WO2024020814A1 - Method, device and computer readable medium for communications - Google Patents

Method, device and computer readable medium for communications Download PDF

Info

Publication number
WO2024020814A1
WO2024020814A1 PCT/CN2022/108051 CN2022108051W WO2024020814A1 WO 2024020814 A1 WO2024020814 A1 WO 2024020814A1 CN 2022108051 W CN2022108051 W CN 2022108051W WO 2024020814 A1 WO2024020814 A1 WO 2024020814A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
data channel
dci
bwp
terminal device
Prior art date
Application number
PCT/CN2022/108051
Other languages
French (fr)
Inventor
Fang Xu
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2022/108051 priority Critical patent/WO2024020814A1/en
Publication of WO2024020814A1 publication Critical patent/WO2024020814A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems

Definitions

  • Embodiments of the present disclosure generally relate to the field of communication, and in particular, to a method, device and computer readable medium for reduced capability device.
  • Typical wireless communication systems comprise Internet of Things (IoT) communication system which may be used for industrial production, self-driving car, wearable device and so on.
  • IoT Internet of Things
  • electronic devices such as sensors, Transmit-Receive point (TRP) , processing device having communication capability and so on, are deployed in the communication networks.
  • RedCap-UE Reduced Capability-User Equipment
  • the complexity of the RedCap-UE is reduced relative to normal UE for saving costs.
  • RedCap-UE bandwidth reduction to a narrower bandwidth is studied.
  • Radio Frequency (RF) capability and control signals for the RedCap-UE is considered to keep unchanged.
  • RF Radio Frequency
  • the way of scheduling data resources for the RedCap-UE should be studied due to the bandwidth mismatch between control channel and data channel.
  • the coordination between normal UE and RedCap-UE is also a key aspect.
  • example embodiments of the present disclosure relate to methods, devices and computer readable media for reduced capability device.
  • the terminal device receives information indicating a location of a data channel in the BWP by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device.
  • BWP BandWidth Part
  • the terminal device determines, based on the information, a location of the data channel in the BWP and a second bandwidth of the data channel, the second bandwidth being narrower than the first bandwidth. Then, the terminal device performs data communication with the network device in the data channel having the second bandwidth.
  • BWP BandWidth Part
  • the network device transmits, at a network device and within a first bandwidth of a control channel in a BandWidth Part (BWP) configured for the terminal device, information indicating a location of a data channel in the BWP to a terminal device. Then, the network device performs data with the terminal device in a data channel having a second bandwidth. The location of the data channel and the second bandwidth are determined by the terminal device based on the information. The second bandwidth is narrower than the first bandwidth.
  • BWP BandWidth Part
  • a terminal device comprising a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method of the first aspect.
  • a network device comprising a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method of the second aspect.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method of any one of the first aspect to the second aspect.
  • FIG. 1A illustrates an example environment in which some embodiments of the present disclosure can be implemented
  • FIG. 1B illustrates an example RF bandwidth and example data bandwidth for a reduced capability terminal device according to some embodiments of the present disclosure
  • FIG. 2 illustrates a signaling process for indicating data channel in a BandWidth Part configured to a reduced capability terminal device according to some embodiments of the present disclosure
  • FIGs. 3A-3C illustrate example data channels according to some embodiments of the present disclosure
  • FIG. 4 illustrates an example data channel according to some embodiments of the present disclosure
  • FIGs. 5A-5C illustrate example data channels according to some embodiments of the present disclosure
  • FIG. 6 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure
  • FIG. 7 illustrates a flowchart of an example method implemented at a network device in accordance with some embodiments of the present disclosure.
  • FIG. 8 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eX
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal, a wireless device or a reduced capability terminal device.
  • the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25 GHz to 71 GHz) , 71 GHz to 114 GHz, and frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • the network device may have the function of network energy saving, Self-Organizing Networks (SON) /Minimization of Drive Tests (MDT) .
  • the terminal may have the function of power saving.
  • test equipment e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
  • the embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • BB Base Band
  • a data channel for example, Physical Uplink Shared Channel, PUSCH, and Physical Downlink Shared Channel, PDSCH
  • a control channel for example, Physical Uplink Control Data Channel, PUCCH, and Physical Downlink Control Data Channel, PDCCH
  • the bandwidth of the data channel may be a part of bandwidth of the control channel or a bandwidth part (BWP)
  • BWP bandwidth part
  • the way of scheduling data channel resources for the RedCap-UE should be further considered and the coordination between normal UE and RedCap-UE is also a key aspect.
  • there is no mechanism of locating a narrower band data channel in the configured BWP due to the bandwidth of data channel or control channel should be equal to the configured BWP directly in general (for example, the data channel for a normal UE) .
  • the example embodiments of the disclosure propose a mechanism for reduced capability terminal device.
  • a terminal device receives, information indicating a location of a data channel in the BWP by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device. Based on the information, the terminal device determines a location of the data channel in the BWP and a second bandwidth of the data channel. The second bandwidth is narrower than the first bandwidth of the control channel. Then, the terminal device performs data communication with the network device in the determined data channel having the second bandwidth.
  • BWP BandWidth Part
  • the data channel of which bandwidth is narrower than that of control channel is indicated to the reduced capability terminal device.
  • the frequency domain assignment for the narrower channel may be also optimized in order to reduce the overhead of control signaling.
  • FIG. 1 illustrates an example environment 100 in which example embodiments of the present disclosure can be implemented.
  • the environment 100 which may be a part of a communication network, comprises a network device 110, a terminal device 120, a terminal device 130 (as an example, the terminal device 130 may be integrated into an industrial robot) and a terminal device 140 (as an example, the terminal device 140 may be integrated into a vehicle terminal) . Any two of devices as shown in environment 100 may communicate with each other.
  • the terminal devices 120, 130 and 140 may perform data communication via the network device 110.
  • a control signaling for example, a Downlink Control Information, DCI
  • the network device 110 may individually schedule communication resources for the terminal device 120.
  • the network device 110 may schedule communication resources for a plurality of terminal devices as shown by a common control signaling (for example, a common DCI for the terminal devices 120, 130 and 140) .
  • the environment 100 may comprise a further terminal device to communicate information with a further network device.
  • the communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual Connection (DC) , and
  • FIG. 1B illustrates an example RF bandwidth and example data bandwidth 100B for a reduced capability terminal device according to some embodiments of the present disclosure.
  • Bandwidth 150 represents a bandwidth of an example carrier which may be 40MHz.
  • Bandwidth 160 represents a bandwidth (which is also referred to as the first bandwidth in this disclosure) of a BandWidth Part (BWP) for a reduced capability terminal device and the terminal device may receive control information within the bandwidth 160.
  • Bandwidth 170 represents a bandwidth (which is also referred to as the second bandwidth in this disclosure) of a data channel for the reduced capability terminal device.
  • the reduced capability terminal device should receive PDSCH or transmit PUSCH within the data channel having the bandwidth 170 narrower than the bandwidth 160.
  • the bandwidth of the BWP may be the maximum RF bandwidth of reduced capability terminal device.
  • the bandwidth of the control channel may be smaller than the BWP configured for the terminal device.
  • FIG. 2 illustrates a signaling process 200 for indicating data channel in a BWP configured to a reduced capability terminal device according to some embodiments of the present disclosure. For purpose of discussion, the process 200 will be described with reference to FIG. 1.
  • the terminal device may receive a BWP configuration in a higher layer (for example, by a Radio Resource Control RRC Signaling) from the network device 110.
  • the higher layer is a layer higher than the Physical layer in the communication system.
  • the received BWP configuration for the terminal device may indicate information on the data channel in the BWP in advance. For discussion clarity, the information on the data channel which is indicated in the BWP configuration or higher layer is discussed with respect to certain embodiments as below, respectively.
  • the terminal device receives information indicating a location of a data channel in the BWP by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for this terminal device.
  • the first bandwidth may be a bandwidth in which the terminal device searches the control information from the network device 110.
  • the first bandwidth may be the example bandwidth 160 as shown in FIG. 1B.
  • the first bandwidth may be the maximum RF bandwidth of the reduced capability terminal device (for example, the terminal device 120, 130 and/or 140) .
  • the first bandwidth has a number of Resource Blocks (RB) corresponding to 20MHz.
  • the first bandwidth may be any other bandwidth which the RF circuity of the terminal device can support.
  • the information indicating the location of data channel may be carried by control information specific to the terminal device.
  • the control information may be carried in a first DCI specific to the terminal device (for example, the terminal device 120) .
  • the information indicating the location of data channel may be carried by common control information for a group of terminal devices.
  • the control information may be carried in a second DCI which is a common DCI for a group of terminal devices (for example, the terminal devices 110, 120 and 130) .
  • the group of terminal devices may comprise normal terminal devices and reduced capability terminal devices.
  • the control information specific to the terminal device 120 is discussed with reference to FIGs. 2-4 at first.
  • the network device 110 may configure at least an initial DL BWP and one (if the serving cell is configured with an uplink) or two (if using supplementary uplink SUL) initial UL BWP. Furthermore, the network device 110 may configure additional UL and DL BWPs for a serving cell. Moreover, the Information Element (IE) BWP-Downlink is used to configure an additional DL BWP (not for the initial BWP) , and the IE BWP-Uplink is used to configure an additional UL BWP (not for the initial BWP) .
  • IE Information Element
  • a reduced capability terminal device may only support a maximum bandwidth of 5MHz for data channel, but the active bandwidth part (UL or DL) may be wider than 5 MHz and up to 20MHz.
  • the Frequency Domain Resource Assignment (FDRA) in the DCI format 0_0, 1_0, 0_1, 0_2, 1_1 and 1_2 is based on the size of the active bandwidth part rather than the narrow band.
  • a big Resource Block Group (RBG) granularity for a narrow band for data channel will reduce the flexibility for the scheduling, and for downlink resource allocation type 1, the bits number reserved for FDRA in DCI format is wasted since actual bandwidth of data channel is at most 5MHz.
  • the embodiments according to this disclosure may solve these issues appropriately.
  • the terminal device 120 may receive from the network device 110 a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP comprising active DL BWP and active UL BWP.
  • the first DCI is specific to the terminal device 120.
  • the first bit field may indicate a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the active BWP for the terminal device 120.
  • the frequency resource is one of a set of frequency resources configured in the higher layer or BWP configuration as discussed above. With respect to the active BWP, the active BWP is the configured BWP for data transmission.
  • a terminal device for example, UE
  • the active BWP the UE can be provided by firstActiveDownlinkBWP-Id a first active DL BWP for receptions and by firstActiveUplinkBWP-Id a first active UL BWP for transmissions on a carrier of the primary cell.
  • FIG. 3A illustrates example data channels according to some embodiments of the present disclosure.
  • a set of frequency resources may be configured in the BWP.
  • One of the set of the frequency resources may be used for data channel.
  • the set of frequency resources are configured by higher layer.
  • the terminal device 120 may receive the indication that is indicative of the set of frequency resources in a RRC signaling.
  • this indication may indicate an offset between the start RB of a frequency resource and a first boundary associated with the BWP.
  • the first boundary may be the start RB of the configured BWP.
  • the first boundary may be the start RB of a carrier.
  • the first boundary may be any other RB which is used as a reference point.
  • the block 310 represents BWP configuration for the terminal device 120
  • the length 310-1 represents the bandwidth of the active BWP which may be also used for control channel.
  • block 320 represents one of the number of frequency resources.
  • the frequency resources may be used for the data channel.
  • the length 320-1 represents the bandwidth of a frequency resource.
  • the frequency resources may have a number of RBs corresponding to 5MHz. In this way, the first bit field in the first DCI may indicate one of the frequency resources as the data channel to be used.
  • the offsets between the start PRBs of the set of frequency resources and the first boundary may be ⁇ 0, 25, 50, 75 ⁇ . It means there are 4 available frequency resources for the data channel in the BWP, and network device 110 may choose one start PRB and inform the chosen start PRB to the terminal device 120 by a first bit field in the first DCI.
  • the higher layer indicates two offset values (i.e., two start RBs) , 1 bit for the first bit field is enough, and if the higher layer parameter contains three or four offset values, 2 bits for the first bit field are needed. If there is only one offset configured from the higher layer, 0 bit is used for this new field.
  • the terminal device 110 may be aware of the frequency resource started with frequency location 330 is chosen as the start RB for the data channel. The terminal device 110 may then determine a bandwidth corresponding to 5MHz for the data channel and the bandwidth is start from the frequency location 330. In some further embodiments, there may be a default frequency resource for the data channel 170.
  • the terminal device 120 may select, determine or active the default frequency resource for the data channel.
  • the default frequency resource may be the first one in the set of frequency sets. For example, the offset between the first RB of the default frequency resource and the first boundary is zero. In other embodiments, the default frequency resource may be other frequency resources.
  • the narrow band data channel may be also indicated with a frequency unit and an integer multiple of the frequency units.
  • the frequency unit may be also referred to as a first RB granularity in this disclosure.
  • the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the active BWP, the first RB granularity is configured in a higher layer.
  • the first bit indicating the integer multiple associated with a first RB granularity is discussed with respect to FIG. 3B.
  • FIG. 3B illustrates example data channels according to some embodiments of the present disclosure.
  • the indicated granularity in the BWP configuration may be 16 RBs (as shown by the length 370 in FIG. 3B) .
  • the first bit field in the first DCI is 4, it means that the offset between the start RB of the data channel and the first boundary is 64 RBs.
  • the first boundary may be the start RB of the configured BWP.
