WO2024022288A1 - 安装智能设备的方法及电子设备 - Google Patents

安装智能设备的方法及电子设备 Download PDF

Info

Publication number
WO2024022288A1
WO2024022288A1 PCT/CN2023/108889 CN2023108889W WO2024022288A1 WO 2024022288 A1 WO2024022288 A1 WO 2024022288A1 CN 2023108889 W CN2023108889 W CN 2023108889W WO 2024022288 A1 WO2024022288 A1 WO 2024022288A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
electronic device
target coordinate
equipment
user
Prior art date
Application number
PCT/CN2023/108889
Other languages
English (en)
French (fr)
Inventor
潘锦玲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024022288A1 publication Critical patent/WO2024022288A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/7243User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality with interactive means for internal management of messages
    • H04M1/72439User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality with interactive means for internal management of messages for image or video messaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring

Definitions

  • Embodiments of the present application relate to the field of electronic equipment, and in particular, to a method of installing smart equipment and an electronic equipment.
  • Embodiments of the present application provide a method for installing smart devices and electronic devices.
  • the method allows information for prompting installation and testing to be directly displayed on the user interface, making it easier to install and test smart devices.
  • a method for installing intelligent equipment including: determining a target coordinate system; determining the relative coordinates of the equipment to be installed, and the relative coordinates of the equipment to be installed are coordinates in the target coordinate system; according to the equipment to be installed The relative coordinates of the first installation information are displayed, and the first installation information is used to prompt the user to install the device to be installed.
  • the target coordinate system is the coordinate system in which the target space is located.
  • the target space is the space where smart devices need to be installed.
  • the target coordinate system is aligned with the design coordinate system.
  • the relative coordinates of each device to be installed are marked in the design coordinate system.
  • the relative coordinates of the equipment to be installed are the coordinates in the target coordinate system.
  • a method for installing smart devices is provided.
  • the user can determine the relative position of the equipment to be installed in the coordinate system through the electronic device, and display relevant installation information on the user interface. Users can intuitively obtain the installation information of the device to be installed, making it easier for users to install corresponding smart devices.
  • determining the relative coordinates of the equipment to be installed includes: when any coordinate in the target coordinate system corresponds to the calibration coordinate in the design coordinate system, and when When the distance between the position point corresponding to any coordinate in the target coordinate system and the design installation point on the reference plane of the target coordinate system is less than or equal to the preset threshold, the relative coordinates of the device to be installed are determined.
  • the electronic device calculates the relative coordinates of different position points within the current field of view, or the electronic device calculates the relative coordinates of the current location.
  • the electronic device calculates the relative coordinates of different position points within the current field of view, or the electronic device calculates the relative coordinates of the current location.
  • the specific value of the preset threshold can be determined according to the actual size of the target space.
  • the current accuracy of augmented reality (AR) positioning technology can reach 10cm level, and the preset threshold can be set to 10cm as needed.
  • AR augmented reality
  • the design coordinate system it is determined whether the design coordinate system has corresponding relative coordinates, and whether the distance between the position point corresponding to the relative coordinates and the design installation point on the reference plane is within a certain error range. It can be more accurately determined whether corresponding equipment needs to be installed at the relative coordinates. Moreover, any coordinate in the target coordinate system can be compared with the calibration coordinates in the design coordinate system in real time, which improves the efficiency of installing intelligent equipment.
  • determining the target coordinate system includes: calibrating the coordinate origin in response to the user's first operation; and determining the target coordinate system based on the coordinate origin.
  • the user turns on the camera device of the electronic device.
  • the camera device scans to the ground door axis
  • the target coordinate system can be determined through AR positioning technology. Because AR positioning technology has high accuracy, and this technology can be run as a common application in electronic devices (for example, smartphones). Therefore, using AR positioning technology, the target coordinate system can be determined more accurately and conveniently.
  • determining the target coordinate system includes: obtaining position information of at least three base stations; and determining the target coordinate system based on the position information of the at least three base stations.
  • the electronic device determines its own relative coordinates based on the location information of at least three base stations, and determines the coordinate system in which the electronic device is located as the target coordinate system based on the relative coordinates of the current location of the electronic device.
  • At least three of the base stations include but are not limited to ultra wide band (UWB) base stations. Any base station that can determine its own relative coordinates can fall into the protection scope of this application, which is not limited by this application.
  • UWB ultra wide band
  • the base station positioning method can be used, which is more suitable for scenarios with a large positioning space and minimizes positioning deviations.
  • the first installation information includes at least one of the following: point coordinates of the device to be installed, relative coordinates of the device to be installed, installation information of the device to be installed coordinate.
  • the first installation information further includes at least one of the following: a device identification of the device to be installed, and a device image of the device to be installed.
  • information for prompting the installation of the device to be installed may be displayed on the user interface.
  • Users can determine the equipment to be installed, the specific installation location of the equipment to be installed, or the network to which the equipment to be installed is connected based on the relevant information intuitively displayed on the user interface, which reduces the user's unnecessary workload and improves the efficiency of installing smart devices. accuracy.
  • the method further includes: determining a network-distributed device located in the target coordinate system; in response to the determination of the network-distributed device, displaying the second installation information , the second installation information is used to prompt the user to test the configured network device.
  • the second installation information includes a test control and test information
  • the test information is used to prompt the user for expected results obtained by performing a second operation on the test control.
  • the network-configured device and the device to be installed can be different stages of the same smart device, and the network-configured device can be considered as a device that has not yet been successfully installed (the device after the test is completed can be considered as a successfully installed device).
  • the user can directly control the smart device through the electronic device and test the smart device.
  • the second installation information includes the first installation information, and also includes test controls and test information. Among them, the test information is used to prompt the user about the expected effects that may occur after performing relevant tests on the configured network equipment. Users can compare the expected effect displayed after clicking the test control with the actual test effect.
  • test controls include but are not limited to switch controls, gear adjustment controls, and power adjustment controls.
  • the electronic device when it determines that there is a smart device that has been installed and configured for the network at the current location, it can display information on the user interface to prompt for testing the device that has been configured for the network. Users can test, verify or debug the smart device based on the relevant information displayed intuitively on the user interface. Also, the user interface can show the expected results after conducting the test. Users can compare the actual effect of the smart device after testing with the expected effect displayed on the user interface to determine whether the smart device can be used normally. This method facilitates users to directly test the smart device through the user interface to ensure the working status of the smart device.
  • an electronic device including: one or more processors; one or more memories; the one or more memories store one or more computer programs, and the one or more computer programs include instructions , when the instruction is executed by the one or more processors, the electronic device performs the following steps: determine the target coordinate system; determine the relative coordinates of the device to be installed, and the relative coordinates of the device to be installed are in the target coordinate system. Coordinates; display first installation information according to the relative coordinates of the device to be installed, and the first installation information is used to prompt the user to install the device to be installed.
  • the relative coordinates of the device to be installed are determined, and when the instruction is executed by the one or more processors, the electronic device performs the following steps : When any coordinate in the target coordinate system matches When the calibration coordinates in the design coordinate system correspond and the distance between the position point corresponding to any coordinate in the target coordinate system and the design installation point on the datum plane of the target coordinate system is less than or equal to the preset threshold, it is determined The relative coordinates of the device to be installed.
  • the determining the target coordinate system when the instruction is executed by the one or more processors, causes the electronic device to perform the following steps: in response to the user's first Operation, calibrate the coordinate origin; determine the target coordinate system based on the coordinate origin.
  • the determination of the target coordinate system when the instruction is executed by the one or more processors, causes the electronic device to perform the following steps: obtain the coordinates of at least three base stations. Position information; determine the target coordinate system based on the position information of the at least three base stations.
  • the first installation information includes at least one of the following: point coordinates of the device to be installed, relative coordinates of the device to be installed, installation of the device to be installed coordinate.
  • the first installation information further includes at least one of the following: a device identification of the device to be installed, and a device image of the device to be installed.
  • the electronic device when the instruction is executed by the one or more processors, the electronic device is caused to perform the following steps: determine the networked device located in the target coordinate system ; In response to the determination of the network-equipped device, the second installation information is displayed, and the second installation information is used to prompt the user to test the network-equipped device.
  • the second installation information includes a test control and test information
  • the test information is used to prompt the user for expected results obtained by performing the second operation on the test control.
  • a communication device including: a processor coupled to a memory, the memory is used to store a computer program, and the processor is used to run the computer program, so that the communication device performs the above-mentioned first aspect and any of the above. method in one possible implementation.
