WO2024016697A1 - 光源、光源模组和显示装置 - Google Patents

光源、光源模组和显示装置 Download PDF

Info

Publication number
WO2024016697A1
WO2024016697A1 PCT/CN2023/082458 CN2023082458W WO2024016697A1 WO 2024016697 A1 WO2024016697 A1 WO 2024016697A1 CN 2023082458 W CN2023082458 W CN 2023082458W WO 2024016697 A1 WO2024016697 A1 WO 2024016697A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflective layer
emitting element
light source
layer
Prior art date
Application number
PCT/CN2023/082458
Other languages
English (en)
French (fr)
Inventor
李坤
陈文婧
刘芳
杨丹
方华
孙雷蒙
Original Assignee
华引芯(武汉)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华引芯(武汉)科技有限公司 filed Critical 华引芯(武汉)科技有限公司
Publication of WO2024016697A1 publication Critical patent/WO2024016697A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to the technical field of light-emitting semiconductors and their packaging, and in particular to a light source, a light source module and a display device.
  • LEDs for short have the advantages of small size, simple structure, low energy consumption, and long service life. In recent years, they have gradually replaced traditional light sources. Small-sized LEDs have been widely used in display devices.
  • LEDs can be used as backlight displays or direct displays. There are still many technical difficulties that have not been overcome as direct displays. At this stage, LEDs are mainly used in backlight display applications in display devices.
  • the current LED backlight module mainly integrates multiple light-emitting diode packages (LED PKG) on the circuit board.
  • the center brightness of conventional LED packages is high and the light-emitting angle is limited, which requires dense arrangement of LED packages and a large light mixing distance.
  • OD Optical Distance
  • combined with a thicker diffusion plate results in a thicker overall thickness of the backlight module and high cost, which is not in line with the current development trend of cost-reducing ultra-thin display devices.
  • the current research direction of LED technology in display devices requires not only reducing the number of LED packages to reduce costs, but also ensuring display uniformity and brightness, as well as ensuring the overall thickness and thinness.
  • this application provides a light source, a light source module and a display device to solve the shortcomings of the existing technology.
  • the present invention provides a light source that emits light laterally after being brightened.
  • a light source module When used in a light source module, it can reduce costs, brighten and emit uniform light.
  • the resulting display device is thin, light, and low-cost, and is suitable for industrialization.
  • the invention provides a light source, including:
  • a light-emitting element has an exit surface and two electrical connection parts, and the electrical connection parts are from the light-emitting element.
  • the lower surface extends out, and the thickness of the electrical connection part is greater than the original electrode thickness of the light-emitting element;
  • An upper reflective layer is arranged above the light-emitting element and opposite to the upper surface of the light-emitting element;
  • a lower reflective layer arranged below the light-emitting element and opposite to the lower surface of the light-emitting element
  • a wavelength conversion element that covers the exit surface except the electrical connection portion and fills the gap between the upper reflective layer and the lower reflective layer;
  • the projection of the exit surface falls in the upper reflective layer
  • the projection of the side surface of the light-emitting element falls in the lower reflective layer.
  • the upper reflective layer and the lower reflective layer The spacing between layers gradually increases from the inside to the outside.
  • the respective thicknesses of the upper reflective layer and the lower reflective layer gradually decrease from the inside to the outside.
  • the lower reflective layer extends for one week to form an opening inside the lower reflective layer, and the two electrical connection parts are provided in the opening and abut against the lower reflective layer;
  • each of the upper reflective layer and the lower reflective layer is symmetrically distributed along the central axis;
  • the lower surfaces of the lower reflective layer, the wavelength conversion element and the electrical connection part are on the same horizontal plane
  • the surfaces of the upper reflective layer and the lower reflective layer facing away from each other are arranged parallel to each other.
  • the electrical connection part includes the original electrode of the light-emitting element, an enhancement layer, and a connection layer connecting the electrode and the enhancement layer.
  • connection layer and the enhancement layer are integrally formed on the electrode in sequence by electroplating
  • the increasing layer and the connection block can also be prepared on the support body through a photolithography process, and the electrode is connected to the connection layer through a crystal bonding process.
  • the thickness of the electrical connection part is 9-12 times the thickness of the original electrode of the light-emitting element.
  • the side surface of the wavelength conversion element is further covered with a protective layer.
  • the surface of the upper reflective layer opposite to the light-emitting element is a plane arranged at an acute angle with the central axis or the surface of the upper reflective layer opposite to the light-emitting element is oriented toward The convex curved surface of the central axis;
  • the surface of the lower reflective layer opposite to the light-emitting element is a plane arranged at an acute angle with the central axis, or the surface of the lower reflective layer opposite to the light-emitting element is convex toward the central axis. surface.
  • the invention also provides a light source module.
  • the light source module includes a substrate, a plurality of light sources provided on the substrate, and a reflective bowl.
  • the reflective bowl is located around at least one light source, and the substrate is The height of the reflective bowl is higher than that of the light source.
  • the light source includes the above-mentioned light source.
  • the substrate can be used as a support in the preparation process of the electrical connection part of the light source.
  • the present invention also provides a display device, which includes the above-mentioned light source module.
  • the beneficial effect of the present invention is to provide a light source, a light source module and a display device.
  • the light source changes the light path of the light-emitting element through an upper reflective layer above the light-emitting element and a lower reflective layer below it, so that the upper surface and side surfaces of the light-emitting element are The light emerges from the side of the light-emitting element along the cup area enclosed by the upper reflective layer and the lower reflective layer, which increases the light emission angle of the light source, approaching 180°.
