WO2024018814A1 - 仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類 - Google Patents

仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類 Download PDF

Info

Publication number
WO2024018814A1
WO2024018814A1 PCT/JP2023/023110 JP2023023110W WO2024018814A1 WO 2024018814 A1 WO2024018814 A1 WO 2024018814A1 JP 2023023110 W JP2023023110 W JP 2023023110W WO 2024018814 A1 WO2024018814 A1 WO 2024018814A1
Authority
WO
WIPO (PCT)
Prior art keywords
false
twisted yarn
thermoplastic resin
yarn
polyester thermoplastic
Prior art date
Application number
PCT/JP2023/023110
Other languages
English (en)
French (fr)
Inventor
慎也 中道
太一 吉開
康二郎 稲田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024018814A1 publication Critical patent/WO2024018814A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist

Definitions

  • the present invention relates to false-twisted yarns, composite false-twisted yarns, twisted yarns, woven and knitted fabrics, and clothing containing the same.
  • Patent Document 1 proposes a polyester composite false twisted yarn made of a polyester yarn having latent crimp performance and another polyester yarn.
  • Patent Document 2 performs false twisting
  • the multifilaments take a close-packed structure in the false-twisting process, making the single yarn surface smooth and making it impossible to obtain a natural appearance.
  • the present invention has been made in view of the above-mentioned circumstances, and its purpose is to have a worsted-like texture that has a dry feel, resilience, and a natural appearance with a high heathered feel and suppressed glare.
  • An object of the present invention is to provide a false-twisted yarn that exhibits functionality such as high sensitivity and stretchability, as well as composite false-twisted yarns, twisted yarns, woven or knitted fabrics, and clothing containing the false-twisted yarn.
  • the present invention has the following configuration.
  • the difference (M A ⁇ M B ) between the weight average molecular weight M A of the polyester thermoplastic resin A and the weight average molecular weight M B of the polyester thermoplastic resin B is 2,000 to 15,000.
  • the polyester thermoplastic resin A and the polyester thermoplastic resin B are eccentrically joined.
  • the apparent thick/thin ratio (D thick /D thin ) of the false twisted yarn is 1.05 to 3.00.
  • the surface of the false twisted yarn has slits in the fiber axis direction and cracks in a direction substantially perpendicular to the fiber axis direction.
  • a composite false-twisted yarn comprising the false-twisted yarn according to any one of [1] to [3] and at least one other yarn.
  • [6] Contains either the false twisted yarn according to any one of [1] to [3] or the composite false twisted yarn according to [4] or [5], and has a twist coefficient of 1200 to 6000. , twisted yarn.
  • the false twisting process has a texture such as a dry feeling and resilience, a high heathered feel, suppressed glare, a natural appearance, high sensitivity of a worsted texture, and functionality such as stretchability.
  • Yarn is obtained.
  • composite false-twisted yarns, twisted yarns, woven and knitted fabrics, and clothing using the false-twisted yarn of the present invention are useful for items in the field of outwear worn as women's and men's clothing, such as jackets, suits, bottoms, etc. It can be suitably used for.
  • FIG. 1 is a cross-sectional view showing an example of the existence form of polyester thermoplastic resin A and polyester thermoplastic resin B in the false twisted yarn of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the presence of the polyester thermoplastic resin A and the polyester thermoplastic resin B in the false twisted yarn of the present invention.
  • FIG. 3 is a perspective view illustrating one embodiment of the surface of the false twisted yarn of the present invention.
  • FIG. 4 is a schematic diagram of a false-twisting apparatus used in manufacturing the false-twisted yarn of the present invention.
  • FIG. 5 is a schematic diagram of a final distribution plate according to Example 1 of the false twisted yarn of the present invention.
  • FIG. 6 is a schematic diagram of a final distribution plate according to Comparative Example 8 of the false twisted yarn of the present invention.
  • the false twisted yarn of the present invention contains polyester thermoplastic resin A and polyester thermoplastic resin B, and satisfies the following requirements.
  • the difference (M A ⁇ M B ) between the weight average molecular weight M A of the polyester thermoplastic resin A and the weight average molecular weight M B of the polyester thermoplastic resin B is 2,000 to 15,000.
  • the polyester thermoplastic resin A and the polyester thermoplastic resin B are eccentrically joined.
  • the apparent thick/thin ratio (D thick /D thin ) of the false twisted yarn is 1.05 to 3.00.
  • the surface of the false twisted yarn has slits in the fiber axis direction and cracks in a direction substantially perpendicular to the fiber axis direction.
  • the false twisted yarn of the present invention is obtained by false twisting a composite fiber containing a polyester thermoplastic resin A and a polyester thermoplastic resin B. False twisting creates a random crimp pattern for each single yarn, giving it a dry feel, stretch, and resilience.
  • the false twisted yarn of the present invention contains polyester thermoplastic resin A and polyester thermoplastic resin B.
  • polyester resin used in the false twisted yarn of the present invention include polyethylene terephthalate resin whose main repeating unit is ethylene terephthalate, polytrimethylene terephthalate resin whose main repeating unit is trimethylene terephthalate, or A polybutylene terephthalate resin whose main repeating unit is butylene terephthalate is preferred. More preferably, the main repeating unit of both the polyester thermoplastic resin A and the polyester thermoplastic resin B is ethylene terephthalate.
  • the main repeating unit is ethylene terephthalate means that the proportion of the structure derived from ethylene terephthalate contained in the repeating unit is 60 mol% or more. The same applies hereafter.
  • the above polyethylene terephthalate resin, polytrimethylene terephthalate resin, and polybutylene terephthalate resin may contain a small amount (usually less than 30 mol% (amount relative to the total amount of acid component and diol component 100 mol%)) of a copolymerized component as necessary. may have. It is preferable that the copolymerization component of the polyester thermoplastic resin A is 8 mol % or less, since it is easy to maintain strength even after alkali weight loss and to obtain softness. Further, by controlling the copolymerization component to 8 mol % or less, the molecular orientation in the false-twisted yarn can be maintained even after dyeing, thereby improving dimensional stability.
  • both the polyester thermoplastic resin A and the polyester thermoplastic resin B have a copolymerization component of 5 mol% or less, and more preferably, both the polyester thermoplastic resin A and the polyester thermoplastic resin B contain a copolymerization component.
  • Polyethylene terephthalate resin By using polyethylene terephthalate that does not contain copolymerized components, the boiling water shrinkage rate of the false twisted yarn can be easily lowered, making it easier for crimp to occur in woven or knitted fabrics, resulting in stretchability and resilience. This makes it easier to recycle the fibers, and it also makes it easier to recycle the fibers.
  • the boiling water shrinkage rate of the false twisted yarn after false twisting and before crack formation (hereinafter referred to as the false twisted yarn before crack formation) is preferably 10.0% or less.
  • the boiling water shrinkage rate is 10.0% or less, the fibers are not restricted in the woven or knitted fabric and the stretchability is further improved.
  • a micropore forming agent, a cationic dyeing agent, and a coloring inhibitor may be added as necessary within a range that does not impair the purpose of the present invention.
  • a heat stabilizer, a flame retardant, a fluorescent whitening agent, a matting agent, a coloring agent, an antistatic agent, a hygroscopic agent, an antibacterial agent, an inorganic fine particle, etc. may be contained one or more.
  • the false twisted yarn of the present invention has a difference between the weight average molecular weight M A of the polyester thermoplastic resin A and the weight average molecular weight M B of the polyester thermoplastic resin B (M A - M B , hereinafter simply referred to as "weight average molecular weight M B").
  • the molecular weight difference (sometimes referred to as “difference in molecular weight") is between 2,000 and 15,000. If the difference in weight average molecular weight is less than 2000, the stretchability of the false twisted yarn will be low and the glare suppression effect will be insufficient.
  • the difference in weight average molecular weight is preferably 5000 or more. On the other hand, if the difference in weight average molecular weight is greater than 15,000, the strength of the yarn decreases and spinning becomes unstable.
  • the difference in weight average molecular weight is preferably 13,000 or less.
  • the weight average molecular weight M A of the polyester thermoplastic resin A is preferably in the range of 20,000 to 28,000
  • the weight average molecular weight M B of the polyester thermoplastic resin B is preferably in the range of 12,000 to 20,000. It is preferable that When each of these values is within this range, the functionality and durability of the false-twisted yarn are improved, and the process stability when spinning the composite fiber that is the source of the false-twisted yarn is also improved.
  • weight average molecular weight in the present invention is measured by the method described in Examples.
  • polyester thermoplastic resin A and polyester thermoplastic resin B are eccentrically joined.
  • shrinkage difference between the polyester thermoplastic resin A and the polyester thermoplastic resin B results in a coil-like structure, so that the stretchability of the obtained fabric is improved.
  • joined eccentrically means a state in which polyester thermoplastic resin A and polyester thermoplastic resin B are joined without being substantially separated in a cross section that is substantially perpendicular to the fiber axis of the false twisted yarn. This refers to a state in which the centers of gravity of each object are shifted from each other.
  • eccentrically joined structures include side-by-side and eccentric core-sheath structures, and structures made of polyester thermoplastic resin A (1) as shown in the cross-sectional shape of the false twisted yarn in Figure 1.
  • examples include a structure in which a portion is exposed from the polyester thermoplastic resin B(2).
  • the false twisted yarn is of side-by-side type, it is necessary to form slits parallel to the fiber axis direction in the polyester thermoplastic resin B at the time of forming the composite fiber before false twisting.
  • the cross-sectional structure is such that polyester thermoplastic resin A (1) is covered with polyester thermoplastic resin B (2).
  • the false twisted yarn having the cross-sectional structure shown in FIG. 1 can be obtained, for example, by obtaining an eccentric core-sheath type conjugate fiber and then exposing a part of the polyester thermoplastic resin A by alkali reduction. At this time, by forming an eccentric core-sheath type composite fiber using polyester thermoplastic resins with the above-mentioned difference in weight average molecular weight, fine particles are formed at the bonding interface between polyester thermoplastic resin A and polyester thermoplastic resin B. It is possible to stably form irregularities, and by exposing a part of the polyester thermoplastic resin A, these irregularities are exposed and become slits to be described later.
  • the minimum value t min of the thickness t (3) of the polyester thermoplastic resin B (2) covering the polyester thermoplastic resin A (1) and the The ratio (t min /D) to the fiber diameter D is preferably 0.01 to 0.10.
  • (t min /D) is 0.01 or more, the quality of the fabric is improved in that the generation of fuzz is suppressed, and the slit forming property is improved.
  • (t min /D) is preferably 0.02 or more.
  • stretchability is further improved due to sufficient crimp development force.
  • (t min /D) is preferably 0.08 or less.
  • the length of the portion where the region where the thickness t satisfies 1.00t min ⁇ t ⁇ 1.05t min and the peripheral line of the composite fiber overlaps C t
  • C t ⁇ 0.33C with respect to the circumferential length C of the entire composite fiber.
  • the false twisted yarn of the present invention has an apparent thick/thin ratio (D thick /D thin ) of 1.05 to 3.00.
  • the apparent thick/thin ratio (D thick /D thin ) refers to the portion where the width of the false twisted yarn bundle in the direction orthogonal to the fiber axis direction at a load of 0.11 cN/dtex is relatively thicker than the average value. It is the ratio of the fiber diameter (D thick ) of the fiber to the fiber diameter (D thin ) of the portion that is relatively thinner than the average value.
  • the apparent thick/thin ratio (D thick /D thin ) of the false twisted yarn of the present invention is less than 1.05, a heathered appearance cannot be obtained when it is made into a woven or knitted fabric.
  • (D thick /D thin ) is preferably 1.25 or more, more preferably 1.40 or more. Furthermore, if (D thick /D thin ) exceeds 3.00, the appearance will deviate from the natural appearance and will not be desirable.
  • (D thick /D thin ) is preferably 2.00 or less.
  • the false twisted yarn of the present invention has slits in the axial direction of the single fibers and cracks in a direction substantially perpendicular to the axial direction of the single fibers on the surface of the single fibers.
  • a crack is an unevenness in a direction substantially perpendicular to the single fiber axis direction of the false twisted yarn, and the depth of the crack is preferably 0.5 to 5.0 ⁇ m.
  • slits are irregularities formed in the axial direction of the single fibers of the false twisted yarn, and the depth of the slits is preferably 0.1 to 1.5 ⁇ m.
  • the depth of the crack is 0.5 ⁇ m or more or the depth of the slit is 0.1 ⁇ m or more, the glare suppression effect is further improved.
  • wear resistance is improved by making the depth of the slits 5.0 ⁇ m or less, or 1.5 ⁇ m or less.
  • the width of the crack is preferably 1.0 to 30.0 ⁇ m, and the width of the slit is preferably 0.1 to 10.0 ⁇ m. Moreover, it is preferable that the length of the slit is 100 ⁇ m or more.
  • each crack or slit shall be measured at its deepest point.
  • the direction substantially perpendicular to the fiber axis direction of the false twisted yarn is the direction along the circumference of the single fibers of the false twisted yarn 4, as schematically illustrated in FIG. The direction is within ⁇ 80° with respect to the axial direction.
  • FIG. 3 is a perspective view illustrating one embodiment of the surface of the false twisted yarn of the present invention, in which the single fiber surface of the false twisted yarn 4 has slits 6 in the single fiber axis direction. It has a crack 5 in a direction substantially perpendicular to the direction. The length of such a crack is not particularly limited.
  • the ratio S A :S B of the polyester thermoplastic resin A area (S A ) and the polyester thermoplastic resin B area (S B ) of the false twisted yarn before crack formation which will be described later.
  • the ratio is around 50:50 (for example, about 40 to 60:60 to 40)
  • cracks are likely to form in an area of about 1/2 of the outer circumference of the single fiber of the false twisted yarn.
  • the length be about 1/2 of the outer circumference of a single fiber of the false twisted yarn, since this has a good balance with slit formation and glare can be further suppressed when it is made into a woven or knitted fabric.
