WO2024018663A1 - Immersion-cooling device - Google Patents

Immersion-cooling device Download PDF

Info

Publication number
WO2024018663A1
WO2024018663A1 PCT/JP2023/004297 JP2023004297W WO2024018663A1 WO 2024018663 A1 WO2024018663 A1 WO 2024018663A1 JP 2023004297 W JP2023004297 W JP 2023004297W WO 2024018663 A1 WO2024018663 A1 WO 2024018663A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
casing
header
cooling device
supply
Prior art date
Application number
PCT/JP2023/004297
Other languages
French (fr)
Japanese (ja)
Inventor
伸英 原
澄生 内田
博子 北本
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024018663A1 publication Critical patent/WO2024018663A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/44Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • Patent Document 1 discloses a cooling system that cools electronic equipment that has a heat generating element.
  • the cooling system includes a cooling tank containing a refrigerant.
  • Electronic equipment is immersed in a coolant in a cooling bath.
  • a plurality of electronic devices are arranged vertically in the cooling tank. After cooling the heating element, the refrigerant in the cooling tank is circulated so that it is cooled outside the cooling tank and then supplied to the cooling tank again.
  • the present disclosure has been made to solve the above problems, and aims to provide a liquid immersion cooling device that can be downsized and improve refrigerant management.
  • an immersion cooling device is a liquid immersion cooling device that cools a heating element provided on a substrate, and has a box shape extending in the horizontal direction, and has a box-like shape that extends inside the substrate. has a plurality of casings arranged so as to extend in the horizontal direction, and these casings are arranged in the vertical direction; a supply side header into which a first refrigerant can be introduced, a discharge side header which extends vertically adjacent to the casing and into which the first refrigerant is introduced from each of the plurality of casings, and the discharge side header. a refrigerant pumping section that pumps the first refrigerant from the supply header to the supply header; and a heat exchanger tube that cools the first refrigerant by exchanging heat.
  • a liquid immersion cooling device is a liquid immersion cooling device that cools a heating element provided on a substrate, and includes a casing in which a first refrigerant is stored and the substrate is arranged so as to extend in a horizontal direction. and a jet flow supply unit that supplies a jet flow of the first refrigerant to the heating element, and a second refrigerant that passes through the casing and circulates inside the casing and exchanges heat with the first refrigerant to cool the first refrigerant. and a heat exchanger tube.
  • liquid immersion cooling device of the present disclosure it is possible to achieve miniaturization while improving refrigerant manageability.
  • FIG. 1 is an overall diagram showing a schematic configuration of a liquid immersion cooling device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a liquid immersion cooling device according to a first embodiment of the present disclosure, viewed from an angle.
  • FIG. 2 is a schematic side view of the heat sink mechanism according to the first embodiment of the present disclosure.
  • 1 is a cross-sectional view of a heat exchanger tube according to a first embodiment of the present disclosure. It is a schematic diagram seen from the side of the liquid immersion cooling device concerning the first modification of the first embodiment of this indication. It is a sectional view of the heat exchanger tube concerning the second modification of the first embodiment of this indication.
  • FIG. 2 is a schematic diagram of a liquid immersion cooling device according to a second embodiment of the present disclosure viewed from the side. It is a schematic diagram showing the schematic structure of the whole immersion cooling device concerning a third embodiment of the present disclosure. It is a schematic diagram showing a schematic structure inside a casing concerning a third embodiment of the present disclosure.
  • a liquid immersion cooling device 10 is used for cooling electronic equipment that performs high-speed calculations.
  • the liquid immersion cooling device 10 is used in a server 1 installed in a data center.
  • a plurality of servers 1 are provided.
  • a plurality of servers 1 are installed in each stage of an air cooling rack 8.
  • This rack 8 is a general rack having a size of, for example, about 19 inches.
  • the server 1 includes a printed circuit board and elements such as a CPU and a GPU chip provided on the printed circuit board. Since the CPU and GPU are components responsible for high-speed calculation processing, they are subject to a high load and generate heat at a higher temperature than other parts of the server 1.
  • a heat exchanger 7 that uses water as a refrigerant is installed in the data center.
  • the heat exchanger 7 include a dry cooler and a chiller.
  • the liquid immersion cooling device 10 of this embodiment is provided separately from the heat exchanger 7, and is used to cool elements that generate heat at high temperatures, such as a CPU and a GPU.
  • the printed circuit board of the server 1 will be simply referred to as the "board 2," and the elements on the board 2, such as the CPU and GPU, that generate heat to a particularly high temperature may be referred to as the "heating element 3.”
  • the substrate 2 is formed into a rectangular plate shape.
  • a heating element 3 is provided on the surface of the substrate 2.
  • the heating element 3 has a base 4 and a heating element main body 6.
  • the base 4 is a rectangular plate-like member.
  • the base 4 is attached to the surface of the substrate 2.
  • a recess 5 is provided on the surface of the base 4 on the side opposite to the substrate 2.
  • the recess 5 is provided in the center of the base 4.
  • a heating element main body 6 is attached to the recess 5.
  • the heating element main body 6 is a part of the heating element 3 that mainly generates heat.
  • the heating element main body 6 is a semiconductor that constitutes a CPU or a GPU. Among the surfaces of the heating element main body 6, the surface on the opposite side from the substrate 2 is flush with the surface of the base 4.
  • the immersion cooling device 10 includes a casing 11, a heat sink mechanism 20, a jet flow supply section 30, a header pipe 40, and a heat transfer tube 50.
  • the casing 11 is arranged at each stage of the rack 8.
  • the casing 11 is formed into a rectangular box shape extending in the horizontal direction.
  • a first refrigerant R1 is stored in the casing 11.
  • the casing 11 is filled with the first refrigerant R1. That is, the entire storage space within the casing 11 is filled with the first refrigerant R1.
  • the first refrigerant R1 is an insulating refrigerant.
  • the first refrigerant R1 cools the heating element 3 in a liquid phase state. For this reason, it is desirable that the boiling point of the first refrigerant R1 is 70 degrees or higher.
  • Examples of the first refrigerant R1 include liquids based on fluorocarbons.
  • each server 1 is arranged so as to extend in the horizontal direction.
  • the substrate 2 is arranged so that the surface on which the heating element 3 is provided faces upward.
  • a heat sink mechanism 20 is provided on the heating element 3 provided on the substrate 2.
  • the heat sink mechanism 20 is attached to the surface of the heating element 3 on the opposite side from the substrate 2. As shown in FIG. 3, the heat sink mechanism 20 includes a first heat transfer plate 21, grease 22, a second heat transfer plate 23, and heat sink fins 24.
  • the first heat exchanger plate 21 is attached to the surface of the heating element 3 on the side opposite to the substrate 2 in an overlapping manner.
  • the outer edge of the first heat exchanger plate 21 coincides with the outer edge of the heat generating element 3 when viewed from the top and bottom.
  • the first heat exchanger plate 21 is made of stainless steel, for example.
  • the first heat transfer plate 21 is provided to increase the surface area of the heat generating body 6 and to diffuse the heat generated by the heat generating body 6.
  • Grease 22 is provided on the surface of first heat exchanger plate 21 on the side opposite to heating element 3 .
  • Grease 22 bonds first heat exchanger plate 21 and second heat exchanger plate 23 together.
  • the first heat exchanger plate 21 and the second heat exchanger plate 23 are in close contact with each other through grease 22 .
  • the second heat exchanger plate 23 is provided on the surface of the first heat exchanger plate 21 opposite to the heating element 3 with the grease 22 interposed therebetween.
  • the second heat exchanger plate 23 is made of metal such as copper, for example.
  • the heat sink fins 24 are provided on the surface of the second heat exchanger plate 23 that is opposite to the first heat exchanger plate 21 .
  • a plurality of heat sink fins 24 are provided on the second heat transfer plate 23.
  • the heat sink fins 24 are formed into a rod shape that extends perpendicularly to the second heat exchanger plate 23 .
  • the heat sink fins 24 are made of, for example, the same metal as the second heat transfer plate 23, such as copper.
  • the heat sink fins 24 are provided to further increase the surface area of the heat generating body 6 and to further diffuse the heat generated by the heat generating body 6.
  • the jet supply section 30 supplies a jet of the first refrigerant R1 to the heating element 3.
  • the jet flow supply section 30 includes a circulation pipe 31, a pump 32, and a filter 33.
  • Circulation piping 31 is provided outside of casing 11. Both ends of the circulation pipe 31 communicate with the inside of the casing 11.
  • the first refrigerant R1 can flow through the circulation pipe 31.
  • one end 31a of the circulation pipe 31 is connected to the lower surface of the casing 11.
  • One end 31a of the circulation pipe 31 is provided at a position overlapping the heating element 3 in the vertical direction.
  • the other end 31b of the circulation pipe 31 is connected to the upper surface of the casing 11.
  • the other end 31b of the circulation pipe 31 is provided at a position overlapping the heating element 3 in the vertical direction. Therefore, the other end 31b of the circulation pipe 31 is arranged at a position facing the heating element 3 and the heat sink mechanism 20.
  • the pump 32 is provided in the circulation pipe 31.
  • the pump 32 circulates the first refrigerant R1 from one end 31a of the circulation pipe 31 to the other end 31b.
  • the filter 33 is provided in the circulation pipe 31.
  • the filter 33 is provided downstream of the pump 32 in the flow direction of the first refrigerant R1.
  • the filter 33 is, for example, an activated carbon filter.
  • the first refrigerant R1 is circulated inside the casing 11 and the circulation pipe 31 by the jet supply section 30. Thereby, in the casing 11, the first refrigerant R1 is ejected from the other end 31b of the circulation pipe 31, bypasses the substrate 2, and flows into the one end 31a of the circulation pipe 31.
  • the flow direction of the first refrigerant R1 will be simply referred to as the "flow direction”
  • the other end 31b side of the circulation pipe 31 will be referred to as the "upstream side” in the flow direction of the first refrigerant R1.
  • the one end 31a side of the pipe 31 is sometimes referred to as the "downstream side.”
  • header pipe 40 As shown in FIG. 1, the header pipe 40 communicates with the heat exchanger 7.
  • the refrigerant of the heat exchanger 7 flows through the header pipe 40 .
  • second refrigerant R2 the refrigerant of the heat exchanger 7
  • the header pipe 40 has a main pipe 43 and a subheader 44.
  • One main pipe 43 is provided for each header pipe 40.
  • the main pipe 43 extends in the vertical direction.
  • a plurality of subheaders 44 are pipes extending from one main pipe 43. All of the plurality of subheaders 44 extend in the horizontal direction.
  • the plurality of subheaders 44 extend parallel to each other and are arranged at equal intervals in the vertical direction.
  • Two header pipes 40 are provided.
  • the two header pipes 40 are provided on opposite sides of the casing 11.
  • the second refrigerant R2 is supplied to one header pipe 40 from the heat exchanger 7.
  • the second refrigerant R2 supplied to one header pipe 40 passes through the casing 11 and is returned to the other header pipe 40.
  • This other header pipe 40 returns the second refrigerant R2 that has passed through the casing 11 to the heat exchanger 7.
  • header pipe 41 one header pipe 40 to which the second refrigerant R2 is supplied from the heat exchanger 7
  • return header pipe 41 the other header pipe 40 that returns the second refrigerant R2 to the heat exchanger 7
  • header pipe 42 It is called "header pipe 42”.
  • the subheader 44 of the supply header pipe 41 and the subheader 44 of the return header pipe 42 are connected by a plurality of heat transfer tubes 50.
  • a plurality of heat exchanger tubes 50 are provided in each casing 11.
  • the heat exchanger tubes 50 communicate with the heat exchanger 7.
  • the second refrigerant R2 of the heat exchanger 7 flows inside the heat exchanger tube 50.
  • the heat exchanger tube 50 penetrates the casing 11 in the horizontal direction.
  • the plurality of heat exchanger tubes 50 extend parallel to each other and are arranged at equal intervals.
  • the plurality of heat exchanger tubes 50 are provided at the same position in the vertical direction.
  • the flow of the second refrigerant R2 in each heat exchanger tube 50 is a laminar flow from the supply header tube 41 to the return header tube 42.
  • the heat exchanger tube 50 performs heat exchange between the second refrigerant R2 and the first refrigerant R1, and cools the first refrigerant R1.
  • the heat exchanger tube 50 is arranged within the casing 11 on the downstream side of the heating element 3 in the flow direction of the first refrigerant R1.
  • the heat exchanger tube 50 is formed into a rectangular cylindrical shape.
  • a plurality of fins 51 are provided on the inner peripheral surface of the heat exchanger tube 50.
  • the fins 51 are provided at corners of the inner peripheral surface of the heat exchanger tube 50.
  • the heat exchanger tube 50 is a so-called extruded tube manufactured by extrusion processing.
  • the circulation of the first refrigerant R1 within the immersion cooling device 10 will be explained.
  • the first refrigerant R1 of the casing 11 flows into the circulation pipe 31 from one end 31a of the circulation pipe 31.
  • the first refrigerant R1 is pumped by the pump 32 from one end 31a of the circulation pipe 31 to the other end 31b.
  • the first refrigerant R1 is ejected from the other end 31b of the circulation pipe 31 as a jet stream.
  • the jet of first refrigerant R1 is supplied to the heat sink mechanism 20. Heat from the heating element 3 is transferred to the first refrigerant R1 via the heat sink mechanism 20. In this way, the heating element 3 is cooled. Further, the first refrigerant R1 is supplied so as to collide with the heat sink mechanism 20. Therefore, the heating element 3 undergoes so-called impingement cooling.
  • the first refrigerant R1 passes through the heat sink fins 24 of the heat sink mechanism 20 and flows radially along the upper surface of the substrate 2.
  • the first refrigerant R1 reaches the outer edge of the substrate 2, it flows around to the lower side of the substrate 2.
  • the first refrigerant R1 then flows along the lower surface of the substrate 2.
  • the first refrigerant R1 passes through the plurality of heat exchanger tubes 50.
  • the first refrigerant R1 is cooled by exchanging heat with the second refrigerant R2 while passing through the plurality of heat transfer tubes 50.
  • the first refrigerant R1 cooled by the heat transfer tube 50 flows into one end 31a of the circulation pipe 31.
  • the first refrigerant R1 that has flowed into one end 31a of the circulation pipe 31 is pumped again by the pump 32. In this way, the first refrigerant R1 circulates within the immersion cooling device 10.
  • the liquid immersion cooling device 10 supplies a jet stream of the first refrigerant R1 to the heating element 3 and the casing 11 in which the first refrigerant R1 is stored and in which the substrate 2 is disposed so as to extend horizontally. and a heat transfer tube 50 that penetrates the casing 11 and performs heat exchange between the second refrigerant R2 and the first refrigerant R1 flowing inside the casing 11 to cool the first refrigerant R1.
  • the liquid immersion cooling device 10 can impinge-cool the heating element 3 by spraying the jet stream of the first refrigerant R1 onto the heating element 3.
  • the first refrigerant R1 sprayed onto the heating element 3 is cooled by the heat transfer tube 50 and used again to cool the heating element 3.
  • a large-scale cycle for circulating the first refrigerant R1 is not necessary. Therefore, the entire equipment can be downsized.
  • each casing 11 only needs to be large enough to accommodate one board 2, it is easy to freely utilize the space above the casing 11.
  • the casing 11 can be horizontally installed in each stage of the existing air cooling rack 8 so as to extend in the horizontal direction.
  • the casing 11 is arranged horizontally, but it is also possible to arrange the casing 11 regardless of whether the casing 11 is placed vertically or horizontally.
  • the immersion cooling device 10 can be made portable. This makes it easy to transport immersion cooling to other high-speed computing facilities.
  • the amount of the first refrigerant R1 is sufficient to fill the inside of the casing 11, it is also possible to reduce the amount of the first refrigerant R1, which is expensive because it has insulation properties.
  • the liquid immersion cooling device 10 can cool the first refrigerant R1 stored in the casing 11 within the casing 11 by the heat transfer tube 50. Thereby, there is no need to separately provide an external heat exchanger to cool the first refrigerant R1, and the number of heat exchangers can be reduced in the entire equipment. Furthermore, the circulation of the first refrigerant R1 can be completed within the immersion cooling device 10. As described above, since the circulation of the first refrigerant R1 can be completed within the immersion cooling device 10 while reducing the amount of the first refrigerant R1 used, the manageability of the first refrigerant R1 can also be improved. can.
  • the jet flow supply unit 30 is provided outside the casing 11 and communicates with the inside of the casing 11 at both ends, and is provided in the circulation pipe 31 and the circulation pipe 31 through which the first refrigerant R1 can flow.
  • a pump 32 that circulates the first refrigerant R1 from one end 31a of 31 to the other end 31b.
  • the other end 31b of the circulation pipe 31 is arranged at a position facing the heating element 3.
  • the flow direction of the first refrigerant R1 in the casing 11 is set by the installation locations of the one end 31a and the other end 31b of the circulation pipe 31. Therefore, since the flow path of the first refrigerant R1 in the casing 11 can be set arbitrarily, the cooling efficiency of the immersion cooling device 10 can be improved. Furthermore, by adjusting the pressure of the pump 32, the strength of the jet flow can be controlled according to the amount of heat generated by the heating element 3. Thereby, the heat generating element 3 can be cooled with the minimum amount of jet flow commensurate with the amount of heat removal necessary for the heat generating element 3. Therefore, the cooling efficiency of the liquid immersion cooling device 10 can be improved.
  • the heat exchanger tubes 50 are arranged in the casing 11 on the downstream side of the heating element 3 in the flow direction of the first refrigerant R1.
  • the second refrigerant R2 flowing in the heat transfer tube 50 can exchange heat with the first refrigerant R1 after cooling the heating element 3. Therefore, the cooling efficiency of the liquid immersion cooling device 10 can be further improved.
  • fins 51 are provided on the inner peripheral surface of the heat exchanger tube 50.
  • the heat exchanger tube 50 can improve the efficiency of heat exchange between the second refrigerant R2 and the first refrigerant R1.
  • the heating element 3 and the heat exchanger tube 50 are arranged on the same side with respect to the substrate 2 (for example, on the lower side of the substrate 2).
  • the other end 31b of the circulation pipe 31 that supplies the jet of the first refrigerant R1 of the jet supply section 30 is provided directly below the heating element 3.
  • one end 31a of the circulation pipe 31 is provided at a position close to the side wall of the casing 11.
  • one end 31a of the circulation pipe 31 is bifurcated.
  • One end 31a and the other end 31b of the circulation pipe 31 are both provided on the lower surface of the casing 11.
  • the plurality of heat exchanger tubes 50 are arranged at different positions in the vertical direction.
  • the jet of the first refrigerant R1 is supplied to the heating element 3 from below. After cooling the heating element 3, the first coolant R1 flows along the lower surface of the substrate 2. At this time, the first refrigerant R1 passes through the heat exchanger tube 50, and during the process of passing through the heat exchanger tube 50, it exchanges heat with the second refrigerant R2 in the heat exchanger tube 50 and is cooled. Thereafter, the first refrigerant R1 returns to the circulation pipe 31, is pumped again by the pump 32, and is sprayed onto the heating element 3.
  • the plurality of heat exchanger tubes 50 are arranged at different positions in the vertical direction. Thereby, the first refrigerant R1 passes through the plurality of heat exchanger tubes 50 while meandering. Therefore, the first refrigerant R1 can effectively exchange heat with the second refrigerant R2. Therefore, according to the liquid immersion cooling device 10 of this modification, cooling efficiency can be further improved.
  • the immersion cooling device 10 further includes an auxiliary propeller 15.
  • the auxiliary propeller 15 is provided within the casing 11.
  • the auxiliary propeller 15 stirs the first refrigerant R1 flowing inside the casing 11.
  • the stirring speed of the auxiliary propeller 15 is lower than the ejection speed of the jet flow supply section 30.
  • the immersion cooling device 10 can uniformly circulate the first refrigerant R1 within the casing 11 using the auxiliary propeller 15. Thereby, the liquid immersion cooling device 10 can favorably cool elements other than the heating element 3 of the substrate 2, for example. Therefore, according to the immersion cooling device 10 of this modification, cooling efficiency can be further improved.
  • the circulation pipe 31 is provided along the side surface of the casing 11.
  • the circulation pipe 31 is arranged so as to surround the casing 11 from the sides.
  • One end 31a and the other end 31b of the circulation pipe 31 are provided on a pair of opposing side surfaces of the casing 11, respectively.
  • One end 31a and the other end 31b of the circulation pipe 31 are provided at positions overlapping the heat sink mechanism 20 in the horizontal direction.
  • the circulation piping 31, the pump 32, and the filter 33 are provided not above and below the casing 11, but at positions overlapping the casing 11 in the horizontal direction.
  • the sub-header 44 of the header pipe 40 is formed in an L-shape. An end 44a of the subheader 44 opposite to the main pipe 43 extends upward. A plurality of heat exchanger tubes 50 are provided at the end portion 44a of the sub-header 44 that extends upward.
  • the heat exchanger tube 50 is provided in the casing 11 on the same side in the vertical direction as the heating element 3 with the substrate 2 in between.
  • a plurality of heat transfer tubes 50 are provided along the side surface of the casing 11 on the one end 31a side of the circulation pipe 31. That is, the plurality of heat exchanger tubes 50 are provided on the downstream side within the casing 11.
  • the plurality of heat exchanger tubes 50 are arranged at equal intervals in the vertical direction.
  • the jet of the first refrigerant R1 is directly supplied toward the heat sink mechanism 20 in the horizontal direction.
  • the first refrigerant R1 exchanges heat with the heating element 3 via the heat sink mechanism 20, and the heating element 3 is cooled.
  • the first coolant R1 flows along the upper surface of the substrate 2.
  • the first refrigerant R1 passes through the heat exchanger tube 50, and during the process of passing through the heat exchanger tube 50, it exchanges heat with the second refrigerant R2 in the heat exchanger tube 50 and is cooled.
  • the first refrigerant R1 returns to the circulation pipe 31, is pumped again by the pump 32, and is sprayed onto the heat sink mechanism 20.
  • the circulation pipe 31, the pump 32, and the filter 33 are provided at a position that overlaps the casing 11 in the horizontal direction.
  • the immersion cooling device 10 can be downsized in the vertical direction. Thereby, for example, when the immersion cooling devices 10 are arranged in multiple stages in the vertical direction using the racks 8 or the like, more immersion cooling devices 10 can be arranged in a small space.
  • one end 31a and the other end 31b of the circulation pipe 31 are provided at positions that overlap the heat sink mechanism 20 in the horizontal direction.
  • the immersion cooling device 10 can smoothly circulate the first refrigerant R1 within the casing 11. Thereby, the liquid immersion cooling device 10 can reduce the pressure loss of the first refrigerant R1 within the casing 11. Therefore, the cooling efficiency of the liquid immersion cooling device 10 can be improved.
  • FIG. 11 a sixth modification of the first embodiment will be described with reference to FIG. 11.
  • Heat exchanger tube 50 extends horizontally within casing 11 .
  • the heat exchanger tubes 50 are provided in a wavy shape within the casing 11 so as to be folded back multiple times between a pair of opposing side walls. Both ends of the heat exchanger tubes 50 protrude outside the casing 11 from the same side wall of the casing 11. Both ends of the heat exchanger tubes 50 are each directly connected to the heat exchanger 7.
  • both ends of the heat exchanger tube 50 may be connected to the heat exchanger 7 via the supply header tube 41 and the return header tube 42, respectively.
  • the jet flow supply section 30 includes one circulation pipe 31, and one end 31a of the circulation pipe 31 which is the inlet of the first refrigerant R1 and one end 31a of the circulation pipe 31 which is the inlet of the second refrigerant R2.
  • one other end 31b of the circulation pipe 31 is provided as an outflow port
  • the present invention is not limited to this.
  • a plurality of circulation pipes 31 may be provided, each having one end 31a serving as an inlet and the other end 31b serving as an outlet.
  • both ends of one circulation pipe 31 may branch into a plurality of parts, and this one circulation pipe 31 may each have a plurality of one end 31a serving as an inlet and a plurality of other ends 31b serving as an outlet.
  • the filter 33 is provided in the circulation pipe 31, but the present invention is not limited to this.
  • the filter 33 may not be provided in the circulation pipe 31.
  • the jet flow supply section 230 is a propeller 234 disposed within the casing 11 at a position facing the heating element 3.
  • the propeller 234 is installed above the board 2.
  • a rotating shaft 235 of the propeller 234 extends toward the heating element 3.
  • the heating element 3 and the heat exchanger tube 50 are arranged on the same side with respect to the substrate 2 (for example, on the lower side of the substrate 2).
  • the immersion cooling device 10 is provided with a guide 260 inside the casing 11 that determines the flow of the first refrigerant R1.
  • the guide 260 is provided closer to the side wall of the casing 11 than the heating element 3 and propeller 234 are.
