WO2024022247A1 - 定时提前ta的维护方法、装置、设备及介质 - Google Patents

定时提前ta的维护方法、装置、设备及介质 Download PDF

Info

Publication number
WO2024022247A1
WO2024022247A1 PCT/CN2023/108627 CN2023108627W WO2024022247A1 WO 2024022247 A1 WO2024022247 A1 WO 2024022247A1 CN 2023108627 W CN2023108627 W CN 2023108627W WO 2024022247 A1 WO2024022247 A1 WO 2024022247A1
Authority
WO
WIPO (PCT)
Prior art keywords
objects
signaling
tac
timing advance
processor
Prior art date
Application number
PCT/CN2023/108627
Other languages
English (en)
French (fr)
Inventor
孙荣荣
孙鹏
塔玛拉卡拉盖施
王臣玺
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024022247A1 publication Critical patent/WO2024022247A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • Timing advance Timing advance, TA
  • TRP Transmission and Reception Point
  • Embodiments of the present application provide a TA maintenance method, terminal and network-side equipment, which can solve the problem of poor uplink transmission performance in multiple TRP scenarios.
  • a TA maintenance method is provided, which is applied to a terminal.
  • the method includes: the user equipment UE receives first signaling; the first signaling indicates TA information corresponding to N TA objects; the UE bases the TA Information, maintain N TA objects; where N is an integer greater than 1.
  • a TA maintenance method is provided, which is applied to network side equipment.
  • the method includes: the network side equipment sends first signaling to the UE; wherein the first signaling indicates TA information corresponding to N TA objects; TA information is used to maintain the N TA objects; N is an integer greater than 1.
  • a TA maintenance device which is applied to a terminal.
  • the device includes: a receiving module and a maintenance module; the receiving module is used to receive the first signaling; the first signaling indicates the N TA objects corresponding to TA information; this maintenance module is used to maintain the above N TA objects based on the above TA information; where N is an integer greater than 1.
  • a TA maintenance device which is applied to network side equipment.
  • the device includes: a sending module; the sending module is used to send first signaling to the UE; wherein the first signaling indicates N TAs.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive first signaling indicating TA information corresponding to N TA objects; the processor is used to Information, maintain the above N TA objects, where N is an integer greater than 1.
  • a network side device in a sixth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send first signaling to the UE, where the first signaling indicates TA information corresponding to N TA objects, Among them, N is an integer greater than 1.
  • An eighth aspect provides a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the TA maintenance method described in the first aspect.
  • the network side device can be used to perform the steps of the second aspect. The steps of the TA maintenance method described in this aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. , or implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect The steps of TA maintenance method.
  • the UE receives the first signaling, and based on the first signaling indicates the TA information corresponding to the N TA objects, and maintains the N TA objects.
  • the first signaling can indicate the TA information corresponding to multiple TA objects
  • the UE can flexibly maintain the multiple TA objects based on the TA information corresponding to different TA objects, so that the UE can operate in different TRPs.
  • Different TA objects can be flexibly used for uplink transmission in this scenario, ensuring the efficiency of uplink transmission, reducing interference between users, and improving the performance of uplink transmission.
  • Figure 1 is a schematic diagram of a TA principle provided by an embodiment of the present application.
  • Figure 2 is a possible structural schematic diagram of a communication system involved in an embodiment of the present invention.
  • Figure 3 is one of the flow diagrams of a TA maintenance method provided by an embodiment of the present application.
  • Figure 4 is the second schematic flow chart of a TA maintenance method provided by an embodiment of the present application.
  • Figure 5 is one of the structural schematic diagrams of a TA maintenance device provided by an embodiment of the present application.
  • Figure 6 is the second structural schematic diagram of a TA maintenance device provided by an embodiment of the present application.
  • Figure 7 is the third structural schematic diagram of a TA maintenance device provided by an embodiment of the present application.
  • Figure 8 is the fourth structural schematic diagram of a TA maintenance device provided by an embodiment of the present application.
  • Figure 9 is a fifth structural schematic diagram of a TA maintenance device provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the hardware structure of a network-side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • the base station In order to ensure the orthogonality of uplink transmission and avoid intra-cell interference, the base station requires signals from different UEs in the same subframe but different frequency domain resources (such as different radio bearers (Radio Bearer, RB)) to reach the base station. The times are basically aligned. As long as the base station receives the uplink data sent by the UE within the Cyclic Prefix (CP) range, it can correctly decode the uplink data. Therefore, uplink synchronization requires that the signals from different UEs in the same subframe arrive at the base station at the same time. Within CP.
  • CP Cyclic Prefix
  • Timing advance is used for terminal uplink transmission to ensure that terminal uplink data packets arrive at the base station within the desired time.
  • the specific implementation can be simply summarized as follows: the base station measures the uplink signal to estimate the radio frequency transmission time delay caused by distance, sends a Timing Advance Command (TAC) to the terminal, notifies the terminal of uplink transmission, and sends the corresponding amount of time in advance.
  • TAC Timing Advance Command
  • the base station determines the timing advance value of each UE by measuring the UE's uplink transmission. Therefore, as long as the UE has uplink transmission, the base station can be used to estimate the timing advance value. Theoretically, any signal sent by the UE (SRS/DMRS/CQI/ACK/NACK/PUSCH, etc.) can be used to measure timing advance. During the random access process, the base station determines the timing advance value by measuring the received preamble.
  • TA is essentially a negative offset between the start time of the received downlink subframe and the time of transmitting the uplink subframe.
  • the base station can control the time when uplink signals from different UEs arrive at the base station. For UEs that are far away from the base station, due to larger transmission delays, they must send uplink data earlier than UEs that are closer to the base station.
  • TA is twice the transmission time length, that is, RTT.
  • the terminal receives the RRC configuration
  • TAG Time advance group
  • TAG is used in carrier aggregation scenarios.
  • the delays introduced by multiple carriers are different, or the positions of Pcell and Scell of different carriers are greatly different. In this case, a unified TA cannot be used for processing. Therefore, the concept of TAG is introduced.
  • the same TAG corresponds to the same TA, and different TAG corresponds to different TA values.
  • TAT Time Alignment Timer
  • Each TAG is configured with a time synchronization timer TAT, which is used to control the synchronization time length of the serving cell in the TAG.
  • TAT time synchronization timer
  • the terminal receives the Media Access Control Control Element (MAC CE) and obtains the TAC (time advance command).
  • MAC CE Media Access Control Control Element
  • the terminal receives MAC CE, and MAC CE carries TAC, indicating the terminal TA adjustment amount.
  • TAC effective time n+k+1, where n is the uplink (UL) time slot in which TAC is received,
  • the terminal adjusts TA according to TAC
  • N TA,offset represents the initial timing advance, which can be configured by RRC or agreed upon by the protocol.
  • the terminal's timing advance N TA changes accordingly, where the downlink time is the time of the first detected path of the downlink frame of the reference cell.
  • Multi-TRP Multi TRP, MTRP
  • Multi-DCI (mDCI) scheduling Each TRP sends its own physical downlink control channel (PDCCH), and each PDCCH schedules its own physical downlink shared channel (Physical downlink shared channel, PDSCH) /Physical uplink shared channel (PUSCH)/Physical Uplink Control Channel (PUCCH).
  • PDSCH Physical downlink shared channel
  • PUSCH Physical uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • RRC Radio Resource Control
  • the parameter CORESETPoolIndex corresponds to different TRPs.
  • a DCI is used to dynamically schedule the PUSCH repeated transmission scheme in a time division multiplexing (TDM) manner in a multi-TRP scenario.
  • TDM time division multiplexing
  • one PUSCH repetition refers to one PUSCH transmission opportunity in each time slot; for Type B PUSCH repetition, one PUSCH repetition is a nominal repetition.
  • DCI can indicate two sets of beams (spatial relation), precoding matrix (TPMI), power control parameters, etc., and a new 2-bit indication field is added to DCI to support dynamic adjustment between STRP and MTRP, as well as flexibility Exchange the order of PUSCH repeated transmission beams.
  • TPMI precoding matrix
  • the mapping relationship between each PUSCH repetition and the beam can be configured by RRC parameters as cyclic mapping and sequential mapping.
  • 3GPP R17 the PUCCH repeated transmission scheme in multiple TRP scenarios is supported.
  • mapping relationship between each PUCCH repetition and the beam can be configured by RRC parameters as mapping in turn. (cyclic mapping) and continuous mapping (sequential mapping).
  • the beam information mentioned in the above content can also be called: beam identification information, spatial relationship information, spatial domain transmission filter information, spatial domain reception filter information, and spatial domain transmission filter information.
  • domain reception filter) information spatial filter information
  • transmission configuration indication status (TCI state) information transmission configuration indication status (TCI state) information
  • QCL quasi-colocation
  • downlink beam information can usually be represented by TCI state information or QCL information.
  • Uplink beam information can usually be expressed using TCI state information or spatial relation information.
  • TRP Transmission and Reception Point
  • the UE receives the first signaling and indicates based on the first signaling TA information corresponding to N TA objects, and maintain the N TA objects.
  • the first signaling can indicate TA information corresponding to multiple TA objects
  • the UE can flexibly maintain the multiple TA objects based on the TA information corresponding to different TA objects, thereby improving the performance of uplink transmission. .
  • the TA object in the embodiment of this application refers to an object that needs to maintain TA parameters.
  • the TA object can be: TA process loop, TA process, TAG, uplink timing, downlink timing, timing advance, etc.
  • timing advance in the embodiment of the present application may be in the form of NTA or N TA, for Represents a specific timing advance value.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 2 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computers, PC), teller machines or self-service Terminal devices
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment 12 may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home B-Node, Home Evolved B-Node, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home B-Node Home Evolved B-Node
  • TRP Transmitting Receiving Point
  • FIG. 3 shows a schematic flow chart of a TA maintenance method provided by an embodiment of the present application.
  • the TA maintenance method may include the following steps 201 and 202:
  • Step 201 The UE receives the first signaling.
  • the above-mentioned first signaling indicates TA information corresponding to N TA objects.
  • the above-mentioned first signaling may be MAC CE signaling, or it may be RRC signaling, etc., which is not limited by this application.
  • the TA maintenance method provided by the embodiment of the present application further includes the following step 201a:
  • Step 201a The network side device sends the first signaling to the UE.