  • the above-mentioned “approximately 1/2 of the length of the outer circumference” may mean that one crack forms about 1/2 of the length of the outer circumference of the single fiber, or 2
  • the above-mentioned cracks may be formed in a dispersed manner in an area of about 1/2 of the length of the outer circumference of the single fiber. Further, it does not have to be strictly 1/2 of the length of the outer circumference, and approximately 1/2 circumference is sufficient.
  • the number of cracks is 10 or less and the dispersion form is such that it covers almost the entire area in the outer circumferential direction of the area where no slits are formed, and such a dispersion form is such that the cracks are formed in 10 or less cracks. It is more preferable that cracks are formed at a frequency within a range of 1 cm in the direction.
  • the fiber axis direction of the false-twisted yarn is the longitudinal direction of the false-twisted yarn 4, as schematically illustrated in FIG.
  • the length in the circumferential direction of the false twisted yarn in which such slits are formed is not particularly limited, but it is recommended that it be about 1/2 of the circumferential length of a single fiber of the false twisted yarn to prevent crack formation. It is preferable because it has good balance and can further suppress glare when made into a woven or knitted fabric. Furthermore, it is particularly preferable that both cracks and slits be formed in the single fibers constituting the false twisted yarn. In that case, as shown in FIG. 3, it is preferable to have a region in which cracks are formed in about half the outer circumference and a region in which slits are formed in about half the outer circumference.
  • each crack or slit is observed using an electron microscope, and the average value of 10 cracks or slits measured within one false twisted yarn is used.
  • the specific measurement method is as described in Examples.
  • Examples of the method for forming cracks on the surface of the false-twisted yarn include a method of alkali reduction of the false-twisted yarn after pin stretching within a range not exceeding the natural stretching ratio of the composite fiber.
  • a difference in the orientation of the molecules constituting the composite fiber occurs in the length direction of the fiber, and the unoriented portion is preferentially eluted by alkali, so that the weight loss rate increases with the fiber length. This results in different directions, and unevenness, that is, cracks, are formed in a direction substantially orthogonal to the fiber axis direction.
  • the method for forming slits on the surface of the false twisted yarn is to change the shape of the discharge hole from the usual circular shape when obtaining composite fibers, and to change the shape of the discharge hole to have a multi-lobed cross section with 8 or more protrusions.
  • An example of this method is to create unevenness in the fiber axis direction.
  • slits can also be formed by obtaining a false twisted yarn from a composite fiber with an eccentric core-sheath structure and then reducing the yarn with alkali.
  • a method for forming slits based on a composite fiber having an eccentric core-sheath structure will be described in detail.
  • polyester thermoplastic resin B is preferentially reduced, so polyester thermoplastic resin A is exposed and the unevenness at the bonding interface is exposed. This results in the formation of unevenness (slits) in the direction of the fiber axis.
  • the slit based on the above-mentioned conjugate fiber with an eccentric core-sheath structure because it can be formed more stably and the slit can be made deep.
  • the present invention achieves textures such as dryness and resilience, which were issues with conventional false twisted yarns, as well as high combed-like sensitivity and stretch, such as a natural appearance. Both characteristics of functionality such as gender can be solved at once.
  • the cross-sectional shape of the false twisted yarn is not particularly limited, and a circular, elliptical, triangular, etc. cross-sectional shape can be adopted, but a circular cross-sectional shape is preferable for the composite fiber for obtaining the false twisted yarn. It is more preferable because it allows stable spinning.
  • the ratio S A :S B of the area of polyester thermoplastic resin A (S A ) to the area of polyester thermoplastic resin B (S B ) in the cross section of the false twisted yarn before crack formation is
  • the ratio is preferably 70:30 to 30:70, more preferably 60:40 to 40:60, physical properties are improved.
  • S A ⁇ SB in order to make the crimps of the false twisted yarn more fine.
  • the single yarn fineness of the false twisted yarn in the present invention is preferably 3.0 dtex or more. Further, the upper limit is preferably 5.0 dtex or less. By setting it within this range, the dry feel when made into a woven or knitted fabric becomes high, and a texture closer to that of worsted wool can be obtained.
  • the single yarn fineness is a value calculated from the total fineness (dtex)/number of filaments.
  • the false twisted yarn of the present invention has a crimp rigidity (CR) of 25.0% or more as measured from the decomposed yarn of the woven or knitted material.
  • CR crimp rigidity
  • the woven or knitted fabric exhibits more crimp and better stretchability.
  • CR is more preferably 30.0% or more.
  • CR is preferably 50.0% or less.
  • the stretching ratio during false twisting may be increased to increase the orientation difference between the polyester thermoplastic resin A and the polyester thermoplastic resin B.
  • the composite false twisted yarn of the present invention comprises the false twisted yarn of the present invention and at least one other yarn. By doing so, the heathered feel of the woven or knitted fabric becomes even better.
  • polyester yarns are not particularly limited as long as they are different from the false twisted yarn of the present invention, but among them, polyester yarns are preferred because they have good mechanical properties and excellent dimensional stability against changes in humidity and temperature.
  • it is made of resin.
  • polyester resins include polyethylene terephthalate resins whose main repeating unit is ethylene terephthalate, polytrimethylene terephthalate resins whose main repeating unit is trimethylene terephthalate, or polybutylene whose main repeating unit is butylene terephthalate. Terephthalate resins are preferred.
  • the above polyethylene terephthalate resin or polybutylene terephthalate resin may have a small amount (usually less than 30 mol% (amount relative to the total 100 mol% of acid component and diol component)) of a copolymer component, if necessary. good. Furthermore, from the viewpoint of soft texture and fiber recycling, it is more preferable that all yarns constituting the composite false twisted yarn are made of polyethylene terephthalate resin containing no covalent components.
  • the boiling water shrinkage rate of the other yarns is 10.0% or less.
  • the boiling water shrinkage rate is 10.0% or less, the false twisted yarn and other yarns are less likely to be restricted in the woven or knitted fabric, and the stretchability is further improved.
  • the other yarns are obviously crimped yarns.
  • the term "actually crimped yarn” refers to a yarn with an expansion/contraction recovery rate of 5.0% or more, such as a yarn in which two types of polymers with different contractility are combined in a side-by-side or eccentric core-sheath type, or a yarn with a false twist. This shows something that has been mechanically crimped by processing.
  • the CR of the other yarns is preferably 10.0 to 20.0% higher than the CR of the false twisted yarn.
  • the false twisted yarn and crimps with different coil diameters are mixed in the composite false twisted yarn, so it is possible to obtain a dry feel closer to that of worsted yarn without impeding stretchability.
  • the other threads as the raw threads before being combined are latent crimped threads. After the latent crimped yarn is combined, it undergoes a process such as dyeing to become an actual crimped yarn that constitutes the composite false twisted yarn of the present invention.
  • the twisted yarn of the present invention includes either the above-mentioned false-twisted yarn or the above-mentioned composite false-twisted yarn, and has a twist coefficient of 1200 to 6000.
  • the twist coefficient is preferably 1500 to 4500.
  • the twist coefficient can be calculated using the following formula.
  • Twist coefficient (K) number of twists (T/m) x ⁇ (fineness (dtex) x 0.9).
  • the twisting direction is the same as the twisting direction of false twisting. If the twisting direction and the false twisting direction are the same, the resilience is further improved.
  • the woven or knitted fabric of the present invention contains at least a portion of the false twisted yarn, composite false twisted yarn, or twisted yarn thereof of the present invention.
  • the proportion of these used is preferably 30% by mass or more, more preferably 40% by mass or more based on the mass of the woven or knitted material. It is also a preferred embodiment that all of the fibers constituting the woven or knitted fabric are made of any one of the false twisted yarn, composite false twisted yarn, and twisted yarn of the present invention.
  • the fabric structure of the woven or knitted fabric of the present invention is a woven fabric or a knitted fabric.
  • the fabric structure is selected from plain weave, twill weave, satin weave, and variations thereof depending on the texture and design. Furthermore, a multiple weave structure such as a double weave may be used.
  • the knitting structure may be selected according to the desired texture and design, and examples of weft knitting include jersey knitting, rubber knitting, pearl knitting, tuck knitting, floating knitting, lace knitting, and variations thereof.
  • Warp knitting includes single denby knitting, single vandyke knitting, single cord knitting, Berlin knitting, double denby knitting, atlas knitting, cording knitting, half tricot knitting, satin knitting, sharkskin knitting, and their variations. can be mentioned.
  • relatively simple weaving and knitting structures such as plain weave or its variations, twill weave or its variations, and satin weave are more preferable in order to have a delicate worsted texture and a deep natural appearance.
  • the clothing of the present invention includes at least a portion of the woven or knitted fabric of the present invention.
  • the false twisted yarn, composite false twisted yarn, twisted yarn, or woven or knitted fabric of the present invention can have a texture such as dryness and resilience, and a high combed-like sensitivity and stretchability such as a natural appearance. It can be made into functional clothing.
  • the clothing of the present invention refers to items in the field of outwear worn as women's and men's clothing, sports clothing, and outdoor clothing, particularly jackets, suits, bottoms, and parts thereof, such as front bodies, back bodies, and collars. These items include items such as jackets, sleeves, chest pockets, and side pockets, as well as innerwear, socks, and hats.
  • the false-twisted yarn of the present invention can be produced by false-twisting a composite fiber obtained by winding the discharged thermoplastic resin as an undrawn yarn or a semi-drawn yarn, and then performing alkali weight reduction.
  • the use of composite fibers obtained in the process of winding and stretching as semi-drawn yarns for false twisting makes it possible to fabricate woven or knitted fabrics and dye them due to the orientation difference between polyester thermoplastic resin A and polyester thermoplastic resin B. It is preferable because it has particularly excellent stretchability when processed, and because the polyester resin A is highly oriented, it has excellent resistance to embrittlement due to alkali weight loss.
  • polyester thermoplastic resin A and polyester thermoplastic resin B are respectively melted and discharged from a spinneret, preferably at 1400 m/min to 3800 m/min.
  • the yarn is wound as an undrawn yarn or a semi-drawn yarn at a spinning speed of 10 minutes.
  • the false twisted yarn of the present invention it is preferable to make the false twisted yarn of the present invention from a semi-drawn yarn because it has excellent abrasion resistance after alkali weight loss. Since the semi-drawn yarn has more advanced crystallization than the undrawn yarn, local fiber breakage due to alkali weight loss can be suppressed.
  • the spinning temperature is preferably +20°C to +50°C with respect to the melting points (T mA , T mB ) of the polyester thermoplastic resin A and the polyester thermoplastic resin B.
  • (T mA , T mB )+20° C. or higher can prevent the melted polyester thermoplastic resin A and polyester thermoplastic resin B from solidifying and clogging inside the spinning machine piping.
  • by setting the temperature to (T mA , T mB )+50° C. or lower thermal deterioration of the molten polyester thermoplastic resin A and polyester thermoplastic resin B can be suppressed.
  • the spindle used in the method for producing false twisted yarn of the present invention may have any known internal structure as long as it is capable of spinning with stable quality and operation.
  • the cross section of the false twisted yarn of the present invention is a side-by-side type, by making the shape of the nozzle uneven, a slit in a direction substantially parallel to the fiber axis direction can be obtained on the surface of the polyester thermoplastic resin A.
  • the minimum value t min of the thickness t of the polyester thermoplastic resin B covering the polyester thermoplastic resin A and the thickness in the cross section of the composite fiber are determined as described above. It is preferable to precisely control the length C t of the portion where the region where t satisfies 1.00t min ⁇ t ⁇ 1.05t min and the peripheral line of the composite fiber overlaps, as disclosed in Japanese Patent Application Laid-Open No. 2011-174215.
  • a spinning method using a distribution plate is preferably used, as exemplified in JP-A No. 2011-208313 and JP-A No. 2012-136804. By using such a distribution plate, t min can be brought within the ranges mentioned above.
  • the obtained eccentric core-sheath type conjugate fiber may be used as an eccentric core-sheath type false-twisted yarn as it is, or may be made into a false-twisted yarn having a cross-sectional structure as shown in FIG. 1 by alkali reduction.
  • the cross-sectional form of the single yarn can be controlled by the arrangement of the distribution holes in the final distribution plate installed most downstream among the distribution plates made up of a plurality of plates.
  • FIG. 4 is a schematic diagram of a false-twisting apparatus used in manufacturing the false-twisted yarn of the present invention. That is, the composite fiber 7 is heated and stretched with a hot pin 9 between the first feed roller 8 and the second feed roller 10, and further stretched with a heater 11 and a twister 12 between the second feed roller 10 and the third feed roller 13. When twisting is performed and other yarns 16 are mixed, the fibers are fed from the fourth feed roller 17 to the heater 11 along with the composite fibers 7, and the false-twisted yarn or composite false-twisted yarn is 14, and is wound up by the winding section 15.
  • semi-drawn yarn obtained by composite spinning at a spinning speed of 2,500 m/min to 3,800 m/min is pin-stretched at a yarn speed of 100-800 m/min, at a pin-stretching ratio described below and at a hot pin temperature of 70-120°C.
  • False twisting is performed at the heater draw ratio and heater temperature of 140 to 200°C as described below (one example of conditions: semi-drawn yarn obtained by composite spinning at a spinning speed of 2,600 m/min is subjected to a pin draw ratio of 1 at a yarn speed of 400 m/min).
  • the apparent thick-to-thin ratio is 1.05 or more and 3.00 or less.
