应装置具有兼做靠近光伏电池电极层的纳米纤维电极、电催化材料层和反应腔体,所述电催化材料层的至少一部分暴露在反应腔体中,且所述反应腔体具有两个以上的开口,所述光伏电池与化学反应装置的兼做靠近光伏电池电极层的纳米纤维电极接触,如图23所示,所述兼做靠近光伏电池电极层的纳米纤维电极200&311,其兼做第一电极层,所述光伏电池依次包括第一透明电极101、第一载流子传输层102、光伏吸收层103、第二载流子传输层104和第二透光电极105,所述化学反应装置为膜电极型电解池,所述膜电极型电解池包括由第一气体扩散层312、离子交换膜314和第二气体扩散层316构成的反应腔体,第一催化剂层313和第二催化剂层315设置在反应腔体中并分别与第一气体扩散层312和第二气体扩散层316接触,在反应腔体的外侧对称设置有兼做第一电极层的纳米纤维电极200&311和第二电极层317,并在第一气体扩散层312和第二气体扩散层316的相同端处分别设置有膜电极型电解池出气口(图中未示出),在第二催化剂层315的端处设置有膜电极型电解池进水口(图中未示出),其与膜电极型电解池出气口位于同一端,所述集成器件还包括外接电路(图中未示出),其中,所述光伏电池的第一透明电极101通过第三电线403与膜电极型电解池中的第二电极层317连接,第二透光电极105通过第四电线404与兼做第一电极层的纳米纤维电极200&311连接,所述纳米纤维电极200&311为薄膜结构和梳状结构的复合体。
在一个实施方式中,所述光伏电池-化学反应装置集成器件包括光伏电池和化学反应装置,所述化学反应装置具有兼做靠近光伏电池电极层的纳 米纤维电极、电催化材料层和反应腔体,所述电催化材料层的至少一部分暴露在反应腔体中,且所述反应腔体具有两个以上的开口,所述光伏电池与化学反应装置的兼做靠近光伏电池电极层的纳米纤维电极接触,如图24所示,所述兼做靠近光伏电池电极层的纳米纤维电极200&311,其兼做二氧化碳还原电解池的第三电极层,所述光伏电池依次包括第一透明电极101、第一载流子传输层102、光伏吸收层103、第二载流子传输层104和第二透光电极105,所述化学反应装置为二氧化碳还原电解池,所述二氧化碳还原电解池包括由电解槽323和隔膜324构成的反应腔体,第三催化剂层322和第四催化剂层326设置在反应腔体外侧,并分别与电解槽323接触,在第三催化剂层322和第四催化剂层326的外侧分别设置有兼做电极层的纳米纤维电极200&311和第四电极层327,在电解槽323的一端对称设置有电解槽电解池出气口328,在电解槽323的另一端设置有二氧化碳进气口329,所述集成器件还包括外接电路(图中未示出),其中,光伏电池的第一透明电极101通过第一电线401与兼做电极层的纳米纤维电极200&311连接,第二透光电极105通过第二电线402与第四电极层327连接,兼做电极层的纳米纤维电极200&311为薄膜结构和梳状结构的复合体。
本申请提供了一种制备上述所述集成器件的方法,其包括:
制备包含纳米纤维电极、电催化材料层和反应腔体的化学反应装置,并将所述化学反应装置的纳米纤维电极与光伏电池的第二电极连接得到所述集成器件。
在一些实施方式中,将上述制备得到的化学反应装置(如膜电极型电解池或电解槽型电解池或二氧化碳还原电解池)的纳米纤维电极与光伏电池的第二载流子传输层连接得到所述集成器件。
实施例
本申请对试验中所用到的材料以及试验方法进行一般性和/或具体的描述,在下面的实施例中,如果无其他特别的说明,%表示wt%,即重量百分数。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品,对于光伏电池,当其为钙钛矿电池时,第一载流子传输功能层2为第一载流子传输层2,第二载流子传输功能层41为第二载流子传输层 41。
实施例1钙钛矿电池-超级电容器集成器件
钙钛矿电池-超级电容器集成器件的结构如图4A所示,其中,透光层1为ITO透明电极,第一载流子传输层2为HTL,光伏电池吸收层3为钙钛矿MAPbBr3吸收层,其吸收光谱范围为300-550nm,第二载流子传输层41为PCBM,纳米纤维电极42为PEDOT纳米纤维电极,其是薄膜结构和梳状结构的复合体(如图3A所示),所述薄膜结构的厚度为100nm,所述梳状结构的单根纤维的长度为800nm,单根PEDOT纤维的直径为100nm(如图5所示),电解液5为H2SO4/PVA凝胶,第一电极层61为PEDOT薄膜结构,电极7为Ag电极。
使用常规的方法制备包含第二载流子传输层41的光伏电池,在电极7上制备第一电极层61,使用电解液5将光伏电池和第一电极层61连接使得第二载流子传输层41、电解液5、第一电极层61和电极7形成超级电容器,从而形成集成器件。