  • the guide 260 includes an inclined guide 261 and a horizontal guide 262.
  • the inclined guide 261 is provided below the heating element 3.
  • the inclined guide 261 extends horizontally while being inclined downward.
  • the horizontal guide 262 extends from the lower end of the inclined guide 261 in the horizontal direction away from the heating element 3 .
  • the propeller 234 generates a jet of the first refrigerant R1 toward the heating element 3 from below.
  • the first coolant R1 flows along the lower surface of the substrate 2 by being guided by the upper surface of the guide 260.
  • the first refrigerant R1 passes through the heat exchanger tube 50, and during the process of passing through the heat exchanger tube 50, it exchanges heat with the second refrigerant R2 in the heat exchanger tube 50 and is cooled.
  • the first refrigerant R1 flows along the lower surface of the guide 260, returns to the propeller 234, and is again blown onto the heating element 3 by the propeller 234.
  • the jet flow supply section 230 is a propeller 234 that is disposed within the casing 11 at a position facing the heat generating element 3 and has a rotating shaft 235 extending toward the heat generating element 3.
  • the heat exchanger tube 50 is formed into a rectangular cylindrical shape or a polygonal cylindrical shape with five or more sides has been described, but it is not limited to this.
  • the heat exchanger tube 50 may be formed into a triangular tube shape or a cylindrical shape, for example.
  • a liquid immersion cooling device 310 according to a third embodiment of the present disclosure will be described with reference to FIGS. 13 and 14. Configurations similar to those of the first embodiment described above will be given the same names and numerals, and descriptions thereof will be omitted as appropriate.
  • the immersion cooling device 310 of this embodiment cools the heating element 3 provided on the substrate 2.
  • the liquid immersion cooling device 310 includes a casing group 311, a supply side header 320, a discharge side header 330, a refrigerant pressure feeding section 340, a heat transfer tube 350, and an upper side header 330.
  • the casing group 311 is a collection of casings 312 arranged in the vertical direction.
  • the casing 312 has a cubic box shape that extends in the horizontal direction.
  • a casing 312 is provided at each stage of the rack 8. In this embodiment, seven casings 312 are arranged in the vertical direction.
  • a first refrigerant R1 is stored in the casing 312.
  • the casing 312 is filled with the first refrigerant R1. That is, the entire storage space within the casing 312 is filled with the first refrigerant R1.
  • the board 2 is arranged inside the casing 312 so as to extend in the horizontal direction.
  • a heating element 3 is provided on the surface of the substrate 2.
  • a supply header 320 is provided on one side of the casing group 311 in the horizontal direction
  • a discharge header 330 is provided on the other side of the casing group 311 in the horizontal direction. That is, the supply header 320 and the discharge header 330 are provided to face each other in the horizontal direction with the casing group 311 in between.
  • the opposing direction Da between the supply header 320 and the discharge header 330 will be simply referred to as the "opposing direction Da", and the horizontal direction orthogonal to the opposing direction Da will be referred to as the "width direction Dw”.
  • the supply header 320 extends vertically adjacent to the casing 312.
  • the supply header 320 is capable of introducing the first refrigerant R1 into each of the plurality of casings 312.
  • the supply header 320 includes a supply header main body 321 and a supply branch pipe 322.
  • the supply side header main body 321 is formed into a cylindrical shape extending in the vertical direction. Both ends of the supply header main body 321 in the extending direction are closed. Inside the supply side header body 321, the first refrigerant R1 flows in the vertical direction.
  • a plurality of supply side branch pipes 322 are provided in the supply side header main body 321.
  • the plurality of supply side branch pipes 322 are arranged at equal intervals in the vertical direction along the casing group 311.
  • One supply branch pipe 322 is provided for each casing 312.
  • the supply side branch pipe 322 is connected to the side wall 312a of the casing 312 on the supply side header 320 side.
  • the supply side branch pipe 322 penetrates the side wall 312a of the casing 312.
  • the supply branch pipe 322 is provided at one end of the side wall 312a of the casing 312 in the width direction Dw.
  • the discharge header 330 extends in the vertical direction adjacent to the casing 312.
  • the first refrigerant R1 is introduced into the discharge side header 330 from each of the plurality of casings 312.
  • the discharge side header 330 has a discharge side header main body 331 and a discharge side branch pipe 332.
  • the discharge side header main body 331 is formed into a cylindrical shape extending in the vertical direction. Both ends of the discharge side header main body 331 in the extending direction are closed. Inside the discharge side header body 331, the first refrigerant R1 flows in the vertical direction.
  • a plurality of discharge side branch pipes 332 are provided in the discharge side header main body 331.
  • the plurality of discharge side branch pipes 332 are arranged at equal intervals in the vertical direction along the casing group 311.
  • One discharge side branch pipe 332 is provided for each casing 312.
  • the discharge side branch pipe 332 is connected to the side wall 312a of the casing 312 on the discharge side header 330 side.
  • the discharge side branch pipe 332 penetrates the side wall 312a of the casing 312.
  • the discharge side branch pipe 332 is provided at one end of the side wall 312a of the casing 312 in the width direction Dw.
  • the discharge side branch pipe 332 is provided at a position overlapping the supply side branch pipe 322 in the opposing direction Da.
  • the refrigerant pumping section 340 is provided below the casing group 311.
  • the refrigerant pumping section 340 is connected to the lower part of the discharge side header 330 by a first connecting pipe 315 and connected to the lower part of the supply side header 320 by a second connecting pipe 316.
  • the first connecting pipe 315 allows the discharge side header 330 and the refrigerant pumping section 340 to communicate with each other
  • the second connecting pipe 316 allows the supply side header 320 and the refrigerant pumping section 340 to communicate with each other.
  • the refrigerant pumping section 340 pumps the first refrigerant R1 from the lower part of the discharge side header 330 to the lower part of the supply side header 320.
  • the refrigerant pumping section 340 of this embodiment is a pump.
  • the heat exchanger tube 350 is a pipe that extends inside at least one of the discharge side header 330 and the supply side header 320.
  • the heat exchanger tube 350 is provided inside the discharge side header 330 so as to extend in the vertical direction.
  • a plurality of heat transfer tubes 350 are provided within the discharge header 330 at intervals in the horizontal direction.
  • the second refrigerant R2 flows from the bottom to the top.
  • the heat exchanger tube 350 cools the first refrigerant R1 by exchanging heat between the second refrigerant R2 flowing inside the heat exchanger tube 350 and the first refrigerant R1 flowing around the heat exchanger tube 350.
  • the heat transfer tube 350 cools the first refrigerant R1 in the discharge header 330 by exchanging heat between the second refrigerant R2 and the first refrigerant R1 in the discharge header 330.
  • the heat exchanger tubes 350 are provided in the discharge side header body 331 and penetrate through the end walls of the discharge side header body 331 on both sides in the extending direction.
  • a lower second header 313 is provided at the upper end of the discharge header 330.
  • the second lower header 313 is provided to cover the lower end wall of the discharge header 330 from below.
  • the lower second header 313 communicates with the lower end of the heat exchanger tube 350.
  • the second refrigerant R2 to be supplied to the heat exchanger tubes 350 is supplied into the lower second header 313.
  • the lower second header 313 is connected to the external heat exchanger 7 by a third connecting pipe 317.
  • the third connecting pipe 317 allows the lower second header 313 and the heat exchanger 7 to communicate with each other.
  • An upper second header 314 is provided at the upper end of the discharge header 330.
  • the upper second header 314 is provided to cover the upper end wall of the discharge header 330 from above.
  • the upper second header 314 communicates with the upper end of the heat exchanger tube 350.
  • the second refrigerant R2 that has passed through the heat exchanger tubes 350 is supplied into the upper second header 314.
  • the upper second header 314 is connected to the external heat exchanger 7 by a fourth connecting pipe 318.
  • the fourth connecting pipe 318 allows the upper second header 314 and the heat exchanger 7 to communicate with each other.
  • a refrigerant supply section 360 is provided within each casing 312.
  • the refrigerant supply section 360 is provided within the casing 312 on the supply side header 320 side.
  • the refrigerant supply section 360 includes a supply side manifold 361 and a nozzle 362.
  • the supply manifold 361 is a tubular member that extends in the width direction Dw along the side wall 312a of the casing 312 on the supply side header 320 side.
  • the supply side manifold 361 communicates with the supply side branch pipe 322 at one end in the width direction Dw.
  • the supply manifold 361 guides the first refrigerant R1 supplied from the supply header 320 into the casing 312 in the width direction Dw.
  • a plurality of nozzles 362 are provided in the supply side manifold 361 so as to be arranged in parallel in the width direction Dw.
  • six nozzles 362 are provided side by side in the width direction Dw.
  • the nozzle 362 is a cylindrical member that communicates with the supply side manifold 361 and extends in the opposing direction Da.
  • the nozzle 362 opens into the casing 312 in the opposing direction Da.
  • the nozzle 362 is capable of spouting the first refrigerant R1 in the supply manifold 361 to the discharge header 330 side.
  • the nozzle 362 gradually increases in diameter as it moves from the supply manifold 361 toward the discharge header 330 in the opposing direction Da.
  • a refrigerant discharge section 370 is provided within each casing 312.
  • the refrigerant discharge section 370 is provided within the casing 312 on the discharge side header 330 side.
  • the refrigerant discharge section 370 has a discharge side manifold 371.
  • the discharge side manifold 371 is a tubular member that extends in the width direction Dw along the side wall 312a of the casing 312 on the side of the discharge side header 330.
  • An introduction hole 372 passing through the side wall 312a is provided in the side wall of the discharge side manifold 371 on the supply side header 320 side.
  • the first refrigerant R1 in the casing 312 is introduced into the discharge side manifold 371 from the introduction hole 372.
  • the discharge side manifold 371 communicates with the discharge side branch pipe 332 at one end in the width direction Dw.
  • the discharge side manifold 371 guides the first refrigerant R1 discharged from the inside of the casing 312 to the discharge side header 330.
  • the circulation of the first refrigerant R1 within the immersion cooling device 310 will be explained.
  • the first refrigerant R1 is supplied from the supply header 320 into the casing 312.
  • the first refrigerant R1 is ejected into the casing 312 by the plurality of nozzles 362.
  • the first refrigerant R1 flows in the opposite direction Da in the casing 312 as a jet stream.
  • the first refrigerant R1 in the casing 312 passes through the heating element 3 and exchanges heat with the heating element 3. Thereby, the heating element 3 is cooled.
  • the first refrigerant R1 receives heat from the heating element 3 and is heated. Thereafter, the first refrigerant R1 is introduced from each casing 312 to the discharge side header 330. The first refrigerant R1 flows from above to below within the discharge side header 330 due to the pressure of the refrigerant pressure feeding section 340 and its own weight.
  • the second refrigerant R2 flows from the bottom to the top. That is, the first refrigerant R1 and the second refrigerant R2 flow in mutually opposite directions in the vertical direction.
  • the first refrigerant R1 exchanges heat with the second refrigerant R2 while flowing through the discharge side header 330. Thereby, the first refrigerant R1 is cooled and the second refrigerant R2 is heated.
  • the second refrigerant R2 is sent to the external heat exchanger 7 after exchanging heat with the first refrigerant R1.
  • the second refrigerant R2 is cooled by the heat exchanger 7 and supplied to each heat exchanger tube 350 again.
  • the first refrigerant R1 After the first refrigerant R1 is cooled by heat exchange with the second refrigerant R2, it is again pressure-fed to the supply-side header 320 by the refrigerant pressure-feeding section 340. Then, as described above, the first refrigerant R1 is supplied into the casing 312 again. In this way, the first refrigerant R1 circulates within the immersion cooling device 310.
  • the liquid immersion cooling device 310 has a box shape extending in the horizontal direction, and has a plurality of casings 312 arranged so that the substrate 2 extends in the horizontal direction, and these casings 312 are arranged in the vertical direction.
  • a heat transfer tube 350 that extends inside at least one of the discharge side header 330 and the supply side header 320, and cools the first refrigerant R1 by exchanging heat between the second refrigerant R2 and the first refrigerant R1 flowing therein; Equipped with.
  • the heat exchanger tubes 350 can be provided along the casings 312 for the plurality of casings 312 arranged in the vertical direction. Therefore, it is possible to suppress the liquid immersion cooling device 310 from expanding in the horizontal direction. Therefore, the liquid immersion cooling device 310 can be downsized in the horizontal direction. Furthermore, since the flow path of the first refrigerant R1 is compactly arranged in the horizontal direction, management of the first refrigerant R1 becomes easy. That is, the manageability of the first refrigerant R1 can be improved.
  • the heat exchanger tubes 350 extend in the vertical direction.
  • the arrangement direction of the casings 312 and the extending direction of the heat exchanger tubes 350 match. Therefore, the arrangement efficiency of the components of the immersion cooling device 310 such as the casing 312 and the heat transfer tubes 350 is improved. Furthermore, since the heat transfer tubes 350 can be provided to extend in the vertical direction inside the supply header 320 and the discharge header 330, which extend in the vertical direction, heat exchange is performed between the first refrigerant R1 and the second refrigerant R2. The distance traveled can be increased. Therefore, the liquid immersion cooling device 310 can cool the first refrigerant R1 well. Therefore, the cooling efficiency of the liquid immersion cooling device 310 can be improved.
  • the refrigerant pressure feeding unit 340 pumps the first refrigerant R1 from the lower part of the discharge header 330 to the supply header 320, and the heat transfer tube 350 is provided to extend inside the discharge header 330, and The second refrigerant R2 flows upward from the second refrigerant R2.
  • the first refrigerant R1 flows upward in the supply header 320 and is supplied into the casing 312. Thereafter, the first refrigerant R1 is discharged from the inside of the casing 312 to the discharge side header 330, and flows downward within the discharge side header 330.
  • the second refrigerant R2 flows upward in the heat transfer tube 350 provided in the discharge side header 330. Therefore, in the discharge side header 330, the flow of the first refrigerant R1 and the flow of the second refrigerant R2 become counterflows in which the flow directions are opposite to each other. Therefore, the heat exchange efficiency between the first refrigerant R1 and the second refrigerant R2 is improved.
  • the liquid immersion cooling device 310 can cool the first refrigerant R1 even better. Therefore, the cooling efficiency of the liquid immersion cooling device 310 can be further improved. Further, since the heat transfer tube 350 is provided inside the discharge side header 330, the liquid immersion cooling device 310 cools the first refrigerant R1 with the heat transfer tube 350, and then supplies the first refrigerant R1 to the refrigerant pressure feeding section 340. can lead.
  • the supply header 320 is provided on one side of the casing group 311 in the horizontal direction
  • the discharge header 330 is provided on the other side of the casing group 311 in the horizontal direction
  • the refrigerant provided in each casing 312 is
  • the refrigerant supply unit 360 further includes a supply unit 360, and the refrigerant supply unit 360 supplies the first refrigerant R1 from the supply header 320 in the width direction Dw, which is a horizontal direction orthogonal to the facing direction Da between the supply header 320 and the discharge header 330.
  • a supply side manifold 361 that leads to the discharge side, and a plurality of nozzles that are provided in the supply side manifold 361 so as to be arranged in parallel in the width direction Dw and can jet the first refrigerant R1 in the supply side manifold 361 to the discharge side header 330 side. 362.
  • the liquid immersion cooling device 310 can jet the first refrigerant R1 to the heating element 3 of the substrate 2. Furthermore, since the discharge side header 330 is located in the direction in which the first refrigerant R1 is ejected, the first refrigerant R1 that has undergone heat exchange can be smoothly discharged. Therefore, the liquid immersion cooling device 310 can reduce the pressure loss of the first refrigerant R1 within the casing 312. Therefore, the cooling efficiency of the liquid immersion cooling device 310 can be further improved.
  • the refrigerant pumping section 340 is provided below the casing group 311, but the present invention is not limited to this.
  • the refrigerant pumping section 340 may be provided above the casing group 311. In this case, the refrigerant pumping section 340 pumps the first refrigerant R1 from the upper part of the discharge side header 330 to the supply side header 320.
  • the heat exchanger tubes 350 are provided so as to extend inside the discharge side header 330, but the heat exchanger tubes 350 are not limited to this.
  • the heat exchanger tube 350 may be provided so as to extend inside the supply header 320.
  • the liquid immersion cooling device 310 can better cool the heating element 3 inside the casing 312. That is, the cooling efficiency of the liquid immersion cooling device 310 can be improved.
  • it may be provided so as to extend inside both the discharge side header 330 and the supply side header 320.
  • heat exchanger tubes 350 may extend in the horizontal direction and may be provided in plural numbers at intervals in the vertical direction along the casing group 311.
  • liquid immersion cooling devices 10, 210, and 310 described in each embodiment can be understood, for example, as follows.
  • the immersion cooling device 310 is a liquid immersion cooling device 310 that cools the heating element 3 provided on the substrate 2, and has a box shape extending in the horizontal direction, with the The substrate 2 has a plurality of casings 312 arranged to extend in the horizontal direction, a casing group 311 in which these casings 312 are arranged in the vertical direction, and a casing group 311 that extends in the vertical direction so as to be adjacent to the casings 312,
  • a supply header 320 that can introduce the first refrigerant R1 into each of the plurality of casings 312; a discharge side header 330 to be introduced, a refrigerant pressure feeding section 340 that pumps the first refrigerant R1 from the discharge side header 330 to the supply side header 320, and at least one of the discharge side header 330 and the supply side header 320.
  • the heat exchanger tube 350 extends inside and cools the first refrigerant R1 by exchanging heat between the second refrigerant R2 and the first refriger
  • the heat exchanger tubes 350 can be provided along the casings 312 for the plurality of casings 312 arranged in the vertical direction. Therefore, it is possible to suppress the liquid immersion cooling device 310 from expanding in the horizontal direction.
  • the immersion cooling device 310 of the second aspect is the immersion cooling device 310 of the first aspect, and the heat transfer tubes 350 may extend in the vertical direction.
  • the arrangement direction of the casings 312 and the extending direction of the heat exchanger tubes 350 match. Therefore, the arrangement efficiency of the components of the liquid immersion cooling device 310 such as the casing 312 and the heat transfer tubes 350 is improved. Furthermore, since the heat transfer tubes 350 can be provided to extend in the vertical direction inside the supply header 320 and the discharge header 330, which extend in the vertical direction, heat exchange is performed between the first refrigerant R1 and the second refrigerant R2. The distance traveled can be increased.
  • the liquid immersion cooling device 310 of the third aspect is the liquid immersion cooling device 310 of the second aspect, in which the refrigerant pressure feeding section 340 is directed from the lower part of the discharge side header 330 to the supply side header 320.
  • the first refrigerant R1 may be fed under pressure, and the heat transfer tube 350 may be provided to extend inside the discharge header 330, and the second refrigerant R2 may flow from the bottom to the top.
  • the first refrigerant R1 flows upward within the supply header 320 and is supplied into the casing 312. Thereafter, the first refrigerant R1 is discharged from the inside of the casing 312 to the discharge side header 330, and flows downward within the discharge side header 330.
  • the second refrigerant R2 flows upward in the heat transfer tube 350 provided in the discharge side header 330. Therefore, in the discharge side header 330, the flow of the first refrigerant R1 and the flow of the second refrigerant R2 become counterflows in which the flow directions are opposite to each other. Therefore, the heat exchange efficiency between the first refrigerant R1 and the second refrigerant R2 is improved.
  • the liquid immersion cooling device 310 of the fourth aspect is the liquid immersion cooling device 310 of any one of the first to third aspects, wherein the supply side header 320 is arranged in the horizontal direction of the casing group 311.
  • the discharge side header 330 is provided on one side, and the discharge side header 330 is provided on the other side of the casing group 311 in the horizontal direction, and further includes a refrigerant supply section 360 provided in each of the casings 312, and the refrigerant supply section 360 includes: a supply side manifold 361 that guides the first refrigerant R1 supplied from the supply side header 320 in the width direction Dw, which is a horizontal direction perpendicular to the opposing direction Da between the supply side header 320 and the discharge side header 330; A plurality of nozzles 362 are provided in the supply side manifold 361 so as to be arranged in parallel in the width direction Dw, and are capable of spouting the first refrigerant R1 in the supply side manifold 361 toward the discharge side header
  • the liquid immersion cooling device 310 can jet the first refrigerant R1 to the heating element 3 of the substrate 2. Furthermore, since the discharge side header 330 is located in the direction in which the first refrigerant R1 is ejected, the first refrigerant R1 that has undergone heat exchange can be smoothly discharged.
  • the liquid immersion cooling device 10, 210 is a liquid immersion cooling device 10, 210 that cools the heating element 3 provided on the substrate 2, and the first refrigerant R1 is stored inside the liquid immersion cooling device 10, 210.
  • the liquid immersion cooling devices 10 and 210 can impinge-cool the heat generating body 3 by spraying the jet stream of the first refrigerant R1 onto the heat generating body 3.
  • the first refrigerant R1 sprayed onto the heating element 3 is cooled by the heat transfer tube 50 and used again to cool the heating element 3.
  • a large-scale circulation cycle is not required to circulate the first refrigerant R1.
  • the liquid immersion cooling device 10, 210 can cool the first refrigerant R1 stored in the casing 11 within the casing 11 using the heat transfer tube 50.
  • the liquid immersion cooling device 10 of the sixth aspect is the liquid immersion cooling device 10 of the fifth aspect, in which the jet flow supply section 30 is provided outside the casing 11 and both ends thereof are connected to the casing 11.
  • a circulation pipe 31 that communicates with the inside and allows the first refrigerant R1 to flow therethrough; and a pump that is provided in the circulation pipe 31 and allows the first refrigerant R1 to flow from one end 31a of the circulation pipe 31 to the other end 31b. 32, and the other end 31b of the circulation pipe 31 may be arranged at a position facing the heating element 3.
  • the flow direction of the first refrigerant R1 in the casing 11 is set by the installation location of the one end 31a and the other end 31b of the circulation pipe 31.
  • the liquid immersion cooling device 210 of the seventh aspect is the liquid immersion cooling device 210 of the fifth aspect, in which the jet flow supply section 230 is located at a position facing the heating element 3 within the casing 11.
  • the propeller 234 may be arranged such that the rotating shaft 235 extends toward the heating element 3.
  • the immersion cooling device 10, 210 of the eighth aspect is the immersion cooling device 10, 210 of any one of the fifth to seventh aspects, in which the heat transfer tube 50 may be arranged downstream of the heating element 3 in the flow direction of the first refrigerant R1.
  • the second refrigerant R2 flowing in the heat transfer tube 50 can exchange heat with the first refrigerant R1 after cooling the heating element 3.
  • the immersion cooling device 10, 210 of the ninth aspect is any one of the fifth to eighth immersion cooling devices 10, 210, and the inner peripheral surface of the heat transfer tube 50 has fins. 51 may be provided.
  • liquid immersion cooling device of the present disclosure it is possible to achieve miniaturization while improving refrigerant manageability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This immersion-cooling device cools a heat-generating body provided to a substrate, the immersion-cooling device comprising: a casing group that has a plurality of casings forming a box shape extending in a horizontal direction, substrates being disposed inside the casings so as to extend in the horizontal direction, and the casings being arranged in the vertical direction; a supply-side header that extends in the vertical direction so as to be adjacent to the casings, the supply-side header being capable of introducing respective first refrigerants into the plurality of casings; a discharge-side header that extends in the vertical direction so as to be adjacent to the casings, the first refrigerants being introduced into the discharge-side header from each of the plurality of casings; a refrigerant pressure-feeding unit that pressure-feeds the first refrigerants from the discharge-side header to the supply-side header; and heat transfer piping that extends inside the discharge-side header and/or the supply-side header, the heat transfer piping allowing heat exchange between the first refrigerants and a second refrigerant flowing through the interior of the heat transfer piping to cool the first refrigerants.