  • Processed yarn can be obtained.
  • Pin stretching is carried out in the range of the lower limit of the natural draw ratio x 1.2 times to the upper limit x 0.8 times, and the total draw ratio expressed by the pin draw ratio x heater draw ratio is the upper limit of the natural draw ratio x 1.1 times.
  • the total stretching ratio is at least 1.3 times the upper limit of the natural stretching ratio, since this increases the orientation difference between the polyester thermoplastic resins constituting the composite fibers, making it easier to obtain stretchability. Furthermore, if the false twisting process is performed at a total stretching ratio of less than the upper limit of the natural stretching ratio x 1.1 times, the processing stability will be poor, and cracks will preferentially develop due to the alkali treatment, making it difficult to form slits.
  • the composite method is not particularly limited, and general methods such as interlace blending, taslan blending, etc. may be used without any problem.
  • the false-twisted yarn or composite false-twisted yarn obtained by the above false-twisting process is used to make a woven or knitted fabric.
  • textiles air jet looms, water jet looms, rapier looms, projectile looms, shuttle looms, etc. are used for weaving.
  • the woven or knitted fabric obtained in the above-described woven or knitted fabric forming step is subjected to alkali weight loss processing so that the alkali weight loss rate is 5% or more, more preferably 10 to 25%.
  • the alkali weight loss rate is 5% or more, more preferably 10 to 25%.
  • false-twisted yarns that are pin-stretched within a range that does not exceed the natural draw ratio of a composite fiber with an eccentric structure have orientation differences in the fiber length direction, and the rate of weight loss due to alkali differs in the fiber length direction.
  • unevenness that is, cracks, are formed in a direction substantially perpendicular to the fiber axis direction.
  • a slit is formed by exposing a portion of the At this time, the slit depth can be easily controlled by controlling the exposed state of the polyester thermoplastic resin A.
  • a batch type weight loss process for example, liquid flow weight loss
  • repulsion is easily obtained.
  • the false-twisted yarn in a woven or knitted fabric produced using the false-twisted yarn that has been false-twisted using the composite fibers described above usually develops a structure due to the thermal history in the dyeing process or the alkali weight loss process, and then winds up. Shrinkage occurs. Then, by carrying out the alkali reduction step, slits are formed in the fiber axis direction, and cracks are formed in a direction substantially perpendicular to the fiber axis direction.
  • the latent crimped yarn When a latent crimped yarn is used as another yarn in the composite false twisted yarn, the latent crimped yarn also develops a structure due to the heat history in the dyeing process or alkali weight loss process, and becomes an actual crimped yarn. becomes.
  • Detector Differential refractive index detector RI (Waters-2414, sensitivity 128x) Column: Showa Denko K.K. ShodexHFIP806M (2 columns connected) Solvent: Tetrohydrofuran (25cm 3 ) Flow rate: 1.0mL/min Column temperature: 30°C Injection volume: 0.10mL Standard material: polystyrene.
  • the fiber diameter D was set as the diameter in terms of yen. Prepare 10 sets of the obtained fiber diameter D, perimeter C, thickness t, and area ratio Sa of polyester thermoplastic resin A, and average them to determine the fiber diameter D with 3 significant figures, perimeter C, and thickness. t was determined using two significant figures and was defined as the fiber diameter D, peripheral length C, thickness t, and area ratio Sa of the present invention.
  • the thickness t is measured at 360 points every 1° in the fiber circumferential direction, and the smallest one is t min , and the area where the thickness t satisfies 1.00t min ⁇ t ⁇ 1.05t min and the peripheral line of the composite fiber are The length of the overlapping portion was defined as Ct . Further, the area ratio Sa of the polyester thermoplastic resin A was subtracted from the total area S of the cross section to obtain the area ratio Sb of the polyester thermoplastic resin B.
  • the part thinner than the average value of all measurement data is called “detail” (detail ⁇ average value)
  • the part thicker than the average value of all measurement data is called “detail” (detail ⁇ average value). This was done by setting the thick part (thick part>average value). The apparent thickness ratio was calculated by rounding off the third decimal place to two decimal places.
  • the width of the crack was in the range of 1.0 to 30.0 ⁇ m in all cases where cracks were present.
  • cracks were formed with a frequency of 10 or less such that a dispersion pattern covering almost the entire area in the outer circumferential direction of the region existed within a range of 1 cm in the fiber axis direction.
  • the length of the slits was 100 ⁇ m or more.
  • the false twisted yarn was extracted from the woven or knitted fabric after dyeing, and the fineness and number of filaments were determined according to JIS L1013 (2010) 8.3.1B method and JIS L1013 (2010) 8.4, respectively.
  • the single yarn fineness was obtained by measuring the fineness/number of filaments.
  • Stretch recovery rate (CR) JIS L 1013:2021 Chemical fiber filament yarn test method 8.12 except that the sample was a small skein (skein length 20 cm, number of turns 1) made from false twisted processed yarn decomposed from the sample of the woven or knitted fabric in the present invention.
  • the stretch recovery rate (CR) was measured using the following method. The measurement was carried out five times, and the average value was rounded off to the second decimal place and calculated to one decimal place. In the case of composite false-twisted yarns, they were wound up without being composited for measurement, and when subjected to heat treatment equivalent to dyeing processing, and alkali weight loss processing, treatment equivalent to that was performed for evaluation.
  • Example 1 The polyester thermoplastic resin A was polyethylene terephthalate with a weight average molecular weight of 25,000, the polyester thermoplastic resin B was polyethylene terephthalate with a weight average molecular weight of 15,000, the spinning temperature was 290°C, the polyester thermoplastic resin A and the polyester thermoplastic resin B were The arrangement of the distribution holes in the final distribution plate installed most downstream among the distribution plates made up of multiple plates is as shown in Figure 5 so that the mass composite ratio is 50:50, and the number of discharge holes is 36 composite fiber spinnerets. FIG.
  • FIG. 5 is a schematic diagram of the final distribution plate according to Example 1 of the false twisted yarn of the present invention, and shows the area around the group of distribution holes 18 for polyester thermoplastic resin A among the distribution holes in the final distribution plate.
  • a group of distribution holes 19 for polyester thermoplastic resin B are formed in an eccentric core-sheath type. In this way, an eccentric core-sheath type composite cross section (FIG. 2) in which polyester thermoplastic resin A was included in polyester thermoplastic resin B was formed.
  • the yarn discharged from the spinneret was cooled with an air cooling device, oiled, and then wound up with a winder at a speed of 2,600 m/min to stably obtain a composite fiber as a semi-drawn yarn with a total fineness of 240 dtex and a single filament count of 36. .
  • the obtained composite fiber was fed with the semi-drawn yarn from a feed roller using a friction false twisting machine (ATF12: manufactured by TMT Machinery Co., Ltd.) at a processing speed of 400 m/min and a pin stretching ratio of 1. .40 times, pin temperature 80 degrees Celsius, heater stretch ratio 1.20 times, heater temperature: 170 degrees Celsius, false twist coefficient: 28,000, twisting direction: S, false twist processed yarn with fineness: 143 dtex. Obtained.
  • ATF12 manufactured by TMT Machinery Co., Ltd.
  • a plain weave fabric was produced with a warp density of 105/2.54 cm and a weft density of 90/2.54 cm.
  • this fabric was subjected to scouring, relaxation treatment, and intermediate heat setting.
  • alkali weight loss processing weight loss rate 20%
  • a disperse dye "Dystar Navy Blue S-GL”
  • dyeing was carried out at a temperature of 130°C for 30 minutes, and a final heat set was applied at 160°C.
  • the apparent thickness ratio (D thick /D thin ) was 1.23
  • the expansion/contraction recovery ratio (CR) was 20.0%.
  • Example 2 False twisted yarn and fabric were obtained in the same manner as in Example 1, except that the total fineness of the semi-drawn yarn was 270 dtex, the pin draw ratio was 1.45 times, and the heater draw ratio was 1.30 times. .
  • the resulting false twisted yarn had an elongation recovery rate (CR) of 28.0%, and the elongation rate of the woven fabric was 25%, indicating excellent stretchability.
  • CR elongation recovery rate
  • Example 6 In the false twisting process, semi-drawn yarns made of polyethylene terephthalate fibers are merged in front of the heater as other yarns, and the other yarns are combined at a heater draw ratio of 1.50 times and a mixed ratio of false twisted yarn is 63%.
  • a woven fabric was obtained in the same manner as in Example 2, except that the yarn was false-twisted, the warp density was 88 threads/inch (2.54 cm), and the weft thread density was 75 threads/inch (2.54 cm).
  • the resulting fabric had a more excellent heathered feel due to the difference in dyeing between the false twisted yarn and other yarns. The results are shown in Table 1.
  • Example 7 A semi-drawn yarn was obtained in the same manner as in Example 1, except that the number of die holes and the amount of inflow of polyester thermoplastic resin were changed, and the total fineness was 113 dtex and the number of single yarns was 24 filaments. Using this semi-drawn yarn as another yarn, a composite false twisted yarn and fabric were obtained in the same manner as in Example 6. The resulting fabric has a better heathered feel due to the difference in dyeing between the false twisted yarn and other yarns, and also has excellent stretchability due to the high CR of the other yarns. Ta. The results are shown in Table 1.
  • Example 8 A woven fabric was obtained in the same manner as in Example 2, except that the false twisted yarn obtained in Example 2 was twisted at a twist coefficient of 3000 and in the twist direction S. This twisted yarn improved the convergence of the false-twisted yarn, allowing it to pass through the weaving process well, and the stretchability and resilience of the fabric were also equivalent to those without twisting. The results are shown in Table 1.
  • Example 9 A woven fabric was obtained in the same manner as in Example 2, except that the false twisted yarn obtained in Example 2 was twisted at a twist coefficient of 3000 and in the twist direction Z. The true twisted yarn improved the convergence of the false-twisted yarn and had good passability during the weaving process. Furthermore, the stretchability of the fabric was also the same as that without twisting. The results are shown in Table 1.
  • Example 10 A woven fabric was obtained in the same manner as in Example 2, except that the false twisted yarn obtained in Example 2 was twisted at a twist coefficient of 10,000 and in the twist direction S. The true twisted yarn improved the convergence of the false-twisted yarn and had good passability during the weaving process. The results are shown in Table 1.
  • Example 11 A woven fabric was obtained in the same manner as in Example 1, except that the thermoplastic polyester resin A was a polyester having a weight average molecular weight of 25,000, which was obtained by copolymerizing 10 mol % of isophthalic acid (IPA) with respect to the acid component. The results are shown in Table 1.
  • Example 12 A woven fabric was obtained in the same manner as in Example 1, except that the polyester thermoplastic resin A was a polyester having a weight average molecular weight of 19,000. The results are shown in Table 1.
  • the resulting woven fabric had poor stretchability, and because it was made of one type of thermoplastic resin, slits could not be obtained even after alkali reduction, and the degree of suppression of glare was low, resulting in poor worsted appearance.
  • the results are shown in Table 2.
  • Example 2 the spinneret used was replaced with a spinneret of the type described in JP-A-09-157941 from a distribution plate type spinneret, and was made of polyester thermoplastic resin A and polyester thermoplastic resin B.
  • a woven fabric was obtained in the same manner as in Example 2, except that the side-by-side composite fibers were used.
  • the polyester thermoplastic resin A was exposed at the time of composite fibers, and slits were not formed even after alkali reduction, so the degree of glare suppression was low and the worsted appearance was poor. The results are shown in Table 2.
  • Example 5 A woven fabric was obtained in the same manner as in Example 2, except that only stretching was performed without passing through the twister of the false twisting machine. The obtained woven fabric had a smooth surface and a poor dry feel. The results are shown in Table 2.
  • Example 6 In the false twisting process of Example 2, the procedure was the same as in Example 2 except that pin stretching was not performed and the heater stretching ratio was 1.68 times, and the apparent thick/thin ratio (D thick /D thin ) was 1.
  • a false twisting process and fabric of No. 02 was obtained.
  • the resulting woven fabric has a low thick/fine ratio of false twisted yarn, is low in naturalness, has a uniform structure in the longitudinal direction of the fibers, has small differences in the longitudinal orientation of molecules constituting the fibers, and is free from cracks due to alkali loss. Because of this, glare suppression was low and the worsted appearance was poor.
  • Table 2 The results are shown in Table 2.
  • Example 2 the distribution holes of the final distribution plate of the spinneret used are such that the minimum value t min of the thickness t of the polyester thermoplastic resin B covering the polyester thermoplastic resin A is 10 times.
  • the arrangement was changed from FIG. 5 to FIG. 6, and a core-sheath type composite fiber consisting of polyester thermoplastic resin A and polyester thermoplastic resin B and having (t min /D) of 0.20 was obtained.
  • a woven fabric was obtained in the same manner as in Example 2 except for the above.
  • FIG. 6 is a schematic diagram of the final distribution plate according to Comparative Example 1. Among the distribution holes in the final distribution plate, a group of distribution holes 18 for polyester thermoplastic resin A are surrounded by polyester thermoplastic resin B.
  • the group of distribution holes 19 is formed to have an eccentric core-sheath type, and the arrangement is such that the minimum value t min of the thickness t is as described above.
  • the polyester thermoplastic resin B covering the polyester thermoplastic resin A is thick, so even if the alkali weight reduction process is performed, the bonding interface is not exposed, so slits are not formed, and the degree of glare suppression is low. The worsted appearance was inferior. In addition, the stretchability was also poor.
  • Table 2 The results are shown in Table 2.
  • Polyester thermoplastic resin A 2 Polyester thermoplastic resin B 3: Thickness t of polyester thermoplastic resin B covering polyester thermoplastic resin A 4: False twisted yarn 5: Crack 6: Slit 7: Composite fiber 8: First feed roller 9: Hot pin 10: Second feed roller 11: Heater 12: Twister 13: Third feed roller 14: False twisted yarn or Composite false twisted yarn 15: Winding section 16: Other yarn 17: Fourth feed roller 18: Distribution hole for polyester thermoplastic resin A 19: Distribution hole for polyester thermoplastic resin B