将本申请所述钙钛矿电池-超级电容器集成器件以及未使用具有纳米纤维结构的超级电容器电极所得到的集成器件进行储能效率的测定,所述储能效率指的是电容量的增加,其可以按照本领域常规的方法通过电化学工作站中的循环伏安曲线或恒电流放电曲线测试得到电容量,然后根据下述公式
能量密度E=1/2CV2,
功率密度P=E/t
其中C是电容量,V是工作电压,t是放电时间,所有参数均可通过恒电流充放电测试(GCD)得到,从而得到能量密度或功率密度,经测定,与未使用具有纳米纤维电极的超级电容器电极所得到的集成器件相比,所制备得到的钙钛矿电池-超级电容器集成器件的功率密度增加22.5%,能量密度增加15%。
实施例2钙钛矿电池-超级电容器集成器件
钙钛矿电池-超级电容器集成器件的结构如图6所示,其中,透光层1为ZnO透明电极,第一载流子传输层2为ETL,光伏电池吸收层3为钙钛 矿MAPbBr3吸收层,其吸收光谱范围为300-550nm,第二载流子传输层41为P3HT,纳米纤维电极42为PEDOT纳米纤维电极,其为薄膜结构和梳状结构的复合体,所述薄膜结构的厚度为100nm,所述梳状结构的单根纤维的长度为800nm,单根PEDOT纤维的直径为100nm(如图5所示),电解液5为H2SO4/PVA凝胶,第一电极层61为PPy纳米纤维电极,其为PPy薄膜结构和PPy梳状结构的复合体,所述PPy薄膜结构的厚度为200nm,所述PPy纳米纤维单根纤维的长度为500nm,单根PPy纤维的直径为200nm(如图5所示),电极7为FTO电极。
其制备方法与实施例1相同。
按照与实施例1相同的方法进行测定,与未使用具有纳米纤维电极的超级电容器电极所得到的集成器件相比,所制备得到的钙钛矿电池-超级电容器集成器件的功率密度增加30%,能量密度增加20%。
实施例3钙钛矿电池-超级电容器集成器件
钙钛矿电池-超级电容器集成器件的结构如图7所示,其中,透光层1为FTO透明电极,第一载流子传输层2为ETL,光伏电池吸收层3为钙钛矿MAPbCl3吸收层,其吸收光谱范围为300-420nm,第二载流子传输层41为P3HT,第二电极层42为PEDOT薄膜结构,电解液5为H2SO4/PVA凝胶,第一电极层6为PEDOT纳米纤维电极,其为薄膜结构和梳状结构的复合体,所述薄膜结构的厚度为50nm,所述梳状结构的单根纤维的长度为1200nm,单根PEDOT纤维的直径为100nm(如图5所示),电极7为Pt电极。
其制备方法与实施例1相同。
按照与实施例1相同的方法进行测定,与未使用具有纳米纤维结构的超级电容器电极所得到的集成器件相比,所制备得到的钙钛矿电池-超级电容器集成器件的功率密度增加30%,能量密度增加20%。
实施例4钙钛矿电池-电致变色反应装置的集成器件
钙钛矿电池-电致变色反应装置的集成器件的结构如图9b和图11所示,光伏电池100的的透光层为ITO透明电极,第一载流子传输层为HTL,光 伏吸收层使用MAPbBr3,其吸收光谱范围为300-550nm,第二载流子传输层为PCBM,电解液为BMIBF4/PVDF凝胶,纳米纤维电极(电致变色层)200&302为100nm的PEDOT薄膜层;固态电解液为水相的LiClO4–PVA-乙腈凝胶,离子出存储304为氧化镍,第二电极305为FTO。当开关电路12,13分别连接10,11时,可以通过控制滑动变阻器13来改变电致变色电极上的电压进而改变颜色,其变色速率与未使用纳米纤维电极的器件相比提高40%。
实施例5光伏电池-化学反应装置集成器件
其结构如图20所示,其中,所述光伏电池包括:光伏吸收层103为钙钛矿MAPbBr3,其吸收光谱范围是为300nm–550nm;第一透光电极101和第二透光电极105为ITO;第一载流子传输层102和第二载流子传输层104分别为PCBM和Spiro-OMeTAD;所述化学反应装置为膜电极型电解池,其包括:由第一气体扩散层312、第二气体扩散出316以及离子交换膜314构成的反应腔体,所述电催化材料层包括第一催化剂层313和第二催化剂层315,第一气体扩散层312和第二气体扩散出316为多孔碳;所述第一催化剂层313和第二催化剂层315设置在反应腔体中并分别与第一气体扩散层312和第二气体扩散层316接触,在反应腔体的外侧对称设置有第一电极层311和第二电极层317,所述纳米纤维电极200设置在靠近光伏电池的第一电极层311上,所述纳米纤维电极200为薄膜结构,其厚度为400nm的PPy薄膜层,在第一气体扩散层312和第二气体扩散层316的相同端处分别设置有膜电极型电解池出气口(图中未示出),在第二催化剂层315的端处设置有膜电极型电解池进水口(图中未示出),其与膜电极型电解池出气口位于同一端,所述集成器件还包括外接电路(图中未示出),其中,所述光伏电池的第一透光电极101通过第一电线401与膜电极型电解池中的第一电极层311连接,第二透光电极105通过第二电线402与第二电极层317连接,第一电极层311和第二电极层317为Pt;第一催化剂层313和第二催化剂层315分别为Pt和BiVO4;离子交换膜314为Nafion,其光伏制氢效率(STH)与未使用纳米纤维电极的器件相比提高10%。