  • the surrounding light has an upward expansion of the light; in addition, by thickening the light
  • This light source module uses the above light sources. Due to the large light emission angle of the light source, it can increase the brightness of adjacent light sources. The arrangement distance between them reduces the number of light sources in the module and reduces costs; secondly, the light source characteristics are dark in the middle and bright around, with upward expanded light around it, and the expanded light of the light source will radiate to the middle of adjacent light sources In dark places, the lattice effect of the light source module can be avoided, and the uniformity of light emission is improved through the reflection of the reflective bowl. In addition, the light source itself is brightened, so even if the number of light sources is reduced, the brightness of the light source module will not be affected.
  • This display device is equipped with the above light source module, has good light uniformity, the light mixing distance is extremely small, almost zero, and the overall thickness is light and thin, which greatly reduces the cost.
  • Figure 1 is a schematic structural diagram of a light source structure according to an embodiment of the present invention.
  • Figure 2 is a second structural schematic diagram of the combination of the upper reflective layer and the lower reflective layer in the light source shown in Figure 1;
  • Figure 3 is a schematic diagram of the third structure of the combination of the upper reflective layer and the lower reflective layer in the light source shown in Figure 1;
  • Figure 4 is a fourth structural schematic diagram of the combination of the upper reflective layer and the lower reflective layer in the light source shown in Figure 1;
  • Figure 5 is a bottom view of the light source shown in Figure 1;
  • Figure 6 is a top view of the lower reflective layer in the light source shown in Figure 1;
  • Figure 7 is a bottom view of the upper reflective layer in the light source shown in Figure 1;
  • Figure 8 is an optical path diagram of the optical simulation of the light source shown in Figure 1;
  • Figure 9 is a light emission angle diagram of the optical simulation of the light source shown in Figure 8.
  • Figure 10 is a schematic structural diagram of a light source module according to an embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the central axis L of the light-emitting element 11 described in the specification of this application is the optical axis of the light-emitting element 11.
  • the “inner” and “outer” are relative to the central axis L of the light-emitting element 11, which is relatively close to the central axis L.
  • the light-emitting element 11 is the inside, and the part relatively far away from the central axis L is the outside; taking the light-emitting element 11 as an example, its lower surface 112 is the surface provided with the electrical connection part 15, its upper surface 111 is the surface opposite to its lower surface 112, and its side surface 113 To connect the surface between the upper surface 111 and the lower surface 112; the upper surface 111, lower surface 112 and side surface 113 of other components are arranged with reference to the direction of the light emitting element 11; the distance between the upper and lower reflective layers 13 should be understood as the upper reflective layer 12 and the lower reflective layer 13 in the direction parallel to the central axis L.
  • the light source 1 includes an upper reflective layer 12 , a wavelength conversion element 14 , a light emitting element 11 and a lower reflective layer 13 which are sequentially arranged along the direction of the central axis L.
  • the light-emitting element 11 has an opposite upper surface 111 and a lower surface 112 and a side surface 113 connecting the upper surface 111 and the lower surface 112.
  • the upper surface 111, the lower surface 112 and the side surface 113 constitute a luminescent element.
  • the light-emitting element 11 also extends two electrical connection portions 15 from its lower surface 112.
  • the thickness of the electrical connection portion 15 is greater than the thickness of the original electrode 151 of the light-emitting element 11. That is, the electrical connection portion 15 is on the original surface of the light-emitting element 11.
  • the electrode 151 is thickened.
  • the light-emitting element 11 is sandwiched between the upper reflective layer 12 and the lower reflective layer 13.
  • the upper reflective layer 12 is arranged opposite to the upper surface 111, and the lower reflective layer 13 is arranged opposite to the lower surface 112.
  • the wavelength is converted.
  • the element 14 offsets the light-emitting element 11 , covers all areas of the discharge surface connection portion 15 , and fills the gap between the upper reflective layer 12 and the lower reflective layer 13 .
  • the projection of the exit surface falls into the upper reflective layer 12, that is, the area of the upper reflective layer 12 is larger than the size of the light-emitting element 11, and when viewed from above, the upper reflective layer 12 completely covers the light-emitting element.
  • the projection of the side surface 113 of the light-emitting element 11 falls into the lower reflective layer 13. That is, when viewed from above, the lower reflective layer 13 must at least completely cover the upper surface 111 and the lower surface 112 of the light-emitting element 11. Periphery.
  • the two electrical connection parts 15 are electrically connected to the pads of the substrate 21.
  • the upper reflective layer 12 and the lower reflective layer 13 respectively cover the light emitting surface.
  • the upper surface 111 and the lower surface 112 of the element 11 make the side surface 113 of the light-emitting element 11 face the gap between the upper reflective layer 12 and the lower reflective layer 13, and the gap between the upper reflective layer 12 and the lower reflective layer 13 is from the inside to the outside.
  • the light-emitting element 11 emits light from the side 113 and forms expanded light outside the side 113 .
  • a reflective layer 12 is provided above the light-emitting element 11, and a reflective layer 13 is provided below the light-emitting element 11 to change the light path, so that the light emitted from the five sides of the light-emitting element 11, Light is emitted along the bowl area enclosed by the upper reflective layer 12 and the lower reflective layer 13, forming an externally expanded light emitted from the peripheral side of the light-emitting element 11, which increases the light emitting angle of the light source 1, approaching 180°; in addition, by thickening
  • the electrode 151 of the light-emitting element 11, combined with the upper reflective layer 12 and the lower reflective layer 13, extracts the light from the lower surface 112 of the light-emitting element 11 and emits it from the side 113 of the light-emitting element 11 along the cup area, making up for the upper reflective layer 12 to provide light to the light-emitting element 11 Part of the light loss caused by the light emitted from the upper surface 111 increases
  • the light-emitting element 11 includes a growth layer (such as a sapphire layer), an n-type semiconductor layer grown on the growth layer, a quantum well layer, a p-type semiconductor layer, and a pair of electrodes from the side away from the growth layer (lower surface 112 of the light-emitting element 11).