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

ドライ感や反発性といった風合いや、高い杢感を有しつつギラツキが抑制された、ナチュラルな外観を有する梳毛調の高感性とストレッチ性といった機能性を発現する仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類を提供するために、 本発明の仮撚加工糸は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の要件を満たす。 (1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。 (2)前記ポリエステル系熱可塑性樹脂Aと前記ポリエステル系熱可塑性樹脂Bが偏心型に接合されている。 (3)前記仮撚加工糸の見かけの太細比(Dthick/Dthin)が1.05~3.00である。 (4)前記仮撚加工糸の表面において、繊維軸方向にスリットを有し、繊維軸方向に略直交する方向にクラックを有する。

Description

仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類
 本発明は、仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類に関するものである。
 従来からウール素材の中でも柔らかさや、ドライ感や反発性といった風合いや、ナチュラルな外観といった梳毛調の高感性とストレッチ性といった機能性とを合わせ持つ梳毛調布帛が求められている。
 これまで、ウール調の布帛として、例えば特許文献1に開示されるような、溶融粘度の異なる2種のポリエステルポリマーを接合したマルチフィラメントを構成する単繊維の繊維軸方向に太細斑を有した繊維やそれを用いた織編物が提案されている。また、特許文献2には潜在捲縮性能を有するポリエステル糸及び他のポリエステル糸からなるポリエステル複合仮撚糸が提案されている。
特開2004-124271号公報 特開2017-214698号公報
 梳毛調のナチュラルな外観とストレッチ性を得る手段の1つとして、ウールに見られるクリンプ(捲縮)構造を有する複合繊維に太細斑を付与する延伸を行う手段が考えられる。しかし特許文献1に開示されるような技術はクリンプや太細斑を有するものの、マルチフィラメントを構成する単繊維の断面形状が一定であるため、ナチュラルな外観やドライ感を得ることができないという課題がある。
 また、特許文献2に開示される技術は仮撚加工を行っているが、仮撚加工工程においてマルチフィラメントが最密充填構造をとるため単糸表面が平滑となり、ナチュラルな外観を得ることができないという課題がある。すなわちドライ感や反発性といった風合いや、ナチュラルな外観といった梳毛調の高感性とストレッチ性といった機能性を同時に満足することができなかった。
 本発明は、上記の事情に鑑みてなされたものであって、その目的は、ドライ感や反発性といった風合いや、高い杢感を有しつつギラツキが抑制された、ナチュラルな外観を有する梳毛調の高感性とストレッチ性といった機能性を発現する仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類を提供することにある。
 本発明は下記の構成を有する。
 [1]ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の要件を満たす、仮撚加工糸。
(1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
(2)前記ポリエステル系熱可塑性樹脂Aと前記ポリエステル系熱可塑性樹脂Bが偏心型に接合されている。
(3)前記仮撚加工糸の見かけの太細比(Dthick/Dthin)が1.05~3.00である。
(4)前記仮撚加工糸の表面において、繊維軸方向にスリットを有し、繊維軸方向に略直交する方向にクラックを有する。
 [2]単糸繊度が3.0dtex以上である、[1]に記載の仮撚加工糸。
 [3]伸縮復元率(CR)が25.0%以上である、[1]又は[2]に記載の仮撚加工糸。
 [4][1]~[3]のいずれかに記載の仮撚加工糸及び少なくとも1種の他の糸条を含む、複合仮撚加工糸。
 [5]前記他の糸条が顕在捲縮糸である、[4]に記載の複合仮撚加工糸。
 [6][1]~[3]のいずれかに記載の仮撚加工糸、[4]又は[5]に記載の複合仮撚加工糸のいずれかを含む、撚り係数が1200~6000である、撚糸。
 [7][1]~[3]のいずれかに記載の仮撚加工糸、[4]又は[5]に記載の複合仮撚加工糸、[6]に記載の撚糸のいずれかを少なくとも一部に含む、織編物。
 [8][7]に記載の織編物を少なくとも一部に含む、衣類。
 本発明によれば、ドライ感や反発性といった風合いや、高い杢感を有しつつギラツキが抑制された、ナチュラルな外観を有する梳毛調の高感性とストレッチ性といった機能性とを有する仮撚加工糸が得られる。特に、本発明の仮撚加工糸を用いた複合仮撚加工糸や撚糸、織編物、衣類は、婦人・紳士衣料として着用されるアウトウエア分野のアイテム、例えば、ジャケット、スーツ、ボトムス等の衣類に好適に用いることができる。
図1は、本発明の仮撚加工糸のポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとの存在形態の一例を示す断面図である。 図2は、本発明の仮撚加工糸のポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとの存在形態の他の一例を示す断面図である。 図3は、本発明の仮撚加工糸の表面の一実施態様を例示する斜視図である。 図4は、本発明の仮撚加工糸を製造する際に使用される仮撚加工装置の概略図である。 図5は、本発明の仮撚加工糸の実施例1に係る最終分配プレートの概略図である。 図6は、本発明の仮撚加工糸の比較例8に係る最終分配プレートの概略図である。
 本発明の仮撚加工糸は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の要件を満たす。
(1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
(2)前記ポリエステル系熱可塑性樹脂Aと前記ポリエステル系熱可塑性樹脂Bが偏心型に接合されている。
(3)前記仮撚加工糸の見かけの太細比(Dthick/Dthin)が1.05~3.00である。
(4)前記仮撚加工糸の表面において、繊維軸方向にスリットを有し、繊維軸方向に略直交する方向にクラックを有する。
 以下に、本発明について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。
 [ポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂B]
 本発明の仮撚加工糸は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含む複合繊維を仮撚加工することにより得られる。仮撚加工を行うことで単糸毎にランダムな捲縮形態となるため、ドライ感やストレッチ性、反発性が得られる。
 そのため、本発明の仮撚加工糸は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含む。
 本発明の仮撚加工糸に用いられるポリエステル系樹脂の具体例としては、主たる繰り返し単位がエチレンテレフタレートであるポリエチレンテレフタレート系樹脂、又は主たる繰り返し単位がトリメチレンテレフタレートであるポリトリメチレンテレフタレート系樹脂、又は主たる繰り返し単位がブチレンテレフタレートであるポリブチレンテレフタレート系樹脂が好ましい。さらに好ましくはポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bともに主たる繰り返し単位がエチレンテレフタレートである。ここで、「主たる繰り返し単位がエチレンテレフタレートである」とは、繰り返し単位中に含まれるエチレンテレフタレート由来の構造の割合が60モル%以上であることをいう。以下、同様である。
 上記のポリエチレンテレフタレート系樹脂、ポリトリメチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂は、必要に応じて少量(通常30mol%未満(酸成分、ジオール成分の総量100mol%に対する量))の共重合成分を有していてもよい。ポリエステル系熱可塑性樹脂Aの共重合成分が8mol%以下であると、アルカリ減量後も強度を維持するためソフト性を得ることが容易となり好ましい。さらに、共重合成分を8mol%以下とすることで、染色加工後でも仮撚加工糸中の分子配向が維持できる等により寸法安定性が向上する。また、好ましくはポリエステル系熱可塑性樹脂Aおよびポリエステル系熱可塑性樹脂Bともに共重合成分が5mol%以下であり、さらに好ましくはポリエステル系熱可塑性樹脂Aおよびポリエステル系熱可塑性樹脂Bともに共重合成分が含まれないポリエチレンテレフタレート樹脂である。共重合成分が含まれないポリエチレンテレフタレートとすることで仮撚加工糸の沸水収縮率を容易に低くすることができるため、織編物中で捲縮が発現しやすくなりストレッチ性や反発性を得ることが容易になり、更には繊維tо繊維リサイクルも容易となる。
 本発明において、仮撚加工後、クラック形成前の仮撚加工糸(以下クラック形成前の仮撚加工糸と称する)の沸水収縮率は10.0%以下が好ましい。沸水収縮率が10.0%以下であると織編物中で繊維が拘束されずにストレッチ性がより向上する。
 なお、本発明におけるポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bには、本発明の目的を損なわない範囲内で、必要に応じて、微細孔形成剤、カチオン可染剤、着色防止剤、熱安定剤、難燃剤、蛍光増白剤、艶消剤、着色剤、帯電防止剤、吸湿剤、抗菌剤、無機微粒子等が1種又は2種以上含まれていてもよい。
 本発明の仮撚加工糸は、ポリエステル系熱可塑性樹脂Aの重量平均分子量Mとポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M、以降、単に「重量平均分子量の差」と称することがある)は2000~15000である。重量平均分子量の差が2000未満であると、仮撚加工糸のストレッチ性が低くなり、ギラツキ抑制効果が不十分となる。重量平均分子量の差は好ましくは5000以上である。一方、重量平均分子量の差が15000より大きいと、原糸の強度が低下し、紡糸が不安定となる。重量平均分子量の差は、好ましくは13000以下である。
 また、ポリエステル系熱可塑性樹脂Aの重量平均分子量Mの値の範囲としては20000~28000であることが好ましく、ポリエステル系熱可塑性樹脂Bの重量平均分子量Mの値の範囲としては12000~20000であることが好ましい。それぞれこの範囲とすると、仮撚加工糸の機能性と耐久性が向上し、仮撚加工糸の元となる複合繊維を紡糸する際の工程安定性も良好となる。
 なお、本発明における重量平均分子量は、実施例に記載の方法で測定するものとする。
 [仮撚加工糸]
 本発明の仮撚加工糸は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bが偏心型に接合されている。このようにすることで、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの収縮差によりコイル状の構造となるため、得られた織物のストレッチ性が向上する。ここで、「偏心型に接合」とは、仮撚加工糸の繊維軸に略垂直となる断面においてポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bが実質的に分離せず接合された状態で存在し、各々の重心位置がずれている状態をいう。偏心型に接合している構造の一例としては、サイドバイサイド型や偏心芯鞘型の構造や、図1の仮撚加工糸の断面形状に示されるような、ポリエステル系熱可塑性樹脂A(1)の一部がポリエステル系熱可塑性樹脂B(2)から露出した構造等が挙げられる。
 このとき、仮撚加工糸がサイドバイサイド型の場合は、仮撚加工を行う前の複合繊維の時点でポリエステル系熱可塑性樹脂Bに繊維軸方向と並行なスリットを形成する必要がある。
 仮撚加工糸が偏心芯鞘型の場合、図2で示されるように、断面構造はポリエステル系熱可塑性樹脂A(1)をポリエステル系熱可塑性樹脂B(2)が覆っている形状である。
 図1に示す断面構造の仮撚加工糸は、例えば偏心芯鞘型の複合繊維を得た後、アルカリ減量によりポリエステル系熱可塑性樹脂Aの一部を露出させることで得ることができる。この時、上述した重量平均分子量の差のポリエステル系熱可塑性樹脂を用いて偏心芯鞘型の複合繊維を形成することで、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの接合界面に微細な凹凸を安定的に形成することができ、ポリエステル系熱可塑性樹脂Aの一部を露出させることで、この凹凸が露出し、後述するスリットとなる。
 また、複合繊維が偏心芯鞘型の場合、ポリエステル系熱可塑性樹脂A(1)を覆っているポリエステル系熱可塑性樹脂B(2)の厚みt(3)の最小値tminと、複合繊維の繊維直径Dとの比(tmin/D)は、0.01~0.10であることが好ましい。(tmin/D)が0.01以上であることにより、毛羽の発生が抑制される点で布帛品位が向上したり、スリット形成性が向上する。(tmin/D)は、好ましくは、0.02以上である。一方で、(tmin/D)が0.10以下であることにより、十分な捲縮発現力により、よりストレッチ性が向上する。(tmin/D)は、好ましくは0.08以下である。
 また、複合繊維が偏心芯鞘型の場合、断面において、前記厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さCが複合繊維全体の周囲長Cに対し、C≧0.33Cであることが好ましい。このようにすることで、断面におけるポリエステル系熱可塑性樹脂Aの面積(S)とポリエステル系熱可塑性樹脂Bの面積(S)の比率が同一である従来の偏心芯鞘複合繊維と比較して、それぞれの樹脂が存在する領域の重心が離れることとなるため、得られる捲縮繊維がより微細なスパイラルを形成させることができ、より良好な捲縮を発現させることができる。C≧0.40Cとすることがより好ましい。また、原理的にC<Cとなるが、C≦0.70Cが好ましい。
