WO2024016604A1 - 复合材料及其制备方法、固态电池以及用电设备 - Google Patents

复合材料及其制备方法、固态电池以及用电设备 Download PDF

Info

Publication number
WO2024016604A1
WO2024016604A1 PCT/CN2022/143338 CN2022143338W WO2024016604A1 WO 2024016604 A1 WO2024016604 A1 WO 2024016604A1 CN 2022143338 W CN2022143338 W CN 2022143338W WO 2024016604 A1 WO2024016604 A1 WO 2024016604A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
solid electrolyte
composite material
negative electrode
graphite
Prior art date
Application number
PCT/CN2022/143338
Other languages
English (en)
French (fr)
Inventor
冯静
Original Assignee
欣旺达电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣旺达电子股份有限公司 filed Critical 欣旺达电子股份有限公司
Publication of WO2024016604A1 publication Critical patent/WO2024016604A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application belongs to the field of secondary batteries and relates to a composite material and its preparation method, solid-state batteries and electrical equipment.
  • Solid-state batteries have been extensively studied by enterprises and universities due to their excellent safety performance and high energy density.
  • the use of solid electrolytes in solid-state batteries replaces the volatile and flammable liquid electrolytes and separators in traditional lithium-ion batteries.
  • solid electrolytes Compared with liquid electrolytes, solid electrolytes have the advantages of non-explosion, non-flammability, non-corrosion, and high mechanical strength. They avoid the dangers of electrolyte leakage and electrode short circuit in traditional lithium-ion batteries, and reduce the temperature sensitivity of the battery pack. , due to the high mechanical strength of the solid electrolyte, it can effectively block the growth of lithium dendrites and has extremely high safety during use.
  • graphite As a commonly used anode material for lithium-ion batteries, graphite has the advantage of stable structure during the lithium insertion/delithiation process and has good cycle stability.
  • graphite and solid electrolyte are simply mixed, it is impossible to ensure that the solid electrolyte is in full contact with the graphite, and thus the solid electrolyte cannot be well infiltrated into the graphite material, which greatly affects the charge and discharge capacity of the negative active material. play, and affect the cycle stability of the battery.
  • the purpose of this application is to provide a composite material and a preparation method thereof, a solid-state battery and electrical equipment. It aims to solve the technical problem of poor electrochemical performance of the battery caused by poor contact between the negative electrode material and the solid electrolyte in existing solid-state batteries.
  • the first aspect of the present application provides a composite material, including a core and a coating layer provided on the surface of the core;
  • the core contains graphite
  • the material of the coating layer includes solid electrolyte.
  • the particle size Dv50 of the graphite may be 2 to 8 ⁇ m.
  • the particle size Dv50 of the graphite may specifically include 5 ⁇ m, 8 ⁇ m, 10 ⁇ m or 5-8 ⁇ m.
  • the thickness of the coating layer can be 50-150nm, specifically, it can include 50nm, 125nm, 130nm, 150nm, 50-125nm, 50-130nm, 125-130nm or 125-150nm.
  • the solid electrolyte includes one or more of a sulfide solid electrolyte, a halide solid electrolyte, and a metal oxide solid electrolyte.
  • the sulfide solid electrolyte includes glassy xLi 2 S ⁇ (100-x)P 2 S 5 , Li-PS glass ceramics, sulfide-silver germanium type Li 6 PS 5 X, Li 11-c M 2-c P 1 + c S 12 , where 20 ⁇ x ⁇ 80, X is selected from at least one of Cl, Br and I, M is selected from at least one of Ge, Sn and Si, and c is 0 ⁇ 5.
  • the sulfide solid electrolyte can be selected from Li 6 PS 5 Cl, Li 3 PS 4 , 70Li 2 S ⁇ 30P 2 S 5 , Li 11 Si 2 P 1 S 12 and Li 10 GeP 2 S 12 at least one of them.
