WO2024017368A1 - 探测***及其探测装置和探测方法 - Google Patents

探测***及其探测装置和探测方法 Download PDF

Info

Publication number
WO2024017368A1
WO2024017368A1 PCT/CN2023/108620 CN2023108620W WO2024017368A1 WO 2024017368 A1 WO2024017368 A1 WO 2024017368A1 CN 2023108620 W CN2023108620 W CN 2023108620W WO 2024017368 A1 WO2024017368 A1 WO 2024017368A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
detector
detection
battery
data
Prior art date
Application number
PCT/CN2023/108620
Other languages
English (en)
French (fr)
Inventor
刘政安
张宝桥
鲁成
鲁浩然
Original Assignee
安百拓(南京)建筑矿山设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安百拓(南京)建筑矿山设备有限公司 filed Critical 安百拓(南京)建筑矿山设备有限公司
Publication of WO2024017368A1 publication Critical patent/WO2024017368A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • E21B47/0025Survey of boreholes or wells by visual inspection generating an image of the borehole wall using down-hole measurements, e.g. acoustic or electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present invention relates to the technical field of geological detection, and more specifically, to a detection system and its detection device and detection method.
  • Rock drilling rigs are used to dig several boreholes during tunnel excavation. Due to safety requirements, advance geological prediction needs to be carried out through these boreholes.
  • the image data collected in boreholes is the main reference data for advanced geological prediction.
  • Some embodiments of the present application propose a detection system, its detection device and detection method to solve the technical problems mentioned in the background art section above.
  • some embodiments of the present application provide a detection system, including: rock drilling equipment for digging a borehole; wherein the rock drilling equipment has a drill rod; the detection system further includes: detection The device is detachably connected to the end of the drill pipe for detection as the drill pipe enters the borehole; wherein, the detection device includes: a detector for detecting detection data inside the borehole; a range finder for detection Positioning data of the detector when advancing in the borehole; battery, used to power the detector and range finder; wherein, the detection device contains or is connected to: memory, used to store the image data collected by the detector and the range finder The collected position data; wherein, the battery is electrically connected to the detector or/and the rangefinder.
  • the detector includes: one or more of a visible light camera, an ultrasonic probe, a millimeter wave camera and an infrared light camera.
  • the rock drilling equipment includes: at least one of a rock drilling rig and a manual rock drilling equipment.
  • the range finder includes: at least one of a grating encoder, a laser range finder and a UWB range finder.
  • the memory includes: at least one of a built-in memory and a replaceable memory.
  • the battery includes: at least one of a built-in battery and a replaceable battery.
  • the detection device further includes: a housing for accommodating at least a part of the detector; the housing is formed with an installation interface for directly or indirectly coupling the housing to the drill pipe.
  • the installation interface includes: at least one of a threaded interface and a chuck interface.
  • the shell includes: a battery cabin shell, forming a battery space for accommodating the battery; and a probe cabin shell, forming a probe space for accommodating the detector; wherein, the battery space and the probe space are independent spaces.
  • the detection device also includes: a circuit board, which is electrically connected to the detector and the rangefinder respectively; the shell also includes: a main cabin shell, forming a main cabin space for accommodating the circuit board; among them, the battery space and the probe space and the main cabin space are separate spaces.
  • the detection device also includes: a processor, which is electrically connected to the detector and the rangefinder respectively;
  • the shell also includes: a main cabin shell, forming a main cabin space for accommodating the processor; among which, the battery space and the probe space and the main cabin space are separate spaces.
  • the detection device further includes: a centralizer, which is set on the outside of the housing to contact the inner wall of the borehole; wherein the centralizer is configured to have a ring structure.
  • the detection device further includes: a data interface, which is at least electrically connected to the detector; wherein the data interface is at least partially exposed from the housing, and the data interface is disposed between the detector and the installation interface.
  • some embodiments of the present application provide a detection device including the above detection system.
  • some embodiments of the present application provide a detection method including the above detection system.
  • some embodiments of the present application provide a detection system, including: a drill pipe device having a drill pipe that can be extended into a drill hole; a detection device detachably connected to the end of the drill pipe Detection is performed as the drill pipe enters the borehole; an interactive device is used to receive or read the data in the detection device and feedback it to the user at least in the form of display; wherein, in the first use state, the drill pipe equipment and The detection device forms a physical connection; in the second use state, the detection device and the interactive device form data interaction; wherein the detection device includes: a detector for detecting detection data inside the borehole; a battery for powering the detector and ; Wherein, the detection device also includes or is connected to: a memory for storing image data collected by the detector and position data collected by the range finder; wherein, the battery and the detector are electrically connected.
  • the drill pipe equipment includes a rock drilling rig.
  • the interactive device includes a mobile phone, notebook computer, tablet computer, desktop computer or PDA device.
  • the detector includes a camera to transmit image data inside the borehole between the detection device and the interaction device.
  • the memory includes a replaceable storage media card to enable the detection device to transmit data to the interactive device through the storage media card.
  • the detection device also includes: a data interface, which is used to enable real-time data interaction between the detection device and the interaction device.
  • the detection device also includes: a processor, used to store or process data collected by the detector; wherein, the data interface is electrically connected to the processor.
  • the detection device also includes: a range finder, used to collect the position data of the detector in the borehole; wherein, the range finder is electrically connected to the processor.
  • the detection device further includes: a communicator, which is used to enable the processor to establish wireless communication with the outside; wherein, the communicator is electrically connected to the processor so that the detection device can communicate with the interaction device through the communicator to establish data interaction.
  • the detection device also includes: a charging interface, used to introduce electric energy for charging the battery; wherein, the charging interface is electrically connected to the battery.
  • the detection device further includes: a searchlight, used to provide the light source required in the borehole; a regulator, used to adjust the brightness of the searchlight; wherein the battery is electrically connected to at least one of the searchlight and the regulator.
  • some embodiments of the present application provide a detection device, including: a detector for detecting detection data inside a borehole; a battery for powering the detector and a rangefinder; wherein , the detection device also includes or is connected to: a memory, used to store the image data collected by the camera and the position data collected by the rangefinder; a data interface, used to enable real-time data interaction between the detection device and the outside; an installation interface, used The detection device is installed on a long pole that can extend into the borehole; wherein the data interface is provided between the detector and the installation interface.
  • the battery is arranged between the detector and the installation interface.
  • the battery is arranged between the data interface and the installation interface.
  • the detection device also includes or is connected to: a range finder, used to collect the position data of the detector in the borehole; wherein the range finder is arranged between the battery and the detector.
  • the detection device also includes or is connected to: a processor for storing or processing data collected by the detector; wherein the processor is arranged between the battery and the detector.
  • the detection device also includes or is connected to a communicator, which is used to enable the processor to establish wireless communication with the outside; wherein the communicator is arranged between the battery and the detector.
  • the detection device also includes or is connected to: a searchlight, used to provide the light source required in the borehole; wherein the searchlight is provided between the end of the detector and the data interface.
  • the detection device also includes or is connected to: a charging interface, used to introduce electric energy for charging the battery; wherein the charging interface is provided between the installation interface and the data interface.
  • some embodiments of the present application provide a detection device based on the above-mentioned detection system; wherein the detection method includes: installing the detection device to the drill pipe of the drill pipe equipment; causing the drill pipe to drive the detection The device extends into the borehole to collect data; the drill pipe is withdrawn from the borehole and the whole or at least part of the detection device is disassembled; the whole or at least part of the detection device is configured to interact with the interactive device to display the data collected by the detection device to the user.
  • the beneficial effect of this application is to provide a detection system and its detection device and detection method that can independently collect and store data to improve detection efficiency.
  • Figure 1 is a schematic diagram of a detection system according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of a detection device extending into a borehole according to an embodiment of the present application
  • Figure 3 is a schematic diagram of the main steps of a method of using a detection device according to an embodiment of the present application
  • Figure 4 is a schematic structural diagram of a detection device according to an embodiment of the present application.
  • Figure 5 is a cross-sectional view of the detection device shown in Figure 1;
  • Figure 6 is a cross-sectional view of the detection device shown in Figure 1 from another perspective;
  • FIG 7 is a schematic diagram of an installation method of the battery in the detection device shown in Figure 1;
  • Figure 8 is an exploded view of part of the structure of the detection device shown in Figure 1, mainly showing the circuit board and other structures;
  • FIG 9 is a schematic diagram of another installation method of the battery in the detection device shown in Figure 1;
  • Figure 10 is a cross-sectional view of the camera in the detection device shown in Figure 1 when it includes an ultrasonic radar;
  • Figure 11 is an exploded view of part of the structure of the detection device shown in Figure 1 when the camera includes a camera head;
  • Figure 12 is a cross-sectional view of the third cabin when the camera in the detection device shown in Figure 1 includes a camera head;
  • Figure 13 is a schematic diagram of the projection of the camera shown in Figure 12 on the projection plane;
  • Figure 14 is a cross-sectional view of the second cabin in the detection device shown in Figure 1;
  • Figure 15 is a cross-sectional view of the detection device shown in Figure 1 when it includes a UWB chip;
  • Figure 16 is a cross-sectional view of the detection device shown in Figure 1 when the distance measuring wheel is slidably installed on the bracket between the shells;
  • Figure 17 is a schematic diagram of the connection relationship between the slider and the distance measuring wheel in the detection device shown in Figure 16;
  • Figure 18 is a schematic structural diagram of the detection device shown in Figure 1 when the distance measuring wheel is connected to the inter-shell bracket in the first connection manner through the support swing arm;
  • Figure 19 is a cross-sectional view of part of the structure of the detection device shown in Figure 18;
  • Figure 20 is an exploded view of part of the structure of the detection device shown in Figure 18, mainly showing structures such as hollow spaces;
  • Figure 21 is a schematic structural diagram of the detection device shown in Figure 1 when the distance measuring wheel is connected to the inter-shell bracket in the second connection mode through the support swing arm;
  • Figure 22 is a schematic structural diagram of the detection device shown in Figure 1 when it is equipped with two sets of distance measuring wheels;
  • Figure 23 is an exploded view of part of the structure of the measuring wheel in the detection device shown in Figure 1 when it is connected to the inter-shell bracket by cooperating with the chute and torsion spring;
  • Figure 24 is a cross-sectional view of part of the structure of the detection device shown in Figure 23;
  • Figure 25 is a cross-sectional view of the detection device shown in Figure 1 when the distance measuring wheel is movably arranged on the bracket between the shells;
  • Figure 26 is a schematic cross-sectional view of a detection device according to an embodiment of the present application.
  • Figure 27 is a schematic diagram of the partial structure in Figure 26;
  • Figure 28 is an explosion diagram of Figure 26
  • Figure 29 is a schematic diagram of the appearance of a detection device according to an embodiment of the present application.
  • Figure 30 is a schematic cross-sectional structural view of Figure 29;
  • Figure 31 is a schematic structural diagram of a detection device according to an embodiment of the present application.
  • Figure 32 is a schematic diagram of the main steps of a detection method according to another embodiment of the present application.
  • Figure 33 is a schematic diagram of the combined data of image data and positioning data collected by the detection device according to an embodiment of the present application.
  • Figure 34 is a schematic dimensional view of a detection device with a centralizer according to an embodiment of the present application.
  • Figure 35 is a schematic dimensional view of the detection device without the centralizer according to an embodiment of the present application.
  • Figure 36 is a schematic diagram of a remote controller corresponding to a detection device according to an embodiment of the present application.
  • Figure 37 is a schematic diagram of synthesizing data collected by the detection device into a three-dimensional image according to an embodiment of the present application.
  • 102 Data interface; 102a. Video interface; 102b. Memory card slot interface;
  • 103 Shell; 103a, opening; 103b, internal thread; 103c, first cabin; 103d, second cabin; 103e, fixing bolt; 103f, third cabin; 103g, shield;
  • 114 Bracket between shells; 114a, chute; 114b, slider; 114c, support spring; 114d, hollow space; 114e, wire trough;
  • the detection system 200 of the present application includes: drill pipe equipment 201 , detection device 202 , and interaction device 203 .
  • the drill pipe equipment 201 has a drill pipe that can extend into the borehole; the detection device 202 is detachably connected to the end of the drill pipe to detect as the drill pipe enters the borehole; the interaction device 203 is used to receive or read The data in the detection device 202 is obtained and fed back to the user at least in the form of display; wherein, in the first use state, the drill pipe equipment 201 and the detection device 202 form a physical connection; in the second use state, the detection device 202 interacts with Device 203 constitutes data interaction.
  • drill pipe equipment 201 may be configured as rock drilling equipment, such as a rock drilling rig.
  • the interactive device 203 includes a mobile phone, notebook computer, tablet computer, desktop computer or PDA device.
  • this application also provides a detection method based on the above detection system 200.
  • the detection method includes:
  • S4 Make the whole or at least a part of the detection device 202 form a data interaction with the interaction device 203 to display the data collected by the detection device 202 to the user.
  • step S1 threaded connection can be used to implement installation.
  • other connection methods such as a chuck method, can also be used to implement installation.
  • step S2 the detection data is collected while the position data is collected, thereby corresponding the detection data and the position data.
  • the detection data includes image data.
  • Figure 2 shows a solution when the detection device is installed on the drill pipe 2 according to an embodiment.
  • the detection device includes a position recording module, an instrument compartment, a probe 9 and a flexible centralizer 8.
  • the drill pipe 2 is hollow in the middle and has male and female threads at both ends.
  • the rock drilling rig (not shown in the figure) sends the entire device into the hole by automatically adding the drill pipe;
  • the position recording module is composed of a retractable elastic wheel 3, a grating encoder 4, an electronic circuit and a storage unit 6.
  • the retractable elastic wheel 3 is in contact with the hole wall.
  • the grating encoder 4 records the angle of rotation and converts it into the linear displacement of the video device in the hole through calculation. According to Set the starting point to determine the position of the video device in the hole.
  • the grating encoder 4 converts the physical displacement signal into an electrical signal and then transmits it to the storage unit through the electronic circuit.
  • the instrument compartment is a hollow cylindrical shape, the left end is connected to the drill pipe 2 through a thread, and the right end is connected to the probe 9 through a thread.
  • the rechargeable battery 7 is used to power the grating encoder 4 and the probe 9
  • the storage unit 6 is used to record the position information detected by the grating encoder 4 and the video recorded by the probe 9 .
  • the external data interface 5 is blocked with a rubber plug. When the device is lifted to the opening, the rubber plug is opened, a USB flash drive is inserted, and the video data is read.
  • the external data interface 5 is also a charging interface for the rechargeable battery.
  • Probe 9 is made of QSP2 profile, with a diameter less than 55mm, with a front Plexiglas seal and pressure resistance.
  • the directional depression angle is 360 degrees, the horizontal angle is 155 degrees, it prevents light refraction, and has a pressure resistance of more than 3MPa.
  • the video transmission module is an AHD transmission module, and the underwater visibility is greater than 0.5m.
  • the probe is used to record full-hole video and transmit the recorded video to the storage unit through the AHD transmission module.
  • the flexible centralizer 8 is used to centralize the probe 9 so that it is located at the center of the drill hole, and is made of fusiform rubber.
  • a fusiform flexible centralizer is installed on the front end of the camera, which can not only ensure that the camera is on the central axis in the hole, but also prevent the camera from getting stuck during movement.
  • a retractable elastic wheel is installed at the rear end of the device so that the roller can be close to the inner wall of the hole to prevent slipping and lead to inaccurate displacement measurement. It can also pass smoothly when encountering obstacles.
  • three retractable elastic wheels are installed at the rear end, and a viewpoint encoder is installed on each roller to calculate the displacement respectively, and then take the average of the three.
  • the video detection method for advanced geological prediction holes for rock drilling rigs includes:
  • the grating encoder is set to reverse rotation, which does not send out pulse signals. When it reaches the bottom of the hole, it starts to continuously pull the drill pipe outwards, and the retractable elastic wheel rotates forward and starts to send out pulse signals;
  • the grating encoder converts the physical displacement signal into an electrical signal and then transmits it to the storage unit through the electronic circuit;
