WO2024019520A1 - Method for preparing conductive polymer urethane-based prepolymer, and conductive polymer urethane-based prepolymer prepared thereby - Google Patents

Method for preparing conductive polymer urethane-based prepolymer, and conductive polymer urethane-based prepolymer prepared thereby Download PDF

Info

Publication number
WO2024019520A1
WO2024019520A1 PCT/KR2023/010395 KR2023010395W WO2024019520A1 WO 2024019520 A1 WO2024019520 A1 WO 2024019520A1 KR 2023010395 W KR2023010395 W KR 2023010395W WO 2024019520 A1 WO2024019520 A1 WO 2024019520A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
based prepolymer
polymer urethane
urethane
producing
Prior art date
Application number
PCT/KR2023/010395
Other languages
French (fr)
Korean (ko)
Inventor
이병용
이정주
김동호
홍기훈
고홍석
이진형
김상국
Original Assignee
수경화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 수경화학 주식회사 filed Critical 수경화학 주식회사
Publication of WO2024019520A1 publication Critical patent/WO2024019520A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a method for producing a conductive polymer urethane-based prepolymer and a conductive polymer urethane-based prepolymer produced therefrom.
  • Binder is used in electrodes for lithium secondary batteries and serves to mechanically stabilize the electrode. Additionally, the binder prevents the bond between the active material or conductive material from loosening when charging and discharging repeatedly occurs.
  • a slurry is made by mixing the negative electrode active material, conductive material, solvent, and binder and attaches it to the electrode. If a binder is not added when making the slurry, it will not be evenly distributed throughout the current collector.
  • binders are classified into solvent-based binders and water-based binders.
  • water-based binders such as styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) are mainly used instead of the previously used solvent-based binder, polyvinylidene fluoride (PVDF).
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • PVDF polyvinylidene fluoride
  • Energy density can be increased by increasing the active material content and reducing the binder content, but polyvinylidene fluoride (PVDF) has limitations in reducing the binder content.
  • water-based binders such as styrene butadiene rubber (SBR) and carboxy methyl cellulose (CMC) can bind each other flexibly and tightly with minimal adhesion, and bind better than polyvinylidene fluoride (PVDF). The characteristics are excellent.
  • SBR styrene butadiene rubber
  • CMC carboxy methyl cellulose
  • lithium secondary batteries can easily generate heat as they continuously exchange electricity, and in this case, the separator becomes very vulnerable to heat.
  • a polyethylene (PE) separator it melts near 130°C, causing the pores to melt, and completely melts above 150°C.
  • ceramic particles, etc. are coated with a polymer or a fluorine-based separator is used as a separator. Therefore, it is very important to increase the heat resistance of the separator and prevent pores from melting to ensure stability. Considering this, the development of materials for coating separators is also required.
  • interlayer films and solid electrolytes that serve as buffer layers reduce interfacial resistance by increasing the thermal and mechanical stability of the solid electrolyte. Development of materials such as these is also required.
  • the present invention provides a method for producing a multi-purpose conductive polymer urethane-based prepolymer that has excellent heat resistance, adhesion, flowability, permeability and ionic conductivity and can be applied to binders and separator coatings for lithium secondary batteries and interlayers for sodium solid batteries, and a multi-purpose prepared by the method.
  • the object is to provide a conductive polymer urethane-based prepolymer.
  • the present invention includes the steps of adding a diisocyanate-based compound to a reaction tank and dissolving it; Injecting a mixture of sodium salt dispersed in polyol into a reaction tank in which the diisocyanate-based compound is dissolved and performing a primary reaction; After the first reaction, adding a chain extender, cross-linking agent, and catalyst to perform a second reaction; And it provides a method for producing a conductive polymer urethane-based prepolymer including the step of adding a solvent after the secondary reaction.
  • the diisocyanate-based compound may include methylene diphenyl diisocyanate, hexamethylene diisocyanate, or a combination thereof.
  • the polyol may include polyethylene glycol, polypropylene glycol, or a combination thereof.
  • the polyol may be the polyethylene glycol, and the weight average molecular weight of the polyethylene glycol may be 200 g/mol to 1,000 g/mol.
  • the polyol may be the polypropylene glycol, and the weight average molecular weight of the polypropylene glycol may be 700 g/mol to 5,000 g/mol.
  • the sodium salt includes sodium salt of sulfanilic acid, sodium salt of 4-aminobenzoic acid, sodium salt of 2-aminobenzene-1,4-disulfonic acid, and 2-aminobenzene-1,4-dicar. It may include sodium carboxylic acid salt, sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), hydrates thereof, or a combination thereof.
  • the conductive polymer urethane-based prepolymer may contain 3.0% by weight to 3.4% by weight of NCO groups.
  • the viscosity of the conductive polymer urethane-based prepolymer may be 1000 cps to 1500 cps.
  • the specific gravity of the conductive polymer urethane-based prepolymer may be 0.97 to 0.98.
  • the heat resistance of the conductive polymer urethane-based prepolymer may be 180°C to 220°C.
  • the adhesive strength of the conductive urethane-based prepolymer may be 1.1 kgf/cm 2 to 1.5 kgf/cm 2 with respect to shearing of the polyethylene film or polypropylene film.
  • the ionic conductivity of the conductive urethane-based prepolymer may be 0.005 mS/cm to 0.03 mS/cm.
  • the conductive polymer urethane-based prepolymer can be used as a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof.
  • the present invention provides a conductive polymer urethane-based prepolymer prepared by the method for producing the conductive polymer urethane-based prepolymer described above.
  • the present invention is a conductive polymer urethane-based prepolymer for use in a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof, which is manufactured by the manufacturing method of the conductive polymer urethane-based prepolymer of the present invention described above.
  • a conductive polymer urethane-based prepolymer is provided.
  • the conductive urethane-based prepolymer prepared by the method according to the present invention has excellent heat resistance, adhesion, flowability, permeability, and ion conductivity, and can be applied to both binders and separator coatings for lithium secondary batteries and interlayers for sodium solid batteries.
  • Figure 1 is a structural diagram of a conductive polymer urethane-based prepolymer prepared according to one embodiment.
  • Figure 2 shows a Nyquist plot of the ionic conductivity of Example 1 of the present invention measured using an impedance spectrometer.
  • Figure 3 shows a Nyquist plot of the ionic conductivity of Example 2 of the present invention measured using an impedance spectrometer.
  • Figure 4 shows the ionic conductivity of Example 3 of the present invention as a Nyquist plot measured using an impedance spectrometer.
  • Figure 5 shows a Nyquist plot of the ionic conductivity of Example 4 of the present invention measured using an impedance spectrometer.
  • Figure 6 shows the ionic conductivity of Comparative Example 1 as a Nyquist plot measured using an impedance spectrometer.
  • Figure 7 shows a Nyquist plot of the ionic conductivity of 2 for comparison measured using an impedance spectrometer.
  • the conductive polymer urethane-based prepolymer includes the steps of dissolving a diisocyanate-based compound in a reaction tank; Injecting a mixture of sodium salt dispersed in polyol into a reaction tank in which the diisocyanate-based compound is dissolved and performing a primary reaction; After the first reaction, adding a chain extender, cross-linking agent, and catalyst to perform a second reaction; And it can be prepared including the step of adding a solvent after the secondary reaction.
  • the conductive urethane-based prepolymer prepared by the above method has excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity. Accordingly, it can be applied to both binders and separator coatings for lithium secondary batteries and interlayers for sodium solid batteries.
  • the temperature of the reaction tank is raised to 50°C to 60°C, and then the diisocyanate-based compound is added and completely dissolved.
  • the diisocyanate-based compound may include methylene diphenyl diisocyanate, hexamethylene diisocyanate, or a combination thereof.
  • the diisocyanate-based compound may be used in an amount of 15% to 40% by weight, for example, 25% to 32% by weight, based on the total amount of the conductive urethane-based prepolymer.
  • a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • Additives including antioxidants, heat stabilizers, or combinations thereof may be additionally added to the reaction tank.
  • the additive may be added in an amount of 0.1% to 10% by weight based on the total amount of the conductive urethane-based prepolymer. Additionally, the additive may be dispersed by stirring at a speed of 1000 rpm to 1200 rpm and then added to the reaction tank.
  • a first reaction is performed by gradually adding a mixture of sodium salt dispersed in polyol. At this time, the mixture may be added to the reaction tank in a vacuum state.
  • the mixture of the diisocyanate-based compound and the sodium salt dispersed in the polyol may be added and reacted at a weight ratio of 50:50 to 30:70, for example, may be added at a weight ratio of 50:50 to 40:60. there is.
  • a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be manufactured.
  • the mixture in which the sodium salt is dispersed in the polyol may be one in which 1% by weight to 20% by weight of the sodium salt is dispersed in 80% by weight to 99% by weight of the polyol based on the total amount of the mixture, for example, 90% by weight. 1% to 10% by weight of sodium salt may be dispersed in 99% by weight of polyol.
  • polyol and sodium salt are mixed within the above content ratio range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be produced.
  • the mixture in which the sodium salt is dispersed in the polyol is stirred at a speed of 1,400 rpm to 1,700 rpm, for example, at a speed of 1,500 rpm to 1,600 rpm for 10 to 40 minutes, for example, 20 minutes to 40 minutes until completely dissolved. It can be obtained by dispersing by stirring for 30 minutes.
  • a prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the polyol may be a polyol having two or three OH groups.
  • the polyol may include polyethylene glycol, polypropylene glycol, or a combination thereof.
  • polyethylene glycol can be used.
  • the polyethylene glycol may have a weight average molecular weight of 200 g/mol to 1,000 g/mol, for example, 400 g/mol to 900 g/mol, for example, 400 g/mol. .
  • the polyethylene glycol may have a viscosity of 100 cps to 300 cps, for example, 150 cps to 250 cps.