Description

液浸冷却装置liquid immersion cooling device
 本開示は、液浸冷却装置に関する。
 本願は、2022年7月22日に日本に出願された特願2022-117545号について優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present disclosure relates to immersion cooling devices.
This application claims priority to Japanese Patent Application No. 2022-117545 filed in Japan on July 22, 2022, the contents of which are incorporated herein.
 特許文献1には、発熱体を有する電子機器を冷却する冷却システムが開示されている。冷却システムは、冷媒が入れられた冷却槽を有する。電子機器は、冷却槽の冷媒中に浸漬される。電子機器は、冷却槽内に複数縦置きで配置されている。冷却槽内の冷媒は、発熱体を冷却した後、冷却槽の外部で冷却されて再び冷却槽に供給されるように循環する。 Patent Document 1 discloses a cooling system that cools electronic equipment that has a heat generating element. The cooling system includes a cooling tank containing a refrigerant. Electronic equipment is immersed in a coolant in a cooling bath. A plurality of electronic devices are arranged vertically in the cooling tank. After cooling the heating element, the refrigerant in the cooling tank is circulated so that it is cooled outside the cooling tank and then supplied to the cooling tank again.
国際公開第2016/075838号International Publication No. 2016/075838
 しかしながら、特許文献1に記載の冷却システムでは、1つの冷却槽内に複数の電子機器が縦置きで配置されるため、冷却システムが大型化してしまう。
 また、大型の冷却槽内を冷媒で満たす必要があるため、冷媒の使用量が多くなる。さらに、冷却槽内の冷媒を外部で冷却するための設備が別途必要となる。このため、冷媒の管理に多くの手間とコストを要し、冷媒の管理が困難となっていた。
However, in the cooling system described in Patent Document 1, since a plurality of electronic devices are vertically arranged in one cooling tank, the cooling system becomes large.
Furthermore, since it is necessary to fill a large cooling tank with refrigerant, the amount of refrigerant used increases. Furthermore, additional equipment is required to cool the refrigerant in the cooling tank externally. For this reason, managing the refrigerant requires a lot of effort and cost, making it difficult to manage the refrigerant.
 本開示は、上記課題を解決するためになされたものであって、小型化を実現しつつ、冷媒の管理性を向上させることができる液浸冷却装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a liquid immersion cooling device that can be downsized and improve refrigerant management.
 上記課題を解決するために、本開示に係る液浸冷却装置は、基板に設けられた発熱体を冷却する液浸冷却装置であって、水平方向に延びる箱型をなして、内部に前記基板が水平方向に延びるように配置された複数のケーシングを有し、これらケーシングが上下方向に配列されてなるケーシング群と、前記ケーシングに隣接するように上下方向に延びて、前記複数のケーシング内にそれぞれ第一冷媒を導入可能な供給側ヘッダと、前記ケーシングに隣接するように上下方向に延びて、前記複数のケーシングのそれぞれから前記第一冷媒が導入される排出側ヘッダと、前記排出側ヘッダから前記供給側ヘッダに前記第一冷媒を圧送する冷媒圧送部と、前記排出側ヘッダ及び前記供給側ヘッダの少なくとも一方の内側で延びて、内部を流通する第二冷媒と前記第一冷媒とを熱交換させて前記第一冷媒を冷却する伝熱管と、を備える。 In order to solve the above problems, an immersion cooling device according to the present disclosure is a liquid immersion cooling device that cools a heating element provided on a substrate, and has a box shape extending in the horizontal direction, and has a box-like shape that extends inside the substrate. has a plurality of casings arranged so as to extend in the horizontal direction, and these casings are arranged in the vertical direction; a supply side header into which a first refrigerant can be introduced, a discharge side header which extends vertically adjacent to the casing and into which the first refrigerant is introduced from each of the plurality of casings, and the discharge side header. a refrigerant pumping section that pumps the first refrigerant from the supply header to the supply header; and a heat exchanger tube that cools the first refrigerant by exchanging heat.
 本開示に係る液浸冷却装置は、基板に設けられた発熱体を冷却する液浸冷却装置であって、第一冷媒が貯留され、内部に前記基板が水平方向に延びるように配置されたケーシングと、前記発熱体に前記第一冷媒の噴流を供給する噴流供給部と、前記ケーシングを貫通し、内部を流通する第二冷媒と前記第一冷媒とで熱交換を行い前記第一冷媒を冷却する伝熱管と、を備える。 A liquid immersion cooling device according to the present disclosure is a liquid immersion cooling device that cools a heating element provided on a substrate, and includes a casing in which a first refrigerant is stored and the substrate is arranged so as to extend in a horizontal direction. and a jet flow supply unit that supplies a jet flow of the first refrigerant to the heating element, and a second refrigerant that passes through the casing and circulates inside the casing and exchanges heat with the first refrigerant to cool the first refrigerant. and a heat exchanger tube.
 本開示の液浸冷却装置によれば、小型化を実現しつつ、冷媒の管理性を向上させることができる。 According to the liquid immersion cooling device of the present disclosure, it is possible to achieve miniaturization while improving refrigerant manageability.
本開示の第一実施形態に係る液浸冷却装置の概略構成を示す全体図である。1 is an overall diagram showing a schematic configuration of a liquid immersion cooling device according to a first embodiment of the present disclosure. 本開示の第一実施形態に係る液浸冷却装置を斜方から見た模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a liquid immersion cooling device according to a first embodiment of the present disclosure, viewed from an angle. 本開示の第一実施形態に係るヒートシンク機構を側方から見た模式図である。FIG. 2 is a schematic side view of the heat sink mechanism according to the first embodiment of the present disclosure. 本開示の第一実施形態に係る伝熱管の断面図である。1 is a cross-sectional view of a heat exchanger tube according to a first embodiment of the present disclosure. 本開示の第一実施形態の第一変形例に係る液浸冷却装置を側方から見た模式図である。It is a schematic diagram seen from the side of the liquid immersion cooling device concerning the first modification of the first embodiment of this indication. 本開示の第一実施形態の第二変形例に係る伝熱管の断面図である。It is a sectional view of the heat exchanger tube concerning the second modification of the first embodiment of this indication. 本開示の第一実施形態の第三変形例に係る液浸冷却装置の概略構成を示す全体図である。It is an overall view showing a schematic configuration of a liquid immersion cooling device according to a third modification of the first embodiment of the present disclosure. 本開示の第一実施形態の第四変形例に係る液浸冷却装置を側方から見た模式図である。It is a schematic diagram seen from the side of the liquid immersion cooling device concerning the fourth modification of the first embodiment of the present disclosure. 本開示の第一実施形態の第五変形例に係る液浸冷却装置の概略構成を示す全体図である。It is an overall view showing a schematic configuration of a liquid immersion cooling device according to a fifth modification of the first embodiment of the present disclosure. 本開示の第一実施形態の第五変形例に係る液浸冷却装置を斜方から見た模式図である。It is a schematic diagram which looked at the liquid immersion cooling device concerning the fifth modification of the first embodiment of this indication from an angle. 本開示の第一実施形態の第六変形例に係る液浸冷却装置の概略構成を示す全体図である。It is an overall view showing a schematic configuration of a liquid immersion cooling device according to a sixth modification of the first embodiment of the present disclosure. 本開示の第二実施形態に係る液浸冷却装置を側方から見た模式図である。FIG. 2 is a schematic diagram of a liquid immersion cooling device according to a second embodiment of the present disclosure viewed from the side. 本開示の第三実施形態に係る液浸冷却装置全体の概略構成を示す模式図である。It is a schematic diagram showing the schematic structure of the whole immersion cooling device concerning a third embodiment of the present disclosure. 本開示の第三実施形態に係るケーシング内部の概略構成を示す模式図である。It is a schematic diagram showing a schematic structure inside a casing concerning a third embodiment of the present disclosure.
<第一実施形態>
 以下、本開示の実施形態に係る液浸冷却装置10について、図1から図4を参照して説明する。
 図1に示すように、液浸冷却装置10は、高速計算を行う電子機器の冷却に用いられる。本実施形態では、液浸冷却装置10は、データセンターに設置されたサーバ1に使用されている。サーバ1は複数設けられている。複数のサーバ1は、空冷用のラック8の各段に設置されている。このラック8は、例えば19インチ程度の大きさに形成された一般的なものである。
<First embodiment>
Hereinafter, a liquid immersion cooling device 10 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 4.
As shown in FIG. 1, a liquid immersion cooling device 10 is used for cooling electronic equipment that performs high-speed calculations. In this embodiment, the liquid immersion cooling device 10 is used in a server 1 installed in a data center. A plurality of servers 1 are provided. A plurality of servers 1 are installed in each stage of an air cooling rack 8. This rack 8 is a general rack having a size of, for example, about 19 inches.
 図2に示すように、サーバ1は、プリント基板と、プリント基板に設けられたCPUやGPUのチップ等の素子と、を有する。CPUやGPUは、高速計算処理を担う部品であるため高負荷がかかり、サーバ1の他の箇所に比べて高温に発熱する。 As shown in FIG. 2, the server 1 includes a printed circuit board and elements such as a CPU and a GPU chip provided on the printed circuit board. Since the CPU and GPU are components responsible for high-speed calculation processing, they are subject to a high load and generate heat at a higher temperature than other parts of the server 1.
 データセンターには、水を冷媒とする熱交換器7が設置されている。熱交換器7として、例えばドライクーラやチラー等が挙げられる。本実施形態の液浸冷却装置10は、熱交換器7とは別に設けられ、CPUやGPU等の高温に発熱する素子を冷却するために用いられる。 A heat exchanger 7 that uses water as a refrigerant is installed in the data center. Examples of the heat exchanger 7 include a dry cooler and a chiller. The liquid immersion cooling device 10 of this embodiment is provided separately from the heat exchanger 7, and is used to cool elements that generate heat at high temperatures, such as a CPU and a GPU.
 以下では、サーバ1のプリント基板を単に「基板2」と称し、CPUやGPU等の基板2中で特に高温に発熱する素子を「発熱体3」と称する場合がある。 Hereinafter, the printed circuit board of the server 1 will be simply referred to as the "board 2," and the elements on the board 2, such as the CPU and GPU, that generate heat to a particularly high temperature may be referred to as the "heating element 3."
 図3に示すように、基板2は、矩形板状に形成されている。基板2の表面には、発熱体3が設けられている。 As shown in FIG. 3, the substrate 2 is formed into a rectangular plate shape. A heating element 3 is provided on the surface of the substrate 2.
 発熱体3は、基部4と、発熱体本体6と、を有する。基部4は、矩形板状の部材である。基部4は、基板2の表面に張り付けられている。基部4の表面のうち基板2と反対側の表面には、凹部5が設けられている。凹部5は、基部4の中央部に設けられている。凹部5には、発熱体本体6が取り付けられている。発熱体本体6は、発熱体3のうち主に発熱する部分である。本実施形態では、発熱体本体6は、CPUやGPUを構成する半導体である。発熱体本体6の表面のうち基板2とは反対側の表面は、基部4の表面と面一となっている。 The heating element 3 has a base 4 and a heating element main body 6. The base 4 is a rectangular plate-like member. The base 4 is attached to the surface of the substrate 2. A recess 5 is provided on the surface of the base 4 on the side opposite to the substrate 2. The recess 5 is provided in the center of the base 4. A heating element main body 6 is attached to the recess 5. The heating element main body 6 is a part of the heating element 3 that mainly generates heat. In this embodiment, the heating element main body 6 is a semiconductor that constitutes a CPU or a GPU. Among the surfaces of the heating element main body 6, the surface on the opposite side from the substrate 2 is flush with the surface of the base 4.
(液浸冷却装置の構成)
 続いて、液浸冷却装置10の構成について説明する。
 図1、図2に示すように、液浸冷却装置10は、ケーシング11と、ヒートシンク機構20と、噴流供給部30と、ヘッダ管40と、伝熱管50と、を有する。
(Configuration of liquid immersion cooling device)
Next, the configuration of the liquid immersion cooling device 10 will be explained.
As shown in FIGS. 1 and 2, the immersion cooling device 10 includes a casing 11, a heat sink mechanism 20, a jet flow supply section 30, a header pipe 40, and a heat transfer tube 50.
(ケーシング)
 ケーシング11は、ラック8の各段に配置されている。ケーシング11は、水平方向に延びる矩形箱状に形成されている。ケーシング11内には、第一冷媒R1が貯留されている。本実施形態では、ケーシング11は、第一冷媒R1で満液となっている。すなわち、第一冷媒R1は、ケーシング11内の全貯留空間に満たされている。第一冷媒R1は、絶縁性を有する冷媒である。第一冷媒R1は、液相の状態で発熱体3を冷却する。このため、第一冷媒R1の沸点は、70度以上であることが望ましい。第一冷媒R1の例として、フルオロカーボン類を基にした液体等が挙げられる。
(casing)
The casing 11 is arranged at each stage of the rack 8. The casing 11 is formed into a rectangular box shape extending in the horizontal direction. A first refrigerant R1 is stored in the casing 11. In this embodiment, the casing 11 is filled with the first refrigerant R1. That is, the entire storage space within the casing 11 is filled with the first refrigerant R1. The first refrigerant R1 is an insulating refrigerant. The first refrigerant R1 cools the heating element 3 in a liquid phase state. For this reason, it is desirable that the boiling point of the first refrigerant R1 is 70 degrees or higher. Examples of the first refrigerant R1 include liquids based on fluorocarbons.
 ケーシング11の内部には、各サーバ1の基板2が水平方向に延びるように配置されている。本実施形態では、基板2は、発熱体3が設けられた側の表面が上向きとなるように配置されている。基板2に設けられた発熱体3には、ヒートシンク機構20が設けられている。 Inside the casing 11, the boards 2 of each server 1 are arranged so as to extend in the horizontal direction. In this embodiment, the substrate 2 is arranged so that the surface on which the heating element 3 is provided faces upward. A heat sink mechanism 20 is provided on the heating element 3 provided on the substrate 2.
(ヒートシンク機構)
 ヒートシンク機構20は、発熱体3の基板2とは反対側の表面に取り付けられている。図3に示すように、ヒートシンク機構20は、第一伝熱板21と、グリース22と、第二伝熱板23と、ヒートシンクフィン24と、を有する。
(Heat sink mechanism)
The heat sink mechanism 20 is attached to the surface of the heating element 3 on the opposite side from the substrate 2. As shown in FIG. 3, the heat sink mechanism 20 includes a first heat transfer plate 21, grease 22, a second heat transfer plate 23, and heat sink fins 24.
(第一伝熱板)
 第一伝熱板21は、発熱体3の表面のうち基板2とは反対側の表面に重ねて取り付けられている。上下方向から見て、第一伝熱板21の外縁は、発熱体3の外縁と一致している。第一伝熱板21は、例えばステレンスにより形成されている。第一伝熱板21は、発熱体本体6の表面積を増大させて、発熱体本体6の発熱を拡散させるために設けられている。
(First heat transfer plate)
The first heat exchanger plate 21 is attached to the surface of the heating element 3 on the side opposite to the substrate 2 in an overlapping manner. The outer edge of the first heat exchanger plate 21 coincides with the outer edge of the heat generating element 3 when viewed from the top and bottom. The first heat exchanger plate 21 is made of stainless steel, for example. The first heat transfer plate 21 is provided to increase the surface area of the heat generating body 6 and to diffuse the heat generated by the heat generating body 6.
(グリース)
 グリース22は、第一伝熱板21の表面のうち発熱体3とは反対側の表面に設けられている。グリース22は、第一伝熱板21と第二伝熱板23とを接着する。第一伝熱板21と第二伝熱板23とは、グリース22によって密着している。
(grease)
Grease 22 is provided on the surface of first heat exchanger plate 21 on the side opposite to heating element 3 . Grease 22 bonds first heat exchanger plate 21 and second heat exchanger plate 23 together. The first heat exchanger plate 21 and the second heat exchanger plate 23 are in close contact with each other through grease 22 .
(第二伝熱板)
 第二伝熱板23は、グリース22を介して第一伝熱板21の表面のうち発熱体3とは反対側の表面に設けられている。第二伝熱板23は、例えば銅等の金属により形成されている。
(Second heat transfer plate)
The second heat exchanger plate 23 is provided on the surface of the first heat exchanger plate 21 opposite to the heating element 3 with the grease 22 interposed therebetween. The second heat exchanger plate 23 is made of metal such as copper, for example.
(ヒートシンクフィン)
 ヒートシンクフィン24は、第二伝熱板23の表面のうちの第一伝熱板21とは反対側の表面に設けられている。ヒートシンクフィン24は、第二伝熱板23に複数設けられている。ヒートシンクフィン24は、第二伝熱板23に対して垂直に延びる棒状に形成されている。ヒートシンクフィン24は、例えば第二伝熱板23と同じ銅等の金属により形成されている。ヒートシンクフィン24は、発熱体本体6の表面積をさらに増大させて、発熱体本体6の発熱をより一層拡散させるために設けられている。
(Heat sink fin)
The heat sink fins 24 are provided on the surface of the second heat exchanger plate 23 that is opposite to the first heat exchanger plate 21 . A plurality of heat sink fins 24 are provided on the second heat transfer plate 23. The heat sink fins 24 are formed into a rod shape that extends perpendicularly to the second heat exchanger plate 23 . The heat sink fins 24 are made of, for example, the same metal as the second heat transfer plate 23, such as copper. The heat sink fins 24 are provided to further increase the surface area of the heat generating body 6 and to further diffuse the heat generated by the heat generating body 6.
(噴流供給部)
 図2に示すように、噴流供給部30は、発熱体3に第一冷媒R1の噴流を供給する。噴流供給部30は、循環配管31と、ポンプ32と、フィルタ33と、を有する。
(Jet flow supply section)
As shown in FIG. 2, the jet supply section 30 supplies a jet of the first refrigerant R1 to the heating element 3. The jet flow supply section 30 includes a circulation pipe 31, a pump 32, and a filter 33.
(循環配管)
 循環配管31は、ケーシング11の外部に設けられている。循環配管31は、両端がケーシング11内と連通している。循環配管31には、第一冷媒R1が流通可能である。本実施形態では、循環配管31の一端31aは、ケーシング11の下面に接続されている。循環配管31の一端31aは、発熱体3と上下方向で重なる位置に設けられている。循環配管31の他端31bは、ケーシング11の上面に接続されている。循環配管31の他端31bは、発熱体3と上下方向で重なる位置に設けられている。このため、循環配管31の他端31bは、発熱体3及びヒートシンク機構20と対向する位置に配置されている。
(circulation piping)
Circulation piping 31 is provided outside of casing 11. Both ends of the circulation pipe 31 communicate with the inside of the casing 11. The first refrigerant R1 can flow through the circulation pipe 31. In this embodiment, one end 31a of the circulation pipe 31 is connected to the lower surface of the casing 11. One end 31a of the circulation pipe 31 is provided at a position overlapping the heating element 3 in the vertical direction. The other end 31b of the circulation pipe 31 is connected to the upper surface of the casing 11. The other end 31b of the circulation pipe 31 is provided at a position overlapping the heating element 3 in the vertical direction. Therefore, the other end 31b of the circulation pipe 31 is arranged at a position facing the heating element 3 and the heat sink mechanism 20.
(ポンプ)
 ポンプ32は、循環配管31に設けられている。ポンプ32は、循環配管31の一端31aから他端31bに向けて第一冷媒R1を流通させる。
(pump)
The pump 32 is provided in the circulation pipe 31. The pump 32 circulates the first refrigerant R1 from one end 31a of the circulation pipe 31 to the other end 31b.
(フィルタ)
 フィルタ33は、循環配管31に設けられている。フィルタ33は、ポンプ32よりも第一冷媒R1の流通方向の下流側に設けられている。フィルタ33は、例えば活性炭フィルタである。
(filter)
The filter 33 is provided in the circulation pipe 31. The filter 33 is provided downstream of the pump 32 in the flow direction of the first refrigerant R1. The filter 33 is, for example, an activated carbon filter.
 上記噴流供給部30によって、第一冷媒R1がケーシング11及び循環配管31の内部を循環する。これにより、ケーシング11内では、第一冷媒R1は、循環配管31の他端31bから噴出されて基板2を迂回し、循環配管31の一端31aに流入する。 The first refrigerant R1 is circulated inside the casing 11 and the circulation pipe 31 by the jet supply section 30. Thereby, in the casing 11, the first refrigerant R1 is ejected from the other end 31b of the circulation pipe 31, bypasses the substrate 2, and flows into the one end 31a of the circulation pipe 31.
 以下、ケーシング11内では、第一冷媒R1の流通方向を単に「流通方向」と称し、第一冷媒R1の流通方向のうち、循環配管31の他端31b側を「上流側」と称し、循環配管31の一端31a側を「下流側」と称する場合がある。 Hereinafter, within the casing 11, the flow direction of the first refrigerant R1 will be simply referred to as the "flow direction", and the other end 31b side of the circulation pipe 31 will be referred to as the "upstream side" in the flow direction of the first refrigerant R1. The one end 31a side of the pipe 31 is sometimes referred to as the "downstream side."
(ヘッダ管)
 図1に示すように、ヘッダ管40は、熱交換器7と連通している。ヘッダ管40には、熱交換器7の冷媒が流通する。以下では、熱交換器7の冷媒を単に「第二冷媒R2」と称する。
 ヘッダ管40は、母管43と、サブヘッダ44と、を有する。母管43は、ヘッダ管40ごとに1本設けられている。母管43は、上下方向に延びている。サブヘッダ44は、1本の母管43から複数延びる配管である。複数のサブヘッダ44は、全て水平方向に延びている。複数のサブヘッダ44は、互いに平行に延びるとともに、上下方向で等間隔に配置されている。ヘッダ管40は、2本設けられている。本実施形態では、2本のヘッダ管40は、ケーシング11を挟んで互いに反対側に設けられている。一方のヘッダ管40には、熱交換器7から第二冷媒R2が供給される。この一方のヘッダ管40に供給された第二冷媒R2は、ケーシング11内を通り、他方のヘッダ管40に戻される。この他方のヘッダ管40は、ケーシング11内を通過した第二冷媒R2を熱交換器7に戻す。
(header pipe)
As shown in FIG. 1, the header pipe 40 communicates with the heat exchanger 7. The refrigerant of the heat exchanger 7 flows through the header pipe 40 . Below, the refrigerant of the heat exchanger 7 will be simply referred to as "second refrigerant R2."
The header pipe 40 has a main pipe 43 and a subheader 44. One main pipe 43 is provided for each header pipe 40. The main pipe 43 extends in the vertical direction. A plurality of subheaders 44 are pipes extending from one main pipe 43. All of the plurality of subheaders 44 extend in the horizontal direction. The plurality of subheaders 44 extend parallel to each other and are arranged at equal intervals in the vertical direction. Two header pipes 40 are provided. In this embodiment, the two header pipes 40 are provided on opposite sides of the casing 11. The second refrigerant R2 is supplied to one header pipe 40 from the heat exchanger 7. The second refrigerant R2 supplied to one header pipe 40 passes through the casing 11 and is returned to the other header pipe 40. This other header pipe 40 returns the second refrigerant R2 that has passed through the casing 11 to the heat exchanger 7.
 以下では、熱交換器7から第二冷媒R2が供給される一方のヘッダ管40を「供給ヘッダ管41」と称し、熱交換器7に第二冷媒R2を戻す他方のヘッダ管40を「戻りヘッダ管42」と称する。 Hereinafter, one header pipe 40 to which the second refrigerant R2 is supplied from the heat exchanger 7 will be referred to as a "supply header pipe 41", and the other header pipe 40 that returns the second refrigerant R2 to the heat exchanger 7 will be referred to as a "return header pipe 41". It is called "header pipe 42".
 供給ヘッダ管41のサブヘッダ44と、戻りヘッダ管42のサブヘッダ44とは、複数の伝熱管50によって接続されている。 The subheader 44 of the supply header pipe 41 and the subheader 44 of the return header pipe 42 are connected by a plurality of heat transfer tubes 50.
(伝熱管)
 伝熱管50は、各ケーシング11に複数本設けられている。伝熱管50は、熱交換器7と連通している。伝熱管50の内部には、熱交換器7の第二冷媒R2が流通する。伝熱管50は、ケーシング11を水平方向に貫通している。複数の伝熱管50は、互いに平行に延びるとともに、等間隔に配置されている。複数の伝熱管50は、上下方向で同じに位置に設けられている。各伝熱管50内の第二冷媒R2の流れは、供給ヘッダ管41から戻りヘッダ管42へ向かう層流である。伝熱管50は、第二冷媒R2と第一冷媒R1とで熱交換を行い、第一冷媒R1を冷却する。
(heat exchanger tube)
A plurality of heat exchanger tubes 50 are provided in each casing 11. The heat exchanger tubes 50 communicate with the heat exchanger 7. The second refrigerant R2 of the heat exchanger 7 flows inside the heat exchanger tube 50. The heat exchanger tube 50 penetrates the casing 11 in the horizontal direction. The plurality of heat exchanger tubes 50 extend parallel to each other and are arranged at equal intervals. The plurality of heat exchanger tubes 50 are provided at the same position in the vertical direction. The flow of the second refrigerant R2 in each heat exchanger tube 50 is a laminar flow from the supply header tube 41 to the return header tube 42. The heat exchanger tube 50 performs heat exchange between the second refrigerant R2 and the first refrigerant R1, and cools the first refrigerant R1.
 伝熱管50は、ケーシング11内で、発熱体3よりも第一冷媒R1の流通方向の下流側に配置されている。 The heat exchanger tube 50 is arranged within the casing 11 on the downstream side of the heating element 3 in the flow direction of the first refrigerant R1.
 また、図4に示すように、伝熱管50は、四角形筒状に形成されている。伝熱管50の内周面には、フィン51が複数設けられている。フィン51は、伝熱管50の内周面の角部に設けられている。伝熱管50は、押出加工によって製造された、いわゆる押出管である。 Further, as shown in FIG. 4, the heat exchanger tube 50 is formed into a rectangular cylindrical shape. A plurality of fins 51 are provided on the inner peripheral surface of the heat exchanger tube 50. The fins 51 are provided at corners of the inner peripheral surface of the heat exchanger tube 50. The heat exchanger tube 50 is a so-called extruded tube manufactured by extrusion processing.
(第一冷媒の循環)
 続いて、液浸冷却装置10内の第一冷媒R1の循環について説明する。
 まず、ケーシング11の第一冷媒R1が、循環配管31の一端31aから循環配管31に流入する。第一冷媒R1は、ポンプ32によって循環配管31の一端31aから他端31bに向けて圧送される。そして、第一冷媒R1は、循環配管31の他端31bからジェット噴流として噴出される。第一冷媒R1の噴流は、ヒートシンク機構20に供給される。第一冷媒R1には、ヒートシンク機構20を介して発熱体3の熱が伝達される。このようにして、発熱体3が冷却される。また、第一冷媒R1は、ヒートシンク機構20に衝突するように供給される。このため、発熱体3には、いわゆるインピンジ冷却が行われることとなる。
(Circulation of first refrigerant)
Next, the circulation of the first refrigerant R1 within the immersion cooling device 10 will be explained.