  • the Li 6 PS 5 Cl is prepared according to the following method: the raw materials Li 2 S, P 2 S 5 and LiCl are ball milled at 500-600 rpm/min according to the molar ratio, and then sintered at a high temperature of 500-600°C, that is, Li is synthesized 6 PS 5 Cl;
  • the Li 3 PS 4 is prepared according to the following method: the raw materials Li 2 S, P 2 S 5 and LiCl are ball milled at 500-600 rpm/min according to the molar ratio, and then sintered at a high temperature of 300-450°C, that is, Li 3 PS 4 is synthesized;
  • the preparation method of 70Li 2 S ⁇ 30P 2 S 5 is as follows: the raw materials Li 2 S and P 2 S 5 are ball milled at 500-600 rpm according to the molar ratio, and then sintered at a high temperature of 200-350°C, that is, 70Li 2 S ⁇ 30P 2 is synthesized. S5 ;
  • the Li 11 Si 2 P 1 S 12 is prepared according to the following method: the raw materials Li 2 S, P 2 S 5 and SiS 2 are ball milled at 500-600 rpm according to the molar ratio, and then sintered at a high temperature of 400-600°C to synthesize the Li 11 Si 2 P 1 S 12 ;
  • the Li 10 GeP 2 S 12 is prepared according to the following method: the raw materials Li 2 S, P 2 S 5 and GeS 2 are ball milled at 500-600 rpm according to the molar ratio, and then sintered at a high temperature of 400-600°C to synthesize the Li 11 Si 2 P 1 S 12 .
  • the shape of the graphite is at least one of granular, flake, flake and block;
  • the solid electrolyte exists in the form of surface coating and/or point coating on the surface of the graphite.
  • the content of the graphite may be 85% to 95%, and the content of the solid electrolyte may be 5% to 15%.
  • the second aspect of this application provides a method for preparing the above-mentioned composite material, which includes the following steps: adding the solid electrolyte and graphite into a first solvent, and subjecting them to dispersion and heating treatment to obtain the composite material.
  • the steps of adding solid electrolyte and graphite to the first solvent, dispersing and drying to obtain the composite material include:
  • the second mixed solution is heated at a first preset temperature, and the first solvent is evaporated to dryness to obtain the composite material.
  • the first solvent includes absolute ethanol and/or N-methylpyrrolidone, and the first preset temperature is 70-85°C.
  • every 0.1 g of the solid electrolyte is mixed with every 1-20 mL of the first solvent.
  • ultrasound is used for the treatment.
  • a third aspect of the present application provides a negative electrode, which includes a binder, a conductive agent, a first sulfide solid electrolyte, and the above composite material.
  • the negative electrode is made of components with the following mass percentages, based on the total mass of the negative electrode being 100%:
  • Composite materials account for 85% to 95%
  • Binder accounts for 0.5% to 2%
  • Conductive agent accounts for 3% to 10%
  • the balance is the first solid electrolyte.
  • the binder is selected from at least one of PTFE, SBR, NBR and PVDF, preferably PTFE;
  • the conductive agent is selected from at least one of SuperP, acetylene black, Ketjen black, carbon black, carbon nanotubes, graphene and carbon fiber.
  • the negative electrode is specifically made of the components with the following mass percentages, based on the total amount being 100%:
  • the binder is 1%;
  • the thickness of the negative electrode may be 100-300 ⁇ m, specifically 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 300 ⁇ m, 100-150 ⁇ m, 150-200 ⁇ m, 200-300 ⁇ m, 100-200 ⁇ m or 150-300 ⁇ m.
  • the fourth aspect of the present application provides a method for preparing the above-mentioned negative electrode, including the following steps: 1) ball-milling the composite material, the binder, the conductive agent, and the first solid electrolyte in proportion to obtain a ball-milled The final mixed raw materials;
  • the rotation speed of the ball mill described in step 1) can be 200-350rpm/min, and the ball milling time can be 30-60min;
  • the ball milling is carried out in a zirconia ball milling tank using zirconia balls with a diameter of 2-10 mm;
  • step 2) the rolling is performed on a roller press
  • the rolling conditions are as follows:
  • the distance between the upper roller and the lower roller of the roller press may be 100 ⁇ m to 300 ⁇ m;
  • the roller speed can be 1-3m/min.
  • a fifth aspect of the present application provides a solid-state battery, including a positive electrode, a first solid electrolyte layer and the above-mentioned negative electrode.