 さらに、本発明の仮撚加工糸は、見掛けの太細比(Dthick/Dthin)が1.05~3.00である。本発明において、見掛けの太細比(Dthick/Dthin)とは、荷重0.11cN/dtexにおける仮撚加工糸束の繊維軸方向に直交する方向の幅が平均値より相対的に太い部分の繊維直径(Dthick)と平均値より相対的に細い部分の繊維直径(Dthin)との比のことである。本発明の仮撚加工糸の見かけの太細比(Dthick/Dthin)が1.05未満であると、織編物としたときに、杢外観が得られない。(Dthick/Dthin)は、1.25以上が好ましく、1.40以上がより好ましい。また、(Dthick/Dthin)が3.00を超えると、ナチュラルな外観から逸脱し好ましい外観にならない。(Dthick/Dthin)は、好ましくは2.00以下である。
 なお、上記の厚みtや繊維直径D、太細比、周囲長Cなど、具体的な測定方法は実施例に記載したとおりである。
 さらに、本発明の仮撚加工糸は、単繊維表面において、単繊維軸方向にスリットを有し、単繊維軸方向に略直交する方向にクラックを有する。単繊維軸方向とその略直交する方向の凹凸を有することで、あらゆる角度からの光を散乱することができ、ギラツキを抑制したナチュラルな外観とすることができる。本発明においてクラックとは、仮撚加工糸の単繊維軸方向と略直交方向の凹凸であり、クラックの深さは0.5~5.0μmであることが好ましい。また、本発明においてスリットとは仮撚加工糸の単繊維軸方向に形成された凹凸であり、スリットの深さは0.1~1.5μmであることが好ましい。クラックの深さが0.5μm以上であったり、スリットの深さが0.1μm以上であったりする場合は、ギラツキ抑制効果がより向上する。また、スリットの深さが5.0μm以下であったり、スリットの深さが1.5μm以下であったりすることにより、耐摩耗性が向上する。
 同様の理由により、クラックの幅は1.0~30.0μmであることが好ましく、スリットの幅は0.1~10.0μmであることが好ましい。また、スリットの長さは100μm以上であることが好ましい。
 ここで、クラックまたはスリットの深さは、各々の最も深い個所を測定するものとする。また、仮撚加工糸の繊維軸方向に略直交する方向とは、図3に模式的に例示されるように、仮撚加工糸4の単繊維円周に沿った方向のことであり、繊維軸方向に対して±80°以内の方向である。図3は、本発明の仮撚加工糸の表面の一実施態様を例示する斜視図であり、仮撚加工糸4の単繊維表面において、単繊維軸方向にスリット6を有し、単繊維軸方向に略直交する方向にクラック5を有する。かかるクラックの長さは特に限定されない。通常後述するクラック形成前の仮撚加工糸のポリエステル系熱可塑性樹脂Aの面積(S)とポリエステル系熱可塑性樹脂Bの面積(S)との比S:Sにより変動するが、概ね50:50近傍(例えば40~60:60~40程度)である場合には、仮撚加工糸 の単繊維の外周の長さの概ね1/2程度の領域にクラックが形成されやすい。仮撚加工糸の単繊維の外周の長さの1/2程度であることが、スリット形成とのバランスが良く、織編物としたときにギラツキをより抑制できるため、好ましい。ここで、上記「外周の長さの1/2程度」とは、1つのクラックにより単繊維の外周の長さの1/2程度にクラックが形成されているものであってもよいし、2以上のクラックが単繊維の外周の長さの1/2程度の領域に分散して形成される態様であってもよい。また、厳密に外周の長さの1/2である必要はなく、概ね1/2周程度であれば十分である。
 また、クラックが形成される頻度としては、10個以下のクラックにより、スリットが形成されていない領域の外周方向の概ね全域にわたるような分散形態であることが好ましく、そのような分散形態が繊維軸方向1cmの範囲内に存在する頻度でクラックが形成されていることがより好ましい。
 また、仮撚加工糸の繊維軸方向とは、図3に模式的に例示されるように、仮撚加工糸4の長手方向のことである。かかるスリットが形成される、仮撚加工糸の円周方向の長さは特に限定されないが、仮撚加工糸の単繊維の外周の長さの1/2程度であることが、クラック形成とのバランスが良く、織編物としたときにギラツキをより抑制できるため、好ましい。また、仮撚加工糸を構成する単繊維においてクラックおよびスリットのいずれもが形成されることが特に好ましい。その場合、図3に示されるように、外周の半周程度にクラックが形成された領域、外周の半分程度にスリットが形成された領域を有する態様が好ましい。
 本発明において、クラック、スリットそれぞれの深さ及び長さは電子顕微鏡を用いて観察し、一本の仮撚加工糸内で10個のクラック又はスリットを測定した平均値を用いるものとする。具体的な測定方法は、実施例に記載のとおりである。
 仮撚加工糸の表面にクラックを形成する方法としては、複合繊維の自然延伸倍率を超えない範囲でピン延伸した後の仮撚加工糸をアルカリ減量する方法等が挙げられる。上記の延伸倍率とすることで繊維の長さ方向に、複合繊維を構成する分子の配向差が生じ、配向していない部分がアルカリにより優先的に溶出されることで、減量速度が繊維長さ方向で異なることとなり、繊維軸方向と略直交方向の凹凸、すなわちクラックが形成される。
 仮撚加工糸の表面にスリットを形成する方法としては、複合繊維を得る際に吐出孔の形状を通常の円型から変更し、突起部が8個以上の多葉断面の吐出孔の形状とすることで、繊維軸方向に凹凸をつける方法等が挙げられる。
 また、偏心芯鞘構造の複合繊維から仮撚加工糸を得たのち、アルカリ減量する等によっても、スリットを形成することができる。ここで、偏心芯鞘構造の複合繊維を元にしたスリットの形成方法について詳細に説明する。上述した分子量差のポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを、後述する分配プレートを用いて紡糸することで各熱可塑性樹脂の粘度差によって偏心芯鞘構造の接合界面には凹凸が形成される。さらに仮撚加工糸を用いた織編物のアルカリ減量ではポリエステル系熱可塑性樹脂Bが優先的に減量されるため、ポリエステル系熱可塑性樹脂Aが露出することで接合界面であった凹凸が露出され、繊維軸方向の凹凸(スリット)が形成されることとなる。
 スリットは上述した偏心芯鞘構造の複合繊維を元にすることで、より安定的に形成でき、深いスリットとすることができるため好ましい。
 本発明では上述した要件(1)~(4)を同時に満たすことにより、従来の仮撚加工糸の課題であったドライ感や反発性といった風合いや、ナチュラルな外観といった梳毛調の高感性とストレッチ性といった機能性の両特性を一挙に解決することが出来る。
 また、前記仮撚加工糸の断面形状は特に限定されず、円形、楕円形、三角形などの断面形状を採用することができるが、円形であることが、仮撚加工糸を得るための複合繊維を安定的に紡糸することができるためより好ましい。
 本発明において、クラック形成前の仮撚加工糸の断面におけるポリエステル系熱可塑性樹脂Aの面積(S)とポリエステル系熱可塑性樹脂Bの面積(S)との比S:Sが、好ましくは70:30~30:70、より好ましくは60:40~40:60であると、物理特性が向上する。また、仮撚加工糸の捲縮をより微細なものとするためには、さらにS≧Sであることが好ましい。
 本発明における仮撚加工糸の単糸繊度は、3.0dtex以上であることが好ましい。また、上限としては5.0dtex以下であることが好ましい。この範囲とすることで、織編物とした際のドライ感が高くなり、より梳毛に近い触感を得ることが出来る。本発明において、単糸繊度とは、総繊度(dtex)/フィラメント数で算出した値である。
 また、本発明の仮撚加工糸は、織編物の分解糸から測定された伸縮復元率(CR、Crimp Rigidity)が25.0%以上であることが好ましい。CRが25.0%以上であると、織編物においてより捲縮が発現し、より良好なストレッチ性が得られる。CRはより好ましくは、30.0%以上である。また、CRは50.0%以下が好ましい。CRが50.0%以上であることにより、織編物の膨らみが強くなりすぎるのを抑制し、適度な反発性が得られやすくなる。CRは、後述の複合仮撚加工糸を用いる場合を含め、実施例に記載の方法により測定することができる。また、CRを上記範囲とする方法としては、仮撚加工時の延伸倍率を高くして、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの配向差を大きくする等が挙げられる。
 [複合仮撚加工糸]
 本発明の複合仮撚加工糸は、本発明の仮撚加工糸及び少なくとも1種の他の糸条を含む。このようにすることで織編物とした際の杢感が更に良好となる。
 他の糸条としては本発明の仮撚加工糸と異なるものであれば特に限定されないが、なかでも、良好な力学特性を有し、湿度や気温変化に対する寸法安定性に優れることから、ポリエステル系樹脂からなることが好ましい。ポリエステル系樹脂の具体例としては、主たる繰り返し単位がエチレンテレフタレートであるポリエチレンテレフタレート系樹脂、又は主たる繰り返し単位がトリメチレンテレフタレートであるポリトリメチレンテレフタレート系樹脂、又は主たる繰り返し単位がブチレンテレフタレートであるポリブチレンテレフタレート系樹脂が好ましい。なお、上記のポリエチレンテレフタレート系樹脂又はポリブチレンテレフタレート系樹脂は、必要に応じて少量(通常30mol%未満(酸成分、ジオール成分の合計100mol%に対する量))の共重合成分を有していてもよい。また、ソフトな風合いや繊維tо繊維リサイクルの観点から複合仮撚加工糸を構成するすべての糸条は共有合成分を含まないポリエチレンテレフタレート樹脂であることがより好ましい。
 また、他の糸条は沸水収縮率が10.0%以下であることが好ましい。沸水収縮率が10.0%以下であることにより、織編物中で仮撚加工糸や他の糸条が拘束されにくく、ストレッチ性がより向上する。
 さらに、他の糸条は顕在捲縮糸であることが好ましい。ここでは「顕在捲縮糸」とは、伸縮復元率が5.0%以上である糸であり、収縮性の異なる2種のポリマーをサイドバイサイドまたは偏心芯鞘型に複合した糸条や、仮撚加工により機械的に捲縮を付与したものを示す。その場合、他の糸条のCRは仮撚加工糸のCRより10.0~20.0%高いことが好ましい。かかる範囲のCRとすることで仮撚加工糸とコイル径の異なる捲縮が複合仮撚加工糸中に混在するため、ストレッチ性を阻害せずに、より梳毛に近いドライ感を得ることができる。なお、複合する前の原糸としての他の糸条は、潜在捲縮糸であることが好ましい。潜在捲縮糸は、複合後、染色等の工程を経ることにより、本発明の複合仮撚加工糸を構成する顕在捲縮糸となる。
 [撚糸]
 本発明の撚糸は、上記仮撚加工糸、上記複合仮撚加工糸のいずれかを含み、撚り係数が1200~6000である。上記仮撚加工糸又は上記複合仮撚加工糸を撚糸とし、撚り係数を上記範囲とすることにより、ストレッチ性を維持しつつ製織工程の工程通過性が向上する。撚り係数は好ましくは1500~4500である。ここで、撚り係数は、以下の式により算出することができる。
 撚り係数(K)=撚り数(T/m)×√(繊度(dtex)×0.9)。
 撚糸方向は仮撚の撚り方向と同一であることが好ましい。撚糸方向と仮撚方向が同一であると反発性がより向上する。
 [織編物]
 本発明の織編物は、本発明の仮撚加工糸、複合仮撚加工糸又はそれらの撚糸のいずれかを少なくとも一部に含む。これらが使用される割合は、織編物の質量に対して30質量%以上が好ましく、40質量%以上がより好ましい。織編物を構成する繊維の全てが本発明の仮撚加工糸、複合仮撚加工糸、撚糸のいずれかからなることも好ましい態様である。
 本発明の織編物の布帛構造は、織物または編物である。織物組織としては、風合いや意匠性に合わせて、平織り、綾織り、繻子織りやそれらの変化組織から選択される。さらに、二重織りなどの多重織り組織としてもよい。編物組織としては、所望する風合いや意匠性に合わせて選択すればよく、緯編では、天竺編、ゴム編、パール編、タック編、浮き編、レース編やそれらの変化組織などが挙げられ、経編では、シングル・デンビー編、シングル・バンダイク編、シングル・コード編、ベルリン編、ダブル・デンビー編、アトラス編、コード編、ハーフ・トリコット編、サテン編、シャークスキン編やそれらの変化組織などが挙げられる。これらの中でも、繊細な梳毛調と深みのあるナチュラルな外観を有させるために、平織もしくはその変化組織、綾織もしくはその変化組織、サテン織等の比較的単純な織編構造がより好ましい。
 [衣類]
 本発明の衣類は、本発明の織編物を少なくとも一部に含む。このようにすることで、本発明の仮撚加工糸、複合仮撚加工糸若しくは撚糸又は織編物が有する、ドライ感や反発性といった風合いや、ナチュラルな外観といった梳毛調の高感性とストレッチ性といった機能性を有する衣類とすることができる。本発明の衣類とは、婦人・紳士衣料、スポーツ衣料、アウトドア衣料として着用されるアウトウエア分野のアイテム、特に、ジャケット、スーツ、ボトムス、及び、これらの一部分、たとえば、前身頃、後身頃、襟部、袖部、胸ポケット、サイドポケットを含むものや、インナー、靴下、帽子などである。
 [仮撚加工糸、織編物の製造方法]
 次に、本発明の仮撚加工糸、織編物の好ましい製造方法の一例について述べる。
 本発明の仮撚加工糸は、吐出された熱可塑性樹脂を未延伸糸又は半延伸糸として巻き取った複合繊維を仮撚加工し、アルカリ減量を行うことで製造できる。特に半延伸糸として巻き取った後に延伸する工程で得られた複合繊維を仮撚加工に用いることは、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの配向差により、織編物とし、染色加工した際に特にストレッチ性に優れ、また、ポリエステル樹脂Aが高配向化することによりアルカリ減量による耐脆化に優れるため好ましい。
 [紡出工程]