First, the first refrigerant R1 of the casing 11 flows into the circulation pipe 31 from one end 31a of the circulation pipe 31. The first refrigerant R1 is pumped by the pump 32 from one end 31a of the circulation pipe 31 to the other end 31b. Then, the first refrigerant R1 is ejected from the other end 31b of the circulation pipe 31 as a jet stream. The jet of first refrigerant R1 is supplied to the heat sink mechanism 20. Heat from the heating element 3 is transferred to the first refrigerant R1 via the heat sink mechanism 20. In this way, the heating element 3 is cooled. Further, the first refrigerant R1 is supplied so as to collide with the heat sink mechanism 20. Therefore, the heating element 3 undergoes so-called impingement cooling.
 その後、第一冷媒R1は、ヒートシンク機構20のヒートシンクフィン24を通過し、基板2の上面に沿って放射状に流れる。第一冷媒R1は、基板2の外縁に到達すると、基板2の下側に回り込む。そして、第一冷媒R1は、基板2の下面に沿って流れる。この際、第一冷媒R1は、複数の伝熱管50を通過する。第一冷媒R1は、複数の伝熱管50を通過する過程で、第二冷媒R2と熱交換を行って冷却される。伝熱管50によって冷却された第一冷媒R1は、循環配管31の一端31aに流入する。循環配管31の一端31aに流入した第一冷媒R1は、ポンプ32によって再び圧送される。このようにして、第一冷媒R1は、液浸冷却装置10内を循環する。 Thereafter, the first refrigerant R1 passes through the heat sink fins 24 of the heat sink mechanism 20 and flows radially along the upper surface of the substrate 2. When the first refrigerant R1 reaches the outer edge of the substrate 2, it flows around to the lower side of the substrate 2. The first refrigerant R1 then flows along the lower surface of the substrate 2. At this time, the first refrigerant R1 passes through the plurality of heat exchanger tubes 50. The first refrigerant R1 is cooled by exchanging heat with the second refrigerant R2 while passing through the plurality of heat transfer tubes 50. The first refrigerant R1 cooled by the heat transfer tube 50 flows into one end 31a of the circulation pipe 31. The first refrigerant R1 that has flowed into one end 31a of the circulation pipe 31 is pumped again by the pump 32. In this way, the first refrigerant R1 circulates within the immersion cooling device 10.
(作用効果)
 本実施形態の液浸冷却装置10によれば、以下の作用効果が発揮される。
 本実施形態では、液浸冷却装置10は、第一冷媒R1が貯留され、内部に基板2が水平方向に延びるように配置されたケーシング11と、発熱体3に第一冷媒R1の噴流を供給する噴流供給部30と、ケーシング11を貫通し、内部を流通する第二冷媒R2と第一冷媒R1とで熱交換を行い第一冷媒R1を冷却する伝熱管50と、を備える。
(effect)
According to the liquid immersion cooling device 10 of this embodiment, the following effects are exhibited.
In this embodiment, the liquid immersion cooling device 10 supplies a jet stream of the first refrigerant R1 to the heating element 3 and the casing 11 in which the first refrigerant R1 is stored and in which the substrate 2 is disposed so as to extend horizontally. and a heat transfer tube 50 that penetrates the casing 11 and performs heat exchange between the second refrigerant R2 and the first refrigerant R1 flowing inside the casing 11 to cool the first refrigerant R1.
 これにより、液浸冷却装置10は、発熱体3に第一冷媒R1の噴流を吹き付けて発熱体3をインピンジ冷却することができる。発熱体3に吹き付けられた第一冷媒R1は、伝熱管50によって冷却されて再び発熱体3の冷却に用いられる。このように、本実施形態によれば、第一冷媒R1を循環させるための大規模なサイクルが不要となる。したがって、設備全体として小型化を実現することができる。 Thereby, the liquid immersion cooling device 10 can impinge-cool the heating element 3 by spraying the jet stream of the first refrigerant R1 onto the heating element 3. The first refrigerant R1 sprayed onto the heating element 3 is cooled by the heat transfer tube 50 and used again to cool the heating element 3. In this way, according to the present embodiment, a large-scale cycle for circulating the first refrigerant R1 is not necessary. Therefore, the entire equipment can be downsized.
 さらに、各ケーシング11は、基板2を1つ分収容できる程度の大きさであればよいので、ケーシング11上部の空間を自由に利用することが容易となる。これにより、本実施形態のように、既存の空冷用のラック8の各段に、ケーシング11を水平方向に延びるように横置きで設置することができる。また、本実施形態ではケーシング11を横置きで配置したが、ケーシング11の縦置き及び横置きを問わずに、ケーシング11を配置することも可能である。また、ケーシング11を、基板2を1つ分収容できる程度の小型に設計することにより、液浸冷却装置10を可搬とすることができる。これにより、他の高速計算を行う設備に液浸冷却を搬送することが容易となる。また、第一冷媒R1の量は、ケーシング11内を充填させる程度でよいため、絶縁性を有するため高価な第一冷媒R1の使用量を低減することも可能となる。 Furthermore, since each casing 11 only needs to be large enough to accommodate one board 2, it is easy to freely utilize the space above the casing 11. Thereby, as in this embodiment, the casing 11 can be horizontally installed in each stage of the existing air cooling rack 8 so as to extend in the horizontal direction. Further, in this embodiment, the casing 11 is arranged horizontally, but it is also possible to arrange the casing 11 regardless of whether the casing 11 is placed vertically or horizontally. Further, by designing the casing 11 to be small enough to accommodate one board 2, the immersion cooling device 10 can be made portable. This makes it easy to transport immersion cooling to other high-speed computing facilities. Moreover, since the amount of the first refrigerant R1 is sufficient to fill the inside of the casing 11, it is also possible to reduce the amount of the first refrigerant R1, which is expensive because it has insulation properties.
 また、液浸冷却装置10は、伝熱管50によって、ケーシング11に貯留された第一冷媒R1をケーシング11内で冷却することができる。これにより、第一冷媒R1を冷却するために、外部に熱交換器を別途設ける必要が無くなり、設備全体として熱交換器の台数を減らすことができる。また、第一冷媒R1の循環を液浸冷却装置10内で完結させることができる。
 以上のように、第一冷媒R1の使用量を低減しつつ、第一冷媒R1の循環を液浸冷却装置10内で完結させることができるので、第一冷媒R1の管理性を向上させることもできる。
Further, the liquid immersion cooling device 10 can cool the first refrigerant R1 stored in the casing 11 within the casing 11 by the heat transfer tube 50. Thereby, there is no need to separately provide an external heat exchanger to cool the first refrigerant R1, and the number of heat exchangers can be reduced in the entire equipment. Furthermore, the circulation of the first refrigerant R1 can be completed within the immersion cooling device 10.
As described above, since the circulation of the first refrigerant R1 can be completed within the immersion cooling device 10 while reducing the amount of the first refrigerant R1 used, the manageability of the first refrigerant R1 can also be improved. can.
 本実施形態では、噴流供給部30は、ケーシング11の外部に設けられるとともに両端がケーシング11内と連通し、第一冷媒R1が流通可能な循環配管31と、循環配管31に設けられ、循環配管31の一端31aから他端31bに向けて第一冷媒R1を流通させるポンプ32と、を有する。循環配管31の他端31bは、発熱体3と対向する位置に配置されている。 In this embodiment, the jet flow supply unit 30 is provided outside the casing 11 and communicates with the inside of the casing 11 at both ends, and is provided in the circulation pipe 31 and the circulation pipe 31 through which the first refrigerant R1 can flow. A pump 32 that circulates the first refrigerant R1 from one end 31a of 31 to the other end 31b. The other end 31b of the circulation pipe 31 is arranged at a position facing the heating element 3.
 これにより、ケーシング11内の第一冷媒R1の流通方向が、循環配管31の一端31aと他端31bの設置箇所により設定される。したがって、ケーシング11内の第一冷媒R1の流路の任意に設定できるので、液浸冷却装置10の冷却効率を向上させることができる。
 さらに、ポンプ32の圧力を調整することにより、発熱体3の発熱量に応じて噴流の強さをコントロールすることができる。これにより、発熱体3に必要な除熱量に見合った最低限の噴流で発熱体3を冷却することができる。したがって、液浸冷却装置10の冷却効率を向上させることができる。
Thereby, the flow direction of the first refrigerant R1 in the casing 11 is set by the installation locations of the one end 31a and the other end 31b of the circulation pipe 31. Therefore, since the flow path of the first refrigerant R1 in the casing 11 can be set arbitrarily, the cooling efficiency of the immersion cooling device 10 can be improved.
Furthermore, by adjusting the pressure of the pump 32, the strength of the jet flow can be controlled according to the amount of heat generated by the heating element 3. Thereby, the heat generating element 3 can be cooled with the minimum amount of jet flow commensurate with the amount of heat removal necessary for the heat generating element 3. Therefore, the cooling efficiency of the liquid immersion cooling device 10 can be improved.
 本実施形態では、ケーシング11内で、伝熱管50は、発熱体3よりも第一冷媒R1の流通方向の下流側に配置されている。 In this embodiment, the heat exchanger tubes 50 are arranged in the casing 11 on the downstream side of the heating element 3 in the flow direction of the first refrigerant R1.
 これにより、伝熱管50内を流通する第二冷媒R2は、発熱体3を冷却した後の第一冷媒R1と熱交換を行うことができる。したがって、液浸冷却装置10の冷却効率をより一層向上させることができる。 Thereby, the second refrigerant R2 flowing in the heat transfer tube 50 can exchange heat with the first refrigerant R1 after cooling the heating element 3. Therefore, the cooling efficiency of the liquid immersion cooling device 10 can be further improved.
 本実施形態では、伝熱管50の内周面には、フィン51が設けられている。 In this embodiment, fins 51 are provided on the inner peripheral surface of the heat exchanger tube 50.
 これにより、第二冷媒R2と接触する伝熱管50の内周面の表面積が増加する。したがって、伝熱管50は、第二冷媒R2と第一冷媒R1との熱交換の効率を向上させることができる。 As a result, the surface area of the inner peripheral surface of the heat transfer tube 50 that comes into contact with the second refrigerant R2 increases. Therefore, the heat exchanger tube 50 can improve the efficiency of heat exchange between the second refrigerant R2 and the first refrigerant R1.
(第一実施形態の第一変形例)
 続いて、第一実施形態の第一変形例について、図5を参照して説明する。
 図5に示すように、本変形例では、発熱体3及び伝熱管50は、基板2に対して同じ側(例えば、基板2の下側)に配置されている。噴流供給部30の第一冷媒R1の噴流を供給する循環配管31の他端31bは、発熱体3の真下に設けられている。また、循環配管31の一端31aは、ケーシング11の側壁に近い位置に設けられている。なお、本変形例では、循環配管31の一端31aは、二股に分岐している。循環配管31の一端31a及び他端31bは、ともにケーシング11の下面に設けられている。
 さらに、複数の伝熱管50は、上下方向の位置が異なるように配置されている。
(First modification of the first embodiment)
Next, a first modification of the first embodiment will be described with reference to FIG. 5.
As shown in FIG. 5, in this modification, the heating element 3 and the heat exchanger tube 50 are arranged on the same side with respect to the substrate 2 (for example, on the lower side of the substrate 2). The other end 31b of the circulation pipe 31 that supplies the jet of the first refrigerant R1 of the jet supply section 30 is provided directly below the heating element 3. Further, one end 31a of the circulation pipe 31 is provided at a position close to the side wall of the casing 11. Note that in this modification, one end 31a of the circulation pipe 31 is bifurcated. One end 31a and the other end 31b of the circulation pipe 31 are both provided on the lower surface of the casing 11.
Furthermore, the plurality of heat exchanger tubes 50 are arranged at different positions in the vertical direction.
 第一冷媒R1の噴流は、下方から発熱体3に供給される。第一冷媒R1は、発熱体3を冷却した後、基板2の下面に沿って流れる。この時、第一冷媒R1は、伝熱管50を通過し、伝熱管50を通過する過程で伝熱管50内の第二冷媒R2と熱交換を行って冷却される。その後、第一冷媒R1は、循環配管31に戻り、再びポンプ32によって圧送されて、発熱体3に吹き付けられる。 The jet of the first refrigerant R1 is supplied to the heating element 3 from below. After cooling the heating element 3, the first coolant R1 flows along the lower surface of the substrate 2. At this time, the first refrigerant R1 passes through the heat exchanger tube 50, and during the process of passing through the heat exchanger tube 50, it exchanges heat with the second refrigerant R2 in the heat exchanger tube 50 and is cooled. Thereafter, the first refrigerant R1 returns to the circulation pipe 31, is pumped again by the pump 32, and is sprayed onto the heating element 3.
 本変形例では、複数の伝熱管50は、上下方向の位置が異なるように配置されている。
 これにより、第一冷媒R1は、複数の伝熱管50を蛇行しながら通過する。このため、第一冷媒R1は、第二冷媒R2と良好に熱交換を行うことができる。したがって、本変形例の液浸冷却装置10によれば、冷却効率をより一層向上させることができる。
In this modification, the plurality of heat exchanger tubes 50 are arranged at different positions in the vertical direction.
Thereby, the first refrigerant R1 passes through the plurality of heat exchanger tubes 50 while meandering. Therefore, the first refrigerant R1 can effectively exchange heat with the second refrigerant R2. Therefore, according to the liquid immersion cooling device 10 of this modification, cooling efficiency can be further improved.
(第一実施形態の第二変形例)
 続いて、第一実施形態の第二変形例について、図6を参照して説明する。
 図6に示すように、本変形例では、伝熱管50は、六角形筒状に形成されている。
(Second modification of the first embodiment)
Next, a second modification of the first embodiment will be described with reference to FIG. 6.
As shown in FIG. 6, in this modification, the heat exchanger tube 50 is formed in a hexagonal cylindrical shape.
 これにより、伝熱管50内により多くの第二冷媒R2を流通させることができる。したがって、本変形例の液浸冷却装置10によれば、冷却効率をより一層向上させることが出来る。 Thereby, more second refrigerant R2 can be circulated within the heat exchanger tubes 50. Therefore, according to the liquid immersion cooling device 10 of this modification, cooling efficiency can be further improved.
 伝熱管50が五角、又は七角以上の多角形筒状に形成されている場合でも、上述の作用効果と同様の作用効果を発揮することが可能となる。 Even when the heat exchanger tube 50 is formed into a polygonal cylinder shape of pentagons, heptagons or more, it is possible to achieve the same effects as those described above.
(第一実施形態の第三変形例)
 続いて、第一実施形態の第三変形例について、図7を参照して説明する。
 図7に示すように、本変形例では、供給ヘッダ管41と戻りヘッダ管42とがケーシング11に対して同じ側に設けられている。伝熱管50は、ケーシング11内のヘッダ管40とは反対側で折り返されるように曲げられている。
(Third modification of the first embodiment)
Next, a third modification of the first embodiment will be described with reference to FIG. 7.
As shown in FIG. 7, in this modification, the supply header pipe 41 and the return header pipe 42 are provided on the same side with respect to the casing 11. The heat exchanger tube 50 is bent so as to be folded back on the side opposite to the header tube 40 inside the casing 11 .
(第一実施形態の第四変形例)
 続いて、第一実施形態の第四変形例について、図8を参照して説明する。
 図8に示すように、本変形例では、液浸冷却装置10は、補助プロペラ15をさらに有する。補助プロペラ15は、ケーシング11内に設けられている。補助プロペラ15は、ケーシング11内を流れる第一冷媒R1を攪拌する。補助プロペラ15の攪拌速度は、噴流供給部30の噴出速度と比較して小さい。
(Fourth modification of the first embodiment)
Next, a fourth modification of the first embodiment will be described with reference to FIG. 8.
As shown in FIG. 8, in this modification, the immersion cooling device 10 further includes an auxiliary propeller 15. The auxiliary propeller 15 is provided within the casing 11. The auxiliary propeller 15 stirs the first refrigerant R1 flowing inside the casing 11. The stirring speed of the auxiliary propeller 15 is lower than the ejection speed of the jet flow supply section 30.
 本変形例によれば、液浸冷却装置10は、補助プロペラ15によって第一冷媒R1をケーシング11内に均一に流通させることができる。これにより、液浸冷却装置10は、例えば基板2の発熱体3以外の素子を良好に冷却することができる。したがって、本変形例の液浸冷却装置10によれば、冷却効率をより一層向上させることができる。 According to this modification, the immersion cooling device 10 can uniformly circulate the first refrigerant R1 within the casing 11 using the auxiliary propeller 15. Thereby, the liquid immersion cooling device 10 can favorably cool elements other than the heating element 3 of the substrate 2, for example. Therefore, according to the immersion cooling device 10 of this modification, cooling efficiency can be further improved.
(第一実施形態の第五変形例)
 続いて、第一実施形態の第五変形例について、図9、図10を参照して説明する。
 図9、図10に示すように、本変形例では、循環配管31は、ケーシング11の側面に沿って設けられている。循環配管31は、ケーシング11を側方から囲うように配置されている。循環配管31の一端31a及び他端31bは、それぞれ、ケーシング11の対向する一対の側面に設けられている。循環配管31の一端31a及び他端31bは、ヒートシンク機構20と水平方向で重なる位置に設けられている。
(Fifth modification of the first embodiment)
Next, a fifth modification of the first embodiment will be described with reference to FIGS. 9 and 10.
As shown in FIGS. 9 and 10, in this modification, the circulation pipe 31 is provided along the side surface of the casing 11. The circulation pipe 31 is arranged so as to surround the casing 11 from the sides. One end 31a and the other end 31b of the circulation pipe 31 are provided on a pair of opposing side surfaces of the casing 11, respectively. One end 31a and the other end 31b of the circulation pipe 31 are provided at positions overlapping the heat sink mechanism 20 in the horizontal direction.
 循環配管31及びポンプ32、フィルタ33は、ケーシング11の上下ではなく、ケーシング11と水平方向で重なる位置に設けられている。 The circulation piping 31, the pump 32, and the filter 33 are provided not above and below the casing 11, but at positions overlapping the casing 11 in the horizontal direction.
 ヘッダ管40のサブヘッダ44は、L字状に形成されている。サブヘッダ44の母管43と反対側の端部44aは、上向きに延びている。このサブヘッダ44の上方に向けて延びる端部44aには、複数の伝熱管50が設けられている。 The sub-header 44 of the header pipe 40 is formed in an L-shape. An end 44a of the subheader 44 opposite to the main pipe 43 extends upward. A plurality of heat exchanger tubes 50 are provided at the end portion 44a of the sub-header 44 that extends upward.
 伝熱管50は、ケーシング11内において、基板2を挟んで発熱体3と上下方向で同じ側に設けられている。伝熱管50は、ケーシング11の循環配管31の一端31a側の側面に沿って複数設けられている。すなわち、複数の伝熱管50は、ケーシング11内における下流側に設けられている。複数の伝熱管50は、上下方向で等間隔に配置されている。 The heat exchanger tube 50 is provided in the casing 11 on the same side in the vertical direction as the heating element 3 with the substrate 2 in between. A plurality of heat transfer tubes 50 are provided along the side surface of the casing 11 on the one end 31a side of the circulation pipe 31. That is, the plurality of heat exchanger tubes 50 are provided on the downstream side within the casing 11. The plurality of heat exchanger tubes 50 are arranged at equal intervals in the vertical direction.
 第一冷媒R1の噴流は、水平方向にヒートシンク機構20に向けて直接供給される。第一冷媒R1は、ヒートシンク機構20を介して発熱体3と熱交換を行い、発熱体3が冷却される。第一冷媒R1は、発熱体3を冷却した後、基板2の上面に沿って流れる。その後、第一冷媒R1は、伝熱管50を通過し、伝熱管50を通過する過程で伝熱管50内の第二冷媒R2と熱交換を行って冷却される。そして、第一冷媒R1は、循環配管31内に戻り、再びポンプ32によって圧送されてヒートシンク機構20に吹き付けられる。 The jet of the first refrigerant R1 is directly supplied toward the heat sink mechanism 20 in the horizontal direction. The first refrigerant R1 exchanges heat with the heating element 3 via the heat sink mechanism 20, and the heating element 3 is cooled. After cooling the heating element 3, the first coolant R1 flows along the upper surface of the substrate 2. Thereafter, the first refrigerant R1 passes through the heat exchanger tube 50, and during the process of passing through the heat exchanger tube 50, it exchanges heat with the second refrigerant R2 in the heat exchanger tube 50 and is cooled. Then, the first refrigerant R1 returns to the circulation pipe 31, is pumped again by the pump 32, and is sprayed onto the heat sink mechanism 20.
 本変形例では、循環配管31及びポンプ32、フィルタ33は、ケーシング11と水平方向で重なる位置に設けられている。 In this modification, the circulation pipe 31, the pump 32, and the filter 33 are provided at a position that overlaps the casing 11 in the horizontal direction.
 本変形例によれば、液浸冷却装置10を上下方向に小型化することができる。これにより、例えば液浸冷却装置10がラック8等によって上下方向に多段配置される場合に、少ないスペースにより多くの液浸冷却装置10を配置することができる。 According to this modification, the immersion cooling device 10 can be downsized in the vertical direction. Thereby, for example, when the immersion cooling devices 10 are arranged in multiple stages in the vertical direction using the racks 8 or the like, more immersion cooling devices 10 can be arranged in a small space.
 本変形例では、循環配管31の一端31a及び他端31bは、ヒートシンク機構20と水平方向で重なる位置に設けられている。 In this modification, one end 31a and the other end 31b of the circulation pipe 31 are provided at positions that overlap the heat sink mechanism 20 in the horizontal direction.
 本変形例によれば、液浸冷却装置10は、ケーシング11内に第一冷媒R1をスムーズに流通させることができる。これにより、液浸冷却装置10は、ケーシング11内の第一冷媒R1の圧損を低減することができる。したがって、液浸冷却装置10の冷却効率を向上させることができる。 According to this modification, the immersion cooling device 10 can smoothly circulate the first refrigerant R1 within the casing 11. Thereby, the liquid immersion cooling device 10 can reduce the pressure loss of the first refrigerant R1 within the casing 11. Therefore, the cooling efficiency of the liquid immersion cooling device 10 can be improved.
(第一実施形態の第六変形例)
 続いて、第一実施形態の第六変形例について、図11を参照して説明する。
 図11に示すように、本変形例では、液浸冷却装置10ごとに、伝熱管50が1本設けられている。伝熱管50は、ケーシング11内において、水平方向に延在している。伝熱管50は、ケーシング11内において、対向する一対の側壁の間を複数回折り返すように波状に設けられている。伝熱管50の両端は、ケーシング11の同一の側壁からケーシング11外に突出している。伝熱管50の両端は、それぞれ熱交換器7に直接接続されている。
なお、伝熱管50の両端は、それぞれ供給ヘッダ管41と戻りヘッダ管42を介して、熱交換器7と連通していてもよい。
(Sixth modification of the first embodiment)
Next, a sixth modification of the first embodiment will be described with reference to FIG. 11.
As shown in FIG. 11, in this modification, one heat transfer tube 50 is provided for each immersion cooling device 10. Heat exchanger tube 50 extends horizontally within casing 11 . The heat exchanger tubes 50 are provided in a wavy shape within the casing 11 so as to be folded back multiple times between a pair of opposing side walls. Both ends of the heat exchanger tubes 50 protrude outside the casing 11 from the same side wall of the casing 11. Both ends of the heat exchanger tubes 50 are each directly connected to the heat exchanger 7.
In addition, both ends of the heat exchanger tube 50 may be connected to the heat exchanger 7 via the supply header tube 41 and the return header tube 42, respectively.
 なお、上述した第一実施形態及び各変形例では、噴流供給部30は1本の循環配管31を備え、第一冷媒R1の流入口である循環配管31の一端31aと、第二冷媒R2の流出口となる循環配管31の他端31bとが、それぞれ1つずつ設けられている場合ついて説明したが、これに限られるものではない。例えば、循環配管31は、複数本設けられてそれぞれ流入口としての一端31aと流出口としての他端31bとを有してもよい。また、例えば、1本の循環配管31の両端が複数に分岐し、この1本の循環配管31が流入口としての一端31aと流出口としての他端31bとをそれぞれ複数個有してもよい。 In addition, in the first embodiment and each modification described above, the jet flow supply section 30 includes one circulation pipe 31, and one end 31a of the circulation pipe 31 which is the inlet of the first refrigerant R1 and one end 31a of the circulation pipe 31 which is the inlet of the second refrigerant R2. Although a case has been described in which one other end 31b of the circulation pipe 31 is provided as an outflow port, the present invention is not limited to this. For example, a plurality of circulation pipes 31 may be provided, each having one end 31a serving as an inlet and the other end 31b serving as an outlet. Further, for example, both ends of one circulation pipe 31 may branch into a plurality of parts, and this one circulation pipe 31 may each have a plurality of one end 31a serving as an inlet and a plurality of other ends 31b serving as an outlet. .
 なお、上述した第一実施形態及び各変形例では、循環配管31にフィルタ33が設けられているとしたが、これに限られない。循環配管31にはフィルタ33が設けられていなくてもよい。 Note that in the first embodiment and each modification described above, the filter 33 is provided in the circulation pipe 31, but the present invention is not limited to this. The filter 33 may not be provided in the circulation pipe 31.
<第二実施形態>
 以下、本開示の第二実施形態に係る液浸冷却装置210について、図12を参照して説明する。前述した第一実施形態と同様の構成については、同一の名称及び同一の符号を付す等して説明を適宜省略する。
<Second embodiment>
Hereinafter, a liquid immersion cooling device 210 according to a second embodiment of the present disclosure will be described with reference to FIG. 12. Configurations similar to those of the first embodiment described above will be given the same names and numerals, and descriptions thereof will be omitted as appropriate.
 図12に示すように、本実施形態では、噴流供給部230は、ケーシング11内で発熱体3に対向する位置に配置されたプロペラ234である。プロペラ234は、基板2よりも上方に設置されている。プロペラ234の回転軸235は、発熱体3に向けて延びている。また、本実施形態では、発熱体3及び伝熱管50は、基板2に対して同じ側(例えば、基板2の下側)に配置されている。 As shown in FIG. 12, in this embodiment, the jet flow supply section 230 is a propeller 234 disposed within the casing 11 at a position facing the heating element 3. The propeller 234 is installed above the board 2. A rotating shaft 235 of the propeller 234 extends toward the heating element 3. Further, in this embodiment, the heating element 3 and the heat exchanger tube 50 are arranged on the same side with respect to the substrate 2 (for example, on the lower side of the substrate 2).