  • step 201 may include the following step 201b:
  • Step 201b The UE receives the first signaling from the network side device.
  • the above-mentioned TA information may be the corresponding relationship between M groups of transmission configuration indication TCI states and the above-mentioned N TA objects, or it may be the value of the timing advance of a specific TA, or it may be the identification of the TA, etc. .
  • the TA information corresponding to the N TA objects includes: the correspondence between M groups of transmission configuration indication TCI states and the N TA objects.
  • the corresponding relationship between the N groups of TCI states and the N TA objects is obtained based on at least one of the following:
  • TA can be the TA corresponding to the lower ID of all TCI states associated with coresetPoolindex 0.
  • the sorting order (eg, from small to large) of the physical cell identity (PCI) associated with the TCI status can be associated with the sorting order (eg, from small to large) of the TA identifier.
  • the TCI status can carry the PCI identifier.
  • Each group of TCI states is associated with the same PCI.
  • the PCIs are sorted from small to large, and the TA identifiers are sorted from small to large.
  • the sorted PCIs are sorted with the sorted PCIs. Corresponds to the TA object indicated by the TA identifier after.
  • RRC signaling configures the corresponding relationship between the TCI status and the TA.
  • the TCI status configuration contains the TA identifier.
  • RRC signaling configures TCI groups, each group corresponds to an identifier, and each group of TCI status corresponds to a TA.
  • the DCI includes an indication field of the TA identifier, and the indication field is used to indicate the TA corresponding to the TCI status indicated by the DCI.
  • the above-mentioned M groups of transmission configuration indicators (Transmission Configuration Indicator, TCI) can be obtained through the above-mentioned first signaling.
  • one TA object corresponds to a group of TCI states, or one TA object corresponds to multiple groups of TCI states.
  • the UE receives the MAC CE carrying the control resource set pool index (coresetpoolIndex) (i.e., the above-mentioned first signaling).
  • coresetpoolIndex control resource set pool index
  • the TCI activated under the same coresetpoolIndex corresponds to a TA, or the TCI state activated by the MAC CE is associated with the same physical cell identifier.
  • PCI Physical Cell Identifier
  • Step 202 The UE maintains the above N TA objects based on the above TA information.
  • N is an integer greater than 1.
  • the process of the UE maintaining the TA object may be a process of adjusting the uplink time corresponding to the TA object, a process of controlling the TA object, or a process of adjusting the timing advance corresponding to the TA object.
  • the embodiments of the present application do not limit this.
  • the UE receives the first signaling, and based on the first signaling indicating the TA information corresponding to the N TA objects, maintains the N TA objects.
  • the first signaling can indicate the TA information corresponding to multiple TA objects
  • the UE can flexibly maintain the multiple TA objects based on the TA information corresponding to different TA objects, so that the UE can operate in different TRPs.
  • Different TA objects can be flexibly used for uplink transmission in this scenario, ensuring the efficiency of uplink transmission, reducing interference between users, and improving the performance of uplink transmission.
  • step 202 the process of step 202 "the UE maintains the above N TA objects based on the above TA information" includes the following step 202a:
  • Step 202a The UE adjusts the uplink time corresponding to each of the N TA objects based on the first timing advance and the downlink reference time corresponding to each of the N TA objects.
  • the downlink reference time corresponding to the N TA objects is obtained by the UE measuring the downlink transmission corresponding to the N TA objects.
  • this downlink transmission may be the downlink reference signal in the TCI state corresponding to the TA object, or the TRS corresponding to the TA object.
  • the timing advance corresponding to each of the N TA objects can be flexibly adjusted, so that the UE can use different timing advances to transmit data.
  • the process of the above step 202 "the UE maintains the above N TA objects based on the above TA information" includes the following step 202b:
  • Step 202b The UE maintains the above N TA objects based on the first timer.
  • the above-mentioned first timer is used to count the time for maintaining N TA objects.
  • the process of "the UE maintains the above N TA objects based on the first timer" in the above step 202b includes any of the following:
  • N TA objects correspond to N first timers
  • the corresponding TA objects are respectively controlled based on the N first timers
  • N TA objects correspond to a first timer
  • N TA objects are controlled based on a first timer
  • the fourth TA object is maintained, where the second timer is a timer that refers to the TA object.
  • the UE when the UE maintains the above N TA objects, it will be limited by the timer.
  • N TA objects correspond to N independent timers, which respectively control N TA objects.
  • multiple TA objects correspond to the same timer, that is, one timer controls multiple TA objects at the same time.
  • the fourth TA object is limited by both the second timer and the first timer of the reference TA. For example, when the second timer of the reference object expires or the first timer expires, the fourth TA object is considered invalid.
  • the fourth TA object is at least one of the N TA objects.
  • the first timing advance corresponding to the first TA object among the N TA objects in step 202a is used.
  • the first timing advance corresponding to the first TA object is determined based on at least one of the following determination methods:
  • Method 1 Determined based on the TAC signaling received by the UE;
  • Method 2 Determined based on the downlink timing difference between the first TA object and the reference TA object.
  • the above-mentioned TAC signaling is used to indicate the timing advance.
  • the reference TA object is a TA object different from the first TA object among the N TA objects. It can be understood that the reference TA object is different from the first TA object, and the reference TA object is one of the N TA objects.
  • the above-mentioned first TA object is: any one of the above-mentioned N TA objects.
  • the above TAC signaling is at least one of the following:
  • the TAC signaling obtained during the first random access process triggered by the UE obtained during the first random access process triggered by the UE;
  • TAC signaling carried in the second signaling.
  • the second signaling may be the same signaling as the first signaling, or may be signaling different from the first signaling.
  • the above TAC signaling may be sent by the network side device.
  • the above-mentioned method 1 (that is, the scenario in which the timing advance corresponding to the above-mentioned TA object is determined based on the TAC signaling received by the UE) is used.
  • the TA maintenance method provided by the embodiment of the present application may also include the following steps 301 and 302:
  • Step 301 The UE determines the second TA object.
  • Step 302 The UE configures the timing advance of the TAC signaling indication obtained during the first random access process triggered by the UE to the above-mentioned second TA object.
  • the above-mentioned second TA object is one of N TA objects.
  • the above-mentioned second TA object includes at least one of the following:
  • the TA object determined based on the first synchronization signal block (SSB),
  • the TA object indicated by the TA object identifier received during the first random access process triggered by the UE.
  • the first SSB is used to initiate the first random access process.
  • the UE defaults to the TA of the lower ID.
  • the UE determines the second TA object according to the TCI state of the associated target SSB, that is, the TA object corresponding to the TCI state of the associated target SSB is the second TA object.
  • the UE determines the second TA object according to the PCI corresponding to the target SSB, that is, the TA corresponding to the PCI corresponding to the target SSB is the second TA object.
  • the second TA object is: the TA object indicated by the TA object identifier received during the first random access process triggered by the UE.
  • RAR carries both TAC and TA identifiers.
  • the TA maintenance method provided by the embodiment of the present application may also include the following steps 401 and 402:
  • Step 401 The UE determines the third TA object.
  • Step 402 The UE configures the timing advance of the TAC signaling indication obtained in the second random access process triggered by the received network side signaling to the above-mentioned third TA object.
  • the third TA object is one of N TA objects.
  • the third TA object includes at least one of the following:
  • the TA object determined based on the first detected TCI state
  • the second SSB is: the SSB indicated by the network side signaling received by the UE during the second random access process triggered by the received network side signaling.
  • the first TCI state is: the TCI state carried in the network-side signaling received by the UE during the second random access process triggered by the received network-side signaling.
  • the UE defaults to the TA object of the lower ID.
  • the UE determines the third TA object according to the TCI state of the associated target SSB, that is, the TA object corresponding to the TCI state of the associated target SSB is the third TA object.
  • the UE determines the third TA object according to the TCI status of the PDCCH that detects the PDCCH order (DCI), that is, with The TA object corresponding to the TCI status of the PDCCH in PDCCH order (DCI) is the third TA object.
  • PDCCH order directly indicates the identity of the third TA object.
  • the first timing advance corresponding to the first TA object is determined based on the downlink timing difference between the first TA object and the reference TA object.
  • the TA maintenance method provided by the embodiment of the present application may also include the following steps 501 and 502:
  • Step 501 The UE obtains the downlink timing difference between the reference TA object and the first TA object.
  • the above reference TA object may be a default TA object.
  • the TA corresponding to the lower ID, or the TA object associated with the target object may be a default TA object.
  • the above target object may be TCI group, SSB, Coresetpoolindex, PCI, SRS resource set, etc.
  • Step 502 The UE obtains the timing advance corresponding to the first TA object based on the downlink timing difference between the reference TA object and the first TA object and the second timing advance.
  • the above-mentioned second timing advance is: the timing advance indicated by the first TAC signaling associated with the reference TA object.
  • the downlink timing difference is obtained by measuring the downlink transmission associated with the first TA object and the reference TA object. For example, separately measure the downlink reference signal in the TCI state corresponding to the first TA object and the reference TA object to obtain the downlink timing error, or separately measure the tracking reference signal (tracking reference signal) associated with the first TA object and the reference TA object, TRS) (generally, TRS can be described as tracking-CSI-RS in the protocol) to obtain the downlink timing error.
  • TRS tracking reference signal
  • the TA maintenance method provided by the embodiment of the present application further includes steps 601 and 602:
  • Step 601 The UE obtains the timing advance corresponding to the target TA object based on the correspondence between the M group transmission configuration indication TCI status and the above N TA objects.
  • the above target TA object is: a TA object corresponding to the target TCI state associated with the first uplink object.
  • Step 602 The UE transmits the first uplink object based on the timing advance.
  • the first uplink object includes at least one of the following: a first uplink signal, a first uplink channel.
  • the TA maintenance method provided by the embodiment of the present application further includes step A:
  • Step A When the timer corresponding to the fifth TA object expires, the UE performs the target behavior.
  • the above target behavior includes at least one of the following:
  • the UE stops all uplink transmissions corresponding to the fifth TA object mentioned above;
  • the UE stops all uplink transmissions
  • the fifth TA object is at least one of the N TA objects.
  • the UE can selectively stop the uplink transmission service according to the needs, thereby improving the efficiency of uplink transmission.
  • the execution subject may be the TA maintenance device.
  • the maintenance device of the TA performing the maintenance method of the TA is used as an example to illustrate the maintenance device of the TA provided by the embodiment of the present application.