  • the communication device further includes one or more of the memory and a transceiver, the transceiver being used to receive signals and/or send signals.
  • a computer-readable storage medium includes a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, it makes it possible as in the first aspect and any of the instructions thereof. The methods in the implementation are executed.
  • a fifth aspect provides a computer program product, characterized in that the computer program product includes a computer program or instructions, and when the computer program or instructions are run on a computer, the first aspect and any of the possible methods are implemented as in the first aspect. The methods in the implementation are executed.
  • a sixth aspect provides a computer program that, when run on a computer, causes the method in the first aspect and any possible implementation thereof to be executed.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a software structure block diagram of an electronic device provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the application scenario of the method for installing smart devices provided by the embodiment of the present application.
  • Figure 4 is a system architecture diagram of a method for installing smart devices provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the relative coordinate positioning of an intelligent device provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a method for installing smart devices provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of point-surface distance calculation provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram of the relative coordinate positioning of another smart device provided by an embodiment of the present application.
  • Figure 9 is a schematic flow chart of another method for installing smart devices provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a display effect of a method for installing smart devices provided by an embodiment of the present application.
  • Figure 11 is a schematic flow chart of a method for installing smart devices provided by an embodiment of the present application.
  • a and/or is used to describe the association of associated objects, indicating that there can be three relationships; for example, A and/or or B, can mean: A alone exists, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the related objects are an "or" relationship.
  • the electronic device may be a portable electronic device that also includes other functions such as a personal digital assistant and/or a music player function, such as a mobile phone, a tablet computer, a wearable electronic device with wireless communication functions (such as a smart watch) wait.
  • portable electronic devices include, but are not limited to, carrying Or portable electronic devices with other operating systems.
  • the above-mentioned portable electronic device may also be other portable electronic devices, such as a laptop computer (Laptop). It should also be understood that in some other embodiments, the above-mentioned electronic device may not be a portable electronic device, but a desktop computer.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (SIM) card interface 195, etc.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) wait.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • NPU neural-network processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication band. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide solutions for wireless communication including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be disposed in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through audio devices (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194.
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110 and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (bluetooth, BT), and global navigation satellites.
  • WLAN wireless local area networks
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi) -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 194 is used to display images, videos, etc.
  • Display 194 includes a display panel.
  • the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the electronic device 100 can implement the shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193. For example, when taking a photo, the shutter is opened, the light is transmitted to the camera sensor through the lens, the optical signal is converted into an electrical signal, and the camera sensor passes the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, the ISP may be provided in the camera 193.
  • Camera 193 is used to capture still images or video.
  • the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
  • the photosensitive element can So it is a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • Electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • Intelligent cognitive applications of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, etc.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes instructions stored in the internal memory 121 to execute various functional applications and data processing of the electronic device 100 .
  • the internal memory 121 may include a program storage area and a data storage area. Among them, the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the electronic device 100 (such as audio data, phone book, etc.).
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 answers a call or a voice message, the voice can be heard by bringing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak close to the microphone 170C with the human mouth and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which in addition to collecting sound signals, may also implement a noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions, etc.
  • the pressure sensor 180A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A there are many types of pressure sensors 180A, such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor may include at least two parallel plates of conductive material.
  • the electronic device 100 determines the intensity of the pressure based on the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position based on the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch location but with different touch operation intensities may correspond to different operation instructions. For example, when a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the alarm clock application icon, an instruction to create an alarm clock is executed.
  • Fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to achieve fingerprint unlocking, access to application locks, fingerprint photography, fingerprint answering of incoming calls, etc.
  • the phone can detect the user's touch operation on the lock screen, the phone can The fingerprint sensor 180H collects the user's fingerprint information and matches the collected fingerprint information with the fingerprint information preset in the mobile phone. If the match is successful, the phone can enter the non-lock screen interface from the lock screen interface.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194.
  • the touch sensor 180K and the display screen 194 form a touch screen, which is also called a "touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near the touch sensor 180K.
  • the touch sensor can pass the detected touch operation to the application processor to determine the touch event type.
  • Visual output related to the touch operation may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 at a location different from that of the display screen 194 .
  • FIG. 2 is a software structure block diagram of the electronic device 100 according to the embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has clear roles and division of labor.
  • the layers communicate through software interfaces.
  • the Android system is divided into four layers, from top to bottom: application layer, application framework layer, Android runtime and system libraries, and kernel layer.
  • the application layer can include a series of application packages.
  • the application layer can include cameras, settings, skin modules, user interface (UI), third-party applications, etc.
  • third-party applications can include gallery, calendar, calls, maps, navigation, WLAN, Bluetooth, music, video, short messages, etc.
  • the application framework layer provides an application programming interface (API) and programming framework for applications in the application layer.
  • API application programming interface
  • the application framework layer can include some predefined functions.
  • the application framework layer can include a window manager, content provider, view system, phone manager, resource manager, notification manager, etc.
  • a window manager is used to manage window programs.
  • the window manager can obtain the display size, determine whether there is a status bar, lock the screen, capture the screen, etc.
  • Content providers are used to store and retrieve data and make this data accessible to applications. Said data can include videos, images, audio, calls made and received, browsing history and bookmarks, phone books, etc.
  • the view system includes visual controls, such as controls for displaying text, controls for displaying pictures, etc., such as indication information for prompting a virtual shutter key in the embodiment of the present application.
  • a view system can be used to build applications.
  • the display interface can be composed of one or more views.
  • a display interface including a text message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide communication functions of the electronic device 100 .
  • call status management including connected, hung up, etc.
  • the resource manager provides various resources to applications, such as localized strings, icons, pictures, layout files, video files, etc.
  • the notification manager allows applications to display notification information in the status bar, which can be used to convey notification-type messages and can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also be notifications that appear in the status bar at the top of the system in the form of charts or scroll bar text, such as notifications for applications running in the background, or notifications that appear on the screen in the form of conversation windows. For example, text information is prompted in the status bar, a beep sounds, the electronic device vibrates, the indicator light flashes, etc.
  • Android runtime includes core libraries and virtual machines. Android runtime is responsible for the scheduling and management of the Android system.
  • the core library contains two parts: one is the functional functions that need to be called by the Java language, and the other is the core library of Android.
  • the application layer and application framework layer run in virtual machines.
  • the virtual machine executes the java files of the application layer and application framework layer into binary files.
  • the virtual machine is used to perform object life cycle management, stack management, thread management, security and exception management, and garbage collection and other functions.
  • System libraries can include multiple functional modules. For example: surface manager (surface manager), media libraries (media libraries), 3D graphics processing libraries (for example: OpenGL ES), 2D graphics engines (for example: SGL), etc.
  • the surface manager is used to manage the display subsystem and provides the fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as static image files, etc.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, composition, and layer processing.
  • 2D Graphics Engine is a drawing engine for 2D drawing.
  • system library can also include status monitoring service modules, etc., such as the physical status recognition module, which is used to analyze and recognize user gestures; the sensor service module, which is used to monitor the sensor data uploaded by various sensors in the hardware layer, and determine the electronic The physical state of the device 100.
  • status monitoring service modules such as the physical status recognition module, which is used to analyze and recognize user gestures; the sensor service module, which is used to monitor the sensor data uploaded by various sensors in the hardware layer, and determine the electronic The physical state of the device 100.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, camera driver, audio driver, and sensor driver.
  • the hardware layer may include various types of sensors, such as the various types of sensors introduced in Figure 1, acceleration sensors, gyroscope sensors, touch sensors, etc. involved in the embodiment of this application.