  • the encoder uses a photoelectric encoder, which is a sensor that converts mechanical rotation on the output shaft into pulses or digital quantities through photoelectric conversion. It consists of a light source, an optical code disk and a photosensitive element.
  • the light source is a light-emitting diode, and the photosensitive element is distributed on both sides of the grating disk.
  • the grating disk is a circular plate with a certain diameter and is coaxial with the rotating axis to be measured.
  • the photosensitive element detects a signal, indicating that the rotating shaft rotates once.
  • the recording pulse signal is m
  • the diameter of the roller is D
  • the rock drilling rig's advanced geological prediction hole has the characteristics of small diameter (only ⁇ 64mm in diameter) and close to horizontal state, which will bring great challenges to in-hole imaging. It is necessary to develop a small-diameter high-definition probe; it is necessary to use a rock drilling rig to automatically send the probe into the horizontal advance detection hole (for construction safety, no construction personnel are allowed on the tunnel face); the video image recorded by the probe must determine its orientation and relative hole The depth of the mouth.
  • the above are the technical difficulties of the present invention. Its advantages are that the method is simple, intuitive, short construction period, and low cost. As a supplementary equipment of the rock drilling rig, it can greatly improve construction safety.
  • a detection device 100 including: a detector 101, a data interface 102, a housing 103, a first terminal 106, a second terminal 107, and a charging interface 108.
  • the detector 101 is used to collect detection data.
  • the data interface 102 is used to transmit detection data.
  • the housing 103 is used to fix the data interface 102.
  • the detector 101 is arranged at the front end of the housing 103. After the housing 103 is driven into the borehole by external machinery such as rock drilling equipment, the detector 101 can collect detection data at various depths of the borehole. .
  • the rear end of the housing 103 is formed with an installation interface for coupling the detection device 100 to a drill pipe, that is, the detection device 100 can be connected to the drill pipe of the rock drilling equipment through the installation interface, thereby being driven by the drill pipe. into the drilled hole.
  • the installation interface can be configured as an opening 103a provided at the rear end of the housing 103, and in the opening 103a An internal thread 103b is provided inside so that the entire detection device 100 can be coupled to one end of the drill pipe through a threaded connection.
  • the installation interface can also be configured to be fixed to external equipment such as rock drilling equipment that can drive the detection device 100 to move in the borehole by bayonet connection, riveting, welding, interference fit, etc., or on the installation interface. It is fixed to a joint that can connect the aforementioned external equipment that drives the detection device 100 to move in the borehole by means of bayonet connection, riveting, welding, interference fit, etc., so that the detection device 100 can be driven to move through these external devices.
  • the internal thread 103b illustrated in the present invention should be regarded as an illustration of the connection method between the housing 103 and the external device, and should not be regarded as that the housing 103 can only be detachably fixedly connected to the external device through the internal thread 103b.
  • the rock drilling equipment should be regarded as an example of the external equipment that drives the detection device 100 to move in the borehole, and should not be regarded as the detection device 100 can only cooperate with the rock drilling equipment to complete the detection work.
  • the data interface 102 is provided between the detector 101 and the installation interface, so that after the detection device 100 leaves the borehole, an external terminal device capable of receiving detection data can retrieve the detection data from the data interface 102 .
  • the data interface 102 is used to connect to an external terminal to retrieve detection data.
  • image data can be retrieved as needed after the detection, and the captured images can be adjusted. It is more convenient to take. It can leave enough time for users to analyze the geological structure of the borehole, so it can better guide subsequent exploration, blasting and other work.
  • the detection device 100 can be powered by an external power source. But preferably, the detection device 100 includes: a battery 104 and a circuit board 105.
  • the battery 104 is used to power the detector 101 .
  • the defining housing 103 contains: a first compartment 103c.
  • the first cabin 103c is used to accommodate the battery 104, that is, the battery 104 is installed in the casing 103, and the casing 103 is used to protect the battery 104, so that the detection device 100 can have the battery 104 built-in.
  • This detection device 100 can enable the detector 101 to complete the work of collecting detection data without the need for external power supply.
  • the detection device 100 in order to enable the data interface 102 to complete data transmission, includes a circuit board 105 .
  • the circuit board 105 is used to form an electrical connection with the data interface 102 .
  • the defining housing 103 contains: a second compartment 103d.
  • the second cabin 103d is used to accommodate the circuit board 105, so that the circuit board 105 moves synchronously with the detection device 100.
  • the first cabin shell 103c and the second cabin shell 103d form a detachable fixed connection.
  • the detection device 100 does not need to pull a power cord from the outside to supply power to the detector 101 during the detection process in the borehole, which facilitates on-site construction.
  • the first cabin 103c can be separated from the second cabin 103d, so that the battery 104 in the first cabin 103c can be charged or the battery 104 can be replaced.
  • the data interface 102 still maintains an electrical connection with the circuit board 105, so it can be used independently to retrieve detection data, or it can be powered by an external power source or other battery 104 so that the data interface 102 can be used normally.
  • the detection device 100 further includes: a first terminal 106 and a second terminal 107.
  • the first terminal 106 is installed to the first cabin 103c and is electrically connected to the battery 104.
  • the second terminal 107 is installed to the second cabin 103d and is electrically connected to the detector 101.
  • the first cabin 103c and the second cabin 103d are fixedly connected, the first terminal 106 and the second terminal 107 contact to form an electrical connection, that is, the battery 104 is electrically connected to the second terminal 107 through the first terminal 106.
  • the battery 104 is then electrically connected to the detector 101 through cables or welding.
  • the first cabin shell 103c and the second cabin shell 103d can form a detachable fixed connection through threaded connection, snap connection, eyelet pin fit, interference fit, etc.
  • the first terminal 106 is configured as several Conductive metal rings formed on a PCB board, each metal ring is concentrically arranged and electrically connected to the electrodes of the battery 104 respectively.
  • the second terminal 107 is configured as a plurality of retractable metal terminals formed on another PCB board.
  • the specific way for the metal terminals to expand and contract relative to the PCB board may be to provide springs between the two.
  • Metal terminals are electrically connected to detector 101.
  • the metal terminal contacts the concentrically arranged conductive metal ring, so that after the first cabin 103c is fixedly installed on one end of the second cabin 103d, The first terminal 106 maintains contact with the second terminal 107 to realize the electrical connection between the battery 104 and the detector 101 .
  • the first cabin 103c can be arranged to be fixed between the detector 101 and the second cabin 103d.
  • a set of first terminals 106 and second terminals 107 can be provided at one end of the first cabin 103c to complete the connection.
  • the second cabin 103d may further be provided with another set of first terminals 106 and second terminals 107, and one of the set of first terminals 106 and second terminals 107 may be electrically connected to the detector 101, and the other may be electrically connected to the detector 101.
  • the circuit board 105 to realize the electrical connection between the detector 101 and the data interface 102 .
  • the first cabin 103c is provided at an end of the detection device 100 away from the detector 101, and can be combined with external equipment through the installation interface.
  • the detection device 100 may include a charging interface 108 .
  • the charging interface 108 is used to introduce the electric energy required for charging the battery 104 .
  • the charging interface 108 is electrically connected to the battery 104, that is, the battery 104 is a rechargeable battery 104, such as a lithium battery 104.
  • the charging interface 108 can be disposed on the second cabin 103c, and is electrically connected to the battery 104 through the cooperation of the first terminal 106 and the second terminal 107.
  • the charging interface may also be provided at the end of the first cabin 103c facing the second cabin 103d so as to be located inside the housing 103 when the first cabin 103c and the second cabin 103d are fixedly connected. That is, when the detection device 100 is used normally, the charging interface 108 can be protected by the housing 103 . After the detection is completed, the first cabin 103c and the second cabin 103d can be separated to expose the charging interface 108, so that the charging interface 108 can be connected to an external power source to charge the battery 104.
  • the cavity that allows the first compartment 103 c to accommodate the battery 104 may be configured to communicate with the opening 103 a.
  • the battery 104 can be taken out from the opening 103a for replacement or charging.
  • a fixing bolt 103e can be further provided on the first cabin 103c. After the battery 104 is placed into the chamber of the first cabin 103c to accommodate the battery 104, the battery 104 can be locked by tightening the fixing bolt 103e to fix it in the battery 104. Inside the first cabin 103c.
  • the housing 103 also includes: a third cabin 103f.
  • the third cabin 103f is used to accommodate at least a part of the detector 101.
  • the second cabin 103d is provided between the first cabin 103c and the third cabin 103f. That is, the third cabin 103f is disposed at the front end of the detection device 100, and the third cabin 103f is used to fix and install the detector 101.
  • the third cabin 103f is detachably and fixedly connected to the second cabin 103d, so that different types of detectors 101 can be replaced according to subsequent construction needs, thereby selecting the type of detection data collected by the detector 101.
  • the detector 101 can be configured as an ultrasonic radar 101a, a millimeter wave detector, a thermal imager, etc., which are disposed at the front end of the third cabin 103f, so that during the movement of the detection device 100 in the borehole, Corresponds to the acquisition of ultrasonic imaging data, millimeter wave imaging data, thermal imaging data, etc.
  • the detector 101 may be configured to include a camera 101b.
  • the camera 101b is used to collect image data.
  • the image data collected by the camera 101b can be used to enable the user to understand information such as protrusions, grooves, cracks in the hole wall, etc. in the borehole.
  • a light source 101c may be provided at the front end of the third cabin 103f.
  • the light source 101c is electrically connected to the battery 104, so that the battery 104 is used to supply power to the light source 101c, and the light source 101c is used to illuminate the borehole, so that the camera 101b can obtain clearer image data.
  • the camera 101b preferably adopts a fisheye camera 101b, which can obtain a larger field of view and obtain a larger shooting range.
  • the light source 101c can use several LED lights, and the LED lights are arranged around the camera 101b. At this time, the light source 101c is closer to the hole wall to enhance the illumination of the hole wall.
  • the angle formed by the line connecting the center of the camera lens and the edge of the maximum range that the camera can capture is called the camera's field of view.
  • the straight line connecting the lens center of the camera 101b to the focus is defined as the focus straight line L1
  • the degree of the field of view A of the camera 101b is defined to be perpendicular to the focus straight line of the third cabin 103f.
  • the ratio of the maximum distance on the auxiliary straight line L2 of L1 ranges from 22.5 to 43, such as 25, 30, 35, 40, 43.
  • the width of the third cabin can be selected according to the aperture of the rock hole. For example, when the maximum distance of the third cabin 103f on the auxiliary straight line L2 (ie, the width of the third cabin) is 6.4 cm, the camera's field of view A can range from 144° to 275.2°.
  • the size of the field of view angle of the camera 101b is determined based on the ratio of the maximum distance in the width direction perpendicular to the length direction of the third cabin shell 103f to the degree of the selected field of view angle A of the camera 101b.
  • a camera with a field of view of 150° to 270° it is preferable to use a camera with a field of view of 150° to 270°.
  • the size of the field of view of the camera 101b can also be determined based on the distance between the first end S1 of the third cabin 103f and the farthest end of the camera 101b. According to the experimental results, when the maximum diameter of the third cabin shell in this embodiment is selected to be 6 cm, with reference to Figure 13, the angle of view A of the camera 101b is selected to be around 220°, and a relatively clear and complete image can be captured. Structural details inside the rock hole.
  • a light-transmitting cover 101d can be fixedly installed at the front end of the third cabin 103f, and the camera 101b is disposed in the protective space formed by the light-transmitting cover 101d and the third cabin 103f.
  • the light-transmitting cover 101d can be made of transparent acrylic, glass and other materials, and its front end is constructed as a hemisphere to reduce interference with the shooting of the camera 101b and form a structure similar to an "eggshell", especially for those opened laterally on the mountain.
  • gravel is easy to fall on the hole wall, and the light-transmitting cover 101d can prevent the gravel falling from the hole wall from hitting the camera 101b.
  • the light source 101c is arranged on the periphery of the light-transmitting cover 101d, which reduces the possibility that the light emitted by the light source 101c is directly reflected and concentrated in the light-transmitting cover 101d, causing the image captured by the camera 101b to be overexposed.
  • the part where the camera 101b shoots images and the light-transmitting cover 101d are located at the front end of the third cabin 103f relative to the light source 101c.
  • part of the outer wall surface of the third cabin 103f can be protruded beyond the light source 101c, and the camera 101b and the light-transmitting cover 101d are located at the front end of the third cabin 103f.
  • 101d is provided at the front end of the protruding wall.
  • at least part of the light directly emitted from the light source 101c to the camera 101b can be reflected or absorbed by the wall surface of the third cabin 103f, further reducing the possibility of overexposure of the image of the camera 101b.
  • the range of the minimum distance from the farthest end of the light-transmitting cover 101d projected on the projection plane P1 passing through the focusing straight line L1 to the end of the third cabin 103f far away from the second cabin 103d projected on the projection plane P1 is 15 mm to 25 mm Millimeters, the specific values can be: 15 mm, 17 mm, 18 mm, 19 mm, 20 mm, 22 mm, 25 mm. If the light-transmitting cover 101d is set too far away from the third cabin shell 103f, the connection strength of the connection will be affected.
  • the light-transmitting cover 101d When rocks fall from the hole wall in the rock hole, the light-transmitting cover 101d may be damaged; When the light-transmitting cover 101d is too close to the first end S1 of the third cabin 103f, it cannot meet the requirement of the field of view of the camera 220. When the minimum distance from the farthest end of the light-transmitting cover 101d projected on the projection plane P1 to the first end S1 of the third cabin 103f projected on the projection plane P1 is 15 mm to 25 mm, the above two conditions can be satisfied at the same time. requirements.
  • An adjustment switch can be provided on the first cabin 103c/the second cabin 103d/the third cabin 103f.
  • the adjustment switch is electrically connected between the battery 104 and the detector 101, so as to control the detector 101 and the battery by controlling the adjustment switch.
  • the circuit between 104 is on and off.
  • the adjustment switch can be electrically connected to the light source 101c and the battery 104, so as to adjust the switching of the circuit between the battery 104 and the light source 101c and the brightness of the light source 101c when illuminated by the adjustment switch.
  • the adjustment switch is preferably provided on the second cabin 103d.
  • the adjustment switch includes rotating a knob provided on the second cabin 103d and a variable resistor 110 located inside the second cabin 103d and connected to the knob.
  • the variable resistor 110 is electrically connected to the circuit board 105, and is electrically connected to the battery 104 and the light source 101c through the circuit board 105. In this way, by turning the knob to change the resistance of the variable resistor 110, the brightness of the light source 101c can be adjusted.
  • the data interface 102 includes: a reader/writer and a video interface 102a.
  • the reader/writer and the video interface 102a are electrically connected to the circuit board 105 through cables or welding respectively.
  • the reader/writer is used to read and write image data to a storage medium.
  • the storage medium can be an SD card, a TF card, a memory particle welded to the circuit board 105, etc.
  • the reader/writer can be regarded as a memory chip that combines several memory chips.
  • the storage medium is an SD card, TF card, etc.
  • the reader/writer can be configured to fix the memory card slot interface 102b provided on the second cabin 103d for the storage medium to be inserted, thereby storing the data collected by the detector 101 in the storage medium.
  • the storage medium can be removed from the reader/writer.
  • the storage medium can be installed on a terminal device that can read the detection data, so that the detection data can be used offline.
  • Video interface 102a is used to transmit image data to an external display device.
  • the video interface 102a can be an HDMI interface, a type-c interface, etc. After connecting to the display device using a corresponding data signal line, the image data can be retrieved. And before the detection device 100 officially detects, it can be externally connected to the display device through the video interface 102a to adjust the brightness of the camera 101b and the light source 101c to ensure that the camera 101b can collect clearer image data after entering the borehole.
  • the video interface 102 a and the memory card slot interface 102 b are preferably fixedly arranged on the second compartment 103 d so that they are spatially closer to the circuit board 105 to simplify the circuit between them and the circuit board 105 .
  • a shield 103g that is detachably and fixedly connected to the housing 103 may be provided outside the portion where the video interface 102a and the memory card slot interface 102b are fixedly installed in the second compartment 103d.
  • the shield 103g surrounds the outside of the video interface 102a or the card slot to protect both.
  • a protective cover 103g can also be provided outside the adjustment switch.
  • components capable of obtaining position information of the detection device 100 in the borehole can be provided between the second cabin 103d and the third cabin 103f, so as to correspond the position information with the obtained detection information. This facilitates the subsequent retrieval of detection information to determine the specific location of cracks in the hole wall, etc. within the borehole.
  • the component for obtaining the position information of the detection device 100 can be a UWB chip 111 fixedly arranged inside the housing 103 and electrically connected to the circuit board 105 and the storage medium.
  • a UWB transmitter or The receiving terminal uses the UWB communication positioning technology to collect the position information of the detection device 100 with the cooperation of the UWB chip 111 and the terminal outside the borehole.