  • a growth layer such as a sapphire layer
  • the electrical connection part 15 includes the original electrode 151 of the light-emitting element 11, the enhancement layer 152, and the connection layer 153 connecting the electrode 151 and the enhancement layer 152.
  • the connection layer 153 and the increase layer 152 are integrally formed on the electrode 151 in sequence through an electroplating process; preferably, the increase layer 152 and the connection block can also be successively prepared on the support through a photolithography process, and the electrode 151 is formed through a solidification process.
  • the thickness of the electrical connection part 15 is h4, and the thickness of the original electrode 151 of the light-emitting element 11 is h5.
  • the ratio of h4:h5 is controlled to be in the range of 9-12, so as to ensure the bottom light extraction effect without making the light source 1 too thick. good.
  • the thickness of the upper reflective layer 12 and the lower reflective layer 13 gradually decreases from the inside to the outside, so that the upper reflective layer 12 and the lower reflective layer 13 form a continuous layer along the side 113 of the light-emitting element 11 .
  • bowl cup shape Preferably, the surfaces of the upper reflective layer 12 and the lower reflective layer 13 facing away from each other are arranged in parallel, that is, the upper surface 111 of the upper reflective layer 12 and the lower surface 112 of the lower reflective layer 13 are arranged in parallel.
  • the lower reflective layer 13 extends for one week and forms an opening 132 inside it. The two electrical connection portions 15 are disposed in the opening 132 and are in contact with the lower reflective layer 13 .
  • the projections of the outer peripheral edges of the upper reflective layer 12 and the lower reflective layer 13 along the direction of the central axis L coincide with each other.
  • the upper reflective layer 12 and the lower reflective layer 13 are each symmetrically distributed along the central axis L.
  • the maximum distance between the upper reflective layer 12 and the lower reflective layer 13 is h1, the maximum thickness of the upper reflective layer 12 is h2, and the maximum thickness of the lower reflective layer 13 is h3. Control the sizes of h1, h2 and h3 within an appropriate range. The light brightness of the light source 1 can be improved while ensuring that the overall thickness is suitable.
  • the shape of the upper reflective layer 12 can be set to any of the following.
  • the surface of the upper reflective layer 12 opposite to the light-emitting element 11 is the first surface 121.
  • the first surface 121 is a plane whose angle with the central axis L is less than 90°, and the first surface 121 is a triangular plane.
  • the side of the reflective layer 12 opposite the upper surface 111 of the light-emitting element 11 is a continuous three-dimensional structure (the cone surface of a cone in the figure) spliced by four first surfaces 121; optionally, the first surface 121 faces the central axis.
  • L is a convex curved surface, and the side of the upper reflective layer 12 facing the upper surface 111 of the light-emitting element 11 is a continuous three-dimensional structure composed of four first surfaces 121 spliced together.
  • the shape of the lower reflective layer 13 can be set to any of the following.
  • the surface of the lower reflective layer 13 opposite to the light-emitting element 11 is the second surface 131 .
  • the second surface 131 is a plane with an angle less than 90° with the central axis L
  • the second surface 131 is a trapezoidal surface
  • the side of the lower reflective layer 13 opposite the lower surface 112 of the light-emitting element 11 has four A continuous three-dimensional structure composed of two surfaces 131 spliced together; optionally, the second surface 131 is a curved surface protruding toward the central axis L
  • the side of the lower reflective layer 13 opposite the lower surface 112 of the light-emitting element 11 is composed of four second surfaces 131 Spliced continuous three-dimensional structure.
  • Both the upper reflective layer 12 and the lower reflective layer 13 can be formed of resin materials and light reflective substances.
  • the upper reflective layer 12 and the lower reflective layer 13 of the above structure can be made by molding, transfer molding, potting printing or spray molding. , and subsequently, parts of the upper reflective layer 12 and the lower reflective layer 13 may be removed in the thickness direction by grinding and etching.
  • the resin material is not particularly limited as long as it is selected to be less likely to absorb light from the light emitting element 11 .
  • underfill materials include, but are not limited to, epoxy resin, silicone resin, modified silicone resin, polyurethane resin, oxetane resin, acrylic, polycarbonate, and polyimide.
  • the light-reflective material is a material that reflects the light emitted by the light-emitting element 11.
  • Examples of the light-reflective material include but are not limited to silicon dioxide, titanium oxide, silicon oxide, aluminum oxide, potassium titanate, zinc oxide, and boron nitride. Up reflection
  • Both the layer 12 and the lower reflective layer 13 may include at least one light reflective material.
  • the materials of the upper reflective layer 12 and the lower reflective layer 13 may be configured from the same material or may be configured from different materials.
  • the wavelength conversion member is arranged on the upper surface 111 , the lower surface 112 and the side surface 113 of the light emitting element 11 , and covers all the exit surfaces of the static elimination connection part 15 .
  • the lower reflective layer 13, the electrical connection part 15 and The lower surfaces 112 of the three wavelength conversion components are on the same horizontal plane.
  • the wavelength converting member absorbs part of the light emitted from the upper surface 111 , the lower surface 112 and the side surface 113 of the light emitting element 11 and emits light having a longer wavelength than the absorbed light.
  • the wavelength conversion member includes, but is not limited to, translucent resin and phosphor.