  • the physical devices involved in the electronic device 100 mainly include sensors, decision support systems (decision support systems, DSS) display chips, touch screens, and fingerprint recognition modules. and other hardware components; as well as screen management module, display driver, fingerprint driver, anti-accidental touch and other kernel software layers; anti-accidental touch input, screen control, screen-off display (always on display, AOD) service, power management and other application framework layers functions; as well as application layer services such as special adaptation applications (camera), third-party applications, system hibernation, and AOD.
  • DSS decision support systems
  • DSS decision support systems
  • DSS decision support systems
  • touch screens touch screens
  • fingerprint recognition modules and other hardware components
  • screen management module display driver, fingerprint driver, anti-accidental touch and other kernel software layers
  • anti-accidental touch input, screen control, screen-off display (always on display, AOD) service power management and other application framework layers functions
  • application layer services such as special adaptation applications (camera), third-party applications, system hibernation, and AOD.
  • Smart devices at home can connect various devices (such as audio and video equipment, lighting equipment, curtain equipment, air conditioning equipment, indoor and outdoor remote control equipment, etc.) together through Internet of Things technology to provide users with multiple functional services.
  • devices such as audio and video equipment, lighting equipment, curtain equipment, air conditioning equipment, indoor and outdoor remote control equipment, etc.
  • the installation information of smart devices is mainly recorded through the description text in the table. Engineers determine the specific installation location, function type, circuit, etc. of the smart device through the installation information recorded in the table (such as Table 1 below).
  • embodiments of the present application provide a method for installing smart devices, which facilitates engineers to confirm the installation information of the smart devices and perform accurate and efficient installation work on the smart devices.
  • FIG. 3 a scenario is shown in which the method for installing smart devices provided by the embodiment of the present application is applied.
  • the smart devices can be the smart screen 310, audio 320, projector 330, router 340, etc. in the home scene shown in Figure 3.
  • Engineers can directly obtain the specific installation location and configuration parameters of each smart device through the user interface, and complete installation, power-on, configuration, and testing of each smart device.
  • FIG. 4 shows a system architecture diagram applicable to the method of installing smart devices provided by the embodiment of the present application. It should be understood that some modules in the system architecture diagram can be carried in electronic devices.
  • the system architecture includes but is not limited to an engine module 401, a space design module 402, a device cloud 403, a device location matching module 404, and a distributed network device management module 405. The functions of each module are described in detail below.
  • the engine module 401 Used to obtain the target space or target space coordinate system.
  • the target space or target space coordinate system may be the space or spatial coordinate system in which the smart device will be installed.
  • the engine module may be an augmented reality (AR) engine module.
  • the AR engine module may determine the target space or the coordinates of the target space based on the coordinate origin calibrated by the electronic device and the video frame data acquired by the camera device of the electronic device. Tie.
  • This module can store a list of equipment to be installed (a list of identifications of the equipment to be installed), and a list of coordinates of the equipment to be installed (including relative coordinates, point coordinates, and installation coordinates of the target space coordinate system).
  • Device Cloud 403. Stores a list of network-equipped devices (identification list of network-equipped devices) and a coordinate list of network-equipped devices (including relative coordinates and point coordinates of the target space coordinate system).
  • Device location matching module 404 This module can be used to match the location of the device to be installed and determine the specific installation information of the device to be installed. For example, when the specific installation information of the device to be installed is determined, an installation guide pop-up window may be displayed on the user interface.
  • the installation guidance floating window can display specific installation information of the equipment to be installed.
  • the specific installation information includes product details of the equipment to be installed, images of the equipment to be installed, installation coordinates of the equipment to be installed, point coordinates of the equipment to be installed, and equipment to be installed. relative coordinates.
  • Distributed network equipment management module 405. This module can be used to manage devices that have been installed and successfully configured. For example, this module can enable the user interface to display a control floating window. This control pop-up window can display the status information of the configured network equipment.
  • the status information of the network-equipped equipment includes: product details of the network-equipped equipment, images of the network-equipped equipment, installation coordinates of the network-equipped equipment, point coordinates of the network-equipped equipment, relative coordinates of the network-equipped equipment, Test controls of distribution network equipment and test information of distributed network equipment.
  • FIG. 5 a schematic diagram of relative coordinate positioning of an intelligent device is shown.
  • the space shown in Figure 5 includes multiple rooms (dining room, living room, bedroom), and each room has a different room ID (roomID). This space is the target space, and the coordinate system in which this space is located is the target coordinate system.
  • the position of the equipment to be installed in the target coordinate system can be expressed as relative coordinates (ar point location).
  • the point coordinates of the equipment to be installed can be used to indicate the specific installation location of the equipment.
  • the installation point (relation point) of the device to be installed can be used to represent a reference location near the device, such as a wall, corner, etc.
  • the installation coordinates (relation location) of the equipment to be installed can be used to indicate the specific positional relationship of the equipment relative to the installation point. For example, the horizontal distance between the equipment to be installed and the wall is 50 cm.
  • the engineer carries an electronic device that supports AR positioning.
  • the engineer first calibrate the ground door axis of the restaurant as the coordinate origin (x0, y0, z0), and establish a coordinate system in the current target space, that is, the target coordinate system, so that the target coordinate system is consistent with the design coordinate system Alignment, in which the design coordinate system is marked with the relative coordinates of each device to be installed.
  • the engineer then moves the electronic device so that its camera scans the current space. While the electronic device is scanning, the AR engine module in the electronic device will continue to calculate the relative coordinates of each position point within the field of view.
  • the user interface of the electronic device displays a window, and the window can display information for prompting the user to install the device to be installed corresponding to the relative coordinates.
  • the information displayed on the user interface includes: room identification, relative coordinates, point coordinates, installation point, Install coordinates. Engineers can install the corresponding equipment to be installed based on the information displayed on the user interface.
  • the user interface of the electronic device displays a window.
  • information about testing the configured network equipment For example, test controls, test information. Engineers can perform smoke tests on network-equipped equipment based on the displayed test information.
  • the AR engine can continuously improve the understanding of the real-world environment through feature points and planes.
  • the AR engine works by finding clusters of feature points located on common horizontal surfaces (for example, a table) and letting those surfaces act as planes.
  • the AR engine can also determine the boundaries of each plane and provide this information to the appropriate application. Users can use this information to place objects on a flat surface.
  • FIG. 6 a method 600 for installing smart devices provided by an embodiment of the present application is shown.
  • the following uses AR technology positioning as an example to explain in detail.
  • the ground door axis can be calibrated as the coordinate origin, and a coordinate system can be established in the target space, which is aligned with the design coordinate system.
  • the user interface can display a calibration control. When the ground door axis appears within the field of view of the electronic device, the user (engineer) clicks on the calibration space to realize the operation of calibrating the ground door axis as the origin of the coordinates.
  • S602 Calculate relative coordinates within the field of view.
  • the camera device of the electronic device continues to scan the target space, and the AR engine module calculates the relative coordinates of each position point within the field of view of the electronic device in real time. In other words, starting from the origin of the calibrated coordinates, the camera device of the electronic device is continuously turned on. While the electronic device is constantly moving, it continuously calculates the relative coordinates of different position points within the current field of view.
  • the electronic device when the electronic device determines that there are relative coordinates of the device to be installed within the field of view, the user can install the corresponding smart device at the location of the relative coordinates.
  • the design coordinate system will mark the location where certain relative coordinates are located and install the corresponding smart device.
  • a relative coordinate (1, 1, 1) appears within the field of view of the electronic device, and the electronic device compares the relative coordinate with the relative coordinate calibrated in the design coordinate system.
  • the position corresponding to the relative coordinates (1, 1, 1) in the design coordinate system requires the installation of a smart screen.
  • the electronic device will further calculate the distance between the position point corresponding to (1, 1, 1) and the design installation point on the reference plane. . Due to the characteristics of AR positioning technology, there will be a reference plane within the field of view of the electronic device, and AR positioning has certain errors.
  • the position point When the distance between the position point and the designed installation point on the datum plane is less than or equal to a certain threshold, the position point can be considered to fall on the target plane.
  • the thresholds are different for target spaces of different sizes, and the specific threshold can be determined according to the actual space size.
  • Figure 7 shows a schematic diagram of point-surface distance calculation.
  • the distance from point P to the plane where point O is located can be determined according to the following formula:
  • the specific distance from point P to point O on the plane is
  • The smart device falls on the plane where point O is located.
  • the smart device has been installed and the network distribution is successful.
  • the electronic device determines that there is a networked device within the field of view, the user can perform operations such as testing and verification on the device.
  • the specific method of determining the network-distributed equipment is similar to determining the equipment to be installed in step S603, and will not be described again here.
  • the first installation information is displayed.
  • the first installation information is used to prompt the user to install the device to be installed.
  • the first installation information includes the device identification of the device to be installed, the point coordinates of the device to be installed, the device image of the device to be installed, the relative coordinates of the device to be installed, and the installation coordinates of the device to be installed, wherein the user can Device images visually identify the specific device to be installed.
  • the second installation information is displayed.
  • the second installation information is used to prompt the user to perform a smoke test on the configured network equipment.
