WO2024021586A1 - 情景点控装置及其控制方法、计算机可读存储介质 - Google Patents

情景点控装置及其控制方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2024021586A1
WO2024021586A1 PCT/CN2023/077283 CN2023077283W WO2024021586A1 WO 2024021586 A1 WO2024021586 A1 WO 2024021586A1 CN 2023077283 W CN2023077283 W CN 2023077283W WO 2024021586 A1 WO2024021586 A1 WO 2024021586A1
Authority
WO
WIPO (PCT)
Prior art keywords
point control
control device
scene
air
mode
Prior art date
Application number
PCT/CN2023/077283
Other languages
English (en)
French (fr)
Inventor
樊其锋
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024021586A1 publication Critical patent/WO2024021586A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants

Definitions

  • the present application relates to the field of intelligent control technology, and in particular to scene point control devices and control methods thereof, and computer-readable storage media.
  • scenario point control device a supports the air conditioning control of scenario mode A (such as energy-saving mode) and is equipped with a wind speed sensor and a temperature sensor
  • scenario point control device b supports the air conditioning control of scenario mode B (such as comfort mode) and is equipped with temperature sensor and humidity sensor
  • scenario point control device c supports the air conditioning control of scenario mode C (such as clean mode), and is equipped with a PM2.5 concentration sensor and a carbon dioxide concentration sensor.
  • scenario mode D such as health mode
  • the air conditioning control in scenario mode D needs to be equipped with wind speed sensor, temperature sensor, humidity sensor, PM2.5 concentration sensor and carbon dioxide concentration sensor, which needs to be separately installed.
  • Purchasing the scenario point control device d that supports scenario mode D seriously increases the hardware implementation cost of intelligent air conditioning control for users to customize scenario modes.
  • the main purpose of this application is to provide a scenario point control device, a control method thereof, and a computer-readable storage medium, aiming to reduce the hardware implementation cost of intelligent air conditioning control of personalized customized scenario modes.
  • this application provides a control method of a scenario point control device.
  • the control method of the scenario point control device includes the following steps: Receive scene mode trigger instructions and determine the air parameters required for the operation of the scene mode to be triggered; Obtain the air parameters from other scene point control devices communicating with the scene point control device; According to the air parameters, the operation of the air conditioning equipment is controlled.
  • the step of obtaining the air parameters from other scene point control devices communicating with the scene point control device includes: Determine a target point control device from other scene point control devices that communicate with the scene point control device, and the target point control device is a scene point control device with the air parameters; Communicate with the target point control device to obtain the air parameters.
  • the step of determining the target point control device includes: Broadcast and send the information sharing request for the air parameters; Receive unique identity identifiers returned by other context point control devices communicating with the context point control device in response to the information sharing request; The target point control device is determined according to the unique identity identifier.
  • the step of determining the target point control device includes: Determine the target point control device from the stored device data mapping table, wherein the device data mapping table includes air parameters that can be detected by other scenario point control devices communicating with the scenario point control device; or, The target point control device is determined from the scene device sharing record, wherein the scene device sharing record includes air parameters that can be shared by other scene point control devices communicating with the scene point control device.
  • the step of determining the target point control device further includes: If there are multiple target point control devices, the target point control device closest to the air conditioning equipment is determined as the final target point control device; or the target point control device closest to the scenario point control device is determined as the final target point control device. The device is determined as the final target point control device.
  • the step of communicating with the target point control device and obtaining the air parameters includes: Perform spatial positioning on the target point control device to obtain the positioning information of the target point control device, and determine whether the target point control device is in the working area corresponding to the air conditioning equipment based on the positioning information; Communicate with the target point control device in the working area to obtain the air parameters.
  • the step of controlling the operation of the air conditioning equipment according to the air parameters includes: According to the air parameters, determine the target operating parameters when the scene mode to be triggered is running, and send the determined target operating parameters to the air conditioning equipment; or, Send scenario mode control instructions to the air conditioning device, and send the obtained air parameters to the air conditioning device, so that the air conditioning device runs the scenario mode according to the air parameters.
  • the step of determining air parameters required for running the scenario mode to be triggered includes: From the preset scene mode mapping table, the air parameters mapped by the scene mode to be triggered are queried, and the mapped air parameters are used as air parameters required for the operation of the scene mode to be triggered.
  • the scenario point control device includes: a memory, a processor, and a scenario point control stored in the memory and capable of running on the processor.
  • the control program of the device When the control program of the scene point control device is executed by the processor, the steps of the control method of the scene point control device as described in any one of the above are implemented.
  • the present application also proposes a computer-readable storage medium.
  • the computer-readable storage medium stores a control program of a scene point control device.
  • This application proposes a scenario point control device, a control method thereof, and a computer-readable storage medium. Since the scenario point control device is limited by its own sensor hardware, it is often unable to support more types of scenario modes and requires the user to purchase it separately. High-end scenario point control devices with higher sensor hardware configuration often increase user costs and bring poor experience. Therefore, this application determines the air parameters required for the operation of the scene mode to be triggered by receiving the scene mode triggering instruction, and obtains the air parameters through other scene point control devices that communicate with the scene point control device, and then uses the air parameters according to the scene mode point control device.
  • control the operation of air-conditioning equipment so that the air parameter information collected by multiple indoor scene point control devices can be shared, thereby enabling the air-conditioning equipment to support control of more scene modes without the need to purchase additional sensor hardware with higher configurations
  • a high-end version of the scene point control device thereby reducing the hardware implementation cost of intelligent air conditioning control for users to customize scene modes.
  • Figure 1 is a schematic diagram of the terminal structure involved in the operation of the control method of the scenario point control device proposed in this application;
  • Figure 2 is a schematic flow chart of the first embodiment of the control method of the scene point control device of the present application;
  • Figure 3 is a detailed flow chart of step S20 in the second embodiment of the control method of the scenario point control device of the present application;
  • Figure 4 is a schematic diagram of a scenario in which the scenario point control device controls the operation of air conditioning equipment according to an embodiment of the present application;
  • Figure 5 is a schematic diagram of a scenario in which a scene point control device and other scene point control devices share air parameters according to an embodiment of the present application.
  • the main solution of the embodiment of the present application is to receive the scene mode triggering instruction and determine the air parameters required for the operation of the scene mode to be triggered; and obtain the air parameters from other scene point control devices that communicate with the scene point control device. ; Control the operation of the air conditioning equipment according to the air parameters.
  • control parameters of the air conditioning equipment can only be set through the APP (Application, Application) on the control terminal or the remote control.
  • the control efficiency of the air conditioning equipment is low.
  • a scenario point control device can be provided to perform intelligent control of the air conditioning equipment in a personalized and customized scenario mode, thereby improving the control efficiency of the air conditioning equipment.
  • different types of scenario point control devices often correspond to air conditioning controls that support different scenario modes, different types of scenario point control devices are often equipped with different types of sensor hardware.
  • the embodiment of the present application proposes a terminal involved in the control method of the scene point control device.
  • the hardware terminal involved in the control method of the scene point control device may be a control terminal of the scene point control device.
  • Figure 1 is a schematic diagram of the hardware structure involved in the operation of an embodiment of the present application.
  • the hardware can be the scene point control device described in the above embodiment.
  • the hardware includes: a processor 1001, such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002, and a user interface 1003.
  • the communication bus 1002 is used to realize connection communication between these components.
  • the user interface 1003 may include a display screen (Display) and an input unit such as a keyboard (Keyboard).
  • the user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface or a wireless interface (such as a Wireless-Fidelity (WI-FI) interface).
  • WI-FI Wireless-Fidelity
  • the memory 1005 may be a high-speed random access memory (Random Access Memory, RAM) memory or a stable non-volatile memory (Non-Volatile Memory, NVM), such as a disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • Figure 1 does not constitute a limitation on the scene point control device, and may include more or fewer components than shown, or combine certain components, or arrange different components.
  • the memory 1005 as a storage medium may include an operating system, a data storage module, a network communication module, a user interface module, and a control program of the scenario point control device.
  • the network interface 1004 is mainly used for data communication with other equipment; the user interface 1003 is mainly used for data interaction with the user; the processor 1001 and the memory 1005 in the scenario point control device of this application It can be set in a scene point control device.
  • the scene point control device calls the control program of the scene point control device stored in the memory 1005 through the processor 1001, and executes the relevant steps of the control method of the scene point control device in the following embodiments. .
  • the control method of the scene point control device includes: Step S10, receive the scene mode triggering instruction and determine the air parameters required for the operation of the scene mode to be triggered;
  • the user can input the scene mode triggering instruction by pressing the physical button or the touch screen button of the scene point control device.
  • scenario point control devices Since different types of scenario point control devices often correspond to air conditioning controls that support different scenario modes, the air parameters required for operation in different scenario modes are often different. Each air parameter requires a corresponding type of sensor to collect (for example, the temperature sensor detects The air parameter is the current ambient temperature, and the air parameter detected by the humidity sensor is the current ambient humidity), so different types of scene point control devices are often equipped with different types of sensor hardware.
  • different types of scenario point control devices often correspond to air conditioning controls that support different scenario modes.