  • yttrium aluminum garnet-based phosphors for example, Y3(Al, Ga)5O12:Ce
  • aluminum garnet-based phosphors for example, Lu3(Al, Ga)5O12:Ce
  • aluminum garnet-based phosphors can be used Phosphor (for example, Tb3(Al, Ga)5O12: Ce)
  • ⁇ phosphor for example, (Si, Al) 3 (O, N) 4: Eu
  • ⁇ phosphor for example, Mz (Si, Al) 12 (O, N) 16 (where, 0 ⁇ z ⁇ 2, M is a lanthanide element
  • a CASN-based phosphor for example, CaAlSiN3:Eu
  • SCASN-based phosphor other than Li, Mg, Ca, Y, La and Ce Phosphors (such as (Sr, Ca)
  • the translucent resin at least one material selected from silicone resin, modified silicone resin, epoxy resin, modified epoxy resin, acrylic resin, and fluororesin can be used. Other transparent resins or mixtures with the above materials can also be used. The embodiments of the present invention do not limit the material of the translucent resin.
  • the wavelength conversion member may include a variety of phosphors, for example, a phosphor that absorbs blue light and emits yellow light and a phosphor that absorbs blue light and emits red light. Thereby, white light can be emitted from the light emitting unit 51 .
  • the wavelength converting member may include a light diffusing material that does not block light.
  • the light diffusion material can adjust the transmittance of the wavelength conversion member to the light emitted from the light-emitting element 11 and/or the wavelength-converted light.
  • the light diffusion material for example, titanium oxide, silicon oxide, aluminum oxide, zinc oxide, glass, etc. can be used.
  • the side surface 113 of the wavelength conversion component also surrounds a light-transmitting protective layer 16 .
  • the material of the protective layer 16 can be epoxy resin and its modified resin, which has good adhesion and gas barrier properties.
  • the protective layer 16 material can also be silicone resin and its modified resin, which has high heat resistance and high light resistance, and And its volume shrinkage is very small after curing.
  • an embodiment of the present invention further provides a light source module 2 and a display device 3 including the light source module 2 .
  • the light source module 2 includes a substrate 21, several light sources 1 provided on the substrate 21, and a reflective bowl 22.
  • the reflective bowl 22 is arranged around at least one light source 1, and the reflective bowl 22 is slightly higher than the upper surface 111 of the light source 1.
  • the light source 1 is In the structure of the light source 1 described above, the substrate 21 can be used as a support during the preparation process of the electrical connection portion 15 of the light source 1 .
  • the reflective bowl 22 has 9 built-in light sources 1. In actual applications, 4, 16, 25, etc. can be set according to the needs.
  • the display device 3 includes a plurality of light source modules 2 with a common substrate 21, and is not limited to the nine light source modules 2 in Figure 9. Reflective bowls 22 can be used between adjacent light source modules 2 to avoid crosstalk and increase the size of the display device 3. To improve the contrast, the display device 3 may also include a dimming structure such as a diffusion film and a light-enhancing film provided above the light source module 2 .
