WO2024016991A1 - 整流罩 - Google Patents

整流罩 Download PDF

Info

Publication number
WO2024016991A1
WO2024016991A1 PCT/CN2023/103833 CN2023103833W WO2024016991A1 WO 2024016991 A1 WO2024016991 A1 WO 2024016991A1 CN 2023103833 W CN2023103833 W CN 2023103833W WO 2024016991 A1 WO2024016991 A1 WO 2024016991A1
Authority
WO
WIPO (PCT)
Prior art keywords
fairing
airflow
ridges
texture structure
fairing body
Prior art date
Application number
PCT/CN2023/103833
Other languages
English (en)
French (fr)
Inventor
杨天勇
张戈
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024016991A1 publication Critical patent/WO2024016991A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/005Damping of vibrations; Means for reducing wind-induced forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • This application relates to the technical field of fairings, and in particular to a fairing.
  • a fairing is a shell or cover that can adjust the shape of air or water flow.
  • the fairing reduces the resistance and load of the airflow or water flow by adjusting the movement pattern of the airflow or water flow on the fairing surface, and is widely used in aviation, antenna base station radomes and other scenarios where wind resistance or wind load needs to be optimized.
  • Fairings in the prior art usually change the shape of the fairing (such as adopting a streamlined structure) or add structures that change the airflow shape (such as adding trip wires and vortex generators), thereby reducing the pressure difference of the fairing in the airflow. resistance and friction resistance.
  • changing the shape of the fairing or adding a structure that changes the fluid shape often only reduces wind resistance and wind load for airflow in a specific direction. When the direction of the airflow changes, the effect of the fairing on optimizing wind resistance and wind load is significantly reduced, and even increases. Effects of high wind resistance and wind loads.
  • the fairing in the prior art usually adopts a rough outer surface. Therefore, when the high-speed airflow flows through the fairing, the rough outer surface can stimulate the airflow to form eddy currents, thereby causing the fairing to move. A vortex boundary layer is formed on the surface, which delays the airflow separation point and increases the air pressure on the leeward side of the fairing, thereby reducing the pressure difference resistance of the airflow. And the rough outer surface is suitable for fairings of various shapes and structures, and can optimize the pressure difference resistance for airflow in all directions.
  • the purpose of this application is to solve the problem in the prior art that the rough outer surface of the fairing has poor optimization effect on wind resistance and wind load.
  • Embodiments of the present application provide a fairing, which includes a fairing body.
  • the outer surface of the fairing body is provided with a texture structure.
  • the texture structure includes a plurality of ridges arranged in sequence, and each ridge in the plurality of ridges is along the Straight line or curved extension, the span of the cross section of each ridge is less than or equal to 3mm, and the height of each ridge is less than or equal to 3mm.
  • multiple ridges arranged in sequence can disturb the airflow and form a vortex boundary layer on the fairing surface, and the multiple ridges can be excited to form a spanwise direction in the vortex boundary layer. vortices to suppress the thickening of the eddy boundary layer, thereby reducing the energy loss when the eddy boundary layer flows and mixes, so that the frictional resistance between the eddy boundary layer and the fairing surface is reduced.
  • the vortex boundary layer formed on the outer surface of the fairing has higher kinetic energy than the laminar boundary layer, making it easier to adhere to the fairing surface, causing the airflow separation point between the vortex boundary layer and the fairing surface to move backward. To increase the air pressure on the leeward side of the fairing, thereby reducing the pressure difference resistance of the airflow. This enables the fairing to achieve the best optimization of wind resistance and wind load.
  • the fairing body is configured as a polygonal columnar structure with a hollow interior.
  • the outer surface of the fairing body has multiple side surfaces located on the side walls of the fairing body, and two end surfaces located at both ends of the fairing body.
  • the multiple side surfaces Any two adjacent sides are connected through a turning surface, and the turning surface is set as a curved surface structure;
  • At least part of the turning surface is textured.
  • the airflow flows around the side wall of the fairing body, and when it flows through the turning surface, the texture structure on the turning surface can excite the airflow into vortices and mix them in the airflow boundary layer, thereby forming a smaller thickness
  • the vortex boundary layer with large momentum enables the boundary layer of the airflow to be close to the surface of the fairing, inhibiting the separation of the airflow boundary layer from the fairing surface at the turning surface, thereby minimizing the pressure difference resistance when the airflow flows through the fairing. and frictional resistance.
  • each of the plurality of side surfaces and the two end surfaces is configured as one of a convex curved surface, a flat surface, and a concave curved surface, or is configured as a combination of at least two of a convex curved surface, a flat surface, and a concave curved surface.
  • each turning surface is textured. so that airflow in any direction flows through each When there is a turning surface, the momentum of the vortex boundary layer excited by the textured structure's disturbed airflow increases the most, thereby ensuring that when the airflow flows through the turning surface, the boundary layer of the airflow can be close to the surface of the fairing, and the airflow boundary layer can be suppressed to the greatest extent from turning.
  • the surface is separated from the fairing surface to minimize the pressure difference resistance formed by the air flow.
  • the cross-sections of the plurality of ridges in the texture structure are set to one of triangles, semicircles, sinusoids, and rectangles, or are set to at least one of triangles, semicircles, sinusoids, and rectangles. A combination of both.
  • each ridge in the texture structure facing away from the fairing body is the top, and the distance between the tops of any two adjacent ridges is less than or equal to 3 mm.
  • multiple ridges in the texture structure are arranged in an array, and each ridge extends in the same direction.
  • multiple ridges in the texture structure are arranged sequentially.
  • the extending direction of each ridge in the texture structure is parallel to the length direction of the fairing body; or, the extending direction of each ridge is perpendicular to the length direction of the fairing body.
  • the fairing is configured as a radome.
  • Figure 1a is a schematic three-dimensional structural diagram of the fairing according to the embodiment of the present application.
  • Figure 1b is a top view of the fairing according to the embodiment of the present application.
  • Figure 2 is a partially enlarged structural schematic diagram of the texture structure of the embodiment of the present application.
  • Figure 3 is a partially enlarged structural schematic diagram of the texture structure of other embodiments of the present application.
  • Figure 4 is a schematic three-dimensional structural diagram of a fairing according to another embodiment of the present application.
  • Figure 5 is a schematic three-dimensional structural diagram of a fairing according to another embodiment of the present application.
  • Figure 6 is a schematic three-dimensional structural diagram of a fairing according to yet another embodiment of the present application.
  • Figure 7a is a schematic diagram of the airflow pattern when the turning surface of the fairing body of the first reference design is a smooth surface
  • Figure 7b is a schematic diagram of the local airflow pattern when the first turning surface of the fairing body of the first reference design is a smooth surface
  • Figure 8a is a schematic diagram of the airflow pattern when the first turning surface of the fairing body of the second reference design is a rough surface
  • Figure 8b is a schematic diagram of the local airflow pattern when the first turning surface of the fairing body of the second reference design is a rough surface
  • Figure 9 is a schematic diagram of the local air flow when the turning surface of the fairing body of the second reference design is a rough surface
  • Figure 10a is a schematic diagram of the airflow pattern when the turning surface of the fairing body is provided with a texture structure according to the embodiment of the present application;
  • Figure 10b is a schematic diagram of the local airflow pattern when the first turning surface of the fairing body is provided with a texture structure according to the embodiment of the present application;
  • Figure 11 is a schematic diagram of local air flow when the turning surface of the fairing body is provided with a texture structure according to the embodiment of the present application;
  • Figure 12 is a schematic diagram of the test position of the fairing to be tested in Scheme 1 of the reference design
  • Figure 13 is a schematic diagram of the test positions of the fairings to be tested in two reference designs and two embodiments of the present application;
  • Figure 14 is a comparison chart of wind tunnel test results of five different technical solutions.
  • Figure 15 is a comparison table of wind tunnel test results of five different technical solutions.
  • X first airflow direction
  • c laminar boundary layer
  • d turbulent boundary layer
  • e eddy boundary layer