  • the TA maintenance device 700 includes: a receiving module 701 and a maintenance module 702; the receiving module 701 is used to receive the first signaling; the first The signaling indicates TA information corresponding to the N TA objects; the maintenance module 702 is configured to maintain the N TA objects based on the TA information; where N is an integer greater than 1.
  • the TA information corresponding to the above-mentioned N TA objects includes: M sets of transmission configuration indication TCI states and the corresponding relationship between the above-mentioned N TA objects; wherein, a group of TCI states and one TA object Correspondingly, M is a positive integer.
  • the corresponding relationship between the above-mentioned M groups of TCI states and the above-mentioned N TA objects is obtained based on at least one of the following: through the TCI state corresponding to each TCI state in the above-mentioned M groups of TCI states.
  • the identifier is obtained by the object identifier corresponding to each of the above N TA objects; configured through RRC signaling; configured through DCI signaling.
  • the above-mentioned maintenance module 702 is specifically configured to adjust the corresponding first timing advance and downlink reference time of each TA object among the above-mentioned N TA objects respectively. up time.
  • the first timing advance corresponding to the first TA object among the N TA objects is determined based on at least one of the following: determined based on the TAC signaling received by the UE; The downlink timing difference between the above-mentioned first TA object and the reference TA object is determined; wherein, TAC signaling is used to indicate the timing advance; the above-mentioned reference TA object is: a TA different from the first TA object among N TA objects. object.
  • the above-mentioned TAC signaling is at least one of the following: TAC signaling obtained during the first random access process triggered by the UE; TAC signaling obtained from the network side signaling received by the UE. The TAC signaling obtained during the triggered second random access process; the TAC signaling carried in the second signaling.
  • the above-mentioned first timing advance amount is determined based on the TAC signaling received by the UE; the above-mentioned device also includes: a processing module 703; Module 703 is used to determine the second TA object; the processing module 703 is used to configure the timing advance indicated by the TAC signaling obtained in the first random access process to the second TA object; wherein,
  • the above-mentioned second TA object is at least one of the following: a default TA object, a TA object determined based on the first SSB, and a TA object indicated by the TA object identifier received during the first random access process; the first SSB is used to initiate the above-mentioned The first random access procedure.
  • the first timing advance amount is based on the TAC received by the UE.
  • the signaling is determined; the above-mentioned processing module 703 is also used to: determine the third TA object; configure the timing advance indicated by the TAC signaling obtained in the above-mentioned second random access process to the above-mentioned third TA object;
  • the third TA object is determined based on at least one of the following: a default TA object, a TA object determined based on the second SSB, and a TA object determined based on the detected first TCI state;
  • the above-mentioned second SSB is: the above-mentioned UE is in The SSB indicated by the network side signaling received in the second random access process;
  • the first TCI state is: the TCI state carried in the network side signaling received by the UE in the second random access process.
  • the first timing advance corresponding to the first TA object among the N TA objects is determined based on the downlink timing difference between the first TA object and the reference TA object; the above-mentioned The processing module 703 is also configured to: obtain the downlink timing difference between the above-mentioned reference TA object and the above-mentioned first TA object; and obtain the timing advance corresponding to the above-mentioned first TA object based on the above-mentioned downlink timing difference and the second timing advance. amount; wherein, the second timing advance amount is: the timing advance amount indicated by the first TAC signaling associated with the above-mentioned reference TA object.
  • the downlink reference time corresponding to the N TA objects is obtained by the UE measuring the downlink transmission corresponding to the N TA objects.
  • the above device also includes: an acquisition module 704 and a transmission module 705; the acquisition module 704 is used to acquire the target TA object based on the above corresponding relationship.
  • the target TA object is: a TA object corresponding to the target TCI state associated with the first uplink object;
  • the above-mentioned transmission module 705 is used to transmit the first uplink object based on the above-mentioned timing advance; wherein, the first uplink object Including at least one of the following: the first uplink signal, the first uplink channel.
  • the above-mentioned maintenance module 702 is specifically configured to maintain the above-mentioned N TA objects based on the first timer.
  • the UE maintaining the above N TA objects based on the first timer includes any of the following: the above maintenance module 702, specifically used to: when the above N TA objects correspond to N first timers, In the case of a timer, based on the N first timers, each corresponding TA object is controlled respectively; in the case where the above N TA objects correspond to a first timer, the above N TA objects are controlled based on the one first timer. Object; maintain the above-mentioned fourth TA object based on the first timer and the second timer corresponding to the fourth TA object among the above-mentioned N TA objects.
  • the above maintenance module 702 specifically used to: when the above N TA objects correspond to N first timers, In the case of a timer, based on the N first timers, each corresponding TA object is controlled respectively; in the case where the above N TA objects correspond to a first timer, the above N TA objects are controlled based on the one first timer. Object;
  • the above-mentioned device also includes: an execution module 706; the execution module 706 is used when the timer corresponding to the fifth TA object fails. , execute the target behavior; wherein, the target behavior includes at least one of the following: stop all uplink transmission corresponding to the above-mentioned fifth TA object; stop all uplink transmission; wherein, the above-mentioned fifth TA object is at least one of N TA objects. .
  • the first signaling is received, and based on the first signaling indicating the TA information corresponding to the N TA objects, the N TA objects are maintained.
  • the first signaling can indicate TA information corresponding to multiple TA objects, it is possible to based on TA information corresponding to different TA objects, To flexibly maintain multiple TA objects, so that the UE can flexibly use different TA objects for uplink transmission in different TRP scenarios, ensuring the efficiency of uplink transmission, reducing interference between users, and improving uplink transmission. Transmission performance.
  • the TA maintenance device 7000 includes: a sending module 7001, the sending module 7001 is used to send the first signaling to the UE; wherein, the first signaling Indicates the TA information corresponding to N TA objects; TA information is used to maintain the above N TA objects; N is an integer greater than 1.
  • the TA information corresponding to the above-mentioned N TA objects includes: M sets of transmission configuration indication TCI states and the corresponding relationship between the above-mentioned N TA objects; wherein, a group of TCI states and one TA object Correspondingly, M is a positive integer.
  • the corresponding relationship between the above-mentioned M groups of TCI states and the above-mentioned N TA objects is obtained based on at least one of the following: through the TCI state corresponding to each TCI state in the above-mentioned M groups of TCI states.
  • the identifier is obtained by the object identifier corresponding to each of the above N TA objects; configured through RRC signaling; configured through DCI signaling.
  • the above-mentioned sending module 7001 is also used to send TAC signaling to the UE; wherein, the TAC signaling is used to indicate the timing advance corresponding to one TA object among the N TA objects. .
  • the above-mentioned TAC signaling is at least one of the following: TAC signaling obtained during the first random access process triggered by the UE; TAC signaling obtained from the network side signaling received by the UE. The TAC signaling obtained during the triggered second random access process; the TAC signaling carried in the second signaling.
  • the first signaling is sent to the UE, where the first signaling indicates the TA information corresponding to the N TA objects; the TA information is used to maintain the above N TA objects; N is An integer greater than 1.
  • the first signaling can indicate TA information corresponding to multiple TA objects, the UE side can flexibly maintain the multiple TA objects based on the TA information corresponding to different TA objects, so that the UE can flexibly maintain the multiple TA objects at different times.
  • different TA objects are flexibly used for uplink transmission, which ensures the efficiency of uplink transmission, reduces interference between users, and improves the performance of uplink transmission.
  • the TA maintenance device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the TA maintenance device provided by the embodiment of the present application can implement each process implemented by the method embodiments of Figures 5 to 9 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 800, including a processor 801 and a memory 802.
  • the memory 802 stores programs or instructions that can be run on the processor 801, for example
  • the communication device 800 is a terminal
  • the program or instruction is executed by the processor 801
  • each step of the above TA maintenance method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 800 is a network-side device
  • each step of the above TA maintenance method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the communication interface is configured to receive first signaling indicating TA information corresponding to N TA objects; the processor is configured to, based on the above TA information, Maintain the above N TA objects.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 11 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, etc. At least some parts.
  • the terminal 100 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 110 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and at least one of other input devices 1072 .
  • Touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 101 after receiving downlink data from the network side device, the radio frequency unit 101 can transmit it to the processor 110 for processing; in addition, the radio frequency unit 101 can send uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 109 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 109 may include volatile memory or non-volatile memory, or memory 109 Both volatile and non-volatile memory can be included.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 110 may include one or more processing units; optionally, the processor 110 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 110 .
  • the radio frequency unit 101 is used to receive the first signaling; the first signaling indicates the TA information corresponding to the N TA objects; the processor 110 is used to maintain the above-mentioned N TA objects based on the above-mentioned TA information; wherein, N is an integer greater than 1.
  • the TA information corresponding to the above-mentioned N TA objects includes: M sets of transmission configuration indication TCI states and the corresponding relationship between the above-mentioned N TA objects; wherein, a group of TCI states and one TA object Correspondingly, M is a positive integer.
  • the corresponding relationship between the above-mentioned M groups of TCI states and the above-mentioned N TA objects is obtained based on at least one of the following: through the TCI state corresponding to each TCI state in the above-mentioned M groups of TCI states.
  • the identifier is obtained by the object identifier corresponding to each of the above N TA objects; configured through RRC signaling; configured through DCI signaling.
  • the above-mentioned processor 110 is specifically configured to adjust the corresponding first timing advance and downlink reference time of each TA object among the above-mentioned N TA objects respectively. up time.
  • the first timing advance corresponding to the first TA object among the N TA objects is determined based on at least one of the following: determined based on the TAC signaling received by the UE; The downlink timing difference between the above-mentioned first TA object and the reference TA object is determined; wherein, TAC signaling is used to indicate the timing advance; the above-mentioned reference TA object is a TA different from the above-mentioned first TA object among the above-mentioned N TA objects. object.
  • the above-mentioned TAC signaling is at least one of the following: TAC signaling obtained during the first random access process triggered by the UE; TAC signaling obtained from the network side signaling received by the UE. Triggered second The TAC signaling obtained during the random access process; the TAC signaling carried in the second signaling.
  • the above-mentioned first timing advance amount is determined based on the TAC signaling received by the UE; the above-mentioned processor 110 is also used to: determine the second TA object; The timing advance indicated by the TAC signaling obtained during the access process is configured to the above-mentioned second TA object; wherein the above-mentioned second TA object is at least one of the following: a default TA object, a TA object determined based on the first SSB , the TA object indicated by the TA object identifier received during the first random access process; the first SSB is used to initiate the above-mentioned first random access process.