  • This light source module 2 uses the above light source 1. Since the light source 1 has a large light emission angle, it can increase the arrangement distance between adjacent light sources 1, reduce the number of light sources 1 in the module, and reduce costs; secondly, the light source 1 emits light The characteristic is that the middle is dark and the surrounding is bright, and there is upward outward expansion light around it (please refer to Figure 8 and Figure 9).
  • the light sources 1 in the light source module 2 are arranged at large intervals, multiple light sources 1 are lit, and the light source 1 is The externally expanded light will radiate to the middle dark place of the adjacent light sources 1, which can avoid low-brightness areas between the light sources 1, and also improves the uniformity of luminescence through the reflection of the reflective bowl 22; in addition, the light source 1 itself is improved Even if the number of light sources 1 is reduced, the brightness of light source module 2 will not be affected.
  • the display device 3 is equipped with the above light source module 2, has good light uniformity, the light mixing distance is extremely small, almost zero, and the overall thickness is light and thin, which greatly reduces the cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

一种光源(1)、光源模组(2)和显示装置(3),光源(1)包括发光元件(11),具有出射面以及两电连接部(15),电连接部(15)厚度大于发光元件(11)原本电极厚度;上反射层(12),配置于发光元件(11)的上方与发光元件(11)的上表面(111)相对;下反射层(13),配置于发光元件(11)的下方与发光元件(11)的下表面(112)相对;波长转换元件(14),包覆出射面除电连接部(15)处并填充上反射层(12)和下反射层(13)间的空隙;沿发光元件(11)的中心轴(L)方向,出射面的投影落于上反射层(12)内,发光元件(11)的侧面(113)的投影落于下反射层(13)内,上反射层(12)和下反射层(13)之间的间距由内向外逐渐增大。

Description

光源、光源模组和显示装置 技术领域
本发明涉及发光半导体及其封装技术领域,特别是涉及一种光源、光源模组和显示装置。
背景技术
发光二极管(Light-Emitting diode,简称LED)具有体积小、结构简单、耗能低、使用寿命长等优点,近年来已逐渐取代传统光源,小尺寸的LED已经广泛应用于显示装置中。
小尺寸LED可以作为背光显示也可直接显示,作为直接显示还有许多技术难点未攻克,现阶段LED主要以背光显示应用显示装置中。现行的LED背光模块主要在线路板上集成多个发光二极管封装体(LED PKG),常规LED封装体中心亮度较高且发光角度有限,需要LED封装体密集排布,及较大的混光距离OD(Optical Distance),同时搭配较厚的扩散板,继而导致背光模组的整体厚度较厚,且成本高,这不符合现有降本的超薄化显示装置的发展趋势。
目前LED技术在显示装置中的研究方向,既要减少LED封装体数量,进行降本,又要保证显示均匀性及显示亮度,还要保证整体厚度轻薄。
鉴于此,本申请提供一种光源、光源模组和显示装置来解决现有技术存在的缺陷。
发明内容
基于此,本发明提供一种提亮后侧向出光的光源,应用于光源模组中能降本且提亮又出光均匀,最后形成的显示装置厚度轻薄且成本低,适于产业化。
本发明提供了一种光源,包括:
发光元件,具有出射面以及两电连接部,所述电连接部自所述发光元件的 下表面延伸出来,所述电连接部厚度大于所述发光元件原本电极厚度;
上反射层,配置于所述发光元件的上方与所述发光元件的上表面相对;
下反射层,配置于所述发光元件的下方与所述发光元件的下表面相对;
波长转换元件,包覆所述出射面除所述电连接部处并填充所述上反射层和下反射层间的空隙;
沿所述发光元件的中心轴方向,所述出射面的投影落于所述上反射层内,所述发光元件的侧面的投影落于所述下反射层内,所述上反射层和下反射层之间的间距由内向外逐渐增大。
基于以上实施例的一个优选方式中,所述上反射层和下反射层各自的厚度自内向外逐渐减小。
基于以上实施例的一个优选方式中,所述下反射层延伸一周在其内部形成开口,两所述电连接部设于所述开口内并与所述下反射层相抵接;
和/或,所述上反射层和下反射层的外周缘沿所述中心轴方向的投影重合;
和/或,所述上反射层和下反射层各自分别沿所述中心轴对称分布;
和/或,所述下反射层、波长转换元件以及电连接部三者的下表面在同一水平面上;
和/或,所述上反射层和下反射层相互背离的表面平行设置。
基于以上实施例的一个优选方式中,所述电连接部包括所述发光元件原本电极、增高层以及连接所述电极和增高层的连接层。
基于以上实施例的一个优选方式中,所述连接层和增高层通过电镀按顺序一体形成于所述电极上;
和/或,所述增高层和连接块还可以先后通过光刻工艺制备于支撑体上,所述电极通过固晶工艺与所述连接层连接。
基于以上实施例的一个优选方式中,所述电连接部的厚度为所述发光元件原本电极的厚度的9-12倍。
基于以上实施例的一个优选方式中,所述波长转换元件的侧面还包覆一圈防护层。
基于以上实施例的一个优选方式中,所述上反射层与所述发光元件相对的表面为与所述中心轴呈锐角设置的平面或所述上反射层与所述发光元件相对的表面为朝向所述中心轴凸出的曲面;
和/或,所述下反射层与所述发光元件相对的表面为与所述中心轴呈锐角设置的平面或所述下反射层与所述发光元件相对的表面为朝向所述中心轴凸出的曲面。