  • g separation point.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • the fairing mentioned in this application refers to a shell or outer cover that can adjust the shape of airflow or water flow.
  • the fairing in this application is described using an airflow environment as an example. In other alternative embodiments, the fairing can also be used in a water flow environment.
  • the wind resistance and wind load experienced by the object are related to the wind speed, the windward area of the object, and the airflow pressure difference resistance and frictional resistance experienced by the object. Among them, the greater the wind speed and windward area, the greater the wind resistance and wind load.
  • the greater the pressure difference resistance and friction resistance of the air flow the greater the wind resistance and wind load.
  • streamlined objects tend to experience smaller pressure difference resistance and friction resistance in the air flow.
  • the fairing can optimize the wind resistance and wind load by adjusting the movement shape of the airflow flowing through the fairing surface.
  • the optimization effect of wind resistance and wind load means that under the same wind speed and windward area, the fairing adjusts the movement shape of the airflow to reduce the wind resistance and wind load on the fairing itself, so that the fairing can withstand higher resistance under the same structural strength. wind speed, or a larger windward area can be used.
  • the fairing described in the present application can be a shell or an outer cover with optimized fluid resistance and load effects.
  • the radome is usually used to wrap the antenna components of the antenna base station, and in order to expand the radiation range of the antenna base station, the antenna base station is usually installed in external environments such as roofs and tower tops.
  • the radome needs to adapt to the complex airflow environment to cope with the wind resistance and wind load in various wind directions, and to prevent the radome from breaking, toppling, deforming or being damaged under the influence of airflow.
  • the radome is usually close to the antenna components inside the radome, thereby reducing the volume of the radome to reduce the windward area of the radome in all directions, thereby optimizing the wind resistance and wind load of the radome.
  • structures such as trip wires and transition generators can be installed on the outer surface of the radome to optimize the wind resistance and wind load of the radome.
  • the fairing can also be the outer cover of an outdoor sign light box, the outer cover of an outdoor suspended projector and other outdoor suspended products. Cover or casing.
  • Figure 1a is a schematic three-dimensional structural view of the fairing according to the embodiment of the present application
  • Figure 1b is a top view of the fairing according to the embodiment of the present application.
  • the fairing 1 is the radome in the antenna base station, and the fairing 1 includes the fairing itself.
  • the outer surface of the fairing body 10 is provided with a texture structure 20 .
  • the texture structure 20 includes a plurality of ridges 21 arranged in sequence, and each ridge 21 of the plurality of ridges 21 extends along a straight line or a curve.
  • the span of the cross section of each ridge 21 is less than or equal to 3 mm, and each ridge 21 extends along a straight line or a curve.
  • the height of the pattern is less than or equal to 3mm.
  • Hood 1 achieves the best optimization effect of wind resistance and wind load.
  • the fairing body 10 is configured as a polygonal columnar structure with a hollow interior.
  • the outer surface of the fairing body 10 has a plurality of side faces 12 located on the side walls of the fairing body 10 and two end faces 11 located at both ends of the fairing body 10. Any two adjacent side faces 12 of the plurality of side faces 12 are connected by a turning point.
  • the surfaces 13 are connected, the turning surface 13 is configured as a curved surface structure, and at least part of the turning surface 13 is provided with the texture structure 20 (or it can be understood that at least part of the surface or at least part of the area of the turning surface 13 is provided with the texture structure 20).
  • the fairing body 10 may also adopt other shapes of structures.
  • it may adopt a hollow cylindrical structure, and is not limited to a polygonal columnar structure.
  • the side walls and both ends of the fairing body 10 may adopt a split structure or may be integrally formed.
  • the airflow flows through the turning surface 13 around the multiple side surfaces 12 of the fairing body 10 in a certain direction, the airflow is prone to airflow separation on the turning surface 13 , resulting in an increase in the pressure difference resistance of the fairing 1 , thus changing the texture structure.
  • 20 is provided on the turning surface 13, which enables the texture structure 20 to more effectively adjust the shape of the airflow flowing through the fairing 1, thereby reducing the pressure difference resistance of the airflow to the fairing 1.
  • the textured structure 20 can also optimize the friction resistance when the airflow flows through the textured structure 20, so that the fairing 1 has the best wind resistance and wind load optimization effect.
  • the fairing body 10 is configured as a rectangular columnar structure with a hollow interior.
  • the fairing body 10 has two end surfaces 11 and a plurality of side surfaces 12 .
  • the two end surfaces 11 are arranged oppositely along the length direction of the fairing body 10 , and each end surface 11 is connected to a plurality of side surfaces 12 .
  • the plurality of side surfaces 12 includes a first side surface 121 , a second side surface 122 , a third side surface 123 and a fourth side surface 124 that are sequentially arranged along the circumferential direction of the fairing body 10 .
  • any two adjacent side surfaces 12 among the plurality of side surfaces 12 are connected through a turning surface 13.
  • the turning surface 13 adopts a curved surface structure so that the two adjacent adjacent side surfaces 12 that are connected form an included angle of 90°.
  • the first side 121 is connected to the second side 122 through the turning surface 13 .
  • the fairing body 10 can also be another polygonal columnar structure with a hollow interior.
  • the fairing body 10 is provided with a plurality of side surfaces 12 along the circumferential direction, and the turning surface 13 is used to connect the plurality of side surfaces 12 .
  • Two adjacent side surfaces 12 form a certain included angle between the two adjacent side surfaces 12.
  • the angle between the two adjacent side surfaces 12 is The angle is 60°; when the fairing body 10 is configured with a regular hexagonal cross-section, the angle between the two connecting side surfaces 12 is 120°.
  • Figure 2 is a partially enlarged structural schematic diagram of a texture structure according to an embodiment of the present application.
  • Figure 3 is a partially enlarged structural schematic diagram of a texture structure according to other embodiments of the present application.
  • Figure 4 is a partially enlarged structural schematic diagram of a texture structure according to another embodiment of the present application.
  • 5 is a schematic three-dimensional structural view of the fairing according to another embodiment of the present application.
  • the texture structure 20 is provided on the entire portion of each turning surface 13 of the fairing body 10 (or can be understood as, the entire portion of each turning surface 13
  • the surface or all areas are arranged with textured structures 20).
  • the texture structure 20 includes a plurality of ridges 21 arranged sequentially, and each ridge 21 of the plurality of ridges 21 extends along a straight line or a curve.
  • each ridge 21 can extend along a polyline, an S-shaped curve, or an arc. Lines etc. are extended.
  • the cross-sections of the plurality of ridges 21 are all configured as triangular shapes.
  • the cross section of each ridge 21 can be any shape protruding from the outer surface of the fairing body 10 , for example, it can be semicircular, sinusoidal or rectangular. .
  • the cross-sections of the plurality of ridges 21 in the texture structure 20 may adopt the same shape structure or may adopt different shape structures.
  • the cross-sections of the plurality of ridges 21 in the texture structure 20 may also be set as semicircles.
  • One of a triangular shape, a sinusoidal shape and a rectangular shape, or the cross section of the plurality of ridges 21 in the texture structure 20 is set to be a combination of at least two of a triangular shape, a semicircular shape, a sinusoidal shape and a rectangular shape.
  • the texture structure 20 is formed on the outer surface of the fairing body 10 by integral molding, or it can be understood that the texture structure 20 and the fairing body 10 adopt an integrated structure.
  • a split structure can also be used to fix the texture structure 20 on the outer surface of the fairing body 10 , for example: first, a texture is formed on the drag reduction film. structure 20, and then attach the drag reduction film with the textured structure 20 to the surface of the fairing body 10.
  • the span a of the cross section of each ridge 21 is less than or equal to 3 mm, and the height h of each ridge 21 is less than or equal to 3 mm.
  • the span a of the cross section of each ridge 21 refers to the maximum width of the cross section of each ridge 21 parallel to the outer surface of the fairing body 10 ;
  • the height h of each ridge 21 refers to the maximum width of each ridge 21 The distance between the end away from the outer surface of the fairing body 10 and the outer surface of the fairing body 10 .