  • a sixth aspect of the present application provides an electrical device.
  • the electrical device includes the above-mentioned solid-state battery, wherein the solid-state battery serves as a power supply for the electrical device.
  • Figure 1 is a schematic structural diagram of composite material particles in Example 1 of the present application, in which A is graphite and B is a composite material with solid electrolyte-coated graphite.
  • Figure 2 is a schematic diagram of a solid-state battery in Example 1 of the present application.
  • This application first provides a composite material, including a core and a coating layer provided on the surface of the core;
  • the core contains graphite
  • the material of the coating layer includes solid electrolyte.
  • This application uses solid electrolyte to coat graphite, which can improve the contact performance between the solid electrolyte and the graphite surface, and effectively "wet” the solid electrolyte into the graphite, which is beneficial to the capacity of the active material.
  • the particle size Dv50 of the graphite can include 2 to 8 ⁇ m;
  • the thickness of the coating layer may range from 50 to 150 nm, specifically 50 nm, 125 nm, 130 nm, or 150 nm.
  • the solid electrolyte includes one or more of a sulfide solid electrolyte, a polymer solid electrolyte, a halide solid electrolyte, and a metal oxide solid electrolyte.
  • halide solid electrolytes include Li 3 InCl 6 , Li 3 YCl 6 , Li 3 TbCl 6 , and Li 3 ErCl 6
  • metal oxide solid electrolytes include LiAlO 2 , Li 2 ZrO 3 , and Li 4 Ti 5 O 12 . Since sulfide solid electrolyte has excellent electrical conductivity, this application uses sulfide solid electrolyte as the coating material.
  • the sulfide solid electrolyte can include Li 6 PS 5 Cl, Li 3 PS 4 , 70Li 2 S ⁇ 30P 2 S 5 , Li 10 GeP 2 S 12 , Li 11 Si 2 P 1 S 12 .
  • the Li 6 PS 5 Cl is prepared as follows: the raw materials Li 2 S, P 2 S 5 and LiCl are ball milled at 500-600 rpm/min according to the molar ratio, and then sintered at a high temperature of 500-600°C, that is Synthesis of Li 6 PS 5 Cl;
  • the Li 3 PS 4 is prepared according to the following method: the raw materials Li 2 S, P 2 S 5 and LiCl are ball milled at 500-600 rpm/min according to the molar ratio, and then sintered at a high temperature of 300-450°C, that is, Li 3 PS 4 is synthesized;
  • the method for preparing the 70Li 2 S ⁇ 30P 2 S 5 is as follows: ball mill the raw materials Li 2 S and P 2 S 5 at a molar ratio of 7:3 at 500-600 rpm/min, and then sinter at a high temperature of 200-350°C, that is, synthesis 70Li 2 S ⁇ 30P 2 S 5 ;
  • the Li 11 Si 2 P 1 S 12 is prepared according to the following method: the raw materials Li 2 S, P 2 S 5 and SiS 2 are ball milled at 500rp-600m/min according to the molar ratio, and then sintered at a high temperature of 400-600°C to synthesize the Li 11 Si 2 P 1 S 12. Describe Li 11 Si 2 P 1 S 12 ;
  • the Li 10 GeP 2 S 12 is prepared according to the following method: the raw materials Li 2 S, P 2 S 5 and GeS 2 are ball-milled at 500-600 rpm/min according to the molar ratio, and then sintered at a high temperature of 400-600°C to synthesize the above-mentioned Li 10 GeP 2 S 12 Li 11 Si 2 P 1 S 12 .
  • the following shape and coating form of graphite are preferred, and the shape of the graphite is at least one of granular, phosphorus flake, flake and block;
  • the solid electrolyte exists in the form of surface coating and/or point coating on the surface of the graphite.
  • the mass percentage of the solid electrolyte-coated graphite is 85% to 95%, and the mass percentage of the sulfide solid electrolyte is 5 to 15%.
  • the second mixed solution is heated at 70-85°C, and absolute ethanol is evaporated to dryness to obtain the composite material.
  • Every 0.1 g of the sulfide solid electrolyte is mixed with every 1 to 20 ml of the absolute ethanol.