  • polyethylene glycol with a weight average molecular weight within the above range is used, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • polypropylene glycol may be used.
  • the polypropylene glycol may have a weight average molecular weight of 700 g/mol to 5,000 g/mol, for example, 1,000 g/mol to 2,000 g/mol, for example, 1,000 g/mol. there is. Additionally, the polypropylene glycol may have a viscosity of 100 cps to 300 cps, for example, 150 cps to 250 cps.
  • a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the sodium salt includes sodium salt of sulfanilic acid, sodium salt of 4-aminobenzoic acid, sodium salt of 2-aminobenzene-1,4-disulfonic acid, and 2-aminobenzene-1,4-dicar. It may include sodium carboxylic acid salt, sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), hydrates thereof, or a combination thereof.
  • the sodium salt includes sodium sulfanilic acid, sodium 4-aminobenzoic acid, sodium hexafluorophosphate (NaPF 6 ), and sodium perchlorate (NaClO). 4 ), hydrates thereof, or combinations thereof.
  • the first reaction is performed by raising the reaction tank temperature to 70°C to 100°C, for example, 80°C to 90°C, and performing the reaction at a speed of 100 rpm to 150 rpm, for example, 110 rpm to 150 rpm for 30 minutes to 2 hours. It may be performed for, for example, 1 hour to 2 hours.
  • the first reaction that is, the reaction of the mixture of the diisocyanate compound and the sodium salt dispersed in the polyol in the reaction tank, is carried out within the above conditions, a conductive polymer with excellent heat resistance, adhesion, flowability, permeability and ionic conductivity A urethane-based prepolymer can be obtained.
  • a chain extender, cross-linking agent, and catalyst are added to perform a secondary reaction.
  • a chain extender and a crosslinking agent may be sequentially added, followed by a catalyst.
  • the chain extenders include EDA (ethylene diamine), DETA (diethylene triamine), Piperazine anhydrous, 1,3-butylene glycol (1,3-BD), 1,4-butanediol, 1,3-Propandiol, 1, 6-hexanediol, ehtylene glycol, and diethylene glycol can be used, but are not limited to these.
  • the chain extender may be added in an amount of 0.1% to 5% by weight, for example, 0.5% to 2% by weight, based on the total amount of the conductive urethane-based prepolymer.
  • the crosslinking agent may be trimethylolpropane (TMP), glycerin, or triethanolamine, but is not limited thereto.
  • TMP trimethylolpropane
  • glycerin glycerin
  • triethanolamine triethanolamine
  • the crosslinking agent may be added in an amount of 0.1 wt% to 5 wt%, for example, 0.5 wt% to 2 wt%, based on the total amount of the conductive urethane-based prepolymer.
  • a conductive urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the catalyst may be di-N-butylbis(dodecylthio)tin or bismuth neodecanoate, but is not limited thereto.
  • the catalyst may be added in an amount of 0.01% to 1% by weight, for example, 0.01% to 0.1% by weight based on the total amount of the conductive urethane-based prepolymer.
  • the secondary reaction may be performed for 10 minutes to 1 hour, for example, 20 minutes to 50 minutes.
  • the temperature of the reactor can be reduced to 50°C to 80°C, half the amount of solvent to be added for the first time can be added, and the mixture can be stirred for 10 to 30 minutes. Afterwards, the remaining half of the solvent can be added a second time and stirred again for 10 to 30 minutes.
  • a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the solvent may be toluene, NMP, NPAC, etc., but is not limited thereto.
  • additives such as antioxidants and curing catalysts can be additionally added while maintaining the temperature at 50°C to 80°C.
  • the conductive polymer urethane-based prepolymer prepared according to one embodiment may include an NCO group in an amount of 3.0% to 3.4% by weight, for example, 3.1% to 3.3% by weight, based on the total amount of the conductive polymer urethane-based prepolymer. there is.
  • the conductive polymer urethane-based prepolymer contains NCO groups within the above content range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the viscosity of the conductive urethane-based prepolymer may be 1,000 cps to 1,500 cps, for example, 1,000 cps to 1,300 cps.
  • a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the specific gravity of the conductive polymer urethane-based prepolymer may be 0.97 to 0.98.
  • the specific gravity of the conductive polymer urethane-based prepolymer is within the above range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the heat resistance of the conductive urethane-based prepolymer may be 180°C to 220°C, for example, 185°C to 215°C. If the heat resistance of the conductive polymer urethane-based prepolymer is within the above range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the adhesive strength of the conductive polymer urethane-based prepolymer may be 1.1 kgf/cm 2 to 1.5 kgf/cm 2 with respect to the shear of the polyethylene film or polypropylene film, for example, 1.1 kgf/cm 2 to 1.3 kgf/cm 2 days. You can. If the adhesive strength of the conductive polymer urethane-based prepolymer is within the above range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
  • the ionic conductivity of the conductive urethane-based prepolymer may be 0.005 mS/cm to 0.03 mS/cm, for example, 0.01 mS/cm to 0.02 mS/cm. (Based on EIS measurement values for a test piece with a thickness of 200um and an area of 9cm2 ) Through this, a conductive polymer urethane-based prepolymer with excellent ionic conductivity can be obtained.
  • Figure 1 is a structural diagram of a conductive polymer urethane-based prepolymer according to one embodiment.
  • the structure on the left shows a mixture of sodium salt dispersed in polyol, and is a structural diagram before crosslinking with a diisocyanate-based compound occurs in the first reaction.
  • crosslinking may occur to form a solid structure connected to each other like the structure on the right.
  • the conductive urethane-based prepolymer having the above structure not only has high rigidity and high heat resistance due to crosslinking, but also has excellent adhesion, flowability, permeability, and ionic conductivity. Accordingly, when used as a binder for lithium secondary batteries, it is easy to mix and disperse with active materials, and when used as an interlayer for sodium solid batteries, it is sufficient to respond to the thermal and mechanical stability of the solid electrolyte. Therefore, the conductive polymer urethane-based prepolymer according to one embodiment can be usefully used as a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof.
  • the present invention provides a conductive polymer urethane-based prepolymer prepared by the above-described method for producing a conductive polymer urethane-based prepolymer.
  • the present invention is a conductive polymer urethane-based prepolymer for use in a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof, using the method for producing the conductive polymer urethane-based prepolymer of the present invention described above.
  • a manufactured conductive polymer urethane-based prepolymer is provided.
  • methylene diphenyl diisocyanate M from BASF, NCO group content 33% by weight, specific gravity 1.25 based on the total amount of methylene diphenyl diisocyanate
  • M from BASF, NCO group content 33% by weight, specific gravity 1.25 based on the total amount of methylene diphenyl diisocyanate
  • the obtained mixture that is, a mixture of 4-aminobenzoic acid sodium salt dispersed in polypropylene glycol, was slowly added in an amount of 42.3% by weight based on the total amount of the conductive urethane-based prepolymer after the reaction tank was placed in a vacuum state. Once the addition was completed, the temperature of the reactor was raised to 80°C, and the first reaction was performed for 1 hour at a speed of 150 rpm.
  • TMP trimethylolpropane
  • the temperature of the reaction tank was reduced to 60°C, 15% by weight of toluene relative to the total amount of the conductive polymer urethane-based prepolymer was added, and stirred for 20 minutes. Afterwards, 15% by weight of toluene compared to the total amount of the conductive polymer urethane-based prepolymer was further added and stirred for another 20 minutes. .
  • reaction was terminated while maintaining the temperature at 60°C to prepare a conductive urethane-based prepolymer.
  • a conductive urethane-based prepolymer was prepared in the same manner as in Example 1, except that polyethylene glycol with a weight average molecular weight of 400 g/mol was used instead of polypropylene glycol.
  • a conductive urethane-based prepolymer was prepared in the same manner as Example 1, except that sulfanilic acid sodium salt was used instead of 4-aminobenzoic acid sodium salt.
  • a conductive urethane-based prepolymer was prepared in the same manner as in Example 1, except that sulfanilic acid sodium salt was used instead of 4-aminobenzoic acid sodium salt in Example 2.
  • a conductive urethane-based prepolymer was prepared in the same manner as in Example 1, except that the first reaction was performed using polypropylene glycol instead of the mixture in which sodium salt of aminobenzoic acid was dispersed in polypropylene glycol.
  • a conductive urethane-based prepolymer was prepared in the same manner as in Example 1, except that in Example 2, the first reaction was performed using polyethylene glycol instead of the mixture in which sodium salt of aminobenzoic acid was dispersed in polyethylene glycol.
  • KS C 2344 standard 3 test pieces with a width of 25 mm and a length of 100 mm were each measured and the average value was applied.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Viscosity (cps) 1150 1200 1150 1260 6000 7000 importance 0.97 0.98 0.97 0.98 0.97 0.98 Heat resistance (°C) 210 190 205 198 130 140 NCO group content (% by weight) 3.15 3.18 3.12 3.2 7 8 Adhesive strength (kgf/cm 2 ) 1.2 1.15 1.2 1.15 0.7 0.8
  • the NCO group content (% by weight) is based on the total amount of conductive polymer urethane-based prepolymer.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Resistance ( ⁇ ) 124.23 125.16 125.65 125.37 - - Ion conductivity (mS/cm) 0.018 0.018 0.018 0.018 0 0
  • the conductive urethane-based prepolymers of Examples 1 to 4 prepared according to one embodiment are superior in heat resistance, adhesion, flowability, permeability, and ionic conductivity compared to Comparative Examples 1 and 2. can confirm. Accordingly, it is being used as a binder for lithium secondary batteries that particularly require excellent adhesion and heat resistance, a separator coating agent for lithium secondary batteries that particularly require heat resistance and stability, and an interlayer material for sodium solid-state batteries that particularly require heat resistance, mechanical stability, and ionic conductivity. It can be seen that it can be useful.
  • the present invention provides a method for producing a conductive polymer urethane-based prepolymer, and the conductive polymer urethane-based prepolymer produced by the above method has excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity, and is used as a binder and separator coating for lithium secondary batteries and sodium solid batteries. It can be applied to all interlayers.