  • each ridge 21 in the texture structure 20 away from the fairing body 10 is the top of the ridge 21 , and the distance b between the tops of adjacent ridges 21 is less than or equal to 3 mm.
  • the span a of the cross section of each ridge 21 , the height h of each ridge 21 and the spacing b between the tops of adjacent ridges 21 are subject to the limitations of the processing technology and physical conditions. Extreme restrictions, all with minimum dimensions.
  • the span a of the cross section of each ridge 21 may be 0.1mm, 1mm, 1.5mm, 2mm, 2.5mm, etc.; the height h of each ridge 21 may be 0.1mm, 0.3mm, 0.6mm. , 1mm, 1.5mm, 2mm, 2.5mm, etc.; the distance b between the tops of adjacent ridges 21 can be 0.1mm, 1mm, 1.5mm, 2mm, 2.5mm, etc.
  • the plurality of ridges 21 in the texture structure 20 are arranged in sequence, and each of the plurality of ridges 21 extends along the length direction of the fairing body 10 .
  • each ridge 21 of the plurality of ridges 21 may also extend in the circumferential direction of the fairing body 10 .
  • the plurality of ridges 21 may also be arranged in other ways.
  • the plurality of ridges 21 may be arranged at intervals, staggered, etc.
  • the extending directions of different ridges 21 in the plurality of ridges 21 may be the same or different.
  • the textured structure 20 may cover the entire outer surface of the fairing body 10 .
  • FIG. 6 is a schematic three-dimensional structural diagram of a fairing according to yet another embodiment of the present application.
  • the structure of the fairing 1 of this embodiment is basically the same as the structure of the fairing 1 described in the above embodiment.
  • the difference is that the shape of the fairing body 10 of the fairing 1 is cylindrical.
  • the texture structure 20 is provided on the entire side wall surface of the fairing body 10, and the plurality of ridges 21 in the texture structure 20 extend along the length direction of the fairing body 10.
  • the plurality of ridges 21 are connected and closely arranged in sequence, so that the airflow flows from When flowing to the side wall surface of the fairing body 10 in any direction, the texture structure 20 can optimally adjust the airflow, so that the fairing 1 has the best wind resistance and wind load optimization effect on the airflow.
  • the texture structure 20 when the texture structure 20 is disposed at different positions on the outer surface of the fairing body 10 , the texture structure 20 can regulate the airflow flowing through the surface of the texture structure 20 . Therefore, in other alternative implementations, In this way, the texture structure 20 can be disposed on the entire outer surface of the fairing body 10 to achieve the most comprehensive and best optimization effect of wind resistance and wind load, or can be disposed on part of the outer surface of the fairing body 10 , for example, at intervals. The side wall surface of the fairing body 10 can also optimize wind resistance and wind load.
  • the texture structure 20 can regulate the airflow flowing through the surface of the texture structure 20. Therefore, in other possible situations, in alternative embodiments, the plurality of ridges 21 in the texture structure 20 may be arranged at intervals, staggered, etc., and the extending directions of different ridges 21 in the plurality of ridges 21 may be the same or different.
  • the texture structure 20 can regulate the airflow flowing through the surface of the texture structure 20 . Therefore, in other alternative embodiments, the fairing body 10 Structures such as polygonal prism, spherical, curved column, streamlined structure, and hemispherical structure can also be used.
  • the airflow has the first airflow direction X that creates the maximum wind resistance and wind load on the fairing 1 .
  • the maximum wind speed that the fairing 1 can carry depends on the optimization effect of the fairing 1 on the wind resistance and wind load of the airflow in the first airflow direction X. Therefore, the embodiment of the present application will be described in detail with the airflow flowing toward the fairing 1 along the first airflow direction
  • Figures 7a and 7b are schematic diagrams of the airflow pattern when the turning surface of the fairing body of the first reference design is a smooth surface.
  • Figures 8a and 8b are schematic diagrams of the turning surface of the fairing body of the second reference design.
  • Figure 9 is a schematic diagram of the local airflow when the turning surface of the fairing body is a rough surface.
  • Figures 10a and 10b are a schematic diagram of the fairing body of the embodiment of the present application.
  • a schematic diagram of the airflow pattern when the turning surface is provided with a textured structure.
  • Figure 11 is a schematic diagram of the local air flow when the turning surface of the fairing body is provided with a textured structure according to the embodiment of the present application.
  • the fairing body 10A of the first reference design and the fairing body 10B of the second reference design adopt the same shape and structure as the fairing body 10 of the embodiment of the present application.
  • the first airflow direction X is a direction perpendicular to the diagonal plane k passing through the two end surfaces 11 of the fairing 1 .
  • the first airflow direction X shown in Figures 7a and 8a is the same as The first air flow direction X shown in Figure 10a is the same.
  • the first air flow direction X of the air flow toward the fairing 1 is different.
  • any direction in which the airflow flows toward the fairing 1 is the first airflow direction X.
  • the airflow flows toward the fairing 1 along the first airflow direction
  • the four sides 124 face away from the airflow to form a leeward side.
  • the airflow flows from the windward surface of the fairing body 10 to the turning surface 13 between the first side 121 and the fourth side 124 and the turning surface 13 between the second side 122 and the third side 123 respectively.
  • each turning surface 13 of the fairing body 10 When the entire part of each turning surface 13 of the fairing body 10 is provided with the texture structure 20, the turning surface 13 between the first side 121 and the fourth side 124, and between the second side 122 and the third side 123
  • the texture structure 20 on the turning surface 13 can optimize the airflow shape to the greatest extent, so that the texture structure 20 has the best optimization effect on the wind resistance and wind load of the airflow.
  • the texture structure 20 may only cover at least part of each turning surface 13 of the fairing body 10 , which can optimize the airflow pattern and reduce the wind resistance and wind load on the fairing 1 .
  • the airflow movement state The change principle of Explain in detail.
  • the first turning surface 131A of the fairing body 10A in the first reference design and the first turning surface 131B of the fairing body 10B in the second reference design are used as reference objects for comparison.
  • the fairing body 10A includes a first side 121A, a second side 122A, a third side 123A and a fourth side 124A, and a turning surface 13A for connecting two adjacent sides.
  • the turning surface 13A of the fairing body 10A adopts a smooth surface, in which the surface roughness Ra of the smooth surface is less than 0.1mm.
  • the surface roughness refers to the small spacing and the unevenness of tiny peaks and valleys on the surface of the object.
  • the distance (wave pitch) between the two wave crests or two wave troughs is very small (usually less than 1 mm), which is a microscopic geometric shape error. The smaller the surface roughness, the smoother the surface.
  • the first turning surface 131A of the fairing body 10A is a smooth surface.
  • the first turning surface 131A is a smooth surface. Therefore, the first turning surface 131A has less disturbance to the air flow, so that the air flow is
  • the first turning surface 131A forms a laminar boundary layer c.
  • the friction between the airflow and the first turning surface 131A is small, so that the energy loss of the airflow in the laminar boundary layer c is small, and the thickness of the laminar boundary layer c of the airflow is small, so the friction formed by the airflow on the fairing body 10A Low resistance.
  • the overall energy of the laminar boundary layer c is small, so that the ability of the laminar boundary layer c of the air flow to be adsorbed on the first turning surface 131A is weakened, resulting in an air flow separation point. g is forward, thereby forming a large negative pressure area P on the leeward side of the fairing body 10A, causing a large pressure difference between the windward side and the leeward side of the fairing body 10A, forming a large pressure difference resistance.
  • the boundary layer of airflow refers to the definition of a certain flow phenomenon.
  • the gas molecules on the surface of the object will be stuck to the surface of the object, and the speed will drop to 0.
  • Gas molecules very close to the surface of the object will collide with these gas molecules whose speed is 0 or other ones that are slowed down, causing the speed to slow down.
  • the further away from the surface of the object the lower the probability and effect of such collisions, and the closer the speed of the gas molecules is to the incoming flow speed.
  • a flow area will be formed above the surface of the object where the velocity gradually increases from 0 to the incoming flow velocity. In fluid mechanics, this area is called the boundary layer.
  • the fairing body 10B includes a first side 121B, a second side 122B, a third side 123B and a fourth side 124B, and a turning surface 13B for connecting two adjacent sides.
  • the turning surface 13B of the fairing body 10B adopts a rough surface, in which the surface roughness Ra of the rough surface is 0.5mm ⁇ 1mm, as shown in Figures 8a to 9.
  • the first turning surface 131B is a rough surface, so the first turning surface 131B It can disturb the air flow and stimulate the air flow to form eddies.