  • This application also provides a negative electrode, which includes a binder, a conductive agent, a first solid electrolyte, and the above composite material.
  • a negative electrode which includes a binder, a conductive agent, a first solid electrolyte, and the above composite material.
  • the type of the first solid electrolyte and the type of the solid electrolyte are the same.
  • the negative electrode is specifically made of components with the following mass percentages, based on the total mass of the negative electrode being 100%:
  • Composite materials account for 85% to 95%
  • Binder accounts for 0.5% to 2%
  • the conductive agent accounts for 3% to 10%; the first solid electrolyte accounts for 1 to 8%.
  • This application also provides a method for preparing the above-mentioned negative electrode, which includes the following steps: 1) ball-milling and mixing the composite material, the binder, the conductive agent, and the first solid electrolyte in proportion to obtain a ball-milled Mixing ingredients;
  • the rotation speed of the ball mill described in step 1) can be 200-350rpm/min, and the ball milling time can be 30-60min;
  • the ball milling is performed in a zirconia ball milling tank using zirconia balls with a diameter of 2 to 10 mm;
  • step 2) in order to obtain the required thickness of the negative electrode, it is achieved by controlling the distance between the upper roller and the lower roller of the roller press.
  • the distance between the upper roller and the lower roller of the roller press can be 100 ⁇ m ⁇ 300 ⁇ m;
  • the rolling speed can be 1-3m/min.
  • This application also provides a solid-state battery, including a positive electrode, a solid electrolyte layer and the above-mentioned negative electrode.
  • the solid electrolyte layer includes a second solid electrolyte, and the second solid electrolyte is of the same type as the first solid electrolyte and the solid electrolyte in the coating layer.
  • the solid electrolyte in the coating layer, the first solid electrolyte in the negative electrode, and the second solid electrolyte in the solid electrolyte layer have different particle Dv50s and different specific surface areas, where the particle Dv50s are in descending order. They are the second solid electrolyte in the solid electrolyte layer, the solid electrolyte in the coating layer, and the first solid electrolyte in the negative electrode.
  • the particles of the first solid electrolyte in the negative electrode are nanoscale, with a Dv50 of 5 to 35 nm, and a specific surface area of 200 to 350 m 2 /g; the particles of the second solid electrolyte have a Dv50 of 8 to 15 ⁇ m, and a specific surface area of 12 to 28 m 2 /g; the particles of the solid electrolyte in the coating layer are nanoscale, with a Dv50 of 50 to 150 nm and a specific surface area of 80 to 130 m 2 /g.
  • the particle Dv50 of the first solid electrolyte in the negative electrode is the smallest, which can be effectively filled between composite materials to improve the lithium ion conduction and electronic conductivity of the negative electrode.
  • the second solid electrolyte in the solid electrolyte layer serves as a place for lithium ion transmission. If the Dv50 of the second solid electrolyte is too large, the lithium ion diffusion path will be too long. If the Dv50 of the second solid electrolyte is too small, side reactions will easily occur. All are not conducive to the performance of the battery.
  • This application also provides an electrical device, which includes the above-mentioned solid-state battery, wherein the solid-state battery serves as a power supply for the electrical device.
  • the second mixed solution is vacuum dried at 80°C and evaporated to dryness with absolute ethanol to obtain a composite material of Li 6 PS 5 Cl coated graphite (LPSC@Gr), in which the graphite content in the composite material accounts for 91.7%, and Li 6 The PS 5 Cl content accounts for 8.3%, and the thickness of the coating layer is 120nm.
  • LPSC@Gr Li 6 PS 5 Cl coated graphite
  • the sulfide solid electrolyte (LPSC) was placed in the mold and a solid electrolyte sheet with a thickness of 100 ⁇ m and a diameter of 10 mm was prepared by applying a pressure of 10 MPa.
  • LNO@NCM622 sulfide solid electrolyte
  • LPSC sulfide solid electrolyte
  • Example 1 of this application The same as Example 1 of this application, except that during the preparation process of the composite material, 0.325g Li 6 PS 5 Cl and 4.675g graphite were added.