Abstract

The present invention provides a method for preparing a conductive polymer urethane-based prepolymer, and a conductive polymer urethane-based prepolymer prepared thereby, the method comprising the steps of: injecting a diisocyanate-based compound into a reaction tank and dissolving same; injecting a mixture, in which sodium salt is dispersed in polyol, into the reaction tank in which the diisocyanate-based compound is dissolved and performing a primary reaction; after the primary reaction, injecting a chain extender, a cross-linking agent, and a catalyst so as to perform a secondary reaction; and injecting a solvent after the secondary reaction. Accordingly, it is possible to provide a conductive polymer urethane-based prepolymer having excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity.

Description

전도성 고분자 우레탄계 프리폴리머의 제조 방법 및 그로 제조된 전도성 고분자 우레탄계 프리폴리머Method for producing conductive polymer urethane-based prepolymer and conductive polymer urethane-based prepolymer produced thereby
전도성 고분자 우레탄계 프리폴리머의 제조 방법 및 그로 제조된 전도성 고분자 우레탄계 프리폴리머에 관한 것이다.It relates to a method for producing a conductive polymer urethane-based prepolymer and a conductive polymer urethane-based prepolymer produced therefrom.
리튬이온전지를 제작하기 위해서는 기본적으로 활물질을 집전체에 부착시켜야 한다. 바인더는 리튬이차전지용 전극에 사용되어 전극을 기계적으로 안정화하는 역할을 한다. 또한, 바인더는 충방전이 반복적으로 진행될 때 활물질 또는 도전재 사이의 결합이 느슨해지는 것을 방지한다. 음극 활물질, 도전재, 용매 및 바인더를 혼합하여 슬러리를 만들고 이를 전극에 부착시키는데, 슬러리를 만들때 바인더를 첨가하지 않으면 집전체에 고르게 분포되질 않게 된다.In order to manufacture a lithium-ion battery, the active material must be attached to the current collector. Binder is used in electrodes for lithium secondary batteries and serves to mechanically stabilize the electrode. Additionally, the binder prevents the bond between the active material or conductive material from loosening when charging and discharging repeatedly occurs. A slurry is made by mixing the negative electrode active material, conductive material, solvent, and binder and attaches it to the electrode. If a binder is not added when making the slurry, it will not be evenly distributed throughout the current collector.
이러한 바인더는 용제계 바인더와 수계 바인더로 분류된다. 최근에는 기존에 사용하던 용제계 바인더인 폴리비닐리덴플루오라이드(PVDF) 대신, 수계 바인더인 스티렌 부타디엔 고무(styreren butadiene rubber, SBR) 및 카르복시메틸셀룰로오스(carboxy methyl cellulose, CMC)가 주로 사용된다. 활물질의 함량을 높이고 바인더의 함량을 줄여야 에너지 밀도를 높일 수 있는데, 폴리비닐리덴플루오라이드(PVDF)는 바인더 함량을 줄이는 데 한계가 있다. 반면, 수계 바인더인 스티렌 부타디엔 고무(styreren butadiene rubber, SBR) 및 카르복시메틸셀룰로오스(carboxy methyl cellulose, CMC)는 최소한의 접착만으로 서로 유연하면서도 단단히 묶어줄 수 있고, 폴리비닐리덴플루오라이드(PVDF) 보다 결착 특성이 우수하다.These binders are classified into solvent-based binders and water-based binders. Recently, water-based binders such as styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) are mainly used instead of the previously used solvent-based binder, polyvinylidene fluoride (PVDF). Energy density can be increased by increasing the active material content and reducing the binder content, but polyvinylidene fluoride (PVDF) has limitations in reducing the binder content. On the other hand, water-based binders such as styrene butadiene rubber (SBR) and carboxy methyl cellulose (CMC) can bind each other flexibly and tightly with minimal adhesion, and bind better than polyvinylidene fluoride (PVDF). The characteristics are excellent.
이와 관련하여, 수계 바인더, 및 용제계 바인더인 폴리비닐리덴플루오라이드(PVDF)와 비교하여 우수한 접착강도 및 내열성을 가진 용제계 바인더로서 프리폴리머형 바인더의 개발이 요구되고 있다. In this regard, there is a need for the development of a prepolymer-type binder as a solvent-based binder with superior adhesive strength and heat resistance compared to water-based binders and polyvinylidene fluoride (PVDF), which is a solvent-based binder.
또한, 리튬이차전지는 지속적으로 전기를 주고받아 쉽게 열이 날수 있는데, 이때 분리막이 매우 열에 취약하게 된다. 예를 들어, 폴리에틸렌(PE) 분리막의 경우 130℃ 근처에서 용융하여 기공이 용융되는 현상이 발생하고, 150℃ 이상에서는 완전히 용융된다. 이를 방지하기 위하여 세라믹 입자 등을 고분자로 코팅하거나 분리막으로서 불소계 분리막을 사용한다. 따라서 분리막의 내열도를 높이고 기공이 용융되는 현상을 방지하여 안정성을 가지도록 하는 것이 매우 중요하다. 이를 고려하여, 분리막을 코팅하는 소재 개발 또한 요구되고 있다.In addition, lithium secondary batteries can easily generate heat as they continuously exchange electricity, and in this case, the separator becomes very vulnerable to heat. For example, in the case of a polyethylene (PE) separator, it melts near 130°C, causing the pores to melt, and completely melts above 150°C. To prevent this, ceramic particles, etc. are coated with a polymer or a fluorine-based separator is used as a separator. Therefore, it is very important to increase the heat resistance of the separator and prevent pores from melting to ensure stability. Considering this, the development of materials for coating separators is also required.
또한, 리튬이온전지를 대체할 차세대 전지로 주목받고 있는 소듐고체 전지에 있어서, 고체 전해질의 열적, 기계적 안정성을 높여 계면저항을 감소, 버퍼레이어(Buffer layer) 역할을 하는 인터레이어용 필름 및 고체 전해질 등의 소재 개발 또한 요구되고 있다.In addition, in sodium solid batteries, which are attracting attention as next-generation batteries to replace lithium-ion batteries, interlayer films and solid electrolytes that serve as buffer layers reduce interfacial resistance by increasing the thermal and mechanical stability of the solid electrolyte. Development of materials such as these is also required.
본 발명은 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수하여 리튬이차전지용 바인더 및 분리막 코팅제와 소듐고체전지용 인터레이어에 적용 가능한 다목적의 전도성 고분자 우레탄계 프리폴리머의 제조 방법 및 상기 방법으로 제조된 다목적의 전도성 고분자 우레탄계 프리폴리머를 제공하고자 한다.The present invention provides a method for producing a multi-purpose conductive polymer urethane-based prepolymer that has excellent heat resistance, adhesion, flowability, permeability and ionic conductivity and can be applied to binders and separator coatings for lithium secondary batteries and interlayers for sodium solid batteries, and a multi-purpose prepared by the method. The object is to provide a conductive polymer urethane-based prepolymer.
상술한 과제를 해결하기 위하여, 본 발명은 반응조에 디이소시아네이트계 화합물을 투입하여 용해시키는 단계; 폴리올에 소듐염이 분산된 혼합물을 상기 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 1차 반응시키는 단계; 상기 1차 반응 이후 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응시키는 단계; 및 상기 2차 반응 이후 용매를 투입하는 단계를 포함하는 전도성 고분자 우레탄계 프리폴리머의 제조 방법을 제공한다.In order to solve the above-described problem, the present invention includes the steps of adding a diisocyanate-based compound to a reaction tank and dissolving it; Injecting a mixture of sodium salt dispersed in polyol into a reaction tank in which the diisocyanate-based compound is dissolved and performing a primary reaction; After the first reaction, adding a chain extender, cross-linking agent, and catalyst to perform a second reaction; And it provides a method for producing a conductive polymer urethane-based prepolymer including the step of adding a solvent after the secondary reaction.
상기 디이소시아네이트계 화합물은 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 또는 이들의 조합을 포함할 수 있다.The diisocyanate-based compound may include methylene diphenyl diisocyanate, hexamethylene diisocyanate, or a combination thereof.
상기 폴리올은 폴리에틸렌글리콜, 폴리프로필렌글리콜 또는 이들의 조합을 포함할 수 있다.The polyol may include polyethylene glycol, polypropylene glycol, or a combination thereof.
상기 폴리올은 상기 폴리에틸렌글리콜일 수 있고, 상기 폴리에틸렌글리콜의 중량평균분자량은 200 g/mol 내지 1,000 g/mol 일 수 있다.The polyol may be the polyethylene glycol, and the weight average molecular weight of the polyethylene glycol may be 200 g/mol to 1,000 g/mol.
상기 폴리올은 상기 폴리프로필렌글리콜일 수 있고, 상기 폴리프로필렌글리콜의 중량평균분자량은 700 g/mol 내지 5,000 g/mol 일 수 있다.The polyol may be the polypropylene glycol, and the weight average molecular weight of the polypropylene glycol may be 700 g/mol to 5,000 g/mol.
상기 소듐염은 설파닐산(sulfanilic acid) 소듐염, 4-아미노벤조산(4-aminobenzoic acid) 소듐염, 2-아미노벤젠-1,4-디설폰산 소듐염, 2-아미노벤젠-1,4-디카르복실산 소듐염, 소듐 헥사플로로포스페이트(Sodium hexafluorophosphate,NaPF6), 과염소산나트륨(Sodium perchlorate, NaClO4), 이들의 수화물 또는 이들의 조합을 포함할 수 있다.The sodium salt includes sodium salt of sulfanilic acid, sodium salt of 4-aminobenzoic acid, sodium salt of 2-aminobenzene-1,4-disulfonic acid, and 2-aminobenzene-1,4-dicar. It may include sodium carboxylic acid salt, sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), hydrates thereof, or a combination thereof.
상기 전도성 고분자 우레탄계 프리폴리머는 NCO기를 3.0 중량% 내지 3.4 중량%로 포함할 수 있다.The conductive polymer urethane-based prepolymer may contain 3.0% by weight to 3.4% by weight of NCO groups.
상기 전도성 고분자 우레탄계 프리폴리머의 점도는 1000 cps 내지 1500 cps 일 수 있다.The viscosity of the conductive polymer urethane-based prepolymer may be 1000 cps to 1500 cps.
상기 전도성 고분자 우레탄계 프리폴리머의 비중은 0.97 내지 0.98 일 수 있다.The specific gravity of the conductive polymer urethane-based prepolymer may be 0.97 to 0.98.
상기 전도성 고분자 우레탄계 프리폴리머의 내열도는 180℃ 내지 220℃일 수 있다.The heat resistance of the conductive polymer urethane-based prepolymer may be 180°C to 220°C.
상기 전도성 고분자 우레탄계 프리폴리머의 접착강도는 폴리에틸렌 필름 또는 폴리프로필렌 필름의 전단에 대하여 1.1 kgf/cm2 내지 1.5 kgf/cm2 일 수 있다.The adhesive strength of the conductive urethane-based prepolymer may be 1.1 kgf/cm 2 to 1.5 kgf/cm 2 with respect to shearing of the polyethylene film or polypropylene film.
상기 전도성 고분자 우레탄계 프리폴리머의 이온전도도는 0.005 mS/cm 내지 0.03 mS/cm 일 수 있다.The ionic conductivity of the conductive urethane-based prepolymer may be 0.005 mS/cm to 0.03 mS/cm.
상기 전도성 고분자 우레탄계 프리폴리머는 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 사용될 수 있다.The conductive polymer urethane-based prepolymer can be used as a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof.
또한, 본 발명의 상술한 전도성 고분자 우레탄계 프리폴리머의 제조 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머를 제공한다.In addition, the present invention provides a conductive polymer urethane-based prepolymer prepared by the method for producing the conductive polymer urethane-based prepolymer described above.
본 발명은 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 사용되기 위한 전도성 고분자 우레탄계 프리폴리머로서, 상기 상술한 본 발명의 전도성 고분자 우레탄계 프리폴리머의 제조 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머를 제공한다.The present invention is a conductive polymer urethane-based prepolymer for use in a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof, which is manufactured by the manufacturing method of the conductive polymer urethane-based prepolymer of the present invention described above. A conductive polymer urethane-based prepolymer is provided.
본 발명에 따른 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머는 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수하여 리튬이차전지용 바인더 및 분리막 코팅제와 소듐고체전지용 인터레이어에 모두 적용이 가능하다.The conductive urethane-based prepolymer prepared by the method according to the present invention has excellent heat resistance, adhesion, flowability, permeability, and ion conductivity, and can be applied to both binders and separator coatings for lithium secondary batteries and interlayers for sodium solid batteries.