  • the first boundary may be the start RB of a carrier. In some other embodiments, the first boundary may be any other RB which is used as a reference point.
  • the value in the first bit field is used to multiply the step size of the first RB granularity. Furthermore, if there is some special value configured from the higher layer, 0 bit for this new field.
  • the terminal device 120 may select, determine or active the default start RB of the data channel.
  • the default start RB may be any value.
  • the special value configured from the higher layer is zero, and the default start RB of the data channel is the start RB of the active BWP.
  • the default frequency resource may be other values.
  • the granularity of the data channel is also adjusted, in order to scheduling the resource flexibly.
  • the active BWP may be equally divided into a certain number of parts, and the first bit field may indicate a start RB of one of the certain number of parts.
  • this first bit field which is based on equally divided BWP is discussed with reference to FIG. 3C.
  • FIG. 3C illustrates example data channels according to some embodiments of the present disclosure.
  • the width of each part may be calculated as: or where represents the number of RBs in the BWP and N is the number of parts. For example, if the SCS is 15KHz and the bandwidth of the active BWP is 20MHz, the indicated parts in the BWP configuration is 2. Then, the terminal device 120 may be aware of the BWP is equally divided into two parts and the frequency width (as shown by length 380 in FIG. 3C) is equal to each other.
  • the indication first bit field (comprising one bit) in the scheduling first DCI is 1, it may mean that the start RB of the data channel is the low boundary of second part of the BWP.
  • the terminal device 120 may select, determine or active the default start RB of the data channel.
  • the default start RB may be any value.
  • the special value configured from the higher layer is 1, that means only one part is indicated, it will be unnecessary to indicate in the first DCI, and the default start RB of the data channel is the start RB of the active BWP.
  • the default frequency resource may be other values.
  • the higher layer parameter configures two part in the BWP, 1 bit is enough, and if the higher layer parameter configure three or four parts, 2 bits are needed. If there is some special (default) value configured from the higher layer, 0 bit may be enough for this first bit field. In some embodiments, the embodiments discussed with reference to FIGs. 3A to 3C may be used in combination.
  • the first bit field may be a separate bit field in the first DCI.
  • the first bit field may be a part of the FDRA field in the first DCI, for example, in Most Significant Bits (MSB) .
  • MSB Most Significant Bits
  • a new field is used to indicate the frequency resource for data channel: at most 2 bits are used to indicate which start PRB will be used for the data channel.
  • DCI format 0_0, 1_0 may be no additional bits is added in the DCI format, so it’s a fixed sub-band for data channel, there are 2 solutions: for the set of frequency resources, the first start PRB in the set is adopted; and for the other two approaches, the low boundary of the BWP is the start PRB for the data channel.
  • R18 RedCap there is a special indication for the fixed start PRB in the BWP configuration if scheduling with DCI format 0_0, 1_0.
  • the FDRA field in the first DCI may be also adjusted based on the narrow band data channel.
  • the active BWP is wider than 5MHz, a number of bits of the FDRA field is determined based on the second bandwidth corresponding to 5MHz that is a part of the active BWP, regardless of resource allocation type (for example, UL or DL resource allocation type 0 or 1) .
  • the number of bits of the FDRA field is determined based on the active BWP.
  • the determination of the number of bits of the FDRA field may be also expressed as below.
  • the payload of the FDRA field is reduced accordingly.
  • the overhead of the first DCI is reduced.
  • the data channel is configured with a hopping pattern for hopping in the active BWP.
  • the FDRA field determined based on the second bandwidth may be added with a number of additional bits for indicating the hopping offset.
  • the number of bits of FDRA should be updated to: where represents the number of RBs for PUSCH (corresponding to 5MHz) and NUL hop represents the number of additional bits.
  • the RB_start can be updated to:
  • the Physical Resource Block (PRB) bundling and Virtual RB (VRB) -PRB interleave mapping are also adjusted.
  • the PRB bundling is determined in the configured BWP.
  • the PRB bundling is updated and determined in the narrow band which is indicated by DCI.
  • a Physical Resource Block (PRB) bundling is performed within the data channel having the second bandwidth. Alternatively, this may be also expressed as below.
  • the VRB-PRB interleave mapping is determined in the configured BWP.
  • the VRB-PRB interleave mapping is updated and determined in the narrow band which is indicated by DCI.
  • a Virtual RB (VRB) -PRB interleave mapping is performed within the data channel having the second bandwidth. Alternatively, this may be also expressed as below.
  • the terminal device 120 determines the location of the data channel and the second bandwidth of the data channel based on the information indicating the location of data channel as discussed above. In some embodiments, the terminal device 120 determines the start RB of the data channel based on the first bit field as indicated above. Then, the terminal device may determine the data channel based on the start point and the second bandwidth. In an example, the second bandwidth has a number of RBs corresponding to 5Mhz. In some further embodiments, the second bandwidth has a number of RBs corresponding to any other frequency range which may be used for RedCap-UE data channel. At 207, the terminal device 120 performs data communication with the network device 110 in the data channel having the second bandwidth.
  • the terminal device 110 may extend the bandwidth of the second bandwidth to another direction relative to the upper boundary. For discussion clarity, this may be discussed with reference to FIG. 4. Furthermore, regarding the default data channel as discussed above,
  • FIG. 4 illustrates an example data channel according to some embodiments of the present disclosure.
  • the frequency location 410 is the indicated start RB of the data channel.
  • the bandwidth between the frequency location 410 and a second boundary 420 of the active BWP is narrower than the second bandwidth.
  • the terminal device 120 may determine another RB as the start RB.
  • the bandwidth between the other RB and the second boundary is equal to or wider than the second bandwidth.
  • the frequency location 430 is determined as the other RB acting as new start RB.
  • the data channel may be also indicated by a second DCI which is a common DCI for a group of terminal devices.
  • the second DCI indicating the data channel is discussed with reference to FIGs. 2 and 5A-5C.
  • the terminal device receives, a control channel within a first bandwidth of a BWP configured for the terminal device, information indicating a location of a data channel in the BWP from the network device 110.
  • the terminal device receives the information by receiving second DCI having a first DCI format for an UL grant or a second DCI format for a DL grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
  • the group of terminal devices comprise normal terminal devices and reduced capability terminal device (for example, the terminal device 120) .
  • initial UL or DL BWP may be wider than 5 MHz and up to 20MHz and the second DCI is a common DCI for the group of terminal devices
  • the FDRA in the second DCI in Common Search Space (CSS) is based on the size of the CORESET #0, initial UL or DL BWP.
  • the determination of data channel in the initial BWP based on a common DCI may be further considered.
  • implicitly indicating the frequency and timing resource by the common DCI for the narrow band data channel is designed. In this way, the reduced capability terminal device may reuse legacy common messages with some enhancement.
  • the second DCI indicating the location of data channel is discussed under UL scheduling and DL scheduling, respectively.
  • the second DCI has the first DCI format for UL grant (for example, DCI Format 0_0 in CSS) .
  • the following Table 1 shows example search space and BWP.
  • the FDRA field may indicate a frequency resource in the initial UL BWP, and it may be wider than 5MHz and not a repetition message, how to reuse legacy common messages need to be considered.
  • the terminal device 120 may divide the bandwidth into a plurality of sub-bandwidth. Then, at 207, the terminal device 120 may perform UL data transmission to the network device 110 in the plurality of sub-bandwidths.
  • a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined. For discussion clarity, this embodiments is further discussed with reference to FIG. 5A.
  • FIG. 5A illustrates example data channels according to some embodiments of the present disclosure.
  • block 510 may be the initial UL BWP and without any limitation, the bandwidth of the initial UL BWP may be equal to the bandwidth of configured BWP in FIG. 3A.
  • the bandwidth of the initial UL BWP may be also any other value. If the terminal device 120 receives the second DCI scheduling data transmission in the initial UL BWP which is wider than the second bandwidth, the terminal device 120 may divide the initial UL BWP into a plurality of sub-bandwidths (as shown by blocks 520 and 530 in FIG. 5A) . Furthermore, the time interval 540 between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
  • the timing interval is predefined or configured in the initial UL BWP, system information or a Random Access Response (RAR) .
  • the time interval may be indicated based on at least one of slot offset, or slot offset plus A Start Length Indication Value (SLIV) .
  • each sub-bandwidth of PUSCH in frequency domain may have a guard band or overlap RBs to help better combine reception.
  • the adjacent sub-bandwidths of the plurality of sub-bandwidths partially overlap with each other in frequency domain.
  • the terminal device 120 may scale the BWP into a narrow band data channel, such that the data channel fit within 5Mhz.
  • a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field is configured by the network device or predefined. For discussion clarity, this embodiment is discussed with reference to FIG. 5B.
  • FIG. 5B illustrates example data channels according to some embodiments of the present disclosure.
  • the terminal device 120 may scale the bandwidth into the bandwidth 320-1 which is suit for the second bandwidth. Then, at 207, the terminal device 120 may perform UL data communication with the network device 110 in the data channel 550 having the bandwidth 320-1.
  • the scaled or divided initial bandwidth and selected parts of the initial bandwidth may be used by the reduced capability terminal device to perform data communication.
  • the initial bandwidth indicated by FDRA field and/or TDRA field may be also used by other terminal devices for any other purposes.
  • the resource indication value is defined by:
  • the start PRB of 5MHz may not be the same as the start PRB of initial BWP, it can be configured in the initial BWP.
  • the default value is the start PRB of initial BWP.
  • there may be a time interval relative to the indicated TDRA value in the second DCI it may be predefined or configured in the initial UL BWP or system information or RAR. The default value is zero.
  • the time interval may contain: slot offset or slot offset plus SLIV.
  • the terminal device 110 may receive an indication that is indicative of an allocated frequency resource (for example, 5Mhz) for RedCap-UE UL transmission.
  • an allocated frequency resource for example, 5Mhz
  • the terminal device 120 may perform UL transmission in a default or preconfigured bandwidth which is a part of the bandwidth of the initial UL BWP.
  • a third time interval between the default or preconfigured bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined. For discussion clarity, this embodiment is discussed with reference to FIG. 5C.
  • FIG. 5C illustrates example data channels according to some embodiments of the present disclosure.
  • the network device 110 may configure a dedicated frequency resource 560 for RedCap-UE UL transmission and inform the dedicated frequency resource 560 to the terminal device 120.
  • the allocated 5MHz frequency resource for RedCap is indicated in initial UL BWP or system information or RAR, for example, indicate the start PRB relative to the start PRB of initial UL BWP, and the default value is the start PRB of initial UL BWP.
  • the timing interval may be set in the same way as discussed with in the above embodiments.
  • the UL data channel for reduced capability terminal device may be implicitly determined based on a common DCI.
  • the second DCI has the second DCI format for DL grant (for example, DCI Format 1_0 in CSS) .
  • the following Table 2 shows example search space and BWP.
  • the terminal device shall assume that when the scheduling grant is received with DCI format 1_0, 4_0 or 4_1 then DL resource allocation type 1 is used.
  • the network device 110 may transmit an indication that is indicative of a frequency resource for RedCap-UE DL reception to the terminal device 120.
  • the bandwidth of the frequency resource is equal to or narrower than the second bandwidth.
  • the terminal device 120 may determine the location of the data channel based on the indication.
  • the network device 110 may indicate the allocated 5MHz frequency resource for RedCap in system information or initial DL BWP, for example, indicate the start PRB relative to the start PRB of CORESET #0 or initial DL BWP, and default value is the start PRB of CORESET #0 or initial DL BWP.
  • a time interval (which may be also referred to as the fourth time interval) between the DL data channel for the RedCap UE and the data channel indicated by the common DCI (relative to the indicated TDRA value in the second DCI) is predefined or configured in system information or initial DL BWP or indicated in the reserved bits of the DCI, it may be different for each kind of RNTI.
  • the default value is zero.
  • the time interval may contain: slot offset or slot offset plus SLIV.
  • the network device 110 may further transmit parameter information for a RedCap-UE communication.
  • the parameter information indicates at least one of Modulation and Coding Scheme (MCS) parameter, Transport Block (TB) scaling parameter.
  • MCS Modulation and Coding Scheme
  • TB Transport Block
  • some parameters indicated in the DCI 1_0 for the normal UEs, e.g. Modulation and coding scheme (MCS) , TB scaling etc. may be specified for R18 RedCap UEs in the SIB1 or system information.
  • the terminal device 110 may also scale the initial DL BWP or the CORESET #0 to a bandwidth for DL data channel which is fit in the second bandwidth.
  • the resource indication value is defined by:
  • the start PRB of 5MHz may not be the same as the start PRB of CORESET #0 or initial DL BWP, it can be configured in the initial DL BWP or system information.
  • the default value is the start PRB of CORESET #0 or initial DL BWP.
  • the fourth time interval between the DL data channel for the RedCap UE and the data channel indicated by the common DCI may be determined in the same way as discussed above.
  • the network device 110 may also transmit parameter information for a RedCap-UE communication in the same way as discussed above.
  • the DL data channel for reduced capability terminal device may be implicitly determined based on a common DCI.
  • FIG. 6 illustrates a flowchart of a method 600 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • the method 600 can be implemented at the terminal device 120, 130 or 140 shown in FIG. 1.
  • the method 600 will be described with reference to FIG. 1. It is to be understood that the method 600 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 120 receives information indicating a location of a data channel in the BWP from a network device by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device.
  • BWP BandWidth Part
  • the terminal device 120 determines, based on the information, a location of the data channel in the BWP and a second bandwidth of the data channel.
  • the second bandwidth is narrower than the first bandwidth.
  • the terminal device 120 performs data communication with the network device in the data channel having the second bandwidth.
  • the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
  • RedCap-UE Reduced Capability-User Equipment
  • RF Radio Frequency
  • receiving the information indicating the location of the data channel by at least one of: receiving, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or receiving second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
  • DCI Downlink Control Information
  • RB start Resource Block
  • the first bit field indicates a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the active BWP, the frequency resource being one of a set of frequency resources configured in a higher layer.
  • the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the active BWP, the first RB granularity is configured in a higher layer.