  • the scenario modes that users can trigger according to specific application scenarios include but are not limited to energy-saving mode, comfort mode, health mode, children's mode, elderly mode, pregnant woman mode, home mode, away from home mode, sleep mode and exercise mode. model.
  • the parameter control information associated with different scenario modes is often different.
  • the parameter control information includes but is not limited to temperature control information, humidity control information, wind speed control information, cleanliness control information and freshness control information. Among them, cleanliness is mainly judged based on indoor PM2.5 concentration, while freshness is mainly judged based on indoor carbon dioxide concentration. Parameter control information is related to the attributes of each scene mode.
  • the air conditioner needs to operate more gently. Compared with middle-aged people (non-pregnant people), the temperature is often higher and the wind speed is lower.
  • the air parameter values can be set according to the sleep curve.
  • the air parameter value can be a specific value, a range value, or of course a curve formed by a series of values.
  • the parameter control information often refers to the air parameters at the outlet position of the air conditioning equipment.
  • the temperature control information is an air conditioner temperature setting of 25°C, which often means that the temperature at the outlet of the air conditioning equipment is adjusted to 25°C.
  • the humidity control information is the 35% PH humidification setting, which often means that the humidity at the outlet of the air conditioning equipment is adjusted to 35% PH.
  • the wind speed control information is set to 30 wind speeds, which often means that the wind speed at the outlet of the air conditioning equipment is 30 wind speeds.
  • the actual air parameters perceived by the user indoors are not necessarily equivalent to the air parameters at the outlet position of the air conditioning equipment.
  • the scenario point control device of this embodiment needs to sense the indoor air parameters, and then adjust the parameters according to the actual air parameters sensed. Compare with the target air parameters corresponding to the triggered scenario mode, and dynamically and adaptively adjust the parameter control information of the air conditioning equipment based on the deviation information of the real-time comparison, thereby adapting to the target operating parameters corresponding to the currently running scenario mode.
  • Control through the method of "perception plus control", intuitively perceive the air effect (current air parameters such as temperature, humidity and wind speed), and determine the operating capacity of the air conditioning equipment based on the perceived current air parameters, that is, determine whether the air conditioning equipment has reached the current level.
  • the current operating parameters are dynamically optimized and adjusted to make the air conditioning operation more suitable for the operating environment corresponding to the target scenario and improve the adaptability of the air conditioning equipment to adjust the environment.
  • the scenario point control device in order to adaptively control the target operating parameters corresponding to the scenario modes in this embodiment, the scenario point control device often needs to use different types of sensors to collect the operating parameters of the different scenario modes when controlling the air conditioner to operate in different scenario modes. Therefore, when the scene point control device triggers the scene mode, the real-time air parameters of the user's environment can be detected through the corresponding type of sensor, so that the air conditioning operation can be more appropriate to the operation corresponding to the current scene mode. environment.
  • the air parameters required when operating in the energy-saving mode are the current ambient wind speed and the current ambient temperature. Therefore, the current ambient wind speed can be detected through the wind speed sensor, and the current ambient temperature can be detected through the temperature sensor, and then the target operating parameters when the air conditioner is running in the energy-saving mode can be dynamically optimized and adjusted based on the current ambient wind speed and the current ambient temperature, so that the air conditioner can operate More appropriate to the operating environment corresponding to the energy-saving mode.
  • the air parameters required when operating in the comfort mode are current ambient humidity, current ambient freshness, and current ambient temperature. Therefore, the current ambient humidity can be detected through the humidity sensor, the current ambient freshness can be detected through the carbon dioxide concentration sensor, and the current ambient temperature can be detected through the temperature sensor, and then the air conditioner can be operated based on the current ambient humidity, current ambient freshness, and current ambient temperature.
  • the target operating parameters in comfort mode are dynamically optimized and adjusted to make the air conditioning operation more suitable for the operating environment corresponding to comfort mode.
  • the air parameters required for the operation in the clean mode are the current environmental cleanliness and the current environmental humidity. Therefore, the current environmental cleanliness can be detected through the PM2.5 concentration sensor, and the current environmental humidity can be detected through the humidity sensor. Then, based on the current environmental cleanliness and current environmental humidity, the target operating parameters of the air conditioner can be dynamically adjusted when operating in the clean mode. Optimize and adjust to make the air conditioner operate more appropriately in the operating environment corresponding to the clean mode.
  • the air parameters required when operating in the healthy mode are the current ambient wind speed, the current environmental cleanliness, and the current environmental freshness. Therefore, the current environmental wind speed can be detected through the wind speed sensor, the current environmental cleanliness can be detected through the PM2.5 concentration sensor, and the current environmental freshness can be detected through the carbon dioxide concentration sensor, and then based on the current environmental wind speed, current environmental cleanliness and current environment Freshness, dynamically optimize and adjust the target operating parameters when the air conditioner is running in the healthy mode, so that the air conditioner operates more closely in the operating environment corresponding to the healthy mode.
  • the wind speed sensor, PM2.5 concentration sensor and carbon dioxide concentration sensor are the target type sensors.
  • Step S20 Obtain the air parameters from other scene point control devices communicating with the scene point control device; It should be noted that the way the scene point control device communicates with other scene point control devices includes but is not limited to Bluetooth communication, Zifeng communication, WIFE (Wireless-Fidelity, wireless broadband) communication and LIFI (Light Fidelity, visible light wireless communication) communication.
  • Bluetooth communication Zifeng communication
  • WIFE Wireless-Fidelity, wireless broadband
  • LIFI Light Fidelity, visible light wireless communication
  • scenario point control device a supports air conditioning control in energy-saving mode, and is equipped with a wind speed sensor and a temperature sensor.
  • the wind speed sensor and temperature sensor are its own sensors.
  • the scenario point control device a pre-stores the air conditioning control program corresponding to the comfort mode, and the air parameters required for the operation of the comfort mode are the current ambient temperature, the current ambient humidity and the current ambient carbon dioxide, and when the touch operation is triggered, In the comfort mode, the scene point control device a cannot detect the air parameters of the current ambient humidity.
  • Another scene point control device b that supports clean mode is equipped with a PM2.5 concentration sensor and a humidity sensor. At this time, scene point control device a can communicate with scene point control device b and obtain the data from scene point control device b.
  • the air parameters of the current ambient humidity can be used to indirectly detect the current indoor ambient humidity with the help of the humidity sensor in the scene point control device b. Refer to the scene diagram in Figure 5.
  • Step S30 control the operation of the air conditioning equipment according to the air parameters;
  • the air conditioning equipment controlled by the scene point control device can be an air conditioner, a humidifier, a fresh air blower, a purifier, an electric heater, etc., and can be operated by one or more air conditioning equipment to achieve the corresponding Scenario mode.
  • the air conditioning instructions determined by the scenario point control device based on the air parameters can be directly sent by the scenario point control device to each associated air conditioning equipment, or can be first sent by the scenario point control device to a central device, such as air conditioning equipment A. , and then forwarded by air-conditioning equipment A to other associated air-conditioning equipment.
  • Air conditioning equipment B is distributed to all associated air conditioning equipment.
  • this embodiment In order to adaptively control the target operating parameters when the scene mode to be triggered is running, this embodiment often requires the scene point control device that controls the air conditioner to support different scene modes to be equipped with different built-in sensors, so that the scene point control device triggers itself In the supported scenario mode, it can detect the real-time target air parameter information of the user's environment through its own sensors. Through the "perception plus control" method, it can intuitively sense the human body status and air effects (air parameters such as temperature, humidity, and wind speed), etc., to realize closed-loop adjustment of the air conditioner, and then dynamically optimize and adjust the current operating parameters of the air conditioner so that the air conditioner operation can be more suitable for the operating environment corresponding to the target scenario.
  • the human body status and air effects air parameters such as temperature, humidity, and wind speed
  • this embodiment determines the air parameters required for the operation of the scene mode to be triggered by receiving the scene mode triggering instruction, and obtains the air parameters from other scene point control devices communicating with the scene point control device, and then according to the scene mode point control device, the air parameters are obtained.
  • Air parameters control the operation of air-conditioning equipment, so that the air parameter information collected by multiple indoor scene point control devices can be shared. You can refer to the scene diagram shown in Figure 4, thereby realizing more scenarios for air-conditioning equipment.
  • Mode support control eliminates the need to purchase a high-end scenario point control device with higher sensor hardware configuration, thereby reducing the hardware implementation cost of intelligent air conditioning control for users to customize scenario modes.
  • the step of obtaining the air parameters from other scene point control devices communicating with the scene point control device includes: Step S21, determine a target point control device from other scene point control devices communicating with the scene point control device, and the target point control device is a scene point control device with the air parameters; Step S22: Communicate with the target point control device to obtain the air parameters.
  • the scene point control device c supports air conditioning control in comfort mode and is equipped with a temperature sensor, a humidity sensor and a carbon dioxide concentration sensor.
  • the temperature sensor, humidity sensor and carbon dioxide sensor are its own sensors.
  • Scenario point control device c cannot detect the air parameters collected by the PM2.5 concentration sensor (ie, the current environmental cleanliness).
  • Another scene point control device d that supports health mode is equipped with a wind speed sensor, PM2.5 concentration sensor and carbon dioxide concentration.