도 1은 일 구현예에 따라 제조된 전도성 고분자 우레탄계 프리폴리머의 구조도이다.Figure 1 is a structural diagram of a conductive polymer urethane-based prepolymer prepared according to one embodiment.
도 2는 본 발명의 실시예 1의 이온전도도를 임피던스 분광계를 사용하여 측정한 Nyquist plot으로 도시한 것이다.Figure 2 shows a Nyquist plot of the ionic conductivity of Example 1 of the present invention measured using an impedance spectrometer.
도 3는 본 발명의 실시예 2의 이온전도도를 임피던스 분광계를 사용하여 측정한 Nyquist plot으로 도시한 것이다.Figure 3 shows a Nyquist plot of the ionic conductivity of Example 2 of the present invention measured using an impedance spectrometer.
도 4는 본 발명의 실시예 3의 이온전도도를 임피던스 분광계를 사용하여 측정한 Nyquist plot으로 도시한 것이다.Figure 4 shows the ionic conductivity of Example 3 of the present invention as a Nyquist plot measured using an impedance spectrometer.
도 5는 본 발명의 실시예 4의 이온전도도를 임피던스 분광계를 사용하여 측정한 Nyquist plot으로 도시한 것이다.Figure 5 shows a Nyquist plot of the ionic conductivity of Example 4 of the present invention measured using an impedance spectrometer.
도 6는 비교예 1의 이온전도도를 임피던스 분광계를 사용하여 측정한 Nyquist plot으로 도시한 것이다.Figure 6 shows the ionic conductivity of Comparative Example 1 as a Nyquist plot measured using an impedance spectrometer.
도 7는 비교에 2의 이온전도도를 임피던스 분광계를 사용하여 측정한 Nyquist plot으로 도시한 것이다.Figure 7 shows a Nyquist plot of the ionic conductivity of 2 for comparison measured using an impedance spectrometer.
이하, 구현예들에 대하여 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 구현예들은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.Hereinafter, implementation examples will be described in detail so that those skilled in the art can easily implement them. However, implementations may be implemented in various different forms and are not limited to the implementations described herein.
일 구현예에 따른 전도성 고분자 우레탄계 프리폴리머는 반응조에 디이소시아네이트계 화합물을 투입하여 용해시키는 단계; 폴리올에 소듐염이 분산된 혼합물을 상기 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 1차 반응시키는 단계; 상기 1차 반응 이후 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응시키는 단계; 및 상기 2차 반응 이후 용매를 투입하는 단계를 포함하여 제조될 수 있다. The conductive polymer urethane-based prepolymer according to one embodiment includes the steps of dissolving a diisocyanate-based compound in a reaction tank; Injecting a mixture of sodium salt dispersed in polyol into a reaction tank in which the diisocyanate-based compound is dissolved and performing a primary reaction; After the first reaction, adding a chain extender, cross-linking agent, and catalyst to perform a second reaction; And it can be prepared including the step of adding a solvent after the secondary reaction.
상기 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머는 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 특성을 가진다. 이에 따라, 리튬이차전지용 바인더 및 분리막 코팅제와 소듐고체전지용 인터레이어에 모두 적용이 가능하다. The conductive urethane-based prepolymer prepared by the above method has excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity. Accordingly, it can be applied to both binders and separator coatings for lithium secondary batteries and interlayers for sodium solid batteries.
구체적으로, 먼저 반응조의 온도를 50℃ 내지 60℃로 승온시킨 후 디이소시아네이트계 화합물을 투입하여 완전히 용해시킨다. Specifically, first, the temperature of the reaction tank is raised to 50°C to 60°C, and then the diisocyanate-based compound is added and completely dissolved.
상기 디이소시아네이트계 화합물은 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 또는 이들의 조합을 포함할 수 있다. The diisocyanate-based compound may include methylene diphenyl diisocyanate, hexamethylene diisocyanate, or a combination thereof.
상기 디이소시아네이트계 화합물은 전도성 고분자 우레탄계 프리폴리머의 총량에 대하여 15 중량% 내지 40 중량%로 사용될 수 있고, 예를 들면, 25 중량% 내지 32 중량%로 사용될 수 있다. 디이소시아네이트계 화합물이 상기 함량 범위 내로 투입되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The diisocyanate-based compound may be used in an amount of 15% to 40% by weight, for example, 25% to 32% by weight, based on the total amount of the conductive urethane-based prepolymer. When the diisocyanate-based compound is added within the above content range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 반응조에 산화방지제, 열안정제 또는 이들의 조합을 포함하는 첨가제를 추가적으로 투입할 수도 있다. 상기 첨가제는 전도성 고분자 우레탄계 프리폴리머의 총량에 대하여 0.1 중량% 내지 10 중량%로 투입될 수 있다. 또한 상기 첨가제는 1000 rpm 내지 1200 rpm의 속도로 교반하여 분산시킨 후 반응조에 투입될 수 있다.Additives including antioxidants, heat stabilizers, or combinations thereof may be additionally added to the reaction tank. The additive may be added in an amount of 0.1% to 10% by weight based on the total amount of the conductive urethane-based prepolymer. Additionally, the additive may be dispersed by stirring at a speed of 1000 rpm to 1200 rpm and then added to the reaction tank.
이어서, 폴리올에 소듐염이 분산된 혼합물을 서서히 투입하여 1차 반응을 수행한다. 이때 반응조는 진공 상태에서 상기 혼합물이 투입될 수 있다.Next, a first reaction is performed by gradually adding a mixture of sodium salt dispersed in polyol. At this time, the mixture may be added to the reaction tank in a vacuum state.
상기 디이소시아네이트계 화합물과 상기 폴리올에 소듐염이 분산된 혼합물은 50:50 내지 30:70의 중량비로 투입되어 반응될 수 있고, 예를 들면, 50:50 내지 40:60의 중량비로 투입될 수 있다. 상기 함량 비율 범위 내로 투입되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 제조할 수 있다.The mixture of the diisocyanate-based compound and the sodium salt dispersed in the polyol may be added and reacted at a weight ratio of 50:50 to 30:70, for example, may be added at a weight ratio of 50:50 to 40:60. there is. When added within the above content ratio range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be manufactured.
상기 폴리올에 소듐염이 분산된 혼합물은 상기 혼합물의 총량에 대하여 80 중량% 내지 99 중량%의 폴리올에 1 중량% 내지 20 중량%의 소듐염이 분산된 것일 수 있고, 예를 들면, 90 중량% 내지 99 중량%의 폴리올에 1 중량% 내지 10 중량%의 소듐염이 분산된 것일 수 있다. 폴리올과 소듐염이 상기 함량 비율 범위 내로 혼합되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 제조할 수 있다.The mixture in which the sodium salt is dispersed in the polyol may be one in which 1% by weight to 20% by weight of the sodium salt is dispersed in 80% by weight to 99% by weight of the polyol based on the total amount of the mixture, for example, 90% by weight. 1% to 10% by weight of sodium salt may be dispersed in 99% by weight of polyol. When polyol and sodium salt are mixed within the above content ratio range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be produced.
상기 폴리올에 소듐염이 분산된 혼합물은 1,400 rpm 내지 1,700 rpm의 속도로, 예를 들면, 1,500 rpm 내지 1,600 rpm의 속도로 완전히 용해될 때까지 10분 내지 40분 동안, 예를 들면, 20분 내지 30분 동안 동안 교반하여 분산시킴으로써 얻어질 수 있다. 상기 조건 범위 내에서 얻어진 혼합물을 전도성 고분자 우레탄계 프리폴리머 제조시 사용할 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 프리폴리머를 얻을 수 있다. The mixture in which the sodium salt is dispersed in the polyol is stirred at a speed of 1,400 rpm to 1,700 rpm, for example, at a speed of 1,500 rpm to 1,600 rpm for 10 to 40 minutes, for example, 20 minutes to 40 minutes until completely dissolved. It can be obtained by dispersing by stirring for 30 minutes. When the mixture obtained within the above conditions is used to manufacture a conductive urethane-based prepolymer, a prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 폴리올은 OH기가 두 개 또는 세 개인 폴리올을 사용할 수 있다. 구체적으로, 상기 폴리올은 폴리에틸렌글리콜, 폴리프로필렌글리콜 또는 이들의 조합을 포함할 수 있다. The polyol may be a polyol having two or three OH groups. Specifically, the polyol may include polyethylene glycol, polypropylene glycol, or a combination thereof.
상기 폴리올의 예시 중에서 폴리에틸렌글리콜을 사용할 수 있다. 상기 폴리에틸렌글리콜은 중량평균분자량이 200 g/mol 내지 1,000 g/mol 인 것을 사용할 수 있고, 예를 들면, 400 g/mol 내지 900 g/mol 인 것, 일례로 400 g/mol 인 것을 사용할 수 있다. 또한 상기 폴리에틸렌글리콜은 점도가 100 cps 내지 300 cps 인 것을 사용할 수 있고, 예를 들면, 150 cps 내지 250 cps 인 것을 사용할 수 있다. 상기 범위 내의 중량평균분자량을 가진 폴리에틸렌글리콜을 사용할 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.Among the examples of the polyol, polyethylene glycol can be used. The polyethylene glycol may have a weight average molecular weight of 200 g/mol to 1,000 g/mol, for example, 400 g/mol to 900 g/mol, for example, 400 g/mol. . Additionally, the polyethylene glycol may have a viscosity of 100 cps to 300 cps, for example, 150 cps to 250 cps. When polyethylene glycol with a weight average molecular weight within the above range is used, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
또한, 상기 폴리올의 예시 중에서 폴리프로필렌글리콜을 사용할 수도 있다. 상기 폴리프로필렌글리콜은 중량평균분자량이 700 g/mol 내지 5,000 g/mol 인 것을 사용할 수 있고, 예를 들면, 1,000 g/mol 내지 2,000 g/mol 인 것, 일례로 1,000 g/mol 인 것을 사용할 수 있다. 또한 상기 폴리프로필렌글리콜은 점도가 100 cps 내지 300 cps 인 것을 사용할 수 있고, 예를 들면, 150 cps 내지 250 cps 인 것을 사용할 수 있다. 상기 범위 내의 중량평균분자량을 가진 폴리프로필렌글리콜을 사용할 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.Additionally, among the examples of polyols, polypropylene glycol may be used. The polypropylene glycol may have a weight average molecular weight of 700 g/mol to 5,000 g/mol, for example, 1,000 g/mol to 2,000 g/mol, for example, 1,000 g/mol. there is. Additionally, the polypropylene glycol may have a viscosity of 100 cps to 300 cps, for example, 150 cps to 250 cps. When polypropylene glycol with a weight average molecular weight within the above range is used, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 소듐염은 설파닐산(sulfanilic acid) 소듐염, 4-아미노벤조산(4-aminobenzoic acid) 소듐염, 2-아미노벤젠-1,4-디설폰산 소듐염, 2-아미노벤젠-1,4-디카르복실산 소듐염, 소듐 헥사플로로포스페이트(Sodium hexafluorophosphate, NaPF6), 과염소산나트륨(Sodium perchlorate, NaClO4), 이들의 수화물 또는 이들의 조합을 포함할 수 있다. 예를 들면, 상기 소듐염은 소듐 설파닐산(sulfanilic acid) 소듐염, 4-아미노벤조산(4-aminobenzoic acid) 소듐염, 헥사플로로포스페이트(Sodium hexafluorophosphate,NaPF6), 과염소산나트륨(Sodium perchlorate, NaClO4), 이들의 수화물 또는 이들의 조합을 포함할 수 있다.The sodium salt includes sodium salt of sulfanilic acid, sodium salt of 4-aminobenzoic acid, sodium salt of 2-aminobenzene-1,4-disulfonic acid, and 2-aminobenzene-1,4-dicar. It may include sodium carboxylic acid salt, sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), hydrates thereof, or a combination thereof. For example, the sodium salt includes sodium sulfanilic acid, sodium 4-aminobenzoic acid, sodium hexafluorophosphate (NaPF 6 ), and sodium perchlorate (NaClO). 4 ), hydrates thereof, or combinations thereof.
상기 1차 반응은 반응조 온도롤 70℃ 내지 100℃ 예를 들면, 80℃ 내지 90℃로 승온시키고, 100 rpm 내지 150 rpm의 속도, 예를 들면, 110 rpm 내지 150rpm의 속도에서 30분 내지 2시간 동안, 예를 들면, 1시간 내지 2시간 동안 수행될 수 있다. 상기 1차 반응, 즉, 반응조에서 상기 디이소시아네이트계 화합물과 상기 폴리올에 소듐염이 분산된 혼합물의 반응이 상기 조건 범위 내로 수행되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The first reaction is performed by raising the reaction tank temperature to 70°C to 100°C, for example, 80°C to 90°C, and performing the reaction at a speed of 100 rpm to 150 rpm, for example, 110 rpm to 150 rpm for 30 minutes to 2 hours. It may be performed for, for example, 1 hour to 2 hours. When the first reaction, that is, the reaction of the mixture of the diisocyanate compound and the sodium salt dispersed in the polyol in the reaction tank, is carried out within the above conditions, a conductive polymer with excellent heat resistance, adhesion, flowability, permeability and ionic conductivity A urethane-based prepolymer can be obtained.