  • the above-mentioned first timing advance amount is determined based on the TAC signaling received by the above-mentioned UE; the above-mentioned processor 110 is also configured to: determine the third TA object; The timing advance indicated by the TAC signaling obtained during the random access process is configured to the above-mentioned third TA object; wherein the third TA object includes at least one of the following: a default TA object, a TA object determined based on the second SSB, The TA object determined based on the detected first TCI state; the second SSB is: the SSB indicated by the network side signaling received by the UE in the second random access process; the first TCI state is: the UE The TCI status carried in the network side signaling received in the above second random access process.
  • the first timing advance corresponding to the first TA object among the N TA objects is determined based on the downlink timing difference between the first TA object and the reference TA object; the above-mentioned The processor 110 is also configured to: obtain the downlink timing difference between the above-mentioned reference TA object and the above-mentioned first TA object; and obtain the timing advance corresponding to the above-mentioned first TA object based on the above-mentioned downlink timing difference and the second timing advance. amount; wherein, the second timing advance amount is: the timing advance amount indicated by the first TAC signaling associated with the above-mentioned reference TA object.
  • the downlink reference time corresponding to the N TA objects is obtained by the UE measuring the downlink transmission corresponding to the N TA objects.
  • the above-mentioned processor 110 is configured to obtain the timing advance corresponding to the target TA object based on the above-mentioned corresponding relationship; the target TA object is: corresponding to the target TCI state associated with the first uplink object. TA object; the above-mentioned processor 110 is configured to transmit the first uplink object based on the above-mentioned timing advance; wherein the first uplink object includes at least one of the following: a first uplink signal and a first uplink channel.
  • the above-mentioned processor 110 is specifically configured to maintain the above-mentioned N TA objects based on the first timer.
  • the above-mentioned processor 110 is specifically configured to perform at least one of the following: in the case that the above-mentioned N TA objects correspond to N first timers, based on the N first timers , respectively control their corresponding TA objects; when the above N TA objects correspond to a first timer, the above N TA objects are controlled based on the first timer; based on the fourth TA among the above N TA objects The first timer and the second timer corresponding to the object maintain the above-mentioned fourth TA object.
  • the above-mentioned processor 110 is also configured to perform a target behavior when the timer corresponding to the fifth TA object expires; wherein the target behavior includes at least one of the following: stopping and the above-mentioned All uplink transmissions corresponding to the fifth TA object; stop all uplink transmissions; wherein the above-mentioned fifth TA object is at least one of the N TA objects.
  • the first signaling is received, and based on the first signaling indicating the TA information corresponding to the N TA objects, the N TA objects are maintained.
  • the terminal can flexibly maintain the multiple TA objects based on the TA information corresponding to different TA objects, so that the terminal can operate in different TRPs.
  • Different TA objects can be flexibly used for uplink transmission in this scenario, ensuring the efficiency of uplink transmission, reducing interference between users, and improving the performance of uplink transmission.
  • Embodiments of the present application also provide a network side device, including a processor and a communication interface.
  • the communication interface is used to send first signaling to the UE, where the first signaling indicates TA information corresponding to N TA objects, wherein, N is an integer greater than 1.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 900 includes: an antenna 91 , a radio frequency device 92 , a baseband device 93 , a processor 94 and a memory 95 .
  • the antenna 91 is connected to the radio frequency device 92 .
  • the radio frequency device 92 receives information through the antenna 91 and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92.
  • the radio frequency device 92 processes the received information and then sends it out through the antenna 91.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 93, which includes a baseband processor.
  • the baseband device 93 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 96, which is, for example, a common public radio interface (CPRI).
  • a network interface 96 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 900 in this embodiment of the present invention also includes: instructions or programs stored in the memory 95 and executable on the processor 94.
  • the processor 94 calls the instructions or programs in the memory 95 to execute the various operations shown in Figure 9. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above TA maintenance method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above TA maintenance method embodiment. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above-mentioned TA maintenance method.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • Embodiments of the present application also provide a TA maintenance system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the TA maintenance method as described above.