  • the second installation information may include first installation information, test controls, or test information. Users can click the test control to perform corresponding tests on the configured network equipment. When the user clicks the test control, the test information can be displayed. The test information is used to prompt the user about the expected results after testing the configured network equipment.
  • An embodiment of the present application provides a method for installing smart devices.
  • the user can determine the relative position of the equipment to be installed in the coordinate system through the electronic device, and display relevant installation information on the user interface. Users can intuitively obtain the installation information of the device to be installed, making it easier for users to install corresponding smart devices. Furthermore, after the smart device has been installed and configured, the user can intuitively obtain the test information of the smart device, which facilitates the user's testing, maintenance, verification and other operations of the smart device, thereby ensuring that the smart device can work normally.
  • this embodiment of the present application provides another schematic diagram of the relative coordinate positioning of a smart device.
  • three ultra wide band (UWB) base stations are installed indoors.
  • the electronic device carried by the engineer is a mobile phone, and an ultra wide band tag is bound to the back panel of the mobile phone.
  • the three UWB base stations send their relative coordinates to the mobile phone, and the mobile phone determines its relative coordinates in the coordinate system based on the relative coordinates of the three base stations.
  • the number of base stations can be 3 or more.
  • the user interface When the current relative coordinates of the mobile phone are the relative coordinates of the device to be installed, the user interface will display information prompting the user to install the corresponding device to be installed. When there is a network-equipped device at the location corresponding to the current relative coordinates of the mobile phone, the user interface will display information to prompt the user to test the corresponding network-equipped device.
  • the method of determining the relative coordinates of the electronic device in the coordinate system based on the relative coordinates of the three base stations is only an example. This application does not limit the specific method of determining the relative coordinates of the electronic device. Any method that can determine the relative coordinates of the electronic device is not limited. All methods fall within the scope of protection of this application. For example, this application can also determine the relative coordinates of the electronic device through ultrasonic positioning, lidar positioning and other methods.
  • FIG. 9 a method 900 for installing smart devices provided by an embodiment of the present application is shown.
  • the following uses positioning based on the relative coordinates of the base station as an example to explain in detail.
  • the electronic equipment receives the relative coordinates of more than three base stations and determines the relative coordinates of the electronic equipment based on the relative coordinates of the base stations, thereby determining the coordinate system in which the target space is located.
  • the method of determining the coordinate system in step S901 does not require prior calibration of the coordinate origin.
  • the coordinate system can be determined based on the relative coordinates of three or more base stations.
  • step S902 the electronic device can only determine the relative coordinates based on the current location. In other words, every time the electronic device moves, it can only determine the relative coordinates of its current location. In step S602, the electronic device can determine the relative coordinates of multiple locations within the current field of view.
  • Steps S903 and S904 are similar to the above-mentioned steps S603 and S604, and will not be described again here to avoid duplication.
  • Steps S905 and S906 are similar to the above-mentioned steps S605 and S606, and will not be described again here to avoid repetition.
  • An embodiment of the present application provides a method for installing smart devices.
  • the user can determine the relative position of the equipment to be installed in the coordinate system through the electronic device, and display relevant installation information on the user interface. Users can intuitively obtain the installation information of the device to be installed, making it easier for users to install corresponding smart devices. Furthermore, after the smart device has been installed and configured, the user can intuitively obtain the test information of the smart device, which facilitates the user's testing, maintenance, verification and other operations of the smart device, thereby ensuring that the smart device can work normally.
  • FIG. 10 shows a schematic diagram of a method for installing smart devices.
  • the user interface may display a window as shown in (a) of FIG. 10 .
  • the user interface may display a window as shown in (b) of Figure 10 .
  • the user interface displays for Prompts the user to install the device to be installed. It should be understood that this information can be displayed through a window.
  • the information may include the name of the equipment to be installed (spotlight), the model of the equipment to be installed (BL2002R), the point coordinates of the equipment to be installed (t: 3; s: 1), the relative coordinates of the equipment to be installed (x1 , y1, z1), the installation point of the equipment to be installed (living room corner), the installation coordinates of the equipment to be installed (l, w, h) and the image of the equipment to be installed (spotlight image).
  • a message prompting the user to test the network-equipped device is displayed on the user interface.
  • information In addition to the above information for prompting the user to install the device to be installed, the information may also include test controls.
  • the expected effect after clicking the test control can be displayed. For example, when the user clicks on the test control, the message "Click the button, the light will be on; click again, the light will go out” can be displayed. Users can determine whether the spotlight passes the test based on whether the spotlight performs as expected to show whether the spotlight can work normally.
  • FIG 11 shows a method 1100 for installing smart devices provided by an embodiment of the present application. This method can be applied in the framework shown in Figure 4. The method 1100 is described in detail below.
  • target coordinate system is aligned with the design coordinate system.
  • the relative coordinates of each device to be installed are marked in the design coordinate system.
  • the coordinate origin in response to the user's first operation, is calibrated; the target coordinate system is determined based on the coordinate origin.
  • the user turns on the camera device of the electronic device.
  • the camera device scans to the ground door axis
  • position information of at least three base stations is obtained; and the target coordinate system is determined based on the position information of at least three base stations.
  • the electronic device determines its own relative coordinates based on the location information of at least three base stations, and determines the coordinate system in which the electronic device is located as the target coordinate system based on the relative coordinates of the current location of the electronic device.
  • S1102. Determine the relative coordinates of the device to be installed.
  • the relative coordinates of the equipment to be installed are coordinates in the target coordinate system.
  • any coordinate in the target coordinate system corresponds to the calibration coordinate in the design coordinate system
  • the position point corresponding to any coordinate in the target coordinate system is consistent with the design installation on the datum plane of the target coordinate system
  • the relative coordinates of the device to be installed are determined.
  • the electronic device calculates the relative coordinates of different position points within the current field of view, or the electronic device calculates the current location The relative coordinates of the location.
  • the electronic device calculates the relative coordinates of different position points within the current field of view, or the electronic device calculates the current location The relative coordinates of the location.
  • the specific value of the preset threshold can be determined according to the actual size of the target space.
  • the larger the target space the larger the preset threshold.
  • the current accuracy of AR positioning technology can reach 10cm level, and the preset threshold can be set to 10cm as needed.
  • the first installation information is used to prompt the user to install the device to be installed.
  • the first installation information includes at least one of the following: point coordinates of the device to be installed, relative coordinates of the device to be installed, and installation coordinates of the device to be installed.
  • the first installation information further includes at least one of the following: a device identification of the device to be installed, and a device image of the device to be installed.
  • the configured network device is determined, wherein the configured network device is located in the target coordinate system; in response to the determination of the configured network device, second installation information is displayed, and the second installation information is used to prompt the user to test the configured network device. network equipment.
  • the second installation information includes a test control and test information
  • the test information is used to prompt the user to expect the results obtained by performing the second operation on the test control.
  • the network-configured device and the device to be installed may be different stages of the same smart device.
  • the user can directly control the smart device through the electronic device and test the smart device.
  • the second installation information includes the first installation information, and also includes test controls and test information.
  • the test information is used to prompt the user about the expected effects that may occur after performing relevant tests on the configured network equipment. Users can compare the expected effect displayed after clicking the test control with the actual test effect. If the results are consistent, it means that the network equipment has passed the test and can be used normally.
  • An embodiment of the present application provides a method for installing smart devices.
  • the user can determine the relative position of the equipment to be installed in the coordinate system through the electronic device, and display relevant installation information on the user interface. Users can intuitively obtain the installation information of the device to be installed, making it easier for users to install corresponding smart devices. Furthermore, after the smart device has been installed and configured, the user can intuitively obtain the test information of the smart device, which facilitates the user's testing, maintenance, verification and other operations of the smart device, thereby ensuring that the smart device can work normally.
  • Embodiments of the present application provide a computer program product.
  • the computer program product When the computer program product is run on an electronic device, it causes the electronic device to execute the technical solutions in the above embodiments.
  • the implementation principles and technical effects are similar to the above-mentioned method-related embodiments, and will not be described again here.
  • Embodiments of the present application provide a readable storage medium.
  • the readable storage medium contains instructions.
  • the electronic device causes the electronic device to execute the technical solutions of the above embodiments.
  • the implementation principles and technical effects are similar and will not be described again here.
  • Embodiments of the present application provide a chip, which is used to execute instructions. When the chip is running, it executes the technical solutions in the above embodiments. The implementation principles and technical effects are similar and will not be described again here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • this function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method in various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • User Interface Of Digital Computer (AREA)
  • Telephone Function (AREA)