 本発明の仮撚加工糸の製造方法においては、まずポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとをそれぞれ溶融し、これらを紡糸口金から吐出して、好ましくは1400m/分~3800m/分の紡糸速度にて未延伸糸又は半延伸糸として巻き取る。本発明においては、紡糸速度を2500m/分~3800m/分として、半延伸糸として巻き取ることが好ましい。
 本発明においては、半延伸糸から本発明の仮撚加工糸とすると、アルカリ減量後の耐摩耗性に優れるため好ましい。半延伸糸は未延伸糸に比べ結晶化が進んでいるため、アルカリ減量による局所的な繊維の切断を抑制することができる。
 紡糸温度は、ポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bの融点(TmA、TmB)に対し、いずれも+20℃~+50℃であることが好ましい。(TmA、TmB)+20℃以上であることによって、溶融したポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bが紡糸機配管内で固化して閉塞することを防ぐことができる。一方、(TmA、TmB)+50℃以下であることによって、溶融したポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bが熱劣化してしまうことを抑制することができる。
 本発明の仮撚加工糸の製造方法において用いられる口金は、品質および操業安定的に紡糸することが可能であれば、公知のいずれの内部構造のものであっても良い。
 ここで、本発明の仮撚加工糸の断面がサイドバイサイド型の場合は、口金形状を凹凸にすることで、ポリエステル系熱可塑性樹脂Aの表面に繊維軸方向と略並行方向のスリットが得られる。
 また、偏心芯鞘型の複合繊維の断面とすることで、仮撚加工前の複合繊維の製造時において課題となっている、口金から吐出される2種類の熱可塑性樹脂の流速差を起因とする吐出線曲がりを抑制することもできる。
 複合繊維を偏心芯鞘型の断面とするには、上記のようにポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと、複合繊維の断面における厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さCとを精密に制御することが好ましく、特開2011-174215号公報や特開2011-208313号公報、特開2012-136804号公報に例示されるような、分配プレートを用いた紡糸方法が好適に用いられる。このような分配プレートを用いることによって、tminを上述した範囲内にすることができる。得られた偏心芯鞘型の複合繊維は、そのまま偏心芯鞘型の仮撚加工糸としてもよいし、アルカリ減量により図1に示すような断面構造の仮撚加工糸としてもよい。
 図1に示すような断面構造の仮撚加工糸とする場合、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの重量平均分子量の差が本発明の範囲であると、粘度差に応じて複合繊維の複合界面に繊維軸方向と並行な凹凸を形成する。そのため、偏心芯鞘型の複合繊維を仮撚加工した後にアルカリ処理をすることにより、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの一部が除去され、ポリエステル系熱可塑性樹脂Aの一部を露出させることで、図3に示すような繊維軸方向と並行なスリットが安定的に得られる。
 また、複合繊維のtminが過剰に小さくなると吐出線曲がりの抑制効果が十分に得られず、その結果として仮撚加工糸に毛羽が発生したり、工程通過性が低下したり、強度が低下する場合がある。あるいは、tminが過剰に大きくなることを抑制でき、仮撚加工糸の捲縮を好適な範囲で発現させて、織編物のストレッチ性を向上させることもできる。このような分配プレートを用いた方法では、複数枚で構成される分配プレートの内、最も下流に設置された最終分配プレートにおける分配孔の配置により、単糸の断面形態を制御することができる。
 [仮撚加工工程]
 次に、上記の紡出工程を経て製造された糸を、この糸の自然延伸倍率を超えない範囲の延伸倍率で、図4に例示するような仮撚加工装置を用いてピン延伸し、その後に更にヒーター延伸しながら仮撚加工を行い、仮撚加工糸を形成する。この工程によって、所望の仮撚加工糸を得ることが出来る。図4は、本発明の仮撚加工糸を製造する際に使用される仮撚加工装置の概略図である。すなわち、複合繊維7は第1フィードローラー8と第2フィードローラー10の間で、ホットピン9で加熱延伸され、更に第2フィードローラー10と第3フィードローラー13の間のヒーター11、ツイスター12で仮撚加工を行い、他の糸条16を混繊する場合には、第4フィードローラー17から複合繊維7とともにヒーター11に供給して仮撚加工を行い、仮撚加工糸または複合仮撚加工糸14となり、巻取り部15で巻き取られる。
 たとえば、紡糸速度2500m/分~3800m/分で複合紡糸して得た半延伸糸を、糸速100~800m/分で、後述のピン延伸倍率、ホットピン温度70~120℃でピン延伸した後に、後述のヒーター延伸倍率、ヒーター温度140~200℃で仮撚加工する(条件の一例:紡糸速度2600m/分で複合紡糸して得た半延伸糸を、糸速400m/分で、ピン延伸倍率1.4倍、ホットピン温度80℃でピン延伸した後に、ヒーター延伸倍率1.20倍、ヒーター温度170℃仮撚加工する)ことで見かけの太細比で1.05以上3.00以下の仮撚加工糸を得ることが出来る。ピン延伸は自然延伸倍率の下限×1.2倍~上限×0.8倍の領域で延伸し、ピン延伸倍率×ヒーター延伸倍率で表す総延伸倍率が自然延伸倍率の上限×1.1倍となるように仮撚加工することで、所望の太細比を得ることができ、アルカリ処理によって仮撚加工糸表面にクラックとスリットを形成することができる。また総延伸倍率が自然延伸倍率の上限×1.3倍以上とすることで複合繊維を構成するポリエステル系熱可塑性樹脂間の配向差が大きくなりストレッチ性が得られやすくなるため好ましい。また総延伸倍率が自然延伸倍率の上限×1.1倍未満で仮撚加工を行うと加工安定性が悪く、アルカリ処理によりクラックが優先的に発現し、スリットの形成がしにくくなる。
 また、この仮撚加工糸に対して巻取り前もしくは巻取り後に、他の糸条を混繊などで複合して複合仮撚加工糸としてもよい。複合方法としては特に限定されず、インターレース混繊、タスラン混繊等の一般的な方法でも問題ない。
 [織編物の形成工程]
 上記仮撚加工して得られた仮撚加工糸又は複合仮撚加工糸を用いて織物あるいは編物とする。織物の場合は、エアジェット織機、ウォータージェット織機、レピア織機、プロジェクタイル織機、シャトル織機などを使用して製織する。編物の場合は、横編機、フルファッション編機、丸編機、コンピュータージャガード編機、ソックス編機、筒編み機といった緯編み機や、トリコット編機、ラッセル編機エアジェット織機、ミラニーズ編機とった経編み機を使用して編成する。
 [アルカリ減量工程]
 さらに、上記の織編物の形成工程で得られた織編物を、アルカリ減量率5%以上、より好ましくは10~25%となるようにアルカリ減量加工処理する。上述した通り、偏心構造の複合繊維の自然延伸倍率を超えない範囲でピン延伸した仮撚加工糸は繊維長さ方向に配向差が生じており、アルカリによる減量速度が繊維長さ方向で異なるため、アルカリ減量加工を行うことで、繊維軸方向と略直交方向の凹凸、すなわちクラックが形成される。これに加えて、図1の構造の仮撚加工糸とする場合は、上述した通り、偏心芯鞘型の複合繊維のポリエステル系熱可塑性樹脂Bの一部を除去し、ポリエステル系熱可塑性樹脂Aの一部を露出させることでスリットが形成される。この際ポリエステル系熱可塑性樹脂Aの露出状態をコントロールすることでスリット深さを容易にコントロールすることができる。
 アルカリ減量工程は、反発性が得られ易いためバッチ式の減量プロセス(例えば液流減量)が好ましい。
 [染色工程]
 さらに必要に応じて、上記のアルカリ減量工程の前及び/又は後に、あるいは同時に、常法の精練、リラックス処理、中間熱セット、染色加工、仕上げ熱セットを施してもよい(本発明では、これらの加工を総称して「染色工程」と称する場合がある)。本発明のストレッチ性や反発性を得るために、適宜各工程のフィード、張力管理を行う。例えば、本発明の複合繊維軸方向に対して、フィード量とコントロールできるRoll to roll等の方式の設備ではオーバーフィード10%以内、バッチ式の液流染色機などでは進行方向への過剰な張力がかからないように液量や流速をコントロールすることが望ましい。染色は、仮撚加工糸を構成する熱可塑性樹脂、あるいは複合する他の糸条の染色性にもよるが、分散染料あるいはカチオン染料を用いて好ましくは110~130℃の染色液中で行う。
 上記複合繊維を用いて仮撚加工された仮撚加工糸を用いて製編織された織編物中の仮撚加工糸は、通常上記染色工程もしくはアルカリ減量工程における熱履歴により、構造発現し、捲縮が発現する。そして、アルカリ減量工程することにより繊維軸方向にスリットが形成され、繊維軸方向に略直交する方向にクラックが形成されることになる。前記複合仮撚加工糸において、他の糸条として潜在捲縮糸を用いた場合には上記染色工程もしくはアルカリ減量工程における熱履歴により、当該潜在捲縮糸も構造が発現し、顕在捲縮糸となる。
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、上述した方法に基づいて測定を行ったものである。
 [測定方法]
 (1)熱可塑性樹脂の重量平均分子量の測定
 複合繊維に用いたポリエステル系熱可塑性樹脂Aおよびポリエステル系熱可塑性樹脂Bについて、ゲル透過クロマトグラフィー(GPC)試験機として、東ソー株式会社製“TOSO GMHHR-H(S)HT”を用いて重量平均分子量を測定した。
 検出器:示差屈折率検出器RI(Waters-2414,感度128x)
 カラム:昭和電工株式会社製 ShodexHFIP806M(2本連結)
 溶媒:テトロヒドロフラン(25cm
 流速:1.0mL/min
 カラム温度:30℃
 注入量:0.10mL
 標準物質:ポリスチレン。
 (2)繊維直径D、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みt、繊維の周囲長Cの測定
 複合繊維からなるマルチフィラメントを繊維軸方向に1cm間隔で10か所連続してエポキシ樹脂などの包埋剤にて包埋したものを試料とし、透過型電子顕微鏡(TEM)で10本以上の繊維が観察できる倍率として各試料の画像を撮影した。この際、金属染色を施して、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの接合部のコントラストを明確にした。画像解析ソフトとして、三谷商事株式会社製“WinROOF2015”を用い、観察画像中すべての単糸から繊維直径Dと、そこからそれぞれの周囲長Cおよび、ポリエステル系熱可塑性樹脂Bの厚みtを測定した。なお、繊維直径Dは円換算直径とした。得られた繊維直径D、周囲長C、厚みt、ポリエステル系熱可塑性樹脂Aの面積率Saのセットを10点揃え、それを平均して繊維直径Dは有効数字3桁、周囲長Cおよび厚みtは有効数字2桁で求め本発明の繊維直径D、周囲長C、厚みt、面積率Saとした。また、厚みtは繊維周方向に1°毎、360箇所測定し、最も小さいものをtmin、厚みtが1.00tmin≦t≦1.05tminを満たす領域と前記複合繊維の周囲線とが重複する部分の長さをCとした。また断面の総面積Sからポリエステル系熱可塑性樹脂Aの面積率Saを引き、ポリエステル系熱可塑性樹脂Bの面積率Sbとした。
 (3)見掛けの太細比(Dthick/Dthin)の測定
 染色工程(仕上げ熱セット)後の織編物から仮撚加工糸を抜き取り、0.11cN/dtexの荷重をかけた状態で仮撚加工糸の両端を固定した。固定した試料の側面を株式会社キーエンス製デジタルマイクロスコープ“VHX-2000”にて200倍の倍率で撮影した画像において、繊維束の直径を繊維軸方向に連続して1.0mm間隔で500か所測定した。太部の繊維直径(Dthick)および細部の繊維直径(Dthin)の判別は、全測定データの平均値より細い部分を細部(細部<平均値)、全測定データの平均値より太い部分を太部(太部>平均値)とすることにより行った。見掛けの太細比は小数点以下3桁目を四捨五入して小数点以下2桁で求めた。
 (4)クラック、スリットの有無および深さの測定
 任意の箇所を、電子顕微鏡として、株式会社日立製作所製走査型電子顕微鏡“S-3400N”を用いて観察した。仕上げ熱セット後の織編物から複合繊維を、外力を掛けずに引き出し、クラック、スリットの有無を確認すると共に、クラックやスリット有の場合は繊維軸方向の側面を倍率2000倍にて観察した。クラック、スリットの最も深い深さと長さを計測し、一本の仮撚加工糸内で10個のクラック、スリットを測定した平均値をそれぞれの深さとした。なおクラックとは繊維軸方向と略直交方向の溝を指し、スリットは繊維軸方向と略並行方向の溝である。
 表中、単繊維の外周の半周程度にクラックが形成された領域、外周の半分程度にスリットが形成された領域を有する態様が観察された場合に「クラック/スリット」、クラックが形成された領域が単繊維の全周にわたる態様が観察され、スリットが観察されなかった場合に「全周クラック」、クラックが形成された領域が単繊維の半周にわたる態様が観察され、スリットが観察されなかった場合に「半周クラック」と表記した。なお、後述の実施例、比較例において、上記クラックありとしたものは、いずれもクラックの幅が1.0~30.0μmの範囲内にあった。当該領域において、10個以下のクラックにより、当該領域の外周方向の概ね全域にわたるような分散形態が繊維軸方向1cmの範囲内に存在する頻度でクラックが形成されていた。また、スリットありとしたものは、いずれもスリットの長さが100μm以上であった。また、クラック、スリットとも観察されなかった場合には「なし」と表記した。
 (5)単糸繊度
 製織前の各繊維については、以下の方法で測定した繊度とフィラメント数から、繊度/フィラメント数で求めた。