  • the method further comprising: receiving, from a higher layer, an indication that is indicative of the active BWP has been equally divided into a first number of frequency parts, and wherein the first bit field indicates the start RB by indicating one of the first number of frequency parts.
  • the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field, a first number of bits of the first FDRA field being determined based on the second bandwidth that is a part of the active BWP, regardless of resource allocation type.
  • FDRA Frequency Domain Resource Assignment
  • the first DCI comprises a second FDRA field, wherein the active BWP configured for the terminal device is equal or narrower than the second bandwidth, and wherein a second number of bits of the second FDRA field is determined based on the active BWP.
  • At least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
  • the first bit field is a part of a FDRA field comprised in the first DCI.
  • a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
  • the method further comprising: in response to determining that a third bandwidth between the start RB and a second boundary of the active BWP is narrower than the second bandwidth, determining another RB as the start RB, the bandwidth between the other RB and the second boundary being equal to or wider than the second bandwidth.
  • the method further comprising: performing a Physical Resource Block (PRB) bundling within the data channel having the second bandwidth.
  • PRB Physical Resource Block
  • the method further comprising: performing a Virtual RB (VRB) -PRB interleave mapping within the data channel having the second bandwidth.
  • VRB Virtual RB
  • the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, dividing the bandwidth into a plurality of sub-bandwidth; and performing UL data transmission to the network device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth; and performing UL data transmission to the network device in the scaled bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, performing UL data transmission to the network device in a default or preconfigured bandwidth which is a part of the bandwidth of the initial UL BWP, a third time interval between the default or preconfigured bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  • the second DCI has the second DCI format and wherein determining the location of the data channel comprises: receiving, from the network device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth; in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a Control Resource Set (CORESET) by a FDRA field of the second DCI is wider than the second bandwidth, determining the location of the data channel based on the indication.
  • CORESET Control Resource Set
  • the second DCI has the second DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a CORESET by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth.
  • a fourth time interval between the bandwidth of the determined data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of: predefined, configured by the network device, or indicated by reserved bits in the second DCI.
  • TDRA Time Domain Resource Assignment
  • the method further comprising: receiving parameter information for a RedCap-UE communication, the parameter information indicating at least one of Modulation and Coding Scheme (MCS) parameter, Transport Block (TB) scaling parameter.
  • MCS Modulation and Coding Scheme
  • TB Transport Block
  • the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
  • the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.
  • RB Resource Blocks
  • FIG. 7 illustrates a flowchart of a method 700 of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • the method 700 can be implemented at the network device 110 shown in FIG. 1.
  • the method 700 will be described with reference to FIG. 1. It is to be understood that the method 700 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
  • the network device 110 transmits information indicating a location of a data channel in the BWP by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device.
  • BWP BandWidth Part
  • the network device 110 performs data with the terminal device in a data channel having a second bandwidth.
  • the location of the data channel and the second bandwidth are determined by the terminal device based on the information
  • the second bandwidth is narrower than the first bandwidth.
  • the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
  • RedCap-UE Reduced Capability-User Equipment
  • RF Radio Frequency
  • transmitting the information indicating the location of the data channel by at least one of: transmitting, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or transmitting second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
  • DCI Downlink Control Information
  • RB start Resource Block
  • the first bit field indicates a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the BWP, the frequency resource being one of a set of frequency resources configured in a higher layer
  • the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the BWP, the first RB granularity is configured in a higher layer.
  • the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field, a first number of bits of the first FDRA field being determined based on the second bandwidth that is a part of the active BWP, regardless of resource allocation type.
  • FDRA Frequency Domain Resource Assignment
  • the first DCI comprises a second FDRA field, wherein the active BWP configured for the terminal device is narrower than the second bandwidth, and wherein a second number of bits of the second FDRA field being determined based on the active DL BWP.
  • At least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
  • the first bit field is a part of a FDRA field comprised in the first DCI.
  • a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
  • PRB Physical Resource Block
  • VRB Virtual RB
  • the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the network device in a scaled bandwidth that is equal to or narrower than the second bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in a default bandwidth which is a part of the bandwidth indicated by the FDRA field, a third time interval between the default bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein performing the data communication comprises: transmitting, to the terminal device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth.
  • the second DCI has the second DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in a scaled bandwidth that is equal to or narrower than the second bandwidth.
  • a fourth time interval between the bandwidth of the determined data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of: predefined, configured by the network device, or indicated by reserved bits in the second DCI.
  • TDRA Time Domain Resource Assignment
  • MCS Modulation and Coding Scheme
  • TB Transport Block
  • the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
  • the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.
  • RB Resource Blocks
  • Fig. 8 is a simplified block diagram of a device 800 that is suitable for implementing some embodiments of the present disclosure.
  • the device 800 can be considered as a further example embodiment of the terminal device 120, 130 or 140 as shown in FIG. 1, or network devices 110 as shown in FIG. 1. Accordingly, the device 800 can be implemented at or as at least a part of the above network devices or terminal devices.
  • the device 800 includes a processor 810, a memory 820 coupled to the processor 810, a suitable transmitter (TX) and receiver (RX) 840 coupled to the processor 810, and a communication interface coupled to the TX/RX 840.
  • the memory 820 stores at least a part of a program 830.
  • the TX/RX 840 is for bidirectional communications.
  • the TX/RX 840 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the gNB or eNB and a relay node (RN)
  • Uu interface for communication between the gNB or eNB and a terminal device.
  • the program 830 is assumed to include program instructions that, when executed by the associated processor 810, enable the device 800 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1-7.
  • the embodiments herein may be implemented by computer software executable by the processor 810 of the device 800, or by hardware, or by a combination of software and hardware.
  • the processor 810 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 810 and memory 820 may form processing means 850 adapted to implement various embodiments of the present disclosure.
  • the memory 820 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 820 is shown in the device 800, there may be several physically distinct memory modules in the device 800.
  • the processor 810 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a terminal device comprises circuitry configured to perform method 600.
  • a network device comprises circuitry configured to perform method 700.
  • the components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof.
  • one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium.
  • parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components.
  • FPGAs Field-programmable Gate Arrays
  • ASICs Application-specific Integrated Circuits
  • ASSPs Application-specific Standard Products
  • SOCs System-on-a-chip systems
  • CPLDs Complex Programmable Logic Devices
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, technique terminal devices or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 3 to 14.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.
  • embodiments of the present disclosure may provide the following solutions.
  • a method of communication comprising: receiving, at a terminal device by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device, information indicating a location of a data channel in the BWP from a network device; determining, based on the information, a location of the data channel in the BWP and a second bandwidth of the data channel, the second bandwidth being narrower than the first bandwidth, and performing data communication with the network device in the data channel having the second bandwidth.
  • BWP BandWidth Part
  • the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
  • RedCap-UE Reduced Capability-User Equipment
  • RF Radio Frequency
  • receiving the information indicating the location of the data channel by at least one of: receiving, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or receiving second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
  • DCI Downlink Control Information
  • RB start Resource Block
  • the first bit field indicates a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the active BWP, the frequency resource being one of a set of frequency resources configured in a higher layer.
  • the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the active BWP, the first RB granularity is configured in a higher layer.
  • the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field
  • FDRA Frequency Domain Resource Assignment
  • the first DCI comprises a second FDRA field
  • the active BWP configured for the terminal device is equal or narrower than the second bandwidth
  • a second number of bits of the second FDRA field is determined based on the active BWP
  • At least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
  • the first bit field is a part of a FDRA field comprised in the first DCI.
  • a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
  • PRB Physical Resource Block
  • VRB Virtual RB
  • the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, dividing the bandwidth into a plurality of sub-bandwidth; and performing UL data transmission to the network device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth; and performing UL data transmission to the network device in the scaled bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, performing UL data transmission to the network device in a default or preconfigured bandwidth which is a part of the bandwidth of the initial UL BWP, a third time interval between the default or preconfigured bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  • the second DCI has the second DCI format and wherein determining the location of the data channel comprises: receiving, from the network device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth; in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a Control Resource Set (CORESET) by a FDRA field of the second DCI is wider than the second bandwidth, determining the location of the data channel based on the indication.
  • CORESET Control Resource Set
  • the second DCI has the second DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a CORESET by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth.
  • a fourth time interval between the bandwidth of the determined data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of: predefined, configured by the network device, or indicated by reserved bits in the second DCI.
  • TDRA Time Domain Resource Assignment
  • MCS Modulation and Coding Scheme
  • TB Transport Block
  • the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
  • the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.
  • RB Resource Blocks
  • a method of communication comprising: transmitting, at a network device by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device, information indicating a location of a data channel in the BWP to a terminal device; and performing data with the terminal device in a data channel having a second bandwidth, the location of the data channel and the second bandwidth being determined by the terminal device based on the information, the second bandwidth being narrower than the first bandwidth.
  • BWP BandWidth Part
  • the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
  • RedCap-UE Reduced Capability-User Equipment
  • RF Radio Frequency
  • transmitting the information indicating the location of the data channel by at least one of: transmitting, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or transmitting second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
  • DCI Downlink Control Information
  • RB start Resource Block
  • the first bit field indicates a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the BWP, the frequency resource being one of a set of frequency resources configured in a higher layer.
  • the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the BWP, the first RB granularity is configured in a higher layer.
  • the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field
  • FDRA Frequency Domain Resource Assignment
  • the first DCI comprises a second FDRA field
  • the active BWP configured for the terminal device is narrower than the second bandwidth, and wherein a second number of bits of the second FDRA field being determined based on the active DL BWP.
  • At least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
  • the first bit field is a part of a FDRA field comprised in the first DCI.
  • a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
  • PRB Physical Resource Block
  • VRB Virtual RB
  • the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the network device in a scaled bandwidth that is equal to or narrower than the second bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in a default bandwidth which is a part of the bandwidth indicated by the FDRA field, a third time interval between the default bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  • the second DCI has the first DCI format and wherein performing the data communication comprises: transmitting, to the terminal device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth.
  • the second DCI has the second DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in a scaled bandwidth that is equal to or narrower than the second bandwidth.
  • a fourth time interval between the bandwidth of the determined data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of: predefined, configured by the network device, or indicated by reserved bits in the second DCI.
  • TDRA Time Domain Resource Assignment
  • MCS Modulation and Coding Scheme
  • TB Transport Block
  • the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
  • the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.
  • a terminal device comprising: a processor; and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method according to above methods of communication.
  • a network device comprising: a processor; and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method according to above methods of communication.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of methods according to above methods of communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods, devices and computer readable media for communications. According to embodiments of the present disclosure, a terminal device receives information indicating a location of a data channel in the BWP from a network device by a control channel within a first bandwidth of in a BandWidth Part (BWP) configured for the terminal device. The terminal device determines, based on the information, a location of the data channel in the BWP and a second bandwidth of the data channel, the second bandwidth being narrower than the first bandwidth. Then, the terminal device performs data communication with the network device in the data channel having the second bandwidth.