 さらに、液浸冷却装置10は、ケーシング11内に、第一冷媒R1の流れを決定するガイド260が設けられている。ガイド260は、発熱体3及びプロペラ234よりもケーシング11の側壁側に設けられている。ガイド260は、傾斜ガイド261と、水平ガイド262と、を有する。傾斜ガイド261は、発熱体3の下方に設けられている。傾斜ガイド261は、下方に傾斜しながら水平方向に延びている。水平ガイド262は、傾斜ガイド261の下端から、水平方向で発熱体3から離間する方向に延びている。 Furthermore, the immersion cooling device 10 is provided with a guide 260 inside the casing 11 that determines the flow of the first refrigerant R1. The guide 260 is provided closer to the side wall of the casing 11 than the heating element 3 and propeller 234 are. The guide 260 includes an inclined guide 261 and a horizontal guide 262. The inclined guide 261 is provided below the heating element 3. The inclined guide 261 extends horizontally while being inclined downward. The horizontal guide 262 extends from the lower end of the inclined guide 261 in the horizontal direction away from the heating element 3 .
 プロペラ234は、第一冷媒R1の噴流を、下方から発熱体3に向かうように発生させる。第一冷媒R1は、発熱体3を冷却した後、ガイド260の上面によって案内されることにより、基板2の下面に沿って流れる。この時、第一冷媒R1は、伝熱管50を通過し、伝熱管50を通過する過程で伝熱管50内の第二冷媒R2と熱交換を行って冷却される。その後、第一冷媒R1は、ガイド260の下面に沿って流れてプロペラ234に戻り、再びプロペラ234によって、発熱体3に吹き付けられる。 The propeller 234 generates a jet of the first refrigerant R1 toward the heating element 3 from below. After cooling the heating element 3, the first coolant R1 flows along the lower surface of the substrate 2 by being guided by the upper surface of the guide 260. At this time, the first refrigerant R1 passes through the heat exchanger tube 50, and during the process of passing through the heat exchanger tube 50, it exchanges heat with the second refrigerant R2 in the heat exchanger tube 50 and is cooled. Thereafter, the first refrigerant R1 flows along the lower surface of the guide 260, returns to the propeller 234, and is again blown onto the heating element 3 by the propeller 234.
 本実施形態では、噴流供給部230は、ケーシング11内で発熱体3に対向する位置に配置され、回転軸235が発熱体3に向けて延びるプロペラ234である。 In the present embodiment, the jet flow supply section 230 is a propeller 234 that is disposed within the casing 11 at a position facing the heat generating element 3 and has a rotating shaft 235 extending toward the heat generating element 3.
 これにより、噴流供給部230の全体が、ケーシング11内に配置される。したがって、液浸冷却装置210の移動がより一層容易となる。 As a result, the entire jet flow supply section 230 is placed within the casing 11. Therefore, moving the immersion cooling device 210 becomes even easier.
 なお、上述した第一実施形態及び第二実施形態では、伝熱管50が四角形筒状又は五角以上の多角形筒状に形成される場合について説明したが、これに限られるものではない。伝熱管50は、例えば三角形筒状や円筒状に形成されていてもよい。 In addition, in the first embodiment and second embodiment described above, the case where the heat exchanger tube 50 is formed into a rectangular cylindrical shape or a polygonal cylindrical shape with five or more sides has been described, but it is not limited to this. The heat exchanger tube 50 may be formed into a triangular tube shape or a cylindrical shape, for example.
 なお、上述した第一実施形態の各変形例同士を適宜組み合わせてもよく、第一実施形態の各変形例と第二実施形態とを適宜組み合わせてもよい。 Note that the above-described modifications of the first embodiment may be combined as appropriate, and each modification of the first embodiment and the second embodiment may be combined as appropriate.
<第三実施形態>
 以下、本開示の第三実施形態に係る液浸冷却装置310について、図13、図14を参照して説明する。前述した第一実施形態と同様の構成については、同一の名称及び同一の符号を付す等して説明を適宜省略する。
<Third embodiment>
Hereinafter, a liquid immersion cooling device 310 according to a third embodiment of the present disclosure will be described with reference to FIGS. 13 and 14. Configurations similar to those of the first embodiment described above will be given the same names and numerals, and descriptions thereof will be omitted as appropriate.
 図13、図14に示すように、本実施形態の液浸冷却装置310は、基板2に設けられた発熱体3を冷却する。第一実施形態及び第二実施形態と同様に、液浸冷却装置310は、ケーシング群311と、供給側ヘッダ320と、排出側ヘッダ330と、冷媒圧送部340と、伝熱管350と、上側第二ヘッダ314と、下側第二ヘッダ313と、冷媒供給部360と、冷媒排出部370と、第一接続管315と、第二接続管316と、第三接続管317と、第四接続管318と、を備える。 As shown in FIGS. 13 and 14, the immersion cooling device 310 of this embodiment cools the heating element 3 provided on the substrate 2. Similar to the first embodiment and the second embodiment, the liquid immersion cooling device 310 includes a casing group 311, a supply side header 320, a discharge side header 330, a refrigerant pressure feeding section 340, a heat transfer tube 350, and an upper side header 330. The second header 314, the lower second header 313, the refrigerant supply section 360, the refrigerant discharge section 370, the first connection pipe 315, the second connection pipe 316, the third connection pipe 317, and the fourth connection pipe 318.
(ケーシング群)
 ケーシング群311は、ケーシング312が上下方向に配列されてなる集合体である。ケーシング312は、水平方向に延びる、立方体状の箱型をなしている。ケーシング312は、ラック8の各段に設けられている。本実施形態では、ケーシング312は、上下方向に並んで7個配置されている。
(Casing group)
The casing group 311 is a collection of casings 312 arranged in the vertical direction. The casing 312 has a cubic box shape that extends in the horizontal direction. A casing 312 is provided at each stage of the rack 8. In this embodiment, seven casings 312 are arranged in the vertical direction.
 ケーシング312内には、第一冷媒R1が貯留されている。本実施形態では、ケーシング312は、第一冷媒R1で満液となっている。すなわち、第一冷媒R1は、ケーシング312内の全貯留空間に満たされている。
 ケーシング312の内部には、基板2が水平方向に延びるように配置されている。基板2の表面には、発熱体3が設けられている。
A first refrigerant R1 is stored in the casing 312. In this embodiment, the casing 312 is filled with the first refrigerant R1. That is, the entire storage space within the casing 312 is filled with the first refrigerant R1.
The board 2 is arranged inside the casing 312 so as to extend in the horizontal direction. A heating element 3 is provided on the surface of the substrate 2.
 また、ケーシング群311の水平方向一方側には、供給側ヘッダ320が設けられ、ケーシング群311の水平方向他方側には、排出側ヘッダ330が設けられている。すなわち、ケーシング群311を挟んで、供給側ヘッダ320と排出側ヘッダ330とが水平方向に対向するように設けられている。 Furthermore, a supply header 320 is provided on one side of the casing group 311 in the horizontal direction, and a discharge header 330 is provided on the other side of the casing group 311 in the horizontal direction. That is, the supply header 320 and the discharge header 330 are provided to face each other in the horizontal direction with the casing group 311 in between.
 以下では、供給側ヘッダ320と排出側ヘッダ330との対向方向Daを単に「対向方向Da」と称し、対向方向Daに直交する水平方向を「幅方向Dw」と称する。 Hereinafter, the opposing direction Da between the supply header 320 and the discharge header 330 will be simply referred to as the "opposing direction Da", and the horizontal direction orthogonal to the opposing direction Da will be referred to as the "width direction Dw".
(供給側ヘッダ)
 供給側ヘッダ320は、ケーシング312に隣接するように上下方向に延びている。供給側ヘッダ320は、複数のケーシング312内にそれぞれ第一冷媒R1を導入可能とされている。供給側ヘッダ320は、供給側ヘッダ本体321と、供給側分岐管322と、を有する。
(Supply side header)
The supply header 320 extends vertically adjacent to the casing 312. The supply header 320 is capable of introducing the first refrigerant R1 into each of the plurality of casings 312. The supply header 320 includes a supply header main body 321 and a supply branch pipe 322.
 供給側ヘッダ本体321は、上下方向に延びる筒状に形成されている。供給側ヘッダ本体321の延在方向の両端部は、閉塞されている。供給側ヘッダ本体321の内部では、第一冷媒R1が上下方向に流通する。 The supply side header main body 321 is formed into a cylindrical shape extending in the vertical direction. Both ends of the supply header main body 321 in the extending direction are closed. Inside the supply side header body 321, the first refrigerant R1 flows in the vertical direction.
 供給側分岐管322は、供給側ヘッダ本体321に複数設けられている。複数の供給側分岐管322は、ケーシング群311に沿って上下方向に等間隔で配置されている。供給側分岐管322は、ケーシング312毎に1つずつ設けられている。供給側分岐管322は、ケーシング312の供給側ヘッダ320側の側壁312aに接続されている。供給側分岐管322は、ケーシング312の側壁312aを貫通している。供給側分岐管322は、ケーシング312の側壁312aの幅方向Dw一方側の端部に設けられている。 A plurality of supply side branch pipes 322 are provided in the supply side header main body 321. The plurality of supply side branch pipes 322 are arranged at equal intervals in the vertical direction along the casing group 311. One supply branch pipe 322 is provided for each casing 312. The supply side branch pipe 322 is connected to the side wall 312a of the casing 312 on the supply side header 320 side. The supply side branch pipe 322 penetrates the side wall 312a of the casing 312. The supply branch pipe 322 is provided at one end of the side wall 312a of the casing 312 in the width direction Dw.
(排出側ヘッダ)
 排出側ヘッダ330は、ケーシング312に隣接するように上下方向に延びている。排出側ヘッダ330には、複数のケーシング312のそれぞれから第一冷媒R1が導入される。排出側ヘッダ330は、排出側ヘッダ本体331と、排出側分岐管332と、を有する。
(Discharge side header)
The discharge header 330 extends in the vertical direction adjacent to the casing 312. The first refrigerant R1 is introduced into the discharge side header 330 from each of the plurality of casings 312. The discharge side header 330 has a discharge side header main body 331 and a discharge side branch pipe 332.
 排出側ヘッダ本体331は、上下方向に延びる筒状に形成されている。排出側ヘッダ本体331の延在方向の両端部は、閉塞されている。排出側ヘッダ本体331の内部では、第一冷媒R1が上下方向に流通する。 The discharge side header main body 331 is formed into a cylindrical shape extending in the vertical direction. Both ends of the discharge side header main body 331 in the extending direction are closed. Inside the discharge side header body 331, the first refrigerant R1 flows in the vertical direction.
 排出側分岐管332は、排出側ヘッダ本体331に複数設けられている。複数の排出側分岐管332は、ケーシング群311に沿って上下方向に等間隔で配置されている。排出側分岐管332は、ケーシング312毎に1つずつ設けられている。排出側分岐管332は、ケーシング312の排出側ヘッダ330側の側壁312aに接続されている。排出側分岐管332は、ケーシング312の側壁312aを貫通している。排出側分岐管332は、ケーシング312の側壁312aの幅方向Dw一方側の端部に設けられている。排出側分岐管332は、供給側分岐管322と対向方向Daで重なる位置に設けられている。 A plurality of discharge side branch pipes 332 are provided in the discharge side header main body 331. The plurality of discharge side branch pipes 332 are arranged at equal intervals in the vertical direction along the casing group 311. One discharge side branch pipe 332 is provided for each casing 312. The discharge side branch pipe 332 is connected to the side wall 312a of the casing 312 on the discharge side header 330 side. The discharge side branch pipe 332 penetrates the side wall 312a of the casing 312. The discharge side branch pipe 332 is provided at one end of the side wall 312a of the casing 312 in the width direction Dw. The discharge side branch pipe 332 is provided at a position overlapping the supply side branch pipe 322 in the opposing direction Da.
(冷媒圧送部)
 冷媒圧送部340は、ケーシング群311の下方に設けられている。冷媒圧送部340は、第一接続管315によって排出側ヘッダ330の下部と接続され、第二接続管316によって供給側ヘッダ320の下部と接続されている。第一接続管315は、排出側ヘッダ330と冷媒圧送部340とを連通させ、第二接続管316は、供給側ヘッダ320と冷媒圧送部340とを連通させている。冷媒圧送部340は、排出側ヘッダ330の下部から供給側ヘッダ320の下部に第一冷媒R1を圧送する。本実施形態の冷媒圧送部340は、ポンプである。
(refrigerant pressure feeding section)
The refrigerant pumping section 340 is provided below the casing group 311. The refrigerant pumping section 340 is connected to the lower part of the discharge side header 330 by a first connecting pipe 315 and connected to the lower part of the supply side header 320 by a second connecting pipe 316. The first connecting pipe 315 allows the discharge side header 330 and the refrigerant pumping section 340 to communicate with each other, and the second connecting pipe 316 allows the supply side header 320 and the refrigerant pumping section 340 to communicate with each other. The refrigerant pumping section 340 pumps the first refrigerant R1 from the lower part of the discharge side header 330 to the lower part of the supply side header 320. The refrigerant pumping section 340 of this embodiment is a pump.
(伝熱管)
 伝熱管350は、排出側ヘッダ330及び供給側ヘッダ320の少なくとも一方の内側で延びる配管である。本実施形態では、伝熱管350は、排出側ヘッダ330の内側で上下方向に延びるように設けられている。伝熱管350は、排出側ヘッダ330内で、水平方向に間隔を空けて複数本設けられている。伝熱管350の内部では、下方から上方に向かって第二冷媒R2が流通する。伝熱管350は、伝熱管350の内部を流通する第二冷媒R2と伝熱管350の周りを流通する第一冷媒R1とを熱交換させて第一冷媒R1を冷却する。本実施形態では、伝熱管350は、第二冷媒R2と排出側ヘッダ330内の第一冷媒R1とを熱交させて排出側ヘッダ330内の第一冷媒R1を冷却する。
(heat exchanger tube)
The heat exchanger tube 350 is a pipe that extends inside at least one of the discharge side header 330 and the supply side header 320. In this embodiment, the heat exchanger tube 350 is provided inside the discharge side header 330 so as to extend in the vertical direction. A plurality of heat transfer tubes 350 are provided within the discharge header 330 at intervals in the horizontal direction. Inside the heat exchanger tube 350, the second refrigerant R2 flows from the bottom to the top. The heat exchanger tube 350 cools the first refrigerant R1 by exchanging heat between the second refrigerant R2 flowing inside the heat exchanger tube 350 and the first refrigerant R1 flowing around the heat exchanger tube 350. In the present embodiment, the heat transfer tube 350 cools the first refrigerant R1 in the discharge header 330 by exchanging heat between the second refrigerant R2 and the first refrigerant R1 in the discharge header 330.
 本実施形態では、伝熱管350は、排出側ヘッダ本体331内に設けられ、排出側ヘッダ本体331の延在方向両側の端壁を貫通している。 In this embodiment, the heat exchanger tubes 350 are provided in the discharge side header body 331 and penetrate through the end walls of the discharge side header body 331 on both sides in the extending direction.
(下側第二ヘッダ)
 排出側ヘッダ330の上端部には、下側第二ヘッダ313が設けられている。下側第二ヘッダ313は、排出側ヘッダ330の下端の端壁を下方から覆うように設けられている。下側第二ヘッダ313は、伝熱管350の下端と連通している。下側第二ヘッダ313内には、伝熱管350に供給される第二冷媒R2が供給される。下側第二ヘッダ313は、第三接続管317によって外部の熱交換器7と接続されている。第三接続管317は、下側第二ヘッダ313と熱交換器7とを連通させる。
(lower second header)
A lower second header 313 is provided at the upper end of the discharge header 330. The second lower header 313 is provided to cover the lower end wall of the discharge header 330 from below. The lower second header 313 communicates with the lower end of the heat exchanger tube 350. The second refrigerant R2 to be supplied to the heat exchanger tubes 350 is supplied into the lower second header 313. The lower second header 313 is connected to the external heat exchanger 7 by a third connecting pipe 317. The third connecting pipe 317 allows the lower second header 313 and the heat exchanger 7 to communicate with each other.
(上側第二ヘッダ)
 排出側ヘッダ330の上端部には、上側第二ヘッダ314が設けられている。上側第二ヘッダ314は、排出側ヘッダ330の上端の端壁を上方から覆うように設けられている。上側第二ヘッダ314は、伝熱管350の上端と連通している。上側第二ヘッダ314内には、伝熱管350を通過した第二冷媒R2が供給される。上側第二ヘッダ314は、第四接続管318によって外部の熱交換器7と接続されている。第四接続管318は、上側第二ヘッダ314と熱交換器7とを連通させる。
(upper second header)
An upper second header 314 is provided at the upper end of the discharge header 330. The upper second header 314 is provided to cover the upper end wall of the discharge header 330 from above. The upper second header 314 communicates with the upper end of the heat exchanger tube 350. The second refrigerant R2 that has passed through the heat exchanger tubes 350 is supplied into the upper second header 314. The upper second header 314 is connected to the external heat exchanger 7 by a fourth connecting pipe 318. The fourth connecting pipe 318 allows the upper second header 314 and the heat exchanger 7 to communicate with each other.
(冷媒供給部)
 冷媒供給部360は、各ケーシング312内に設けられている。冷媒供給部360は、ケーシング312内の供給側ヘッダ320側に設けられている。冷媒供給部360は、供給側マニホールド361と、ノズル362と、を有する。
(Refrigerant supply section)
A refrigerant supply section 360 is provided within each casing 312. The refrigerant supply section 360 is provided within the casing 312 on the supply side header 320 side. The refrigerant supply section 360 includes a supply side manifold 361 and a nozzle 362.
 供給側マニホールド361は、ケーシング312の供給側ヘッダ320側の側壁312aに沿って幅方向Dwに延びる管状の部材である。供給側マニホールド361は、幅方向Dw一方側の端部で供給側分岐管322と連通している。供給側マニホールド361は、供給側ヘッダ320から供給される第一冷媒R1を、ケーシング312内に、幅方向Dwに導く。 The supply manifold 361 is a tubular member that extends in the width direction Dw along the side wall 312a of the casing 312 on the supply side header 320 side. The supply side manifold 361 communicates with the supply side branch pipe 322 at one end in the width direction Dw. The supply manifold 361 guides the first refrigerant R1 supplied from the supply header 320 into the casing 312 in the width direction Dw.
 ノズル362は、供給側マニホールド361に幅方向Dwに複数が並設されるように設けられている。本実施形態では、ノズル362は、幅方向Dwに並んで6個設けられている。ノズル362は、供給側マニホールド361と連通し、対向方向Daに延びる円筒状の部材である。ノズル362は、ケーシング312内に向けて対向方向Daに開口している。ノズル362は、供給側マニホールド361内の第一冷媒R1を排出側ヘッダ330側に噴出可能とされている。ノズル362は、供給側マニホールド361から対向方向Daで排出側ヘッダ330側に向かうしたがい漸次拡径している。 A plurality of nozzles 362 are provided in the supply side manifold 361 so as to be arranged in parallel in the width direction Dw. In this embodiment, six nozzles 362 are provided side by side in the width direction Dw. The nozzle 362 is a cylindrical member that communicates with the supply side manifold 361 and extends in the opposing direction Da. The nozzle 362 opens into the casing 312 in the opposing direction Da. The nozzle 362 is capable of spouting the first refrigerant R1 in the supply manifold 361 to the discharge header 330 side. The nozzle 362 gradually increases in diameter as it moves from the supply manifold 361 toward the discharge header 330 in the opposing direction Da.
(冷媒排出部)
 冷媒排出部370は、各ケーシング312内に設けられている。冷媒排出部370は、ケーシング312内の排出側ヘッダ330側に設けられている。冷媒排出部370は、排出側マニホールド371を有する。
(refrigerant discharge section)
A refrigerant discharge section 370 is provided within each casing 312. The refrigerant discharge section 370 is provided within the casing 312 on the discharge side header 330 side. The refrigerant discharge section 370 has a discharge side manifold 371.
 排出側マニホールド371は、ケーシング312の排出側ヘッダ330側の側壁312aに沿って幅方向Dwに延びる管状の部材である。排出側マニホールド371の供給側ヘッダ320側の側壁には、該側壁312aを貫通する導入孔372が設けられている。排出側マニホールド371内には、ケーシング312内の第一冷媒R1が導入孔372から導入される。排出側マニホールド371は、幅方向Dw一方側の端部で排出側分岐管332と連通している。排出側マニホールド371は、ケーシング312内から排出される第一冷媒R1を排出側ヘッダ330に導く。 The discharge side manifold 371 is a tubular member that extends in the width direction Dw along the side wall 312a of the casing 312 on the side of the discharge side header 330. An introduction hole 372 passing through the side wall 312a is provided in the side wall of the discharge side manifold 371 on the supply side header 320 side. The first refrigerant R1 in the casing 312 is introduced into the discharge side manifold 371 from the introduction hole 372. The discharge side manifold 371 communicates with the discharge side branch pipe 332 at one end in the width direction Dw. The discharge side manifold 371 guides the first refrigerant R1 discharged from the inside of the casing 312 to the discharge side header 330.
(第一冷媒の循環)
 続いて、液浸冷却装置310内の第一冷媒R1の循環について説明する。
 まず、冷媒圧送部340を稼動させると、供給側ヘッダ320からケーシング312内に第一冷媒R1が供給される。この時、第一冷媒R1は、複数のノズル362によってケーシング312内に噴出される。第一冷媒R1は、噴流としてケーシング312内を対向方向Daに流れる。ケーシング312内の第一冷媒R1は、発熱体3を通過し、発熱体3と熱交換を行う。これにより、発熱体3が冷却される。一方で、第一冷媒R1は発熱体3の熱を受けて加熱される。その後、第一冷媒R1は、各ケーシング312から排出側ヘッダ330に導入される。第一冷媒R1は、冷媒圧送部340の圧力と自重によって、排出側ヘッダ330内を上方から下方に向けて流れる。
(Circulation of first refrigerant)
Next, the circulation of the first refrigerant R1 within the immersion cooling device 310 will be explained.
First, when the refrigerant pumping section 340 is operated, the first refrigerant R1 is supplied from the supply header 320 into the casing 312. At this time, the first refrigerant R1 is ejected into the casing 312 by the plurality of nozzles 362. The first refrigerant R1 flows in the opposite direction Da in the casing 312 as a jet stream. The first refrigerant R1 in the casing 312 passes through the heating element 3 and exchanges heat with the heating element 3. Thereby, the heating element 3 is cooled. On the other hand, the first refrigerant R1 receives heat from the heating element 3 and is heated. Thereafter, the first refrigerant R1 is introduced from each casing 312 to the discharge side header 330. The first refrigerant R1 flows from above to below within the discharge side header 330 due to the pressure of the refrigerant pressure feeding section 340 and its own weight.
 一方で、伝熱管350内では、第二冷媒R2が下方から上方に向けて流れる。すなわち、第一冷媒R1と第二冷媒R2とは、上下方向で互いに逆方向に流れる。第一冷媒R1は、排出側ヘッダ330内を流通する過程で、第二冷媒R2と熱交換を行う。これにより、第一冷媒R1は冷却され、第二冷媒R2は加熱される。第二冷媒R2は、第一冷媒R1と熱交換を行った後、外部の熱交換器7に送られる。第二冷媒R2は、熱交換器7によって冷却されて、再び各伝熱管350に供給される。 On the other hand, within the heat exchanger tube 350, the second refrigerant R2 flows from the bottom to the top. That is, the first refrigerant R1 and the second refrigerant R2 flow in mutually opposite directions in the vertical direction. The first refrigerant R1 exchanges heat with the second refrigerant R2 while flowing through the discharge side header 330. Thereby, the first refrigerant R1 is cooled and the second refrigerant R2 is heated. The second refrigerant R2 is sent to the external heat exchanger 7 after exchanging heat with the first refrigerant R1. The second refrigerant R2 is cooled by the heat exchanger 7 and supplied to each heat exchanger tube 350 again.
 第一冷媒R1は、第二冷媒R2との熱交換によって冷却されると、冷媒圧送部340によって供給側ヘッダ320に再び圧送される。そして上述したように、第一冷媒R1は、ケーシング312内に再び供給される。このようにして、第一冷媒R1は、液浸冷却装置310内を循環する。 After the first refrigerant R1 is cooled by heat exchange with the second refrigerant R2, it is again pressure-fed to the supply-side header 320 by the refrigerant pressure-feeding section 340. Then, as described above, the first refrigerant R1 is supplied into the casing 312 again. In this way, the first refrigerant R1 circulates within the immersion cooling device 310.
(作用効果)
 本実施形態の液浸冷却装置310によれば、以下の作用効果が発揮される。
 本実施形態では、液浸冷却装置310は、水平方向に延びる箱型をなして、内部に基板2が水平方向に延びるように配置された複数のケーシング312を有し、これらケーシング312が上下方向に配列されてなるケーシング群311と、ケーシング312に隣接するように上下方向に延びて、複数のケーシング312内にそれぞれ第一冷媒R1を導入可能な供給側ヘッダ320と、ケーシング312に隣接するように上下方向に延びて、複数のケーシング312のそれぞれから第一冷媒R1が導入される排出側ヘッダ330と、排出側ヘッダ330から供給側ヘッダ320に第一冷媒R1を圧送する冷媒圧送部340と、排出側ヘッダ330及び供給側ヘッダ320の少なくとも一方の内側で延びて、内部を流通する第二冷媒R2と第一冷媒R1とを熱交換させて第一冷媒R1を冷却する伝熱管350と、を備える。
(effect)
According to the liquid immersion cooling device 310 of this embodiment, the following effects are exhibited.
In this embodiment, the liquid immersion cooling device 310 has a box shape extending in the horizontal direction, and has a plurality of casings 312 arranged so that the substrate 2 extends in the horizontal direction, and these casings 312 are arranged in the vertical direction. a group of casings 311 arranged in a row, a supply header 320 extending vertically adjacent to the casings 312 and capable of introducing the first refrigerant R1 into each of the plurality of casings 312; a discharge side header 330 that extends in the vertical direction and into which the first refrigerant R1 is introduced from each of the plurality of casings 312; and a refrigerant pumping section 340 that force-feeds the first refrigerant R1 from the discharge header 330 to the supply header 320. , a heat transfer tube 350 that extends inside at least one of the discharge side header 330 and the supply side header 320, and cools the first refrigerant R1 by exchanging heat between the second refrigerant R2 and the first refrigerant R1 flowing therein; Equipped with.
 これにより、上下方向に配列される複数のケーシング312に対して、伝熱管350を、ケーシング312に沿うように設けることができる。このため、液浸冷却装置310が水平方向に広がることを抑制することができる。したがって、液浸冷却装置310を水平方向に小型化することができる。また、第一冷媒R1の流路が水平方向にコンパクトにまとめられるので、第一冷媒R1の管理が容易となる。すなわち、第一冷媒R1の管理性を向上させることができる。 Thereby, the heat exchanger tubes 350 can be provided along the casings 312 for the plurality of casings 312 arranged in the vertical direction. Therefore, it is possible to suppress the liquid immersion cooling device 310 from expanding in the horizontal direction. Therefore, the liquid immersion cooling device 310 can be downsized in the horizontal direction. Furthermore, since the flow path of the first refrigerant R1 is compactly arranged in the horizontal direction, management of the first refrigerant R1 becomes easy. That is, the manageability of the first refrigerant R1 can be improved.