其中STH=电解制氢效率*光伏发电效率,分别测定集成器件的电解制 氢效率及光伏发电效率而得到,而电解制氢效率和光伏发电效率均采用本领域常规的方法进行测定。
实施例6光伏电池-化学反应装置集成器件
其结构如图21所示,所述光伏电池包括:光伏吸收层103为钙钛矿MAPbCl3,其吸收光谱范围为300nm–760nm,第一透光电极101和第二透光电极105为ITO;第一载流子传输层102和第二载流子传输层104分别为为PCBM和Spiro-OMeTAD;所述化学反应装置为电解槽型电解池,其包括:由电解槽323和隔膜324构成的反应腔体,第三催化剂层322和第四催化剂层326设置在反应腔体外侧,并分别与电解槽323接触,在第三催化剂层322和第四催化剂层326的外侧分别设置有第三电极层321和第四电极层327,所述纳米纤维200设置在靠近光伏电池的第三电极层321上,在电解槽323的一端对称设置有电解槽型电解池出气口(图中未示出),在电解槽323的另一端设置有电解槽型电解池进水口(图中未示出),在电解槽323的一端对称设置有电解槽型电解池出气口(图中未示出),在电解槽323的另一端设置有电解槽型电解池进水口(图中未示出),所述集成器件还包括外接电路(图中未示出),其中,所述光伏电池的第一透明电极101通过第一电线401与电解槽型电解池中的第三电极层321连接,第二透光电极105通过第二电线402与第四电极层327连接,第三电极层321和第四电极层327为Pt;第三催化剂层322和第四催化剂层326分别为Pt和BiVO4;电解槽323为不锈钢电解槽;隔膜324为Celgard3501,设置在光伏电池和电解槽型电解池之间的纳米纤维电极200为薄膜结构,其为400nm的PPy薄膜结构,按照与实施例1相同的方法进行测定,其制氢效率提高10%。
实施例7光伏电池-化学反应装置集成器件
其结构如图22所示,所述光伏电池包括:光伏吸收层103为钙钛矿MAPbBr3,其吸收光谱范围为300nm–550nm;第一透光电极101和第二透光电极105为ITO;第一载流子传输层102和第二载流子传输层104分别为为MoS2和TiO2;所述化学反应装置为膜电极型电解池,其包括:由第一气体扩散层312、离子交换膜314和第二气体扩散层316构成的反应腔体,第 一催化剂层313和第二催化剂层315设置在反应腔体中并分别与第一气体扩散层312和第二气体扩散层316接触,在反应腔体的外侧对称设置有兼做第一电极层的纳米纤维电极200&311和第二电极层317,并在第一气体扩散层312和第二气体扩散层316的相同端处分别设置有膜电极型电解池出气口(图中未示出),在第二催化剂层315的端处设置有膜电极型电解池进水口(图中未示出),其与膜电极型电解池出气口位于同一端,所述集成器件还包括外接电路(图中未示出),其中,光伏电池的第一透明电极101通过第三电线403与膜电极型电解池中的第二电极层317连接,第二透光电极105通过第四电线404与兼做第一电极层的纳米纤维电极200&311连接,第二电极层317为Au;第一气体扩散层312和第二气体扩散层316为Ebonex;第一催化剂层313和第二催化剂层315分别为Fe2O3和Pd;离子交换膜314为季铵化聚苯乙烯;设置在光伏电池和膜电极型电解池之间的兼做第一电极层的纳米纤维电极200&311为薄膜结构,其为400nm的PEDOT:PSS薄膜结构,按照与实施例1相同的方法进行测定,其制氢效率提高15%。
实施例8光伏电池-化学反应装置集成器件
其结构如图23所示,所述光伏电池包括:光伏吸收层103为GaAs,其吸收光谱范围为300nm–800nm;第一透光电极101和第二透光电极105为FTO;第一载流子传输层102和第二载流子传输层104分别为PCBM和Spiro-OMeTAD;所述化学反应装置为膜电极型电解池,其包括:由第一气体扩散层312、离子交换膜314和第二气体扩散层316构成的反应腔体,第一催化剂层313和第二催化剂层315设置在反应腔体中并分别与第一气体扩散层312和第二气体扩散层316接触,在反应腔体的外侧对称设置有兼做第一电极层的纳米纤维电极200&311和第二电极层317,并在第一气体扩散层312和第二气体扩散层316的相同端处分别设置有膜电极型电解池出气口(图中未示出),在第二催化剂层315的端处设置有膜电极型电解池进水口(图中未示出),其与膜电极型电解池出气口位于同一端,所述集成器件还包括外接电路(图中未示出),其中,所述光伏电池的第一透明电极101通过第三电线403与膜电极型电解池中的第二电极层317连接,第二透光电极105通过第四电线404与兼做第一电极层的纳米纤维电极200&311连接,第 二电极层317为Au;第一气体扩散层312和第二气体扩散层316为多孔碳;第一催化剂层313和第二催化剂层315分别为IrO2和CuO2;离子交换膜314为Nafion;设置在光伏电池和膜电极型电解池之间的兼做第一电极层的纳米纤维电极200&311为薄膜结构和梳状结构的复合体,薄膜结构为500nm厚度的PEDOT薄膜结构,梳状结构中单根PEDOT纤维的直径为200nm,单根纤维长度为10μm,按照与实施例1相同的方法进行测定,其制氢效率提高20%。