  • the formed eddies are used to mix the turbulent boundary layer d, causing the turbulent area formed by the air flow to rapidly increase in the direction away from the first turning surface 131B, thereby forming a thicker layer on the first turning surface 131B.
  • the turbulent boundary layer d At this time, a simulation is performed on the local surface of the first turning surface 131B.
  • the turbulent boundary layer d formed by the first turning surface 131B is shown in Figure 9.
  • the airflow forms a chaotic turbulent boundary layer d on the first turning surface 131B, and the turbulent flow
  • the boundary layer d is thicker.
  • the first turning surface 131B stimulates the air flow to form turbulence, the interaction between the turbulent boundary layer d of the air flow and the laminar flow increases. Therefore, the overall energy of the turbulent boundary layer d of the air flow is relatively large, and the turbulent boundary layer d of the air flow is adsorbed on the first turning surface.
  • the capacity of the surface 131B is enhanced, thereby delaying the airflow separation point g, and forming a smaller negative pressure area P on the leeward side of the fairing body 10B, so that the pressure between the windward side and the leeward side of the fairing body 10B The difference is small, forming a small pressure difference resistance.
  • the friction between the airflow and the first turning surface 131B increases, and the thickness of the turbulent boundary layer d of the airflow is large, and the energy loss when the airflow interacts in the turbulent boundary layer d increases, and part of the lost energy is converted into wind load on the fairing body 10B, resulting in greater frictional resistance formed by the airflow on the fairing body 10B.
  • the frictional resistance and pressure difference resistance formed by the airflow on the fairing body 10B are related to the flow speed of the airflow.
  • the airflow speed is low, the negative pressure zone P formed on the leeward side of the fairing body 10B is small, and the pressure difference resistance of the airflow is small.
  • the impact on the fairing body 10B is smaller than the impact of the frictional resistance of the airflow on the fairing body 10B.
  • the negative pressure area P formed on the leeward side of the fairing body 10B increases, and the small pressure difference resistance of the airflow has a greater impact on the fairing body 10B than the frictional resistance of the airflow on the fairing body 10B.
  • the wind resistance and wind load experienced when the first turning surface 131B of the fairing body 10B is a rough surface is less than when the first turning surface 131A of the fairing body 10A is a smooth surface. wind resistance and wind load. This allows the fairing body 10B, whose first turning surface 131B is a rough surface, to withstand wind resistance and wind load at higher wind speeds.
  • the first turning surface 131 of the fairing body 10 in the embodiment of the present application is provided with a texture structure 20.
  • the texture structure 20 of 131 can disturb the airflow and stimulate the airflow to form a spanwise vortex.
  • the spanwise vortex formed is used to mix the vortex boundary layer e and suppress the thickening of the vortex boundary layer e.
  • a simulation is performed on the local surface of the first turning surface 131.
  • the vortex boundary layer e formed by the first turning surface 131 is shown in Figure 11.
  • the airflow forms a vortex boundary layer e with smooth fluctuations on the first turning surface 131, and The thickness of the vortex boundary layer e is small.
  • the thickness of the eddy current boundary layer e of the airflow is small, and the energy loss of the eddy current boundary layer e during flow mixing is small, the frictional resistance between the eddy current boundary layer e and the surface of the fairing 1 is reduced.
  • the spanwise vortices in the vortex boundary layer e of the air flow have relatively high energy, and the texture structure 20 on the first turning surface 131 inhibits the vortex boundary layer e, so that the vortex boundary layer e of the air flow is adsorbed on the first turning surface 131 .
  • the enhanced ability of the texture structure 20 of the turning surface 131 delays the airflow separation point g, thus forming a smaller negative pressure zone P on the leeward side of the fairing 1, making the difference between the windward and leeward sides of the fairing 1
  • the pressure difference between them is small, forming a small pressure difference resistance.
  • the pressure difference resistance and frictional resistance formed by the airflow on the fairing 1 are both smaller than that of the first turning surface 131B of the airflow which is a rough surface.
  • the pressure difference resistance and friction resistance formed by the cover body 10B This enables the fairing 1 with the textured structure 20 on the first turning surface 131 to withstand wind resistance and wind load at higher wind speeds.
  • a tripwire (not shown in the figure) is provided at the edge of each turning surface 13 where it meets the two side surfaces 12.
  • the tripwire is used to disturb the airflow to form a vortex, thereby improving the efficiency of stimulating the vortex, thereby making the airflow
  • a vortex boundary layer e with greater energy can be formed, further enhancing the adsorption capacity of the boundary layer e, causing the airflow separation point g of the airflow boundary layer e to move further back, further reducing the fairing 1
  • the negative pressure zone P on the leeward side reduces the pressure difference resistance of the airflow.
  • the outer surface of the fairing body 10 can also be provided with transition generators of other structures. The transition generator is used to disturb the airflow to form vortices and improve the efficiency of stimulating vortexes, such as triangular pyramid protrusions. structure, raised structures arranged in a figure-eight shape, etc.
  • Figure 12 is a schematic diagram of the test position of the fairing to be tested in Scheme 1 of the reference design.
  • Figure 13 is a schematic diagram of the test position of the fairing to be tested in the two reference designs and the two embodiments of the present application.
  • Figure 14 shows five different technical solutions Comparison chart of wind tunnel test results.
  • Figure 15 is a comparison table of wind tunnel test results of five different technical solutions. In order to further illustrate the optimization effect of the fairing 1 of this application on wind resistance and wind load, this application simulated the actual application environment of the fairing 1, and conducted wind tunnel tests on three reference designs and two embodiments of this application.
  • the first solution is two fairing bodies 10A arranged in parallel, in which the entire outer surface of the fairing body 10A is a smooth surface, and is vertical
  • the direction of the first side 121A of the fairing body 10A is the 0-degree direction of the wind tunnel test.
  • the second option is four fairing bodies 10A arranged side by side, in which the entire outer surface of the fairing body 10A is a smooth surface, and the direction perpendicular to the first side 121A of the fairing body 10A is the 0-degree direction of the wind tunnel test.
  • the third option is four fairing bodies 10B arranged side by side.
  • the entire outer surface of the fairing body 10B is a rough surface, and the direction perpendicular to the first side 121B of the fairing body 10B is the 0-degree direction of the wind tunnel test.
  • the end surface 11B of the fairing body 10B adopts an arc-shaped end surface.
  • the fourth solution is four fairings 1 arranged side by side, and the fairing 1 adopts the structure shown in Figure 5 of the embodiment of this application.
  • the fairing 1 includes a fairing body 10 and a texture structure 20 , wherein the texture structure 20 covers the entire outer surface of the fairing body 10 .
  • the fifth solution is four fairings 1 arranged side by side.
  • the fairing 1 adopts the structure shown in Figure 5 of the embodiment of the present application and is provided with a tripwire structure.
  • the fairing 1 includes a fairing body 10, a trip wire and a texture structure 20.
  • the texture structure 20 covers the entire outer surface of the fairing body 10, and each turning surface 13 is provided with a trip wire at the edge where it meets the two side surfaces 12. Wire.
  • solutions 1 to 3 are three reference designs, and solutions 4 and 5 are two embodiments of the present application.
  • the peak wind load of scheme one is 1375N; the peak wind load of scheme two is 995N; the peak wind load of scheme three is 950N; the peak wind load of scheme four is 924N; the peak wind load of Plan 5 is 893N (N is the unit of measurement of force, Newton).
  • Scheme 3 has the lowest peak wind load, while Schemes 4 and 5 achieve optimization of omnidirectional wind resistance and wind load compared to Scheme 3.
  • the peak wind load of Scheme 4 is reduced by 26N compared with the peak wind load of Scheme 3
  • the peak wind load of Scheme 5 is reduced by 57N compared with the peak wind load of Scheme 3.
  • the two embodiments of the present application have a better optimization effect on the wind resistance and wind load of the airflow than the three reference designs, so that the two embodiments of the present application experience better wind resistance and wind load at the same wind speed. Small, so that the two embodiments of the present application can withstand higher wind speeds under the same structural strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本申请提供了一种整流罩,包括整流罩本体,整流罩本体的外表面设置有纹理结构,纹理结构包括依次排列的多个凸纹,且多个凸纹中的每个凸纹沿直线或曲线延伸,每个凸纹的横截面的跨度小于或等于3mm,每个凸纹的高度小于或等于3mm,使得整流罩在面对不同方向的气流时,纹理结构能够调整流经整流罩表面的气流形态,以减小气流对整流罩形成的压差阻力和摩擦阻力,使得整流罩能够对抗不同方向的流速更高的气流。