Abstract

本申请实施例提供了一种安装智能设备的方法及电子设备。该方法包括:确定目标坐标系;确定待安装设备的相对坐标,待安装设备的相对坐标为目标坐标系中的坐标;根据待安装设备的相对坐标,显示第一安装信息,第一安装信息用于提示用户安装待安装设备。本申请的方法及电子设备,使得用户可以从用户界面直观地获取待安装设备的相关信息,为用户提供直观的安装引导,便于用户安装相应的智能设备。更进一步地,本申请的方法及电子设备通过确定位于目标坐标系内的已配网设备,显示第二安装信息,第二安装信息用于提示用户对已配网设备进行测试,用户可以通过第二安装信息中的控件,对已配网设备进行测试,便于确定已配网设备的工作状态。

Description

安装智能设备的方法及电子设备
本申请要求于2022年7月29日提交中国专利局、申请号为202210904139.3、申请名称为“安装智能设备的方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子设备领域,尤其涉及一种安装智能设备的方法及电子设备。
背景技术
随着科学技术的发展,用户可选择在家中安装智能设备以提供更加方便快捷的服务。而智能设备的安装,以及对安装后智能设备的调试是较为繁琐且容易出错的工作。目前,对于智能设备的安装和调试,均需要耗费大量人工成本。
因此,如何实现便捷直观地安装智能设备,并且高效地完成智能设备的调试工作是目前亟待解决的问题。
发明内容
本申请实施例提供一种安装智能设备的方法及电子设备,该方法使得用于提示安装和测试的信息直接显示在用户界面上,更便于智能设备的安装和测试。
第一方面,提供了一种安装智能设备的方法,包括:确定目标坐标系;确定待安装设备的相对坐标,该待安装设备的相对坐标为该目标坐标系中的坐标;根据该待安装设备的相对坐标,显示第一安装信息,该第一安装信息用于提示用户安装该待安装设备。
应理解,目标坐标系为目标空间所在的坐标系。目标空间是需要安装智能设备的空间。该目标坐标系与设计坐标系对齐。设计坐标系中标记有各个待安装设备的相对坐标。待安装设备的相对坐标为目标坐标系中的坐标。
本申请实施例中,提供了一种安装智能设备的方法。用户可通过电子设备在坐标系内确定待安装设备的相对位置,并且在用户界面显示安装的相关信息。用户可以直观地获取待安装设备的安装信息,便于用户安装相应的智能设备。
结合第一方面,在第一方面的某些实现方式中,该确定待安装设备的相对坐标,包括:当该目标坐标系中的任一坐标与设计坐标系中的标定坐标对应时,且当该目标坐标系中的任一坐标对应的位置点与该目标坐标系的基准平面上的设计安装点之间的距离小于或等于预设阈值时,确定待安装设备的相对坐标。
示例性的,电子设备计算当前视野范围内不同位置点的相对坐标,或者,电子设备计算当前所在位置的相对坐标。当设计坐标系中存在标定坐标与该相对坐标对应,且该相对坐标对应的位置点与基准平面上的设计安装点之间的距离小于或等于预设阈值时,则说明该位置处需要安装待安装设备。其中,设计坐标系中标定有需要安装智能设备的相对坐标。
应理解,预设阈值的具体值可以根据目标空间的实际大小确定。目标空间越大,预设阈值越大。例如,目前增强显示技术(augmented reality,AR)定位技术的精度可以达到10cm级别,预设阈值可以根据需要设置为10cm。
本申请实施例中,判断设计坐标系是否有对应的相对坐标,以及相对坐标对应的位置点与基准平面上的设计安装点之间的距离是否在一定误差范围内。能够更加准确地确定在该相对坐标是否需要安装相应的设备。并且,能够实时地将目标坐标系中的任一坐标与设计坐标系中的标定坐标进行比对,提高了安装智能设备的效率。
结合第一方面,在第一方面的某些实现方式中,该确定目标坐标系,包括:响应于用户的第一操作,标定坐标原点;根据该坐标原点确定目标坐标系。
示例性的,用户打开电子设备的摄像装置,当摄像装置扫描至地面门轴时,用户点击标定控件,标定地面门轴为坐标原点,以地面门轴为坐标原点的坐标系为目标坐标系。
本申请实施例中,可以通过AR定位技术确定目标坐标系。由于AR定位技术的精度较高,且该技术可作为电子设备(例如,智能手机)的一个普通应用被运行。因此,采用AR定位技术,能够更加准确且方便地确定目标坐标系。
结合第一方面,在第一方面的某些实现方式中,该确定目标坐标系,包括:获取至少三个基站的位置信息;根据该至少三个基站的位置信息确定目标坐标系。
示例性的,电子设备根据至少三个基站的位置信息确定自身的相对坐标,并根据电子设备当前位置的相对坐标确定电子设备所在的坐标系为目标坐标系。其中的至少三个基站,包括但不限于超带宽(ultra wide band,UWB)基站,任意能够确定自身相对坐标的基站均可落入本申请的保护范围,本申请对此不作限定。
本申请实施例中,当目标空间较大时,采用AR技术进行定位的偏差较大。因此,可以采用基站定位的方法,更适用于定位空间较大的场景,尽量减少定位的偏差。
结合第一方面,在第一方面的某些实现方式中,该第一安装信息包括以下至少一种:该待安装设备的点位坐标、该待安装设备的相对坐标、该待安装设备的安装坐标。
结合第一方面,在第一方面的某些实现方式中,该第一安装信息还包括以下至少一种:该待安装设备的设备标识、该待安装设备的设备图像。
本申请实施例中,当电子设备确定当前位置需要安装待安装设备时,可以在用户界面上显示用于提示安装该待安装设备的信息。用户可以根据直观显示在用户界面上的相关信息,确定待安装设备、待安装设备具体的安装位置或者待安装设备所接入的网络等,减轻了用户不必要的工作量,提高安装智能设备的准确性。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:确定位于该目标坐标系内的已配网设备;响应于该已配网设备的确定,显示该第二安装信息,该第二安装信息用于提示用户测试该已配网设备。
结合第一方面,在第一方面的某些实现方式中,该第二安装信息包括测试控件和测试信息,该测试信息用于提示用户对该测试控件执行第二操作获得的预期结果。
应理解,已配网设备和待安装设备可以是同一个智能设备的不同阶段,已配网设备可以被认为是还未安装成功的设备(测试完成后的设备可以认为是安装成功的设备)。当待安装设备完成安装并且配网成功后,用户可以通过电子设备直接控制该智能设备,并对智能设备进行测试。当已配网设备和待安装设备是同一个设备时,第二安装信息包括第一安装信息,还包括测试控件和测试信息。其中,测试信息用于提示用户对已配网设备进行相关测试之后,可能出现的预期效果。用户可以根据点击测试控件后显示的预期效果,与实际的测试效果对比。效果一致,表示已配网设备通过测试,能够正常使用。也就是说,第二安装信息还为用户提供了交互方式,当用户点击第二安装信息中的控件时,可以实现用户与电子设备的交互。用户通过这种交互方式确定智能设备的工作状态。其中,测试控件包括但不限于开关控件、档位调整控件、功率调整控件。
本申请实施例中,当电子设备确定当前位置存在已完成安装和配网的智能设备,可以在用户界面上显示用于提示测试该已配网设备的信息。用户可以根据直观显示在用户界面上的相关信息,对该智能设备进行测试、验证或者调试。并且,用户界面可以显示进行测试之后的预期效果。用户可以根据测试后智能设备的实际效果,与用户界面显示的预期效果进行对比,以确定该智能设备是否可以正常使用。该方法便于用户通过用户界面实现对智能设备直接测试,以确保智能设备的工作状态。
第二方面,提供了一种电子设备,包括:一个或多个处理器;一个或多个存储器;该一个或多个存储器存储有一个或多个计算机程序,该一个或多个计算机程序包括指令,当该指令被该一个或多个处理器执行时,使得该电子设备执行以下步骤:确定目标坐标系;确定待安装设备的相对坐标,该待安装设备的相对坐标为该目标坐标系中的坐标;根据该待安装设备的相对坐标,显示第一安装信息,该第一安装信息用于提示用户安装该待安装设备。
结合第二方面,在第二方面的某些实现方式中,其特征在于,该确定待安装设备的相对坐标,当该指令被该一个或多个处理器执行时,使得该电子设备执行以下步骤:当该目标坐标系中的任一坐标与 设计坐标系中的标定坐标对应时,且该目标坐标系中的任一坐标对应的位置点与该目标坐标系的基准平面上的设计安装点之间的距离小于或等于预设阈值时,确定待安装设备的相对坐标。
结合第二方面,在第二方面的某些实现方式中,该确定目标坐标系,当该指令被该一个或多个处理器执行时,使得该电子设备执行以下步骤:响应于用户的第一操作,标定坐标原点;根据该坐标原点确定目标坐标系。
结合第二方面,在第二方面的某些实现方式中,该确定目标坐标系,当该指令被该一个或多个处理器执行时,使得该电子设备执行以下步骤:获取至少三个基站的位置信息;根据该至少三个基站的位置信息确定目标坐标系。
结合第二方面,在第二方面的某些实现方式中,该第一安装信息包括以下至少一种:该待安装设备的点位坐标、该待安装设备的相对坐标、该待安装设备的安装坐标。
结合第二方面,在第二方面的某些实现方式中,该第一安装信息还包括以下至少一种:该待安装设备的设备标识、该待安装设备的设备图像。
结合第二方面,在第二方面的某些实现方式中,当该指令被该一个或多个处理器执行时,使得该电子设备执行以下步骤:确定位于该目标坐标系内的已配网设备;响应于该已配网设备的确定,显示该第二安装信息,该第二安装信息用于提示用户测试该已配网设备。
结合第二方面,在第二方面的某些实现方式中,该第二安装信息包括测试控件和测试信息,该测试信息用于提示用户对该测试控件执行第二操作获得的预期结果。
第三方面,提供了一种通信装置,包括:与存储器耦合的处理器,该存储器用于存储计算机程序,该处理器用于运行该计算机程序,使得该通信装置执行如上述第一方面及其任一种可能的实现方式中的方法。
结合第三方面,在第三方面的某些实现方式中,该通信装置还包括该存储器和收发器中的一项或多项,该收发器用于接收信号和/或发送信号。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得如第一方面及其任一种可能的实现方式中的方法被执行。
第五方面,提供了一种计算机程序产品,其特征在于,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得如第一方面及其任一种可能的实现方式中的方法被执行。
第六方面,提供了一种计算机程序,当其在计算机上运行时,使得如第一方面及其任一种可能的实现方式中的方法被执行。
附图说明
图1是本申请实施例提供的一种电子设备的结构示意图。
图2是本申请实施例提供的电子设备的软件结构框图。
图3是本申请实施例提供的安装智能设备的方法应用场景示意图。
图4是本申请实施例提供的安装智能设备的方法的***架构图。
图5是本申请实施例提供的一种智能设备相对坐标定位的示意图。
图6是本申请实施例提供的一种安装智能设备的方法示意性流程图。
图7是本申请实施例提供的点面距离计算示意图。
图8是本申请实施例提供的另一种智能设备相对坐标定位的示意图。
图9是本申请实施例提供的另一种安装智能设备的方法示意性流程图。
图10是本申请实施例提供的一种安装智能设备的方法的显示效果示意图。