  • the network side device can be used to perform the above steps. The steps of TA maintenance method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种定时提前TA的维护方法,包括:用户设备UE接收第一信令;第一信令指示N个TA对象对应的TA信息; UE基于TA信息,维护N个TA对象;其中,N为大于1的整数。

Description

定时提前TA的维护方法、装置、设备及介质
相关申请的交叉引用
本申请主张在2022年07月26日提交的申请号为202210886408.8的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种定时提前(Timing advance,TA)的维护方法、装置、设备及介质。
背景技术
现有技术中,在多传输和接收点(Transmission and Reception Point,TRP)场景中发往不同TRP的上行传输都采用相同的TA,导致到达一个TRP的上行传输时间差超出循环前缀(Cyclic Prefix,CP),从而带来用户间干扰,降低上行传输的性能,无法达到多TRP传输提升吞吐量的目的。
发明内容
本申请实施例提供一种TA的维护方法、终端及网络侧设备,能够解决多TRP场景中上行传输的性能差的问题。
第一方面,提供了一种TA的维护方法,应用于终端,该方法包括:用户设备UE接收第一信令;该第一信令指示N个TA对象对应的TA信息;UE基于所述TA信息,维护N个TA对象;其中,N为大于1的整数。
第二方面,提供了一种TA的维护方法,应用于网络侧设备,该方法包括:网络侧设备向UE发送第一信令;其中,第一信令指示N个TA对象对应的TA信息;TA信息用于维护所述N个TA对象;N为大于1的整数。
第三方面,提供了一种TA的维护装置,应用于终端,该装置包括:接收模块和维护模块;该接收模块用于接收第一信令;该第一信令指示N个TA对象对应的TA信息;该维护模块,用于基于上述TA信息,维护上述N个TA对象;其中,N为大于1的整数。
第四方面,提供了一种TA的维护装置,应用于网络侧设备,该装置包括:发送模块;该发送模块,用于向UE发送第一信令;其中,第一信令指示N个TA对象对应的TA信息;TA信息用于维护所述N个TA对象;N为大于1的整数。
第五方面,提供了一种终端,包括处理器及通信接口,其中,通信接口用于接收第一信令,该第一信令指示N个TA对象对应的TA信息;处理器用于基于上述TA信息,维护上述N个TA对象,其中,N为大于1的整数。
第六方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向UE发送第一信令,该第一信令指示N个TA对象对应的TA信息,其中,N为大于1的整数。
第八方面,提供了一种通信***,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的TA的维护方法的步骤,所述网络侧设备可用于执行如第二方面所述的TA的维护方法的步骤。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的TA的维护方法的步骤。
在本申请实施例中,UE接收第一信令,并基于该第一信令指示N个TA对象对应的TA信息,维护该N个TA对象。如此,由于第一信令可以指示多个TA对象对应的TA信息,从而使得UE可以基于不同TA对象对应的TA信息,来灵活地对该多个TA对象进行维护,以便于UE可以在不同TRP场景下灵活地利用不同的TA对象来进行上行传输,保证了上行传输的效率,降低了用户间的干扰,提升了上行传输的性能。
附图说明
图1是本申请实施例提供的一种TA原理的示意图;
图2为本发明实施例所涉及的通信***的一种可能的结构示意图;
图3是本申请实施例提供的一种TA的维护方法的流程示意图之一;
图4是本申请实施例提供的一种TA的维护方法的流程示意图之二;
图5是本申请实施例提供的一种TA的维护装置的结构示意图之一;
图6是本申请实施例提供的一种TA的维护装置的结构示意图之二;
图7是本申请实施例提供的一种TA的维护装置的结构示意图之三;
图8是本申请实施例提供的一种TA的维护装置的结构示意图之四;
图9是本申请实施例提供的一种TA的维护装置的结构示意图之五;
图10是本申请实施例提供的一种通信设备的硬件结构示意图;
图11是本申请实施例提供的一种终端的硬件结构示意图;
图12是本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
以下将对本申请实施例提供的技术方案中所涉及的技术术语进行说明:
1、TA原理概述:
为了保证上行传输的正交性,避免小区内(intra-cell)干扰,基站要求来自同一子帧但不同频域资源(如不同的无线承载(Radio Bearer,RB))的不同UE的信号到达基站的时间基本上是对齐的。基站只要在循环前缀(Cyclic Prefix,CP)范围内接收到UE所发送的上行数据,就能够正确地解码上行数据,因此,上行同步要求来自同一子帧的不同UE的信号到达基站的时间都落在CP之内。
定时提前(timing advance,TA)用于终端上行传输,目的是确保终端上行数据包在希望的时间内到达基站。具体的实现可以简单概括为:基站测量上行信号来预估由于距离引起的射频传输时间延迟,给终端发送定时提前命令(Timing Advance Command,TAC),通知终端上行传输,提前发送相应的时间量。
基站通过测量UE的上行传输来确定每个UE的timing advance值。因此,只要UE有上行传输,基站就可以用来估计timing advance值。理论上,UE发送的任何信号(SRS/DMRS/CQI/ACK/NACK/PUSCH等)都可用于测量timing advance。在随机接入过程中,基站通过测量接收到的preamble来确定timing advance值。
在UE侧看来,TA本质上是接收到下行子帧的起始时间与传输上行子帧的时间之间的一个负偏移(negative offset)。基站通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达基站的时间。对于离基站较远的UE,由于有较大的传输延迟,就要比离基站较近的UE提前发送上行数据。
通过TA,TRP侧的上行子帧和下行子帧的timing是相同的,而在UE侧,上下行子帧的timing之间有偏移。不同的UE有各自不同的TA值,理论上来说TA是两倍的传输时间长度即RTT。
2、TA协议流程规范
1)、终端接收RRC配置
a、定时提前组(time advance group,TAG)
TAG应用于载波聚合场景,多个载波引入的时延不同,或者是不同载波的Pcell和Scell的位置差异较大,此时不能用统一的TA来进行处理。因此引入TAG的概念,同一个TAG对应的TA相同,不同TAG对应不同的TA值。
b、定时提前定时器(Time Alignment Timer,TAT)
每个TAG会配置一个时间同步计时器TAT,用于控制TAG内服务小区的同步时间长度,当终端收到TAC会启动TAT,当定时器过期终端不能进行上行传输。
2)、终端接收媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)获得TAC(time advance command)。
a、终端接收MAC CE,MAC CE携带TAC,指示终端TA调整量。
b、TAC生效时间:n+k+1,其中n为收到TAC的上行(Uplink,UL)时隙,
c、终端根据TAC调整TA
如图1所示,NTA,offset表示初始的时间提前量,该初始的时间提前量可以由RRC配置或者协议约定。
NTA_new=NTA_old+(TA-31)·16·64/2μ,其中NTA_old为当前的TA,TA=0,1,2,...,63为MAC CE指示的TAC。
如果下行(Downlink,DL)时间改变,终端的定时提前量NTA跟着改变,其中,下行时间为参考小区的下行帧的第一个检测到的路径的时间。
3)、如果TA调整导致两个相邻的时隙存在交叠,则终端假设后一个时隙缩短。
2、多TRP场景描述
1)、多下行控制信息(Downlink Control Information,DCI)调度的多TRP
在3GPP R16引入了多TRP(Multi TRP,MTRP)传输技术来提升数据传输的吞吐量。
a、多DCI(multi-DCI,mDCI)调度:每个TRP发送各自的物理下行控制信号(Physical downlink control channel,PDCCH),每个PDCCH调度各自的物理下行共享信道(Physical downlink shared channel,PDSCH)/物理上行共享信道(Physical uplink shared channel,PUSCH)/物理上行控制信道(Physical Uplink Control Channel,PUCCH),此时为UE配置的多个CORESET关联到不同的无线资源控制(Radio Resource Control,RRC)参数CORESETPoolIndex,对应不同的TRP。
2)、单DCI调度的多TRP
在3GPP R17支持了多TRP场景中用一个DCI以时分复用(TDM)的方式动态调度PUSCH重复传输方案。
a、对于每个PUSCH重复分别使用对应不同TRP的多个发送波束(spatial relation)进行发送,以提高PUSCH传输的可靠性。
b、对于Type A的PUSCH重复来说,一次PUSCH重复是指每个时隙内的一个PUSCH传输时机;对于Type B的PUSCH重复,一次PUSCH重复则为名义重复(nominal repetition)。
c、DCI中可以指示两套波束(spatial relation)、预编码矩阵(TPMI)、功控参数等,并且在DCI中增加一个2bit的新指示域以支持在STRP和MTRP之间动态调整,以及灵活交换PUSCH重复发送波束的先后顺序。
d、各次PUSCH重复与波束的映射关系可由RRC参数配置为轮流映射(cyclic mapping)和连续映射(sequential mapping)。
在3GPP R17支持了多TRP场景中的PUCCH重复的传输方案。
(1)、网络给PUCCH资源或PUCCH group激活两个波束(spatial relation),则该PUCCH各次重复采用两个波束发送。
(2)、各次PUCCH重复与波束的映射关系可由RRC参数配置为轮流映射。(cyclic mapping)和连续映射(sequential mapping)。
需要说明的是,上述内容所提及的波束信息,也可以称为:波束的标识信息、空间关系(spatial relation)信息、空域发送滤波器(spatial domain transmission filter)信息、空域接收滤波器(spatial domain reception filter)信息、空域滤波器(spatial filter)信息、传输配置指示状态(TCI state)信息、准共址(QCL)信息、QCL参数等。其中,下行波束信息通常可使用TCI state信息或QCL信息表示。上行波束信息通常可使用TCI state信息或spatial relation信息表示。
现有技术中,在多传输和接收点(Transmission and Reception Point,TRP)场景中发往不同TRP的上行传输都采用相同的定时提前(Timing advance,TA),由于不同的TRP的位置差异比较大,若共用一个上行时间,则可能使得不同用户到达一个TRP的上行传输差超出循环前缀(Cyclic Prefix,CP),从而带来用户间干扰,降低上行传输的性能,无法达到多TRP传输提升吞吐量的目的。因此,如何提升上行传输数据的效率是亟待解决的问题。
换句话说,目前在多TRP场景下传输数据,都使用同一个TA且不会适应性调整TA,而在本申请实施例中,UE通过接收第一信令,并基于该第一信令指示N个TA对象对应的TA信息,维护该N个TA对象。如此,由于第一信令可以指示多个TA对象对应的TA信息,从而使得UE可以基于不同TA对象对应的TA信息,来灵活地对该多个TA对象进行维护,进而提升了上行传输的性能。
4、TA对象
本申请实施例中的TA对象是指需要维护TA参数的对象。
示例性地,该TA对象可以为:TA进程循环(process loop),TA process,TAG,上行定时,下行定时,定时提前量等。
需要说明的是,本申请实施例中的定时提前量的形式可以为NTA或NTA,,用于 表示一个具体的定时提前量的值。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图2示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的TA的维护方法、终端及网络侧设备进行详细地说明。
图3示出了本申请实施例提供的一种TA的维护方法的流程示意图,如图3所示,该TA的维护方法可以包括如下步骤201和步骤202:
步骤201、UE接收第一信令。
在本申请实施例中,上述第一信令指示N个TA对象对应的TA信息。
在本申请实施例中,上述第一信令可以是MAC CE信令,也可以是RRC信令等,本申请不作限制。
可选地,在本申请实施例中,结合图3,如图4所示,本申请实施例提供的TA的维护方法还包括以下步骤201a:
步骤201a、网络侧设备向UE发送第一信令。
相应地,上述步骤201可以包括以下步骤201b:
步骤201b、UE接收来自网络侧设备的第一信令。
在本申请实施例中,上述TA信息可以是M组传输配置指示TCI状态与上述N个TA对象间的对应关系,也可以是具体的TA的定时提前量的值,也可以是TA的标识等。
可选地,在本申请实施例中,上述N个TA对象对应的TA信息包括:M组传输配置指示TCI状态与上述N个TA对象间的对应关系。
可选地,在本申请实施例中,上述N组TCI状态与所述N个TA对象间的对应关系是基于以下至少之一得到:
1)通过上述M个TCI状态中的每个TCI状态对应的TCI状态标识,与上述N个TA对象中的每个TA对象对应的对象标识得到;
2)通过RRC信令配置的;
3)通过DCI信令配置的。
针对上述1),例如,TA可以为与coresetPoolindex 0关联的所有TCI状态对应lower ID的TA。又例如,可以按照TCI状态关联的物理小区标识(physical cell identity,PCI)的排序顺序(如,从小到大)分别与TA标识的排序顺序(如,从小到大)进行关联。具体地,TCI状态中可以携带PCI标识,每组TCI状态关联相同的PCI,然后,将PCI按照从小到大进行排序,将TA标识按照从小到大进行排序,最后,将排序后的PCI与排序后的TA标识指示的TA对象对应。
针对上述2),例如,RRC信令配置TCI状态与TA的对应关系。例如,TCI状态配置中包含TA标识。又例如,RRC信令配置TCI组,每组对应一个标识,每组TCI状态与一个TA对应。
针对上述3),例如DCI包含TA标识的指示域,该指示域用于指示所述DCI指示的TCI状态对应的TA。
示例性地,上述M组传输配置指示(Transmission Configuration Indicator,TCI)可以通过上述第一信令得到。
示例性地,一个TA对象与一组TCI状态对应,或者,一个TA对象与多组TCI状态对应。例如,UE接收携带控制资源集合池索引(coresetpoolIndex)的MAC CE(即上述第一信令),相同coresetpoolIndex下激活的TCI对应一个TA,或者,MAC CE激活的TCI状态中关联相同物理小区标识符(Physical Cell Identifier,PCI)的TCI为一组,对应一个TA。
步骤202、UE基于上述TA信息,维护上述N个TA对象。
其中,N为大于1的整数。
在本申请实施例中,UE维护TA对象的过程,可以为调整TA对象对应的上行时间的过程,也可以为控制该TA对象的过程,也可以为调整TA对象对应的定时提前量的过程,本申请实施例对此不做限定。
在本申请实施例提供的TA维护方法中,UE接收第一信令,并基于该第一信令指示N个TA对象对应的TA信息,维护该N个TA对象。如此,由于第一信令可以指示多个TA对象对应的TA信息,从而使得UE可以基于不同TA对象对应的TA信息,来灵活地对该多个TA对象进行维护,以便于UE可以在不同TRP场景下灵活地利用不同的TA对象来进行上行传输,保证了上行传输的效率,降低了用户间的干扰,提升了上行传输的性能。
可选地,在本申请实施例中,上述步骤202“UE基于上述TA信息,维护上述N个TA对象”的过程中,包括以下步骤202a:
步骤202a、UE基于上述N个TA对象中的每个TA对象对应的第一定时提前量和下行参考时间,分别调整N个TA对象中的每个TA对象对应的上行时间。
示例性地,上述N个TA对象对应的下行参考时间是:UE测量上述N个TA对象对应下行传输所得到的。又例如,这个下行传输可以是与TA对象对应的TCI状态中的下行参考信号,或者是与TA对象对应的TRS。
如此,可以灵活地调整N个TA对象中的每个TA对象对应的定时提前量,使得可以UE可以使用不同的定时提前量进行传输数据。
可选地,在本申请实施例中,上述步骤202“UE基于上述TA信息,维护上述N个TA对象”的过程中,包括以下步骤202b:
步骤202b、UE基于第一定时器维护上述N个TA对象。
示例性地,上述第一定时器用于统计维护N个TA对象的时间。
示例性地,上述步骤202b中“UE基于第一定时器维护上述N个TA对象”的过程包括以下任一项:
在N个TA对象对应N个第一定时器的情况下,基于N个第一定时器,分别控制各自对应的TA对象;
在N个TA对象对应一个第一定时器的情况下,基于一个第一定时器控制N个TA对象;
基于N个TA对象中的第四TA对象对应的第一定时器和第二定时器,维护所述第四TA对象,其中,第二定时器为参考TA对象的定时器。
示例性地,UE维护上述N个TA对象时会受到定时器的限制。
一种示例中,上述N个TA对象对应N个独立的定时器,分别控制N个TA对象。
一种示例中,多个TA对象对应同一个定时器,即一个定时器同时控制多个TA对象。
一种示例中,上述第四TA对象同时受参考TA的第二定时器和第一定时器的限制。例如,当参考对象的第二定时器过期或第一定时器过期则认为第四TA对象失效。
其中,上述第四TA对象为上述N个TA对象中的至少之一。
可选地,在本申请实施例中,针对步骤202a中的N个TA对象中的第一TA对象对应的第一定时提前量。示例性地,该第一TA对象对应的第一定时提前量是基于以下至少之一所示的确定方式来确定的:
方式1:基于UE接收到的TAC信令确定的;
方式2:基于第一TA对象与参考TA对象间的下行定时差值确定的。
示例性地,上述TAC信令用于指示定时提前量。
示例性地,上述参考TA对象为:上述N个TA对象中与所述第一TA对象不同的TA对象。可以理解,上述参考TA对象与第一TA对象不同,且该参考TA对象为上述N个TA对象中的其中一个。
示例性地,上述第一TA对象为:上述N个TA对象中的任意一个。
可选地,在本申请实施例中,上述TAC信令为以下至少之一:
在UE触发的第一随机接入过程中,所获得的TAC信令;
在UE接收到的网络侧信令所触发的第二随机接入过程中,所获得的TAC信令;
第二信令中携带的TAC信令。
示例性地,上述第二信令可以与第一信令为同一信令,也可以为不同于第一信令的信令。
示例性地,上述TAC信令可以是网络侧设备发送的。
可选地,在本申请实施例中,针对上述方式1(即针对上述TA对象对应的定时提前量是基于UE接收到的TAC信令确定的场景)。
在第一种可能的实施例中:
结合图3,本申请实施例提供的TA的维护方法还可以包括以下步骤301和步骤302:
步骤301、UE确定第二TA对象。
步骤302、UE将在UE触发的第一随机接入过程中所获取的TAC信令指示的定时提前量,配置给上述第二TA对象。
示例性地,上述第二TA对象为N个TA对象中的一个。
示例性地,上述第二TA对象包括以下至少之一:
Ⅰ)、默认TA对象,
Ⅱ)、基于第一同步信号块(Synchronization Signal Block,SSB)确定的TA对象,
Ⅲ)、在UE触发的第一随机接入过程中接收到的TA对象标识指示的TA对象。
其中,第一SSB用于发起第一随机接入过程。
针对上述Ⅰ),例如,UE默认对应lower ID的TA。
针对上述Ⅱ),示例性地,UE根据关联目标SSB的TCI状态来确定第二TA对象,即,与关联目标SSB的TCI状态对应的TA对象为第二TA对象。或者,UE根据目标SSB对应的PCI来确定第二TA对象,即,与目标SSB对应的PCI对应的TA为第二TA对象。
针对上述Ⅲ),可以认为第二TA对象为:在UE触发的第一随机接入过程中接收到的TA对象标识指示的TA对象。例如,RAR中同时携带TAC与TA标识。
在第二种可能的实施例中:
结合图3,本申请实施例提供的TA的维护方法还可以包括以下步骤401和步骤402:
步骤401、UE确定第三TA对象。
步骤402、UE将接收到的网络侧信令所触发的第二随机接入过程中所获取的TAC信令指示的定时提前量,配置给上述第三TA对象。
示例性地,上述第三TA对象为N个TA对象中的一个。
示例性地,第三TA对象包括以下至少之一:
①)、默认TA对象,
②)、基于第二SSB确定的TA对象,
③)、基于检测到的第一TCI状态确定的TA对象;
其中,第二SSB为:UE在接收到的网络侧信令所触发的第二随机接入过程中接收到的网络侧信令指示的SSB。第一TCI状态为:UE在接收到的网络侧信令所触发的第二随机接入过程中接收到的网络侧信令中携带的TCI状态。
针对上述①),例如,UE默认对应lower ID的TA对象。
针对上述②),示例性地,UE根据关联目标SSB的TCI状态来确定第三TA对象,即,与关联目标SSB的TCI状态对应的TA对象为第三TA对象。或者,UE根据检测PDCCH order(DCI)的PDCCH的TCI状态确定第三TA对象,即,与 PDCCH order(DCI)的PDCCH的TCI状态对应的TA对象为第三TA对象。
针对上述③),例如,PDCCH order直接指示第三TA对象的标识。
可选地,在本申请实施例中,针对上述方式2(即上述第一TA对象对应的第一定时提前量是基于第一TA对象与参考TA对象间的下行定时差值确定的场景)。
本申请实施例提供的TA的维护方法还可以包括以下步骤501和步骤502:
步骤501、UE获取参考TA对象与第一TA对象间的下行定时差值。
示例性地,上述参考TA对象可以为默认的TA对象。例如,lower ID对应的TA,或者,与目标对象关联的TA对象。
进一步示例性地,上述目标对象可以为TCI分组,SSB,Coresetpoolindex,PCI,SRS resource set等。
步骤502、UE基于参考TA对象与第一TA对象间的下行定时差值和第二定时提前量,来获得该第一TA对象对应的定时提前量。
示例性地,上述第二定时提前量为:与参考TA对象关联的第一TAC信令指示的定时提前量。
示例性地,上述下行定时差值通过测量上述第一TA对象和参考TA对象关联的下行传输获得。例如,分别测量与第一TA对象和参考TA对象对应的TCI状态中的下行参考信号获得下行定时误差,或者,分别测量与第一TA对象和参考TA对象关联的跟踪参考信号(tracking reference signal,TRS)(一般的,TRS在协议中可以描述为tracking-CSI-RS)获得下行定时误差。
可选地,在本申请实施例中,上述步骤202“UE基于上述TA信息,维护上述N个TA对象”之后,本申请实施例提供的TA的维护方法还包括步骤601和步骤602:
步骤601、UE基于M组传输配置指示TCI状态与上述N个TA对象间的对应关系获取目标TA对象对应的定时提前量。
示例性地,上述目标TA对象为:与第一上行对象关联的目标TCI状态对应的TA对象。
步骤602、UE基于上述定时提前量传输上述第一上行对象。
示例性地,第一上行对象包括以下至少之一:第一上行信号,第一上行信道。
可选地,在本申请实施例中,本申请实施例提供的TA的维护方法还包括步骤A:
步骤A、在第五TA对象对应的定时器失效的情况下,UE执行目标行为。
示例性地,上述目标行为包括以下至少之一:
UE停止与上述第五TA对象对应的所有上行传输;
UE停止所有上行传输;
其中,上述第五TA对象为N个TA对象中的至少之一。
如此,在任一TA对象对应的定时器失效的情况下,UE可以按照需求来选择性的停止上行传输的业务,从而提高了上行传输的效率。
本申请实施例提供的TA的维护方法,执行主体可以为TA的维护装置。本申请实施例中以TA的维护装置执行TA的维护方法为例,说明本申请实施例提供的TA的维护装置。
本申请实施例提供一种TA的维护装置,如图5所示,该TA的维护装置700包括:接收模块701和维护模块702;该接收模块701,用于接收第一信令;该第一信令指示N个TA对象对应的TA信息;该维护模块702,用于基于上述TA信息,维护上述N个TA对象;其中,N为大于1的整数。
可选地,在本申请实施例中,上述N个TA对象对应的TA信息包括:M组传输配置指示TCI状态与上述N个TA对象间的对应关系;其中,一组TCI状态与一个TA对象对应,M为正整数。
可选地,在本申请实施例中,上述M组TCI状态与上述N个TA对象间的对应关系是基于以下至少之一得到:通过上述M组TCI状态中的每个TCI状态对应的TCI状态标识,与上述N个TA对象中的每个TA对象对应的对象标识得到;通过RRC信令配置的;通过DCI信令配置的。
可选地,在本申请实施例中,上述维护模块702,具体用于基于上述N个TA对象中的每个TA对象对应的第一定时提前量和下行参考时间,分别调整每个TA对象对应的上行时间。
可选地,在本申请实施例中,上述N个TA对象中的第一TA对象对应的第一定时提前量是基于以下至少之一确定的:基于UE接收到的TAC信令确定的;基于上述第一TA对象与参考TA对象间的下行定时差值确定的;其中,TAC信令用于指示定时提前量;上述参考TA对象为:N个TA对象中与该第一TA对象不同的TA对象。
可选地,在本申请实施例中,上述TAC信令为以下至少之一:在UE触发的第一随机接入过程中,所获得的TAC信令;在UE接收到的网络侧信令所触发的第二随机接入过程中,所获得的TAC信令;第二信令中携带的TAC信令。
可选地,在本申请实施例中,结合图5,如图6所示,上述第一定时提前量是基于UE接收到的TAC信令确定的;上述装置还包括:处理模块703;该处理模块703,用于确定第二TA对象;该处理模块703,用于将在上述第一随机接入过程中所获取的TAC信令指示的定时提前量,配置给上述第二TA对象;其中,上述第二TA对象为以下至少之一:默认TA对象,基于第一SSB确定的TA对象,在第一随机接入过程中接收到的TA对象标识指示的TA对象;第一SSB用于发起上述第一随机接入过程。
可选地,在本申请实施例中,上述第一定时提前量是基于上述UE接收到的TAC 信令确定的;上述处理模块703,还用于:确定第三TA对象;将在上述第二随机接入过程中所获取的TAC信令指示的定时提前量,配置给上述第三TA对象;其中,第三TA对象是基于以下至少之一确定的:默认TA对象,基于第二SSB确定的TA对象,基于检测到的第一TCI状态确定的TA对象;上述第二SSB为:上述UE在上述第二随机接入过程中接收到的网络侧信令指示的SSB;上述第一TCI状态为:上述UE在上述第二随机接入过程中接收到的网络侧信令中携带的TCI状态。
可选地,在本申请实施例中,上述N个TA对象中的第一TA对象对应的第一定时提前量是基于上述第一TA对象与参考TA对象间的下行定时差值确定的;上述处理模块703,还用于:获取上述参考TA对象与上述第一TA对象间的下行定时差值;基于上述下行定时差值和第二定时提前量,来获得上述第一TA对象对应的定时提前量;其中,第二定时提前量为:与上述参考TA对象关联的第一TAC信令指示的定时提前量。