Description

整流罩
本申请要求于2022年07月18日提交中国专利局、申请号为CN202210843420.0、申请名称为“整流罩”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及整流罩技术领域,尤其是涉及一种整流罩。
背景技术
整流罩是指能够对气流或水流的形态进行调整的壳体或外罩。整流罩通过调整流经整流罩表面气流或水流的运动形态,从而实现降低气流或水流的阻力和载荷,进而被广泛应用于航空、天线基站的天线罩等需要优化风阻或风载荷的场景中。
在现有技术中的整流罩通常采用改变整流罩的形态(例如采用流线型结构)或者增加改变气流形态的结构(例如增加绊线、涡流发生器),从而降低整流罩的在气流中的压差阻力和摩擦阻力。然而改变整流罩形态或增加改变流体形态的结构往往仅对特定方向的气流起到降低风阻和风载荷的效果,当气流的方向发生改变时,整流罩优化风阻和风载荷的效果显著降低,甚至产生增大风阻和风载荷的效果。
为了进一步增强整流罩优化风阻和风载荷的效果,现有技术中的整流罩通常采用粗糙的外表面,从而当高速气流流经整流罩时,粗糙的外表面能够激发气流形成涡流,从而在整流罩表面形成涡流边界层,使得气流分离点延后,并使整流罩背风面的气压增加,从而降低了气流的压差阻力。并且粗糙的外表面适用于各种形态结构的整流罩,同时能够对各个方向的气流均能起到优化压差阻力的效果。
然而,采用粗糙外表面的方式容易导致涡流快速散发,使得气流的能量快速损耗,形成对整流罩的阻力。同时,粗糙的外表面增大了整流罩与气流之间的摩擦阻力,使得整流罩对高速气流的优化效果不理想。
发明内容
本申请的目的在于解决现有技术中整流罩的粗糙外表面对风阻和风载荷的优化效果差的问题。
本申请实施例提供了一种整流罩,包括整流罩本体,整流罩本体的外表面设置有纹理结构,纹理结构包括依次排列的多个凸纹,且多个凸纹中的每个凸纹沿直线或曲线延伸,每个凸纹的横截面的跨度小于或等于3mm,每个凸纹的高度小于或等于3mm。
采用上述技术方案,使得气流流经整流罩纹理结构时,依次排列的多个凸纹能够扰动气流,在整流罩表面形成涡流边界层,并且多个凸纹能够在涡流边界层内激发形成展向涡,以抑制涡流边界层的增厚,从而减小涡流边界层流动掺混时的能量损耗,使得涡流边界层与整流罩表面之间的摩擦阻力减小。同时,整流罩外表面形成的涡流边界层相较于层流边界层具有更高的动能,从而更容易附着于整流罩表面,使得涡流边界层与整流罩表面之间的气流分离点后移,以增加整流罩背风面的气压,从而降低气流的压差阻力。从而使整流罩达到最佳的风阻和风载荷的优化效果。
在一些实施方式中,整流罩本体设置为内部中空的多边形柱状结构,整流罩本体的外表面具有位于整流罩本体侧壁的多个侧面、以及位于整流罩本体两端的两个端面,多个侧面中任意相邻两个侧面之间通过转折表面相接,且转折表面设置为曲面结构;
转折表面的至少部分设置有纹理结构。
采用上述技术方案,使得气流围绕整流罩本体侧壁流动,并且流经转折表面时,转折表面上的纹理结构能够将气流激发展向涡并掺混于气流边界层内,从而形成厚度较小、动量较大的涡流边界层,使得气流的边界层能够紧贴整流罩的表面,抑制气流边界层在转折表面处与整流罩表面分离,从而最大限度的降低气流流经整流罩时的压差阻力和摩擦阻力。
在一些实施方式中,多个侧面和两个端面中每一个面设置为凸曲面、平面和凹曲面中的一种,或者,设置为凸曲面、平面和凹曲面中至少两种的结合。
在一些实施方式中,每个转折表面的整个部分均设置有纹理结构。使得任意方向的气流在流经每 个转折表面时,纹理结构扰动气流激发的涡流边界层的动量增加最大,从而保证气流在流经转折表面时,气流的边界层能够紧贴整流罩的表面,最大程度地抑制气流边界层在转折表面处与整流罩表面分离,最大限度的降低气流形成的压差阻力。
在一些实施方式中,纹理结构中的多个凸纹的横截面设置为三角形、半圆形、正弦形和矩形中的一种,或者,设置为三角形、半圆形、正弦形和矩形中至少两种的结合。
在一些实施方式中,纹理结构中每个凸纹背离整流罩本体的一端为顶端,且任意相邻两个凸纹的顶端之间的间距小于或等于3mm。
在一些实施方式中,纹理结构中的多个凸纹呈阵列排布,且每个凸纹的延伸方向相同。
在一些实施方式中,纹理结构中的多个凸纹呈依次相接排列。
在一些实施方式中,纹理结构中每个凸纹的延伸方向与整流罩本体的长度方向平行;或者,每个凸纹的延伸方向垂直于整流罩本体的长度方向。
在一些实施方式中,整流罩设置为天线罩。
附图说明
图1a为本申请实施例的整流罩的立体结构示意图;
图1b为本申请实施例的整流罩的俯视图;
图2为本申请实施例的纹理结构的局部放大结构示意图;
图3为本申请其他实施例的纹理结构的局部放大结构示意图;
图4为本申请另一实施例的整流罩的立体结构示意图;
图5为本申请又一实施例的整流罩的立体结构示意图;
图6为本申请再一实施例的整流罩的立体结构示意图;
图7a为第一参考设计的整流罩本体的转折表面为光滑表面时的气流形态示意图;
图7b为第一参考设计的整流罩本体的第一转折表面为光滑表面时的局部气流形态示意图;
图8a为第二参考设计的整流罩本体的第一转折表面为粗糙表面时的气流形态示意图;
图8b为第二参考设计的整流罩本体的第一转折表面为粗糙表面时的局部气流形态示意图;
图9为第二参考设计的整流罩本体的转折表面为粗糙表面时的局部气波动流示意图;
图10a为本申请实施例的整流罩本体的转折表面设有纹理结构时的气流形态示意图;
图10b为本申请实施例的整流罩本体的第一转折表面设有纹理结构时的局部气流形态示意图;
图11为本申请实施例的整流罩本体的转折表面设有纹理结构时的局部气波动流示意图;
图12为参考设计中方案一的待测试整流罩的测试位置示意图;
图13为两种参考设计以及本申请两种实施例的待测试整流罩的测试位置示意图;
图14为五种不同的技术方案的风洞测试结果对比图;
图15为五种不同的技术方案的的风洞测试结果对比表。
附图标记说明:
第一参考设计:
10A、整流罩本体;121A、第一侧面;122A、第二侧面;123A、第三侧面;124A、第四侧面;131A、第一转折表面。
第二参考设计:
10B、整流罩本体;11B、端面;121B、第一侧面;122B、第二侧面;123B、第三侧面;124B、第四侧面;13B、转折表面;131B、第一转折表面。
本申请:
1、整流罩;
10、整流罩本体;
11、端面;
12、侧面;
121、第一侧面;122、第二侧面;123、第三侧面;124、第四侧面;
13、转折表面;131、第一转折表面;
20、纹理结构;21、凸纹;
X、第一气流方向;c、层流边界层;d、湍流边界层;e、涡流边界层;g、分离点。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
本申请所述的整流罩是指能够对气流或水流的形态进行调整的壳体或外罩。本申请的整流罩以气流环境中为例进行说明,在其他可替代的实施方式中,整流罩也可以应用于水流环境中。当物体受到气流冲击时,物体受到的风阻和风载荷与风速的大小、物体的迎风面积、以及物体受到的气流压差阻力和摩擦阻力相关。其中,风速和迎风面积越大,则风阻和风载荷越大。气流的压差阻力和摩擦阻力越大,则风阻和风载荷越大,例如,在固定方向的气流中,流线形的物体在气流中往往受到较小的压差阻力和摩擦阻力。
当气流流经整流罩表面时,整流罩能够通过调整流经整流罩表面的气流的运动形态从而实现风阻和风载荷的优化效果。其中,风阻和风载荷的优化效果是指在相同风速和迎风面积下,整流罩通过调整气流的运动形态从而降低整流罩自身受到的风阻和风载荷,使得整流罩在相同的结构强度下能够抵抗更高的风速,或者可以采用更大的迎风面积。
本领域技术人员可以理解的是,本申请所述的整流罩可以为具有优化流体阻力和载荷效果的壳体或外罩。例如,卫星整流罩、飞机整流罩、汽车整流罩、天线罩等。其中,天线罩通常用于包裹天线基站的天线组件,并且为了扩大天线基站的辐射范围,天线基站通常设置于屋顶、塔顶等外环境。使得天线罩需要适应复杂的气流环境,以应对各个风向的风阻和风载荷,避免天线罩在气流的影响下发生断裂、倾倒、形变或损坏等。因此,天线罩通常与天线罩内部的天线组件相贴近,从而减小天线罩的体积,以减小天线罩各个方向的迎风面积,从而优化天线罩的风阻和风载荷。同时,天线罩外表面可以设置绊线、转捩发生器等结构以优化天线罩的风阻和风载荷。为了更好地说明本申请应对不同气流形态下的风阻和风载荷的优化效果,本申请实施例的整流罩以天线罩为例进行详细说明。
本领域技术人员可以理解的是,天线罩属于应用在户外的悬挂类产品,因此在其他实施方式中,整流罩也可以为户外招牌灯箱的外罩、户外悬挂式投影仪外罩等户外悬挂类产品的外罩或壳体。
请参阅图1a和图1b,图1a为本申请实施例的整流罩的立体结构示意图,图1b为本申请实施例的整流罩的俯视图。如图1a和图1b所示,整流罩1为天线基站中的天线罩,整流罩1包括整流罩本 体10。整流罩本体10的外表面设置有纹理结构20。纹理结构20包括依次排列的多个凸纹21,且多个凸纹21中的每个凸纹21沿直线或曲线延伸,每个凸纹21的横截面的跨度小于或等于3mm,每个凸纹的高度小于或等于3mm。
当气流流经整流罩1的纹理结构20时,依次排列的多个凸纹21能够改变气流的运动形态,使得气流对整流罩1产生的摩擦阻力和压差阻力均得到减小,从而使整流罩1达到最佳的风阻和风载荷的优化效果。
在一个实施方式中,如图1a和图1b所示,整流罩本体10设置为内部中空的多边形柱状结构。整流罩本体10的外表面具有位于整流罩本体10侧壁的多个侧面12、以及位于整流罩本体10两端的两个端面11,多个侧面12中任意相邻两个侧面12之间通过转折表面13相接,转折表面13设置为曲面结构,且转折表面13的至少部分设置有纹理结构20(或可理解为,转折表面13的至少部分表面或至少部分区域布置有纹理结构20)。