이어서, 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응을 수행한다. 구체적으로, 접착성 강화 및 가교 반응을 위해 사슬연장제 및 가교제를 순차적으로 투입한 후, 촉매를 투입할 수 있다. Next, a chain extender, cross-linking agent, and catalyst are added to perform a secondary reaction. Specifically, to enhance adhesion and crosslinking reaction, a chain extender and a crosslinking agent may be sequentially added, followed by a catalyst.
상기 사슬연장제는 EDA(ethylene diamine), DETA(diethylene tri amine), Piperazine anhydrous, 1,3-부틸렌글리콜(1,3-BD), 1,4-butanediol, 1,3-Propandiol, 1,6-hexanediol, ehtylene glycol, diethylene glycol을 사용할 수 있으나, 이에 한정되지는 않는다. The chain extenders include EDA (ethylene diamine), DETA (diethylene triamine), Piperazine anhydrous, 1,3-butylene glycol (1,3-BD), 1,4-butanediol, 1,3-Propandiol, 1, 6-hexanediol, ehtylene glycol, and diethylene glycol can be used, but are not limited to these.
상기 사슬연장제는 전도성 고분자 우레탄계 프리폴리머의 총량에 대하여 0.1 중량% 내지 5 중량%로 투입될 수 있고, 예를 들면, 0.5 중량% 내지 2 중량%로 투입될 수 있다. The chain extender may be added in an amount of 0.1% to 5% by weight, for example, 0.5% to 2% by weight, based on the total amount of the conductive urethane-based prepolymer.
상기 가교제는 트리메틸올프로판(trimethylolpropane, TMP), 글리세린(glycerin)계, 트리에탄올아민(Triethanolamine)을 사용할 수 있으나, 이에 한정되지는 않는다. The crosslinking agent may be trimethylolpropane (TMP), glycerin, or triethanolamine, but is not limited thereto.
상기 가교제는 전도성 고분자 우레탄계 프리폴리머의 총량에 대하여 0.1 중량% 내지 5 중량%로 투입될 수 있고, 예를 들면, 0.5 중량% 내지 2 중량%로 투입될 수 있다. 가교제가 상기 함량 범위 내로 투입되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The crosslinking agent may be added in an amount of 0.1 wt% to 5 wt%, for example, 0.5 wt% to 2 wt%, based on the total amount of the conductive urethane-based prepolymer. When the crosslinking agent is added within the above content range, a conductive urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 촉매는 디-N-부틸비스(도데실티오)틴(di-N-butylbis(dodecylthio)tin), 비스무스(Bismuth neodecanoate)을 사용할 수 있으나, 이에 한정되지는 않는다. The catalyst may be di-N-butylbis(dodecylthio)tin or bismuth neodecanoate, but is not limited thereto.
상기 촉매는 전도성 고분자 우레탄계 프리폴리머의 총량에 대하여 0.01 중량% 내지 1 중량%로 투입될 수 있고, 예를 들면, 0.01 중량% 내지 0.1 중량%로 투입될 수 있다. The catalyst may be added in an amount of 0.01% to 1% by weight, for example, 0.01% to 0.1% by weight based on the total amount of the conductive urethane-based prepolymer.
상기 2차 반응은 10분 내지 1시간 동안, 예를 들면, 20분 내지 50분 동안 수행될 수 있다. The secondary reaction may be performed for 10 minutes to 1 hour, for example, 20 minutes to 50 minutes.
이어서, 2차 반응 이후, 반응조 온도를 50℃ 내지 80℃로 줄이고 투입 예정량의 절반의 용매를 1차 투입한 후 10분 내지 30분 동안 교반시킬 수 있다. 이후 나머지 절반의 용매를 2차 투입하고 다시 10분 내지 30분 동안 교반시킬 수 있다. 상기 조건 내로 수행되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.Subsequently, after the secondary reaction, the temperature of the reactor can be reduced to 50°C to 80°C, half the amount of solvent to be added for the first time can be added, and the mixture can be stirred for 10 to 30 minutes. Afterwards, the remaining half of the solvent can be added a second time and stirred again for 10 to 30 minutes. When performed within the above conditions, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 용매는 톨루엔, NMP, NPAC 등을 사용할 수 있으나, 이에 한정되지는 않는다.The solvent may be toluene, NMP, NPAC, etc., but is not limited thereto.
이어서, 반응이 완전히 종료된 후, 50℃ 내지 80℃의 온도로 유지한 상태에서 산화방지제, 경화촉매 등의 첨가제를 추가적으로 투입할 수 있다.Subsequently, after the reaction is completely completed, additives such as antioxidants and curing catalysts can be additionally added while maintaining the temperature at 50°C to 80°C.
일 구현예에 따라 제조된 전도성 고분자 우레탄계 프리폴리머는 NCO기를 상기 전도성 고분자 우레탄계 프리폴리머 총량에 대하여 3.0 중량% 내지 3.4 중량%로 포함할 수 있고, 예를 들면, 3.1 중량% 내지 3.3 중량%로 포함할 수 있다. 전도성 고분자 우레탄계 프리폴리머가 NCO기를 상기 함량 범위 내로 포함할 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The conductive polymer urethane-based prepolymer prepared according to one embodiment may include an NCO group in an amount of 3.0% to 3.4% by weight, for example, 3.1% to 3.3% by weight, based on the total amount of the conductive polymer urethane-based prepolymer. there is. When the conductive polymer urethane-based prepolymer contains NCO groups within the above content range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 전도성 고분자 우레탄계 프리폴리머의 점도는 1,000 cps 내지 1,500 cps 일 수 있고, 예를 들면, 1,000 cps 내지 1,300 cps 일 수 있다. 전도성 고분자 우레탄계 프리폴리머의 점도가 상기 범위 내인 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The viscosity of the conductive urethane-based prepolymer may be 1,000 cps to 1,500 cps, for example, 1,000 cps to 1,300 cps. When the viscosity of the conductive polymer urethane-based prepolymer is within the above range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 전도성 고분자 우레탄계 프리폴리머의 비중은 0.97 내지 0.98 일 수 있다. 전도성 고분자 우레탄계 프리폴리머의 비중이 상기 범위 내인 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The specific gravity of the conductive polymer urethane-based prepolymer may be 0.97 to 0.98. When the specific gravity of the conductive polymer urethane-based prepolymer is within the above range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 전도성 고분자 우레탄계 프리폴리머의 내열도는 180℃ 내지 220℃일 수 있고, 예를 들면, 185℃ 내지 215℃일 수 있다. 전도성 고분자 우레탄계 프리폴리머의 내열도가 상기 범위 내인 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The heat resistance of the conductive urethane-based prepolymer may be 180°C to 220°C, for example, 185°C to 215°C. If the heat resistance of the conductive polymer urethane-based prepolymer is within the above range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 전도성 고분자 우레탄계 프리폴리머의 접착강도는 폴리에틸렌 필름 또는 폴리프로필렌 필름의 전단에 대하여 1.1 kgf/cm2 내지 1.5 kgf/cm2 일 수 있고, 예를 들면, 1.1 kgf/cm2 내지 1.3 kgf/cm2 일 수 있다. 전도성 고분자 우레탄계 프리폴리머의 접착강도가 상기 범위 내인 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The adhesive strength of the conductive polymer urethane-based prepolymer may be 1.1 kgf/cm 2 to 1.5 kgf/cm 2 with respect to the shear of the polyethylene film or polypropylene film, for example, 1.1 kgf/cm 2 to 1.3 kgf/cm 2 days. You can. If the adhesive strength of the conductive polymer urethane-based prepolymer is within the above range, a conductive polymer urethane-based prepolymer with excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity can be obtained.
상기 전도성 고분자 우레탄계 프리폴리머의 이온전도도는 0.005 mS/cm 내지 0.03 mS/cm 일 수 있고, 예를 들면, 0.01 mS/cm 내지 0.02 mS/cm 일 수 있다. (두께 200um, 면적 9cm2 시험편에 대한 EIS 측정값 기준) 이를 통해 이온전도성이 우수한 전도성 고분자 우레탄계 프리폴리머를 얻을 수 있다.The ionic conductivity of the conductive urethane-based prepolymer may be 0.005 mS/cm to 0.03 mS/cm, for example, 0.01 mS/cm to 0.02 mS/cm. (Based on EIS measurement values for a test piece with a thickness of 200um and an area of 9cm2 ) Through this, a conductive polymer urethane-based prepolymer with excellent ionic conductivity can be obtained.
이와 같이 제조된 전도성 고분자 우레탄계 프리폴리머의 구조는 도 1을 참고할 수 있다. 도 1은 일 구현예에 따른 전도성 고분자 우레탄계 프리폴리머의 구조도이다. 도 1을 참고하면, 좌측 구조는 폴리올에 소듐염이 분산된 혼합물을 나타낸 것으로, 1차 반응으로 디이소시아네이트계 화합물과의 가교가 일어나기 전의 구조도이다. 이러한 구조의 폴리올에 소듐염이 분산된 혼합물을 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 혼합할 경우, 가교가 일어나 우측 구조와 같이 서로 연결된 단단한 구조가 형성될 수 있다. The structure of the conductive polymer urethane-based prepolymer prepared in this way can be referenced in Figure 1. Figure 1 is a structural diagram of a conductive polymer urethane-based prepolymer according to one embodiment. Referring to Figure 1, the structure on the left shows a mixture of sodium salt dispersed in polyol, and is a structural diagram before crosslinking with a diisocyanate-based compound occurs in the first reaction. When a mixture of sodium salt dispersed in a polyol of this structure is added to a reaction tank in which a diisocyanate-based compound is dissolved and mixed, crosslinking may occur to form a solid structure connected to each other like the structure on the right.
상기 구조를 가진 전도성 고분자 우레탄계 프리폴리머는 가교 결합으로 인한 고강성 및 고내열성을 가질 뿐 아니라 접착성, 흐름성, 침투성 및 이온전도성이 우수하다. 이에 따라, 리튬이차전지용 바인더로 사용할 경우 활물질과의 혼합 및 분산이 용이하며, 소듐고체전지용 인터레이어로 사용할 경우에도 고체전해질의 열적, 기계적 안정성에 대응하기 충분하다. 따라서, 일 구현예에 따른 전도성 고분자 우레탄계 프리폴리머는 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 유용하게 사용될 수 있다.The conductive urethane-based prepolymer having the above structure not only has high rigidity and high heat resistance due to crosslinking, but also has excellent adhesion, flowability, permeability, and ionic conductivity. Accordingly, when used as a binder for lithium secondary batteries, it is easy to mix and disperse with active materials, and when used as an interlayer for sodium solid batteries, it is sufficient to respond to the thermal and mechanical stability of the solid electrolyte. Therefore, the conductive polymer urethane-based prepolymer according to one embodiment can be usefully used as a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof.
따라서, 본 발명의 상술한 전도성 고분자 우레탄계 프리폴리머의 제조 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머를 제공한다.Therefore, the present invention provides a conductive polymer urethane-based prepolymer prepared by the above-described method for producing a conductive polymer urethane-based prepolymer.
또한, 본 발명은 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 사용되기 위한 전도성 고분자 우레탄계 프리폴리머로서, 상기 상술한 본 발명의 전도성 고분자 우레탄계 프리폴리머의 제조 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머를 제공한다.In addition, the present invention is a conductive polymer urethane-based prepolymer for use in a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof, using the method for producing the conductive polymer urethane-based prepolymer of the present invention described above. A manufactured conductive polymer urethane-based prepolymer is provided.
이하에서는 본 발명의 구체적인 실시예들을 제시한다.  다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다. 또한, 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략한다.Below, specific embodiments of the present invention are presented. However, the examples described below are only for illustrating or explaining the present invention in detail, and the present invention should not be limited thereto. In addition, information not described herein can be sufficiently inferred technically by a person skilled in this technical field, so description thereof will be omitted.