Description

METHOD, DEVICE AND COMPUTER READABLE MEDIUM FOR COMMUNICATIONS FIELD
Embodiments of the present disclosure generally relate to the field of communication, and in particular, to a method, device and computer readable medium for reduced capability device.
BACKGROUND
With development of communication technology, wireless communication systems are widely deployed to provide various telecommunication services. Typical wireless communication systems comprise Internet of Things (IoT) communication system which may be used for industrial production, self-driving car, wearable device and so on. In this situation, a great amount of electronic devices, such as sensors, Transmit-Receive point (TRP) , processing device having communication capability and so on, are deployed in the communication networks.
For reducing the cost of communication system, Reduced Capability-User Equipment (RedCap-UE) has been introduced into such large scale communication system. The complexity of the RedCap-UE is reduced relative to normal UE for saving costs. For further UE complexity reduction, in Release 18, RedCap-UE bandwidth reduction to a narrower bandwidth is studied. In some situations, Radio Frequency (RF) capability and control signals for the RedCap-UE is considered to keep unchanged. In this case, the way of scheduling data resources for the RedCap-UE should be studied due to the bandwidth mismatch between control channel and data channel. Further, the coordination between normal UE and RedCap-UE is also a key aspect.
SUMMARY
In general, example embodiments of the present disclosure relate to methods, devices and computer readable media for reduced capability device.
In a first aspect, there is provided a method implemented at a terminal device. In the method, the terminal device receives information indicating a location of a data channel in the BWP by a control channel within a first bandwidth of a BandWidth Part (BWP)  configured for the terminal device. The terminal device determines, based on the information, a location of the data channel in the BWP and a second bandwidth of the data channel, the second bandwidth being narrower than the first bandwidth. Then, the terminal device performs data communication with the network device in the data channel having the second bandwidth.
In a second aspect, there is provided a method implemented at a network device. In the method, the network device transmits, at a network device and within a first bandwidth of a control channel in a BandWidth Part (BWP) configured for the terminal device, information indicating a location of a data channel in the BWP to a terminal device. Then, the network device performs data with the terminal device in a data channel having a second bandwidth. The location of the data channel and the second bandwidth are determined by the terminal device based on the information. The second bandwidth is narrower than the first bandwidth.
In a third aspect, there is provided a terminal device. The terminal device comprises a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method of the first aspect.
In an fourth aspect, there is provided a network device. The network device comprises a processor and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method of the second aspect.
In a fifth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method of any one of the first aspect to the second aspect.
It is to be understood that the summary section is not intended to identify key or essential features of example embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the  accompanying drawings, where:
FIG. 1A illustrates an example environment in which some embodiments of the present disclosure can be implemented;
FIG. 1B illustrates an example RF bandwidth and example data bandwidth for a reduced capability terminal device according to some embodiments of the present disclosure;
FIG. 2 illustrates a signaling process for indicating data channel in a BandWidth Part configured to a reduced capability terminal device according to some embodiments of the present disclosure;
FIGs. 3A-3C illustrate example data channels according to some embodiments of the present disclosure;
FIG. 4 illustrates an example data channel according to some embodiments of the present disclosure;
FIGs. 5A-5C illustrate example data channels according to some embodiments of the present disclosure;
FIG. 6 illustrates a flowchart of an example method implemented at a terminal device in accordance with some embodiments of the present disclosure;
FIG. 7 illustrates a flowchart of an example method implemented at a network device in accordance with some embodiments of the present disclosure; and
FIG. 8 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal, a wireless device or a reduced capability terminal device.
As used herein, the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head  (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information. The terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25 GHz to 71 GHz) , 71 GHz to 114 GHz, and frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The network device may have the function of network energy saving, Self-Organizing Networks (SON) /Minimization of Drive Tests (MDT) . The terminal may have the function of power saving.
The embodiments of the present disclosure may be performed in test equipment, e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first  network device and the second network device. In one embodiment, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’ The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’ The term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its  (or their) accompanying software and/or firmware.
For further improving the economic efficiency, one solution is that limiting (Base Band, BB) bandwidth of a data channel (for example, Physical Uplink Shared Channel, PUSCH, and Physical Downlink Shared Channel, PDSCH) for a RedCap-UE into a narrower bandwidth, and keep the bandwidth of RF and a control channel (for example, Physical Uplink Control Data Channel, PUCCH, and Physical Downlink Control Data Channel, PDCCH) unchanged. As mentioned above, in this case, the bandwidth of the data channel may be a part of bandwidth of the control channel or a bandwidth part (BWP) , the way of scheduling data channel resources for the RedCap-UE should be further considered and the coordination between normal UE and RedCap-UE is also a key aspect. However, there is no mechanism of locating a narrower band data channel in the configured BWP, due to the bandwidth of data channel or control channel should be equal to the configured BWP directly in general (for example, the data channel for a normal UE) .
The example embodiments of the disclosure propose a mechanism for reduced capability terminal device. In this mechanism, a terminal device receives, information indicating a location of a data channel in the BWP by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device. Based on the information, the terminal device determines a location of the data channel in the BWP and a second bandwidth of the data channel. The second bandwidth is narrower than the first bandwidth of the control channel. Then, the terminal device performs data communication with the network device in the determined data channel having the second bandwidth.
In this way, the data channel of which bandwidth is narrower than that of control channel is indicated to the reduced capability terminal device. Further, the frequency domain assignment for the narrower channel may be also optimized in order to reduce the overhead of control signaling.
FIG. 1 illustrates an example environment 100 in which example embodiments of the present disclosure can be implemented.
The environment 100, which may be a part of a communication network, comprises a network device 110, a terminal device 120, a terminal device 130 (as an example, the terminal device 130 may be integrated into an industrial robot) and a terminal device 140 (as an example, the terminal device 140 may be integrated into a vehicle  terminal) . Any two of devices as shown in environment 100 may communicate with each other. In some embodiments, the  terminal devices  120, 130 and 140 may perform data communication via the network device 110. In some embodiments, by a control signaling (for example, a Downlink Control Information, DCI) specific to a terminal device (for example, terminal device 120) of the  terminal devices  120, 130 and 140, the network device 110 may individually schedule communication resources for the terminal device 120. In addition or alternatively, the network device 110 may schedule communication resources for a plurality of terminal devices as shown by a common control signaling (for example, a common DCI for the  terminal devices  120, 130 and 140) .
It is to be understood that the number of terminal devices and network device is shown in the environment 100 only for the purpose of illustration, without suggesting any limitation to the scope of the present disclosure. In some embodiments, the environment 100 may comprise a further terminal device to communicate information with a further network device.
The communications in the environment 100 may follow any suitable communication standards or protocols, which are already in existence or to be developed in the future, such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) New Radio (NR) , Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) , ultra-reliable low latency communication (URLLC) , Carrier Aggregation (CA) , Dual Connection (DC) , and New Radio Unlicensed (NR-U) technologies.
FIG. 1B illustrates an example RF bandwidth and example data bandwidth 100B for a reduced capability terminal device according to some embodiments of the present disclosure.
In the shown example bandwidths 100B, three example bandwidths are shown. Bandwidth 150 represents a bandwidth of an example carrier which may be 40MHz. Bandwidth 160 represents a bandwidth (which is also referred to as the first bandwidth in  this disclosure) of a BandWidth Part (BWP) for a reduced capability terminal device and the terminal device may receive control information within the bandwidth 160. Bandwidth 170 represents a bandwidth (which is also referred to as the second bandwidth in this disclosure) of a data channel for the reduced capability terminal device. The reduced capability terminal device should receive PDSCH or transmit PUSCH within the data channel having the bandwidth 170 narrower than the bandwidth 160. In some embodiments, the bandwidth of the BWP may be the maximum RF bandwidth of reduced capability terminal device. Alternatively, in some other embodiments, the bandwidth of the control channel may be smaller than the BWP configured for the terminal device.
FIG. 2 illustrates a signaling process 200 for indicating data channel in a BWP configured to a reduced capability terminal device according to some embodiments of the present disclosure. For purpose of discussion, the process 200 will be described with reference to FIG. 1.
In the signaling process 200, at 201, the terminal device (for example, the  terminal device  120, 130 and/or 140) may receive a BWP configuration in a higher layer (for example, by a Radio Resource Control RRC Signaling) from the network device 110. In this disclosure, the higher layer is a layer higher than the Physical layer in the communication system. The received BWP configuration for the terminal device may indicate information on the data channel in the BWP in advance. For discussion clarity, the information on the data channel which is indicated in the BWP configuration or higher layer is discussed with respect to certain embodiments as below, respectively.
At 203, the terminal device (for example, the  terminal device  120, 130 and/or 140) receives information indicating a location of a data channel in the BWP by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for this terminal device. The first bandwidth may be a bandwidth in which the terminal device searches the control information from the network device 110. In some embodiments, the first bandwidth may be the example bandwidth 160 as shown in FIG. 1B. In some embodiments, the first bandwidth may be the maximum RF bandwidth of the reduced capability terminal device (for example, the  terminal device  120, 130 and/or 140) . In some embodiments, the first bandwidth has a number of Resource Blocks (RB) corresponding to 20MHz. In some other embodiments, the first bandwidth may be any other bandwidth which the RF circuity of the terminal device can support.
The information indicating the location of data channel may be carried by control information specific to the terminal device. In some embodiments, the control information may be carried in a first DCI specific to the terminal device (for example, the terminal device 120) . Alternatively, the information indicating the location of data channel may be carried by common control information for a group of terminal devices. In some embodiments, the control information may be carried in a second DCI which is a common DCI for a group of terminal devices (for example, the  terminal devices  110, 120 and 130) . In turn, the group of terminal devices may comprise normal terminal devices and reduced capability terminal devices. For discussion clarity, the control information specific to the terminal device 120 is discussed with reference to FIGs. 2-4 at first.
In general, for each serving cell, the network device 110 may configure at least an initial DL BWP and one (if the serving cell is configured with an uplink) or two (if using supplementary uplink SUL) initial UL BWP. Furthermore, the network device 110 may configure additional UL and DL BWPs for a serving cell. Moreover, the Information Element (IE) BWP-Downlink is used to configure an additional DL BWP (not for the initial BWP) , and the IE BWP-Uplink is used to configure an additional UL BWP (not for the initial BWP) .
For the first DCI specific to the terminal device 120, some issues may be further occurred in addition to indicating the data channel. For example, a reduced capability terminal device may only support a maximum bandwidth of 5MHz for data channel, but the active bandwidth part (UL or DL) may be wider than 5 MHz and up to 20MHz. In general, the Frequency Domain Resource Assignment (FDRA) in the DCI format 0_0, 1_0, 0_1, 0_2, 1_1 and 1_2 is based on the size of the active bandwidth part rather than the narrow band. Furthermore, for downlink resource allocation type 0, a big Resource Block Group (RBG) granularity for a narrow band for data channel will reduce the flexibility for the scheduling, and for downlink resource allocation type 1, the bits number reserved for FDRA in DCI format is wasted since actual bandwidth of data channel is at most 5MHz. The embodiments according to this disclosure may solve these issues appropriately.
In some embodiments, in the first DCI, the terminal device 120 may receive from the network device 110 a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP comprising active DL BWP and active UL BWP. The first DCI is specific to the terminal device 120. The first bit field may indicate a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of  the active BWP for the terminal device 120. The frequency resource is one of a set of frequency resources configured in the higher layer or BWP configuration as discussed above. With respect to the active BWP, the active BWP is the configured BWP for data transmission. Specifically, if a terminal device (for example, UE) has dedicated BWP configuration (i.e., the active BWP) , the UE can be provided by firstActiveDownlinkBWP-Id a first active DL BWP for receptions and by firstActiveUplinkBWP-Id a first active UL BWP for transmissions on a carrier of the primary cell.
For discussion clarity, the first bit field indicating one of a set of frequency resources is discussed with reference to FIG. 3A.