  • the scene point control device c can communicate with the scene point control device d, and from the scene point control The device d obtains the air parameters of the current environmental cleanliness, so that it can indirectly detect the current indoor environmental cleanliness with the help of the PM2.5 concentration sensor in the scene point control device d.
  • the scene point control device d supports air conditioning control in energy-saving mode and is equipped with a wind speed sensor and a temperature sensor.
  • the temperature sensor and wind speed sensor are its own sensors.
  • the scene point control device d pre-stores the air conditioning control program corresponding to the health mode, and the air parameters required when running the health mode are the current ambient wind speed, the current environmental cleanliness and the current environmental freshness, and when operated by touch
  • the scene point control device d cannot detect the air parameters of the current environmental freshness and current environmental cleanliness
  • another scene point control device e that supports the clean mode is equipped with a PM2.5 concentration sensor and humidity sensor.
  • Another scene point control device f that supports comfort mode which is equipped with a temperature sensor, a humidity sensor and a carbon dioxide concentration sensor.
  • the scene point control device d can communicate with the scene point control device e and the scene point control device f, and obtain the air parameters of the current environmental cleanliness from the scene point control device e, and at the same time obtain the air parameters of the current environmental cleanliness from the scene point control device f.
  • the air parameters of freshness can be indirectly obtained by using the PM2.5 concentration sensor in the scene point control device e and the carbon dioxide concentration sensor in the scene point control device f to indirectly obtain the air parameters required to operate the health mode.
  • This embodiment determines the target point control device as the scene point control device that cannot obtain the air parameters from the scene point control device, communicates with the target point control device, and obtains the air parameters, thereby more accurately obtaining the air parameters from the scene point control device. From the multiple scene point control devices that communicate with it, the air parameters required for the operation of the scene mode to be triggered are obtained, which improves the accuracy of obtaining the required air parameters.
  • step S40 the step of controlling the operation of the air conditioning equipment according to the air parameters includes: Step B10, when the input scene switching instruction is obtained, determine that the scene switching instruction corresponds to the scene mode selected by the switch, and use the scene mode selected by the switch as the scene mode to be triggered, and return to execution: determine the scene mode to be triggered. Procedure for required air parameters during operation.
  • the context switching instruction can be input by performing a user touch operation on the context point control device.
  • the user touch operation can include a single click operation, a double click operation and a long press operation (such as a long press operation).
  • the pressing operation is long pressing for 3 seconds), etc.
  • the user can switch from multiple scene modes to the target scene mode required by the user's intention by performing a user touch operation on the switching button on the scene point control device.
  • the current scene point control device has pre-stored air conditioning control programs corresponding to energy-saving mode, comfort mode and health mode.
  • the currently running target scenario mode is the energy-saving mode.
  • the target scenario mode triggered by the scenario point control device switches from the energy-saving mode to the comfort mode.
  • the target scene mode triggered by the scene point control device switches from the health mode back to the comfort mode, and the cycle repeats. That is to say, through the scene point control device, not only the control of a certain scene mode can be realized, but also the control of switching of multiple scene modes can be realized, thereby meeting the different needs of users for scene modes at different times, and the different users' needs for scene modes. According to different needs, enrich the types of scenario mode operations that a single scenario point control device can support, and improve the user experience of using the scenario point control device.
  • the step of determining the target point control device includes: Step C10: Broadcast and send the information sharing request for the air parameters; Step C20: Receive unique identity identifiers returned by other scene point control devices communicating with the scene point control device in response to the information sharing request; Step C30: Determine the target point control device according to the unique identity identifier.
  • each scene point control device has a unique identity identifier
  • the unique identity identifier is unique identity identification information that characterizes the scene point control device.
  • the scene point control device can broadcast the information sharing request through communication methods such as Bluetooth communication, Zifeng communication, WIFE communication, and LIFI (Light Fidelity, visible light wireless communication) communication.
  • communication methods such as Bluetooth communication, Zifeng communication, WIFE communication, and LIFI (Light Fidelity, visible light wireless communication) communication.
  • the information sharing request carries air parameters required for running the scenario mode to be triggered.
  • This embodiment sends the information sharing request for the air parameters through broadcast, thereby receiving the unique identity identifier returned by other scene point control devices communicating with the scene point control device in response to the information sharing request, and then determining the target point based on the unique identity identifier.
  • the control device further improves the accuracy of obtaining the air parameters required for the operation of the scenario mode to be triggered from the multiple scenario point control devices that communicate with it.
  • the step of determining the target point control device includes: Step D10, determine the target point control device from the stored device data mapping table, wherein the device data mapping table includes air parameters that can be detected by other scenario point control devices communicating with the scenario point control device; or, Step D20: Determine the target point control device from the scene device sharing record, where the scene device sharing record includes air parameters that can be shared by other scene point control devices communicating with the scene point control device.
  • the information in the device data mapping table may be pre-stored in the target point control device before leaving the factory, or may be independently input by the user after the target point control device leaves the factory.
  • the scene device sharing record refers to the air parameters that have been shared by the scene point control device and other scene point control devices in the historical usage records. It is easy to understand that the scene point control device can automatically identify air parameters that can be detected by other scene point control devices communicating with the scene point control device by reading the scene device sharing record.
  • This embodiment automatically identifies air parameters that can be detected by other scene point control devices communicating with the scene point control device according to the stored device data mapping table or the information in the scene device sharing record, so that the air parameters can be more accurately determined from the scene point control device.
  • the air parameters required for the operation of the scenario mode to be triggered are obtained from multiple scenario point control devices that communicate, thereby improving the accuracy of obtaining the required air parameters.
  • the step of determining the target point control device further includes: Step E10, if there are multiple target point control devices, determine the target point control device closest to the air conditioning equipment as the final target point control device; or step E20, determine the target point control device closest to the scene point control device. The nearest target point control device of the device is determined as the final target point control device.
  • the target point control device in order to avoid that the target point control device exceeds the corresponding working area range of the air conditioning equipment, causing the air parameters shared by the target point control device to fail to reflect a more accurate and effective indoor air conditioning operating environment, the The target point control device closest to the air conditioning equipment is determined as the final target point control device, thereby improving the accuracy of the air parameters required for the scenario mode to be triggered.
  • the target point control closest to the scene point control device is The device is determined as the final target point control device to avoid situation point control due to the long distance between the scenario point control device and the target point control device resulting in low signal strength when the scenario point control device and the target point control device share air parameters.
  • the loss of data packets between the device and the target point control device leads to the failure of air parameter sharing, thus enabling this embodiment to stably and effectively obtain the air parameters required for the operation of the scenario mode to be triggered, further improving the situation of the scenario to be triggered. Accuracy of air parameters required by the model.
  • the step of communicating with the target point control device and obtaining the air parameters includes: Step F10, perform spatial positioning on the target point control device, obtain the positioning information of the target point control device, and determine whether the target point control device is in the working area corresponding to the air conditioning equipment based on the positioning information; Step F20: Obtain the air parameters from the target point control device located in the working area.
  • the target point control device can be spatially positioned through near field communication positioning.
  • This embodiment uses the above technical solution to prevent the target point control device from exceeding the corresponding working area range of the air conditioning equipment.
  • the air parameters shared from the target point control device cannot reflect a more accurate and effective indoor air conditioning operating environment. Therefore, by using the target point control device from The target point control device located in the working area obtains the air parameters, further improving the accuracy of the air parameters required for the scenario mode to be triggered.
  • the step of controlling the air conditioning device to start executing the target scenario mode includes: Step G10, according to the air parameters, determine the target operating parameters when the scene mode to be triggered is running, and send the determined target operating parameters to the air conditioning equipment; or, Step G20: Send the scene mode control instruction to the air conditioning device, and send the obtained air parameters to the air conditioning device, so that the air conditioning device can run the scene mode according to the air parameters.
  • the target operating parameters when the scene mode to be triggered is determined based on the air parameters
  • the step of sending the determined target operating parameters to the air conditioning device includes: Step H10, obtain the standard air parameters corresponding to the scene mode to be triggered;
  • a preset mapping relationship table between each scenario mode and standard air parameters can be pre-stored in the system, and then when the triggered scenario mode is determined, the preset mapping relationship table can be queried to obtain the Standard air parameters corresponding to the trigger scenario mode. It is understandable that the standard air parameters corresponding to different scenario models are different.
  • standard air parameters often correspond to target operating parameters.
  • the standard air parameters may include at least one of standard ambient temperature, standard ambient humidity, standard ambient wind speed, standard ambient freshness, and standard ambient cleanliness.
  • the target operating parameters associated with the energy-saving mode may be: the temperature control information is the 25°C air conditioning temperature setting, the humidity control information is the 35% PH humidification setting, and the wind speed control information is the 30 wind speed setting.
  • the standard air parameters can be: standard ambient temperature is 24°C to 26°C, standard ambient humidity is 25%PH to 45%PH, and standard ambient wind speed is 25 to 30 wind speed.
  • the target operating parameters associated with the comfort mode may be: the temperature control information is the 23°C air conditioning temperature level, the cleanliness control information is the 30 ⁇ g/m3 fresh air system filter level, and the freshness control information is 500PPM fresh air. System exhaust gear.