 本実施形態では、伝熱管350は、上下方向に延びている。 In this embodiment, the heat exchanger tubes 350 extend in the vertical direction.
 これにより、ケーシング312の配列方向と伝熱管350の延在方向が一致する。このため、ケーシング312や伝熱管350等の液浸冷却装置310の構成の配置効率が向上される。さらに、上下方向に延びる供給側ヘッダ320と排出側ヘッダ330の内側に、伝熱管350を上下方向に延びるように設けることができるため、第一冷媒R1と第二冷媒R2とで熱交換が行われる距離を長くすることができる。したがって、液浸冷却装置310は、第一冷媒R1を良好に冷却することができる。よって、液浸冷却装置310の冷却効率を向上させることができる。 As a result, the arrangement direction of the casings 312 and the extending direction of the heat exchanger tubes 350 match. Therefore, the arrangement efficiency of the components of the immersion cooling device 310 such as the casing 312 and the heat transfer tubes 350 is improved. Furthermore, since the heat transfer tubes 350 can be provided to extend in the vertical direction inside the supply header 320 and the discharge header 330, which extend in the vertical direction, heat exchange is performed between the first refrigerant R1 and the second refrigerant R2. The distance traveled can be increased. Therefore, the liquid immersion cooling device 310 can cool the first refrigerant R1 well. Therefore, the cooling efficiency of the liquid immersion cooling device 310 can be improved.
 本実施形態では、冷媒圧送部340は、排出側ヘッダ330の下部から供給側ヘッダ320に第一冷媒R1を圧送し、伝熱管350は、排出側ヘッダ330の内側で延びるように設けられ、下方から上方に向かって第二冷媒R2が流通する。 In the present embodiment, the refrigerant pressure feeding unit 340 pumps the first refrigerant R1 from the lower part of the discharge header 330 to the supply header 320, and the heat transfer tube 350 is provided to extend inside the discharge header 330, and The second refrigerant R2 flows upward from the second refrigerant R2.
 これにより、第一冷媒R1は、供給側ヘッダ320内を上方に向けて流れ、ケーシング312内に供給される。その後、第一冷媒R1は、ケーシング312内から排出側ヘッダ330に排出され、排出側ヘッダ330内を下方に向けて流れる。一方で、第二冷媒R2は、排出側ヘッダ330内に設けられた伝熱管350内を上方に向けて流れる。よって、排出側ヘッダ330内において、第一冷媒R1の流れと第二冷媒R2の流れとは、互いに流通方向が反対向きの対向流となる。このため、第一冷媒R1と第二冷媒R2との熱交換効率が向上する。したがって、液浸冷却装置310は、第一冷媒R1をより一層良好に冷却することができる。よって、液浸冷却装置310の冷却効率をより一層向上させることができる。
 また、伝熱管350が排出側ヘッダ330の内側に設けられているので、液浸冷却装置310は、伝熱管350で第一冷媒R1を冷却してから、冷媒圧送部340に第一冷媒R1を導くことができる。
As a result, the first refrigerant R1 flows upward in the supply header 320 and is supplied into the casing 312. Thereafter, the first refrigerant R1 is discharged from the inside of the casing 312 to the discharge side header 330, and flows downward within the discharge side header 330. On the other hand, the second refrigerant R2 flows upward in the heat transfer tube 350 provided in the discharge side header 330. Therefore, in the discharge side header 330, the flow of the first refrigerant R1 and the flow of the second refrigerant R2 become counterflows in which the flow directions are opposite to each other. Therefore, the heat exchange efficiency between the first refrigerant R1 and the second refrigerant R2 is improved. Therefore, the liquid immersion cooling device 310 can cool the first refrigerant R1 even better. Therefore, the cooling efficiency of the liquid immersion cooling device 310 can be further improved.
Further, since the heat transfer tube 350 is provided inside the discharge side header 330, the liquid immersion cooling device 310 cools the first refrigerant R1 with the heat transfer tube 350, and then supplies the first refrigerant R1 to the refrigerant pressure feeding section 340. can lead.
 本実施形態では、供給側ヘッダ320は、ケーシング群311の水平方向一方側に設けられ、排出側ヘッダ330は、ケーシング群311の水平方向他方側に設けられ、各ケーシング312内に設けられた冷媒供給部360をさらに備え、冷媒供給部360は、供給側ヘッダ320から供給される第一冷媒R1を供給側ヘッダ320と排出側ヘッダ330との対向方向Daに直交する水平方向である幅方向Dwに導く供給側マニホールド361と、供給側マニホールド361に幅方向Dwに複数が並設されるように設けられて、供給側マニホールド361内の第一冷媒R1を排出側ヘッダ330側に噴出可能なノズル362と、を有する。 In this embodiment, the supply header 320 is provided on one side of the casing group 311 in the horizontal direction, the discharge header 330 is provided on the other side of the casing group 311 in the horizontal direction, and the refrigerant provided in each casing 312 is The refrigerant supply unit 360 further includes a supply unit 360, and the refrigerant supply unit 360 supplies the first refrigerant R1 from the supply header 320 in the width direction Dw, which is a horizontal direction orthogonal to the facing direction Da between the supply header 320 and the discharge header 330. a supply side manifold 361 that leads to the discharge side, and a plurality of nozzles that are provided in the supply side manifold 361 so as to be arranged in parallel in the width direction Dw and can jet the first refrigerant R1 in the supply side manifold 361 to the discharge side header 330 side. 362.
 これにより、液浸冷却装置310は、第一冷媒R1を基板2の発熱体3に噴出することができる。さらに、第一冷媒R1の噴出方向に排出側ヘッダ330があるため、熱交換を終えた第一冷媒R1をスムーズに排出することができる。したがって、液浸冷却装置310は、ケーシング312内の第一冷媒R1の圧損を低減することができる。よって、液浸冷却装置310の冷却効率をより一層向上させることができる。 Thereby, the liquid immersion cooling device 310 can jet the first refrigerant R1 to the heating element 3 of the substrate 2. Furthermore, since the discharge side header 330 is located in the direction in which the first refrigerant R1 is ejected, the first refrigerant R1 that has undergone heat exchange can be smoothly discharged. Therefore, the liquid immersion cooling device 310 can reduce the pressure loss of the first refrigerant R1 within the casing 312. Therefore, the cooling efficiency of the liquid immersion cooling device 310 can be further improved.
 なお、上述した第三実施形態では、ケーシング312は、上下方向に並んで7個配置されている場合について説明したが、これに限られるものではない。ケーシング312の個数は適宜変更可能である。 Note that in the third embodiment described above, a case has been described in which seven casings 312 are arranged in the vertical direction, but the present invention is not limited to this. The number of casings 312 can be changed as appropriate.
 なお、上述した第三実施形態では、冷媒圧送部340は、ケーシング群311の下方に設けられている場合について説明したが、これに限られるものではない。冷媒圧送部340は、ケーシング群311の上方に設けられていてもよい。この場合、冷媒圧送部340は、排出側ヘッダ330の上部から供給側ヘッダ320に第一冷媒R1を圧送する。 Note that in the third embodiment described above, a case has been described in which the refrigerant pumping section 340 is provided below the casing group 311, but the present invention is not limited to this. The refrigerant pumping section 340 may be provided above the casing group 311. In this case, the refrigerant pumping section 340 pumps the first refrigerant R1 from the upper part of the discharge side header 330 to the supply side header 320.
 なお、上述した第三実施形態では、伝熱管350は、排出側ヘッダ330の内側で延びるように設けられている場合ついて説明したが、これに限るものではない。伝熱管350は、供給側ヘッダ320の内側で延びるように設けられていてもよい。この場合、第一冷媒R1がケーシング312内に導入される直前に、第一冷媒R1が伝熱管350によって冷却される。このため、液浸冷却装置310は、ケーシング312内の発熱体3をより良好に冷却することができる。すなわち、液浸冷却装置310の冷却効率を向上させることができる。また、排出側ヘッダ330及び供給側ヘッダ320の両方の内側で延びるように設けられていてもよい。 Note that in the third embodiment described above, a case has been described in which the heat exchanger tubes 350 are provided so as to extend inside the discharge side header 330, but the heat exchanger tubes 350 are not limited to this. The heat exchanger tube 350 may be provided so as to extend inside the supply header 320. In this case, immediately before the first refrigerant R1 is introduced into the casing 312, the first refrigerant R1 is cooled by the heat transfer tube 350. Therefore, the liquid immersion cooling device 310 can better cool the heating element 3 inside the casing 312. That is, the cooling efficiency of the liquid immersion cooling device 310 can be improved. Further, it may be provided so as to extend inside both the discharge side header 330 and the supply side header 320.
 なお、上述した第三実施形態では、伝熱管350は、ケーシング群311に沿うように上下方向に延びて、水平方向に間隔を空けて複数本設けられている場合ついて説明したが、これに限るものではない。伝熱管350は、水平方向に延びて、ケーシング群311に沿うように上下方向に間隔を空けて複数本設けられていてもよい。 In addition, in the third embodiment described above, a case has been described in which a plurality of heat exchanger tubes 350 are provided extending in the vertical direction along the casing group 311 and spaced apart in the horizontal direction, but the present invention is not limited to this. It's not a thing. The heat exchanger tubes 350 may extend in the horizontal direction and may be provided in plural numbers at intervals in the vertical direction along the casing group 311.
 なお、上述した第三実施形態では、ノズル362は、幅方向Dwに並んで6個設けられている場合ついて説明したが、これに限るものではない。ノズル362の個数は適宜変更可能である。 Note that in the third embodiment described above, a case has been described in which six nozzles 362 are provided in a row in the width direction Dw, but the present invention is not limited to this. The number of nozzles 362 can be changed as appropriate.
(その他の実施形態)   
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
(Other embodiments)
Although the embodiment of the present disclosure has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes within the scope of the gist of the present disclosure. .
<付記>
 各実施形態に記載の液浸冷却装置10、210、310は、例えば以下のように把握される。
<Additional notes>
The liquid immersion cooling devices 10, 210, and 310 described in each embodiment can be understood, for example, as follows.
(1)第1の態様に係る液浸冷却装置310は、基板2に設けられた発熱体3を冷却する液浸冷却装置310であって、水平方向に延びる箱型をなして、内部に前記基板2が水平方向に延びるように配置された複数のケーシング312を有し、これらケーシング312が上下方向に配列されてなるケーシング群311と、前記ケーシング312に隣接するように上下方向に延びて、前記複数のケーシング312内にそれぞれ第一冷媒R1を導入可能な供給側ヘッダ320と、前記ケーシング312に隣接するように上下方向に延びて、前記複数のケーシング312のそれぞれから前記第一冷媒R1が導入される排出側ヘッダ330と、前記排出側ヘッダ330から前記供給側ヘッダ320に前記第一冷媒R1を圧送する冷媒圧送部340と、前記排出側ヘッダ330及び前記供給側ヘッダ320の少なくとも一方の内側で延びて、内部を流通する第二冷媒R2と前記第一冷媒R1とを熱交換させて前記第一冷媒R1を冷却する伝熱管350と、を備える。 (1) The immersion cooling device 310 according to the first aspect is a liquid immersion cooling device 310 that cools the heating element 3 provided on the substrate 2, and has a box shape extending in the horizontal direction, with the The substrate 2 has a plurality of casings 312 arranged to extend in the horizontal direction, a casing group 311 in which these casings 312 are arranged in the vertical direction, and a casing group 311 that extends in the vertical direction so as to be adjacent to the casings 312, A supply header 320 that can introduce the first refrigerant R1 into each of the plurality of casings 312; a discharge side header 330 to be introduced, a refrigerant pressure feeding section 340 that pumps the first refrigerant R1 from the discharge side header 330 to the supply side header 320, and at least one of the discharge side header 330 and the supply side header 320. The heat exchanger tube 350 extends inside and cools the first refrigerant R1 by exchanging heat between the second refrigerant R2 and the first refrigerant R1 flowing inside.
 これにより、上下方向に配列される複数のケーシング312に対して、伝熱管350を、ケーシング312に沿うように設けることができる。このため、液浸冷却装置310が水平方向に広がることを抑制することができる。 Thereby, the heat exchanger tubes 350 can be provided along the casings 312 for the plurality of casings 312 arranged in the vertical direction. Therefore, it is possible to suppress the liquid immersion cooling device 310 from expanding in the horizontal direction.
(2)第2の態様の液浸冷却装置310は、第1の態様の液浸冷却装置310であって、前記伝熱管350は、上下方向に延びていてもよい。 (2) The immersion cooling device 310 of the second aspect is the immersion cooling device 310 of the first aspect, and the heat transfer tubes 350 may extend in the vertical direction.
 これにより、ケーシング312の配列方向と伝熱管350の延在方向が一致する。このため、ケーシング312や伝熱管350等の液浸冷却装置310の構成の配置効率が向上される。さらに、上下方向に延びる供給側ヘッダ320と排出側ヘッダ330の内側に、伝熱管350を上下方向に延びるように設けることができるため、第一冷媒R1と第二冷媒R2とで熱交換が行われる距離を長くすることができる。 As a result, the arrangement direction of the casings 312 and the extending direction of the heat exchanger tubes 350 match. Therefore, the arrangement efficiency of the components of the liquid immersion cooling device 310 such as the casing 312 and the heat transfer tubes 350 is improved. Furthermore, since the heat transfer tubes 350 can be provided to extend in the vertical direction inside the supply header 320 and the discharge header 330, which extend in the vertical direction, heat exchange is performed between the first refrigerant R1 and the second refrigerant R2. The distance traveled can be increased.
(3)第3の態様の液浸冷却装置310は、第2の態様の液浸冷却装置310であって、前記冷媒圧送部340は、前記排出側ヘッダ330の下部から前記供給側ヘッダ320に前記第一冷媒R1を圧送し、前記伝熱管350は、前記排出側ヘッダ330の内側で延びるように設けられ、下方から上方に向かって前記第二冷媒R2が流通してもよい。 (3) The liquid immersion cooling device 310 of the third aspect is the liquid immersion cooling device 310 of the second aspect, in which the refrigerant pressure feeding section 340 is directed from the lower part of the discharge side header 330 to the supply side header 320. The first refrigerant R1 may be fed under pressure, and the heat transfer tube 350 may be provided to extend inside the discharge header 330, and the second refrigerant R2 may flow from the bottom to the top.
 これにより、第一冷媒R1は、供給側ヘッダ320内を上方に向けて流れ、ケーシング312内に供給される。その後、第一冷媒R1は、ケーシング312内から排出側ヘッダ330に排出され、排出側ヘッダ330内を下方に向けて流れる。一方で、第二冷媒R2は、排出側ヘッダ330内に設けられた伝熱管350内を上方に向けて流れる。よって、排出側ヘッダ330内において、第一冷媒R1の流れと第二冷媒R2の流れとは、互いに流通方向が反対向きの対向流となる。このため、第一冷媒R1と第二冷媒R2との熱交換効率が向上する。 As a result, the first refrigerant R1 flows upward within the supply header 320 and is supplied into the casing 312. Thereafter, the first refrigerant R1 is discharged from the inside of the casing 312 to the discharge side header 330, and flows downward within the discharge side header 330. On the other hand, the second refrigerant R2 flows upward in the heat transfer tube 350 provided in the discharge side header 330. Therefore, in the discharge side header 330, the flow of the first refrigerant R1 and the flow of the second refrigerant R2 become counterflows in which the flow directions are opposite to each other. Therefore, the heat exchange efficiency between the first refrigerant R1 and the second refrigerant R2 is improved.
(4)第4の態様の液浸冷却装置310は、第1から第3の態様のいずれか1つの液浸冷却装置310であって、前記供給側ヘッダ320は、前記ケーシング群311の水平方向一方側に設けられ、前記排出側ヘッダ330は、前記ケーシング群311の水平方向他方側に設けられ、各前記ケーシング312内に設けられた冷媒供給部360をさらに備え、前記冷媒供給部360は、前記供給側ヘッダ320から供給される前記第一冷媒R1を前記供給側ヘッダ320と前記排出側ヘッダ330との対向方向Daに直交する水平方向である幅方向Dwに導く供給側マニホールド361と、前記供給側マニホールド361に前記幅方向Dwに複数が並設されるように設けられて、前記供給側マニホールド361内の前記第一冷媒R1を前記排出側ヘッダ330側に噴出可能なノズル362と、を有してもよい。 (4) The liquid immersion cooling device 310 of the fourth aspect is the liquid immersion cooling device 310 of any one of the first to third aspects, wherein the supply side header 320 is arranged in the horizontal direction of the casing group 311. The discharge side header 330 is provided on one side, and the discharge side header 330 is provided on the other side of the casing group 311 in the horizontal direction, and further includes a refrigerant supply section 360 provided in each of the casings 312, and the refrigerant supply section 360 includes: a supply side manifold 361 that guides the first refrigerant R1 supplied from the supply side header 320 in the width direction Dw, which is a horizontal direction perpendicular to the opposing direction Da between the supply side header 320 and the discharge side header 330; A plurality of nozzles 362 are provided in the supply side manifold 361 so as to be arranged in parallel in the width direction Dw, and are capable of spouting the first refrigerant R1 in the supply side manifold 361 toward the discharge side header 330 side. May have.
 これにより、液浸冷却装置310は、第一冷媒R1を基板2の発熱体3に噴出することができる。さらに、第一冷媒R1の噴出方向に排出側ヘッダ330があるため、熱交換を終えた第一冷媒R1をスムーズに排出することができる。 Thereby, the liquid immersion cooling device 310 can jet the first refrigerant R1 to the heating element 3 of the substrate 2. Furthermore, since the discharge side header 330 is located in the direction in which the first refrigerant R1 is ejected, the first refrigerant R1 that has undergone heat exchange can be smoothly discharged.
(5)第5の態様に係る液浸冷却装置10、210は、基板2に設けられた発熱体3を冷却する液浸冷却装置10、210であって、第一冷媒R1が貯留され、内部に前記基板2が水平方向に延びるように配置されたケーシング11と、前記発熱体3に前記第一冷媒R1の噴流を供給する噴流供給部30、230と、前記ケーシング11を貫通し、内部を流通する第二冷媒R2と前記第一冷媒R1とで熱交換を行い前記第一冷媒R1を冷却する伝熱管50と、を備える。 (5) The liquid immersion cooling device 10, 210 according to the fifth aspect is a liquid immersion cooling device 10, 210 that cools the heating element 3 provided on the substrate 2, and the first refrigerant R1 is stored inside the liquid immersion cooling device 10, 210. A casing 11 in which the substrate 2 is arranged so as to extend horizontally, a jet supply section 30, 230 that supplies a jet of the first refrigerant R1 to the heating element 3, and a jet supply section 30, 230 that penetrates the casing 11 and internally It includes a heat transfer tube 50 that performs heat exchange between the circulating second refrigerant R2 and the first refrigerant R1 to cool the first refrigerant R1.
 これにより、液浸冷却装置10、210は、発熱体3に第一冷媒R1の噴流を吹き付けて発熱体3をインピンジ冷却することができる。発熱体3に吹き付けられた第一冷媒R1は、伝熱管50によって冷却されて再び発熱体3の冷却に用いられる。このように、本態様によれば、第一冷媒R1の循環をさせるために大規模な循環サイクルが不要となる。また、液浸冷却装置10、210は、伝熱管50によって、ケーシング11に貯留された第一冷媒R1をケーシング11内で冷却することができる。 Thereby, the liquid immersion cooling devices 10 and 210 can impinge-cool the heat generating body 3 by spraying the jet stream of the first refrigerant R1 onto the heat generating body 3. The first refrigerant R1 sprayed onto the heating element 3 is cooled by the heat transfer tube 50 and used again to cool the heating element 3. Thus, according to this aspect, a large-scale circulation cycle is not required to circulate the first refrigerant R1. Moreover, the liquid immersion cooling device 10, 210 can cool the first refrigerant R1 stored in the casing 11 within the casing 11 using the heat transfer tube 50.
(6)第6の態様の液浸冷却装置10は、第5の態様の液浸冷却装置10であって、前記噴流供給部30は、前記ケーシング11の外部に設けられるとともに両端が前記ケーシング11内と連通し、前記第一冷媒R1が流通可能な循環配管31と、前記循環配管31に設けられ、前記循環配管31の一端31aから他端31bに向けて前記第一冷媒R1を流通させるポンプ32と、を有し、前記循環配管31の他端31bは、前記発熱体3と対向する位置に配置されていてもよい。 (6) The liquid immersion cooling device 10 of the sixth aspect is the liquid immersion cooling device 10 of the fifth aspect, in which the jet flow supply section 30 is provided outside the casing 11 and both ends thereof are connected to the casing 11. a circulation pipe 31 that communicates with the inside and allows the first refrigerant R1 to flow therethrough; and a pump that is provided in the circulation pipe 31 and allows the first refrigerant R1 to flow from one end 31a of the circulation pipe 31 to the other end 31b. 32, and the other end 31b of the circulation pipe 31 may be arranged at a position facing the heating element 3.
 これにより、ケーシング11内の第一冷媒R1の流通方向が、循環配管31の一端31aと他端31bの設置箇所により設定される。 Thereby, the flow direction of the first refrigerant R1 in the casing 11 is set by the installation location of the one end 31a and the other end 31b of the circulation pipe 31.
(7)第7の態様の液浸冷却装置210は、第5の態様の液浸冷却装置210であって、前記噴流供給部230は、前記ケーシング11内で前記発熱体3に対向する位置に配置され、回転軸235が前記発熱体3に向けて延びるプロペラ234であってもよい。 (7) The liquid immersion cooling device 210 of the seventh aspect is the liquid immersion cooling device 210 of the fifth aspect, in which the jet flow supply section 230 is located at a position facing the heating element 3 within the casing 11. The propeller 234 may be arranged such that the rotating shaft 235 extends toward the heating element 3.
 これにより、噴流供給部230の全体が、ケーシング11内に配置される。 As a result, the entire jet flow supply section 230 is placed within the casing 11.
(8)第8の態様の液浸冷却装置10、210は、第5から第7の態様のいずれか1つの液浸冷却装置10、210であって、前記ケーシング11内で、前記伝熱管50は、前記発熱体3よりも前記第一冷媒R1の流通方向の下流側に配置されてもよい。 (8) The immersion cooling device 10, 210 of the eighth aspect is the immersion cooling device 10, 210 of any one of the fifth to seventh aspects, in which the heat transfer tube 50 may be arranged downstream of the heating element 3 in the flow direction of the first refrigerant R1.
 これにより、伝熱管50内を流通する第二冷媒R2は、発熱体3を冷却した後の第一冷媒R1と熱交換を行うことができる。 Thereby, the second refrigerant R2 flowing in the heat transfer tube 50 can exchange heat with the first refrigerant R1 after cooling the heating element 3.
(9)第9の態様の液浸冷却装置10、210は、第5から第8のいずれか1つの液浸冷却装置10、210であって、前記伝熱管50の内周面には、フィン51が設けられていてもよい。 (9) The immersion cooling device 10, 210 of the ninth aspect is any one of the fifth to eighth immersion cooling devices 10, 210, and the inner peripheral surface of the heat transfer tube 50 has fins. 51 may be provided.
 これにより、第二冷媒R2と接触する伝熱管50の内周面の表面積が増加する。 As a result, the surface area of the inner peripheral surface of the heat transfer tube 50 that comes into contact with the second refrigerant R2 increases.
 本開示の液浸冷却装置によれば、小型化を実現しつつ、冷媒の管理性を向上させることができる。 According to the liquid immersion cooling device of the present disclosure, it is possible to achieve miniaturization while improving refrigerant manageability.
1…サーバ 2…基板 3…発熱体 4…基部 5…凹部 6…発熱体本体 7…熱交換器 8…ラック 10…液浸冷却装置 11…ケーシング 15…補助プロペラ 20…ヒートシンク機構 21…第一伝熱板 22…グリース 23…第二伝熱板 24…ヒートシンクフィン 30…噴流供給部 31…循環配管 31a…一端 31b…他端 32…ポンプ 33…フィルタ 40…ヘッダ管 41…供給ヘッダ管 42…戻りヘッダ管 43…母管 44…サブヘッダ 44a…端部 50…伝熱管 51…フィン 210…液浸冷却装置 230…噴流供給部 234…プロペラ 235…回転軸 260…ガイド 261…傾斜ガイド 262…水平ガイド 310…液浸冷却装置 311…ケーシング群 312…ケーシング 312a…側壁 313…下側第二ヘッダ 314…上側第二ヘッダ 315…第一接続管 316…第二接続管 317…第三接続管 318…第四接続管 320…供給側ヘッダ 321…供給側ヘッダ本体 322…供給側分岐管 330…排出側ヘッダ 331…排出側ヘッダ本体 332…排出側分岐管 340…冷媒圧送部 350…伝熱管 360…冷媒供給部 361…供給側マニホールド 362…ノズル 370…冷媒排出部 371…排出側マニホールド 372…導入孔 R1…第一冷媒 R2…第二冷媒 Da…対向方向 Dw…幅方向 1... Server 2... Board 3... Heating element 4... Base 5... Recess 6... Heating element body 7... Heat exchanger 8... Rack 10... Liquid immersion cooling device 11... Casing 15... Auxiliary propeller 20... Heat sink mechanism 21... First Heat transfer plate 22...Grease 23...Second heat transfer plate 24...Heat sink fin 30...Jet flow supply section 31...Circulation piping 31a...One end 31b...Other end 32...Pump 33...Filter 40...Header pipe 41...Supply header pipe 42... Return header pipe 43...Main tube 44...Sub header 44a...End 50...Heat transfer tube 51...Fin 210...Immersion cooling device 230...Jet flow supply section 234...Propeller 235...Rotating shaft 260...Guide 261...Inclination guide 262...Horizontal guide 310...Liquid immersion cooling device 311...Casing group 312...Casing 312a...Side wall 313...Lower second header 314...Upper second header 315...First connecting pipe 316...Second connecting pipe 317...Third connecting pipe 318...No. Four connecting pipes 320... Supply side header 321... Supply side header body 322... Supply side branch pipe 330... Discharge side header 331... Discharge side header body 332... Discharge side branch pipe 340... Refrigerant pressure feeding section 350... Heat transfer tube 360... Refrigerant supply Part 361...Supply side manifold 362...Nozzle 370...Refrigerant discharge part 371...Discharge side manifold 372...Introduction hole R1...First refrigerant R2...Second refrigerant Da...Opposing direction Dw...Width direction