FIG. 3A illustrates example data channels according to some embodiments of the present disclosure.
For each terminal device-dedicated BWP (for example, the BWP configuration received in the higher layer as discussed above) , there is an indication of a set of start PRBs for data channel. As shown in FIG. 3A, a set of frequency resources may be configured in the BWP. One of the set of the frequency resources may be used for data channel. In some embodiments, the set of frequency resources are configured by higher layer. For example, the terminal device 120 may receive the indication that is indicative of the set of frequency resources in a RRC signaling. In an example, this indication may indicate an offset between the start RB of a frequency resource and a first boundary associated with the BWP. In this disclosure, the first boundary may be the start RB of the configured BWP. Alternatively, without any limitation, the first boundary may be the start RB of a carrier. In some other embodiments, the first boundary may be any other RB which is used as a reference point.
Only as an example, as shown in FIG. 3A, the block 310 represents BWP configuration for the terminal device 120, the length 310-1 represents the bandwidth of the active BWP which may be also used for control channel. Further, there is a number of frequency resources (four frequency resources shown in FIG. 3A) are configured in the active BWP, block 320 represents one of the number of frequency resources. The frequency resources may be used for the data channel. The length 320-1 represents the bandwidth of a frequency resource. In some embodiments, the frequency resources may have a number of RBs corresponding to 5MHz. In this way, the first bit field in the first  DCI may indicate one of the frequency resources as the data channel to be used.
For example, if the SCS is 15KHz and the bandwidth 310-1 of the active BWP is 20MHz, the offsets between the start PRBs of the set of frequency resources and the first boundary may be {0, 25, 50, 75} . It means there are 4 available frequency resources for the data channel in the BWP, and network device 110 may choose one start PRB and inform the chosen start PRB to the terminal device 120 by a first bit field in the first DCI.
If the higher layer indicates two offset values (i.e., two start RBs) , 1 bit for the first bit field is enough, and if the higher layer parameter contains three or four offset values, 2 bits for the first bit field are needed. If there is only one offset configured from the higher layer, 0 bit is used for this new field. As an example, if the first bit field is “00” , the terminal device 110 may be aware of the frequency resource started with frequency location 330 is chosen as the start RB for the data channel. The terminal device 110 may then determine a bandwidth corresponding to 5MHz for the data channel and the bandwidth is start from the frequency location 330. In some further embodiments, there may be a default frequency resource for the data channel 170. If the first bit field is absent in the first DCI, the terminal device 120 may select, determine or active the default frequency resource for the data channel. In some embodiments, the default frequency resource may be the first one in the set of frequency sets. For example, the offset between the first RB of the default frequency resource and the first boundary is zero. In other embodiments, the default frequency resource may be other frequency resources.
Referring back to FIG. 2, in addition or alternatively, the narrow band data channel may be also indicated with a frequency unit and an integer multiple of the frequency units. The frequency unit may be also referred to as a first RB granularity in this disclosure. In this case, the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the active BWP, the first RB granularity is configured in a higher layer. For discussion clarity, the first bit indicating the integer multiple associated with a first RB granularity is discussed with respect to FIG. 3B.
FIG. 3B illustrates example data channels according to some embodiments of the present disclosure.
For each terminal device-dedicated BWP (for example, the BWP configuration received in the higher layer as discussed above) , there is an indication of the granularity of  the offset to a start RB of BWP. For example, if the Sub-Carrier Spacing (SCS) is 15KHz and the bandwidth of the active BWP is 20MHz, the indicated granularity in the BWP configuration may be 16 RBs (as shown by the length 370 in FIG. 3B) . In this case, if the first bit field in the first DCI is 4, it means that the offset between the start RB of the data channel and the first boundary is 64 RBs. As discussed above, the first boundary may be the start RB of the configured BWP. Alternatively, without any limitation, the first boundary may be the start RB of a carrier. In some other embodiments, the first boundary may be any other RB which is used as a reference point.
In turn, the value in the first bit field is used to multiply the step size of the first RB granularity. Furthermore, if there is some special value configured from the higher layer, 0 bit for this new field. In some embodiments, if the first bit field is absent in the first DCI, the terminal device 120 may select, determine or active the default start RB of the data channel. In some embodiments, the default start RB may be any value. For example, the special value configured from the higher layer is zero, and the default start RB of the data channel is the start RB of the active BWP. In other embodiments, the default frequency resource may be other values. In addition, in this way, the granularity of the data channel is also adjusted, in order to scheduling the resource flexibly.
Referring back to FIG. 2, in addition or alternatively, the active BWP may be equally divided into a certain number of parts, and the first bit field may indicate a start RB of one of the certain number of parts. For discussion clarity, this first bit field which is based on equally divided BWP is discussed with reference to FIG. 3C.
FIG. 3C illustrates example data channels according to some embodiments of the present disclosure.
For each terminal device-dedicated BWP, there is an indication of the number of parts into which the BWP will be divided equally. For example, the width of each part may be calculated as: 
Figure PCTCN2022108051-appb-000001
or
Figure PCTCN2022108051-appb-000002
where
Figure PCTCN2022108051-appb-000003
represents the number of RBs in the BWP and N is the number of parts. For example, if the SCS is 15KHz and the bandwidth of the active BWP is 20MHz, the indicated parts in the BWP configuration is 2. Then, the terminal device 120 may be aware of the BWP is equally divided into two parts and the frequency width (as shown by length 380 in FIG. 3C) is equal to each other.
In turn, if the indication first bit field (comprising one bit) in the scheduling first  DCI is 1, it may mean that the start RB of the data channel is the low boundary of second part of the BWP. In addition, if there is some special value configured from the higher layer, 0 bit for this new field. If the first bit field is absent in the first DCI, the terminal device 120 may select, determine or active the default start RB of the data channel. In some embodiments, the default start RB may be any value. For example, the special value configured from the higher layer is 1, that means only one part is indicated, it will be unnecessary to indicate in the first DCI, and the default start RB of the data channel is the start RB of the active BWP. In other embodiments, the default frequency resource may be other values.
In this case, if the higher layer parameter configures two part in the BWP, 1 bit is enough, and if the higher layer parameter configure three or four parts, 2 bits are needed. If there is some special (default) value configured from the higher layer, 0 bit may be enough for this first bit field. In some embodiments, the embodiments discussed with reference to FIGs. 3A to 3C may be used in combination.
Referring back to FIG. 2, the first bit field may be a separate bit field in the first DCI. Alternatively, the first bit field may be a part of the FDRA field in the first DCI, for example, in Most Significant Bits (MSB) . In an example, in DCI format 0_0, 1_0, 0_1, 0_2, 1_1 and 1_2 in USS, a new field is used to indicate the frequency resource for data channel: at most 2 bits are used to indicate which start PRB will be used for the data channel. Furthermore, regarding the default data channel as discussed above, In DCI format 0_0, 1_0, may be no additional bits is added in the DCI format, so it’s a fixed sub-band for data channel, there are 2 solutions: for the set of frequency resources, the first start PRB in the set is adopted; and for the other two approaches, the low boundary of the BWP is the start PRB for the data channel. Alternatively, for R18 RedCap, there is a special indication for the fixed start PRB in the BWP configuration if scheduling with DCI format 0_0, 1_0.
With respect to the FDRA field in the first DCI, it may be also adjusted based on the narrow band data channel. In an example, if the active BWP is wider than 5MHz, a number of bits of the FDRA field is determined based on the second bandwidth corresponding to 5MHz that is a part of the active BWP, regardless of resource allocation type (for example, UL or DL resource allocation type 0 or 1) . In another example, if the active BWP is equal to or narrower than 5MHz, the number of bits of the FDRA field is determined based on the active BWP. Alternatively, the determination of the number of  bits of the FDRA field may be also expressed as below.
Figure PCTCN2022108051-appb-000004
As such, the payload of the FDRA field is reduced accordingly. In turn, the overhead of the first DCI is reduced.
In addition, if the data channel is configured with a hopping pattern for hopping in the active BWP. The FDRA field determined based on the second bandwidth may be added with a number of additional bits for indicating the hopping offset. In an example, for PUSCH hopping with resource allocation type 1, if the hopping is inside the configured BWP, the number of bits of FDRA should be updated to: 
Figure PCTCN2022108051-appb-000005
Figure PCTCN2022108051-appb-000006
where
Figure PCTCN2022108051-appb-000007
represents the number of RBs for PUSCH (corresponding to 5MHz) and NUL hop represents the number of additional bits. Alternatively, if the hopping is inside the bandwidth of PUSCH, the RB_start can be updated to:
Figure PCTCN2022108051-appb-000008
In addition, in case of the data channel is narrower than the active BWP, the Physical Resource Block (PRB) bundling and Virtual RB (VRB) -PRB interleave mapping are also adjusted. For example, in general, the PRB bundling is determined in the configured BWP. In this disclosure, to align with the narrow band data channel, the PRB bundling is updated and determined in the narrow band which is indicated by DCI. For  example, a Physical Resource Block (PRB) bundling is performed within the data channel having the second bandwidth. Alternatively, this may be also expressed as below.
Figure PCTCN2022108051-appb-000009
With respect to VRB-PRB interleave mapping, in general, the VRB-PRB interleave mapping is determined in the configured BWP. In this disclosure, to keep data transmission in a localized narrow band, the VRB-PRB interleave mapping is updated and determined in the narrow band which is indicated by DCI. For example, a Virtual RB (VRB) -PRB interleave mapping is performed within the data channel having the second bandwidth. Alternatively, this may be also expressed as below.
Figure PCTCN2022108051-appb-000010
Figure PCTCN2022108051-appb-000011
Referring back to FIG. 2, at 205, the terminal device 120 determines the location of the data channel and the second bandwidth of the data channel based on the information indicating the location of data channel as discussed above. In some embodiments, the terminal device 120 determines the start RB of the data channel based on the first bit field as indicated above. Then, the terminal device may determine the data channel based on the start point and the second bandwidth. In an example, the second bandwidth has a number of RBs corresponding to 5Mhz. In some further embodiments, the second bandwidth has a number of RBs corresponding to any other frequency range which may be used for RedCap-UE data channel. At 207, the terminal device 120 performs data communication with the network device 110 in the data channel having the second bandwidth.
In addition, if the indicated data channel is exceed the upper boundary of the BWP, the terminal device 110 may extend the bandwidth of the second bandwidth to another direction relative to the upper boundary. For discussion clarity, this may be discussed with reference to FIG. 4. Furthermore, regarding the default data channel as discussed above,
FIG. 4 illustrates an example data channel according to some embodiments of the present disclosure.
As shown in FIG. 4, the frequency location 410 is the indicated start RB of the  data channel. However, the bandwidth between the frequency location 410 and a second boundary 420 of the active BWP is narrower than the second bandwidth. In this case, the terminal device 120 may determine another RB as the start RB. The bandwidth between the other RB and the second boundary is equal to or wider than the second bandwidth. As shown in FIG. 4, the frequency location 430 is determined as the other RB acting as new start RB.
As discussed above, in addition to the first DCI which is specific to one terminal device or alternatively, the data channel may be also indicated by a second DCI which is a common DCI for a group of terminal devices. For discussion clarity, the second DCI indicating the data channel is discussed with reference to FIGs. 2 and 5A-5C.
At 203, the terminal device (for example, the  terminal device  120, 130 and/or 140) receives, a control channel within a first bandwidth of a BWP configured for the terminal device, information indicating a location of a data channel in the BWP from the network device 110. In some embodiments, the terminal device receives the information by receiving second DCI having a first DCI format for an UL grant or a second DCI format for a DL grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device. In some cases, the group of terminal devices comprise normal terminal devices and reduced capability terminal device (for example, the terminal device 120) .
However, since a Control Resource Set (for example, CORESET #0) , initial UL or DL BWP may be wider than 5 MHz and up to 20MHz and the second DCI is a common DCI for the group of terminal devices, the FDRA in the second DCI in Common Search Space (CSS) is based on the size of the CORESET #0, initial UL or DL BWP. The determination of data channel in the initial BWP based on a common DCI (for example, coexistence of Rel-17 and Rel-18 RedCap and non-RedCap UEs in a cell) may be further considered. In some embodiments, implicitly indicating the frequency and timing resource by the common DCI for the narrow band data channel is designed. In this way, the reduced capability terminal device may reuse legacy common messages with some enhancement.
The second DCI indicating the location of data channel is discussed under UL scheduling and DL scheduling, respectively. In the UL scheduling, the second DCI has the first DCI format for UL grant (for example, DCI Format 0_0 in CSS) . The following  Table 1 shows example search space and BWP.
Table 1
Figure PCTCN2022108051-appb-000012
For the DCI Format 0_0 in CSS, the FDRA field may indicate a frequency resource in the initial UL BWP, and it may be wider than 5MHz and not a repetition message, how to reuse legacy common messages need to be considered.