本发明还提供了一种光源模组,所述光源模组包括基板、设于所述基板上的若干光源和反光碗,所述反光碗围设于至少一个光源周围,且以所述基板为基准所述反光碗的高度高于所述光源,所述光源包括以上所述的光源,所述基板可作为所述光源的电连接部制备过程中的支撑体。
本发明还提供了一种显示装置,所述显示装置包括以上所述的光源模组。
本发明的有益效果在于提供一种光源、光源模组和显示装置,该光源通过设于发光元件上方的上反射层和下方的下反射层,改变发光元件的光路,使发光元件上表面和侧面的光从发光元件的侧面沿上反射层和下反射层围合的碗杯区域出射,使光源的出光角度增大,趋近180°出光周围出光有向上的外扩光;另外通过增厚发光元件自身电极,结合上反射层和下反射层,提取发光元件下表面的光并从发光元件的侧面沿碗杯区域出射,增加光源出光亮度,弥补上反射层给发光元件上表面出光带来的部分光损失。
该光源模组,应用以上光源,由于光源的出光角度大,可以增大相邻光源 之间的排布距离,减少模组内的光源数量,降低成本;其次,光源出光特点为中间暗周围亮,周围有向上的外扩光,光源的外扩光会辐射到相邻光源的中间暗处,可避免光源模组的点阵效应,还通过反光碗围的反射,提升发光均匀性;另外,光源本身有进行提亮,即使光源数量减少,也不会影响光源模组的亮度。
该显示装置,设置以上光源模组,出光均匀性好,混光距离极小,几乎趋于零,整体厚度轻薄,大大降低了成本。
附图说明
图1为本发明实施例的光源结构的结构示意图;
图2为图1所示光源中上反射层和下反射层组合的第二结构示意图;
图3为图1所示光源中上反射层和下反射层组合的第三结构示意图;
图4为图1所示光源中上反射层和下反射层组合的第四结构示意图;
图5为图1所示光源的仰视图;
图6为图1所示光源中下反射层的俯视图;
图7为图1所示光源中上反射层的仰视图;
图8为图1所示光源光学仿真的光路图;
图9为图8所示光源光学仿真的出光角度图;
图10为本发明实施例的光源模组的结构示意图;
图11为本发明实施例的显示装置结构示意图;
附图中各标号的含义为:
1-光源;11-发光元件;111-上表面;112-下表面;113-侧面;12-上反射
层;121-第一表面;13-下反射层;131-第二表面;132-开口;14-波长转换元件;15-电连接部;151-电极;152-增高层;153-连接层;16-防护层;L-中心轴;h1-最大间距;h2-上反射层的最大厚度;h3-下反射层的最大厚度;h4-电 连接部厚度;h5-电极厚度;2-光源模组;21-基板;22-反光碗;3-显示装置。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本申请说明书记载的所述发光元件11的中心轴L是发光元件11的光轴,所述的“内”和“外”均是相对发光元件11的中心轴L来说,相对靠近中心轴L的为内,相对远离中心轴L的为外;以发光元件11为例,其下表面112为设有电连接部15的表面,其上表面111为与其下表面112相对的面,其侧面113为连接上表面111和下表面112之间的面;其他元件的上表面111、下表面112以及侧面113参照发光元件11的方向设置;上下反射层13之间的间距应该理解为上反射层12和下反射层13之间平行中心轴L方向的距离。
请参阅图1-图5,为本发明实施例光源1结构示意图。光源1包括沿中心轴L方向依次顺序布置的上反射层12、波长转换元件14、发光元件11以及下反射层13。发光元件11具有相对的上表面111和下表面112以及连接上表面111和下表面112的侧面113,上表面111、下表面112以及侧面113构成发光 元件11的出射面,发光元件11从其下表面112还延伸出两电连接部15,该电连接部15厚度要大于发光元件11原来的电极151厚度,即电连接部15在发光元件11原本电极151上进行了增厚,发光元件11夹设于上反射层12和下反射层13之间,上反射层12与上表面111相对设置,下反射层13与下表面112相对设置,波长转换元件14与发光元件11相抵,其包覆出射面除电连接部15的所有区域,并填充上反射层12和下反射层13之间的空隙。
具体的,沿发光元件11的中心轴L方向,出射面的投影落于上反射层12内,即上反射层12面积大于发光元件11的尺寸,且俯视看,上反射层12完全覆盖了发光元件11。沿发光元件11的中心轴L方向,发光元件11的侧面113的投影落于下反射层13内,即仰视看,下反射层13至少要完全覆盖发光元件11的上表面111和下表面112的周缘。
由于最后光源1下表面112要贴装于基板21上,使两电连接部15与基板21的焊盘电气连通,光源1贴装使用时,上反射层12和下反射层13分别覆盖在发光元件11的上表面111和下表面112,使发光元件11的侧面113与上反射层12和下反射层13之间的间隔相对,上反射层12和下反射层13之间的间距由内向外逐渐增大,使发光元件11从侧面113出光并形成侧面113外扩光。
请参阅图8和图9,本发明实施例的光源1在发光元件11上方设上反射层12,在发光元件11下方设下反射层13,改变光路,使五面出的光发光元件11,沿上反射层12和下反射层13围合的碗杯区域出射光线,形成发光元件11周侧出光的外扩光,使光源1的出光角度增大,趋近180°出光;另外通过增厚发光元件11自身电极151,结合上反射层12和下反射层13,提取发光元件11下表面112的光并从发光元件11的侧面113沿碗杯区域出射,弥补上反射层12给发光元件11上表面111出光带来的部分光损失,提升光源1的出光亮度。
发光元件11,包括生长层(例如蓝宝石层)、在生长层生长的n型半导体层、量子阱层、p型半导体层以及从背离生长层一侧(发光元件11的下表面112)一对电连接部15。
优选的,电连接部15包括发光元件11原本电极151、增高层152以及连接电极151和增高层152的连接层153。优选的,连接层153和增高层152通过电镀工艺按顺序一体形成于电极151上;优选的,增高层152和连接块还可以先后通过光刻工艺制备于支撑体上,电极151通过固晶工艺与连接层153连接。优选的,电连接部15厚度为h4,发光元件11原本电极151厚度为h5,控制h4:h5的比值在9-12范围内,既不使光源1厚度过厚,也能保证底面光提取效果好。
基于以上实施例的一个优选实施方式中,上反射层12和下反射层13的厚度自内向外逐渐减小,继而使上反射层12和下反射层13沿发光元件11的侧面113形成一个连续的碗杯状。优选的,上反射层12和下反射层13相互背离的表面平行设置,即上反射层12的上表面111与下反射层13的下表面112平行设置。优选的,下反射层13延伸一周在其内部形成开口132,两电连接部15设于开口132内并与下反射层13相抵接。优选的,上反射层12和下反射层13的外周缘沿中心轴L方向的投影重合。优选的,上反射层12和下反射层13各自分别沿中心轴L对称分布。上反射层12和下反射层13之间最大间隔为h1,上反射层12的最大厚度为h2,下反射层13的最大厚度为h3,控制h1、h2以及h3的大小在适当的范围内,可以在保证整体厚度适合的条件下,提升光源1出光亮度。
请参阅图1-图4以及图6-图7,上反射层12形状可以设置为以下中的任一种,上反射层12与发光元件11相对的表面为第一表面121。可选的,第一表面121为与中心轴L之间夹角小于90°的平面,第一表面121为三角形平面,上 反射层12相对发光元件11的上表面111的一侧为四个第一表面121拼接的连续的立体结构(图中为锥体的锥面);可选的,第一表面121为朝向中心轴L凸出的曲面,上反射层12相对发光元件11的上表面111的一侧为四个第一表面121拼接的连续的立体结构。