图11是本申请实施例提供的一种安装智能设备的方法示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上 述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以下介绍电子设备、用于这样的电子设备的用户界面、和用于使用这样的电子设备的实施例。在一些实施例中,电子设备可以是还包含其它功能诸如个人数字助理和/或音乐播放器功能的便携式电子设备,诸如手机、平板电脑、具备无线通讯功能的可穿戴电子设备(如智能手表)等。便携式电子设备的示例性实施例包括但不限于搭载或者其它操作***的便携式电子设备。上述便携式电子设备也可以是其它便携式电子设备,诸如膝上型计算机(Laptop)等。还应当理解的是,在其他一些实施例中,上述电子设备也可以不是便携式电子设备,而是台式计算机。
示例性的,图1示出了电子设备100的结构示意图。电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户身份识别(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户身份识别(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个 通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可 以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如,当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于闹钟应用图标时,执行新建闹钟的指令。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。例如,当手机在锁屏界面检测到用户的触控操作时,手机可以通过指 纹传感器180H采集用户的指纹信息,并通过采集的指纹信息与手机中预置的指纹信息进行匹配。若匹配成功,则手机可以从锁屏界面进入非锁屏界面。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
图2是本申请实施例的电子设备100的软件结构框图。分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android***分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和***库,以及内核层。应用程序层可以包括一系列应用程序包。
如图2所示,应用程序层可以包括相机、设置、皮肤模块、用户界面(user interface,UI)、三方应用程序等。其中,三方应用程序可以包括图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层可以包括一些预先定义的函数。
如图2所示,应用程序框架层可以包括窗口管理器,内容提供器,视图***,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图***包括可视控件,例如显示文字的控件,显示图片的控件等,例如本申请实施例中的用于提示虚拟快门键的指示信息等。视图***可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在***顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
Android runtime包括核心库和虚拟机。Android runtime负责安卓***的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
***库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(media libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子***进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
此外,***库还可以包括状态监测服务模块等,例如物理状态识别模块,用于对用户手势进行分析和识别;传感器服务模块,用于对硬件层各类传感器上传的传感器数据进行监测,确定电子设备100的物理状态。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
硬件层可以包括各类传感器,例如图1中介绍的各类传感器,在本申请实施例中涉及的加速度传感器、陀螺仪传感器、触摸传感器等。
结合以上图1和图2介绍的电子设备,在本申请实施例中,电子设备100涉及的物理器件主要包括传感器、决策支持***(decision support systems,DSS)显示芯片、触摸显示屏、指纹识别模块等硬件组件;以及屏幕管理模块、显示驱动、指纹驱动、防误触等内核软件层;防误触输入、屏幕控制、灭屏显示(always on display,AOD)服务、电源管理等应用程序框架层功能;以及特殊适配应用(camera)、三方应用、***休眠、AOD等应用层业务。
随着科学技术的发展,越来越多的用户选择在家中安装智能设备,以提供更优质的家庭生活体验,以及在工业领域,越来越多的生产商选择安装智能设备,例如在矿洞中安装智能传感器用于检测矿洞中的各项空气质量参数。下文在介绍本申请时,以家中的智能设备为例。家中的智能设备可以通过物联网技术将各种设备(例如,音视频设备、照明设备、窗帘设备、空调设备、室内外遥控设备等)连接到一起,为用户提供多种功能的服务。当前,主要通过表格中的描述文字记载在智能设备的安装信息。工程师通过表格中(例如下表1)记载的安装信息确定智能设备具体的安装位置、功能类型、回路等,具体安装过程较为繁琐,并且准确性较低。并且,工程师对安装后的智能设备测试的工作负荷较大,准确性不高。因此,针对上述技术问题,本申请实施例提供一种安装智能设备的方法,便于工程师确认智能设备的安装信息,并对智能设备进行准确且高效的安装工作。
表1智能设备安装信息
如图3所示,示出了一种本申请实施例提供的安装智能设备的方法所应用的场景。示例性的,可以是安装智能设备的家庭场景。其中,智能设备可以是图3中所示的家庭场景中的智慧屏310、音响320、投影仪330、路由器340等。工程师(用户)可以通过用户界面,直接获得每一台智能设备的具体安装位置、配置参数,并且对每一台智能设备完成安装、上电、配置、测试等工作。
图4示出了本申请实施例提供的安装智能设备的方法所适用的***架构图。应理解,该***架构图中的部分模块可承载于电子设备中。该***架构包括但不限定于引擎模块401、空间设计模块402、设备云403、设备位置匹配模块404、已配网设备管理模块405。下面对各个模块的功能进行具体描述。
引擎模块401。用于获取目标空间,或者目标空间坐标系。目标空间或者目标空间坐标系可以是智能设备将要安装的空间或者空间坐标系。示例性的,引擎模块可以是增强显示技术(augmented reality,AR)引擎模块,AR引擎模块可以根据电子设备标定的坐标原点和电子设备的摄像装置获取的视频帧数据确定目标空间或者目标空间的坐标系。
空间设计模块402。该模块可以存储有待安装设备列表(待安装设备的标识列表),以及待安装设备的坐标列表(包括目标空间坐标系的相对坐标、点位坐标、安装坐标)。
设备云403。存储有已配网设备的列表(已配网设备的标识列表)以及,已配网设备的坐标列表(包括目标空间坐标系的相对坐标、点位坐标)。
设备位置匹配模块404。该模块可用于匹配待安装设备的位置,确定待安装设备的具体安装信息。示例性的,当确定了待安装设备的具体安装信息时,可以在用户界面显示安装引导浮窗。该安装引导浮窗可以显示待安装设备的具体安装信息,具体安装信息包括待安装设备的产品详情、待安装设备的图像、待安装设备的安装坐标、待安装设备的点位坐标、待安装设备的相对坐标。
已配网设备管理模块405。该模块可用于管理已经安装好,并且配网成功的设备。示例性的,该模块可以使得用户界面显示控制浮窗。该控制浮窗可以显示已配网设备的状态信息。已配网设备的状态信息包括:已配网设备的产品详情、已配网设备的图像、已配网设备的安装坐标、已配网设备的点位坐标、已配网设备的相对坐标、已配网设备的测试控件、已配网设备的测试信息。
下面,以AR技术定位为例。示出本申请实施例提供的一种安装智能设备的方法。应理解,本申请中确定位置的方法包括但不限于AR技术,任何一种能够确定待安装设备位置关系的方法均属于本申请的保护范围,例如本申请还可以通过超声波定位、激光雷达定位等方法确定电子设备的相对坐标。 如图5所示,示出一种智能设备相对坐标定位的示意图。在图5所示的空间中,包括多个房间(餐厅、客厅、卧室),每个房间具有不同的房间标识(roomID)。该空间为目标空间,该空间所在的坐标系为目标坐标系。待安装设备在目标坐标系的位置可表示为相对坐标(ar point location)。待安装设备的点位坐标可用于表示该设备的具体安装位置。待安装设备的安装点(relation point)可用于表示该设备附近的一个参考位置,例如墙面,墙角等。待安装设备的安装坐标(relation location)可用于表示该设备相对于安装点的具***置关系,例如,待安装设备距离墙面水平距离为50厘米。
示例性的,工程师携带有支持AR定位的电子设备。在如图5所示的空间中,首先标定餐厅的地面门轴为坐标原点(x0,y0,z0),在当前目标空间建立坐标系,也就是目标坐标系,使得目标坐标系与设计坐标系对齐,其中,设计坐标系中标记有各个待安装设备的相对坐标。随后,工程师移动电子设备,使得电子设备的摄像装置扫描当前空间。电子设备在扫描的同时,电子设备中的AR引擎模块会持续计算视野范围内的每个位置点的相对坐标。一方面,当电子设备的视野范围内出现待安装设备的相对坐标时,电子设备的用户界面显示窗口,该窗口可以显示用于提示用户安装该相对坐标对应位置的待安装设备的信息。例如,当电子设备在客厅(房间标识2)扫描到待安装设备的相对坐标(x1,y1,z1)时,在用户界面显示的信息包括:房间标识、相对坐标、点位坐标、安装点、安装坐标。工程师可以根据用户界面显示的信息安装相应的待安装设备。另一方面,当电子设备的视野范围内出现已配网设备时(也就是说,此时已经将原来的待安装设备安装完毕,并配网成功),电子设备的用户界面显示窗口,该窗口除了显示关于安装的相关信息之外,还可以显示关于测试已配网设备的信息。例如,测试控件、测试信息。工程师可以根据显示的关于测试的信息,对已配网的设备进行冒烟测试。
AR引擎可以通过特征点和平面不断改进对现实世界环境的理解。该AR引擎通过查找位于常见水平表面(例如,桌子)上成簇的特征点,并让这些表面用作平面。该AR引擎也可以确定每个平面的边界,并将这些信息提供给相应的应用。用户可以根据这些信息将物体置于平坦的表面上。
如图6所示,示出了本申请实施例提供的一种安装智能设备的方法600。下面以AR技术定位为例详细说明。
S601,标定坐标原点,确定坐标系。
应理解,通过电子设备的摄像装置,在电子设备的用户界面显示当前视野范围内各种物体。可以标定地面门轴作为坐标原点,在目标空间建立坐标系,该坐标系与设计坐标系对齐。其中,用户界面可以显示有标定控件,当电子设备的视野范围内出现地面门轴时,用户(工程师)点击标定空间,可以实现将地面门轴标定为坐标原点的操作。