实施例9光伏电池-化学反应装置集成器件
其结构如图24所示,其中,所述光伏电池包括:光伏吸收层103为钙钛矿MAPbCl3,其吸收光谱范围为300nm–760nm,第一透光电极101和第二透光电极105为ITO;第一载流子传输层102和第二载流子传输层104分别为为PCBM和Spiro-OMeTAD;所述化学反应装置为二氧化碳还原电解池,其包括:由电解槽323和隔膜324构成的反应腔体,第三催化剂层322和第四催化剂层326设置在反应腔体外侧,并分别与电解槽323接触,在第三催化剂层322和第四催化剂层326的外侧分别设置有兼做电极层的纳米纤维电极200&311和第四电极层327,在电解槽323的一端对称设置有电解槽电解池出气口328,在电解槽323的另一端设置有二氧化碳进气口329,所述集成器件还包括外接电路(图中未示出),其中,光伏电池的第一透明电极101通过第一电线401与兼做电极层的纳米纤维电极200&311连接,第二透光电极105通过第二电线402与第四电极层327连接,兼做第一电极层的纳米纤维电极200&311、第四电极层327为Pt;第三催化剂层322和第四催化剂层326分别为Pt和BiVO4;电解槽323为不锈钢电解槽;隔膜324为Celgard3501,设置在光伏电池和电解槽型电解池之间的兼做第一电极层的纳米纤维电极200&311为薄膜结构和梳状结构的复合体,所述薄膜结构为500nm厚度的PEDOT薄膜结构,梳状结构中单根PEDOT纤维的直径为200nm,单根纤维长度为15μm,按照与实施例1相同的方法进行测定,其二氧化碳还原效率提高25%。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者 是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (10)

  1. 一种集成器件,所述集成器件包括层叠的光伏电池和薄膜电化学器件,所述薄膜电化学器件含有纳米纤维电极,所述薄膜电化学器件通过纳米纤维电极与所述光伏电池接触,所述纳米纤维电极具有薄膜结构;
    其中,所述薄膜结构的一侧的表面具有绒面结构,且所述薄膜电化学器件的内部反应介质的至少一部分被配置在所述绒面表面上以与薄膜结构相接触;或者,所述薄膜结构的一侧的表面上具有与薄膜结构的本体一体形成的梳状纳米纤维,所述薄膜电化学器件的内部反应介质的至少一部分填充在薄膜结构表面上的所述梳状纳米纤维之间的间隙中;所述薄膜结构的另一侧的表面与光伏电池的表面接触并形成层间电连接。
  2. 根据权利要求1所述的集成器件,其中,所述薄膜结构的所述另一侧的表面具有绒面结构或所述另一侧的表面具有与薄膜结构的一体形成的梳状纳米纤维。
  3. 根据权利要求1或2所述的集成器件,其中,所述薄膜结构为纳米纤维紧密堆嵌形成的薄膜结构,所述绒面结构或所述梳状纳米纤维为所述薄膜结构的所述纳米纤维一体延伸形成。
  4. 根据权利要求3所述的集成器件,其中,所述梳状结构单根纤维的纵横比>100,单根纤维的直径<300nm。
  5. 根据权利要求3所述的集成器件,其中,所述纳米纤维电极的层间方向延伸的最大尺寸为0.05-14μm。
  6. 根据权利要求3所述的集成器件,其中,所述纳米纤维电极的材料为PEDOT、PPy、PANi或P3HT。
  7. 根据权利要求1-6任一项所述的集成器件,其中,所述光伏电池依次包括透光层、第一载流子传输功能层、光伏吸收层和第二载流子传输功能层,所述第二载流子传输功能层与所述薄膜结构的所述另一侧的表面接触。
  8. 根据权利要求1-6中任一项所述的集成器件,其中,所述光伏电池依次包括透光层、第一载流子传输功能层、光伏吸收层、第二载流子传输功能层和导电连接层,所述薄膜结构层叠在所述导电连接层上,且所述薄膜结构的所述另一侧的表面与所述导电连接层连接。
  9. 根据权利要求8所述的集成器件,其中,所述导电连接层的层间电导 率>10S/cm。
  10. 根据权利要求8所述的集成器件,其中,所述导电连接层的层间电导率为层内延伸方向的电导率的50倍以上。