在可替代的其他实施方式中,整流罩本体10也可以采用其他形状的结构,例如,可以采用内部中空的圆柱形结构,并不局限于多边形柱状结构。本领域技术人员可以理解的是,整流罩本体10的侧壁和两端可以采用分体式结构,也可以采用一体成型设置。
当气流沿某一方向围绕整流罩本体10的多个侧面12流经转折表面13时,气流容易在转折表面13发生气流分离现象,导致整流罩1受到的压差阻力增大,因此将纹理结构20设置于转折表面13,能够使得纹理结构20更有效地调节气流流经整流罩1时的形态,从而降低气流对整流罩1的压差阻力。同时,纹理结构20还能够优化气流流经纹理结构20时的摩擦阻力,从而使整流罩1具有最佳的风阻和风载荷的优化效果。
在一个实施方式中,如图1a-图1b所示,整流罩本体10设置为内部中空的矩形柱状结构。整流罩本体10具有两个端面11,以及多个侧面12。两个端面11沿整流罩本体10的长度方向相对设置,且每一个端面11均与多个侧面12相接。多个侧面12包括沿整流罩本体10的周向依次设置的第一侧面121、第二侧面122、第三侧面123和第四侧面124。并且多个侧面12中的任意相邻两个侧面12通过转折表面13相接,转折表面13采用曲面结构使得相接的相邻两个侧面12形成90°夹角。例如,第一侧面121通过转折表面13与第二侧面122相接。
在其他可替代的实施方式中,整流罩本体10也可以为内部中空的其他多边形柱状结构,整流罩本体10沿周向设置有多个侧面12,其中转折表面13用于连接多个侧面12中的相邻两个侧面12,使得两个相接侧面12之间形成一定的夹角,例如整流罩本体10设置成横截面为等边三角形的结构时,两个相接侧面12之间的夹角为60°;整流罩本体10设置成横截面为正六边形的结构时,两个相接侧面12之间的夹角为120°。
请参阅图2至图5,图2为本申请实施例的纹理结构的局部放大结构示意图,图3为本申请其他实施例的纹理结构的局部放大结构示意图,图4为本申请另一实施例的整流罩的立体结构示意图,图5为本申请又一实施例的整流罩的立体结构示意图。
如图2至图5所示,并结合图1a和图1b予以理解,纹理结构20设置于整流罩本体10的每个转折表面13的整个部分(或可理解为,每个转折表面13的整个表面或所有区域均布置有纹理结构20)。纹理结构20包括依次相接排列的多个凸纹21,且多个凸纹21中的每个凸纹21沿直线或曲线延伸,例如,每个凸纹21可以沿折线、S形曲线、弧线等进行延伸。
在一个实施方式中,如图2所示,多个凸纹21的横截面均设置为三角形。
在其他可替代的实施方式中,如图3所示,每个凸纹21的横截面可以为任意凸出于整流罩本体10外表面的形状,例如,可以为半圆形、正弦形或矩形。并且,纹理结构20中的多个凸纹21的横截面既可以采用相同形状结构,也可以采用不同形状结构,例如,纹理结构20中的多个凸纹21的横截面也可以设置为半圆形、正弦形和矩形中的一种,或者,纹理结构20中的多个凸纹21的横截面设置为三角形、半圆形、正弦形和矩形中至少两种的结合。
在一个实施方式中,纹理结构20通过一体成型的方式形成于整流罩本体10的外表面,或可理解为,纹理结构20与整流罩本体10采用一体式结构。本领域技术人员可以理解的是,在可替代的其他实施方式中,也可以采用分体式结构将纹理结构20固定设置于整流罩本体10的外表面,例如:先在减阻膜上制成纹理结构20,再将具有纹理结构20的减阻膜贴附于整流罩本体10的表面。
在一个实施方式中,如图2所示,每个凸纹21的横截面的跨度a小于或等于3mm,每个凸纹21的高度h小于或等于3mm。其中,每个凸纹21的横截面的跨度a是指每个凸纹21的横截面平行于整流罩本体10外表面的最大宽度;每个凸纹21的高度h是指每个凸纹21背离整流罩本体10外表面的一端与整流罩本体10外表面之间的距离。纹理结构20中每个凸纹21背离整流罩本体10的一端为凸纹21的顶端,且相邻凸纹21的顶端之间的间距b小于或等于3mm。本领域技术人员可以理解的是,每个凸纹21横截面的跨度a,每个凸纹21的高度h以及相邻凸纹21的顶端之间的间距b,受制于加工工艺的限制和物理极限的限制,均具有最小尺寸。
在一些实施方式中,每个凸纹21横截面的跨度a可以为0.1mm、1mm、1.5mm、2mm、2.5mm等;每个凸纹21的高度h可以为0.1mm、0.3mm、0.6mm、1mm、1.5mm、2mm、2.5mm等;相邻凸纹21的顶端之间的间距b可以为0.1mm、1mm、1.5mm、2mm、2.5mm等。
在一个实施方式中,纹理结构20中的多个凸纹21依次相接排列,且多个凸纹21中的每个凸纹21沿整流罩本体10的长度方向延伸。
在其他可替代的实施方式中,如图4所示,多个凸纹中21的每个凸纹21也可以沿整流罩本体10的周向方向延伸。
在其他可替代的实施方式中,多个凸纹21也可以采用其他排列方式,例如,多个凸纹21之间可以采用间隔排列、交错排列等。在其他可替代的实施方式中,多个凸纹21中的不同凸纹21之间的延伸方向可以相同也可以不同。
在其他可替代的实施方式中,如图5所示,纹理结构20可以覆盖整流罩本体10的整个外表面。
请参见图6,图6为本申请再一实施例的整流罩的立体结构示意图。如图6所示,本实施例的整流罩1的结构与以上实施例所描述的整流罩1的结构基本相同,其不同之处在于,整流罩1的整流罩本体10的形状为圆柱形,纹理结构20设置于整流罩本体10的整个侧壁面,且纹理结构20中的多个凸纹21沿整流罩本体10的长度方向延伸,同时多个凸纹21依次相接紧密排列,使得气流从任意方向流向整流罩本体10的侧壁面时,纹理结构20均能够对气流起到最佳的调节作用,使得整流罩1对气流起到最佳的风阻和风载荷的优化效果。
本领域技术人员可以理解的是,纹理结构20设置于整流罩本体10外表面的不同位置时,纹理结构20均能够对流经纹理结构20表面的气流起到调节作用,因此在其他可替代的实施方式中,纹理结构20可以设置于整流罩本体10的整个外表面,以达到最全面和最佳的风阻和风载荷的优化效果,也可以设置于整流罩本体10的部分外表面,例如间隔设置于整流罩本体10的侧壁面,同样可以起到对风阻和风载荷的优化效果。
本领域技术人员可以理解的是,纹理结构20采用不同排列方式和不同延伸方向的多个凸纹21时,纹理结构20均能够对流经纹理结构20表面的气流起到调节作用,因此在其他可替代的实施方式中,纹理结构20中的多个凸纹21之间可以采用间隔排列、交错排列等,且多个凸纹21中的不同凸纹21之间的延伸方向可以相同也可以不同。
本领域技术人员可以理解的是,对于不同结构的整流罩本体10,纹理结构20均能够对流经纹理结构20表面的气流起到调节作用,因此在其他可替代的实施方式中,整流罩本体10还可以采用多棱柱、球状、曲面柱状、流线型结构、半球状结构等结构。
当整流罩本体10的具体结构确定时,由于整流罩1各个方向的迎风面积和形态的会发生变化,因此相同流速下的气流沿不同方向流经整流罩1时,整流罩1受到的风阻和风载荷会发生变化,此时气流具有对整流罩1形成最大风阻和风载荷的第一气流方向X。此时,整流罩1可承载的最大风速,取决于整流罩1对第一气流方向X上气流的风阻和风载荷的优化效果。因此,本申请实施例以气流沿第一气流方向X流向整流罩1的情况进行详细说明,并且结合图7a至图11从工作机理上说明本实施例的整流罩的技术效果。
请参阅图7a至图11,图7a和图7b为第一参考设计的整流罩本体的转折表面为光滑表面时的气流形态示意图,图8a和图8b为第二参考设计的整流罩本体的转折表面为粗糙表面时的气流形态示意图,图9为本申请实施例的整流罩本体的转折表面为粗糙表面时的局部气波动流示意图,图10a和图10b为本申请实施例的整流罩本体的转折表面设有纹理结构时的气流形态示意图,图11为本申请实施例的整流罩本体的转折表面设有纹理结构时的局部气波动流示意图。
如图7a、图8a和图10a所示,第一参考设计的整流罩本体10A和第二参考设计的整流罩本体10B采用与本申请实施例整流罩本体10相同的形状结构,以图10a中的整流罩本体10为例,第一气流方向X为垂直于经过整流罩1两个端面11的对角线的平面k的方向。
由于第一参考设计的整流罩本体10A、第二参考设计的整流罩本体10B和本申请实施例的整流罩本体10形状结构相同,因此图7a、图8a中示出的第一气流方向X与图10a中示出的第一气流方向X相同。
本领域技术人员可以理解的是,在其他实施方式中,整流罩本体10采用不同的结构形状时,气流朝向整流罩1的第一气流方向X不同。例如,整流罩本体10采用球状结构时,气流流向整流罩1的任意方向均为第一气流方向X。
在一个实施方式中,如图10a所示,气流沿第一气流方向X流向整流罩1,整流罩本体10的第一侧面121和第二侧面122面向气流形成迎风面,第三侧面123和第四侧面124背向气流形成背风面。且气流从整流罩本体10的迎风面分别流向第一侧面121与第四侧面124之间的转折表面13,以及第二侧面122与第三侧面123之间的转折表面13。
本领域技术人员可以理解的是,在不同气流方向下,由于转折表面13相接的两个侧面12之间具有一定的夹角,使得气流在流经转折表面13时,气流需要在转折表面13进行转向才能吸附于整流罩本体10的外表面,因此整流罩本体10的转折表面13最容易发生气流的分离现象。此时,第一侧面121与第四侧面124之间的转折表面13,以及第二侧面122与第三侧面123之间的转折表面13的结构对气流形态的影响最为显著。
当整流罩本体10的每个转折表面13的整个部分均设置有纹理结构20时,第一侧面121与第四侧面124之间的转折表面13,以及第二侧面122与第三侧面123之间的转折表面13上的纹理结构20能够对气流形态的进行最大程度的优化,使得纹理结构20对气流的风阻和风载荷的优化效果最佳。