下反射层13形状可以设置为以下中的任一种,下反射层13与发光元件11相对的表面为第二表面131。可选的,第二表面131为与中心轴L之间夹角小于90°的平面,第二表面131为梯形面,下反射层13相对发光元件11的下表面112的一侧为四个第二表面131拼接的连续的立体结构;可选的,第二表面131为朝向中心轴L凸出的曲面,下反射层13相对发光元件11的下表面112的一侧为四个第二表面131拼接的连续的立体结构。
上反射层12和下反射层13均可以包括树脂材料和光反射物质等形成,以上结构的上反射层12和下反射层13均可以通过模压成型、转印成型,灌封印刷或喷涂成型制得,后续也可以在厚度方向上通过研磨蚀刻等去除上反射层12和下反射层13的一部分。
树脂材料没有特别限制只要选择不太可能吸收来自发光元件11的光即可。例如,底部填充材料包括但不限于环氧树脂、硅树脂、改性硅树脂、聚氨酯树脂、氧杂环丁烷树脂、丙烯酸、聚碳酸酯和聚酰亚胺。
光反射物质是反射由发光元件11发射的光的物质,光反射物质的例子包括但不限于二氧化硅、氧化钛、氧化硅、氧化铝、钛酸钾、氧化锌以及氮化硼,上反射层12和下反射层13均可包括至少一种光反射物质,上反射层12和下反射层13的材料可以由相同材料配置而成,也可以由不同材料配置而成。
波长转换构件,配置在发光元件11的上表面111、下表面112和侧面113,包裹除电连接部15处的所有出射面。优选的,下反射层13、电连接部15以及 波长转换构件三者的下表面112在同一水平面上。波长转换构件吸收从发光元件11的上表面111、下表面112和侧面113射出的光的一部分,释放出波长比吸收的光长的光。
波长转换构件包括但不限于透光性树脂和荧光体。作为荧光体,能够使用钇铝石榴石类荧光体(例如Y3(Al,Ga)5O12:Ce)、铝石榴石类荧光体(例如Lu3(Al,Ga)5O12:Ce)、铝制石榴石类荧光体(例如,Tb3(Al,Ga)5O12:Ce)、β磷光体(例如(Si,Al)3(O,N)4:Eu)、α磷光体(例如,Mz(Si,Al)12(O,N)16(其中,0<z≤2,M为除Li、Mg、Ca、Y及La和Ce之外的镧系元素、CASN类荧光体(例如,CaAlSiN3:Eu)或SCASN类荧光体(例如(Sr,Ca)AlSiN3:Eu)等氮化物类荧光体、KSF类荧光体(例如K2SiF6:Mn)或MGF类荧光体(例如3.5MgO 0.5MgF2 GeO2:Mn)等氟化物类荧光体、钙钛矿、硫属木犀或量子点荧光体等。
作为透光性树脂,可使用硅树脂、改性硅树脂、环氧树脂、改性环氧树脂、丙烯酸树脂、氟树脂中的至少一种材料配置而成。也可以使用其他透明树脂或与以上材料的混合物,本发明实施例对透光性树脂的材料不做限制。
波长转换构件可以包含多种荧光体,例如,可以包含吸收蓝色光并放出黄色光的荧光粉和吸收蓝色光并放出红色光的荧光体。由此,能够从发光单元51射出白色的光。
波长转换构件也可以包含不遮光的光扩散材料。光扩散材料能够调整波长转换构件对从发光元件11射出的光及/或波长变换的光的透过率。作为光扩散材料,例如可使用氧化钛、氧化硅、氧化铝、氧化锌或玻璃等。
波长转换构件的侧面113还包围一圈透光的防护层16。优选的,防护层16材料可为环氧树脂及其改性树脂,其具有良好的粘合性和气体阻隔性。优选的,防护层16材料还可为硅氧烷树脂及其改性树脂,具有高耐热性和高耐光性,并 且固化后其体积收缩很小。
请参阅图10和图11,本发明实施例还提供一种光源模组2和包含该光源模组2的显示装置3。光源模组2包括基板21、设于基板21上的若干光源1和反光碗22,反光碗22围设于至少一个光源1周围且反光碗22略高于光源1的上表面111,光源1为前文记载的光源1结构,基板21可作为光源1的电连接部15制备过程中的支撑体。图10和图11中反光碗22内置9个光源1,实际应用中还可以设置4个、16个、25个……,根据需求进行设置,多个光源1周侧出光落于反光碗22内进行反射后对反光碗22内的区域进一步匀光。显示装置3包括多个共基板21的光源模组2,并不限于图9中的9个光源模组2,相邻光源模组2之间通过反光碗22可避免串扰,增大显示装置3的对比度,显示装置3还可以包括设于光源模组2上方的扩散膜片和增光膜片等调光结构。
该光源模组2,应用以上光源1,由于光源1的出光角度大,可以增大相邻光源1之间的排布距离,减少模组内的光源1数量,降低成本;其次,光源1出光特点为中间暗周围亮,周围有向上的外扩光(请参阅图8和图9),即使光源模组2中光源1的排列间隔大的情况下,点亮多个光源1,光源1的外扩光会辐射到相邻光源1的中间暗处,能避免在光源1之间产生亮度低的区域,还通过反光碗22围的反射,提升发光均匀性;另外,光源1本身有进行提亮,即使光源1数量减少,也不会影响光源模组2的亮度。
该显示装置3,设置以上光源模组2,出光均匀性好,混光距离极小,几乎趋于零,整体厚度轻薄,大大降低了成本。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的优选的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光源,其特征在于,包括:
    发光元件,具有出射面以及两电连接部,所述电连接部自所述发光元件的下表面延伸出来,所述电连接部厚度大于所述发光元件原本电极厚度;
    上反射层,配置于所述发光元件的上方与所述发光元件的上表面相对;
    下反射层,配置于所述发光元件的下方与所述发光元件的下表面相对;
    波长转换元件,包覆所述出射面除所述电连接部处并填充所述上反射层和下反射层间的空隙;
    沿所述发光元件的中心轴方向,所述出射面的投影落于所述上反射层内,所述发光元件的侧面的投影落于所述下反射层内,所述上反射层和下反射层之间的间距由内向外逐渐增大。
  2. 如权利要求1所述的光源,其特征在于,
    所述上反射层和下反射层各自的厚度自内向外逐渐减小。
  3. 如权利要求1所述的光源,其特征在于,
    所述下反射层延伸一周在其内部形成开口,两所述电连接部设于所述开口内并与所述下反射层相抵接;
    和/或,所述上反射层和下反射层的外周缘沿所述中心轴方向的投影重合;
    和/或,所述上反射层和下反射层各自分别沿所述中心轴对称分布;
    和/或,所述下反射层、波长转换元件以及电连接部三者的下表面在同一水平面上;
    和/或,所述上反射层和下反射层相互背离的表面平行设置。
  4. 如权利要求1所述的光源,其特征在于,
    所述电连接部包括所述发光元件原本电极、增高层以及连接所述电极和增高层的连接层。
  5. 如权利要求4所述的光源,其特征在于,
    所述连接层和增高层通过电镀按顺序一体形成于所述电极上;
    和/或,所述增高层和连接块还可以先后通过光刻工艺制备于支撑体上,所述电极通过固晶工艺与所述连接层连接。
  6. 如权利要求4所述的光源,其特征在于,
    所述电连接部的厚度为所述发光元件原本电极的厚度的9-12倍。
  7. 如权利要求1所述的光源,其特征在于,
    所述波长转换元件的侧面还包覆一圈防护层。
  8. 如权利要求1所述的光源,其特征在于,
    所述上反射层与所述发光元件相对的表面为与所述中心轴呈锐角设置的平面或所述上反射层与所述发光元件相对的表面为朝向所述中心轴凸出的曲面;