(전도성 고분자 우레탄계 프리폴리머의 제조)(Manufacture of conductive polymer urethane-based prepolymer)
[실시예 1][Example 1]
반응조 온도를 60℃로 승온한 후 메틸렌 디페닐 디이소시아네이트(BASF 社의 M, 메틸렌 디페닐 디이소시아네이트 총량에 대하여 NCO기 함량 33 중량%, 비중 1.25) 를 전도성 고분자 우레탄계 프리폴리머 총량 대비 25 중량%를 투입하여 완전히 용해시켰다.After raising the temperature of the reaction tank to 60℃, 25% by weight of methylene diphenyl diisocyanate (M from BASF, NCO group content 33% by weight, specific gravity 1.25 based on the total amount of methylene diphenyl diisocyanate) was added at 25% by weight based on the total amount of conductive polymer urethane-based prepolymer. and completely dissolved.
이어서, 열안정제(FA-06, ZIKO) 전도성 고분자 우레탄계 프리폴리머 총량 대비 0.8 중량%를 1100 rpm의 속도로 고속 교반하여 분산시킨 후 반응조에 투입하였다. Next, 0.8% by weight of the heat stabilizer (FA-06, ZIKO) based on the total amount of the conductive urethane-based prepolymer was dispersed by high-speed stirring at a speed of 1100 rpm and then added to the reaction tank.
이어서, 중량평균분자량이 1,000 g/mol인 폴리프로필렌글리콜(BASF社) 95 중량% 내에 4-아미노벤조산 소듐염 5 중량%를 분산시켜 얻은 혼합물을 준비하였다. 이때 1500 rpm의 속도로 완전히 용해될 때까지 30분 동안 고속 교반하여 분산시켰다. Next, a mixture obtained by dispersing 5% by weight of sodium salt of 4-aminobenzoic acid in 95% by weight of polypropylene glycol (BASF) with a weight average molecular weight of 1,000 g/mol was prepared. At this time, it was dispersed by high-speed stirring at 1500 rpm for 30 minutes until completely dissolved.
상기 얻어진 혼합물, 즉, 폴리프로필렌글리콜에 4-아미노벤조산 소듐염이 분산된 혼합물을 전도성 고분자 우레탄계 프리폴리머 총량 대비 42.3 중량%를 반응조를 진공상태로 한 후에 서서히 투입하였다. 투입이 완료되면 반응조 온도를 80℃로 승온하고, 150 rpm의 속도로 1시간 동안 1차 반응을 수행하였다. The obtained mixture, that is, a mixture of 4-aminobenzoic acid sodium salt dispersed in polypropylene glycol, was slowly added in an amount of 42.3% by weight based on the total amount of the conductive urethane-based prepolymer after the reaction tank was placed in a vacuum state. Once the addition was completed, the temperature of the reactor was raised to 80°C, and the first reaction was performed for 1 hour at a speed of 150 rpm.
이어서, 전도성 고분자 우레탄계 프리폴리머 총량 대비 사슬연장제로서 1,3-부틸렌글리콜 1 중량% 및 가교제로서 트리메틸올프로판(TMP) 0.8 중량%를 순차적으로 첨가하였고, 이후 촉매로서 디-N-부틸비스(도데실티오)틴 0.1 중량%를 첨가하여, 30분 동안 2차 반응을 수행하였다.Next, 1% by weight of 1,3-butylene glycol as a chain extender and 0.8% by weight of trimethylolpropane (TMP) as a crosslinking agent were sequentially added relative to the total amount of the conductive urethane-based prepolymer, and then di-N-butylbis ( 0.1% by weight of dodecylthio)tin was added, and a secondary reaction was performed for 30 minutes.
이어서, 반응조 온도를 60℃로 줄이고 전도성 고분자 우레탄계 프리폴리머 총량 대비 톨루엔 15 중량%를 투입한 후 20분 동안 교반하였고, 이후 전도성 고분자 우레탄계 프리폴리머 총량 대비 톨루엔 15 중량%를 더 투입하여 다시 20분 동안 교반하였다. Next, the temperature of the reaction tank was reduced to 60°C, 15% by weight of toluene relative to the total amount of the conductive polymer urethane-based prepolymer was added, and stirred for 20 minutes. Afterwards, 15% by weight of toluene compared to the total amount of the conductive polymer urethane-based prepolymer was further added and stirred for another 20 minutes. .
이후 온도를 60℃로 유지한 상태에서 반응을 종료하여, 전도성 고분자 우레탄계 프리폴리머를 제조하였다. Afterwards, the reaction was terminated while maintaining the temperature at 60°C to prepare a conductive urethane-based prepolymer.
[실시예 2][Example 2]
실시예 1에서 폴리프로필렌글리콜 대신 중량평균분자량이 400 g/mol인 폴리에틸렌글리콜을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 우레탄계 프리폴리머를 제조하였다. A conductive urethane-based prepolymer was prepared in the same manner as in Example 1, except that polyethylene glycol with a weight average molecular weight of 400 g/mol was used instead of polypropylene glycol.
[실시예 3][Example 3]
실시예 1에서 4-아미노벤조산 소듐염 대신 설파닐산 소듐염을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 우레탄계 프리폴리머를 제조하였다. A conductive urethane-based prepolymer was prepared in the same manner as Example 1, except that sulfanilic acid sodium salt was used instead of 4-aminobenzoic acid sodium salt.
[실시예 4][Example 4]
실시예 2에서 4-아미노벤조산 소듐염 대신 설파닐산 소듐염을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 우레탄계 프리폴리머를 제조하였다. A conductive urethane-based prepolymer was prepared in the same manner as in Example 1, except that sulfanilic acid sodium salt was used instead of 4-aminobenzoic acid sodium salt in Example 2.
[비교예 1][Comparative Example 1]
실시예 1에서 폴리프로필렌글리콜에 아미노벤조산 소듐염이 분산된 혼합물 대신 폴리프로필렌글리콜을 사용하여 1차 반응을 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 우레탄계 프리폴리머를 제조하였다. A conductive urethane-based prepolymer was prepared in the same manner as in Example 1, except that the first reaction was performed using polypropylene glycol instead of the mixture in which sodium salt of aminobenzoic acid was dispersed in polypropylene glycol.
[비교예 2][Comparative Example 2]
실시예 2에서 폴리에틸렌글리콜에 아미노벤조산 소듐염이 분산된 혼합물 대신 폴리에틸렌글리콜을 사용하여 1차 반응을 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 우레탄계 프리폴리머를 제조하였다. A conductive urethane-based prepolymer was prepared in the same manner as in Example 1, except that in Example 2, the first reaction was performed using polyethylene glycol instead of the mixture in which sodium salt of aminobenzoic acid was dispersed in polyethylene glycol.
평가 1: 전도성 고분자 우레탄계 프리폴리머의 물성Evaluation 1: Physical properties of conductive polymer urethane-based prepolymer
실시예 1 내지 4와 비교예 1 및 2에서 제조된 전도성 고분자 우레탄계 프리폴리머의 물성을 다음과 같은 방법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The physical properties of the conductive urethane-based prepolymers prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were measured by the following method, and the results are shown in Table 1 below.
1) 점도1) Viscosity
Brookfild 점도계를 이용하여 측정하였다.It was measured using a Brookfield viscometer.
2) 비중2) Specific gravity
비중컵을 이용하여 측정하였다.It was measured using a specific gravity cup.
3) 내열도3) Heat resistance
KS C 2344 규격, 너비 25mm, 길이 100mm의 시험편 3개에 대하여 각각 측정한 후 평균치를 적용하였다.KS C 2344 standard, 3 test pieces with a width of 25 mm and a length of 100 mm were each measured and the average value was applied.
4) NCO기 함유량4) NCO group content
적정법을 이용하여 측정하였다.It was measured using a titrimetric method.
5) 접착강도5) Adhesive strength
UTM 기기를 이용하여 측정하였다.It was measured using a UTM device.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 비교예 2Comparative Example 2
점도(cps)Viscosity (cps) 11501150 12001200 11501150 12601260 60006000 70007000
비중importance 0.970.97 0.980.98 0.970.97 0.980.98 0.970.97 0.980.98
내열도(℃)Heat resistance (℃) 210210 190190 205205 198198 130130 140140
NCO기 함유량(중량%)NCO group content (% by weight) 3.153.15 3.183.18 3.123.12 3.23.2 77 88
접착강도(kgf/cm2)Adhesive strength (kgf/cm 2 ) 1.21.2 1.151.15 1.21.2 1.151.15 0.70.7 0.80.8
* 표 1에서 NCO기 함유량(중량%)은 전도성 고분자 우레탄계 프리폴리머의 총량을 기준으로 함* In Table 1, the NCO group content (% by weight) is based on the total amount of conductive polymer urethane-based prepolymer.
평가 2: 전도성 고분자 우레탄계 프리폴리머의 이온전도성 측정Evaluation 2: Measurement of ionic conductivity of conductive polymer urethane-based prepolymer
실시예 1 내지 4와 비교예 1 및 2에서 제조된 전도성 고분자 우레탄계 프리폴리머를 두께 200um, 면적 9cm2 시험편 3개에 대하여 각각 이온전도도를 EIS(Electrochemical Impedance Spectroscopy, Modle: ZIVE SP1 원아테크)장비로 측정한 후 평균치를 적용한 결과를 도 2 내지 7을 참고하여 하기 표 2에 나타내었다.The ionic conductivity of three test pieces of the conductive urethane-based prepolymers prepared in Examples 1 to 4 and Comparative Examples 1 and 2 with a thickness of 200 μm and an area of 9 cm 2 was measured using EIS (Electrochemical Impedance Spectroscopy, Modle: ZIVE SP1 Oneatech) equipment. The results of applying the average value are shown in Table 2 below with reference to FIGS. 2 to 7.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 비교예 2Comparative Example 2
저항(Ω)Resistance (Ω) 124.23124.23 125.16125.16 125.65125.65 125.37125.37 -- --
이온전도도(mS/cm)Ion conductivity (mS/cm) 0.0180.018 0.0180.018 0.0180.018 0.0180.018 00 00
* 이온전도도는 다음과 같은 수식으로 계산* Ion conductivity is calculated using the following formula:
Figure PCTKR2023010395-appb-img-000001
Figure PCTKR2023010395-appb-img-000001
상기 표 1, 표 2을 통하여, 일 구현예에 따라 제조된 실시예 1 내지 4의 전도성 고분자 우레탄계 프리폴리머는 비교예 1 및 2와 비교하여 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 모두 우수함을 확인할 수 있다. 이에 따라, 우수한 접착성 및 내열성이 특히 요구되는 리튬이차전지용 바인더, 내열성 및 안정성이 특히 요구되는 리튬이차전지용 분리막 코팅제, 또한 내열성, 기계적 안정성 및 이온전도성이 특히 요구되는 소듐고체전지용 인터레이어용 소재로 유용하게 사용될 수 있음을 알 수 있다. Through Tables 1 and 2, the conductive urethane-based prepolymers of Examples 1 to 4 prepared according to one embodiment are superior in heat resistance, adhesion, flowability, permeability, and ionic conductivity compared to Comparative Examples 1 and 2. can confirm. Accordingly, it is being used as a binder for lithium secondary batteries that particularly require excellent adhesion and heat resistance, a separator coating agent for lithium secondary batteries that particularly require heat resistance and stability, and an interlayer material for sodium solid-state batteries that particularly require heat resistance, mechanical stability, and ionic conductivity. It can be seen that it can be useful.
- 본 발명은 정부(과학기술정보통신부)의 재원으로 헌국연구재단의 지원을 받아 수행한 연구로 얻은 성과임( 과제번호 : 2020K1A3A1A48114969) - This invention is the result of research conducted with the support of the Constitutional Research Foundation with financial resources from the government (Ministry of Science and ICT) (Project number: 2020K1A3A1A48114969)
- 연구명 : 소듐전고체전지용 이온전도성 고분자 계면층 설계- Research name: Design of ion conductive polymer interfacial layer for sodium all-solid-state battery
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and can be implemented with various modifications within the scope of the claims, the detailed description of the invention, and the accompanying drawings. It is natural that it falls within the scope of the invention.
본 발명은 전도성 고분자 우레탄계 프리폴리머 제조 방법을 제공하고, 상기 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머는 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수하여, 리튬이차전지용 바인더 및 분리막 코팅제와 소듐고체전지용 인터레이어에 모두 적용이 가능하다.The present invention provides a method for producing a conductive polymer urethane-based prepolymer, and the conductive polymer urethane-based prepolymer produced by the above method has excellent heat resistance, adhesion, flowability, permeability, and ionic conductivity, and is used as a binder and separator coating for lithium secondary batteries and sodium solid batteries. It can be applied to all interlayers.