  • the standard air parameters can be: standard ambient temperature is 22°C to 24°C, standard environmental cleanliness is below 45 ⁇ g/m3, and standard environmental freshness is below 800PPM.
  • the target operating parameters associated with the health mode can be: the temperature control information is the 23°C air conditioning temperature range, the humidity control information is the 50% PH humidification range, and the cleanliness control information is the 25 ⁇ g/m3 fresh air system filter
  • the gear position and freshness control information are the 400 PPM fresh air system exhaust gear.
  • the standard air parameters can be: standard ambient temperature is 22 to 24°C, standard ambient humidity can be 45% PH to 65% PH, standard environmental cleanliness is below 35 ⁇ g/m3, and standard environmental freshness is below 600PPM.
  • the target operating parameters associated with the light sleep stage in the sleep mode may be: the air conditioner temperature control information is the 26°C air conditioner temperature gear, and the wind speed control information is the 40 wind gear.
  • the standard air parameters can be: the standard ambient temperature is 25 to 27°C, and the standard ambient wind speed is 40 degrees wind speed.
  • the target operating parameters associated with the deep sleep stage in the sleep mode may be: the air conditioner temperature control information is the 27°C air conditioner temperature gear, and the wind speed control information is the 20 wind gear.
  • the standard air parameters can be: the standard ambient temperature is 26°C to 28°C, and the standard ambient wind speed is 15 to 25 wind speeds.
  • Step H20 Compare the air parameters with the standard air parameters to obtain air parameter deviations
  • Step H30 Determine the operating parameter adjustment information when the scenario mode to be triggered is running based on the real-time air parameter deviation, and dynamically and adaptively adjust the target operating parameters to obtain adaptively adjusted target operating parameters
  • Step H40 Send the adaptively adjusted target operating parameters to the air conditioning equipment.
  • the air parameters required when the scenario mode to be triggered refers to the air parameters at the current moment, which may include current ambient temperature, current ambient humidity, current ambient wind speed, current ambient freshness, and current ambient cleanliness. At least one.
  • the air parameter deviation may include at least one of a temperature deviation value, a humidity deviation value, a wind speed deviation value, a freshness deviation value and a cleanliness deviation value.
  • the air parameters belonging to the same air parameter category can be compared with the standard air parameters to obtain the air parameter deviation.
  • the standard air parameters include standard ambient temperature and current ambient wind speed. Among them, the standard ambient temperature is 24°C to 26°C, and the standard ambient wind speed is 15 to 25 wind speeds. At the same time, the temperature sensor detects that the current ambient temperature is 28°C, and the wind speed sensor detects that the current ambient wind speed is 22 wind speeds.
  • the operating parameter adjustment information of adjusting the air conditioner upward by 3°C and adjusting the windshield downward by 5 windshields can be obtained. Dynamically and adaptively adjust target operating parameters.
  • the target operating parameters often refer to the operating control parameters of the air outlet position of the air conditioning equipment.
  • the temperature control information is an air conditioner temperature setting of 25°C, which often means that the temperature at the outlet of the air conditioning equipment is adjusted to 25°C.
  • the humidity control information is the 35% PH humidification setting, which often means that the humidity at the outlet of the air conditioning equipment is adjusted to 35% PH.
  • the wind speed control information is set to 30 wind speeds, which often means that the wind speed at the outlet of the air conditioning equipment is 30 wind speeds.
  • the actual target air parameter information perceived by the user indoors is not necessarily the same as the air parameter information at the outlet position of the air conditioning equipment.
  • Air parameters are compared, and based on the deviation information of real-time comparison, the target operating parameters of the air conditioning equipment are dynamically and adaptively adjusted, so as to perform adaptive control of the target operating parameters corresponding to the scenario mode, through the "sensing plus control" method.
  • intuitively perceive the air effect current air parameters such as temperature, humidity and wind speed
  • can dynamically optimize and adjust the target operating parameters of the air conditioner so that the air conditioner operation can be more suitable for the operating environment corresponding to the target scenario, and improve the adjustment environment of the air conditioning equipment adaptability.