Claims (9)

  1.  基板に設けられた発熱体を冷却する液浸冷却装置であって、
     水平方向に延びる箱型をなして、内部に前記基板が水平方向に延びるように配置された複数のケーシングを有し、これらケーシングが上下方向に配列されてなるケーシング群と、
     前記ケーシングに隣接するように上下方向に延びて、前記複数のケーシング内にそれぞれ第一冷媒を導入可能な供給側ヘッダと、
     前記ケーシングに隣接するように上下方向に延びて、前記複数のケーシングのそれぞれから前記第一冷媒が導入される排出側ヘッダと、
     前記排出側ヘッダから前記供給側ヘッダに前記第一冷媒を圧送する冷媒圧送部と、
     前記排出側ヘッダ及び前記供給側ヘッダの少なくとも一方の内側で延びて、内部を流通する第二冷媒と前記第一冷媒とを熱交換させて前記第一冷媒を冷却する伝熱管と、
    を備える液浸冷却装置。
    A liquid immersion cooling device that cools a heating element provided on a substrate,
    A casing group having a box shape extending in the horizontal direction and having a plurality of casings inside which the substrates are arranged so as to extend in the horizontal direction, and these casings are arranged in the vertical direction;
    a supply header that extends vertically adjacent to the casing and is capable of introducing a first refrigerant into each of the plurality of casings;
    a discharge side header that extends vertically adjacent to the casing and into which the first refrigerant is introduced from each of the plurality of casings;
    a refrigerant pressure-feeding unit that pumps the first refrigerant from the discharge-side header to the supply-side header;
    a heat transfer tube that extends inside at least one of the discharge side header and the supply side header and cools the first refrigerant by exchanging heat between a second refrigerant flowing therein and the first refrigerant;
    A liquid immersion cooling device.
  2.  前記伝熱管は、上下方向に延びている請求項1に記載の液浸冷却装置。 The immersion cooling device according to claim 1, wherein the heat transfer tube extends in the vertical direction.
  3.  前記冷媒圧送部は、前記排出側ヘッダの下部から前記供給側ヘッダに前記第一冷媒を圧送し、
     前記伝熱管は、前記排出側ヘッダの内側で延びるように設けられ、下方から上方に向かって前記第二冷媒が流通する請求項2に記載の液浸冷却装置。
    The refrigerant pressure-feeding section pressure-feeds the first refrigerant from the lower part of the discharge side header to the supply side header,
    The immersion cooling device according to claim 2, wherein the heat transfer tube is provided so as to extend inside the discharge side header, and the second refrigerant flows from the bottom to the top.
  4.  前記供給側ヘッダは、前記ケーシング群の水平方向一方側に設けられ、
     前記排出側ヘッダは、前記ケーシング群の水平方向他方側に設けられ、
     各前記ケーシング内に設けられた冷媒供給部をさらに備え、
     前記冷媒供給部は、
     前記供給側ヘッダから供給される前記第一冷媒を前記供給側ヘッダと前記排出側ヘッダとの対向方向に直交する水平方向である幅方向に導く供給側マニホールドと、
     前記供給側マニホールドに前記幅方向に複数が並設されるように設けられて、前記供給側マニホールド内の前記第一冷媒を前記排出側ヘッダ側に噴出可能なノズルと、
    を有する請求項1から3のいずれか一項に記載の液浸冷却装置。
    The supply header is provided on one horizontal side of the casing group,
    The discharge side header is provided on the other horizontal side of the casing group,
    further comprising a refrigerant supply section provided in each of the casings,
    The refrigerant supply section includes:
    a supply side manifold that guides the first refrigerant supplied from the supply side header in a width direction that is a horizontal direction orthogonal to a direction in which the supply side header and the discharge side header face each other;
    A plurality of nozzles are provided in the supply side manifold so as to be arranged in parallel in the width direction, and are capable of jetting the first refrigerant in the supply side manifold toward the discharge side header side;
    The liquid immersion cooling device according to any one of claims 1 to 3.
  5.  基板に設けられた発熱体を冷却する液浸冷却装置であって、
     第一冷媒が貯留され、内部に前記基板が水平方向に延びるように配置されたケーシングと、
     前記発熱体に前記第一冷媒の噴流を供給する噴流供給部と、
     前記ケーシングを貫通し、内部を流通する第二冷媒と前記第一冷媒とで熱交換を行い前記第一冷媒を冷却する伝熱管と、
     を備える液浸冷却装置。
    A liquid immersion cooling device that cools a heating element provided on a substrate,
    a casing in which a first refrigerant is stored and in which the substrate is arranged so as to extend horizontally;
    a jet flow supply unit that supplies a jet flow of the first refrigerant to the heating element;
    a heat transfer tube that penetrates the casing and cools the first refrigerant by exchanging heat between the second refrigerant and the first refrigerant flowing inside;
    A liquid immersion cooling device.
  6.  前記噴流供給部は、
     前記ケーシングの外部に設けられるとともに両端が前記ケーシング内と連通し、前記第一冷媒が流通可能な循環配管と、
     前記循環配管に設けられ、前記循環配管の一端から他端に向けて前記第一冷媒を流通させるポンプと、
     を有し、
     前記循環配管の他端は、前記発熱体と対向する位置に配置されている、請求項5に記載の液浸冷却装置。
    The jet supply section includes:
    a circulation pipe that is provided outside the casing and communicates with the inside of the casing at both ends, through which the first refrigerant can flow;
    a pump provided in the circulation piping and circulating the first refrigerant from one end of the circulation piping to the other end;
    has
    The liquid immersion cooling device according to claim 5, wherein the other end of the circulation pipe is disposed at a position facing the heating element.
  7.  前記噴流供給部は、前記ケーシング内で前記発熱体に対向する位置に配置され、回転軸が前記発熱体に向けて延びるプロペラである、
     請求項5に記載の液浸冷却装置。
    The jet flow supply unit is a propeller that is disposed within the casing at a position facing the heating element, and has a rotating shaft extending toward the heating element.
    The liquid immersion cooling device according to claim 5.
  8.  前記ケーシング内で、
     前記伝熱管は、前記発熱体よりも前記第一冷媒の流通方向の下流側に配置される、
     請求項5から7のいずれか一項に記載の液浸冷却装置。
    Within the casing,
    The heat exchanger tube is arranged downstream of the heating element in the flow direction of the first refrigerant.
    A liquid immersion cooling device according to any one of claims 5 to 7.
  9.  前記伝熱管の内周面には、フィンが設けられている、
     請求項5から7のいずれか一項に記載の液浸冷却装置。
    Fins are provided on the inner peripheral surface of the heat exchanger tube,
    A liquid immersion cooling device according to any one of claims 5 to 7.
PCT/JP2023/004297 2022-07-22 2023-02-09 Immersion-cooling device WO2024018663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022117545A JP2024014595A (en) 2022-07-22 2022-07-22 Immersion cooling device
JP2022-117545 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024018663A1 true WO2024018663A1 (en) 2024-01-25