繊度:JIS L 1013:2021 化学繊維フィラメント糸試験方法8.3.1(正量繊度)a)法
フィラメント数:JIS L 1013:2021 化学繊維フィラメント糸試験方法(8.4フィラメント数)。
 製織後の繊維については、染色加工後の織編物から仮撚加工糸を抜き出し、繊度およびフィラメント数をそれぞれJIS L1013(2010)8.3.1B法、JIS L1013(2010)8.4に準じて測定し、繊度/フィラメント数により単糸繊度を得た。
 なお、複合仮撚加工糸の場合は測定用に複合せずに巻取りを行い、評価を行った(クラック形成前の仮撚加工糸の単糸繊度)。さらに、染色加工と同等の熱処理、アルカリ減量加工を行った場合はそれと同等の処理を行い、評価を行った(仮撚加工糸の単糸繊度)。
 (6)伸縮復元率(CR)
 本発明における織編物のサンプルから分解した仮撚加工糸から作製した小カセ(カセ長20cm、巻き数1回)を試料とした以外は、JIS L 1013:2021 化学繊維フィラメント糸試験方法8.12により伸縮復元率(CR)を測定した。測定は5回行い、その平均値の小数点以下2桁目を四捨五入して小数点以下1桁で求めた。なお、複合仮撚加工糸の場合は測定用に複合せずに巻取りを行い、染色加工と同等の熱処理、アルカリ減量加工を行った場合はそれと同等の処理を行い、評価を行った。
 (7)沸水収縮率
 クラック形成前の仮撚加工糸を試料として、JIS L2013:2021 化学繊維フィラメント糸試験方法8.18.1(熱水寸法変化率)a)法(かせ寸法変化率)により測定した。
 なお、複合仮撚加工糸の場合は測定用に複合せずに巻取りを行い、評価を行った。
 (8)撚り係数
 本発明における織編物のサンプルから分解した仮撚加工糸または複合仮撚加工糸を、JIS L1013:2021 化学繊維フィラメント糸試験方法8.13.1(より数)に準じて撚り数を測定した。得られたより数から次式により撚り係数を算出した。
撚り係数(K)=撚り数(T/m)×√(繊度(dtex)×0.9)。
 (9)織編物のストレッチ性
 JIS L1096(2010)8.16.1B法に準じて本発明の仮撚加工糸又は複合仮撚加工糸に沿った方向の伸長率を測定した。経緯ともに本発明の仮撚加工糸又は複合仮撚加工糸を用いた場合は経緯それぞれの伸長率を測定し、その平均値を結果とした。
 (10)ギラツキ抑制度
 織編物を黒色に染色し、染色後の織編物をキーエンス株式会社製デジタルマイクロスコープ“VHX-2000”を用いて観察した。観察条件は倍率50倍、照度設定はオート60、スーパーチャージ60ms、ゲイン0dBとした。上記の条件で織編物の表面を撮影後に、全観察領域(S1)から明度200~255の領域(S2)を抽出し、次式によってギラツキ抑制度を算出した。
ギラツキ抑制度=1/(S2/S1)
測定は3回行い、その平均値を結果とした。
 (11)織編物の杢感、ドライ感、反発性の評価
 本発明における織編物のサンプルを、健康な成人10名(男性と女性各5名)を評価者として、織編物の杢感を目視によって、ドライ感と反発性を触感によって、非常に良い(5点)、良い(4点)、普通(3点)、あまり良くない(2点)、悪い(1点)の5段階で官能評価し、各検査者の平均値を四捨五入して評価をした。なお、比較としては実施例、比較例と同総繊度、同フィラメント数のポリエチレンテレフタレートの仮撚加工糸からなる織物を普通(3点)とした。
 [実施例1]
 ポリエステル系熱可塑性樹脂Aを重量平均分子量25000のポリエチレンテレフタレート、ポリエステル系熱可塑性樹脂Bを重量平均分子量15000のポリエチレンテレフタレートとし、紡糸温度290℃、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとが50:50の質量複合比となるように、複数枚で構成される分配プレートの内、最も下流に設置された最終分配プレートにおける分配孔の配置を図5に示した形とし、吐出孔数36の複合繊維用紡糸口金に流入させた。図5は、本発明の仮撚加工糸の本実施例1に係る最終分配プレートの概略図であり、最終分配プレートにおける分配孔のうち、ポリエステル系熱可塑性樹脂Aの分配孔18の群の周囲にポリエステル系熱可塑性樹脂Bの分配孔19の群が偏心芯鞘型になるよう形成されている。
このようにしてポリエステル系熱可塑性樹脂B中にポリエステル系熱可塑性樹脂Aが包含された偏心芯鞘型(図2)の複合断面を形成した。口金から吐出された糸条は、空冷装置により冷却、油剤付与後、ワインダーにより2600m/分の速度で巻き取り、総繊度240dtex-単糸数36フィラメントの半延伸糸として安定的に複合繊維を得た。この複合繊維について、前記の(tmin/D)は0.02、CとCとの関係は、C/C=0.40であった。また、S:S=50:50であった。
 続いて、得られた複合繊維をフリクション仮撚機(ATF12:TMTマシナリー(株)製)を用いて上記半延伸糸をフィードローラーから給糸し、加工速度:400m/min、ピン延伸倍率:1.40倍、ピン温度80℃、ヒーター延伸倍率1.20倍、ヒーター温度:170℃、仮撚係数:28,000、撚り方向:Sで仮撚を行い、繊度:143dtexの仮撚加工糸を得た。
 次に、上記仮撚加工糸を経糸および緯糸として用い、経糸密度105本/2.54cm、緯糸密度90本/2.54cmで、平組織の織物を作製した。
 さらにこの織物に、精練、リラックス処理、中間熱セットを施した。その後、アルカリ減量加工(減量率20%)を行い仮撚加工糸の単糸表面にクラック、スリットを形成し、さらに染色工程として分散染料「Dystar Navy BlueS-GL」を用いて濃度1.0owf%、130℃の温度で30分間染色し、160℃での仕上げ熱セットを施した。この際、見かけの太細比(Dthick/Dthin)1.23、伸縮復元率(CR):20.0%であった。結果を表1に示す。
 [実施例2]
 実施例1において、半延伸糸の総繊度を270dtex、ピン延伸倍率:1.45倍、ヒーター延伸倍率を1.30倍とした以外は実施例1と同様に仮撚加工糸、織物を得た。得られた仮撚加工糸の伸長復元率(CR):28.0%、織物の伸長率:25%とよりストレッチ性に優れていた。結果を表1に示す。
 [実施例3]
 実施例1において、ピン延伸倍率:1.35倍、ヒーター延伸倍率を1.20倍とした以外は実施例1と同様に仮撚加工糸、織物を得た。結果を表1に示す。
 [実施例4]
 実施例1において、ピン延伸倍率:1.20倍、ヒーター延伸倍率を1.35倍とした以外は実施例1と同様に仮撚加工糸、織物を得た。結果を表1に示す。
 [実施例5]
 口金孔数を変更し、総繊度240dtex-単糸数48フィラメントの半延伸糸とした以外は実施例2と同様に仮撚加工糸、織物を得た。結果を表1に示す。
 [実施例6]
 仮撚工程において、他の糸条としてポリエチレンテレフタレート繊維からなる半延伸糸をヒーター前で合流させ、他の糸条のヒーター延伸倍率1.50倍で仮撚加工糸の混率が63%である複合仮撚加工糸とし、経糸密度を88本/inch(2.54cm)、緯糸密度を75本/inch(2.54cm)とした以外は実施例2と同様に織物を得た。得られた織物は仮撚加工糸と他の糸条での染着差により、より優れた杢感であった。結果を表1に示す。
 [実施例7]
 口金孔数およびポリエステル系熱可塑性樹脂の流入量を変更し、総繊度113dtex-単糸数24フィラメントとした以外は実施例1と同様に半延伸糸を得た。この半延伸糸を他の糸条として実施例6と同様に複合仮撚加工糸および織物を得た。得られた織物は得られた織物は仮撚加工糸と他の糸条での染着差により、より優れた杢感であり、さらに他の糸条のCRが高いためストレッチ性にも優れていた。結果を表1に示す。
 [実施例8]
 実施例2で得られた仮撚加工糸に撚り係数3000、撚り方向Sで撚糸を行った以外は、実施例2と同様に織物を得た。本撚糸により仮撚加工糸の収束性が向上し、製織工程の通過性が良好であり、さらに織物のストレッチ性、反発性も撚糸をしない場合と同等であった。結果を表1に示す。
 [実施例9]
 実施例2で得られた仮撚加工糸に撚り係数3000、撚り方向Zで撚糸を行った以外は、実施例2と同様に織物を得た。本撚糸により仮撚加工糸の収束性が向上し、製織工程の通過性が良好であった。さらに織物のストレッチ性も撚糸をしない場合と同等であった。結果を表1に示す。
 [実施例10]
 実施例2で得られた仮撚加工糸に撚り係数10000、撚り方向Sで撚糸を行った以外は、実施例2と同様に織物を得た。本撚糸により仮撚加工糸の収束性が向上し、製織工程の通過性が良好であった。結果を表1に示す。
 [実施例11]
 ポリエステル系熱可塑性樹脂Aとしてイソフタル酸(IPA)を酸成分に対して10mol%共重合させた重量平均分子量25000のポリエステルとした以外は実施例1と同様に織物を得た。結果を表1に示す。
 [実施例12]
 ポリエステル系熱可塑性樹脂Aを重量平均分子量19000のポリエステルとした以外は実施例1と同様に織物を得た。結果を表1に示す。
 [比較例1]
 アルカリ減量加工を行わないこと以外は、実施例2と同様に仮撚加工糸および織物を得た。得られた織物はアルカリ減量をしていないためクラックおよびスリットが形成されておらず、ギラツキ抑制が低く、梳毛外観に乏しいものであった。結果を表2に示す。
 [比較例2]
 重量平均分子量20000のポリエチレンテレフタレートを紡糸温度290℃で吐出孔数36の繊維用紡糸口金(丸孔)に流入させた。口金から吐出された糸条は、空冷装置により冷却、油剤付与後、ワインダーにより2600m/分の速度で巻き取り、総繊度240dtex-単糸数36フィラメントの半延伸糸として安定的に巻き取った。この半延伸糸を用いた以外は実施例2と同様に仮撚加工、織物を得た。得られた織物はストレッチ性に劣り、また1種の熱可塑性樹脂で形成されているためアルカリ減量を行ってもスリットが得られず、ギラツキ抑制度が低いため梳毛外観に劣っていた。結果を表2に示す。
 [比較例3]
 ポリエステル系熱可塑性樹脂Aを重量平均分子量20000のポリエチレンテレフタレート、ポリエステル系熱可塑性樹脂Bを重量平均分子量19000のポリエチレンテレフタレートとした以外は実施例2と同様に仮撚加工糸および織物を得た。得られた織物はストレッチ性に劣り、また分子量差が小さいため複合繊維の接合界面に十分な凹凸が得られないためクラックが形成できず、ギラツキ抑制度が低いため梳毛外観に劣っていた。結果を表2に示す。
 [比較例4]
 実施例2において、使用する紡糸口金を、分配板方式の口金から特開平09-157941号公報に記載された形式の口金に置き換え、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとからなるサイドバイサイド型複合繊維としたこと以外は、実施例2と同様に織物を得た。サイドバイサイド型複合繊維の場合、複合繊維時点でポリエステル系熱可塑性樹脂Aが露出しており、アルカリ減量を行ってもスリットが形成されないのでギラツキ抑制度が低く、梳毛外観に劣っていた。結果を表2に示す。
 [比較例5]
 実施例2において仮撚加工機のツイスターを通さずに延伸のみを行った以外は、実施例2と同様に織物を得た。得られた織物は表面が滑らかなであり、ドライ感に劣る物であった。結果を表2に示す。
 [比較例6]
 実施例2の仮撚加工において、ピン延伸を行わずに、ヒーター延伸倍率を1.68倍とした以外は、実施例2と同様にし、見かけの太細比(Dthick/Dthin)1.02の仮撚加工および織物を得た。得られた織物は、仮撚加工糸の太細比が小さくナチュラルさが低く、また繊維長手方向の構造が均一であり、繊維を構成する分子の長手方向の配向差が小さく、アルカリ減量によるクラックが得られないためギラツキ抑制が低く、梳毛外観に劣っていた。結果を表2に示す。
 [比較例7]
 実施例2の仮撚加工において、ピン延伸倍率を1.30倍、ヒーター延伸倍率を1.02倍とし、見かけの太細比(Dthick/Dthin)3.20の仮撚加工を得た。また経糸密度を88本/inch(2.54cm)、緯糸密度を75本/inch(2.54cm)とした以外は実施例2と同様に織物を得た。得られた織物は仮撚加工糸の太細比が大きく機械的な濃淡のある杢であり、梳毛外観に劣る物であった。結果を表2に示す。
 [比較例8]
 実施例2において、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みtの最小値tminの値が10倍となるように使用する紡糸口金の最終分配板プレートの分配孔の配置を図5から図6となるように変更し、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとからなり、(tmin/D)が0.20である芯鞘型複合繊維としたこと以外は、実施例2と同様に織物を得た。図6は、本比較例1に係る最終分配プレートの概略図であり、最終分配プレートにおける分配孔のうち、ポリエステル系熱可塑性樹脂Aの分配孔18の群の周囲にポリエステル系熱可塑性樹脂Bの分配孔19の群が偏心芯鞘型になるよう形成されているが、厚みtの最小値tminの値が上記のとおりとなる配置である。得られた織物はポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bが厚いので、アルカリ減量加工を行っても接合界面が露出しないためスリットが形成されず、ギラツキ抑制度が低いため梳毛外観に劣っていた。また、ストレッチ性にも劣っていた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1:ポリエステル系熱可塑性樹脂A
2:ポリエステル系熱可塑性樹脂B
3:ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みt
4:仮撚加工糸
5:クラック
6:スリット
7:複合繊維
8:第1フィードローラー
9:ホットピン
10:第2フィードローラー
11:ヒーター
12:ツイスター
13:第3フィードローラー
14:仮撚加工糸または複合仮撚加工糸
15:巻き取り部
16:他の糸条
17:第4フィードローラー
18:ポリエステル系熱可塑性樹脂Aの分配孔
19:ポリエステル系熱可塑性樹脂Bの分配孔