  • the air parameters mapped by the scene mode to be triggered are queried from the preset scene mode mapping table, and the mapped air parameters are used as the air required for the operation of the scene mode to be triggered.
  • Parameter steps include: Step I10: Query the air parameters mapped by the scene mode to be triggered from the preset scene mode mapping table, and use the mapped air parameters as the air parameters required for the operation of the scene mode to be triggered.
  • scenario model mapping table includes multiple scenario models and the air parameters mapped by each scenario model.
  • the currently triggered scenario mode is the energy-saving mode
  • the air parameters mapped by the energy-saving mode may be ambient temperature, ambient humidity, and ambient wind speed.
  • the currently triggered scenario mode is the comfort mode
  • the air parameters mapped by the comfort mode may be ambient temperature, environmental cleanliness, and environmental clarity.
  • This embodiment pre-stores the mapping relationship between each scenario mode and its corresponding air parameter, thereby accurately determining the air parameters required for operation corresponding to the scenario mode to be triggered.
  • embodiments of the present application also propose a computer-readable storage medium.
  • the computer-readable storage medium stores a control program of a scene point control device.
  • the control program of the scene point control device is executed by a processor, the above situation is realized. Relevant steps of any embodiment of the control method of the scenic spot control device.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM) as mentioned above. , magnetic disk, optical disk), including several instructions to cause a terminal device (which can be a mobile phone, computer, server, air conditioning equipment, or network device, etc.) to execute the method described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种情景点控装置及其控制方法、计算机可读存储介质,该方法包括:接收情景模式触发指令,确定待触发的情景模式运行时所需的空气参数;从与所述情景点控装置通信的其他情景点控装置,获取所述空气参数;根据所述空气参数,控制空气调节设备运行。

Description

情景点控装置及其控制方法、计算机可读存储介质
本申请要求于2022年7月29日申请的、申请号为202210913451.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能控制技术领域,尤其涉及情景点控装置及其控制方法、计算机可读存储介质。
背景技术
目前,由于不同种类的情景点控装置往往对应支持不同情景模式的空调控制,因此不同种类的情景点控装置往往搭载有不同类型的传感器硬件。例如,情景点控装置a支持情景模式A的空调控制(比如节能模式),其搭载了风速传感器和温度传感器,而情景点控装置b支持情景模式B的空调控制(比如舒适模式),其搭载了温度传感器和湿度传感器。情景点控装置c支持情景模式C的空调控制(比如洁净模式),其搭载了PM2.5浓度传感器和二氧化碳浓度传感器。但是当用户需要对智能空调进行情景模式D的空调控制(比如健康模式)时,情景模式D的空调控制需要搭载风速传感器、温度传感器、湿度传感器、PM2.5浓度传感器和二氧化碳浓度传感器,需要另行购买支持情景模式D对应的情景点控装置d,严重增加了用户进行个性化定制情景模式的智能空调控制的硬件实现成本。
需要说明的是,上述内容仅用于辅助理解本申请所解决的技术问题,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的在于提供一种情景点控装置及其控制方法、以及计算机可读存储介质,旨在降低个性化定制情景模式的智能空调控制的硬件实现成本。
技术解决方案
为实现上述目的,本申请提供一种情景点控装置的控制方法,所述情景点控装置的控制方法包括以下步骤:
接收情景模式触发指令,确定待触发的情景模式运行时所需的空气参数;
从与所述情景点控装置通信的其他情景点控装置,获取所述空气参数;
根据所述空气参数,控制空气调节设备运行。
在一实施例中,所述从与所述情景点控装置通信的其他情景点控装置获取所述空气参数的步骤包括:
从与所述情景点控装置通信的其他情景点控装置中,确定目标点控装置,所述目标点控装置为具有所述空气参数的情景点控装置;
与所述目标点控装置进行通信,获取所述空气参数。
在一实施例中,所述确定目标点控装置的步骤包括:
广播发送所述空气参数的信息共享请求;
接收与所述情景点控装置通信的其他情景点控装置响应所述信息共享请求而返回的唯一身份标识;
根据所述唯一身份标识确定所述目标点控装置。
在一实施例中,所述确定目标点控装置的步骤包括:
从存储的装置数据映射表中,确定所述目标点控装置,其中,所述装置数据映射表中包括与所述情景点控装置通信的其他情景点控装置能检测的空气参数;或者,
从情景装置共享记录中,确定所述目标点控装置,其中,所述情景装置共享记录中包括与所述情景点控装置通信的其他情景点控装置能共享的空气参数。
在一实施例中,确定目标点控装置的步骤还包括:
若所述目标点控装置的数量为多个,则将距离空气调节设备最近的目标点控装置确定为最终的所述目标点控装置;或者
将距离所述情景点控装置最近的目标点控装置确定为最终的所述目标点控装置。
在一实施例中,所述与所述目标点控装置进行通信,获取所述空气参数的步骤包括:
对所述目标点控装置进行空间定位,得到所述目标点控装置的定位信息,并根据所述定位信息,确定所述目标点控装置是否处于空气调节设备对应的工作区域内;
与处于所述工作区域内的所述目标点控装置通信,获取所述空气参数。
在一实施例中,所述根据所述空气参数,控制空气调节设备运行的步骤包括:
根据所述空气参数,确定待触发的情景模式运行时的目标运行参数,将确定的目标运行参数发送至空气调节设备;或者,
发送情景模式控制指令至所述空气调节设备,并将获取到的空气参数发送至所述空气调节设备,以供所述空气调节设备根据所述空气参数运行情景模式。
在一实施例中,所述确定待触发的情景模式运行时所需的空气参数的步骤包括:
从预设的情景模式映射表中,查询得到待触发的情景模式映射的空气参数,并将映射的所述空气参数,作为待触发的情景模式运行时所需的空气参数。
此外,为了实现上述目的,本申请还提出一种情景点控装置,所述情景点控装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的情景点控装置的控制程序,所述情景点控装置的控制程序被所述处理器执行时实现如上任一项所述的情景点控装置的控制方法的步骤。
此外,为了实现上述目的,本申请还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有情景点控装置的控制程序,所述情景点控装置的控制程序被处理器执行时实现如上任一项所述的情景点控装置的控制方法的步骤。
有益效果
本申请提出的一种情景点控装置及其控制方法、计算机可读存储介质,由于情景点控装置受限于自身传感器硬件的限制,往往无法支持更多类型的情景模式,而需要用户另行购买传感器硬件配置更高的高配版情景点控装置,往往增加了用户成本,带来了较差体验。因此,本申请通过接收情景模式触发指令,确定待触发的情景模式运行时所需的空气参数,并与该情景点控装置通信的其他情景点控装置,获取该空气参数,再根据该空气参数,控制空气调节设备运行,从而可通过将室内多个情景点控装置所能采集的空气参数信息进行共享,进而实现空气调节设备进行更多情景模式的支持控制,无需另行购买传感器硬件配置更高的高配版情景点控装置,进而降低了用户进行个性化定制情景模式的智能空调控制的硬件实现成本。
附图说明
图1为本申请提出的情景点控装置的控制方法运行涉及的终端结构示意图;
图2本申请情景点控装置的控制方法第一实施例的流程示意图;
图3为本申请情景点控装置的控制方法第二实施例中步骤S20的细化流程示意图;
图4为本申请一实施例的情景点控装置控制空气调节设备运行的场景示意图;
图5为本申请一实施例的情景点控装置与其他情景点控装置进行空气参数共享的场景示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是接收情景模式触发指令,确定待触发的情景模式运行时所需的空气参数;从与所述情景点控装置通信的其他情景点控装置,获取所述空气参数;根据所述空气参数,控制空气调节设备运行。
在一些实施例中,对空气调节设备的控制,仅能够通过控制终端上的APP(Application,应用程序)或者遥控器对其控制参数进行设置,空气调节设备的控制效率低下。为了提高控制效率,可通过提供一种情景点控装置对空气调节设备进行个性化定制情景模式的智能控制,从而提高空气调节设备的控制效率。但是由于不同种类的情景点控装置往往对应支持不同情景模式的空调控制,因此不同种类的情景点控装置往往搭载有不同类型的传感器硬件。但是当用户需要对智能空调进行更多种类的情景模式的空调控制时,往往需要另行购买搭载有支持该情景模式运行对应传感器硬件的情景点控装置,严重增加了用户进行个性化定制情景模式的智能空调控制的硬件实现成本。