  • the detection device 100 also includes: a distance measuring wheel 112 and a grating encoder 113.
  • the distance measuring wheel 112 is rotatably connected to the housing 103.
  • the grating encoder 113 includes a coding disk 113a that can be linked with the distance measuring wheel 112 and a photoelectric sensor 113b that detects the rotation of the coding disk 113a, so that when the distance measuring wheel 112 rolls, the coding disk 113a is driven to rotate, and the photoelectric sensor 113b is used to obtain the code.
  • the position information of the detection device 100 in the borehole can be obtained through subsequent calculation.
  • the grating encoder 113 also includes a processor 113c that is electrically connected to the photoelectric sensor 113b, so that when the distance measuring wheel 112 rolls, the battery 104 is used to supply power to the grating encoder 113, so that the photoelectric sensor 113b collects the angle of rotation of the encoder, and Send an electrical signal to the processor 113c, and the processor 113c can calculate the rolling distance of the roller based on the electrical signal to obtain the position information.
  • the grating encoder 113 uses grating distance measurement technology to measure the rolling distance of the distance measuring wheel 112. This application does not constitute a substantial improvement to the principle of grating distance measurement technology, and the principle will not be described again in this article. However, when the grating encoder 113 is working, the external light environment will interfere with the accuracy of ranging. Therefore, the photoelectric sensor 113 is arranged inside the housing 103 to reduce the interference of external ambient light on the ranging results.
  • the housing 103 also includes: an inter-shell bracket 114 .
  • the inter-shell bracket 114 is used to install the distance measuring wheel 112 and the grating encoder 113.
  • the inter-shell bracket 114 is provided with a chute 114 a, and a slider 114 b is slidably provided in the chute 114 a of the inter-shell bracket 114 .
  • the distance measuring wheel 112 is rotatably connected to the slide block 114b, and the distance measuring wheel 112 at least partially extends out of the chute 114a, so that the distance measuring wheel 112 can contact the borehole wall.
  • the encoding disk 113a is rotatably arranged inside the slider 114b, and is linked with the distance measuring wheel 112 through belt transmission or other transmission methods.
  • the photoelectric sensor 113b is fixedly installed inside the slider 114b, and is electrically connected to the circuit board 105 and the battery 104.
  • the processor 113c can be disposed inside the slider 114b, or can be soldered to the circuit board 105.
  • a number of support springs 114c are provided between the slider 114b and the groove wall of the chute 114a to provide elastic force to the slider 114b through the support springs 114c, so that during the movement of the detection device 100 in the drill hole, the distance measuring wheel 112 and the drill hole are aligned. The walls of the hole remain in contact and roll. At this time, the position information of the detection device 100 can be obtained during the rolling process of the roller.
  • the inter-shell bracket 114 is located between the installation interface and the third cabin 103f. It is preferred that the inter-shell bracket 114 is provided between the second cabin 103d and the third cabin 103f, so that the distance measuring wheel 112 is relatively closer to the detector 101. At this time, the distance measured by the measuring wheel 112 contacting the borehole wall is closer to the depth position in the borehole when the detector 101 collects detection data.
  • the inter-shell bracket 114 is provided between the second cabin shell 103d and the third cabin shell 103f to form a hollow space 114d for accommodating the distance measuring wheel 112 between the second cabin shell 103d and the third cabin shell 103f.
  • the setting of the hollow space 114d allows impurities such as gravel in the borehole to pass through, reducing the accumulation of impurities at the inter-shell bracket 114, thereby reducing the possibility of the distance measuring wheel 112 being stuck by impurities, thereby making the distance measuring wheel 112 move smoothly .
  • the detection device 100 further includes: a support swing arm 115 and an elastic component. Among them, both ends of the support swing arm 115 are rotationally connected with the distance measuring wheel 112 and the inter-shell bracket 114 respectively.
  • the elastic component is provided between the support swing arm 115 and the inter-shell bracket 114 to bias the support swing arm 115 to move to a preset position relative to the inter-shell bracket.
  • the support swing arm 115 is at least partially accommodated in the hollow space 114d.
  • the elastic member may be configured as a torsion spring 116 disposed between the support swing arm 115 and the inter-shell bracket 114 .
  • the torsion spring 116 exerts elastic force on it, causing it to tend to swing to a preset position relative to the inter-shell bracket 114 .
  • the roller when the roller is in the preset position, it is at least partially located outside the protruding inter-shell bracket 114 so that the roller contacts the wall of the drilled hole. In this way, the roller can be kept in contact with the wall of the drilled hole.
  • the encoding disk 113a is rotated and arranged inside the inter-shell bracket 114, and is linked with the distance measuring wheel 112 through belt transmission or other transmission methods, and the rotation center of the encoding disk 113a and the support swing arm 115 rotate relative to the inter-shell bracket 114 The centers of rotation coincide.
  • the photoelectric sensor 113b is fixedly installed inside the inter-shell bracket 114, and is electrically connected to the circuit board 105 and the battery 104.
  • one end of the support swing arm 115 connected to the inter-shell bracket 114 is placed closer to the second cabin 103d or closer to the third cabin 103f relative to its end connected to the distance measuring wheel 112. .
  • two sets of distance measuring wheels 112 can be provided on the inter-shell bracket 114.
  • One set of distance measuring wheels is linked to the encoding disk 161, and the other set of distance measuring wheels is not connected to the encoding disk 161.
  • the two sets of distance measuring wheels are respectively located on both sides of the inter-shell bracket 114, so that the detection device 100 moves more smoothly.
  • the distance measuring wheel 112 can not use the supporting swing arm 115, but can be directly embedded into the wheel frame 118, 119 through the axle of the distance measuring wheel 112, and then the wheel frame can be embedded into
  • the chute 120 is provided on the inside of the inter-shell bracket 114, and a torsion spring 121 is used to apply elastic force to the wheel frame 118.
  • the grating encoder 113 the aforementioned solution is still used.
  • both ends of the inter-shell bracket 114 can be connected to the second cabin 103d and the third cabin 103f respectively through a detachable fixed connection such as threaded connection.
  • first terminals 106 or second terminals 107 are respectively provided at both ends of the inter-shell bracket 114, and wire slots 114e can be provided inside the inter-shell bracket 114 to electrically connect the first terminals 106 at both ends of the bracket through cables. or second terminal 107.
  • the second terminal 107 or the first terminal 106 is provided at one end of the inter-shell bracket 114 corresponding to the second cabin 103d and the third cabin 103f to implement the battery 104, the circuit board 105, the grating encoder 113, the detector 101, etc. Electrical connections of components.
  • components for collecting position information can be installed as needed, or the second cabin 103d and the third cabin 103f can be directly connected to separately collect detection data.
  • the provided detection device 100 can call detection data after the detection is completed, thereby realizing an offline borehole internal information detection method that is different from the online detection method of related technologies.
  • Different types of detection data can be obtained as needed, as well as location information corresponding to the detection data, and can be flexibly applied to a variety of different construction sites.
  • a centralizer 117 can be fixedly provided on the outside of the third cabin 103f.
  • the centralizer 117 is made of rubber, hard plastic and other materials.
  • the detection device 100 can be contacted through the centralizer 117 during its movement in the borehole.
  • the hole wall is drilled to reduce shaking when the detection device 100 moves, making the collected detection data more practical. For example, the camera 101b moves relatively smoothly, so that the captured image is relatively clear.
  • a centralizer 117 can also be fixedly installed outside one end of the detection device 100 where the installation interface is provided, so that the detection device 100 can move more smoothly.
  • the direction in which the end of the detection device 100 with the installation interface extends to the end with the detector 101 is the length direction of the detection device 100
  • the length direction of the detection device 100 is the first linear direction a1 . That is, the detector 101 is provided at the front end of the detection device 100 , and the installation interface is provided at the rear end of the detection device 100 .
  • the detector 110 collects information inside the borehole at one end of the detection device 100 .
  • the value range of the diameter C of the distance measuring wheel 112 is limited to 20 mm to 60 mm, and it is defined: when the distance measuring wheel 1112 is movably connected to the housing 103, the distance measuring wheel 112 is relative to the housing 103 It has a first extreme position and a second extreme position. When the distance measuring wheel 112 is in the first limit position and the second limit position, the component of the distance between its rotation axes in the second linear direction a2 perpendicular to the first linear direction a1 is defined as the lateral limit distance B of the distance measuring wheel 112 .
  • the diameter C of the distance measuring wheel 112 is defined to be greater than or equal to the lateral limit distance B of the distance measuring wheel 112 . That is, the diameter of the distance measuring wheel 112 is not less than the movable distance of the distance measuring wheel 112 in the width direction of the detection device 100, so that the distance measurement wheel 112 can maintain contact with the borehole wall when the detection device 100 moves in the borehole.
  • the rolling distance of the distance measuring wheel 112 matches the depth position of the detection device 100 in the borehole.
  • the ratio of the diameter C of the distance measuring wheel 112 to the lateral limit distance B of the distance measuring wheel 112 can be limited to a range of 1.0 to 4.0, for example, the diameter of the distance measuring wheel 112 and the lateral limit distance of the distance measuring wheel 112
  • the ratio of B can be 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, etc.
  • the lateral limit distance B of the distance measuring wheel 112 can be approximately 10.5 mm to 42 mm.
  • the parameters of the distance measuring wheel 112 also have an impact on the smooth movement of the distance measuring wheel 112. If the distance measuring wheel 112 is too wide and the diameter is too small, or the distance measuring wheel 112 is too narrow and the diameter is too large, the distance measuring wheel 112 will be damaged. It is easy to be affected by the gravel on the hole wall and move unstable, or it is easy to be damaged by collision. Therefore, in this embodiment, the ratio of the diameter C of the distance measuring wheel 112 to the width D of the distance measuring wheel 112 can be limited to a value range of 1.2 to 3.3. For example, when the diameter of the measuring wheel 112 is set to 42 mm, its width or thickness is approximately 13 mm to 35 mm.
  • the distance measuring wheel 112 In order to make the distance measuring wheel 112 move smoothly, it can be restricted that when the distance measuring wheel 112 is in the first extreme position and the second extreme position, the outer edge of the distance measuring wheel 112 is located on the same side of the housing 103, that is, the distance measuring wheel 112 will not move from One side of the housing 103 in the width direction moves to the other side, which defines the lateral limit distance B when the distance measuring wheel 112 moves from another angle.
  • the dimensional parameters of the distance measuring wheel 112 can further be matched to the parameters of the housing 103 .
  • the width E of the housing 103 is greater than or equal to the width D of the distance measuring wheel 112, so that the housing 103 itself has sufficient strength to support and install the distance measuring wheel 112.
  • the ratio of the width E of the housing 103 to the width D of the distance measuring wheel 112 ranges from 2.0 to 5.4.
  • the width of the distance measuring wheel 112 can be approximately 12 mm to 32 mm.
  • the detection device 600 has a camera 601 with an adjustable angle.
  • the detection device 600 also includes: a rotating bracket 602, a swinging bracket 603, a rotating steering gear 604, and a swinging steering gear 605.
  • the camera 601, the rotating bracket 602, the swinging bracket 603, the rotating steering gear 604, and the swinging steering gear 605 are accommodated in the housing 606.
  • the camera 601 is installed on the swing bracket 603; the swing bracket 603 and the rotation bracket 602 form a rotation connection, the rotation bracket 602 forms a rotation connection relative to the housing 606, the rotation steering gear 604 drives the rotation bracket 602 to rotate around the central axis, and the swing steering gear 605 drives The swing bracket 604 rotates around the radial axis, so that the camera 601 can adjust the shooting angle.
  • the detection device 700 has a Bluetooth module 701 as a communicator and a control button 702 .
  • the control button 702 can control the power supply of the Bluetooth module 701 by the battery 703, that is, the control button 702 can control whether the Bluetooth module 701 is powered on or not.
  • the detection device 300 of the present application includes: camera 301, searchlight 302, range finder 303, processor 304, memory 305, data interface 306, battery 307, communicator 308, regulator 309, charging interface 310 .
  • the camera 301 is used to collect image data inside the borehole; the searchlight 302 is used to provide the light source required for the camera 301 to collect image data; the rangefinder 303 is used to collect position data when the camera 301 advances inside the borehole; the processor 304 is used to match image data and positioning data; the processor 304 forms an electrical connection with the camera 301 or/and the rangefinder 303.
  • This electrical connection can be a direct electrical connection or an indirect electrical connection. connect.
  • the image data collected by the camera 301 is color image data.
  • the memory 305 is used to store the image data collected by the camera 301 and the position data collected by the rangefinder 303; wherein, the memory 305 is electrically connected to the processor 304. The memory 305 is electrically connected to the camera 301 and/or the rangefinder 303 .
  • the camera 301 , the rangefinder 303 and the data interface 306 form a direct electrical connection with the processor 304 .
  • the camera 301 transmits image data to the processor 304, and the rangefinder 303 transmits the position data page to the processor 304.
  • the data structure can be configured as a reader/writer, and the memory 305 can use an external memory card such as a removable TF card.
  • the memory 305 also includes a built-in storage medium, so that the processor 304 can store, read and write data even when there is no removable TF card. You can use an external TF card and built-in storage media solution at the same time, so that you can obtain continuous storage and expand the storage space.
  • the data interface 306 includes video interfaces such as HDMI, DP and VGA, or it can be a USB interface that can transmit data and charge, such as a TYPE-C interface.
  • the data interface 306 can be used to transmit both data and image data collected by the camera 301 to the outside.
  • the data interface 306 is electrically connected to the processor 304 so that the data interface 306 transmits a combination of matched image data and position data to the outside; the data interface 306 is electrically connected to the memory 305 .
  • the range finder 303 can adopt the above-mentioned solution of physical roller and grating encoder, or can also adopt the solution of laser or other wireless communication distance measurement.
  • the battery 307 is used to power the camera 301; the battery 307 and the camera 301 are electrically connected. More specifically, the battery 307 is electrically connected to the camera 301, the processor 304, the rangefinder 303, the charging interface 310, and the searchlight 302 to provide power for them.
  • the charging interface 310 is used to introduce the electric energy required for charging the battery 307; the charging interface 310 can form a direct or indirect electrical connection with the battery 307.
  • the charging interface 310 may also be broadly considered to be configured as a wireless charging coil, thereby enabling the detection device 300 to be charged wirelessly.
  • the regulator 309 is used to adjust the brightness of the searchlight 302; wherein, the regulator 309 and the searchlight 302 are electrically connected.
  • the regulator 309 can be a rheostat and is electrically connected between the battery 307 and the searchlight 302, so that the brightness of the searchlight 302 can be adjusted by adjusting the resistance.
  • the regulator 309 can also serve as a signal source.
  • the regulator 309 can be electrically connected to the processor 304.
  • the processor 304 can adjust the voltage supplied to the searchlight 302 to adjust the brightness.
  • the communicator 308 is used to establish wireless communication with external devices; wherein the communicator 308 is electrically connected to the processor 304 .
  • the communicator 308 includes a 4G, 5G communicator 308 or a WiFi communicator 308.
  • the communicator 308 includes a wireless ranging device such as a UWB tag device.
  • the communicator 308 includes a Bluetooth module
  • data can be transmitted with the interactive device through the Bluetooth module.
  • the communicator 308 includes a UWB tag device, and the rock drilling equipment includes a UWB base station device; wherein, the UWB tag device and the UWB base station device form a signal interaction to achieve positioning of the detection device 300 .
  • the communicator 308 can also serve as the range finder 303.
  • this application also provides a detection method that specifically includes the following steps:
  • S201 Collect image data within the borehole.
  • S202 Collect position data when the camera advances inside the borehole.
  • S203 Store the image data collected by the camera and the position data collected by the rangefinder.
  • step S101 can adopt manual triggering or ranging triggering.
  • the processor may perform matching based on the absolute time of the image data and positioning data.
  • the image output in step S105 is shown in Figure 33.
  • the video probe is equipped with a remote control, HDMI high-definition data cable and charger.
  • the remote control is shown in Figure 36.
  • the remote control can interact with the detection device through the communicator to control and implement the following functions.
  • the remote control can be replaced by an intelligent terminal such as a smartphone.
  • the device may not find the USB flash drive/micro SD card. In this case, delete them and try again.
  • (12)DEL Delete video or photo files.
  • the DVR system sometimes takes 10-20 seconds to reposition to work properly, please let it run for about 20 seconds each time you try to record; the maximum memory of the micro SD card is 64G bits.
  • This unit has a recording time limit.
  • the default time limit is 30 minutes. If the recording time exceeds 30 minutes, the system will record with a new file.
  • the device can be used to record video and voice via micro SD card.
  • the recorded video will be stored in the micro SD card and played on the screen.
  • the default video recording resolution is “Good”. Users can select "Low” to save storage space.
  • the screen will display "Loading, please wait" a few seconds before playing the video.
  • the device's video player may not support some downloaded videos.
  • the collected images can be synthesized in the interactive device to obtain the three-dimensional image shown in Figure 37.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)
  • Studio Devices (AREA)