    和/或,所述下反射层与所述发光元件相对的表面为与所述中心轴呈锐角设置的平面或所述下反射层与所述发光元件相对的表面为朝向所述中心轴凸出的曲面。
  9. 一种光源模组,其特征在于,所述光源模组包括基板、设于所述基板上的若干光源和反光碗,所述反光碗围设于至少一个光源周围,且以所述基板为基准所述反光碗的高度高于所述光源,所述光源包括如权利要求1-8任一所述的光源,所述基板可作为所述光源的电连接部制备过程中的支撑体。
  10. 一种显示装置,其特征在于,所述显示装置包括权利要求9所述的光源模组。
PCT/CN2023/082458 2022-07-21 2023-03-20 光源、光源模组和显示装置 WO2024016697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210857880.9A CN115079469B (zh) 2022-07-21 2022-07-21 光源、光源模组和显示装置
CN202210857880.9 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024016697A1 true WO2024016697A1 (zh) 2024-01-25

Family

ID=83258800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082458 WO2024016697A1 (zh) 2022-07-21 2023-03-20 光源、光源模组和显示装置

Country Status (2)

Country Link
CN (1) CN115079469B (zh)
WO (1) WO2024016697A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079469B (zh) * 2022-07-21 2022-12-13 华引芯(武汉)科技有限公司 光源、光源模组和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280615A (ja) * 2001-03-15 2002-09-27 Citizen Electronics Co Ltd 発光ダイオード
CN1779530A (zh) * 2004-11-24 2006-05-31 三星电子株式会社 侧向发光装置、背光单元以及液晶显示器设备
CN209912895U (zh) * 2019-03-15 2020-01-07 索罗紫光(上海)科技有限公司 一种车灯光源器件和车灯模组
CN112666757A (zh) * 2020-12-31 2021-04-16 广东晶科电子股份有限公司 一种多层结构的发光器件及背光模组
TWM619981U (zh) * 2021-06-25 2021-11-21 葳天科技股份有限公司 封裝發光元件
CN115079469A (zh) * 2022-07-21 2022-09-20 华引芯(武汉)科技有限公司 光源、光源模组和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444258B2 (ja) * 2006-09-19 2010-03-31 財団法人工業技術研究院 Ledバックライトモジュール
WO2013114452A1 (ja) * 2012-02-01 2013-08-08 日立コンシューマエレクトロニクス株式会社 バックライトユニット及びこれを用いた映像表示装置
CN205194737U (zh) * 2015-12-16 2016-04-27 江苏稳润光电有限公司 一种用于使smd光源出光一致的封装装置
CN112151643A (zh) * 2019-06-27 2020-12-29 惠州市聚飞光电有限公司 一种倒装led芯片结构及其制作方法
CN215416207U (zh) * 2021-08-25 2022-01-04 海信视像科技股份有限公司 一种显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280615A (ja) * 2001-03-15 2002-09-27 Citizen Electronics Co Ltd 発光ダイオード
CN1779530A (zh) * 2004-11-24 2006-05-31 三星电子株式会社 侧向发光装置、背光单元以及液晶显示器设备
CN209912895U (zh) * 2019-03-15 2020-01-07 索罗紫光(上海)科技有限公司 一种车灯光源器件和车灯模组
CN112666757A (zh) * 2020-12-31 2021-04-16 广东晶科电子股份有限公司 一种多层结构的发光器件及背光模组
TWM619981U (zh) * 2021-06-25 2021-11-21 葳天科技股份有限公司 封裝發光元件
CN115079469A (zh) * 2022-07-21 2022-09-20 华引芯(武汉)科技有限公司 光源、光源模组和显示装置

Also Published As

Publication number Publication date
CN115079469A (zh) 2022-09-20
CN115079469B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
JP5701502B2 (ja) 発光装置
US10084118B2 (en) Semiconductor light-emitting device
US10741729B2 (en) Light emitting apparatus and production method thereof
JP5326705B2 (ja) 発光装置
JP5799988B2 (ja) 発光装置
JP5463901B2 (ja) 発光装置
TWI817708B (zh) 光源
KR101251821B1 (ko) 발광 소자 패키지
TWI794311B (zh) 發光模組及整合式發光模組
JP5648422B2 (ja) 発光装置及びその製造方法
JP6020657B2 (ja) 発光装置
JP2012099544A (ja) 発光装置の製造方法
KR20080057876A (ko) 발광 소자 패키지 및 그 제조방법
JP2010283281A (ja) 発光装置
JP5967269B2 (ja) 発光装置
JP2019024071A (ja) 発光装置、集積型発光装置および発光モジュール
JP2019161239A (ja) 発光装置
WO2024016697A1 (zh) 光源、光源模组和显示装置
JP6222325B2 (ja) 発光装置
JP2018019091A (ja) 発光装置の製造方法
JP5761391B2 (ja) 発光装置
JP6326830B2 (ja) 発光装置及びそれを備える照明装置
KR101641266B1 (ko) 발광소자 패키지를 구비하는 디스플레이 장치
JP2015092622A (ja) 発光装置
JP2019062116A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841773

Country of ref document: EP

Kind code of ref document: A1