Claims (15)

  1. 반응조에 디이소시아네이트계 화합물을 투입하여 용해시키는 단계;Injecting a diisocyanate-based compound into a reaction tank and dissolving it;
    폴리올에 소듐염이 분산된 혼합물을 상기 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 1차 반응시키는 단계;Injecting a mixture of sodium salt dispersed in polyol into a reaction tank in which the diisocyanate-based compound is dissolved and performing a primary reaction;
    상기 1차 반응 이후 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응시키는 단계; 및 After the first reaction, adding a chain extender, cross-linking agent, and catalyst to perform a second reaction; and
    상기 2차 반응 이후 용매를 투입하는 단계Step of adding solvent after the secondary reaction
    를 포함하는 전도성 고분자 우레탄계 프리폴리머의 제조 방법.Method for producing a conductive polymer urethane-based prepolymer comprising a.
  2. 제1항에서,In paragraph 1:
    상기 디이소시아네이트계 화합물은 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 또는 이들의 조합을 포함하는 전도성 고분자 우레탄계 프리폴리머의 제조 방법.The diisocyanate-based compound is a method of producing a conductive polymer urethane-based prepolymer including methylene diphenyl diisocyanate, hexamethylene diisocyanate, or a combination thereof.
  3. 제1항에서,In paragraph 1:
    상기 폴리올은 폴리에틸렌글리콜, 폴리프로필렌글리콜 또는 이들의 조합을 포함하는 전도성 고분자 우레탄계 프리폴리머의 제조 방법.The polyol is a method of producing a conductive polymer urethane-based prepolymer comprising polyethylene glycol, polypropylene glycol, or a combination thereof.
  4. 제3항에서,In paragraph 3,
    상기 폴리올은 상기 폴리에틸렌글리콜이고, The polyol is the polyethylene glycol,
    상기 폴리에틸렌글리콜의 중량평균분자량은 400 g/mol 내지 1,000 g/mol 인 전도성 고분자 우레탄계 프리폴리머의 제조 방법.A method for producing a conductive polymer urethane-based prepolymer wherein the polyethylene glycol has a weight average molecular weight of 400 g/mol to 1,000 g/mol.
  5. 제3항에서,In paragraph 3,
    상기 폴리올은 상기 폴리프로필렌글리콜이고, The polyol is the polypropylene glycol,
    상기 폴리프로필렌글리콜의 중량평균분자량은 1,000 g/mol 내지 5,000 g/mol 인 전도성 고분자 우레탄계 프리폴리머의 제조 방법.A method for producing a conductive polymer urethane-based prepolymer wherein the polypropylene glycol has a weight average molecular weight of 1,000 g/mol to 5,000 g/mol.
  6. 제1항에서,In paragraph 1:
    상기 소듐염은 설파닐산(sulfanilic acid) 소듐염, 4-아미노벤조산(4-aminobenzoic acid) 소듐염, 2-아미노벤젠-1,4-디설폰산 소듐염, 2-아미노벤젠-1,4-디카르복실산 소듐염, 소듐 헥사플로로포스페이트(Sodium hexafluorophosphate,NaPF6), 과염소산나트륨(Sodium perchlorate, NaClO4), 이들의 수화물 또는 이들의 조합을 포함하는 전도성 고분자 우레탄계 프리폴리머의 제조 방법.The sodium salt includes sodium salt of sulfanilic acid, sodium salt of 4-aminobenzoic acid, sodium salt of 2-aminobenzene-1,4-disulfonic acid, and 2-aminobenzene-1,4-dicar. Method for producing a conductive polymer urethane-based prepolymer comprising sodium carboxylic acid salt, sodium hexafluorophosphate (NaPF6), sodium perchlorate (NaClO4), hydrates thereof, or a combination thereof.
  7. 제1항에서,In paragraph 1:
    상기 전도성 고분자 우레탄계 프리폴리머는 NCO기를 상기 전도성 고분자 우레탄계 프리폴리머 총량 대비 3.0 중량% 내지 3.4 중량%로 포함하는 전도성 고분자 우레탄계 프리폴리머의 제조 방법.A method of producing a conductive polymer urethane-based prepolymer, wherein the conductive polymer urethane-based prepolymer contains an NCO group in an amount of 3.0% to 3.4% by weight based on the total amount of the conductive polymer urethane-based prepolymer.
  8. 제1항에서,In paragraph 1:
    상기 전도성 고분자 우레탄계 프리폴리머의 점도는 1000 cps 내지 1500 cps 인 전도성 고분자 우레탄계 프리폴리머의 제조 방법.A method of producing a conductive polymer urethane-based prepolymer wherein the conductive polymer urethane-based prepolymer has a viscosity of 1000 cps to 1500 cps.
  9. 제1항에서,In paragraph 1:
    상기 전도성 고분자 우레탄계 프리폴리머의 비중은 0.97 내지 0.98 인 전도성 고분자 우레탄계 프리폴리머의 제조 방법.A method of producing a conductive polymer urethane-based prepolymer wherein the specific gravity of the conductive polymer urethane-based prepolymer is 0.97 to 0.98.
  10. 제1항에서,In paragraph 1:
    상기 전도성 고분자 우레탄계 프리폴리머의 내열도는 180℃ 내지 220℃인 전도성 고분자 우레탄계 프리폴리머의 제조 방법.A method of producing a conductive polymer urethane-based prepolymer wherein the heat resistance of the conductive polymer urethane-based prepolymer is 180°C to 220°C.
  11. 제1항에서,In paragraph 1:
    상기 전도성 고분자 우레탄계 프리폴리머의 접착강도는 폴리에틸렌 필름 또는 폴리프로필렌 필름의 전단에 대하여 1.1 kgf/cm2 내지 1.5 kgf/cm2 인 전도성 고분자 우레탄계 프리폴리머의 제조 방법.The adhesive strength of the conductive polymer urethane-based prepolymer is 1.1 kgf/cm 2 to 1.5 kgf/cm 2 with respect to the shear of the polyethylene film or polypropylene film.
  12. 제1항에서,In paragraph 1:
    상기 전도성 고분자 우레탄계 프리폴리머의 이온전도도는 0.005 mS/cm 내지 0.03 mS/cm 인 전도성 고분자 우레탄계 프리폴리머의 제조 방법.A method of producing a conductive polymer urethane-based prepolymer wherein the ionic conductivity of the conductive polymer urethane-based prepolymer is 0.005 mS/cm to 0.03 mS/cm.
  13. 제1항에서,In paragraph 1:
    상기 전도성 고분자 우레탄계 프리폴리머는 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 사용되는 전도성 고분자 우레탄계 프리폴리머의 제조 방법.The conductive polymer urethane-based prepolymer is used as a binder for lithium secondary batteries, a separator coating agent for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof.
  14. 청구항 제1항 내지 제12항 중에서 선택된 어느 하나의 항에 따른 전도성 고분자 우레탄계 프리폴리머의 제조 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머.A conductive polymer urethane-based prepolymer prepared by the method for producing a conductive polymer urethane-based prepolymer according to any one of claims 1 to 12.
  15. 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 사용되기 위한 전도성 고분자 우레탄계 프리폴리머로서, 상기 청구항 제1항 내지 제11항 중에서 선택된 어느 하나의 항에 따른 전도성 고분자 우레탄계 프리폴리머의 제조 방법으로 제조된 전도성 고분자 우레탄계 프리폴리머.A conductive polymer urethane-based prepolymer for use in a binder for lithium secondary batteries, a separator coating for lithium secondary batteries, an interlayer for sodium solid batteries, or a combination thereof, the conductive polymer according to any one of claims 1 to 11 selected from the above. A conductive polymer urethane-based prepolymer produced by the manufacturing method of a urethane-based prepolymer.
PCT/KR2023/010395 2021-11-25 2023-07-19 Method for preparing conductive polymer urethane-based prepolymer, and conductive polymer urethane-based prepolymer prepared thereby WO2024019520A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20210164184 2021-11-25
KR10-2022-0089055 2022-07-19
KR1020220089055A KR102479898B1 (en) 2021-11-25 2022-07-19 Method of manufacturing urethane-based prepolymer
KRPCT/KR2022/017123 2022-11-03
PCT/KR2022/017123 WO2023096206A1 (en) 2021-11-25 2022-11-03 Method for preparing urethane-based prepolymer