Abstract

一种探测***(200)及其探测装置(100,202,600,700)和探测方法,其中,探测装置(100,202,600,700)包含:探测器(101,300),用于检测钻孔内部的探测数据;测距器(303),用于检测探测器(101,300)在钻孔内推进时的定位数据;电池(104,307),用于为探测器(101,300)和测距器(303)供电;其中,探测装置(100,202,600,700)包含或连接有:存储器(305),用于存储探测器(101,300)所采集的图像数据和测距器(303)所采集的位置数据;其中,电池(104,307)与探测器(101,300)或/和测距器(303)构成电性连接。

Description

探测***及其探测装置和探测方法 技术领域
本发明涉及地质探测技术领域,更具体地说,涉及一种探测***及其探测装置和探测方法。
背景技术
凿岩台车用于在隧道开掘过程中会开凿若干钻孔,由于安全的要求,需要通过这些钻孔进行超前地质预报。采集钻孔中的图像数据是进行超前地质预报的主要参考数据。
现在多采用专用的水平超前取芯钻机进行作业,每次单孔取芯需要2至5天,而不同的地点均需要进行超前地质预报时,只能进行排队,从而耽误施工进度,并且单孔费用较高。
现在尚没有一种技术方案能够有效解决上述技术问题。
发明内容
本申请的内容部分用于以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。本申请的内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。
本申请的一些实施例提出了一种探测***及其探测装置和探测方法,来解决以上背景技术部分提到的技术问题。
作为本申请的第一方面,本申请的一些实施例提供了一种探测***,包括:凿岩设备,用于开凿一个钻孔;其中,凿岩设备具有一个钻杆;探测***还包括:探测装置,可拆卸的连接至钻杆端部以随着钻杆进入至钻孔内部进行检测;其中,探测装置包含:探测器,用于检测钻孔内部的探测数据;测距器,用于检测探测器在钻孔内推进时的定位数据;电池,用于为探测器和测距器供电;其中,探测装置包含或连接有:存储器,用于存储探测器所采集的图像数据和测距器所采集的位置数据;其中,电池与探测器或/和测距器构成电性连接。
进一步的,探测器包含:可见光摄像头、超声波探头、毫米波摄像头和红外光摄像头中的一种或几种。
进一步的,凿岩设备包含:凿岩台车和手动凿岩设备中的至少一种。
进一步的,测距器包含:光栅编码器、激光测距器以及UWB测距器中的至少一种。
进一步的,存储器包含:内置存储器和可更换存储器中的至少一种。
进一步的,电池包含:内置电池和可更换电池中的至少一种。
进一步的,探测装置还包括:壳体,用于容纳探测器至少一部分;壳体形成有一个用于使壳体这直接或间接的结合至钻杆的安装接口。
进一步的,安装接口包含:螺纹接口和卡盘接口中的至少一种。
进一步的,壳体包含:电池舱壳,形成容纳电池的电池空间;探头舱壳,形成容纳探测器的探头空间;其中,电池空间和探头空间为分别独立的空间。
进一步的,探测装置还包括:电路板,分别与探测器和测距器构成电性连接;壳体还包含:主舱舱壳,形成容纳电路板的主舱空间;其中,电池空间、探头空间和主舱空间为分别独立的空间。
进一步的,探测装置还包括:处理器,分别与探测器和测距器构成电性连接;壳体还包含:主舱舱壳,形成容纳处理器的主舱空间;其中,电池空间、探头空间和主舱空间为分别独立的空间。
进一步的,探测装置还包括:扶正器,套装在外壳的外侧以与钻孔内壁接触;其中,扶正器被构造为具有环状结构。
进一步的,探测装置还包括:数据接口,至少与探测器构成电性连接;其中,数据接口至少部分露出壳体,数据接口设置于探测器和安装接口之间。
作为本申请的第二方面,本申请的一些实施例提供了一种包含上述探测***的探测装置。
作为本申请的第三方面,本申请的一些实施例提供了一种包含上述探测***的探测方法。
作为本申请的第四方面,本申请的一些实施例提供了一种探测***,包括:钻杆设备,具有一个能伸入钻孔的钻杆;探测装置,可拆卸的连接至钻杆端部以随着钻杆进入至钻孔内部进行检测;交互装置,用于接收或读取探测装置中的数据从而至少以显示的方式反馈至用户;其中,在第一使用状态时,钻杆设备与探测装置构成物理连接;在第二使用状态时,探测装置与交互装置构成数据交互;其中,探测装置包含:探测器,用于检测钻孔内部的探测数据;电池,用于为探测器和供电;其中,探测装置还包含或连接有:存储器,用于存储探测器所采集的图像数据和测距器所采集的位置数据;其中,电池与探测器构成电性连接。
进一步的,钻杆设备包含一个凿岩台车。
进一步的,交互装置包含一个手机、笔记本计算机、平板电脑、台式计算机或者PDA设备。
进一步的,探测器包含一个摄像头以使探测装置与交互装置之间传输钻孔内部的图像数据。
进一步的,存储器包含一个可更换的存储介质卡以使探测装置通过存储介质卡将数据传输至交互装置。
进一步的,探测装置还包含:数据接口,用于使探测装置与交互装置构成即时的数据交互。
进一步的,探测装置还包含:处理器,用于存储或处理探测器采集的数据;其中,数据接口与处理器构成电性连接。
进一步的,探测装置还包含:测距器,用于采集探测器在钻孔中的位置数据;其中,测距器与处理器构成电性连接。
进一步的,探测装置还包含:通讯器,用于使处理器与外部构成无线通讯;其中,通讯器与处理器构成电性连接以使探测装置通过通讯器与交互装置构成数据交互。
进一步的,探测装置还包含:充电接口,用于为电池充电引入电能;其中,充电接口与电池构成电性连接。
进一步的,探测装置还包含:探照灯,用于提供钻孔内所需的光源;调节器,用于调节探照灯的亮度;其中,电池至少与探照灯和调节器中的一个构成电性连接。
作为本申请的第五方面,本申请的一些实施例提供了一种探测装置,包括:探测器,用于检测钻孔内部的探测数据;电池,用于为探测器和测距器供电;其中,探测装置还包含或连接有:存储器,用于存储摄像头所采集的图像数据和测距器所采集的位置数据;数据接口,用于使探测装置与外部构成即时的数据交互;安装接口,用于使探测装置安装至一个能够伸入钻孔的长杆;其中,数据接口设置在探测器和安装接口之间。
进一步的,电池设置在探测器和安装接口之间。
进一步的,电池设置在数据接口和安装接口之间。
进一步的,探测装置还包含或连接有:测距器,用于采集探测器在钻孔中的位置数据;其中,测距器设置在电池和探测器之间。
进一步的,探测装置还包含或连接有:处理器,用于存储或处理探测器采集的数据;其中,处理器设置在电池和探测器之间。
进一步的,探测装置还包含或连接有:通讯器,用于使处理器与外部构成无线通讯;其中,通讯器设置在电池和探测器之间。
进一步的,探测装置还包含或连接有:探照灯,用于提供钻孔内所需的光源;其中,探照灯设置在探测器端部和数据接口之间。
进一步的,探测装置还包含或连接有:充电接口,用于为电池充电引入电能;其中,充电接口设置在安装接口和数据接口之间。
作为本申请的第六方面,本申请的一些实施例提供了一种探测装置,基于上述的探测***;其中,探测方法包括:将探测装置安装至钻杆设备的钻杆;使钻杆带动探测装置伸入至钻孔采集数据;使钻杆退出钻孔并拆卸探测装置整体或至少一部分;使探测装置的整体或至少一部分与交互装置构成数据交互从而向用户显示探测装置所采集的数据。
本申请的有益效果在于:提供了一种能够独立进行数据采集和存储从而提高探测效率的探测***及其探测装置和探测方法。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。
另外,贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。
在附图中:
图1是根据本申请一种实施例的探测***的示意图;
图2是根据本申请一种实施例的探测装置伸入钻孔的示意图;
图3是根据本申请一种实施例的探测装的使用方法的主要步骤示意图;
图4是根据本申请一种实施例的探测装置的结构示意图;
图5是图1所示的探测装置的剖视图;
图6是图1所示的探测装置另一视角的剖视图;
图7是图1所示探测装置中电池的一种安装方式示意图;
图8是图1所示探测装置中部分结构的***视图,主要示出了电路板等结构;
图9是图1所示探测装置中电池的另一种安装方式示意图;
图10是图1所示探测装置中摄像器包含超声雷达时的剖视图;
图11是图1所示探测装置中摄像器包含摄像头时部分结构的***视图;
图12是图1所示探测装置中摄像器包含摄像头时第三舱壳的剖视图;
图13是图12所示的摄像头在投影平面上的投影示意图;
图14是图1所示探测装置中第二舱室的剖视图;
[根据细则91更正 26.10.2023]
图15是图1所示探测装置包含UWB芯片时的剖视图;
图16是图1所示探测装置中包含测距轮滑动设置在壳间支架时的剖视图;
图17是图16所示探测装置中滑块与测距轮的连接关系示意图;
图18是图1所示探测装置中包含测距轮通过支撑摆臂以第一种连接方式连接至壳间支架时的结构示意图;
图19是图18所示探测装置中部分结构的剖视图;
图20是图18所示的探测装置中部分结构的***视图,主要示出了镂空空间等结构;
图21是图1所示探测装置中包含测距轮通过支撑摆臂以第二种连接方式连接至壳间支架时的结构示意图;
图22是图1所示探测装置设置两组测距轮时的结构示意图;
图23是图1所示探测装置中测距轮通过与滑槽和扭簧配合连接至壳间支架时部分结构的***视图;
图24是图23所示探测装置中部分结构的剖视图;
图25是图1所示的探测装置中包含测距轮活动设置在壳间支架时的剖视图;
图26是根据本申请一种实施例的探测装置的剖视示意图;
图27是图26中局部结构示意图;
图28是图26的***示意图;
图29是根据本申请一种实施例的探测装置的外观示意图;
图30是图29的剖视结构示意图;
图31是根据本申请一种实施例的探测装置的架构示意图;
图32是根据本申请另一种实施例的探测方法的主要步骤的示意图;
图33是根据本申请一种实施例的探测装置所采集的图像数据和定位数据的结合数据的示意图;
图34是根据本申请一种实施例的探测装置带有扶正器时的尺寸示意图;
图35是根据本申请一种实施例的探测装置除去扶正器时的尺寸示意图;
图36是根据本申请一种实施例的探测装置对应的遥控器的示意图;
图37是根据本申请一种实施例的探测装置所采集数据合成为三维图像的示意图。
附图中各附图标记的含义:
100、探测装置;
101、探测器;101a、超声雷达;101b、摄像头;101c、光源;101d、透光罩;
102、数据接口;102a、视频接口;102b、内存卡槽接口;
103、壳体;103a、开孔;103b、内螺纹;103c、第一舱壳;103d、第二舱壳;103e、固定螺栓;103f、第三舱壳;103g、护罩;
104、电池;
105、电路板;
106、第一端子;
107、第二端子;
108、充电接口;
109、调节开关旋钮;
110、可变电阻;
[根据细则91更正 26.10.2023]
111、UWB芯片;
112、测距轮;
113、光栅编码器;113a、编码盘;113b、光电传感器;113c、处理器;
114、壳间支架;114a、滑槽;114b、滑块;114c、支撑弹簧;114d、镂空空间;114e、线槽;
115、支撑摆臂;
116、扭簧;
117、扶正器;
118、轮架;
119、轮架;
120、滑槽;
121、扭簧;
a1、第一直线方向;a2、第二直线方向;L1聚焦直线;L2、辅助直线;P1、投影平面;A、视场角; B、横向极限距离;C、滚轮的直径;D、滚轮的宽度;E、壳体的宽度;
200、探测***;
201、钻杆设备;
202、探测装置;
203、交互装置;
1、围岩;2、钻杆;3、可伸缩弹性轮;4、光栅编码器;5、外部数据接口;6、储存单元;7、可充电电池;8、柔性扶正器;9、探头;10、摄像头;11、LED灯;
300、探测器;301、摄像头;302、探照灯;303、测距器;304、处理器;305、存储器;306、数据接口;307、电池;308、通讯器;309、调节器;310、充电接口;
600、探测装置;601、摄像头;602、转动支架;603、摆动支架;604、转动舵机;605、摆动舵机;606、壳体;
700、探测装置;701、蓝牙模块;702、控制按钮。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例。相反,提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
下面将参考附图并结合实施例来详细说明本公开。
参照图1所示,本申请的探测***200包括:钻杆设备201、探测装置202、交互装置203。
其中,钻杆设备201具有一个能伸入钻孔的钻杆;探测装置202可拆卸的连接至钻杆端部以随着钻杆进入至钻孔内部进行检测;交互装置203用于接收或读取探测装置202中的数据从而至少以显示的方式反馈至用户;其中,在第一使用状态时,钻杆设备201与探测装置202构成物理连接;在第二使用状态时,探测装置202与交互装置203构成数据交互。
更具体而言,钻杆设备201可以被构造为凿岩设备,比如凿岩台车。交互装置203包含一个手机、笔记本计算机、平板电脑、台式计算机或者PDA设备。
作为具体方案,本申请还提供了一种基于以上探测***200的探测方法,该探测方法包括:
S1:将探测装置202安装至钻杆设备201的钻杆。
S2:使钻杆带动探测装置202伸入至钻孔采集数据。
S3:使钻杆退出钻孔并拆卸探测装置202整体或至少一部分。
S4:使探测装置202的整体或至少一部分与交互装置203构成数据交互从而向用户显示探测装置202所采集的数据。
具体而言,步骤S1中可以利用螺纹连接实现安装,当然也可以采用其他连接的方式比如卡盘的方式实现安装。在步骤S2中一边进行探测数据采集一边进行位置数据的采集,从而将探测数据与位置数据进行对应。作为优选方案,探测数据包含图像数据。
图2示出了一种实施例的探测装置安装至钻杆2时的方案。探测装置包括位置记录模块、仪器仓、探头9和柔性扶正器8。
钻杆2是中间为空心,两端分别有公、母螺纹,凿岩台车(图中未画出)通过自动加接钻杆将整体装置送入孔内;
位置记录模块由可伸缩弹性轮3、光栅编码器4、电子电路和储存单元6组成。可伸缩弹性轮3与孔壁接触,可伸缩弹性轮3旋转的同时带动光栅编码器4的轮子旋转,光栅编码器4记录旋转的角度,通过计算转换成录像装置在孔内的直线位移,根据设置的起始点,可确定录像装置在孔内的位置。光栅编码器4将物理位移信号转换成电信号后通过电子电路传输至储存单元。
仪器仓为一空心圆筒形,左端通过螺纹与钻杆2连接,右端通过螺纹与探头9连接。仪器仓内有可充电电池7、储存单元6、电子电路和外部数据接口5。可充电电池7用于给光栅编码器4和探头9供电,储存单元6用于记录光栅编码器4检测的位置信息和探头9录制的视频。工作时,外部数据接口5用橡胶塞堵住,装置提出至孔口时,打开橡胶塞,***U盘,读取视频数据,同时外部数据接口5也是可充电电池的充电接口。
探头9由QSP2型材加工,直径小于55mm,前置树脂玻璃密封和耐压。定向俯角360度,水平155度,防光折射,耐压3MPa以上。视频传输模块为AHD传输模块,水下可见度大于0.5m。探头用于录制全孔视频,并通过AHD传输模块将录制的视频传输至储存单元。
柔性扶正器8用于扶正探头9,使其位于钻孔中心位置,由梭形橡胶做成。