In some embodiments, if determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, at 205, the terminal device 120 may divide the bandwidth into a plurality of sub-bandwidth. Then, at 207, the terminal device 120 may perform UL data transmission to the network device 110 in the plurality of sub-bandwidths. In addition, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined. For discussion clarity, this embodiments is further discussed with reference to FIG. 5A.
FIG. 5A illustrates example data channels according to some embodiments of the present disclosure.
As shown in FIG. 5A, block 510 may be the initial UL BWP and without any limitation, the bandwidth of the initial UL BWP may be equal to the bandwidth of configured BWP in FIG. 3A. The bandwidth of the initial UL BWP may be also any other value. If the terminal device 120 receives the second DCI scheduling data transmission in the initial UL BWP which is wider than the second bandwidth, the terminal device 120 may divide the initial UL BWP into a plurality of sub-bandwidths (as shown by  blocks  520 and 530 in FIG. 5A) . Furthermore, the time interval 540 between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined. For example, the timing interval is predefined or configured in the initial UL BWP, system information or a Random Access Response (RAR) . Moreover, the time interval may be  indicated based on at least one of slot offset, or slot offset plus A Start Length Indication Value (SLIV) .
In addition, if one part of the data channel (for example, PUSCH) is not received or wrongly received, the whole PUSCH will be retransmitted. In some embodiments, each sub-bandwidth of PUSCH in frequency domain may have a guard band or overlap RBs to help better combine reception. In addition or alternatively, the adjacent sub-bandwidths of the plurality of sub-bandwidths partially overlap with each other in frequency domain.
Referring back to FIG. 2, in addition or alternatively, if determining that a bandwidth of a data channel indicated in an initial UL BWP or a CORESET (for example, CORESET#0) by a FDRA field of the second DCI is wider than the second bandwidth, at 205, the terminal device 120 may scale the BWP into a narrow band data channel, such that the data channel fit within 5Mhz. A second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field is configured by the network device or predefined. For discussion clarity, this embodiment is discussed with reference to FIG. 5B.
FIG. 5B illustrates example data channels according to some embodiments of the present disclosure.
As shown in FIG. 5B, if the second DCI indicates the data transmission in a BWP having the bandwidth 310-1 and the bandwidth 310-1 is wider than the second bandwidth, the terminal device 120 may scale the bandwidth into the bandwidth 320-1 which is suit for the second bandwidth. Then, at 207, the terminal device 120 may perform UL data communication with the network device 110 in the data channel 550 having the bandwidth 320-1. In this disclosure, the scaled or divided initial bandwidth and selected parts of the initial bandwidth may be used by the reduced capability terminal device to perform data communication. Without any limitation, the initial bandwidth indicated by FDRA field and/or TDRA field may be also used by other terminal devices for any other purposes.
In an example, the resource indication value is defined by:
Figure PCTCN2022108051-appb-000013
Figure PCTCN2022108051-appb-000014
In addition, the start PRB of 5MHz may not be the same as the start PRB of initial BWP, it can be configured in the initial BWP. For example, the default value is the start PRB of initial BWP. Furthermore, there may be a time interval relative to the indicated TDRA value in the second DCI, it may be predefined or configured in the initial UL BWP or system information or RAR. The default value is zero. The time interval may contain: slot offset or slot offset plus SLIV.
Referring back to FIG. 2, in addition or alternatively, the terminal device 110 may receive an indication that is indicative of an allocated frequency resource (for example, 5Mhz) for RedCap-UE UL transmission. In this case, if the second DCI indicates the data transmission in a BWP having the bandwidth 310-1 and the bandwidth 310-1 is wider than the second bandwidth, the terminal device 120 may perform UL transmission in a default or preconfigured bandwidth which is a part of the bandwidth of the initial UL BWP. A third time interval between the default or preconfigured bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined. For discussion clarity, this embodiment is discussed with reference to FIG. 5C.
FIG. 5C illustrates example data channels according to some embodiments of the present disclosure.
As shown in FIG. 5C, the network device 110 may configure a dedicated frequency resource 560 for RedCap-UE UL transmission and inform the dedicated frequency resource 560 to the terminal device 120. In an example, the allocated 5MHz frequency resource for RedCap is indicated in initial UL BWP or system information or RAR, for example, indicate the start PRB relative to the start PRB of initial UL BWP, and the default value is the start PRB of initial UL BWP. The timing interval may be set in the same way as discussed with in the above embodiments.
In this way, the UL data channel for reduced capability terminal device may be implicitly determined based on a common DCI.
Referring back to FIG. 2, in the DL scheduling, the second DCI has the second  DCI format for DL grant (for example, DCI Format 1_0 in CSS) . The following Table 2 shows example search space and BWP.
Table 2
Figure PCTCN2022108051-appb-000015
In one solution of the DL grant, there are two downlink resource allocation schemes, type 0 and type 1, are supported. The terminal device shall assume that when the scheduling grant is received with DCI format 1_0, 4_0 or 4_1 then DL resource allocation type 1 is used.
In some embodiments, the network device 110 may transmit an indication that is indicative of a frequency resource for RedCap-UE DL reception to the terminal device 120. The bandwidth of the frequency resource is equal to or narrower than the second bandwidth. In this case, if the bandwidth of a data channel indicated in an initial DL BWP or a Control Resource Set (CORESET) (for example, CORESET#0) by a FDRA field of the second DCI is wider than the second bandwidth, the terminal device 120 may determine the location of the data channel based on the indication.
For example, the network device 110 may indicate the allocated 5MHz frequency resource for RedCap in system information or initial DL BWP, for example, indicate the start PRB relative to the start PRB of CORESET #0 or initial DL BWP, and default value is the start PRB of CORESET #0 or initial DL BWP. Furthermore, a time interval (which may be also referred to as the fourth time interval) between the DL data channel for the RedCap UE and the data channel indicated by the common DCI (relative to the indicated TDRA value in the second DCI) is predefined or configured in system information or initial DL BWP or indicated in the reserved bits of the DCI, it may be different for each kind of RNTI. The default value is zero. The time interval may contain: slot offset or slot offset plus SLIV.
In addition, the network device 110 may further transmit parameter information for a RedCap-UE communication. The parameter information indicates at least one of Modulation and Coding Scheme (MCS) parameter, Transport Block (TB) scaling parameter. For example, some parameters indicated in the DCI 1_0 for the normal UEs, e.g. Modulation and coding scheme (MCS) , TB scaling etc. may be specified for R18 RedCap UEs in the SIB1 or system information.
In addition to the indication of the frequency resource for RedCap-UE DL reception or alternatively, the terminal device 110 may also scale the initial DL BWP or the CORESET #0 to a bandwidth for DL data channel which is fit in the second bandwidth.
In an example, the resource indication value is defined by:
Figure PCTCN2022108051-appb-000016
The start PRB of 5MHz may not be the same as the start PRB of CORESET #0 or initial DL BWP, it can be configured in the initial DL BWP or system information. The default value is the start PRB of CORESET #0 or initial DL BWP.
Further, the fourth time interval between the DL data channel for the RedCap UE and the data channel indicated by the common DCI may be determined in the same way as  discussed above. In addition, the network device 110 may also transmit parameter information for a RedCap-UE communication in the same way as discussed above.
As such, the DL data channel for reduced capability terminal device may be implicitly determined based on a common DCI.
FIG. 6 illustrates a flowchart of a method 600 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure. The method 600 can be implemented at the  terminal device  120, 130 or 140 shown in FIG. 1. For the purpose of discussion, the method 600 will be described with reference to FIG. 1. It is to be understood that the method 600 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At 610, the terminal device 120 receives information indicating a location of a data channel in the BWP from a network device by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device.
At 620, the terminal device 120 determines, based on the information, a location of the data channel in the BWP and a second bandwidth of the data channel. The second bandwidth is narrower than the first bandwidth.
At 630, the terminal device 120 performs data communication with the network device in the data channel having the second bandwidth.
In some embodiments, the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
In some embodiments, receiving the information indicating the location of the data channel by at least one of: receiving, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or receiving second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
In some embodiments, the first bit field indicates a first offset between the start RB  of a frequency resource to be used for the data channel and a first boundary of the active BWP, the frequency resource being one of a set of frequency resources configured in a higher layer.
In some embodiments, the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the active BWP, the first RB granularity is configured in a higher layer.
In some embodiments, the method further comprising: receiving, from a higher layer, an indication that is indicative of the active BWP has been equally divided into a first number of frequency parts, and wherein the first bit field indicates the start RB by indicating one of the first number of frequency parts.
In some embodiments, the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field, a first number of bits of the first FDRA field being determined based on the second bandwidth that is a part of the active BWP, regardless of resource allocation type.
In some embodiments, the first DCI comprises a second FDRA field, wherein the active BWP configured for the terminal device is equal or narrower than the second bandwidth, and wherein a second number of bits of the second FDRA field is determined based on the active BWP.
In some embodiments, at least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
In some embodiments, the first bit field is a part of a FDRA field comprised in the first DCI.
In some embodiments, a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
In some embodiments, , the method further comprising: in response to determining that a third bandwidth between the start RB and a second boundary of the active BWP is narrower than the second bandwidth, determining another RB as the start RB, the bandwidth between the other RB and the second boundary being equal to or wider than the second bandwidth.
In some embodiments, the method further comprising: performing a Physical  Resource Block (PRB) bundling within the data channel having the second bandwidth.
In some embodiments, the method further comprising: performing a Virtual RB (VRB) -PRB interleave mapping within the data channel having the second bandwidth.
In some embodiments, the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, dividing the bandwidth into a plurality of sub-bandwidth; and performing UL data transmission to the network device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
In some embodiments, the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth; and performing UL data transmission to the network device in the scaled bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
In some embodiments, the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, performing UL data transmission to the network device in a default or preconfigured bandwidth which is a part of the bandwidth of the initial UL BWP, a third time interval between the default or preconfigured bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
In some embodiments, the second DCI has the second DCI format and wherein determining the location of the data channel comprises: receiving, from the network device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth; in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a Control Resource Set (CORESET) by a FDRA field of the second DCI is wider  than the second bandwidth, determining the location of the data channel based on the indication.
In some embodiments, the second DCI has the second DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a CORESET by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth.
In some embodiments, a fourth time interval between the bandwidth of the determined data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of: predefined, configured by the network device, or indicated by reserved bits in the second DCI.
In some embodiments, the method further comprising: receiving parameter information for a RedCap-UE communication, the parameter information indicating at least one of Modulation and Coding Scheme (MCS) parameter, Transport Block (TB) scaling parameter.
In some embodiments, , wherein the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
In some embodiments, the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.
FIG. 7 illustrates a flowchart of a method 700 of communication implemented at a network device in accordance with some embodiments of the present disclosure. The method 700 can be implemented at the network device 110 shown in FIG. 1. For the purpose of discussion, the method 700 will be described with reference to FIG. 1. It is to be understood that the method 700 may include additional acts not shown and/or may omit some shown acts, and the scope of the present disclosure is not limited in this regard.
At 710, the network device 110 transmits information indicating a location of a data channel in the BWP by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device.
At 720, the network device 110 performs data with the terminal device in a data channel having a second bandwidth. The location of the data channel and the second bandwidth are determined by the terminal device based on the information The second  bandwidth is narrower than the first bandwidth.
In some embodiments, the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
In some embodiments, transmitting the information indicating the location of the data channel by at least one of: transmitting, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or transmitting second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
In some embodiments, the first bit field indicates a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the BWP, the frequency resource being one of a set of frequency resources configured in a higher layer
In some embodiments, the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the BWP, the first RB granularity is configured in a higher layer.