PCT/CN2023/109391 2022-07-27 2023-07-26 一种包含光伏电池和薄膜电化学器件的集成器件 WO2024022402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210896042.2A CN117524755A (zh) 2022-07-27 2022-07-27 一种包含光伏电池和薄膜电化学器件的集成器件
CN202210896042.2 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024022402A1 true WO2024022402A1 (zh) 2024-02-01

Family

ID=89705356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109391 WO2024022402A1 (zh) 2022-07-27 2023-07-26 一种包含光伏电池和薄膜电化学器件的集成器件

Country Status (2)

Country Link
CN (1) CN117524755A (zh)
WO (1) WO2024022402A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405545A (zh) * 2009-02-25 2012-04-04 应用材料公司 具有三维阳极结构的薄膜电化学能量存储器件
CN102800734A (zh) * 2012-09-04 2012-11-28 上海中科高等研究院 太阳能发电储电集成器件
CN103400889A (zh) * 2013-07-02 2013-11-20 复旦大学 全固态纤维状同轴聚合物太阳电池和超级电容器集成器件及其制备方法
CN104103429A (zh) * 2014-07-22 2014-10-15 江西科技师范大学 超级电容器纳米线结构的聚(羧基吲哚)膜电极及其制备方法
CN104900672A (zh) * 2015-04-27 2015-09-09 电子科技大学 一种钙钛矿太阳能电池-超级电容器结合的集成器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405545A (zh) * 2009-02-25 2012-04-04 应用材料公司 具有三维阳极结构的薄膜电化学能量存储器件
CN102800734A (zh) * 2012-09-04 2012-11-28 上海中科高等研究院 太阳能发电储电集成器件
CN103400889A (zh) * 2013-07-02 2013-11-20 复旦大学 全固态纤维状同轴聚合物太阳电池和超级电容器集成器件及其制备方法
CN104103429A (zh) * 2014-07-22 2014-10-15 江西科技师范大学 超级电容器纳米线结构的聚(羧基吲哚)膜电极及其制备方法
CN104900672A (zh) * 2015-04-27 2015-09-09 电子科技大学 一种钙钛矿太阳能电池-超级电容器结合的集成器件

Also Published As

Publication number Publication date
CN117524755A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
Zeng et al. Integrated photorechargeable energy storage system: next‐generation power source driving the future
Li et al. Low‐cost counter‐electrode materials for dye‐sensitized and perovskite solar cells
Boruah et al. Photo-rechargeable zinc-ion capacitor using 2D graphitic carbon nitride
Liu et al. Integrated solar capacitors for energy conversion and storage
Vázquez-Galván et al. High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries
Das et al. Bifunctional photo-supercapacitor with a new architecture converts and stores solar energy as charge
Sun et al. Sputtered NiOx films for stabilization of p+ n-InP photoanodes for solar-driven water oxidation