考虑到超前孔为冲击孔,孔壁不光滑,则在摄像头前端装上梭形的柔性扶正器,既能保证摄像头在孔内的中心轴上,又能防止摄像头在移动过程中卡顿。在装置后端装上可伸缩性弹性轮,使滚轮可以紧贴孔内壁,防止打滑现象导致位移测量不准确,在遇到障碍时也能顺利通过。为进一步减小位移测量的误差,在后端安装三个可伸缩弹性轮,每一个滚轮上安装一个观点编码器,分别计算位移,然后取三者的平均值。
如图2所示,本发明实施例提供的凿岩台车超前地质预报孔视频探测方法包括:
S101:当形成的冲击孔后,提出钻头,将视频探测装置通过螺纹连接在钻杆前端,一段一段地送入孔内;
S102:光栅编码器设置为反转,反转不发出脉冲信号,当到达孔底后,开始往外连续提拉钻杆,可伸缩弹性轮正转,开始发出脉冲信号;
S103:可伸缩弹性轮旋转的同时带动光栅编码器的轮子旋转,光栅编码器记录旋转的角度,通过计算转换成视频探测装置在孔内的直线位移,根据设置的起始点,可确定录像装置在孔内的位置;
S104:光栅编码器将物理位移信号转换成电信号后通过电子电路传输至存储单元;
S105:探测完成后,结合计算的位移,将图像进行孔内位置的标定,根据图像获取地层裂缝、构造信息,部分信息需人工干预对数据进行处理后得到结果加入报告中,最终用户得到图像及文字分析报告。
通过采用拖动过程中弹性轮的转动,编码器计数的方式测量位移,实现超前孔内摄像头的定位,从而确定某一地质特征的位置。编码器采用光电编码器,是一种通过光电转换将输出轴上的机械转动转换成脉冲或数字量的传感器,由光源、光码盘和光敏元件组成。光源为一个发光二极管,与光敏原件二者分布在光栅盘的两侧,光栅盘为一定直径的开孔圆板,与被测量的转轴同轴。当在光栅盘上开一个孔时,光栅盘转动一圈,光敏元件就检测到一个信号,表示转轴转动一圈。记录脉冲信号为m,滚轮的直径为D,则装置的位移为L=Π*m*D。
相对传统大口径竖井而言,凿岩台车超前地质预报孔具有口径小(直径只有φ64mm)、接近水平状态等特点,这将给孔内成像带来具大的挑战。需要研发小口径高清探头;需要利用凿岩台车将探头自动送入水平超前探测孔内(为了施工安全,掌子面不允许有施工人员);探头录制的视频图像要确定其方位及相对孔口的深度。上述这些是本发明的技术难点,其优点是方法简单、直观、工期短、且成本低,作为凿岩台车的一个补充装备,可大幅度提高施工安全性。
参考图4至图25,本申请的一些实施例提供的一种探测装置100,包括:探测器101、数据接口102、壳体103、第一端子106、第二端子107、充电接口108。
探测器101用于采集探测数据。数据接口102用于传输探测数据。壳体103用于固定数据接口102。
探测器101设置于壳体103的前端,在壳体103被外部诸如凿岩钻孔设备等机器设备驱动而推入钻孔内后,使探测器101能够在钻孔各深度位置处采集探测数据。壳体103的后端形成有用于使探测装置100结合至一个钻杆的安装接口,也即探测装置100能够通过安装接口连接至凿岩钻孔设备的钻杆,从而在钻杆的驱动下推入钻孔内。
考虑到凿岩钻孔设备的钻杆端部一般具有用于连接钻头的外螺纹,因此,参考图4,安装接口可被构造为设于壳体103后端的开孔103a,并在开孔103a内设置内螺纹103b,以便将探测装置100整体通过螺纹连接的方式结合至钻杆一端。
也可将安装接口构造为采用卡口连接,铆接,焊接,过盈配合等方式固定到诸如凿岩钻孔设备等能够驱动探测装置100在钻孔内移动的外部设备上,或是在安装接口处采用卡口连接,铆接,焊接,过盈配合等方式固定到一个能连接前述的驱动探测装置100在钻孔内移动的外部设备的接头上,以通过这些外部设备来驱动探测装置100移动。本发明创造中示意的内螺纹103b应视为对壳体103与外部设备连接方式的举例说明,而不应视作壳体103仅能通过内螺纹103b可拆卸地固定连接至外部设备。
对应的,凿岩钻孔设备应视为对驱动探测装置100在钻孔内移动的外部设备的举例说明,而不应视作探测装置100仅可与凿岩钻孔设备配合来完成探测工作。
数据接口102设置在探测器101和安装接口之间,从而在探测装置100离开钻孔后,使外部能够接收探测数据的终端设备可从数据接口102处调取探测数据。
通过以上方案,利用数据接口102连接到外部终端来调取探测数据,相较于现有的仅施工时实时获取图像的方式,探测结束后可根据需要调取图像数据,对拍摄的图像的调取更为方便。能够给用户留足分析钻孔地质构造的时间,因而能够更好地指导后续的勘探、***等工作。
探测装置100可通过外部电源供电。但优选的,探测装置100包括:电池104和电路板105。电池104用于为探测器101供电。为安装电池104,限定壳体103包含:第一舱壳103c。第一舱壳103c用于容纳电池104,即电池104安装在壳体103内,利用壳体103保护电池104,使探测装置100能够内置电池104。这种探测装置100无需外部电源供电即可使探测器101完成采集探测数据的工作。
具体实施方案中,为使数据接口102完成数据传输,探测装置100包括:电路板105。电路板105用于与数据接口102构成电性连接。为安装电路板105,限定壳体103包含:第二舱壳103d。第二舱壳103d用于容纳电路板105,使电路板105随探测装置100同步移动。第一舱壳103c与第二舱壳103d构成可拆卸的固定连接。
通过以上方案,探测装置100在钻孔内探测过程中无需从外界拉取电源线为探测器101供电,便于现场施工。且探测结束后第一舱壳103c可与第二舱壳103d分离,以便对第一舱壳103c内的电池104充电或是更换电池104。而数据接口102仍保持与电路板105的电性连接,因而能够独立使用来调取探测数据,或是利用外部电源或其他电池104供电而使数据接口102正常使用。
作为使电池104与探测器101实现电性连接的具体方案,探测装置100还包括:第一端子106和第二端子107。其中,第一端子106安装至第一舱壳103c且与电池104构成电性连接。第二端子107安装至第二舱壳103d且与探测器101构成电性连接。第一舱壳103c与第二舱壳103d构成固定连接时第一端子106和第二端子107接触以构成电性连接,也即通过第一端子106使电池104电性连接至第二端子107,进而通过线缆或焊接等方式使电池104电性连接至探测器101。
第一舱壳103c与第二舱壳103d之间可通过螺纹连接,卡扣连接,孔眼销轴配合、过盈配合等方式构成可拆卸的固定连接。
参考图7与图8,示例了第一舱壳103c与第二舱壳103d构成螺纹连接时,第一端子106和第二端子107的具体可实施的技术方案:第一端子106被构造为若干形成于一PCB板的导电金属环,各金属环同心设置且分别电连接至电池104的电极。对应的,第二端子107被构造为若干形成于另一PCB板的可伸缩金属端子,金属端子相对PCB板伸缩的具体方式可以是在二者之间设置弹簧等。金属端子电连接至探测器101。在第一舱壳103c的一端旋紧至第二舱壳103d的过程中,金属端子与同心设置的导电金属环接触,从而在第一舱壳103c在第二舱壳103d一端固定安装好后,第一端子106与第二端子107保持接触,实现电池104与探测器101的电性连接。
参考图6,可设置为第一舱壳103c固定在探测器101与第二舱壳103d之间,此时第一舱壳103c一端可设置一组第一端子106和第二端子107来完成与探测器101的电性连接。第二舱壳103d可进一步设置另一组第一端子106和第二端子107,并使该组第一端子106和第二端子107中的一个电性连接至探测器101,另一个电性连接至电路板105,以实现探测器101与数据接口102之间的电性连接。
参考图7,也可设置为在第一舱壳103c形成安装接口,也即第一舱壳103c设置在探测装置100远离探测器101的一端,并能够通过安装接口与外部设备结合。
探测装置100可包括:充电接口108。其中,充电接口108用于引入电池104充电所需的电能。充电接口108与电池104构成电性连接,也即此时电池104选用可充电电池104,如锂电池104等。充电接口108可设置在第二舱壳103c上,并通过第一端子106与第二端子107的配合实现与电池104的电性连接。
参考图7,充电接口也可设置在第一舱壳103c朝向第二舱壳103d的端部以在第一舱壳103c与第二舱壳103d构成固定连接时位于壳体103的内部。即正常使用探测装置100时,能够利用壳体103对充电接口108进行防护。而在探测结束后,可通过分离第一舱壳103c与第二舱壳103d使充电接口108暴露在外,从而利用充电接口108外接一电源来对电池104充电。
参考图9,当安装接口被构造为设于壳体103后端的开孔103a时,可使第一舱壳103c容纳电池104的腔室可被构造为与开孔103a连通。此时无需设置充电接口108,而是能够从开孔103a处将电池104取出来更换或充电。且可进一步在第一舱壳103c上设置一固定螺栓103e,在将电池104放入第一舱壳103c容纳电池104的腔室内后,通过旋紧固定螺栓103e来锁定电池104,将其固定在第一舱壳103c内。
壳体103还包括:第三舱壳103f。其中,第三舱壳103f用于容纳探测器101的至少一部分。第二舱壳103d设置在第一舱壳103c和第三舱壳103f之间。也即第三舱壳103f设置在探测装置100的前端,并利用第三舱壳103f来固定安装探测器101。
第三舱壳103f可拆卸固定连接至第二舱壳103d,以便能够根据后续施工需要来更换不用类型的探测器101,从而选择探测器101采集的探测数据的类型。
例如,参考图10,探测器101可被构造为设置于第三舱壳103f前端的超声雷达101a,毫米波探测仪,热成像仪等,以使探测装置100在钻孔内移动的过程中,对应获取超声成像数据,毫米波成像数据,热成像数据等。
参考图11与图12,探测器101可被构造为包含:摄像头101b。其中,摄像头101b用于采集图像数据,此时能够利用摄像头101b采集的图像数据,使用户了解钻孔内凸起,凹槽,孔壁裂缝等信息。
第三舱壳103f前端可设置光源101c。光源101c与电池104构成电连接,从而利用电池104向光源101c供电,利用光源101c在钻孔内照明,使摄像头101b获得较为清晰的图像数据。
摄像头101b优选采用鱼眼摄像头101b,能够获得较大的视场角,以获得更大的拍摄范围。
光源101c可选用若干LED灯,且LED灯设置于摄像头101b***。此时光源101c更接近钻孔孔壁,以增强对孔壁的照明。
相关技术中,摄像头的透镜的中心与摄像头能够拍摄到的最大范围的边线的连线形成的角度叫做摄像头的视场角,摄像头的视场角越大则说明摄像头能够拍摄的范围越大。
在对岩孔进行拍摄时,如不考虑其他因素,摄像头101b的视场角越大越好。若要想获得更大的视场角,需要特定的摄像头101b,还需要将摄像头101b从第三舱壳103f的第一端S1尽量的往远离第三舱壳103f第二端S2的方向设置以减少第三舱壳103f安装摄像头101b时对摄像头101b的遮挡。但这无疑会导致摄像头101b伸出第三舱壳103f越远,其与第三舱壳103f的连接强度越低的问题的出现,且摄像头101b受到岩孔中可能会掉落的碎石撞击的概率也越大。因此,选用合适视场角的摄像头101b以及摄像头101b到第三舱壳103f的最小距离是亟需解决的问题。
在本实施方案中,参考图13,定义了摄像头101b透镜中心到焦点的连线所在直线为聚焦直线L1,并限定摄像头101b的视场角A的度数与第三舱壳103f在垂直于聚焦直线L1的辅助直线L2上的最大距离的比值范围是22.5至43,如,25、30、35、40、43,第三舱壳的宽度可根据岩孔的孔径选取。例如,第三舱壳103f在辅助直线L2上的最大距离(即第三舱壳的宽度)取用6.4厘米时,摄像头的视场角A的取值范围可选144°至275.2°。此时是根据第三舱壳103f垂直于其长度方向的宽度方向上的最大距离与选取的摄像头101b的视场角A的度数的比值来确定摄像头101b的视场角的大小。
在本实施例中,可根据市面上已有的摄像头的参数,优选采用视场角为150°至270°的摄像头。
也可以根据第三舱壳103f第一端S1距离摄像头101b最远端的距离来确定摄像头101b的视场角的大小。根据实验结果测得,当本实施例中第三舱壳的最大直径选择为6厘米时,参考图13,选取摄像头101b的视场角A的角度在220°左右,能够拍摄到较为清晰完整的岩孔内部的结构细节。
参考图12,可在第三舱壳103f前端固定设置透光罩101d,并将摄像头101b设置于透光罩101d与第三舱壳103f合围形成的保护空间内。透光罩101d可选用透明亚克力,玻璃等材料制成,其前端被构造为半球形,以降低对摄像头101b拍摄的干扰,并形成类似“蛋壳”的结构,尤其对于在山体上横向开设的钻孔等进行探测时,孔壁上容易掉落碎石,设置透光罩101d能够防止孔壁处掉落的碎石磕碰摄像头101b。
光源101c设置在透光罩101d***,降低光源101c发出的光线直接在透光罩101d内因反射而聚集导致摄像头101b拍摄的图像过曝的可能性。
摄像头101b拍摄图像的部位以及透光罩101d相对于光源101c位于第三舱壳103f的前端,例如可使第三舱壳103f的部分外壁面凸出于光源101c设置,而摄像头101b和透光罩101d设置于该凸出的壁面前端。此时可通过第三舱壳103f的壁面来反射或吸收光源101c向摄像头101b直射的至少一部分光线,进一步降低摄像头101b成像过曝的可能性。
透光罩101d在穿过聚焦直线L1的投影平面P1上投影的最远端到第三舱壳103f远离第二舱壳103d的一端在投影平面P1上投影的最小距离的范围是15毫米至25毫米,具体的取值可以为:15毫米、17毫米、18毫米、19毫米、20毫米、22毫米、25毫米。透光罩101d若设置的距离第三舱壳103f太远,其连接处的连接强度则会受到影响,当岩孔中有落石从孔壁上掉落时有可能会将透光罩101d损坏;当透光罩101d距离第三舱壳103f第一端S1太近时,又无法满足摄像头220的视场角的要求。透光罩101d在投影平面P1上投影的最远端到第三舱壳103f的第一端S1在投影平面P1上投影的最小距离的为15毫米至25毫米时,能够同时满足上述两种情况的要求。
第一舱壳103c/第二舱壳103d/第三舱壳103f上可设置调节开关,调节开关电性连接至电池104和探测器101之间,以通过控制调节开关来控制探测器101与电池104之间的电路通断。
调节开关可电性连接至光源101c和电池104,以通过调节开关调节电池104与光源101c之间电路的通断和光源101c照明时的亮度。调节开关优选设置在第二舱壳103d上。例如,参考图14,调节开关包含转动设置在第二舱壳103d上的旋钮和位于第二舱壳103d内部的与旋钮相连的可变电阻110。可变电阻110与电路板105电连接,并通过电路板105电连接至电池104和光源101c。如此,通过转动旋钮改变可变电阻110的阻值,即可调节光源101c的亮度。
作为一种具体可实施的方案,数据接口102包含:读写器和视频接口102a。
读写器和视频接口102a分别通过线缆或焊接与所述电路板105构成电性连接。其中,读写器用于将图像数据读写至一个存储介质,存储介质可以是SD卡,TF卡、焊接至电路板105上的内存颗粒等。当存储介质为焊接至电路板105的内存颗粒时,读写器可被视为组合若干内存颗粒的存储芯片。当存储介质为SD卡,TF卡等时,读写器可被构造为固定设置在第二舱壳103d上的供存储介质***的内存卡槽接口102b,从而在存储介质存储了探测器101采集的探测数据后,能够将存储介质从读写器取下,此时可将存储介质安装到可读取探测数据的终端设备上,实现探测数据的脱机使用。