Publications (1)

Publication Number Publication Date
WO2024019520A1 true WO2024019520A1 (en) 2024-01-25

Family

ID=84578512

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2022/017123 WO2023096206A1 (en) 2021-11-25 2022-11-03 Method for preparing urethane-based prepolymer
PCT/KR2023/010395 WO2024019520A1 (en) 2021-11-25 2023-07-19 Method for preparing conductive polymer urethane-based prepolymer, and conductive polymer urethane-based prepolymer prepared thereby

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017123 WO2023096206A1 (en) 2021-11-25 2022-11-03 Method for preparing urethane-based prepolymer

Country Status (2)

Country Link
KR (1) KR102479898B1 (en)
WO (2) WO2023096206A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102479898B1 (en) * 2021-11-25 2022-12-22 수경화학 주식회사 Method of manufacturing urethane-based prepolymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263981A (en) * 1993-03-12 1994-09-20 Toyobo Co Ltd Thermoplastic polyurethane resin composition
KR100343545B1 (en) * 1994-12-22 2002-11-23 에스케이케미칼주식회사 Solution type polyurethane resin for use in magnetic tapes
KR20070078601A (en) * 2006-01-27 2007-08-01 삼성에스디아이 주식회사 Polyurethane binder, electrodes containing the same and the lithium battery containing the electrodes
KR20160032017A (en) * 2013-07-18 2016-03-23 다이이치 고교 세이야쿠 가부시키가이샤 Binder for electrode of lithium secondary cell
KR20180109166A (en) * 2017-03-27 2018-10-08 주식회사 자이온화학 an urethane adhesive with flame resistance and the method of the urethane adhesive
KR102479898B1 (en) * 2021-11-25 2022-12-22 수경화학 주식회사 Method of manufacturing urethane-based prepolymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017998A (en) * 1998-06-17 2000-01-25 H.B. Fuller Licensing & Financing,Inc. Stable aqueous polyurethane dispersions
KR100606983B1 (en) * 2004-11-17 2006-08-01 에스케이씨 주식회사 Manufacturing method of ionic polyols containing metal sulfoisophthalate in the main chain and Composition for water-dispersible polyurethane elastomer based on the ionic polyols
KR101678414B1 (en) * 2014-09-03 2016-11-22 한국화학연구원 Waterborne Polyurethane Resin Composition and Manufacturing Method of th Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263981A (en) * 1993-03-12 1994-09-20 Toyobo Co Ltd Thermoplastic polyurethane resin composition
KR100343545B1 (en) * 1994-12-22 2002-11-23 에스케이케미칼주식회사 Solution type polyurethane resin for use in magnetic tapes
KR20070078601A (en) * 2006-01-27 2007-08-01 삼성에스디아이 주식회사 Polyurethane binder, electrodes containing the same and the lithium battery containing the electrodes
KR20160032017A (en) * 2013-07-18 2016-03-23 다이이치 고교 세이야쿠 가부시키가이샤 Binder for electrode of lithium secondary cell
KR20180109166A (en) * 2017-03-27 2018-10-08 주식회사 자이온화학 an urethane adhesive with flame resistance and the method of the urethane adhesive
KR102479898B1 (en) * 2021-11-25 2022-12-22 수경화학 주식회사 Method of manufacturing urethane-based prepolymer

Also Published As

Publication number Publication date
WO2023096206A1 (en) 2023-06-01
KR102479898B1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2017131377A1 (en) Lithium-sulfur battery separation film having composite coating layer including polydopamine, manufacturing method therefor, and lithium-sulfur battery comprising same
WO2017217596A1 (en) Composite electrolyte for lithium metal battery, method for manufacturing same, and lithium metal battery comprising same
WO2018021731A1 (en) Electrolyte for lithium metal battery and lithium metal battery comprising same
WO2017171335A1 (en) Method for preparing electrode slurry
WO2024019520A1 (en) Method for preparing conductive polymer urethane-based prepolymer, and conductive polymer urethane-based prepolymer prepared thereby
WO2016129745A1 (en) Silicon anode polymer binder physically cross-linked through reversible acid-base interaction
WO2019103311A1 (en) Positive electrode for all-solid state lithium-polymer secondary battery, method for manufacturing same, and secondary battery comprising same
WO2017082546A1 (en) Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same
WO2019208958A1 (en) Cathode for solid electrolyte battery and solid electrolyte battery comprising same
WO2018088735A1 (en) Anode and method for fabricating same
WO2019112323A1 (en) Slurry composition for coating secondary battery separator and secondary battery separator using same
WO2020046026A1 (en) Anode for secondary battery, having optimized binder distribution, and secondary battery comprising same
WO2023022492A1 (en) Cathode for all-solid-state battery, and all-solid-state battery comprising same
WO2020111318A1 (en) Cathode active material for lithium secondary battery
WO2019168278A1 (en) Anode slurry composition, and anode and secondary battery manufactured using same
WO2020122459A1 (en) Anode active material for lithium secondary battery and secondary battery comprising same
WO2018174619A1 (en) Method for producing slurry composition for secondary battery positive electrode, positive electrode for secondary battery produced using same, and lithium secondary battery comprising same
WO2020214016A1 (en) Electrolyte membrane for all-solid-state battery, and all-solid-state battery including same
WO2018174616A1 (en) Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery comprising same
WO2019083257A1 (en) Separator for lithium-sulfur battery, and lithium-sulfur battery comprising same
CN113871710B (en) Solid electrolyte and solid battery comprising same
WO2021256763A1 (en) Capsule for lithium-sulfur secondary battery, and lithium-sulfur secondary battery comprising same
WO2022092679A1 (en) Electrode assembly and battery cell including same
WO2021241959A1 (en) Free-standing film-type positive electrode material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2018012881A1 (en) Binder for secondary battery electrode, composition comprising same for secondary battery electrode, and secondary battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843366

Country of ref document: EP

Kind code of ref document: A1