Family

ID=89617587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004297 WO2024018663A1 (en) 2022-07-22 2023-02-09 Immersion-cooling device

Country Status (3)

Country Link
JP (1) JP2024014595A (en)
TW (1) TW202406060A (en)
WO (1) WO2024018663A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018857A (en) * 2016-07-25 2018-02-01 富士通株式会社 Immersion cooler, immersion cooling system, and control method of immersion cooler
JP2020532875A (en) * 2017-09-06 2020-11-12 アイスオトープ・グループ・リミテッドIceotope Group Limited Heat sink for immersion cooling, heat sink device and module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018857A (en) * 2016-07-25 2018-02-01 富士通株式会社 Immersion cooler, immersion cooling system, and control method of immersion cooler
JP2020532875A (en) * 2017-09-06 2020-11-12 アイスオトープ・グループ・リミテッドIceotope Group Limited Heat sink for immersion cooling, heat sink device and module

Also Published As

Publication number Publication date
TW202406060A (en) 2024-02-01
JP2024014595A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US9261308B2 (en) Pump-enhanced, sub-cooling of immersion-cooling fluid
US11006547B2 (en) Solution for precision cooling and fluid management optimization in immersion cooling
US8964390B2 (en) Sectioned manifolds facilitating pumped immersion-cooling of electronic components
US8194406B2 (en) Apparatus and method with forced coolant vapor movement for facilitating two-phase cooling of an electronic device
US8619425B2 (en) Multi-fluid, two-phase immersion-cooling of electronic component(s)
US8179677B2 (en) Immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8345423B2 (en) Interleaved, immersion-cooling apparatuses and methods for cooling electronic subsystems
JP2019537152A (en) Fluid cooling system
JP2008287733A (en) Liquid cooling system
CN102834688A (en) Phase change cooler and electronic equipment provided with same
US9696094B2 (en) Cooling unit
EP4062723A1 (en) Cold plate and system for cooling electronic devices
US20230422445A1 (en) Coolant shroud
JP5760796B2 (en) Cooling unit
WO2022166244A1 (en) Electronic element heat dissipation apparatus and electronic device
JP4603783B2 (en) Liquid cooling system and radiator
WO2024018663A1 (en) Immersion-cooling device
JP5760797B2 (en) Cooling unit
JP4517962B2 (en) Cooling device for electronic equipment
JP4050760B2 (en) Cooling device and electronic device having cooling device
CN219437426U (en) Liquid cooling cabinet and liquid cooling system
WO2024014024A1 (en) Cooling device
CN219392576U (en) Immersed liquid cooling server
US20240064937A1 (en) Immersion cooling system
CN117560889A (en) Cooling medium distribution device, heat dissipation cabinet and server system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842601

Country of ref document: EP

Kind code of ref document: A1