视频接口102a用于将图像数据传输至一个外部显示设备。视频接口102a可以是HDMI接口,type-c接口等,利用对应的数据信号线连接至显示设备后,即可调取图像数据。且能够在探测装置100正式探测前,通过视频接口102a外接至显示设备来调试摄像头101b以及光源101c的亮度,确保摄像头101b进入钻孔后能够采集较为清晰的图像数据。
参考图14,视频接口102a和内存卡槽接口102b优选固定设置在第二舱壳103d上,以使二者在空间上更接近电路板105从而简化二者与电路板105之间的电路。在第二舱壳103d固定设置视频接口102a和内存卡槽接口102b的部位的外部可设置与壳体103构成可拆卸固定连接的护罩103g。护罩103g环绕于视频接口102a或卡槽的外部,以对二者形成保护。也可在调节开关外部设置护罩103g。
为使探测数据更为实用,可在第二舱壳103d和第三舱壳103f之间设置能够获取探测装置100在钻孔内位置信息的零部件,以将位置信息与获得的探测信息对应,便于后续在调取探测信息时,能够明确孔壁裂缝等在钻孔内的具***置。
[根据细则91更正 26.10.2023]
参考图15,获取探测装置100位置信息的零部件可以采用固定设置在壳体103内部的与电路板105和存储介质电性连接的UWB芯片111,此时,可在钻孔外设置UWB发射或接收终端,从而在UWB芯片111与钻孔外的终端的配合下,利用UWB通讯定位技术采集探测装置100的位置信息。本方案未对UWB通讯定位技术本身作出技术改进,其结构和技术原理这里不再赘述。
作为采集探测装置100位置信息的另一种具体可行的实施方案,探测装置100还包括:测距轮112和光栅编码器113。其中,测距轮112可转动的连接至壳体103,探测装置100在钻孔内移动过程中,测距轮112接触钻孔孔壁并在孔壁处滚动。光栅编码器113包含一个能与测距轮112联动的编码盘113a和一个检测编码盘113a转动的光电传感器113b,从而在测距轮112滚动时带动编码盘113a转动,进而利用光电传感器113b获知编码盘113a转过的角度,后续通过计算获知编码盘113a转动时滚轮相应在孔壁处滚动的距离,即可获知探测装置100在钻孔内的位置信息。
光栅编码器113还包括与光电传感器113b电性连接的处理器113c,从而在测距轮112滚动时,利用电池104向光栅编码器113供电,使光电传感器113b采集编码器转过的角度,并向处理器113c发送电信号,处理器113c根据电信号计算即可得出滚轮滚动的距离,以获知位置信息。
光栅编码器113采用光栅测距技术测得测距轮112滚动的距离。本申请未构成对光栅测距技术的原理作出的实质性改进,其原理文中不再赘述。但光栅编码器113工作时,外部光环境会干扰测距的准确性,因而将光电传感器113设置于壳体103的内部,以降低外界环境光等对测距结果的干扰。
对应的,壳体103还包含:壳间支架114。壳间支架114用于安装测距轮112和光栅编码器113。
例如,参考图16与图17,壳间支架114上设有滑槽114a,且壳间支架114的滑槽114a内滑动设置滑块114b。测距轮112转动连接至滑块114b且测距轮112至少部分伸出滑槽114a外,以使测距轮112能够接触钻孔孔壁。编码盘113a转动设置在滑块114b内部,并通过带传动或其他传动方式与测距轮112联动。光电传感器113b固定设置在滑块114b内部,且与电路板105、电池104构成电性连接。处理器113c可设置在滑块114b内部,也可焊接于电路板105上。滑块114b与滑槽114a的槽壁之间设置有若干支撑弹簧114c,以通过支撑弹簧114c向滑块114b提供弹性力,使探测装置100在钻孔内移动过程中,测距轮112与钻孔孔壁保持接触而滚动。此时,即可实现在滚轮滚动过程中获知探测装置100的位置信息。
壳间支架114位于安装接口与第三舱壳103f之间,优选壳间支架114设置在第二舱壳103d和第三舱壳103f之间,以使测距轮112相对更接近探测器101,此时测距轮112接触钻孔孔壁所测得的距离与探测器101采集探测数据时在钻孔内所处的深度位置更为接近。
壳间支架114设置在第二舱壳103d和第三舱壳103f之间以在第二舱壳103d和第三舱壳103f之间形成一个容纳测距轮112的镂空空间114d。镂空空间114d的设置使得钻孔内的碎石等杂质能够通过,减少杂质在壳间支架114处的堆积,从而降低测距轮112被杂质卡住的可能性,进而使测距轮112移动顺畅。
在设置了镂空空间114d的基础上,与在壳间支架114上设置滑块114b来安装测距轮112的方案不同,可采用如下具体可行的实施方案来将滚轮安装至壳间支架114。
参考图18至图22,探测装置100还包括:支撑摆臂115和弹性部件。其中,支撑摆臂115两端分别与测距轮112和壳间支架114构成转动连接。弹性部件设置在支撑摆臂115和壳间支架114之间以偏压支撑摆臂115运动至相对壳间支架的预设位置。支撑摆臂115至少部分容纳在镂空空间114d中。弹性部件可被构造为设置于支撑摆臂115和壳间支架114之间的扭簧116。也即滚轮接触钻孔孔壁并摆动的过程中,扭簧116对其施加弹力,使其具有相对壳间支架114摆动至预设位置的趋势。具体来说,滚轮处于预设位置时,其至少部分位于伸出壳间支架114外,以使滚轮接触钻孔孔壁。如此,即可使滚轮保持与钻孔孔壁接触。
对应的,此时编码盘113a转动设置在壳间支架114内部,并通过带传动或其他传动方式与测距轮112联动,且编码盘113a的转动中心与支撑摆臂115相对壳间支架114转动的转动中心重合。光电传感器113b固定设置在壳间支架114内部,且与电路板105、电池104构成电性连接。
参考图18与图21,作为可选方案,支撑摆臂115连接壳间支架114的一端相对于其连接测距轮112的一端靠近第二舱壳103d设置,或是靠近第三舱壳103f设置。
参考图22,作为一种可选方案,可在壳间支架114上设置两组测距轮112,其中一组测距轮与编码盘161联动,另一组测距轮则不与编码盘161联动,且两组测距轮分别位于壳间支架114的两侧,以使探测装置100移动更为平稳。
参考图23与图24,作为一种可选方案,测距轮112可以不采用支撑摆臂115,而直接通过测距轮112的轮轴嵌入到轮架118、119,然后再将轮架嵌入到壳间支架114内侧设有的滑槽120中,并且采用扭簧121向轮架118施加弹性力。至于光栅编码器113仍采用前述方案。
在设置了壳间支架114时,可使壳间支架114的两端通过螺纹连接等可拆卸固定连接的方式分别连接至第二舱壳103d和第三舱壳103f。此时,在壳间支架114的两端分别设置第一端子106或第二端子107,在壳间支架114内部可设置线槽114e,以通过线缆电连接位于支架的两端的第一端子106或第二端子107。而在第二舱壳103d与第三舱壳103f对应连接壳间支架114的一端设置第二端子107或第一端子106,以实现电池104、电路板105、光栅编码器113、探测器101等零部件的电连接。
采用以上方案,可根据需要来安装采集位置信息的零部件,或是直接使第二舱壳103d和第三舱壳103f连接来单独采集探测数据。
根据本实施例的技术方案,提供的探测装置100能够在探测结束后调用探测数据,实现与相关技术的在线式探测方式不同的离线式钻孔内部信息探测方式。可根据需要获取不同类型的探测数据,以及与探测数据对应的位置信息,能够灵活地适用于多种不同的施工现场。
可选的,在第三舱壳103f的外部可固定设置扶正器117,扶正器117由橡胶,硬质塑料等材料制成,探测装置100在钻孔内移动过程中,通过扶正器117可接触钻孔孔壁,以减少探测装置100移动时的晃动,使采集的探测数据更实用,例如使摄像头101b相对平稳地移动,以使拍摄地图像相对清晰。
在此基础上,可在探测装置100设置安装接口的一端外部同样固定安装扶正器117,以使探测装置100能够移动更平稳。
在本实施例中,探测装置100设有安装接口的一端向设置探测器101的一端延伸的方向为探测装置100的长度方向,探测装置100的长度方向为第一直线方向a1。也即探测器101设置在探测装置100的前端,安装接口设置在探测装置100的后端。使探测装置100在钻孔内移动时,探测器110在探测装置100一端采集钻孔内部信息。
在本实施例中,参考图25,限定测距轮112的直径C的取值范围为20mm至60mm,并定义:测距轮1112活动连接至壳体103时使测距轮112相对壳体103具有第一极限位置和第二极限位置。测距轮112在第一极限位置和第二极限位置时其转动轴线之间的距离在垂直于第一直线方向a1的第二直线方向a2的分量定义为测距轮112的横向极限距离B。
为使测距轮112的滚动距离能够代表探测装置100在钻孔内所处的深度位置,在本实施例中限定测距轮112的直径C大于等于测距轮112的横向极限距离B。也即测距轮112的直径不小于测距轮112在探测装置100宽度方向的可活动距离,以使探测装置100在钻孔内移动时测距轮112能够与钻孔孔壁保持接触。采用以上方案,使得测距轮112滚动的距离与探测装置100在钻孔内的深度位置相匹配。
具体来说,可限定测距轮112的直径C与测距轮112的横向极限距离B的比值的取值范围为1.0至4.0,例如测距轮112的直径与测距轮112的横向极限距离B的比值可取用1.0、1.5、2.0、2.5、3.0、3.5、4.0等。实际生产制造时,例如测距轮112直径设置为42mm,则测距轮112的横向极限距离B可近似取10.5mm至42mm。
测距轮112自身参数也对测距轮112的平稳移动有所影响,若测距轮112过宽而直径过小,或是测距轮112过窄而直径过大,都使测距轮112易受孔壁的碎石影响而移动不平稳,或是容易因磕碰而损坏。因而在本实施例中,可限定测距轮112的直径C与测距轮112的宽度D的比值的取值范围1.2至3.3。例如测距轮112直径设置为42mm时,其宽度或厚度尺寸近似取13mm至35mm。
为使测距轮112移动平稳,可限定测距轮112处于第一极限位置和第二极限位置时测距轮112的外缘位于壳体103的同侧,也即测距轮112不至于从壳体103宽度方向的一侧活动至另一侧,从另一角度限定了测距轮112活动时的横向极限距离B。
测距轮112的尺寸参数可进一步与壳体103的参数匹配。如壳体103的宽度E大于等于测距轮112的宽度D,以使壳体103本身具有足够的强度来支撑安装测距轮112。具体来说,壳体103的宽度E与测距轮112的宽度D的比值的取值范围为2.0至5.4。例如当壳体103宽度为64mm时,测距轮112的宽度可近似取12mm至32mm。
参照图26至图28所示,作为一种可选方案,探测装置600具有一个可以调节角度的摄像头601。
具体而言,改探测装置600还包括:转动支架602、摆动支架603、转动舵机604、摆动舵机605。
其中,摄像头601、转动支架602、摆动支架603、转动舵机604、摆动舵机605容纳在壳体606中。
其中,摄像头601安装至摆动支架603;摆动支架603与转动支架602构成转动连接,转动支架602相对壳体606构成转动连接,转动舵机604驱动转动支架602绕中心轴线转动,摆动舵机605驱动摆动支架604绕径向轴线转动,这样一来,摄像头601即可以调整拍摄的视角。
参照图29至图30所示,作为一种可选方案,探测装置700具有一个蓝牙模块701作为通讯器和一个控制按钮702。控制按钮702可以控制电池703对蓝牙模块701的供电,即可以通过控制按钮702控制蓝牙模块701是否通电工作。
参照图31所示,本申请的探测装置300包含:摄像头301、探照灯302、测距器303、处理器304、存储器305、数据接口306、电池307、通讯器308、调节器309、充电接口310。
其中,摄像头301用于采集钻孔内部的图像数据;探照灯302用于提供摄像头301采集图像数据所需的光源;测距器303用于采集摄像头301在钻孔内部推进时的位置数据;处理器304用于将图像数据和定位数据进行匹配;处理器304与摄像头301或/和测距器303构成电性连接,这种电性连接可以使直接的电性连接,也可以是间接的电性连接。作为优选方案,如图33所示,摄像头301所采集的图像数据为彩色图像数据。
存储器305用于存储摄像头301所采集的图像数据和测距器303所采集的位置数据;其中,存储器305与处理器304构成电性连接。存储器305与摄像头301或/和测距器303均构成电性连接。
如图31所示,作为具体方案,摄像头301、测距器303和数据接口306与处理器304构成直接的电性连接。摄像头301将图像数据传输至处理器304,测距器303将位置数据页传输至处理器304。
作为具体方案数据结构可以被构造为读写器,而存储器305可以采用可拆卸的TF卡等外置存储卡。
作为扩展方案,存储器305还包含一个内置存储介质,从而使处理器304即使在没有可拆卸的TF卡时也能进行数据存储和读写。可以同时采用外置TF卡和内置存储介质的方案,这样即可以获得持续性存储,又可以扩展存储空间。
作为扩展方案,数据接口306包括比如HDMI、DP以及VGA的视频接口,也可以是USB接口以使其即可以传输数据又可以实现充电,比如,TYPE-C接口。
也即,数据接口306既可以用于向外传输数据又可以用于向外传输摄像头301所采集的图像数据。
数据接口306与处理器304构成电性连接以使数据接口306向外传输匹配后的图像数据和位置数据的结合;数据接口306与存储器305构成电性连接。
测距器303可以采用上述的实体滚轮和光栅编码器的方案,也可以采用激光或其他无线通讯测距的方案。
电池307用于为摄像头301供电;电池307与摄像头301构成电性连接。更具体而言,电池307分别与摄像头301、处理器304、测距器303、充电接口310、探照灯302构成电性连接以为它们供电。充电接口310用于引入电池307充电所需的电能;其中,充电接口310可以与电池307构成直接或间接的电性连接。充电接口310也可以广义上认为可能被构造为一个无线充电线圈,从而使探测装置300能够进行无线充电。
作为具体方案,调节器309用于调节探照灯302的亮度;其中,调节器309与探照灯302构成电性连接。作为优选方案,调节器309可以为一个变阻器,并且电性连接在电池307和探照灯302之间,从而通过电阻的调整实现探照灯302的亮度调节。当然,作为可选方案,调节器309还可以作为信号源,调节器309可以与处理器304构成电性连接,处理器304可以调节供给到探照灯302的电压从而调节亮度。
作为具体方案,通讯器308用于与外部设备构成无线通讯;其中,通讯器308与处理器304构成电性连接。作为具体方案,通讯器308包括4G、5G的通讯器308或者是WiFi的通讯器308,通讯器308包括UWB标签装置等无线测距设备。
当通讯器308包含蓝牙模块时,可以通过蓝牙模块与交互装置进行数据传输。
作为优选方案,通讯器308包括UWB标签装置,凿岩设备包括UWB基站装置;其中,UWB标签装置和UWB基站装置构成信号交互从而实现对探测装置300进行定位。此时,通讯器308也可以作为测距器303。
作为本申请的另一方面,如图32所示,本申请还提供一种探测方法具体包括如下步骤:
S201:采集钻孔内的图像数据。
S202:采集摄像头在钻孔内部推进时的位置数据。
S203:存储摄像头所采集的图像数据和测距器所采集的位置数据。
S204:将图像数据和定位数据进行匹配。
S205:向外传输匹配后的图像数据和位置数据的结合。
其中,步骤S101可以采用手动触发或者测距触发。步骤S104匹配时处理器可以根据图像数据和定位数据绝对时间进行匹配。步骤S105输出的图像如图33所示。
再如如图34至图37所示,作为本申请的更为具体方案,设备参数如下表:

表1:设备参数
为了方便操作,视频探头配备了遥控器、HDMI高清数据线和充电器等。其中,遥控器如图36所示。遥控器可以通过通讯器与探测装置构成交互从而控制实现以下功能。当然遥控器可以由一个智能终端比如智能手机所代替。
其中,具体方案包括如下内容:
一般作业流程:
(1)顺时针旋转设备上的旋钮,打开设备并进行调光;
(2)连接显示器调试视频探头;
(3)将视频探头设备送入管道;
(4)录制视频或快照;
(5)完成作业后,将岩土孔探视频设备头从管道取出,连接显示器或拔出TF卡进行图像资料读取。
***菜单设置:
(1)视频播放
播放AVI视频或删除视频文件。
(2)图片回放
播放JPEG图片或删除图片文件。
(3)***设置
统设置内容
在启动设备之前***USB棒/微型SD卡时,可能设备找不到U盘/微型SD卡。在这种情况下,请删除它们,然后重试。
遥控器(用于操作DVR和SD卡录制):
(1)REC:开始录制。
(2)捕捉:捕捉照片按钮。
(3)向上:转到向上/上一个项目。
(4)左:选择左侧项目/快速后退。
(5)输入/确定:输入以查看和播放视频。
(6)右:选择右侧项目/快进。
(7)向下:选择向下/下一个项目。
(8)菜单:***设置和录制功能。
(9)停止:停止或从当前菜单中逃出。
(10)ESC:退出或返回按钮。
(11)播放:查看视频/图片。
(12)DEL:删除视频或照片文件。
DVR录制或捕捉图片操作:
(1)***微型SD卡打开设备电源,您可以在屏幕上看到微型SD卡连接。
(2)从遥控器电池上拿出隔离板。
(3)按遥控器按钮1"REC"启动录制。您可以在屏幕上看到DVR***录像机。再次按下"REC"按钮,可以进行分时录制。按按钮9"停止",停止录制。
(4)按按钮2"SNAP"捕捉图片。
注意:DVR***有时需要10-20秒进行重新定位才能正常工作,请让它每次尝试录制时运行大约20秒;微型SD卡最大内存为64G位。
录制时间限制:
有时,您可能会忘记在录制启动后停止录制。此单元具有录制时间限制。默认时间限制为30分钟。如果录制时间超过30分钟,***将用新文件进行录制。
通过微型SD卡进行录制:
该装置可用于通过微型SD卡录制视频和语音。录制的视频将存储在微型SD卡中,并在屏幕上播放。
视频录制格式:
默认视频录制分辨率为"良好"。用户可以选择"低"来节省存储空间。
视频播放:
(1)您可以使用屏幕菜单进入"视频播放"模式。该装置将显示存储在微型SD卡中的视频和其他兼容视频。不会列出不兼容的视频。
选择视频文件:
(2)当您进入"播放视频"模式时,该集将显示屏幕上的所有可用视频文件。
(3)您可以使用[▲]或[▼]按钮选择所需的视频,然后按[OK/ENT]按钮播放。
(4)按住[▲]或[▼]按钮可转到上一个或下一个视频。
(5)使用按钮开始或暂停播放。使用[ESC]按钮停止或返回上一个菜单。
(6)屏幕将显示"加载,请稍候..."播放视频前几秒钟。
快速转发和倒带:
您可以使用遥控器上的按钮快速转发或倒带(1x、2x、4x、8x、16x或32倍速度)。始终按[OK/ENT]按钮以恢复正常播放。
兼容的视频格式:
(1)Divx3.11/Divx4/Divx5/MPEG1/MPEG2/MPEG4(MPEG4视频文件格式:.avi,.m4v。MPG,MPEG,.VOB)
(2)设备的视频播放器可能不支持某些下载的视频.
1.2.12为电池充电
(1)将充电器***墙上的交流插座,然后将另一端***直流插孔。
(2)电池只能在设备关闭时充电。
(3)不要过度充电电池!过度充电可能导致电池酸泄漏或损坏。
如图27所示,根据采集的图像可以在交互装置中合成,从而获得图37所示的三维图像。
以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (35)