Skunik-Nuckowska et al. Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor
KR100882503B1 (ko) 염료감응 태양전지용 고효율 대향전극 및 그 제조방법
Lan et al. Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly (acrylonitrile-co-styrene)/NaI+ I2
Xia et al. Importance of blocking layers at conducting glass/TiO2 interfaces in dye-sensitized ionic-liquid solar cells
Zhao et al. High capacity WO3 film as efficient charge collection electrode for solar rechargeable batteries
Banerjee et al. Carbon nanomaterials in renewable energy production and storage applications
Prabakaran et al. Solid state dye sensitized solar cells: Eosin-Y sensitized TiO2–ZnO/PEO–PVDF-HFP-MMT electrolytes/MWCNT–Nafion® counter electrode
CN103680994A (zh) 一种高比容电极薄膜及其制造方法
Manopriya et al. The prospects and challenges of solar electrochemical capacitors
WO2022027907A1 (zh) 负极材料、负极、钾离子电池及其制备方法
Koussi-Daoud et al. Gold nanoparticles and poly (3, 4-ethylenedioxythiophene)(PEDOT) hybrid films as counter-electrodes for enhanced efficiency in dye-sensitized solar cells
Xu et al. Highly effective 2D layered carbides counter electrode for iodide redox couple regeneration in dye-sensitized solar cells
Bi et al. In-plane micro-sized energy storage devices: From device fabrication to integration and intelligent designs
Balasubramaniam et al. A review on multifunctional attributes of zinc antimonate nanostructures towards energy and environmental applications
Samson et al. Synthesis of rGO/NiFe2O4 nanocomposite as an alternative counter electrode material to fabricate Pt-free efficient dye sensitized solar cells
Liu et al. Low-cost and flexible poly (3, 4-ethylenedioxythiophene) based counter electrodes for efficient energy conversion in dye-sensitized solar cells
Vandana et al. Recent advances in the development, design and mechanism of negative electrodes for asymmetric supercapacitor applications
WO2024022402A1 (zh) 一种包含光伏电池和薄膜电化学器件的集成器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845610

Country of ref document: EP

Kind code of ref document: A1