基于此,本申请实施例提出一种情景点控装置的控制方法涉及的终端。所述情景点控装置的控制方法涉及的硬件终端可以为情景点控装置的控制终端参照图1,图1为本申请一实施例运行涉及的硬件结构示意图。
如图1所示,该硬件可为上述实施例中所述的情景点控装置,该硬件包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可以包括标准的有线接口、无线接口(如无线保真(Wireless-Fidelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(Random Access Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005还可以是独立于前述处理器1001的存储设备。
本领域技术人员可以理解,图1中示出的结构并不构成对情景点控装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种存储介质的存储器1005中可以包括操作***、数据存储模块、网络通信模块、用户接口模块以及情景点控装置的控制程序。
在图1所示的空气调节设备中,网络接口1004主要用于与其他设备进行数据通信;用户接口1003主要用于与用户进行数据交互;本申请情景点控装置中的处理器1001、存储器1005可以设置在情景点控装置中,所述情景点控装置通过处理器1001调用存储器1005中存储的情景点控装置的控制程序,并执行以下实施例中情景点控装置的控制方法的相关步骤操作。
基于上述终端的硬件构架,提出本申请情景点控装置的控制方法的各个实施例。
参照图2,提出本申请情景点控装置的控制方法第一实施例。在本实施例中,所述情景点控装置的控制方法包括:
步骤S10,接收情景模式触发指令,确定待触发的情景模式运行时所需的空气参数;
在本实施例中,用户可通过按压情景点控装置的物理按键或者触屏按键来输入该情景模式触发指令。
由于不同种类的情景点控装置往往对应支持不同情景模式的空调控制,不同种类情景模式运行时所需的空气参数往往不同,每种空气参数均需要对应类型的传感器进行采集(例如温度传感器检测的空气参数为当前环境温度,湿度传感器检测的空气参数为当前环境湿度),因此不同种类的情景点控装置往往搭载有不同类型的传感器硬件。
在本实施例中,由于不同种类的情景点控装置往往对应支持不同情景模式的空调控制。在一实施例中,用户可根据具体应用场景触发的情景模式包括但不限于节能模式、舒适模式、健康模式、儿童模式、老人模式、孕妇模式、回家模式、离家模式、睡眠模式和运动模式。需要说明的是,不同情景模式关联的参数控制信息往往不同。该参数控制信息包括但不限于温度控制信息、湿度控制信息、风速控制信息、洁净度控制信息和清新度控制信息。其中,洁净度主要根据室内的PM2.5浓度进行判断,而清新度主要根据室内的二氧化碳浓度进行判断。参数控制信息与各个情景模式的属性相关,比如在情景模式是健康场景时,对洁净度值与清新度值的要求会更高。比如在情景模式是儿童模式或老人模式时,空调运行需要更温和,相对于中年人(非孕妇群体)往往温度要适当高一点,以及风速要适当小一点。比如情景模式是睡觉场景时,可参照睡眠曲线设定空气参数值。该空气参数值可以为一个具体数值,也可以为一个范围值,当然还可以为一系列值形成的曲线。
容易理解的是,由于参数控制信息往往指的是空气调节设备出风口位置的空气参数。例如温度控制信息为25℃空调温度设置,往往是指空气调节设备出风口位置的温度调节为25℃。湿度控制信息为35%PH加湿设置,往往是指空气调节设备出风口位置的湿度调节为35%PH。风速控制信息为30风档设置,往往是指空气调节设备出风口位置的风速为30风档风速。而用户在室内感知的实际的空气参数并不一定等同于空气调节设备出风口位置的空气参数,因此本实施例的情景点控装置需要对室内的空气参数进行感知,然后根据感知的实际空气参数与触发的情景模式对应的目标空气参数进行对比,根据实时对比的偏差信息,对空气调节设备的参数控制信息进行动态地自适应调整,从而对当前运行的情景模式对应的目标运行参数进行自适应控制,通过“感知加控制”的方式,直观地感知空气效果(温度、湿度和风速等当前空气参数),基于感知的当前空气参数确定空气调节设备运行能力,即确定空气调节设备是否达到了当前理论上应该达到的运行能力,进而在运行能力不足时调整运行控制量,由此避免无法达到用户期望的目标环境,实现闭环调节,与进入单纯的运行模式的控制方式相比,能够对空调的当前运行参数进行动态地优化调整,以使空调运行更贴切目标情景对应的运行环境,提高空气调节设备调节环境的适应性。
也就是说,本实施例为了能对情景模式对应的目标运行参数进行自适应控制,情景点控装置往往需要在控制空调运行不同情景模式时,通过不同种类的传感器,采集不同情景模式运行时所需的空气参数,从而在情景点控装置触发情景模式时,能通过对应种类的传感器针对性地对用户所处环境的实时的空气参数进行检测,以使空调运行更贴切当前情景模式对应的运行环境。
在一实施例中,情景点控装置控制空调运行节能模式时,节能模式运行时所需的空气参数为当前环境风速和当前环境温度。因此可通过风速传感器来检测当前环境风速,通过温度传感器检测到当前环境温度,然后再根据当前环境风速和当前环境温度对空调运行节能模式时的目标运行参数进行动态地优化调整,以使空调运行更贴切节能模式对应的运行环境。
在另一实施例中,情景点控装置控制空调运行舒适模式时,舒适模式运行时所需的空气参数为当前环境湿度、当前环境清新度和当前环境温度。因此可通过湿度传感器来检测当前环境湿度,通过二氧化碳浓度传感器检测当前环境清新度,并通过温度传感器检测到当前环境温度,然后再根据当前环境湿度、当前环境清新度和当前环境温度,对空调运行舒适模式时的目标运行参数进行动态地优化调整,以使空调运行更贴切舒适模式对应的运行环境。
在又一实施例中,情景点控装置控制空调运行洁净模式时,洁净模式运行时所需的空气参数为当前环境洁净度和当前环境湿度。因此可通过PM2.5浓度传感器来检测当前环境洁净度,并通过湿度传感器检测到当前环境湿度,然后再根据当前环境洁净度和当前环境湿度,对空调运行洁净模式时的目标运行参数进行动态地优化调整,以使空调运行更贴切洁净模式对应的运行环境。
在还一实施例中,情景点控装置控制空调运行健康模式时,健康模式运行时所需的空气参数为当前环境风速、当前环境洁净度和当前环境清新度。因此可通过风速传感器来检测当前环境风速,通过PM2.5浓度传感器来检测当前环境洁净度,并通过二氧化碳浓度传感器检测到当前环境清新度,然后再根据当前环境风速、当前环境洁净度和当前环境清新度,对空调运行健康模式时的目标运行参数进行动态地优化调整,以使空调运行更贴切健康模式对应的运行环境。此时,该风速传感器、PM2.5浓度传感器和二氧化碳浓度传感器即为目标种类传感器。
步骤S20,从与所述情景点控装置通信的其他情景点控装置,获取所述空气参数;
需要说明的是,该情景点控装置与其他情景点控装置进行通信的方式包括但不限于蓝牙通信、紫峰通信、WIFE(Wireless-Fidelity,无线宽带)通信和LIFI(Light Fidelity,可见光无线通信)通信。
在本实施例中,容易理解的是,可通过检测情景点控装置检测的空气参数中,是否缺失待触发的情景模式运行时所需的空气参数,若全部缺失,则从与所述情景点控装置通信的其他情景点控装置,获取所述目标空气参数。若部分缺失,则从所述情景点控装置,以及从与所述情景点控装置通信的其他情景点控装置,获取所述目标空气参数。
作为一种示例,情景点控装置a支持节能模式的空调控制,其搭载了风速传感器和温度传感器,该风速传感器和温度传感器即为自身传感器。但是如果该情景点控装置a预存有舒适模式对应的空调控制程序,且该舒适模式运行时所需的空气参数为当前环境温度、当前环境湿度和当前环境二氧化碳,而当通过触控操作触发该舒适模式时,情景点控装置a无法对当前环境湿度的空气参数进行检测。而另一个支持洁净模式的情景点控装置b,其搭载了PM2.5浓度传感器和湿度传感器,此时,情景点控装置a可与情景点控装置b进行通信,从情景点控装置b获取当前环境湿度的空气参数,从而可借助情景点控装置b中的湿度传感器,来间接检测室内的当前环境湿度,可参照如图5的场景示意图。
步骤S30,根据所述空气参数,控制空气调节设备运行;
在本实施例中,该情景点控装置所控制的空气调节设备可以是空调器、加湿器、新风机、净化器和电加热器等,同时可由一个或多个空气调节设备运行来实现相应的情景模式。该情景点控装置根据该空气参数而确定的空气调节指令可以由情景点控装置直接发送给每个关联的空气调节设备,也可以先由情景点控装置发送给中心设备,如空气调节设备A,再由空气调节设备A转发给其他关联的空气调节设备,还可以由情景点控装置发送给服务器(或者通过一个关联的空气调节设备如空气调节设备B),再由服务器(或者由关联的空气调节设备B)下发给关联的所有空气调节设备。
为了能对待触发的情景模式运行时的目标运行参数进行自适应控制,本实施例往往需要在控制空调支持不同情景模式的情景点控装置搭载不同的自带传感器,从而在情景点控装置触发自身所支持的情景模式时,能通过自身搭载的传感器针对性地对用户所处环境的实时的目标空气参数信息进行检测,通过“感知加控制”的方式,可以直观地感知人体状态、空气效果(温度、湿度和风速等空气参数)等,对空调实现闭环调节,进而对空调的当前运行参数进行动态地优化调整,以使空调运行更贴切目标情景对应的运行环境。
但是由于情景点控装置受限于自身传感器硬件的限制,往往无法支持更多类型的情景模式,而需要用户另行购买传感器硬件配置更高的高配版情景点控装置,往往增加了用户成本,带来了较差体验。因此,本实施例通过接收情景模式触发指令,确定待触发的情景模式运行时所需的空气参数,并从与该情景点控装置通信的其他情景点控装置,获取该空气参数,再根据该空气参数,控制空气调节设备运行,从而可通过将室内多个情景点控装置所能采集的空气参数信息进行共享,可参考如图4所示的场景图,进而实现空气调节设备进行更多情景模式的支持控制,无需另行购买传感器硬件配置更高的高配版情景点控装置,进而降低了用户进行个性化定制情景模式的智能空调控制的硬件实现成本。
在一实施例中,请参照图3,所述从与所述情景点控装置通信的其他情景点控装置,获取所述空气参数的步骤包括:
步骤S21,从与所述情景点控装置通信的其他情景点控装置中,确定目标点控装置,所述目标点控装置为具有所述空气参数的情景点控装置;
步骤S22,与所述目标点控装置进行通信,获取所述空气参数。
作为一种示例,情景点控装置c支持舒适模式的空调控制,其搭载了温度传感器、湿度传感器和二氧化碳浓度传感器。该温度传感器和湿度传感器和二氧化碳传感即为自身传感器。但是如果该情景点控装置c预存有洁净模式对应的空调控制程序,且该洁净模式运行时所需的空气参数为当前环境洁净度和当前环境湿度,而当通过触控操作触发该洁净模式,情景点控装置c无法对PM2.5浓度传感器对应采集的空气参数(即当前环境洁净度)进行检测。而另一个支持健康模式的情景点控装置d,其搭载了风速传感器、PM2.5浓度传感器和二氧化碳浓度,此时,情景点控装置c可与情景点控装置d进行通信,从情景点控装置d获取当前环境洁净度的空气参数,从而可借助情景点控装置d中的PM2.5浓度传感器,来间接检测室内的当前环境洁净度。