  • the graphite content in the prepared composite material accounted for 93.5%, and the content of Li 6 PS 5 Cl was 93.5%.
  • the content accounts for 6.5%, and the thickness of the coating layer is 85nm.
  • Example 1 of this application The same as Example 1 of this application, except that during the preparation process of the composite material, 0.25g Li 6 PS 5 Cl and 4.75g graphite were added.
  • the graphite content in the prepared composite material accounted for 95%, and the Li 6 PS 5 Cl The content accounts for 5%, and the thickness of the coating layer is 50nm.
  • Example 1 of this application The same as Example 1 of this application, except that during the preparation process of the composite material, 0.375g Li 6 PS 5 Cl and 4.625g graphite were added.
  • the graphite content in the prepared composite material accounted for 92.5%, and the content of Li 6 PS 5 Cl was 92.5%.
  • the content accounts for 7.5%, and the thickness of the coating layer is 100nm.
  • Example 1 of this application The same as Example 1 of this application, except that during the preparation process of the composite material, 0.75g Li 6 PS 5 Cl and 4.25g graphite were added.
  • the graphite content of the prepared composite material accounted for 85%, and the content of Li 6 PS 5 Cl was 85%.
  • the content accounts for 15%, and the thickness of the coating layer is 150nm.
  • Example 2 It is the same as Example 1 of this application, except that in the preparation of the negative electrode, the distance between the upper roller and the lower roller is adjusted to 125 ⁇ m to obtain a negative electrode with a thickness of 125 ⁇ m.
  • Example 2 It is the same as Example 1 of this application, except that in the preparation of the negative electrode, the distance between the upper roller and the lower roller is adjusted to 200 ⁇ m to obtain a negative electrode with a thickness of 200 ⁇ m.
  • Example 2 It is the same as Example 1 of this application, except that in the preparation of the negative electrode, the distance between the upper roller and the lower roller is adjusted to 300 ⁇ m to obtain a negative electrode with a thickness of 300 ⁇ m.
  • Example 1 of this application It is the same as Example 1 of this application, except that in the preparation of the negative electrode, the distance between the upper roller and the lower roller is adjusted to 75 ⁇ m to obtain a negative electrode with a thickness of 75 ⁇ m.
  • Example 1 of this application It is the same as Example 1 of this application, except that in the preparation of the negative electrode, the distance between the upper roller and the lower roller is adjusted to 350 ⁇ m to obtain a negative electrode with a thickness of 350 ⁇ m.
  • Example 5 The same as Example 5 of this application, except that in the preparation of the composite material: the sulfide solid electrolyte is Li 3 PS 4 (LPS for short), and Li 3 PS 4 -coated graphite (LPS@Gr) is obtained.
  • the sulfide solid electrolyte is Li 3 PS 4 (LPS for short)
  • LPS@Gr Li 3 PS 4 -coated graphite
  • Step (2) Adjust the distance between the upper roller and the lower roller to 200 ⁇ m, adjust the roller speed to 1 m/min, and obtain a negative electrode with a thickness of 200 ⁇ m.
  • the sulfide solid electrolyte is LPS.
  • LGPS 0.5g sulfide solid electrolyte Li 10 GeP 2 S 12
  • 4.5g Dv50 is 10 ⁇ m graphite
  • Li 10 GeP 2 S 12 coated graphite LGPS@Gr
  • the mass percentage of graphite is 90 %, the mass percentage content of LGPS is 10%
  • the thickness of the LGPS layer is 125nm.
  • Step (2) Adjust the distance between the upper roller and the lower roller to 150 ⁇ m to obtain a negative electrode with a thickness of 150 ⁇ m.
  • the difference is that the sulfide solid electrolyte is LGPS.
  • Example 1 of this application It is the same as Example 1 of this application, except that the sulfide solid electrolyte is 70Li 2 S ⁇ 30P 2 S 5 .
  • Example 1 of this application It is the same as Example 1 of this application, except that the sulfide solid electrolyte is Li 11 Si 2 P 1 S 12 .
  • the second mixed solution is vacuum dried at 80°C to obtain Li 6 PS 5 Cl coated graphite (LPSC@Gr) (the content of graphite is 85% and the content of Li 6 PS 5 Cl accounts for 15%),
  • the thickness of the LPSC layer is 150nm.