在其他可替代的实施方式中,纹理结构20可以仅覆盖整流罩本体10的每个转折表面13的至少部分,即可以实现对气流形态的优化,降低整流罩1受到的风阻和风载荷。
本领域技术人员可以理解的是,由于气流流经第一侧面121与第四侧面124之间的转折表面13,以及第二侧面122与第三侧面123之间的转折表面13时,气流运动状态的变化原理相同,因此设第二侧面122与第三侧面123之间的转折表面13为第一转折表面131,并且以下以气流流经第一转折表面131的情况对纹理结构20的气流调节效果进行详细说明。同时以第一参考设计中整流罩本体10A的第一转折表面131A和第二参考设计中整流罩本体10B的第一转折表面131B作为参照对象进行对比。
在第一参考设计中,整流罩本体10A包括第一侧面121A、第二侧面122A、第三侧面123A和第四侧面124A,以及用于连接两个相邻侧面的转折表面13A。整流罩本体10A的转折表面13A采用光滑表面,其中光滑表面的表面粗糙度Ra小于0.1mm,表面粗糙度是指物体表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(通常在1mm以下),属于微观几何形状误差。表面粗糙度越小,则表面越光滑。
如图7a和图7b所示,整流罩本体10A的第一转折表面131A为光滑表面,此时第一转折表面131A为光滑表面,因此第一转折表面131A对气流的扰动较小,使得气流在第一转折表面131A形成层流边界层c。同时气流与第一转折表面131A之间的摩擦力小,使得气流的在层流边界层c的能量损失小,气流的层流边界层c的厚度小,因此气流对整流罩本体10A形成的摩擦阻力小。
然而,由于气流的层流边界层c的厚度小,使得层流边界层c的整体能量较小,从而使气流的层流边界层c吸附于第一转折表面131A的能力减弱,导致气流分离点g靠前,从而在整流罩本体10A的背风面形成较大的负压区P,使得整流罩本体10A的迎风面与背风面之间的压差较大,形成较大的压差阻力。
其中,气流的边界层是指针对某种流动现象的定义,当气流流过一个物体时,由于气流粘性的存在,该物体表面的气体分子会被物体表面粘住,速度降为0。而非常靠近物体表面的气体分子会与这些速度为0或其他被减慢的气体分子碰撞,导致速度减慢。距离物体表面越远的地方,这种碰撞的概率和效果就越低,气体分子的速度就越接近于来流速度。这样,在该物体表面以上就会形成一个速度由0逐渐增加至来流速度的流动区域,在流体力学中这个区域就被称为边界层。
在第二参考设计中,整流罩本体10B包括第一侧面121B、第二侧面122B、第三侧面123B和第四侧面124B,以及用于连接两个相邻侧面的转折表面13B。整流罩本体10B的转折表面13B采用粗糙表面,其中粗糙表面的表面粗糙度Ra为0.5mm~1mm,如图8a至图9所示,第一转折表面131B为粗糙表面,因此第一转折表面131B能够扰动气流,激发气流形成涡流,形成的涡流用于掺混湍流边界层d,使得气流形成的湍流区域朝背离第一转折表面131B的方向快速增加,从而在第一转折表面131B形成厚度较大的湍流边界层d。此时,对第一转折表面131B的局部表面进行仿真模拟,第一转折表面131B形成的湍流边界层d如图9所示,气流在第一转折表面131B形成混乱的湍流边界层d,且湍流边界层d厚度较大。
由于第一转折表面131B激发气流形成湍流,从而使得气流的湍流边界层d与层流之间交互增加,因此气流的湍流边界层d整体能量较大,气流的湍流边界层d吸附于第一转折表面131B的能力增强,从而使气流的气流分离点g延后,并在整流罩本体10B的背风面形成较小的负压区P,使得整流罩本体10B的迎风面与背风面之间的压差较小,形成较小的压差阻力。
然而,由于第一转折表面131B为粗糙表面,气流与第一转折表面131B之间的摩擦力增加,且气流的湍流边界层d的厚度较大,气流在湍流边界层d内交互时的能量损失增大,且损失的能量部分转化为对整流罩本体10B的风载荷,导致气流对整流罩本体10B形成的较大摩擦阻力。
进一步地,气流对整流罩本体10B形成的摩擦阻力和压差阻力与气流的流速相关,当气流流速较低时,整流罩本体10B的背风面形成的负压区P小,气流的压差阻力小对整流罩本体10B的影响小于气流的摩擦阻力对整流罩本体10B的影响。
当气流流速超过一定阈值时,整流罩本体10B的背风面形成的负压区P增大,气流的压差阻力小对整流罩本体10B的影响大于气流的摩擦阻力对整流罩本体10B的影响。
因此,当气流流速超过一定阈值时,在相同风速下,整流罩本体10B的第一转折表面131B为粗糙表面时受到的风阻和风载荷小于整流罩本体10A的第一转折表面131A为光滑表面时受到的风阻和风载荷。使得第一转折表面131B为粗糙表面的整流罩本体10B能够承受更高风速的风阻和风载荷。
如图10a至图11所示,本申请实施例的整流罩本体10的第一转折表面131设置有纹理结构20,当气流流经整流罩本体10的第一转折表面131时,第一转折表面131的纹理结构20能够扰动气流,激发气流形成展向涡,形成的展向涡流用于掺混涡流边界层e,并抑制涡流边界层e增厚。此时,对第一转折表面131的局部表面进行仿真模拟,第一转折表面131形成的涡流边界层e如图11所示,气流在第一转折表面131形成波动平稳的涡流边界层e,且涡流边界层e厚度较小。
由于气流的涡流边界层e厚度较小,且涡流边界层e流动掺混时的能量损耗较小,使得涡流边界层e与整流罩1表面之间的摩擦阻力减小。同时,气流的涡流边界层e内的展向涡具有较高的能量,且第一转折表面131上纹理结构20对涡流边界层e起到抑制作用,从而使得气流的涡流边界层e吸附于第一转折表面131的纹理结构20的能力增强,使气流的气流分离点g延后,从而在整流罩1的背风面形成更小的负压区P,使得整流罩1的迎风面与背风面之间的压差较小,形成较小的压差阻力。
当气流流速相同时,整流罩本体10的第一转折表面131设置有纹理结构20时,气流对整流罩1形成的压差阻力和摩擦阻力均小于气流对第一转折表面131B为粗糙表面的整流罩本体10B形成的压差阻力和摩擦阻力。使得第一转折表面131设置有纹理结构20的整流罩1能够承受更高风速下的风阻和风载荷。
在一个实施方式中,每个转折表面13与两个侧面12相接的边缘设置有绊线(图中未示出),绊线用于扰动气流形成涡流,提升激发涡流的效率,从而使气流流经绊线到达转折表面13时,能够形成能量更大的涡流边界层e,进一步增强边界层e的吸附能力,使得气流边界层e的气流分离点g进一步后移,进一步减小整流罩1背风面的负压区P,降低气流的压差阻力。在其他可替代的实施方式中,整流罩本体10的外表面也可以设置其他结构的转捩发生器,转捩发生器用于扰动气流形成涡流,并提升激发涡流的效率,例如:三棱锥凸起结构、八字形排列的凸起结构等。
以下通过对三种参考设计和两种本申请实施例进行风洞测试,并且结合图12至图15从测试结果上说明本实施例的整流罩的技术效果。
请参阅图12至图15,图12为参考设计中方案一的待测试整流罩的测试位置示意图,图13为两种参考设计以及本申请两种实施例的待测试整流罩的测试位置示意图,图14为五种不同的技术方案 的风洞测试结果对比图,图15为五种不同的技术方案的的风洞测试结果对比表。为进一步说明本申请整流罩1对风阻和风载荷的优化效果,本申请模拟整流罩1的实际应用环境,分别对三种参考设计和本申请中两种的实施例进行风洞测试,试验测试了五种不同的技术方案在风速150km/h的情况下,气流以垂直于待测试整流罩2的长度方向,在不同角度下待测试整流罩2所承受的风载荷(如图12和图13所示)。
如图12和图13所示,并结合图7a和图8a予以理解,其中,方案一为两个并联设置的整流罩本体10A,其中整流罩本体10A的整个外表面均为光滑表面,且垂直于整流罩本体10A的第一侧面121A的方向为风洞测试的0度方向。
方案二为四个并列设置的整流罩本体10A,其中整流罩本体10A的整个外表面均为光滑表面,且垂直于整流罩本体10A的第一侧面121A的方向为风洞测试的0度方向。
方案三为四个并列设置的整流罩本体10B,其中整流罩本体10B的整个外表面均为粗糙表面,且垂直于整流罩本体10B的第一侧面121B的方向为风洞测试的0度方向,同时整流罩本体10B的端面11B采用弧形端面。
方案四为四个并列设置的整流罩1,整流罩1采用本申请实施例图5所示的结构。整流罩1包括整流罩本体10和纹理结构20,其中纹理结构20覆盖设置于整流罩本体10的整个外表面。
方案五为四个并列设置的整流罩1,整流罩1采用本申请实施例图5所示的结构的基础上设置有绊线的结构。其中整流罩1包括整流罩本体10、绊线和纹理结构20,纹理结构20覆盖设置于整流罩本体10的整个外表面,且每个转折表面13与两个侧面12相接的边缘设置有绊线。
以上方案一至方案三为三种参考设计,方案四和方案五为本申请的两种实施例。
如图14和图15所示,从测试结果可以看出,方案一的峰值风载荷为1375N;方案二的峰值风载荷为995N;方案三的峰值风载荷为950N;方案四的峰值风载荷为924N;方案五的峰值风载荷为893N(N为力的计量单位牛顿)。其中,三种参考设计中,方案三的峰值风载荷最低,而方案四和方案五相较于方案三实现了全向风阻和风载荷的优化。其中,方案四的峰值风载荷对比方案三的峰值风载荷降低了26N,方案五的峰值风载荷对比方案三的峰值风载荷降低了57N。说明在相同风速下,本申请的两种实施例相较于三种参考设计对气流的风阻和风载荷的优化效果更佳,使得本申请的两种实施例在相同风速下受到的风阻和风载荷更小,从而在相同结构强度下本申请的两种实施例能够抵抗更高的风速。
显然,本领域的技术人员可以对本申请进行各种改动和变形而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变形属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变形在内。