In some embodiments, further comprising: transmitting, in a higher layer, an indication that is indicative of the BWP has been equally divided into a first number of frequency parts, and wherein the first bit field indicates the start RB by indicating one of the first number of frequency parts.
In some embodiments, the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field, a first number of bits of the first FDRA field being determined based on the second bandwidth that is a part of the active BWP, regardless of resource allocation type.
In some embodiments, the first DCI comprises a second FDRA field, wherein the active BWP configured for the terminal device is narrower than the second bandwidth, and wherein a second number of bits of the second FDRA field being determined based on the active DL BWP.
In some embodiments, at least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
In some embodiments, the first bit field is a part of a FDRA field comprised in the first DCI.
In some embodiments, a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
In some embodiments, further comprising: performing a Physical Resource Block (PRB) bundling within the data channel having the second bandwidth.
In some embodiments, further comprising: performing a Virtual RB (VRB) -PRB interleave mapping within the data channel having the second bandwidth.
In some embodiments, the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
In some embodiments, the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the network device in a scaled bandwidth that is equal to or narrower than the second bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
In some embodiments, the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in a default bandwidth which is a part of the bandwidth indicated by the FDRA field, a third time interval between the default bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
In some embodiments, the second DCI has the first DCI format and wherein performing the data communication comprises: transmitting, to the terminal device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth.
In some embodiments, the second DCI has the second DCI format and wherein performing the data communication comprises: performing UL data reception from the  terminal device in a scaled bandwidth that is equal to or narrower than the second bandwidth.
In some embodiments, a fourth time interval between the bandwidth of the determined data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of: predefined, configured by the network device, or indicated by reserved bits in the second DCI.
In some embodiments, further comprising: transmitting parameter information for a RedCap-UE communication, the parameter information indicating at least one of Modulation and Coding Scheme (MCS) parameter, Transport Block (TB) scaling parameter.
In some embodiments, the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
In some embodiments, the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.
Fig. 8 is a simplified block diagram of a device 800 that is suitable for implementing some embodiments of the present disclosure. The device 800 can be considered as a further example embodiment of the  terminal device  120, 130 or 140 as shown in FIG. 1, or network devices 110 as shown in FIG. 1. Accordingly, the device 800 can be implemented at or as at least a part of the above network devices or terminal devices.
As shown, the device 800 includes a processor 810, a memory 820 coupled to the processor 810, a suitable transmitter (TX) and receiver (RX) 840 coupled to the processor 810, and a communication interface coupled to the TX/RX 840. The memory 820 stores at least a part of a program 830. The TX/RX 840 is for bidirectional communications. The TX/RX 840 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
The program 830 is assumed to include program instructions that, when executed by the associated processor 810, enable the device 800 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1-7. The embodiments herein may be implemented by computer software executable by the processor 810 of the device 800, or by hardware, or by a combination of software and hardware. The processor 810 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 810 and memory 820 may form processing means 850 adapted to implement various embodiments of the present disclosure.
The memory 820 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 820 is shown in the device 800, there may be several physically distinct memory modules in the device 800. The processor 810 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In some embodiments, a terminal device comprises circuitry configured to perform method 600.
In some embodiments, a network device comprises circuitry configured to perform method 700.
The components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof. In one embodiment, one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium. In addition to or instead of machine-executable instructions, parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components. For example, and without  limitation, illustrative types of hardware logic components that can be used include Field-programmable Gate Arrays (FPGAs) , Application-specific Integrated Circuits (ASICs) , Application-specific Standard Products (ASSPs) , System-on-a-chip systems (SOCs) , Complex Programmable Logic Devices (CPLDs) , and the like.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, technique terminal devices or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 3 to 14. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on  the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific embodiment details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
In summary, embodiments of the present disclosure may provide the following solutions.
A method of communication, comprising: receiving, at a terminal device by a  control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device, information indicating a location of a data channel in the BWP from a network device; determining, based on the information, a location of the data channel in the BWP and a second bandwidth of the data channel, the second bandwidth being narrower than the first bandwidth, and performing data communication with the network device in the data channel having the second bandwidth.
In one embodiment, wherein the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
In one embodiment, wherein receiving the information indicating the location of the data channel by at least one of: receiving, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or receiving second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
In one embodiment, wherein the first bit field indicates a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the active BWP, the frequency resource being one of a set of frequency resources configured in a higher layer.
In one embodiment, wherein the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the active BWP, the first RB granularity is configured in a higher layer.
In one embodiment, further comprising: receiving, from a higher layer, an indication that is indicative of the active BWP has been equally divided into a first number of frequency parts, and wherein the first bit field indicates the start RB by indicating one of the first number of frequency parts.
In one embodiment, wherein the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field, a first number of bits of the first FDRA field being determined based on the second bandwidth that is a part of the active BWP, regardless of  resource allocation type.
In one embodiment, wherein the first DCI comprises a second FDRA field, wherein the active BWP configured for the terminal device is equal or narrower than the second bandwidth, and wherein a second number of bits of the second FDRA field is determined based on the active BWP.
In one embodiment, wherein at least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
In one embodiment, wherein the first bit field is a part of a FDRA field comprised in the first DCI.
In one embodiment, wherein a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
In one embodiment, further comprising: in response to determining that a third bandwidth between the start RB and a second boundary of the active BWP is narrower than the second bandwidth, determining another RB as the start RB, the bandwidth between the other RB and the second boundary being equal to or wider than the second bandwidth.
In one embodiment, further comprising: performing a Physical Resource Block (PRB) bundling within the data channel having the second bandwidth.
In one embodiment, further comprising: performing a Virtual RB (VRB) -PRB interleave mapping within the data channel having the second bandwidth.
In one embodiment, wherein the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, dividing the bandwidth into a plurality of sub-bandwidth; and performing UL data transmission to the network device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
In one embodiment, wherein the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth; and performing UL data transmission to the network device in  the scaled bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
In one embodiment, wherein the second DCI has the first DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, performing UL data transmission to the network device in a default or preconfigured bandwidth which is a part of the bandwidth of the initial UL BWP, a third time interval between the default or preconfigured bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
In one embodiment, wherein the second DCI has the second DCI format and wherein determining the location of the data channel comprises: receiving, from the network device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth; in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a Control Resource Set (CORESET) by a FDRA field of the second DCI is wider than the second bandwidth, determining the location of the data channel based on the indication.
In one embodiment, wherein the second DCI has the second DCI format and wherein determining the location of the data channel comprises: in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a CORESET by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth.
In one embodiment, wherein a fourth time interval between the bandwidth of the determined data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of: predefined, configured by the network device, or indicated by reserved bits in the second DCI.
In one embodiment, further comprising: receiving parameter information for a RedCap-UE communication, the parameter information indicating at least one of Modulation and Coding Scheme (MCS) parameter, Transport Block (TB) scaling parameter.
In one embodiment, wherein the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
In one embodiment, wherein the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.
A method of communication, comprising: transmitting, at a network device by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device, information indicating a location of a data channel in the BWP to a terminal device; and performing data with the terminal device in a data channel having a second bandwidth, the location of the data channel and the second bandwidth being determined by the terminal device based on the information, the second bandwidth being narrower than the first bandwidth.
In one embodiment, wherein the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
In one embodiment, wherein transmitting the information indicating the location of the data channel by at least one of: transmitting, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in the active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or transmitting second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
In one embodiment, wherein the first bit field indicates a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the BWP, the frequency resource being one of a set of frequency resources configured in a higher layer.
In one embodiment, wherein the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the BWP, the first RB granularity is configured in a higher layer.
In one embodiment, further comprising: transmitting, in a higher layer, an indication that is indicative of the BWP has been equally divided into a first number of  frequency parts, and wherein the first bit field indicates the start RB by indicating one of the first number of frequency parts.
In one embodiment, wherein the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field, a first number of bits of the first FDRA field being determined based on the second bandwidth that is a part of the active BWP, regardless of resource allocation type.
In one embodiment, wherein the first DCI comprises a second FDRA field, wherein the active BWP configured for the terminal device is narrower than the second bandwidth, and wherein a second number of bits of the second FDRA field being determined based on the active DL BWP.
In one embodiment, wherein at least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
In one embodiment, wherein the first bit field is a part of a FDRA field comprised in the first DCI.
In one embodiment, wherein a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
In one embodiment, further comprising: performing a Physical Resource Block (PRB) bundling within the data channel having the second bandwidth.
In one embodiment, further comprising: performing a Virtual RB (VRB) -PRB interleave mapping within the data channel having the second bandwidth.
In one embodiment, wherein the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
In one embodiment, wherein the second DCI has the first DCI format and wherein performing the data communication comprises: performing UL data reception from the network device in a scaled bandwidth that is equal to or narrower than the second bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
In one embodiment, wherein the second DCI has the first DCI format and wherein  performing the data communication comprises: performing UL data reception from the terminal device in a default bandwidth which is a part of the bandwidth indicated by the FDRA field, a third time interval between the default bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
In one embodiment, wherein the second DCI has the first DCI format and wherein performing the data communication comprises: transmitting, to the terminal device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth.
In one embodiment, wherein the second DCI has the second DCI format and wherein performing the data communication comprises: performing UL data reception from the terminal device in a scaled bandwidth that is equal to or narrower than the second bandwidth.
In one embodiment, wherein a fourth time interval between the bandwidth of the determined data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of: predefined, configured by the network device, or indicated by reserved bits in the second DCI.
In one embodiment, further comprising: transmitting parameter information for a RedCap-UE communication, the parameter information indicating at least one of Modulation and Coding Scheme (MCS) parameter, Transport Block (TB) scaling parameter.
In one embodiment, wherein the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
In one embodiment, wherein the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.,
A terminal device comprising: a processor; and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method according to above methods of communication.
A network device comprising: a processor; and a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method according to above methods of communication.
A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of methods according to above methods of communication.