  • step (1) 40g of zirconia balls with a diameter of 10mm are added for ball milling, where the ball milling speed is 200 rpm/min and the ball milling time is 30 min.
  • Step (2) Adjust the distance between the upper roller and the lower roller to 300 ⁇ m, adjust the roller speed to 1 m/min, and obtain a negative electrode with a thickness of 300 ⁇ m.
  • Li 6 PS 5 Cl coated graphite LPSC@Gr
  • Preparation of composite materials After LiCl, InCl 3 and graphite are evenly dispersed in water, the water is evaporated by heating and stirring at 60°C to obtain a Li 3 InCl 6 coated graphite composite material.
  • the graphite Dv50 of the composite material is 4 ⁇ m, the graphite content accounts for 91.7%, the Li 3 InCl 6 content accounts for 8.3%, and the thickness of the coating layer is 120 nm.
  • Preparation of negative electrode material Al 2 O 3 and Li 2 CO 3 with a mass ratio of 1:2 are uniformly mixed by ball milling, and then calcined at high temperature at 800°C for 10 hours in a vacuum tube furnace. After cooling, LiAlO 2 is obtained. LiAlO 2 and graphite with a mass ratio of 1:9 are evenly dispersed in anhydrous ethanol, and the anhydrous ethanol is evaporated to dryness to obtain a negative electrode material precursor. The negative electrode material precursor is sintered in a vacuum tube furnace at 400°C to obtain LiAlO 2 Negative electrode material coated with graphite.
  • the graphite Dv50 of the composite material is 4 ⁇ m, the graphite content accounts for 91.7%, the LiAlO 2 content accounts for 8.3%, and the thickness of the coating layer is 120nm.
  • Example 1 The difference from Example 1 is that during the preparation process of the negative electrode material, 0.415g Li 6 PS 5 Cl and 4.585g of graphite were replaced with 5g of graphite to prepare a graphite negative electrode material without a sulfide solid electrolyte coating layer.
  • the relevant parameters of the composite materials and negative electrodes prepared in Examples 1-24 and Comparative Example 1 are recorded in Table 1, and the prepared solid-state batteries are tested for full battery performance.
  • the test method is: using the Xinwei test cabinet Perform rate charging and rate discharging on solid-state batteries.
  • the battery test rate is 0.1C
  • the operating voltage range is 2.75-4.3V
  • the cycle is 100 cycles.
  • the solid electrolyte serves as a channel for lithium ion transmission
  • the contact performance between the solid electrolyte and graphite is poor, the capacity of the graphite will be reduced, causing a decrease in the first effect. Therefore, the solid electrolyte can be reflected by the size of the first effect. The quality of contact with graphite.
  • the composite material of this application is used to prepare the negative electrode. Since the solid electrolyte is coated on the surface of the graphite, it is conducive to full contact between the solid electrolyte and the graphite, promoting the capacity of the negative active material (graphite), thereby improving the first efficiency of the battery. As well as improving battery cycle performance; secondly, the flexible graphite anode has more effective contact with the solid electrolyte layer, reducing the interface resistance and promoting lithium ion transport at the interface.
  • the method of using composite materials to prepare negative electrodes uses the binder to easily fiberize and form films under the action of high-speed shearing force.
  • the raw materials can be mixed and rolled to form a self-supporting negative electrode with a thickness of micron; the preparation method is simple and does not require the use of toxic solvents.
  • the formation of the negative electrode avoids the steps of toxic solvent drying and solvent post-treatment, greatly reduces the steps of negative electrode preparation, and avoids the harm of toxic solvents to the environment and people during the negative electrode preparation process.