可选地,在本申请实施例中,上述N个TA对象对应的下行参考时间是:上述UE测量上述N个TA对象对应下行传输所得到的。
可选地,在本申请实施例中,结合图5,如图7所示,上述装置还包括:获取模块704和传输模块705;该获取模块704,用于基于上述对应关系,获取目标TA对象对应的定时提前量;目标TA对象为:与第一上行对象关联的目标TCI状态对应的TA对象;上述传输模块705,用于基于上述定时提前量传输第一上行对象;其中,第一上行对象包括以下至少之一:第一上行信号,第一上行信道。
可选地,在本申请实施例中,上述维护模块702,具体用于基于第一定时器维护上述N个TA对象。
可选地,在本申请实施例中,UE基于第一定时器维护上述N个TA对象包括以下任一项:上述维护模块702,具体用于:在上述N个TA对象对应N个第一定时器的情况下,基于该N个第一定时器,分别控制各自对应的TA对象;在上述N个TA对象对应一个第一定时器的情况下,基于该一个第一定时器控制上述N个TA对象;基于上述N个TA对象中的第四TA对象对应的第一定时器和第二定时器,维护上述第四TA对象。
可选地,在本申请实施例中,结合图5,如图8所示,上述装置还包括:执行模块706;该执行模块706,用于在第五TA对象对应的定时器失效的情况下,执行目标行为;其中,目标行为包括以下至少之一:停止与上述第五TA对象对应的所有上行传输;停止所有上行传输;其中,上述第五TA对象为N个TA对象中的至少之一。
在本申请实施例提供的TA的维护装置中,接收第一信令,并基于该第一信令指示N个TA对象对应的TA信息,维护该N个TA对象。如此,由于第一信令可以指示多个TA对象对应的TA信息,从而使得可以基于不同TA对象对应的TA信息, 来灵活地对该多个TA对象进行维护,以便于UE可以在不同TRP场景下灵活地利用不同的TA对象来进行上行传输,保证了上行传输的效率,降低了用户间的干扰,提升了上行传输的性能。
本申请实施例提供一种TA的维护装置,如图9所示,该TA的维护装置7000包括:发送模块7001,该发送模块7001用于向UE发送第一信令;其中,第一信令指示N个TA对象对应的TA信息;TA信息用于维护上述N个TA对象;N为大于1的整数。
可选地,在本申请实施例中,上述N个TA对象对应的TA信息包括:M组传输配置指示TCI状态与上述N个TA对象间的对应关系;其中,一组TCI状态与一个TA对象对应,M为正整数。
可选地,在本申请实施例中,上述M组TCI状态与上述N个TA对象间的对应关系是基于以下至少之一得到:通过上述M组TCI状态中的每个TCI状态对应的TCI状态标识,与上述N个TA对象中的每个TA对象对应的对象标识得到;通过RRC信令配置的;通过DCI信令配置的。
可选地,在本申请实施例中,上述发送模块7001,还用于向UE发送TAC信令;其中,该TAC信令用于指示上述N个TA对象中的一个TA对象对应的定时提前量。
可选地,在本申请实施例中,上述TAC信令为以下至少之一:在UE触发的第一随机接入过程中,所获得的TAC信令;在UE接收到的网络侧信令所触发的第二随机接入过程中,所获得的TAC信令;第二信令中携带的TAC信令。
在本申请实施例提供的TA的维护装置中,向UE发送第一信令,其中,第一信令指示N个TA对象对应的TA信息;TA信息用于维护上述N个TA对象;N为大于1的整数。如此,由于第一信令可以指示多个TA对象对应的TA信息,从而使得UE侧可以基于不同TA对象对应的TA信息,来灵活地对该多个TA对象进行维护,以便于UE可以在不同TRP场景下灵活地利用不同的TA对象来进行上行传输,保证了上行传输的效率,降低了用户间的干扰,提升了上行传输的性能。
本申请实施例中的TA的维护装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的TA的维护装置能够实现图5至图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备800,包括处理器801和存储器802,存储器802上存储有可在所述处理器801上运行的程序或指令,例 如,该通信设备800为终端时,该程序或指令被处理器801执行时实现上述TA的维护方法实施例的各个步骤,且能达到相同的技术效果。该通信设备800为网络侧设备时,该程序或指令被处理器801执行时实现上述TA的维护方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收第一信令,该第一信令指示N个TA对象对应的TA信息;处理器用于基于上述TA信息,维护上述N个TA对象。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109以及处理器110等中的至少部分部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器110逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理单元(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072中的至少一种。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101接收来自网络侧设备的下行数据后,可以传输给处理器110进行处理;另外,射频单元101可以向网络侧设备发送上行数据。通常,射频单元101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括易失性存储器或非易失性存储器,或者,存储器109 可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器109包括但不限于这些和任意其它适合类型的存储器。
处理器110可包括一个或多个处理单元;可选的,处理器110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
其中,射频单元101,用于接收第一信令;该第一信令指示N个TA对象对应的TA信息;处理器110,用于基于上述TA信息,维护上述N个TA对象;其中,N为大于1的整数。
可选地,在本申请实施例中,上述N个TA对象对应的TA信息包括:M组传输配置指示TCI状态与上述N个TA对象间的对应关系;其中,一组TCI状态与一个TA对象对应,M为正整数。
可选地,在本申请实施例中,上述M组TCI状态与上述N个TA对象间的对应关系是基于以下至少之一得到:通过上述M组TCI状态中的每个TCI状态对应的TCI状态标识,与上述N个TA对象中的每个TA对象对应的对象标识得到;通过RRC信令配置的;通过DCI信令配置的。
可选地,在本申请实施例中,上述处理器110,具体用于基于上述N个TA对象中的每个TA对象对应的第一定时提前量和下行参考时间,分别调整每个TA对象对应的上行时间。
可选地,在本申请实施例中,上述N个TA对象中的第一TA对象对应的第一定时提前量是基于以下至少之一确定的:基于UE接收到的TAC信令确定的;基于上述第一TA对象与参考TA对象间的下行定时差值确定的;其中,TAC信令用于指示定时提前量;上述参考TA对象为上述N个TA对象中与上述第一TA对象不同的TA对象。
可选地,在本申请实施例中,上述TAC信令为以下至少之一:在UE触发的第一随机接入过程中,所获得的TAC信令;在UE接收到的网络侧信令所触发的第二 随机接入过程中,所获得的TAC信令;第二信令中携带的TAC信令。
可选地,在本申请实施例中,上述第一定时提前量是基于UE接收到的TAC信令确定的;上述处理器110,还用于:确定第二TA对象;将在上述第一随机接入过程中所获取的TAC信令指示的定时提前量,配置给上述第二TA对象;其中,上述上述第二TA对象为以下至少之一:默认TA对象,基于第一SSB确定的TA对象,在第一随机接入过程中接收到的TA对象标识指示的TA对象;第一SSB用于发起上述第一随机接入过程。
可选地,在本申请实施例中,上述第一定时提前量是基于上述UE接收到的TAC信令确定的;上述处理器110,还用于:确定第三TA对象;将在上述第二随机接入过程中所获取的TAC信令指示的定时提前量,配置给上述第三TA对象;其中,第三TA对象包括以下至少之一:默认TA对象,基于第二SSB确定的TA对象,基于检测到的第一TCI状态确定的TA对象;上述第二SSB为:上述UE在上述第二随机接入过程中接收到的网络侧信令指示的SSB;上述第一TCI状态为:上述UE在上述第二随机接入过程中接收到的网络侧信令中携带的TCI状态。
可选地,在本申请实施例中,上述N个TA对象中的第一TA对象对应的第一定时提前量是基于上述第一TA对象与参考TA对象间的下行定时差值确定的;上述处理器110,还用于:获取上述参考TA对象与上述第一TA对象间的下行定时差值;基于上述下行定时差值和第二定时提前量,来获得上述第一TA对象对应的定时提前量;其中,第二定时提前量为:与上述参考TA对象关联的第一TAC信令指示的定时提前量。
可选地,在本申请实施例中,上述N个TA对象对应的下行参考时间是:上述UE测量上述N个TA对象对应下行传输所得到的。
可选地,在本申请实施例中,上述处理器110,用于基于上述对应关系,获取目标TA对象对应的定时提前量;目标TA对象为:与第一上行对象关联的目标TCI状态对应的TA对象;上述处理器110,用于基于上述定时提前量传输第一上行对象;其中,第一上行对象包括以下至少之一:第一上行信号,第一上行信道。
可选地,在本申请实施例中,上述处理器110,具体用于基于第一定时器维护上述N个TA对象。
可选地,在本申请实施例中,上述处理器110,具体用于执行以下至少之一:在上述N个TA对象对应N个第一定时器的情况下,基于该N个第一定时器,分别控制各自对应的TA对象;在上述N个TA对象对应一个第一定时器的情况下,基于该一个第一定时器控制上述N个TA对象;基于上述N个TA对象中的第四TA对象对应的第一定时器和第二定时器,维护上述第四TA对象。
可选地,在本申请实施例中,上述处理器110,还用于在第五TA对象对应的定时器失效的情况下,执行目标行为;其中,目标行为包括以下至少之一:停止与上述 第五TA对象对应的所有上行传输;停止所有上行传输;其中,上述第五TA对象为N个TA对象中的至少之一。
在本申请实施例提供的终端中,接收第一信令,并基于该第一信令指示N个TA对象对应的TA信息,维护该N个TA对象。如此,由于第一信令可以指示多个TA对象对应的TA信息,从而使得终端可以基于不同TA对象对应的TA信息,来灵活地对该多个TA对象进行维护,以便于终端可以在不同TRP场景下灵活地利用不同的TA对象来进行上行传输,保证了上行传输的效率,降低了用户间的干扰,提升了上行传输的性能。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口用于向UE发送第一信令,该第一信令指示N个TA对象对应的TA信息,其中,N为大于1的整数。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备900包括:天线91、射频装置92、基带装置93、处理器94和存储器95。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频92对收到的信息进行处理后经过天线91发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置93中实现,该基带装置93包括基带处理器。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口96,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备900还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述TA的维护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述TA的维护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述TA的维护方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种TA的维护***,包括:终端及网络侧设备,所述终端可用于执行如上所述的TA的维护方法的步骤,所述网络侧设备可用于执行如上所述的TA的维护方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (25)

  1. 一种定时提前TA的维护方法,包括:
    用户设备UE接收第一信令;所述第一信令指示N个TA对象对应的TA信息;
    所述UE基于所述TA信息,维护所述N个TA对象;
    其中,N为大于1的整数。
  2. 根据权利要求1所述的方法,其中,所述N个TA对象对应的TA信息包括:
    M组传输配置指示TCI状态与所述N个TA对象间的对应关系;
    其中,一组TCI状态与一个TA对象对应,M为正整数。
  3. 根据权利要求2所述的方法,其中,所述M组TCI状态与所述N个TA对象间的对应关系基于以下至少之一得到:
    通过所述M组TCI状态中的每个TCI状态对应的TCI状态标识,与所述N个TA对象中的每个TA对象对应的对象标识得到;
    通过RRC信令配置的;
    通过DCI信令配置的。
  4. 根据权利要求1所述的方法,其中,所述UE基于所述TA信息,维护所述N个N个TA对象,包括:
    基于所述N个TA对象中的每个TA对象对应的第一定时提前量和下行参考时间,分别调整所述每个TA对象对应的上行时间。
  5. 根据权利要求4所述的方法,其中,所述N个TA对象中的第一TA对象对应的第一定时提前量是基于以下至少之一确定的:
    基于所述UE接收到的定时提前命令TAC信令确定的;
    基于所述第一TA对象与参考TA对象间的下行定时差值确定的;
    其中,所述TAC信令用于指示定时提前量;
    所述参考TA对象为:所述N个TA对象中与所述第一TA对象不同的TA对象;
    所述第一TA对象为N个TA对象中的任一个。
  6. 根据权利要求5所述的方法,其中,所述TAC信令为以下至少之一
    在所述UE触发的第一随机接入过程中,所获得的TAC信令;
    在所述UE接收到的网络侧信令所触发的第二随机接入过程中,所获得的TAC信令;
    第二信令中携带的TAC信令。
  7. 根据权利要求6所述的方法,其中,所述第一定时提前量是基于所述UE接收到的TAC信令确定的;
    所述方法还包括:
    所述UE确定第二TA对象;
    所述UE将在所述第一随机接入过程中所获取的TAC信令指示的定时提前量,配置给所述第二TA对象;
    其中,所述第二TA对象包括以下至少之一:
    默认TA对象,
    基于第一同步信号块SSB确定的TA对象,
    在所述第一随机接入过程中接收到的TA对象标识指示的TA对象;
    所述第一SSB用于发起所述第一随机接入过程。
  8. 根据权利要求6所述的方法,其中,所述第一定时提前量是基于所述UE接收到的TAC信令确定的;
    所述方法还包括:
    所述UE确定第三TA对象;
    所述UE将在所述第二随机接入过程中所获取的TAC信令指示的定时提前量,配置给所述第三TA对象;
    其中,所述第三TA对象包括以下至少之一:
    默认TA对象,
    基于第二SSB确定的TA对象,
    基于检测到的第一TCI状态确定的TA对象;
    所述第二SSB为:所述UE在所述第二随机接入过程中接收到的网络侧信令指示的SSB;
    所述第一TCI状态为:所述UE在所述第二随机接入过程中接收到的网络侧信令中携带的TCI状态。
  9. 根据权利要求5所述的方法,其中,所述第一定时提前量是基于所述第一TA对象与参考TA对象间的下行定时差值确定的;
    所述方法还包括:
    所述UE获取所述参考TA对象与所述第一TA对象间的下行定时差值;
    所述UE基于所述下行定时差值和第二定时提前量,来获得所述第一TA对象对应的定时提前量;
    其中,所述第二定时提前量为:与所述参考TA对象关联的第一TAC信令指示的定时提前量。
  10. 根据权利要求4所述的方法,其中,所述N个TA对象对应的下行参考时间是:所述UE测量所述N个TA对象对应下行传输所得到的。
  11. 根据权利要求2所述的方法,其中,所述UE基于所述TA信息,维护所述N个TA对象之后,所述方法还包括:
    所述UE基于所述对应关系,获取目标TA对象对应的定时提前量;所述目标TA对象为:与第一上行对象关联的目标TCI状态对应的TA对象;
    所述UE基于所述定时提前量传输所述第一上行对象;
    其中,所述第一上行对象包括以下至少之一:第一上行信号,第一上行信道。
  12. 根据权利要求1所述的方法,其中,所述UE维护所述N个TA对象,包括:
    所述UE基于第一定时器维护所述N个TA对象。
  13. 根据权利要求12所述的方法,其中,所述UE基于第一定时器维护所述N个TA对象包括以下任一项:
    在所述N个TA对象对应N个第一定时器的情况下,基于所述N个第一定时器,分别控制各自对应的TA对象;
    在所述N个TA对象对应一个第一定时器的情况下,基于所述一个第一定时器控制所述N个TA对象;
    基于所述N个TA对象中的第四TA对象对应的第一定时器和第二定时器,维护所述第四TA对象。
  14. 根据权利要求1所述的方法,其中,所述方法还包括:
    在第五TA对象对应的定时器失效的情况下,所述UE执行目标行为;
    其中,所述目标行为包括以下至少之一:
    所述UE停止与所述第五TA对象对应的所有上行传输;
    所述UE停止所有上行传输;
    其中,所述第五TA对象为N个TA对象中的至少之一。
  15. 一种TA的维护方法,包括:
    网络侧设备向UE发送第一信令;
    其中,所述第一信令指示N个TA对象对应的TA信息;
    所述TA信息用于维护所述N个TA对象;
    其中,N为大于1的整数。
  16. 根据权利要求15所述的方法,其中,所述N个TA对象对应的TA信息包括:
    M组传输配置指示TCI状态与所述N个TA对象间的对应关系;
    其中,一组TCI状态与一个TA对象对应,M为正整数。
  17. 根据权利要求16所述的方法,其中,所述M组TCI状态与所述N个TA对象间的对应关系是基于以下至少之一得到:
    通过所述M组TCI状态中的每个TCI状态对应的TCI状态标识,与所述N个TA对象中的每个TA对象对应的对象标识得到;
    通过RRC信令配置的;
    通过DCI信令配置的。
  18. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述UE发送TAC信令;
    其中,所述TAC信令用于指示所述N个TA对象中的一个TA对象对应的定时提前量。
  19. 根据权利要求18所述的方法,其中,所述TAC信令为以下至少之一
    在所述UE触发的第一随机接入过程中,发送的TAC信令;
    在网络侧信令所触发的第二随机接入过程中,发送的TAC信令;
    第二信令中携带的TAC信令。
  20. 一种TA的维护装置,其中,所述装置包括:接收模块和维护模块;
    所述接收模块,用于接收第一信令;所述第一信令指示N个TA对象对应的TA信息;
    所述维护模块,用于基于所述接收模块接收的所述TA信息,维护所述N个TA对象;
    其中,N为大于1的整数。
  21. 一种TA的维护装置,所述装置包括:发送模块;
    所述发送模块,用于向UE发送第一信令;
    其中,所述第一信令指示N个TA对象对应的TA信息;
    所述TA信息用于维护所述N个TA对象;
    其中,N为大于1的整数。
  22. 一种UE,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的TA的维护方法的步骤。
  23. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求15至19任一项所述的TA的维护方法的步骤。
  24. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至14任一项所述的TA的维护方法,或者,实现如权利要求15至19任一项所述的TA的维护方法的步骤。
  25. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至14任一项所述的TA的维护方法,或者,实现如权利要求15至19任一项所述的TA的维护方法的步骤。
PCT/CN2023/108627 2022-07-26 2023-07-21 定时提前ta的维护方法、装置、设备及介质 WO2024022247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210886408.8A CN117545098A (zh) 2022-07-26 2022-07-26 定时提前ta的维护方法、装置、设备及介质
CN202210886408.8 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024022247A1 true WO2024022247A1 (zh) 2024-02-01

Family

ID=89705463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108627 WO2024022247A1 (zh) 2022-07-26 2023-07-21 定时提前ta的维护方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN117545098A (zh)
WO (1) WO2024022247A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391881A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 配置信息的发送方法及装置
CN112534898A (zh) * 2018-08-10 2021-03-19 高通股份有限公司 用于多个传送接收点的多定时提前设计
WO2021168203A1 (en) * 2020-02-21 2021-08-26 Qualcomm Incorporated Methods and apparatus for trp differentiation based on ssb grouping
WO2021202037A1 (en) * 2020-03-30 2021-10-07 Qualcomm Incorporated Uplink timing associated with uplink transmission configuration indication (tci) state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391881A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 配置信息的发送方法及装置
CN112534898A (zh) * 2018-08-10 2021-03-19 高通股份有限公司 用于多个传送接收点的多定时提前设计
WO2021168203A1 (en) * 2020-02-21 2021-08-26 Qualcomm Incorporated Methods and apparatus for trp differentiation based on ssb grouping
WO2021202037A1 (en) * 2020-03-30 2021-10-07 Qualcomm Incorporated Uplink timing associated with uplink transmission configuration indication (tci) state

Also Published As

Publication number Publication date
CN117545098A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN109963296A (zh) 用于控制SCell状态的方法和装置
WO2022194249A1 (zh) Harq ack反馈方法、装置、终端及存储介质
US20230239896A1 (en) Transmission mode determining method and apparatus, and communications device
US20230362900A1 (en) Uplink transmission method, terminal, and network side device
US20240154773A1 (en) Tci state determining method and apparatus, terminal, and network-side device
EP4340277A1 (en) Method and apparatus for processing csi measurement resources, terminal and readable storage medium
WO2024022247A1 (zh) 定时提前ta的维护方法、装置、设备及介质
WO2023151655A1 (zh) 上行tci状态确定方法、装置、终端和网络侧设备
WO2023151656A1 (zh) 下行tci状态确定方法、装置、终端和网络侧设备
WO2023169464A1 (zh) 上行传输的方法、终端及网络侧设备
WO2023179652A1 (zh) 波束失败检测方法、装置、终端和存储介质
WO2023160502A1 (zh) 传输方法、终端及网络侧设备
WO2023169363A1 (zh) 上行对象发送方法、装置、通信设备、***及存储介质
WO2024146482A1 (zh) 一种传输参数配置方法、装置及终端设备
WO2023198108A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2023116651A1 (zh) 传输方法、终端及网络侧设备
WO2024017193A1 (zh) Tci状态确定方法、装置、终端和网络侧设备
WO2023198044A1 (zh) 信息接收方法、信息发送方法、装置及设备
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
WO2023207842A1 (zh) 波束信息确定方法、终端及网络侧设备
WO2024022251A1 (zh) 上行传输方法、装置、终端及介质
US20240179702A1 (en) Feedback method, related device, and readable storage medium
WO2023207840A1 (zh) 信号接收方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845457

Country of ref document: EP

Kind code of ref document: A1