S602,计算视野范围内的相对坐标。
应理解,电子设备的摄像装置继续扫描目标空间,AR引擎模块实时计算电子设备视野范围内的每个位置点的相对坐标。也就是说,从标定坐标原点开始,电子设备的摄像装置是持续开启的。电子设备在不断移动的同时,不断计算当前视野范围内的不同位置点的相对坐标。
S603,确定待安装设备的相对坐标。
在一些可能的实现方式中,当电子设备在视野范围内确定存在待安装设备的相对坐标时,用户可以在该相对坐标的位置安装相应的智能设备。
示例性的,设计坐标系中会标记某些相对坐标所在的位置安装相应的智能设备。在电子设备的视野范围内出现相对坐标(1,1,1),电子设备将该相对坐标与设计坐标系中标定的相对坐标进行对比。设计坐标系中的相对坐标(1,1,1)对应的位置需要安装智慧屏,电子设备将进一步计算(1,1,1)对应的位置点与基准平面上的设计安装点之间的距离。由于AR定位技术的特点,在电子设备的视野范围内会存在基准平面,并且AR定位具有一定的误差。当该位置点与基准平面上的设计安装点之间的距离小于或等于一定阈值时,则可以认为该位置点落在目标平面上。其中,不同大小的目标空间的阈值是不同的,具体的阈值可以根据实际空间大小确定。
为了便于理解,图7示出了点面距离计算示意图。点P到点O所在平面的距离可以根据下面公式确定:
根据上述公式计算得到点P到点O所在平面的具体为|PO|,当|PO|<Δd时,则认为点P落在点O所在的平面上,也就是说,点P所在位置对应的智能设备落在点O所在的平面上。
S604,确定已配网设备。
在另一些可能的实现方式中,智能设备已经安装完毕,并且配网成功。当电子设备在视野范围内确定存在已配网设备时,用户可以对该设备进行测试、验证等操作。具体确定已配网设备的方法如步骤S603中确定待安装设备类似,此处不再赘述。
S605,显示第一安装信息。
应理解,当电子设备确定视野范围内存在待安装设备的相对坐标时,显示第一安装信息。第一安装信息用于提示用户安装待安装设备。第一安装信息包括待安装设备的设备标识、待安装设备的点位坐标、待安装设备的设备图像、待安装设备的相对坐标、待安装设备的安装坐标,其中,用户可以根据待安装设备的设备图像直观地确定具体的待安装设备。
S606,显示第二安装信息。
应理解,当电子设备确定视野范围内存在已配网设备时,显示第二安装信息。第二安装信息用于提示用户对已配网设备执行冒烟测试。第二安装信息可以包括第一安装信息、测试控件或测试信息。用户可以通过点击测试控件,对已配网设备执行相应的测试。当用户点击了测试控件之后,可以显示测试信息,测试信息用于提示用户对已配网设备测试之后的预期效果。
本申请实施例提供的一种安装智能设备的方法。用户可通过电子设备在坐标系内确定待安装设备的相对位置,并且在用户界面显示安装的相关信息。用户可以直观地获取待安装设备的安装信息,便于用户安装相应的智能设备。更进一步地,当智能设备已完成安装和配网之后,用户可以直观地获取智能设备的测试信息,便于用户对智能设备的测试、维护、验证等操作,从而确保智能设备能够正常工作。
当目标空间较大时,通过AR技术进行定位时偏差较大。因此,如图8所示,本申请实施例提供了另一种智能设备相对坐标定位的示意图。示例性的,在室内安装3台超带宽(ultra wide band,UWB)基站,工程师携带的电子设备为手机,手机背板绑定有超带宽标签。3台UWB基站将它们的相对坐标发送至手机,手机根据3台基站的相对坐标确定自身在该坐标系中的相对坐标。其中,基站的数量可以是3台,也可以更多。当确定手机的相对坐标后,用户通过移动手机,可以获得手机在坐标系中不同位置的相对坐标。当手机当前的相对坐标为待安装设备的相对坐标时,用户界面会显示用于提示用户安装相应待安装设备的信息。当手机当前的相对坐标对应的位置存在已配网设备时,用户界面会显示用于提示用户测试相应已配网设备的信息。
应理解,根据三个基站的相对坐标确定电子设备在坐标系中的相对坐标的方式仅为一种示例,本申请对具体确定电子设备相对坐标的方法不作限定,任意能够确定电子设备相对坐标的方法均落入本申请保护的范围,例如本申请还可以通过超声波定位、激光雷达定位等方法确定电子设备的相对坐标。
如图9所示,示出了本申请实施例提供的一种安装智能设备的方法900。下面以根据基站相对坐标进行定位为例详细说明。
S901,确定坐标系。
应理解,在目标空间布设数量为3台以上的基站,电子设备接收3台以上基站的相对坐标,并根据基站的相对坐标确定电子设备的相对坐标,从而确定目标空间所在的坐标系。
步骤S901与步骤S601相比,步骤S901确定坐标系的方法不需要事先标定坐标原点,根据3台以上基站的相对坐标即可确定坐标系。
S902,计算所在位置的相对坐标。
应理解,用户移动电子设备,电子设备不断计算当前所在位置的相对坐标。与步骤S602不同的是,步骤S902中,电子设备只能根据当前所在的位置确定相对坐标。也就是说,电子设备每移动一次,只能确定当前所在位置的相对坐标。而步骤S602中,电子设备可以确定当前视野范围内多个位置的相对坐标。
S903,确定待安装设备的相对坐标。
S904,确定已配网设备。
步骤S903和步骤S904与上述步骤S603和步骤S604类似,为避免重复,此处不再赘述。
S905,显示第一安装信息。
S906,显示第二安装信息。
步骤S905和步骤S906与上述步骤S605和步骤S606类似,为避免重复,此处不再赘述。
本申请实施例提供的一种安装智能设备的方法。用户可通过电子设备在坐标系内确定待安装设备的相对位置,并且在用户界面显示安装的相关信息。用户可以直观地获取待安装设备的安装信息,便于用户安装相应的智能设备。更进一步地,当智能设备已完成安装和配网之后,用户可以直观地获取智能设备的测试信息,便于用户对智能设备的测试、维护、验证等操作,从而确保智能设备能够正常工作。
为了便于理解,图10示出了一种安装智能设备的方法的显示效果示意图。当确定待安装设备的相对坐标时,用户界面可显示如图10中的(a)所示的窗口。当确定已配网设备时,用户界面可显示如图10中的(b)所示的窗口。
在一种实现方式中,当电子设备确定当前视野范围内存在待安装设备的相对坐标,或者,当电子设备当前所在的位置的相对坐标是待安装设备的相对坐标时,在用户界面显示用于提示用户安装待安装设备的信息。应理解,该信息可以通过窗口进行显示。其中,该信息可以包括待安装设备的名称(射灯)、待安装设备的型号(BL2002R)、待安装设备的点位坐标(t:3;s:1)、待安装设备的相对坐标(x1,y1,z1)、待安装设备的安装点(客厅角)、待安装设备的安装坐标(l,w,h)和待安装设备的图像(射灯图像)。
在另一种实现方式中,当电子设备确定当前视野范围内存在已配网设备,或者,当电子设备当前所在位置存在已配网设备时,在用户界面显示用户提示用户测试已配网设备的信息。其中,该信息除了上述用于提示用户安装待安装设备的信息之外,还可以包括测试控件。当用户点击测试控件时,可以显示点击该测试控件之后的预期效果,例如,当用户点击测试控件后,可以显示“点击按钮,灯亮;再次点击,灯灭”信息。用户可以根据射灯是否表现为预期效果确定射灯是否通过测试,以体现射灯能否正常工作。
如图11示出了本申请实施例提供的一种安装智能设备的方法1100。该方法可以应用于如图4所示的框架中。下面对该方法1100进行详细说明。
S1101,确定目标坐标系。
应理解,该目标坐标系与设计坐标系对齐。设计坐标系中标记有各个待安装设备的相对坐标。
在一些实施例中,响应于用户的第一操作,标定坐标原点;根据坐标原点确定目标坐标系。
示例性的,用户打开电子设备的摄像装置,当摄像装置扫描至地面门轴时,用户点击标定控件,标定地面门轴为坐标原点,以地面门轴为坐标原点的坐标系为目标坐标系。
在一些实施例中,获取至少三个基站的位置信息;根据至少三个基站的位置信息确定目标坐标系。
示例性的,电子设备根据至少三个基站的位置信息确定自身的相对坐标,并根据电子设备当前位置的相对坐标确定电子设备所在的坐标系为目标坐标系。
S1102,确定待安装设备的相对坐标。
应理解,待安装设备的相对坐标为目标坐标系中的坐标。
在一些实施例中,当目标坐标系中的任一坐标与设计坐标系中的标定坐标对应时,且目标坐标系中的任一坐标对应的位置点与目标坐标系的基准平面上的设计安装点之间的距离小于或等于预设阈值时,确定待安装设备的相对坐标。
示例性的,电子设备计算当前视野范围内不同位置点的相对坐标,或者,电子设备计算当前所在 位置的相对坐标。当设计坐标中存在标定坐标与该相对坐标对应,且该相对坐标对应的位置点与基准平面上的设计安装点之间的距离小于或等于预设阈值,则说明该处位置需要安装待安装设备。
应理解,预设阈值的具体值可以根据目标空间的实际大小确定的。目标空间越大,预设阈值越大。例如,目前AR定位技术的精度可以达到10cm级别,预设阈值可以根据需要设置为10cm。
S1103,根据待安装设备的相对坐标,显示第一安装信息。
应理解,第一安装信息用于提示用户安装待安装设备。
在一些实施例中,第一安装信息包括以下至少一种:待待安装设备的点位坐标、、待安装设备的相对坐标、待安装设备的安装坐标。
在一些实施例中,第一安装信息还包括以下至少一种:待安装设备的设备标识、待安装设备的设备图像。
在一些实施例中,确定已配网设备,其中,已配网设备位于目标坐标系内;响应于已配网设备的确定,显示第二安装信息,第二安装信息用于提示用户测试已配网设备。
在一些实施例中,第二安装信息包括测试控件和测试信息,测试信息用于提示用户对测试控件执行第二操作获得的预期结果。
应理解,已配网设备和待安装设备可以是同一个智能设备的不同阶段。当待安装设备完成安装并且配网成功后,用户可以通过电子设备直接控制该智能设备,并对智能设备进行测试。当已配网设备和待安装设备是同一个设备时,第二安装信息包括第一安装信息,还包括测试控件和测试信息。其中,测试信息用于提示用户对已配网设备进行相关测试之后,可能出现的预期效果。用户可以根据点击测试控件后显示的预期效果,与实际的测试效果对比。效果一致,表示已配网设备通过测试,能够正常使用。
本申请实施例提供的一种安装智能设备的方法。用户可通过电子设备在坐标系内确定待安装设备的相对位置,并且在用户界面显示安装的相关信息。用户可以直观地获取待安装设备的安装信息,便于用户安装相应的智能设备。更进一步地,当智能设备已完成安装和配网之后,用户可以直观地获取智能设备的测试信息,便于用户对智能设备的测试、维护、验证等操作,从而确保智能设备能够正常工作。
本申请实施例提供一种计算机程序产品,当该计算机程序产品在电子设备运行时,使得电子设备执行上述实施例中的技术方案。其实现原理和技术效果与上述方法相关实施例类似,此处不再赘述。
本申请实施例提供一种可读存储介质,该可读存储介质包含指令,当该指令在电子设备运行时,使得该电子设备执行上述实施例的技术方案。其实现原理和技术效果类似,此处不再赘述。
本申请实施例提供一种芯片,该芯片用于执行指令,当该芯片运行时,执行上述实施例中的技术方案。其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以该权利要求的保护范围为准。