  • the negative electrode structure is conducive to the transmission of ions and electrons, and does not require the use of copper foil as a current collector. When used as the negative electrode of a solid-state battery, it can reduce the overall weight of the solid-state battery and save costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种复合材料及其制备方法、固态电池以及用电设备。本申请复合材料,包括内核和设置在所述内核表面的包覆层;所述内核的材料包括石墨;所述包覆层的材料包括硫化物固态电解质。所述复合材料的制备方法,包括如下步骤:将所述硫化物固态电解质、石墨加入第一溶剂中,经过分散、加热处理,获得所述复合材料。一种固态电池,包括正极、固态电解质层以及负极,所述负极包括粘接剂、导电剂、第一硫化物固态电解质以及所述的复合材料。本申请的复合材料,能够促进电解质在负极中的浸润性,有利于电解质与负极的充分接触,能解决固态电池循环稳定性差,负极制备工艺复杂的问题。

Description

复合材料及其制备方法、固态电池以及用电设备 技术领域
本申请属于二次电池领域,涉及一种复合材料及其制备方法、固态电池以及用电设备。
背景技术
固态电池凭借着安全性能优异、能量密度高得到了企业和高校的广泛研究。固态电池中使用固态电解质代替了传统锂离子电池中易挥发和燃烧的液态电解液和隔膜。相比于液态电解液,固态电解质具有不发挥、不易燃、无腐蚀、机械强度大等优点,避免了传统锂离子电池中电解液泄露、电极短路等危险,降低了电池组对于温度的敏感性,由于固态电解质机械强度大,可以有效地阻挡锂枝晶地生长,在使用过程中具有极高的安全性。目前,用于全固态锂离子电池的负极材料主要有金属锂、金属锂铟、硅、石墨四种类型。其中,金属锂和金属锂铟在使用过程中面临着锂枝晶的快速生长,且金属锂或金属锂铟与绝大多数硫化物固态电解质发生反应,使得界面电阻不断增大,严重影响电池的循环性能。金属锂或金属锂铟用于全固态电池需要进行加工成微米级厚度的金属箔材,复杂的制备工艺使得其价格极高。硅负极在使用过程中面临着嵌锂使其体积发生巨大的膨胀,导致活性材料粉化,严重影响其循环性能。石墨作为锂离子电池常用的负极材料,具有嵌锂/脱锂过程中结构稳定的优点,具有好的循环稳定性能。然而在固态电池中,若将石墨与固态电解质简单混合,这样无法保证固态电解质与石墨充分接触,从而无法确保固态电解质很好地浸润到石墨材料中,极大影响了负极活性材料的充放电容量发挥,以及影响电池的循环稳定性。
基于此,亟需提供一种能够与固态电解质充分接触的复合材料。
发明公开
本申请的目的是提供一种复合材料及其制备方法、固态电池以及用电设备。旨在解决现有固态电池中负极材料与固态电解质接触性差,引起电池电化学性能差的技术问题。
为达到上述目的,本申请第一方面提供了一种复合材料,包括内核和设置在所述内核表面的包覆层;
所述内核包含石墨;
所述包覆层的材料包括固态电解质。
上述的复合材料中,所述石墨的粒径Dv50可为2~8μm。
本申请中,所述石墨的粒径Dv50具体可包括5μm、8μm、10μm或5~8μm。
所述包覆层的厚度可为50~150nm,具体可包括50nm、125nm、130nm、150nm、50~125nm、50~130nm、125~130nm或125~150nm。
在一实施例中,固态电解质包括硫化物固态电解质、卤化物固态电解质、金属氧化物固态电解质中的一种或多种。
上述的复合材料中,所述硫化物固态电解质包括玻璃态xLi 2S·(100-x)P 2S 5、Li-P-S玻璃陶瓷、硫银锗矿型Li 6PS 5X、Li 11-cM 2-cP 1+cS 12,其中,20≤x≤80,X选自Cl、Br和I中至少一种,M选自Ge、Sn和Si中的至少一种,c为0~5。