Claims (10)

  1. 一种整流罩,包括整流罩本体,其特征在于,所述整流罩本体的外表面设置有纹理结构,所述纹理结构包括依次排列的多个凸纹,且所述多个凸纹中的每个凸纹沿直线或曲线延伸,每个所述凸纹的横截面的跨度小于或等于3mm,每个所述凸纹的高度小于或等于3mm。
  2. 如权利要求1所述的整流罩,其特征在于,所述整流罩本体设置为内部中空的多边形柱状结构,所述整流罩本体的外表面具有位于所述整流罩本体侧壁的多个侧面、以及位于所述整流罩本体两端的两个端面,所述多个侧面中任意相邻两个侧面之间通过转折表面相接,且所述转折表面设置为曲面结构;
    所述转折表面的至少部分设置有所述纹理结构。
  3. 如权利要求2所述的整流罩,其特征在于,所述多个侧面和所述两个端面中每一个面设置为凸曲面、平面和凹曲面中的一种,或者,设置为凸曲面、平面和凹曲面中至少两种的结合。
  4. 如权利要求2或3所述的整流罩,其特征在于,每个所述转折表面的整个部分均设置有所述纹理结构。
  5. 如权利要求1~4中任一项所述的整流罩,其特征在于,所述纹理结构中的所述多个凸纹的横截面设置为三角形、半圆形、正弦形和矩形中的一种,或者,设置为三角形、半圆形、正弦形和矩形中至少两种的结合。
  6. 如权利要求1~5中任一项所述的整流罩,其特征在于,所述纹理结构中每个所述凸纹背离所述整流罩本体的一端为顶端,且任意相邻两个所述凸纹的所述顶端之间的间距小于或等于3mm。
  7. 如权利要求1~6中任一项所述的整流罩,其特征在于,所述纹理结构中的所述多个凸纹呈阵列排布,且每个所述凸纹的延伸方向相同。
  8. 如权利要求1~7中任一项所述的整流罩,其特征在于,所述纹理结构中的所述多个凸纹呈依次相接排列。
  9. 如权利要求1~8中任一项所述的整流罩,其特征在于,所述纹理结构中每个所述凸纹的延伸方向与所述整流罩本体的长度方向平行;或者,每个所述凸纹的延伸方向垂直于所述整流罩本体的长度方向。
  10. 如权利要求1~9中任一项所述的整流罩,其特征在于,所述整流罩设置为天线罩。
PCT/CN2023/103833 2022-07-18 2023-06-29 整流罩 WO2024016991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210843420.0 2022-07-18
CN202210843420.0A CN117458140A (zh) 2022-07-18 2022-07-18 整流罩

Publications (1)

Publication Number Publication Date
WO2024016991A1 true WO2024016991A1 (zh) 2024-01-25

Family

ID=89586097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103833 WO2024016991A1 (zh) 2022-07-18 2023-06-29 整流罩

Country Status (2)

Country Link
CN (1) CN117458140A (zh)
WO (1) WO2024016991A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080017864A (ko) * 2006-08-22 2008-02-27 신용오 항력 저감형 이동통신용 안테나 커버
CN102642613A (zh) * 2012-05-11 2012-08-22 中国航空工业集团公司西安飞机设计研究所 波纹套低阻整流罩
CN107534222A (zh) * 2015-02-23 2018-01-02 昆特尔科技有限公司 用来降低风载荷对基站天线的影响的装置和方法
CN112124561A (zh) * 2020-09-27 2020-12-25 中国商用飞机有限责任公司 用于飞行器的翼梢小翼的气动减阻结构及飞行器
US20210091449A1 (en) * 2018-02-23 2021-03-25 Telefonaktiebolaget Lm Ericsson (Publ) Antenna housing and structure for antenna housing
CN112864616A (zh) * 2021-03-12 2021-05-28 罗森伯格技术有限公司 一种端盖以及具有该端盖的天线罩组件
CN214221690U (zh) * 2020-12-17 2021-09-17 惠州比亚迪电子有限公司 减阻结构以及承载部件
CN113471657A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种天线装置
CN214930569U (zh) * 2021-05-19 2021-11-30 北京远度互联科技有限公司 天线整流罩、天线组件和无人机
CN114243285A (zh) * 2021-12-30 2022-03-25 京信通信技术(广州)有限公司 低风阻天线装置与天线罩

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080017864A (ko) * 2006-08-22 2008-02-27 신용오 항력 저감형 이동통신용 안테나 커버
CN102642613A (zh) * 2012-05-11 2012-08-22 中国航空工业集团公司西安飞机设计研究所 波纹套低阻整流罩
CN107534222A (zh) * 2015-02-23 2018-01-02 昆特尔科技有限公司 用来降低风载荷对基站天线的影响的装置和方法
US20210091449A1 (en) * 2018-02-23 2021-03-25 Telefonaktiebolaget Lm Ericsson (Publ) Antenna housing and structure for antenna housing
CN113471657A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种天线装置
CN112124561A (zh) * 2020-09-27 2020-12-25 中国商用飞机有限责任公司 用于飞行器的翼梢小翼的气动减阻结构及飞行器
CN214221690U (zh) * 2020-12-17 2021-09-17 惠州比亚迪电子有限公司 减阻结构以及承载部件
CN112864616A (zh) * 2021-03-12 2021-05-28 罗森伯格技术有限公司 一种端盖以及具有该端盖的天线罩组件
CN214930569U (zh) * 2021-05-19 2021-11-30 北京远度互联科技有限公司 天线整流罩、天线组件和无人机
CN114243285A (zh) * 2021-12-30 2022-03-25 京信通信技术(广州)有限公司 低风阻天线装置与天线罩

Also Published As

Publication number Publication date
CN117458140A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
Lotfi et al. 3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators
US10697427B2 (en) Vortex generator and wind turbine blade assembly
US11319923B2 (en) Vortex generator for wind turbine blade, wind turbine blade, wind turbine power generating apparatus, and method of mounting vortex generator
CA2656795C (en) Flow deflection devices and methods for energy capture machines
Paetzold et al. Wind engineering analysis of parabolic trough collectors to optimise wind loads and heat loss
US10982647B2 (en) Vortex generator, installation method for the same, wind turbine blade, and wind turbine power generating apparatus
JP2008157465A (ja) 表面上のくぼみ
Paetzold et al. Wind engineering analysis of parabolic trough solar collectors: The effects of varying the trough depth
US11300096B2 (en) Method for determining arrangement position of vortex generator on wind turbine blade, method for producing wind turbine blade assembly, and wind turbine blade assembly
WO2024016991A1 (zh) 整流罩
Roy et al. A comprehensive review of the application of bio-inspired tubercles on the horizontal axis wind turbine blade
CN209945100U (zh) 用于板翅式换热器的散热片
US20100193172A1 (en) Fin for a heat exchanger
CN217300761U (zh) 一种带仿生气动弹片的风力机翼型结构
CN112943565B (zh) 一种具有波浪形涡流发生器的风机叶片及其设计方法
CN115095627A (zh) 一种用于塔器减振的微型翅片
CN221325216U (zh) 翅片及具有其的换热装置
JPH11187549A (ja) 電線防護管
CN210512767U (zh) 一种用于中冷器的冷却管
WO2023042481A1 (ja) リブレット構造体及び対象物
CN210512770U (zh) 一种中冷器
Isaev et al. Structures control with the use of the throttling effect, vortex cells and surface generators–Inclined oval-trench dimples
WO2023065779A1 (zh) 涡流发生器、天线罩和天线
Flay et al. Model tests of twisted flow wind tunnel designs for testing yacht sails
CN217585469U (zh) 三角形波纹涡产生器式圆管管翅换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842056

Country of ref document: EP

Kind code of ref document: A1