Claims (20)

  1. 一种安装智能设备的方法,其特征在于,包括:
    确定目标坐标系;
    确定待安装设备的相对坐标,所述待安装设备的相对坐标为所述待安装设备在所述目标坐标系中的坐标;
    根据所述待安装设备的相对坐标,显示第一安装信息,所述第一安装信息用于提示用户安装所述待安装设备。
  2. 根据权利要求1所述的方法,其特征在于,所述确定待安装设备的相对坐标,包括:
    当所述目标坐标系中的任一坐标与设计坐标系中的标定坐标对应时,且当所述目标坐标系中的任一坐标对应的位置点与所述目标坐标系的基准平面上的设计安装点之间的距离小于或等于预设阈值时,确定待安装设备的相对坐标。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定目标坐标系,包括:
    响应于用户的第一操作,标定坐标原点;
    根据所述坐标原点确定目标坐标系。
  4. 根据权利要求1或2所述的方法,其特征在于,所述确定目标坐标系,包括:
    获取至少三个基站的位置信息;
    根据所述至少三个基站的位置信息确定目标坐标系。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一安装信息包括以下至少一种:
    所述待安装设备的点位坐标、所述待安装设备的相对坐标、所述待安装设备的安装坐标。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一安装信息还包括以下至少一种:
    所述待安装设备的设备标识、所述待安装设备的设备图像。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    确定位于所述目标坐标系内的已配网设备;
    响应于所述已配网设备的确定,显示所述第二安装信息,所述第二安装信息用于提示用户测试所述已配网设备。
  8. 根据权利要求7所述的方法,其特征在于,所述第二安装信息包括测试控件和测试信息,所述测试信息用于提示用户对所述测试控件执行第二操作获得的预期结果。
  9. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    一个或多个存储器;
    所述一个或多个存储器存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:
    确定目标坐标系;
    确定待安装设备的相对坐标,所述待安装设备的相对坐标为所述目标坐标系中的坐标;
    根据所述待安装设备的相对坐标,显示第一安装信息,所述第一安装信息用于提示用户安装所述待安装设备。
  10. 根据权利要求9所述的电子设备,其特征在于,所述确定待安装设备的相对坐标,当所述指令被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:
    当所述目标坐标系中的任一坐标与设计坐标系中的标定坐标对应时,且当所述目标坐标系中的任一坐标对应的位置点与所述目标坐标系的基准平面上的设计安装点之间的距离小于或等于预设阈值时,确定待安装设备的相对坐标。
  11. 根据权利要求9或10所述的电子设备,其特征在于,所述确定目标坐标系,当所述指令被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:
    响应于用户的第一操作,标定坐标原点;
    根据所述坐标原点确定目标坐标系。
  12. 根据权利要求9或10所述的电子设备,其特征在于,所述确定目标坐标系,当所述指令被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:
    获取至少三个基站的位置信息;
    根据所述至少三个基站的位置信息确定目标坐标系。
  13. 根据权利要求9至12中任一项所述的电子设备,其特征在于,所述第一安装信息包括以下至少一种:
    所述待安装设备的点位坐标、所述待安装设备的相对坐标、所述待安装设备的安装坐标。
  14. 根据权利要求9至13中任一项所述的电子设备,其特征在于,所述第一安装信息还包括以下至少一种:
    所述待安装设备的设备标识、所述待安装设备的设备图像。
  15. 根据权利要求9至14中任一项所述的电子设备,其特征在于,当所述指令被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:
    确定位于所述目标坐标系内的已配网设备;
    响应于所述已配网设备的确定,显示所述第二安装信息,所述第二安装信息用于提示用户测试所述已配网设备。
  16. 根据权利要求15所述的电子设备,其特征在于,所述第二安装信息包括测试控件和测试信息,所述测试信息用于提示用户对所述测试控件执行第二操作获得的预期结果。
  17. 一种通信装置,其特征在于,包括:与存储器耦合的处理器,所述存储器用于存储计算机程序,所述处理器用于运行所述计算机程序,使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  18. 根据权利要求17所述的通信装置,其特征在于,所述通信装置还包括所述存储器和收发器中的一项或多项,所述收发器用于接收信号和/或发送信号。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1至8中任一项所述的方法被执行。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1至8中任一项所述的方法被执行。
PCT/CN2023/108889 2022-07-29 2023-07-24 安装智能设备的方法及电子设备 WO2024022288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210904139.3 2022-07-29
CN202210904139.3A CN117528399A (zh) 2022-07-29 2022-07-29 安装智能设备的方法及电子设备

Publications (1)

Publication Number Publication Date
WO2024022288A1 true WO2024022288A1 (zh) 2024-02-01

Family

ID=89705468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108889 WO2024022288A1 (zh) 2022-07-29 2023-07-24 安装智能设备的方法及电子设备

Country Status (2)

Country Link
CN (1) CN117528399A (zh)
WO (1) WO2024022288A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109032348A (zh) * 2018-06-26 2018-12-18 亮风台(上海)信息科技有限公司 基于增强现实的智能制造方法与设备
US20210248824A1 (en) * 2020-02-10 2021-08-12 B/E Aerospace, Inc. System and Method for Locking Augmented and Mixed Reality Applications to Manufacturing Hardware

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109032348A (zh) * 2018-06-26 2018-12-18 亮风台(上海)信息科技有限公司 基于增强现实的智能制造方法与设备
US20210248824A1 (en) * 2020-02-10 2021-08-12 B/E Aerospace, Inc. System and Method for Locking Augmented and Mixed Reality Applications to Manufacturing Hardware

Also Published As

Publication number Publication date
CN117528399A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2020244492A1 (zh) 一种投屏显示方法及电子设备
CN111752443B (zh) 显示设备控制页面的方法、相关装置及***
WO2020155014A1 (zh) 智能家居设备分享***、方法及电子设备
CN110495819B (zh) 机器人的控制方法、机器人、终端、服务器及控制***
KR102561572B1 (ko) 센서 활용 방법 및 이를 구현한 전자 장치
WO2022007707A1 (zh) 家居设备控制方法、终端设备及计算机可读存储介质
CN112087649B (zh) 一种设备搜寻方法以及电子设备
US20220124607A1 (en) Method for Accessing Network by Smart Home Device and Related Device
WO2022028537A1 (zh) 一种设备识别方法及相关装置
WO2023241209A9 (zh) 桌面壁纸配置方法、装置、电子设备及可读存储介质
US20230388832A1 (en) Method for detecting video surveillance device and electronic device
WO2021121036A1 (zh) 一种折叠设备的自定义按键方法、设备及存储介质
CN112312410B (zh) 一种无线接入点的部署方法及装置
CN116389640A (zh) 一种界面显示的方法和电子设备
CN114444000A (zh) 页面布局文件的生成方法、装置、电子设备以及可读存储介质
CN114095542A (zh) 显示控制方法及电子设备
WO2024022288A1 (zh) 安装智能设备的方法及电子设备
WO2022143310A1 (zh) 一种双路投屏的方法及电子设备
WO2022062902A1 (zh) 一种文件传输方法和电子设备
WO2022007757A1 (zh) 跨设备声纹注册方法、电子设备及存储介质
CN114079691B (zh) 一种设备识别方法及相关装置
CN113867851A (zh) 电子设备操作引导信息录制方法、获取方法和终端设备
WO2023016347A1 (zh) 声纹认证应答方法、***及电子设备
CN115619628B (zh) 图像处理方法和终端设备
WO2021013246A1 (zh) 一种无线接入点的部署方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845498

Country of ref document: EP

Kind code of ref document: A1