作为另一种示例,情景点控装置d支持节能模式的空调控制,其搭载了风速传感器和温度传感器。该温度传感器和风速传感器即为自身传感器。但是如果该情景点控装置d预存有健康模式对应的空调控制程序,且该健康模式运行时所需的空气参数为当前环境风速、当前环境洁净度和当前环境清新度,而当通过触控操作触发该健康模式,情景点控装置d无法对当前环境清新度和当前环境洁净度的空气参数进行检测,而另一个支持洁净模式的情景点控装置e,其搭载了PM2.5浓度传感器和湿度传感器。又一个支持舒适模式的情景点控装置f,其搭载了温度传感器、湿度传感器和二氧化碳浓度传感器。此时情景点控装置d可与情景点控装置e和情景点控装置f进行通信,从情景点控装置e获取当前环境洁净度的空气参数,同时从情景点控装置f获取当前环境度的清新度的空气参数,从而可借助情景点控装置e中的PM2.5浓度传感器,以及情景点控装置f中的二氧化碳浓度传感器来间接获取运行健康模式所需的空气参数。
本实施例通过在将目标点控装置确定为无法从情景点控装置获取的所述空气参数的情景点控装置,与目标点控装置进行通信,获取所述空气参数,从而可更准确地从与其通信的多个情景点控装置中,获取待触发的情景模式运行时所需的空气参数,提高了获取所需空气参数的准确性。
在一实施例中,在步骤S40中,所述根据所述空气参数,控制空气调节设备运行的步骤之后包括:
步骤B10,当获取到输入的情景切换指令时,确定所述情景切换指令对应切换选择的情景模式,并将切换选择的情景模式作为待触发的情景模式,并返回执行:确定待触发的情景模式运行时所需的空气参数的步骤。
本实施例中,可以理解的是,可通过在情景点控装置上进行用户触控操作而输入该情景切换指令,该用户触控操作可包括单击操作、双击操作和长按操作(例如长按操作为长按3秒)等。
作为一个实例,用户可通过对情景点控装置上的切换按键进行用户触控操作,从多种情景模式中切换选择至用户意图需求的目标情景模式。例如,当前情景点控装置预存有节能模式、舒适模式和健康模式对应的空调控制程序。当前运行的目标情景模式为节能模式,用户按压一次切换按键,此时情景点控装置所触发的目标情景模式从节能模式切换为舒适模式。用户再按压一次切换按键,此时情景点控装置所触发的目标情景模式再从舒适模式切换为健康模式。用户又按压一次切换按键,此时情景点控装置所触发的目标情景模式又从健康模式切换回舒适模式,依次循环往复。即通过该情景点控装置,不仅可以实现某一种情景模式的控制,也可以实现多种情景模式切换的控制,从而满足用户在不同时刻对情景模式的不同需求,以及不同用户对情景模式的不同需求,丰富单个情景点控装置所能支持的情景模式运行种类,提高用户使用该情景点控装置的体验度。
在一种可实施的方式中,所述确定目标点控装置的步骤包括:
步骤C10,广播发送所述空气参数的信息共享请求;
步骤C20,接收与所述情景点控装置通信的其他情景点控装置响应所述信息共享请求而返回的唯一身份标识;
步骤C30,根据所述唯一身份标识确定所述目标点控装置。
在本实施例中,容易理解的是,每个情景点控装置均具有一个唯一身份标识,该唯一身份标识是表征情景点控装置的唯一的身份标识信息。
其中,情景点控装置可通过蓝牙通信、紫峰通信、WIFE通信和LIFI(Light Fidelity,可见光无线通信)通信等通信方式来广播该信息共享请求。
在本实施例中,容易理解的是,该信息共享请求该携带有待触发的情景模式运行时所需的空气参数。
本实施例通过广播发送所述空气参数的信息共享请求,从而接收与情景点控装置通信的其他情景点控装置响应该信息共享请求而返回的唯一身份标识,然后再根据唯一身份标识确定目标点控装置,进一步提高了从与其通信的多个情景点控装置中,获取待触发的情景模式运行时所需空气参数的准确性。
在另一种可实施的方式中,所述确定目标点控装置的步骤包括:
步骤D10,从存储的装置数据映射表中,确定所述目标点控装置,其中,所述装置数据映射表中包括与所述情景点控装置通信的其他情景点控装置能检测的空气参数;或者,
步骤D20,从情景装置共享记录中,确定所述目标点控装置,其中,所述情景装置共享记录中包括与所述情景点控装置通信的其他情景点控装置能共享的空气参数。
在本实施例中,该装置数据映射表中的信息可为出厂前就预存于目标点控装置中,也可以为目标点控装置在出厂后用户自主输入的。该情景装置共享记录是指历史使用记录中,该情景点控装置与其他情景点控装置所曾经共享过的空气参数。容易理解的是,情景点控装置可通过读取该情景装置共享记录,从而自动识别与所述情景点控装置通信的其他情景点控装置能检测的空气参数。
本实施例通过根据存储的装置数据映射表或者情景装置共享记录中的信息,来自动识别与所述情景点控装置通信的其他情景点控装置能检测的空气参数,从而可更准确地从与其通信的多个情景点控装置中,获取待触发的情景模式运行时所需的空气参数,提高了获取所需空气参数的准确性。
在一实施例中,作为一个实例,确定目标点控装置的步骤还包括:
步骤E10,若所述目标点控装置的数量为多个,则将距离空气调节设备最近的目标点控装置确定为最终的所述目标点控装置;或者
步骤E20,将距离所述情景点控装置最近的目标点控装置确定为最终的所述目标点控装置。
在本实施例中,为了避免目标点控装置超出了空气调节设备对应的工作区域范围,而导致该目标点控装置所分享的空气参数无法反映出更准确有效的室内的空调运行环境,因此通过将距离空气调节设备最近的目标点控装置确定为最终的目标点控装置,从而提高了待触发的情景模式所需空气参数的准确性。
另外,为了避免情景点控装置与目标点控装置的信号强度较低,影响情景点控装置与目标点控装置之间空气参数分享的正常进行,从而将距离情景点控装置最近的目标点控装置确定为最终的目标点控装置,避免在情景点控装置与目标点控装置进行空气参数分享时,由于情景点控装置与目标点控装置距离较远导致信号强度较低,造成情景点控装置与目标点控装置之间数据包的丢失导致空气参数分享失败的现象,进而使得本实施例能稳定有效地获取待触发的情景模式运行时所需的空气参数,进一步提高了待触发的情景模式所需空气参数的准确性。
在一实施例中,作为一个实例,所述与所述目标点控装置进行通信,获取所述空气参数的步骤包括:
步骤F10,对所述目标点控装置进行空间定位,得到所述目标点控装置的定位信息,并根据所述定位信息,确定所述目标点控装置是否处于空气调节设备对应的工作区域内;
步骤F20,从处于所述工作区域内的所述目标点控装置,获取所述空气参数。
在本实施例中,可通过近场通信定位方式对目标点控装置进行空间定位。本实施例通过上述技术方案避免目标点控装置超出了空气调节设备对应的工作区域范围,从该目标点控装置所分享的空气参数无法反映出更准确有效的室内的空调运行环境,因此通过从处于工作区域内的目标点控装置,获取该空气参数,进一步提高了待触发的情景模式所需空气参数的准确性。
在一实施例中,所述控制空气调节设备开始执行所述目标情景模式的步骤包括:
步骤G10,根据所述空气参数,确定待触发的情景模式运行时的目标运行参数,将确定的目标运行参数发送至空气调节设备;或者,
步骤G20,发送情景模式控制指令至所述空气调节设备,并将获取到的空气参数发送至所述空气调节设备,以供所述空气调节设备根据所述空气参数运行情景模式。
在一实施例中,作为一个实例,本实施例中,根据所述空气参数,确定待触发的情景模式运行时的目标运行参数,将确定的目标运行参数发送至空气调节设备的步骤包括:
步骤H10,获取待触发的情景模式对应的标准空气参数;
在本实施例中,可通过将各情景模式与标准空气参数之间的预设映射关系表预存于***中,然后当确定所触发的情景模式时,从该预设映射关系表中查询得到所触发情景模式对应的标准空气参数。可以理解的是,不同情景模式对应的标准空气参数不同。
需要说明的是,标准空气参数与目标运行参数往往是对应的。标准空气参数可包括标准环境温度、标准环境湿度、标准环境风速、标准环境清新度和标准环境洁净度中的至少一种。
例如,在一实施例中,节能模式关联的目标运行参数可为:温度控制信息为25℃空调温度设置、湿度控制信息为35%PH加湿设置,以及风速控制信息为30风档设置。此时标准空气参数可为:标准环境温度为24℃至26℃、标准环境湿度为25%PH至45%PH,以及标准环境风速为25至30风档风速。
在另一实施例中,舒适模式关联的目标运行参数可为:温度控制信息为23℃空调温度档位、洁净度控制信息为30μg/m³新风***过滤档位,以及清新度控制信息为500PPM新风***排气档位。此时标准空气参数可为:标准环境温度为22℃至24℃、标准环境洁净度为45μg/m³以下,以及标准环境清新度为800PPM以下。
在又一实施例中,健康模式关联的目标运行参数可为:温度控制信息为23℃空调温度档位,湿度控制信息为50%PH加湿档位、洁净度控制信息为25μg/m³新风***过滤档位,以及清新度控制信息为400 PPM新风***排气档位。此时标准空气参数可为:标准环境温度为22至24℃、标准环境湿度可为45%PH至65%PH、标准环境洁净度为35μg/m³以下,以及标准环境清新度为600PPM以下。
在还一实施例中,睡眠模式中浅睡阶段关联的目标运行参数可为:空调温度控制信息为26℃空调温度档位、风速控制信息为40风档。此时标准空气参数可为:标准环境温度为25至27℃、标准环境风速为40风档风速。睡眠模式中深睡阶段关联的目标运行参数可为:空调温度控制信息为27℃空调温度档位、风速控制信息为20风档。此时标准空气参数可为:标准环境温度为26℃至28℃、标准环境风速为15至25风档风速。
步骤H20,将所述空气参数与所述标准空气参数进行对比,得到空气参数偏差;
步骤H30,根据实时的所述空气参数偏差,确定待触发的情景模式运行时的运行参数调节信息,对所述目标运行参数进行动态地自适应调整,得到自适应调整后的目标运行参数;
步骤H40,将自适应调整后的目标运行参数发送至空气调节设备。
可以理解的是,待触发的情景模式运行时所需的空气参数是指当前时刻的空气参数,可包括当前环境温度、当前环境湿度、当前环境风速、当前环境清新度和当前环境洁净度中的至少一种。对应的,空气参数偏差可包括温度偏差值、湿度偏差值、风速偏差值、清新度偏差值和洁净度偏差值中的至少一种。
在本实施例中,基于该空气参数与标准空气参数,可将属于同一空气参数种类的空气参数与标准空气参数进行比较,得到空气参数偏差。例如,一种空调运行情景下,标准空气参数包括标准环境温度和当前环境风速。其中,标准环境温度为24℃至26℃,标准环境风速为15至25风档风速。同时通过温度传感器检测到当前环境温度为28℃,以及通过风速传感器检测到当前环境风速为22风档风速。此时,空气参数偏差包括温度偏差值和风速偏差值,并且温度偏差值等于3℃(28℃-25℃=3℃),风速偏差值等于0(标准环境风速属于标准环境风速的范围内)。
如一实施例中,若空气参数偏差中的温度偏差值等于3℃,以及风速偏差值等于-5风挡时,可得到将空调往上调3℃,以及风档往下调5风挡的运行参数调节信息,对目标运行参数进行动态地自适应调整。
容易理解的是,由于目标运行参数往往指的是空气调节设备出风口位置的运行控制参数。例如温度控制信息为25℃空调温度设置,往往是指空气调节设备出风口位置的温度调节为25℃。湿度控制信息为35%PH加湿设置,往往是指空气调节设备出风口位置的湿度调节为35%PH。风速控制信息为30风档设置,往往是指空气调节设备出风口位置的风速为30风档风速。而用户在室内感知的实际的目标空气参数信息并不一定等同于空气调节设备出风口位置的空气参数信息,因此需要对室内的当前空气参数进行感知,然后根据当前空气参数与情景模式对应的标准空气参数进行对比,根据实时对比的偏差信息,对空气调节设备的目标运行参数进行动态地自适应调整,从而对该情景模式对应的目标运行参数进行自适应控制,通过“感知加控制”的方式,直观地感知空气效果(温度、湿度和风速等当前空气参数),能够对空调的目标运行参数进行动态地优化调整,以使空调运行更贴切目标情景对应的运行环境,提高空气调节设备调节环境的适应性。
作为一种示例,所述从预设的情景模式映射表中,查询得到待触发的情景模式映射的空气参数,并将映射的所述空气参数,作为待触发的情景模式运行时所需的空气参数的步骤包括:
步骤I10,从预设的情景模式映射表中,查询得到待触发的情景模式映射的空气参数,并将映射的所述空气参数,作为待触发的情景模式运行时所需的空气参数。
容易理解的是,该情景模式映射表中包括多种情景模式,以及各情景模式映射的空气参数。
在一实施例中,当前触发的情景模式为节能模式,该节能模式映射的空气参数可为环境温度、环境湿度和环境风速。
在另一实施例中,当前触发的情景模式为舒适模式,该舒适模式映射的空气参数可为环境温度、环境洁净度和环境清度。
本实施例通过预存各情景模式与其对应空气参数的映射关系,从而准确地确定待触发的情景模式对应运行时所需的空气参数。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有情景点控装置的控制程序,所述情景点控装置的控制程序被处理器执行时实现如上情景点控装置的控制方法任一实施例的相关步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者***中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空气调节设备,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种情景点控装置的控制方法,其中,所述情景点控装置的控制方法包括以下步骤:
    接收情景模式触发指令,确定待触发的情景模式运行时所需的空气参数;
    从与所述情景点控装置通信的其他情景点控装置,获取所述空气参数;
    根据所述空气参数,控制空气调节设备运行。
  2. 如权利要求1所述的情景点控装置的控制方法,其中,所述从与所述情景点控装置通信的其他情景点控装置获取所述空气参数的步骤包括:
    从与所述情景点控装置通信的其他情景点控装置中,确定目标点控装置,所述目标点控装置为具有所述空气参数的情景点控装置;
    与所述目标点控装置进行通信,获取所述空气参数。
  3. 如权利要求2所述的情景点控装置的控制方法,其中,所述确定目标点控装置的步骤包括:
    广播发送所述空气参数的信息共享请求;
    接收与所述情景点控装置通信的其他情景点控装置响应所述信息共享请求而返回的唯一身份标识;
    根据所述唯一身份标识确定所述目标点控装置。
  4. 如权利要求2所述的情景点控装置的控制方法,其中,所述确定目标点控装置的步骤包括:
    从存储的装置数据映射表中,确定所述目标点控装置,其中,所述装置数据映射表中包括与所述情景点控装置通信的其他情景点控装置能检测的空气参数;或者,
    从情景装置共享记录中,确定所述目标点控装置,其中,所述情景装置共享记录中包括与所述情景点控装置通信的其他情景点控装置能共享的空气参数。
  5. 如权利要求3或4所述的情景点控装置的控制方法,其中,确定目标点控装置的步骤还包括:
    若所述目标点控装置的数量为多个,则将距离空气调节设备最近的目标点控装置确定为最终的所述目标点控装置;或者
    将距离所述情景点控装置最近的目标点控装置确定为最终的所述目标点控装置。
  6. 如权利要求2所述的情景点控装置的控制方法,其中,所述与所述目标点控装置进行通信,获取所述空气参数的步骤包括:
    对所述目标点控装置进行空间定位,得到所述目标点控装置的定位信息,并根据所述定位信息,确定所述目标点控装置是否处于空气调节设备对应的工作区域内;
    与处于所述工作区域内的所述目标点控装置通信,获取所述空气参数。
  7. 如权利要求1所述的情景点控装置的控制方法,其中,所述根据所述空气参数,控制空气调节设备运行的步骤包括:
    根据所述空气参数,确定待触发的情景模式运行时的目标运行参数,将确定的目标运行参数发送至空气调节设备;或者,
    发送情景模式控制指令至所述空气调节设备,并将获取到的空气参数发送至所述空气调节设备,以供所述空气调节设备根据所述空气参数运行情景模式。
  8. 如权利要求1所述的情景点控装置的控制方法,其中,所述确定待触发的情景模式运行时所需的空气参数的步骤包括:
    从预设的情景模式映射表中,查询得到待触发的情景模式映射的空气参数,并将映射的所述空气参数,作为待触发的情景模式运行时所需的空气参数。
  9. 一种情景点控装置,其中,所述情景点控装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的情景点控装置的控制程序,所述情景点控装置的控制程序被所述处理器执行时实现如权利要求1至8中任一项所述的情景点控装置的控制方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有情景点控装置的控制程序,所述情景点控装置的控制程序被处理器执行时实现如权利要求1至8中任一项所述的情景点控装置的控制方法的步骤。
PCT/CN2023/077283 2022-07-29 2023-02-21 情景点控装置及其控制方法、计算机可读存储介质 WO2024021586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210913451.9A CN117515801A (zh) 2022-07-29 2022-07-29 情景点控装置及其控制方法、计算机可读存储介质
CN202210913451.9 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024021586A1 true WO2024021586A1 (zh) 2024-02-01

Family

ID=89705152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077283 WO2024021586A1 (zh) 2022-07-29 2023-02-21 情景点控装置及其控制方法、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117515801A (zh)
WO (1) WO2024021586A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070883A (ja) * 2012-10-02 2014-04-21 Sharp Corp 空気調和機および空調システム
CN108444076A (zh) * 2018-03-08 2018-08-24 广东美的制冷设备有限公司 推送方法、空气调节设备、移动终端及存储介质
CN108731207A (zh) * 2018-04-19 2018-11-02 广东美的制冷设备有限公司 空气调节设备及其控制方法、控制设备
CN109539489A (zh) * 2018-10-26 2019-03-29 吴诗琴 一种基于物联网技术的智能空调及其控制方法
CN211903221U (zh) * 2019-11-04 2020-11-10 佛山市云米电器科技有限公司 一种联合空气净化的智能家电***
WO2020255875A1 (ja) * 2019-06-21 2020-12-24 パナソニックIpマネジメント株式会社 空気質制御システム、空気質制御方法、及び、プログラム
CN112984751A (zh) * 2019-12-02 2021-06-18 佛山市云米电器科技有限公司 空气调节装置的控制方法、***及装置
CN114061096A (zh) * 2021-12-02 2022-02-18 浙江弩牌电器有限公司 空气调节组件及其使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070883A (ja) * 2012-10-02 2014-04-21 Sharp Corp 空気調和機および空調システム
CN108444076A (zh) * 2018-03-08 2018-08-24 广东美的制冷设备有限公司 推送方法、空气调节设备、移动终端及存储介质
CN108731207A (zh) * 2018-04-19 2018-11-02 广东美的制冷设备有限公司 空气调节设备及其控制方法、控制设备
CN109539489A (zh) * 2018-10-26 2019-03-29 吴诗琴 一种基于物联网技术的智能空调及其控制方法
WO2020255875A1 (ja) * 2019-06-21 2020-12-24 パナソニックIpマネジメント株式会社 空気質制御システム、空気質制御方法、及び、プログラム
CN211903221U (zh) * 2019-11-04 2020-11-10 佛山市云米电器科技有限公司 一种联合空气净化的智能家电***
CN112984751A (zh) * 2019-12-02 2021-06-18 佛山市云米电器科技有限公司 空气调节装置的控制方法、***及装置
CN114061096A (zh) * 2021-12-02 2022-02-18 浙江弩牌电器有限公司 空气调节组件及其使用方法

Also Published As

Publication number Publication date
CN117515801A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN110308660B (zh) 智能设备控制方法及装置
WO2021196912A1 (zh) 环境场景的智能调控方法及环境调节***
WO2020077808A1 (zh) 设备控制方法和装置
CN107883539B (zh) 空调控制器、空调器及其控制方法以及存储介质
CN106499652A (zh) 风扇和风扇的控制方法
CN104618441A (zh) 被控设备的控制方法及装置、服务器、物联网控制终端
CN107036254A (zh) 加湿器控制方法及装置
CN108759002A (zh) 空调器的控制方法、空调器和计算机可读存储介质
WO2023035686A1 (zh) 用于控制空调的方法及装置、空调、存储介质
CN104618443A (zh) 被控设备的控制方法及装置、服务器、物联网控制终端
WO2023241073A1 (zh) 用于调节室内空气的方法、装置、介质和空气处理***
WO2024021586A1 (zh) 情景点控装置及其控制方法、计算机可读存储介质
CN110822669A (zh) 空气调节设备的控制方法、装置、控制器和存储介质
CN109945458A (zh) 控制方法、控制设备、空调器***及存储介质
CN108613349B (zh) 风道结构、空调器的控制方法、空调器及存储介质
CN114391082B (zh) 家电设备***、控制方法、及存储介质
CN110486907B (zh) 一拖多空调***及其控制方法、控制装置和可读存储介质
WO2023159963A1 (zh) 用于控制空调的方法及装置、空调、存储介质
JP2019039570A (ja) 空気清浄システム
WO2023184964A1 (zh) 空调器的控制方法与空调器
CN110986327A (zh) 空调器的睡眠模式控制方法与空调器
CN111108489A (zh) 服务器、信息处理方法、网络***以及空气净化器
WO2024016757A1 (zh) 用于空调的控制方法与装置、智能空调
WO2024016756A1 (zh) 用于空调的控制方法与装置、智能空调
WO2024016999A1 (zh) 用于空调的控制方法与装置、智能空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844805

Country of ref document: EP

Kind code of ref document: A1