Claims (8)

  1. ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の要件を満たす、仮撚加工糸。
    (1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
    (2)前記ポリエステル系熱可塑性樹脂Aと前記ポリエステル系熱可塑性樹脂Bが偏心型に接合されている。
    (3)前記仮撚加工糸の見かけの太細比(Dthick/Dthin)が1.05~3.00である。
    (4)前記仮撚加工糸の表面において、繊維軸方向にスリットを有し、繊維軸方向に略直交する方向にクラックを有する。
  2. 単糸繊度が3.0dtex以上である、請求項1に記載の仮撚加工糸。
  3. 伸縮復元率(CR)が25.0%以上である、請求項1又は2に記載の仮撚加工糸。
  4. 請求項1~3のいずれかに記載の仮撚加工糸及び少なくとも1種の他の糸条を含む、複合仮撚加工糸。
  5. 前記他の糸条が顕在捲縮糸である、請求項4に記載の複合仮撚加工糸。
  6. 請求項1~3のいずれかに記載の仮撚加工糸、請求項4又は5に記載の複合仮撚加工糸のいずれかを含む、撚り係数が1200~6000である、撚糸。
  7. 請求項1~3のいずれかに記載の仮撚加工糸、請求項4又は5に記載の複合仮撚加工糸、請求項6に記載の撚糸のいずれかを少なくとも一部に含む、織編物。
  8. 請求項7に記載の織編物を少なくとも一部に含む、衣類。
PCT/JP2023/023110 2022-07-22 2023-06-22 仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類 WO2024018814A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022116920 2022-07-22
JP2022-116920 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024018814A1 true WO2024018814A1 (ja) 2024-01-25

Family

ID=89617599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023110 WO2024018814A1 (ja) 2022-07-22 2023-06-22 仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類

Country Status (1)

Country Link
WO (1) WO2024018814A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123922A (ja) * 1974-03-22 1975-09-29
JPS6269820A (ja) * 1985-09-24 1987-03-31 Nippon Ester Co Ltd 凹凸を有するポリエステル繊維とその製造法
JP2001200445A (ja) * 2000-01-13 2001-07-27 Mitsubishi Rayon Co Ltd 伸縮性織物
JP2003293226A (ja) * 2002-04-01 2003-10-15 Nippon Ester Co Ltd 潜在捲縮性ポリ乳酸複合繊維及びその不織布
JP2004124271A (ja) * 2002-09-30 2004-04-22 Mitsubishi Rayon Co Ltd ポリエステル複合マルチフィラメント繊維及びその製造方法並びにその織編物
JP2005273116A (ja) * 2004-03-25 2005-10-06 Hyosung Corp 複合繊維及びその製造方法
JP2006507421A (ja) * 2002-11-26 2006-03-02 コーロン インダストリーズ インク 高伸縮性サイドバイサイド型複合フィラメント及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123922A (ja) * 1974-03-22 1975-09-29
JPS6269820A (ja) * 1985-09-24 1987-03-31 Nippon Ester Co Ltd 凹凸を有するポリエステル繊維とその製造法
JP2001200445A (ja) * 2000-01-13 2001-07-27 Mitsubishi Rayon Co Ltd 伸縮性織物
JP2003293226A (ja) * 2002-04-01 2003-10-15 Nippon Ester Co Ltd 潜在捲縮性ポリ乳酸複合繊維及びその不織布
JP2004124271A (ja) * 2002-09-30 2004-04-22 Mitsubishi Rayon Co Ltd ポリエステル複合マルチフィラメント繊維及びその製造方法並びにその織編物
JP2006507421A (ja) * 2002-11-26 2006-03-02 コーロン インダストリーズ インク 高伸縮性サイドバイサイド型複合フィラメント及びその製造方法
JP2005273116A (ja) * 2004-03-25 2005-10-06 Hyosung Corp 複合繊維及びその製造方法

Similar Documents

Publication Publication Date Title
EP1846602B1 (en) Stretch woven fabrics
US20200087820A1 (en) Eccentric core-sheath composite fiber and combined filament yarn
US6276121B1 (en) Crimped yarn, textile fabric, and process for preparing the same
JP7135469B2 (ja) 偏心芯鞘複合繊維を用いた織編物
JP5599686B2 (ja) ポリエステル潜在捲縮加工糸及びその製造方法
WO2024018814A1 (ja) 仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類
WO2024018818A1 (ja) 複合繊維、構造糸、織編物及び衣類
JPH0625919A (ja) 複合繊維、その製造方法および紡糸口金装置
TW202415820A (zh) 假撚加工紗以及包含其之複合假撚加工紗、撚紗、織編物及衣物
EP4283027A1 (en) Composite fiber, composite mixed-filament fiber including same, woven/knitted fabric, and garment
KR102479830B1 (ko) 심초형 복합가연사 및 이의 제조방법
JP5012646B2 (ja) 分割型ポリアミド・ポリエステル複合繊維、それからなる織編物、繊維製品
JP3972631B2 (ja) ポリエステル系複合仮撚加工糸およびその製造方法
JP2019123970A (ja) 織物
WO2023182145A1 (ja) 複合仮撚加工糸、織編物及び衣服
TW202417702A (zh) 複合纖維、構造紗、織編物及衣物
JP7439960B2 (ja) 複合繊維、マルチフィラメントおよび繊維製品
WO2023100570A1 (ja) 偏心芯鞘複合仮撚糸及びそれを用いた織編物
JP4202210B2 (ja) 混繊糸及び織編物及び着古し外観を有する縫製品
JP4228504B2 (ja) 混繊糸からなる織編物
JP2024024786A (ja) 複合仮撚糸及びそれを含む織編物
JP2001214335A (ja) 低収縮ポリエステル太細糸およびそれからなるポリエステル混繊糸
JP3988286B2 (ja) 織編物
JP2020015992A (ja) 異繊度異形断面混繊ポリアミド糸および繊維製品
JP2015221953A (ja) 織編物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842745

Country of ref document: EP

Kind code of ref document: A1