Claims (24)

  1. A method of communication, comprising:
    receiving, at a terminal device by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device, information indicating a location of a data channel in the BWP;
    determining, based on the information, a location of the data channel in the BWP and a second bandwidth of the data channel, the second bandwidth being narrower than the first bandwidth, and
    performing data communication with the network device in the data channel having the second bandwidth.
  2. The method of claim 1, wherein the terminal device comprises a Reduced Capability-User Equipment (RedCap-UE) and wherein the first bandwidth comprises a maximum Radio Frequency (RF) bandwidth of the RedCap-UE.
  3. The method of claim 1, wherein receiving the information indicating the location the data channel by at least one of:
    receiving, in first Downlink Control Information (DCI) from the network device, a first bit field indicating a start Resource Block (RB) of the data channel in an active BWP, the active BWP being the BWP configured for a data transmission of the terminal device, the first DCI being specific to the terminal device; or
    receiving second DCI having a first DCI format for an uplink (UL) grant or a second DCI format for a Downlink (DL) grant, the second DCI being a common DCI for a group of terminal devices comprising the terminal device.
  4. The method of claim 3, wherein the first bit field indicates a first offset between the start RB of a frequency resource to be used for the data channel and a first boundary of the active BWP, the frequency resource being one of a set of frequency resources configured in a higher layer.
  5. The method of claim 3, wherein the first bit field indicates, with an integer multiple associated with a first RB granularity, a second offset between the start RB of the data channel and a first boundary of the active BWP, the first RB granularity is configured in a higher layer.
  6. The method of claim 3, further comprising:
    receiving, from a higher layer, an indication that is indicative of the active BWP has been equally divided into a first number of frequency parts, and wherein the first bit field indicates the start RB by indicating one of the first number of frequency parts.
  7. The method of claim 3, wherein the first DCI comprises a first Frequency Domain Resource Assignment (FDRA) field, a first number of bits of the first FDRA field being determined based on the second bandwidth that is a part of the active BWP, regardless of resource allocation type.
  8. The method of claim 3, wherein the first DCI comprises a second FDRA field, wherein the active BWP configured for the terminal device is equal or narrower than the second bandwidth, and wherein a second number of bits of the second FDRA field is determined based on the active BWP.
  9. The method of claim 7 or 8, wherein at least one of the first FDRA field and the second FDRA field comprises a number of bits indicating a hopping pattern in the active BWP.
  10. The method of claim 3, wherein the first bit field is a part of a FDRA field comprised in the first DCI.
  11. The method of claim 3, wherein a default data channel is determined as the data channel in response to the first bit field being absent in the first DCI.
  12. The method of claim 3, further comprising:
    in response to determining that a third bandwidth between the start RB and a second boundary of the active BWP is narrower than the second bandwidth, determining another  RB as the start RB, the bandwidth between the other RB and the second boundary being equal to or wider than the second bandwidth.
  13. The method of claim 3, further comprising:
    performing a Physical Resource Block (PRB) bundling within the data channel having the second bandwidth.
  14. The method of claim 3, further comprising:
    performing a Virtual RB (VRB) -PRB interleave mapping within the data channel having the second bandwidth.
  15. The method of claim 3, wherein the second DCI has the first DCI format and wherein determining the location of the data channel comprises:
    in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, dividing the bandwidth into a plurality of sub-bandwidth; and
    performing UL data transmission to the network device in the plurality of sub-bandwidths, a first time interval between adjacent sub-bandwidths of the plurality of sub-bandwidths is configured by the network device or predefined.
  16. The method of claim 3, wherein the second DCI has the first DCI format and wherein determining the location of the data channel comprises:
    in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth; and
    performing UL data transmission to the network device in the scaled bandwidth, a second time interval between the scaled bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  17. The method of claim 3, wherein the second DCI has the first DCI format and wherein determining the location of the data channel comprises:
    in response to determining that a bandwidth of a data channel indicated in an initial UL BWP by a FDRA field of the second DCI is wider than the second bandwidth,  performing UL data transmission to the network device in a default or preconfigured bandwidth which is a part of the bandwidth of the initial UL BWP, a third time interval between the default or preconfigured bandwidth and the bandwidth indicated by the FDRA field being configured by the network device or predefined.
  18. The method of claim 3, wherein the second DCI has the second DCI format and wherein determining the location of the data channel comprises:
    receiving, from the network device, an indication that is indicative of a frequency resource for RedCap-UE DL reception, a bandwidth of the frequency resource being equal to or narrower than the second bandwidth;
    in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a Control Resource Set (CORESET) by a FDRA field of the second DCI is wider than the second bandwidth, determining the location of the data channel based on the indication.
  19. The method of claim 3, wherein the second DCI has the second DCI format and wherein determining the location of the data channel comprises:
    in response to determining that a bandwidth of a data channel indicated in an initial DL BWP or a CORESET by a FDRA field of the second DCI is wider than the second bandwidth, scaling the bandwidth to be equal to or narrower than the second bandwidth.
  20. The method of claim 18 or 19, wherein a fourth time interval between the bandwidth of the data channel and the bandwidth indicated by a Time Domain Resource Assignment (TDRA) field in the second DCI is at least one of:
    predefined,
    configured by the network device, or
    indicated by reserved bits in the second DCI.
  21. The method of claim 18 or 19, further comprising:
    receiving parameter information for a RedCap-UE communication, the parameter information indicating at least one of Modulation and Coding Scheme (MCS) parameter or Transport Block (TB) scaling parameter.
  22. The method of claim 3, wherein the first DCI format comprises DCI format 0-0 and the second DCI format comprises DCI format 1_0.
  23. The method of claim 1, wherein the second bandwidth having a number of Resource Blocks (RB) corresponding to 5MHz.
  24. A method of communication, comprising:
    transmitting, at a network device by a control channel within a first bandwidth of a BandWidth Part (BWP) configured for the terminal device, information indicating a location of a data channel in the BWP; and
    performing data with the terminal device in a data channel having a second bandwidth, the location of the data channel and the second bandwidth being determined by the terminal device based on the information, the second bandwidth being narrower than the first bandwidth.
PCT/CN2022/108051 2022-07-26 2022-07-26 Method, device and computer readable medium for communications WO2024020814A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108051 WO2024020814A1 (en) 2022-07-26 2022-07-26 Method, device and computer readable medium for communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108051 WO2024020814A1 (en) 2022-07-26 2022-07-26 Method, device and computer readable medium for communications

Publications (1)

Publication Number Publication Date
WO2024020814A1 true WO2024020814A1 (en) 2024-02-01

Family

ID=89704758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108051 WO2024020814A1 (en) 2022-07-26 2022-07-26 Method, device and computer readable medium for communications

Country Status (1)

Country Link
WO (1) WO2024020814A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083364A1 (en) * 2018-10-25 2020-04-30 中兴通讯股份有限公司 5g communication method, system and device, and storage medium
CN112438069A (en) * 2018-04-02 2021-03-02 华为技术有限公司 Method and device for acquiring resource indication value
WO2021253213A1 (en) * 2020-06-16 2021-12-23 Qualcomm Incorporated Method and apparatus for wireless communication using different device capabilities for control channel and data channel
CN114640430A (en) * 2020-12-15 2022-06-17 夏普株式会社 Method performed by user equipment and user equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112438069A (en) * 2018-04-02 2021-03-02 华为技术有限公司 Method and device for acquiring resource indication value
WO2020083364A1 (en) * 2018-10-25 2020-04-30 中兴通讯股份有限公司 5g communication method, system and device, and storage medium
WO2021253213A1 (en) * 2020-06-16 2021-12-23 Qualcomm Incorporated Method and apparatus for wireless communication using different device capabilities for control channel and data channel
CN114640430A (en) * 2020-12-15 2022-06-17 夏普株式会社 Method performed by user equipment and user equipment

Similar Documents

Publication Publication Date Title
WO2023184273A1 (en) Method, device and computer storage medium of communication
WO2024020814A1 (en) Method, device and computer readable medium for communications
WO2024098192A1 (en) Method, device and computer readable medium for communications
WO2023122996A1 (en) Method, device and computer readable medium for communication
WO2024021136A1 (en) Methods, terminal devices and computer readable medium for communication
WO2023137721A1 (en) Methods, devices, and computer readable medium for communication
WO2023178695A1 (en) Method, device and computer readable medium for communications
WO2023220936A1 (en) Method, device and computer readable medium for communications
WO2024060088A1 (en) Method, device, and medium for communication
WO2024011636A1 (en) Methods, devices, and medium for communication
WO2023168610A1 (en) Method, device and computer readable medium for manangement of cross link interference
WO2024040539A1 (en) Methods, devices, and computer readable medium for communication
WO2023206285A1 (en) Method, device and computer readable medium for management of cross link interference
WO2023077310A1 (en) Method, device and computer readable medium for communication
WO2023050220A1 (en) Method, device and computer readable medium for communication
WO2023201597A1 (en) Method, device and computer readable medium for communications
WO2023178625A1 (en) Methods, devices and computer readable media for communications
WO2023070592A1 (en) Method, device and computer readable medium for communications
WO2024031581A1 (en) Method, device, and medium for communication
WO2023141941A1 (en) Methods, devices, and computer readable medium for communication
WO2024065200A1 (en) Method, device and computer storage medium of communication
WO2023240569A1 (en) Method, device and computer readable medium for sidelink communications
WO2024026641A1 (en) Methods, terminal devices and computer readable medium for communication
WO2023087315A1 (en) Methods, devices, and computer readable medium for communication
WO2024016132A1 (en) Method, device and computer readable medium for sidelink communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952279

Country of ref document: EP

Kind code of ref document: A1