  1. 一种探测***,包括:
    凿岩设备,用于开凿一个钻孔;
    其中,所述凿岩设备具有一个钻杆;
    其特征在于:
    所述探测***还包括:
    探测装置,可拆卸的连接至所述钻杆端部以随着所述钻杆进入至所述钻孔内部进行检测;
    其中,所述探测装置包含:
    探测器,用于检测所述钻孔内部的探测数据;
    测距器,用于检测所述探测器在所述钻孔内推进时的定位数据;
    电池,用于为所述探测器和所述测距器供电;
    其中,所述探测装置包含或连接有:
    存储器,用于存储所述探测器所采集的图像数据和所述测距器所采集的位置数据;
    其中,所述电池与所述探测器或/和测距器构成电性连接。
  2. 根据权利要求1所述的探测***,其特征在于:
    所述探测器包含:可见光摄像头、超声波探头、毫米波摄像头和红外光摄像头中的一种或几种。
  3. 根据权利要求1所述的探测***,其特征在于:
    所述凿岩设备包含:凿岩台车和手动凿岩设备中的至少一种。
  4. 根据权利要求1所述的探测***,其特征在于:
    所述测距器包含:光栅编码器、激光测距器以及UWB测距器中的至少一种。
  5. 根据权利要求1所述的探测***,其特征在于:
    所述存储器包含:内置存储器和可更换存储器中的至少一种。
  6. 根据权利要求1所述的探测***,其特征在于:
    所述电池包含:内置电池和可更换电池中的至少一种。
  7. 根据权利要求1至6任意一项所述的探测***,其特征在于:
    所述探测装置还包括:
    壳体,用于容纳所述探测器至少一部分;
    所述壳体形成有一个用于使所述壳体这直接或间接的结合至所述钻杆的安装接口。
  8. 根据权利要求7所述的探测***,其特征在于:
    所述安装接口包含:螺纹接口和卡盘接口中的至少一种。
  9. 根据权利要求7所述的探测***,其特征在于:
    所述壳体包含:
    电池舱壳,形成容纳所述电池的电池空间;
    探头舱壳,形成容纳所述探测器的探头空间;
    其中,所述电池空间和所述探头空间为分别独立的空间。
  10. 根据权利要求9所述的探测***,其特征在于:
    所述探测装置还包括:
    电路板,分别与所述探测器和所述测距器构成电性连接;
    所述壳体还包含:
    主舱舱壳,形成容纳所述电路板的主舱空间;
    其中,所述电池空间、所述探头空间和所述主舱空间为分别独立的空间。
  11. 根据权利要求9所述的探测***,其特征在于:
    所述探测装置还包括:
    处理器,分别与所述探测器和所述测距器构成电性连接;
    所述壳体还包含:
    主舱舱壳,形成容纳所述处理器的主舱空间;
    其中,所述电池空间、所述探头空间和所述主舱空间为分别独立的空间。
  12. 根据权利要求7所述的探测***,其特征在于:
    所述探测装置还包括:
    扶正器,套装在所述外壳的外侧以与所述钻孔内壁接触;
    其中,所述扶正器被构造为具有环状结构。
  13. 根据权利要求7所述的探测***,其特征在于:
    所述探测装置还包括:
    数据接口,至少与所述探测器构成电性连接;
    其中,所述数据接口至少部分露出所述壳体,所述数据接口设置于所述探测器和所述安装接口之间。
  14. 权利要求1至13中任意一项所述的探测装置。
  15. 使用权利要求1至13中任意一项所述的探测装置的探测方法。
  16. 一种探测***,包括:
    钻杆设备,具有一个能伸入钻孔的钻杆;
    探测装置,可拆卸的连接至所述钻杆端部以随着所述钻杆进入至所述钻孔内部进行检测;
    交互装置,用于接收或读取所述探测装置中的数据从而至少以显示的方式反馈至用户;
    其中,在第一使用状态时,所述钻杆设备与所述探测装置构成物理连接;在第二使用状态时,所述探测装置与所述交互装置构成数据交互;
    其中,所述探测装置包含:
    探测器,用于检测所述钻孔内部的探测数据;
    电池,用于为所述探测器和供电;
    其中,所述探测装置还包含或连接有:
    存储器,用于存储所述探测器所采集的图像数据和所述测距器所采集的位置数据;
    其中,所述电池与所述探测器构成电性连接。
  17. 根据权利要求16所述的探测***,其中,
    所述钻杆设备包含一个凿岩台车。
  18. 根据权利要求16所述的探测***,其中,
    所述交互装置包含一个手机、笔记本计算机、平板电脑、台式计算机或者PDA设备。
  19. 根据权利要求16所述的探测***,其中,
    所述探测器包含一个摄像头以使所述探测装置与所述交互装置之间传输所述钻孔内部的图像数据。
  20. 根据权利要求16所述的探测***,其中,
    所述存储器包含一个可更换的存储介质卡以使所述探测装置通过所述存储介质卡将数据传输至所述交互装置。
  21. 根据权利要求16所述的探测***,其中,
    所述探测装置还包含:
    数据接口,用于使所述探测装置与所述交互装置构成即时的数据交互。
  22. 根据权利要求21所述的探测***,其中,
    所述探测装置还包含:
    处理器,用于存储或处理所述探测器采集的数据;
    其中,所述数据接口与所述处理器构成电性连接。
  23. 根据权利要求22所述的探测***,其中,
    所述探测装置还包含:
    测距器,用于采集所述探测器在所述钻孔中的位置数据;
    其中,所述测距器与所述处理器构成电性连接。
  24. 根据权利要求23所述的探测***,其中,
    所述探测装置还包含:
    通讯器,用于使所述处理器与外部构成无线通讯;
    其中,所述通讯器与所述处理器构成电性连接以使所述探测装置通过所述通讯器与所述交互装置构成数据交互。
  25. 根据权利要求16所述的探测***,其中,
    所述探测装置还包含:
    充电接口,用于为所述电池充电引入电能;
    其中,所述充电接口与所述电池构成电性连接。
  26. 根据权利要求16所述的探测***,其中,
    所述探测装置还包含:
    探照灯,用于提供所述钻孔内所需的光源;
    调节器,用于调节所述探照灯的亮度;
    其中,所述电池至少与所述探照灯和所述调节器中的一个构成电性连接。
  27. 一种探测装置,包括:
    探测器,用于检测所述钻孔内部的探测数据;
    电池,用于为所述探测器和所述测距器供电;
    其中,所述探测装置还包含或连接有:
    存储器,用于存储所述摄像头所采集的图像数据和所述测距器所采集的位置数据;
    数据接口,用于使所述探测装置与外部构成即时的数据交互;
    安装接口,用于使所述探测装置安装至一个能够伸入钻孔的长杆;
    其中,所述数据接口设置在所述探测器和所述安装接口之间。
  28. 根据权利要求27所述的探测装置,其中,
    所述电池设置在所述探测器和所述安装接口之间。
  29. 根据权利要求28所述的探测***,其中,
    所述电池设置在所述数据接口和所述安装接口之间。
  30. 根据权利要求27所述的探测装置,其中,
    所述探测装置还包含或连接有:
    测距器,用于采集所述探测器在所述钻孔中的位置数据;
    其中,所述测距器设置在所述电池和所述探测器之间。
  31. 根据权利要求27所述的探测装置,其中,
    所述探测装置还包含或连接有:
    处理器,用于存储或处理所述探测器采集的数据;
    其中,所述处理器设置在所述电池和所述探测器之间。
  32. 根据权利要求31所述的探测装置,其中,
    所述探测装置还包含或连接有:
    通讯器,用于使所述处理器与外部构成无线通讯;
    其中,所述通讯器设置在所述电池和所述探测器之间。
  33. 根据权利要求27所述的探测装置,其中,
    所述探测装置还包含或连接有:
    探照灯,用于提供所述钻孔内所需的光源;
    其中,所述探照灯设置在所述探测器端部和所述数据接口之间。
  34. 根据权利要求27所述的探测装置,其中,
    所述探测装置还包含或连接有:
    充电接口,用于为所述电池充电引入电能;
    其中,所述充电接口设置在所述安装接口和所述数据接口之间。
  35. 一种探测方法,基于权利要求16至26所述的探测***;
    其中,所述探测方法包括:
    将所述探测装置安装至所述钻杆设备的钻杆;
    使所述钻杆带动所述探测装置伸入至所述钻孔采集数据;
    使所述钻杆退出所述钻孔并拆卸所述探测装置整体或至少一部分;
    使探测装置的整体或至少一部分与所述交互装置构成数据交互从而向用户显示所述探测装置所采集的数据。
PCT/CN2023/108620 2022-07-21 2023-07-21 探测***及其探测装置和探测方法 WO2024017368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210860698.9 2022-07-21
CN202210860698.9A CN115263276A (zh) 2022-07-21 2022-07-21 一种凿岩台车超前地质预报孔视频探测装置及探测方法

Publications (1)

Publication Number Publication Date
WO2024017368A1 true WO2024017368A1 (zh) 2024-01-25

Family

ID=83767169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108620 WO2024017368A1 (zh) 2022-07-21 2023-07-21 探测***及其探测装置和探测方法

Country Status (2)

Country Link
CN (8) CN115263276A (zh)
WO (1) WO2024017368A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115263276A (zh) * 2022-07-21 2022-11-01 中国地质大学(武汉) 一种凿岩台车超前地质预报孔视频探测装置及探测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201280927Y (zh) * 2008-09-17 2009-07-29 上海市电力公司 一种地下管线探测预警装置
US20100283788A1 (en) * 2007-11-29 2010-11-11 Pascal Rothnemer Visualization system for a downhole tool
CN208734327U (zh) * 2018-07-21 2019-04-12 中铁十八局集团有限公司 一种超前水平钻孔成像的装置
CN111948645A (zh) * 2020-08-07 2020-11-17 武汉长盛煤安科技有限公司 煤矿巷道和隧道随钻钻孔雷达超前探测装置与方法
CN212927826U (zh) * 2020-07-29 2021-04-09 武汉中仪物联技术股份有限公司 一种随钻探测装置
CN115263276A (zh) * 2022-07-21 2022-11-01 中国地质大学(武汉) 一种凿岩台车超前地质预报孔视频探测装置及探测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283788A1 (en) * 2007-11-29 2010-11-11 Pascal Rothnemer Visualization system for a downhole tool
CN201280927Y (zh) * 2008-09-17 2009-07-29 上海市电力公司 一种地下管线探测预警装置
CN208734327U (zh) * 2018-07-21 2019-04-12 中铁十八局集团有限公司 一种超前水平钻孔成像的装置
CN212927826U (zh) * 2020-07-29 2021-04-09 武汉中仪物联技术股份有限公司 一种随钻探测装置
CN111948645A (zh) * 2020-08-07 2020-11-17 武汉长盛煤安科技有限公司 煤矿巷道和隧道随钻钻孔雷达超前探测装置与方法
CN115263276A (zh) * 2022-07-21 2022-11-01 中国地质大学(武汉) 一种凿岩台车超前地质预报孔视频探测装置及探测方法

Also Published As

Publication number Publication date
CN220451857U (zh) 2024-02-06
CN116677368A (zh) 2023-09-01
CN220752488U (zh) 2024-04-09
CN220752489U (zh) 2024-04-09
CN116717233A (zh) 2023-09-08
CN220395668U (zh) 2024-01-26
CN116717235A (zh) 2023-09-08
CN115263276A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024017368A1 (zh) 探测***及其探测装置和探测方法
US11719376B1 (en) Dockable tripodal camera control unit
US11962943B1 (en) Inspection camera devices and methods
TWI482490B (zh) 成像裝置、控制方法、及程式
US20120069165A1 (en) Location-based av flashlight and method of displaying map related video thereof
CN203691510U (zh) 一种智能摄像及测温手电
JP5251779B2 (ja) 携帯型電子機器、制御方法、プログラム、撮像システム
US8432483B2 (en) System and method for charging an electronic device
JP5126176B2 (ja) 撮像部駆動装置、回転角度制御方法、撮像装置、プログラム、撮像システム
CN201892746U (zh) 一种音视频生命探测装置
US20120307039A1 (en) Apparatus for Providing a View of an Area that is Hard to Reach or Inaccessible
CN103389611A (zh) 照相机
CN108594677B (zh) 一种反应时训练***
WO2013161250A1 (ja) ストロボ装置およびそれを備える撮像装置
CN107547782B (zh) 一种带有分享和安全预警功能的夜间运动的摄像机
CN112017407B (zh) 一体化无线地标监测装置
CN203655270U (zh) 一种智能钻孔电视成像仪
WO2021208252A1 (zh) 一种跟踪目标确定方法、装置和手持相机
WO2021208255A1 (zh) 一种视频片段标记方法、设备及手持相机
US20050151876A1 (en) Multiple use permanently sealed digital camera
CN103335720A (zh) 输电线路沿线山火在线监测摄像机
CN215423149U (zh) 智能手环
WO2021208258A1 (zh) 基于跟踪目标的搜索方法、设备及其手持相机
JP2021145240A (ja) 撮像装置
CN201707781U (zh) 能显示镜头拍摄场景和无线回放执法记录信息的遥控器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842430

Country of ref document: EP

Kind code of ref document: A1