上述的复合材料中,所述硫化物固态电解质可选自Li 6PS 5Cl、Li 3PS 4、70Li 2S·30P 2S 5、Li 11Si 2P 1S 12和Li 10GeP 2S 12中的至少一种。
本申请中,制备所述Li 6PS 5Cl按照如下方法:将原料Li 2S、P 2S 5和LiCl根据摩尔比进行500~600rpm/min球磨,然后高温500~600℃烧结,即合成Li 6PS 5Cl;
制备所述Li 3PS 4按照如下方法:将原料Li 2S、P 2S 5和LiCl根据摩尔比进行500-600rpm/min球磨,然后高温300~450℃烧结,即合成Li 3PS 4
制备所述70Li 2S·30P 2S 5按照如下方法:将原料Li 2S、P 2S 5根据摩尔比进行500-600rpm球磨,然后高温200~350℃烧结,即合成70Li 2S·30P 2S 5
制备所述Li 11Si 2P 1S 12按照如下方法:将原料Li 2S、P 2S 5、SiS 2根据摩尔比进行500-600rpm球磨,然后高温400~600℃烧结,合成得到所述Li 11Si 2P 1S 12
制备所述Li 10GeP 2S 12,按照如下方法:将原料Li 2S、P 2S 5、GeS 2根据摩尔比进行500-600rpm球磨,然后高温400~600℃烧结,合成得到所述Li 11Si 2P 1S 12
上述的复合材料中,所述石墨的形状为粒状、磷片状、片状和块状中的至少一种;
所述固态电解质在所述石墨表面以面包覆和/或点包覆的形式存在。
上述的复合材料中,基于所述复合材料的质量,所述石墨的含量可为85%~95%,所述固态电解质的含量可为5~15%。
本申请第二方面提供了上述的复合材料的制备方法,包括如下步骤:将所述固态电解质、石墨加入第一溶剂中,经过分散、加热处理,获得所述复合材料。
上述的制备方法中,所述将固态电解质、石墨加入第一溶剂中,经过分散、烘干处理,获得所述复合材料的步骤包括:
将所述固态电解质加入到第一溶剂中,得到第一混合溶液;
将所述石墨加入所述第一混合溶液中,进行分散处理,得到第二混合溶液;
将所述第二混合溶液在第一预设温度下进行加热,蒸干所述第一溶剂,得到所述复合材料。
上述制备方法中,所述第一溶剂包括无水乙醇和/或N-甲基吡咯烷酮,所述第一预设温度为70~85℃。
本申请中,每0.1克所述固态电解质与每1-20mL所述第一溶剂的混合。
本申请中,所述处理采用超声。
本申请第三方面提供了一种负极,所述负极包括粘接剂、导电剂、第一硫化物固态电解质以及上述的复合材料。
本申请中,所述负极包括如下质量百分含量的组分制成,以负极质量的总量为100%计:
复合材料占85%~95%;
粘结剂占0.5%~2%;
导电剂占3%~10%;
余量为第一固态电解质。
上述的负极中,所述粘结剂选自PTFE、SBR、NBR和PVDF中的至少一种,优选为PTFE;
所述导电剂选自SuperP、乙炔黑、科琴黑、炭黑、碳纳米管、石墨烯和碳纤维中的至少一种。
本申请中,所述负极具体由如下质量百分含量的组分制成,以总量为100%计:
所述复合材料90%;
所述粘结剂1%;
导电剂4%;
固态电解质5%。
本申请中,所述负极的厚度可为100~300μm,具体可为100μm、150μm、200μm、300μm、100~150μm、150~200μm、200~300μm、100~200μm或150~300μm。
本申请第四方面提供了上述负极的制备方法,包括如下步骤:1)将所述复 合材料、所述粘结剂、所述导电剂、所述第一固态电解质按照比例进行球磨混合,得到球磨后的混合原料;
2)对所述球磨后的混合原料进行辊压,即得到所述负极。
上述的制备方法中,步骤1)中所述球磨的转速可为200-350rpm/min,球磨时间可为30-60min;
所述球磨在氧化锆球磨罐中采用直径可为2-10mm的氧化锆球进行;
步骤2)中,所述辊压在辊压机进行;
所述辊压的条件如下:
所述辊压机的上辊与下辊之间的间距可可为100μm~300μm;
辊速可为1-3m/min。
本申请第五方面提供了一种固态电池,包括正极、第一固态电解质层和上述负极。
本申请第六方面提供了一种用电设备,该用电设备包括上述的固态电池,其中固态电池作为用电设备的供电电源。
附图说明
图1为本申请实施例1复合材料颗粒的结构示意图,其中A为石墨,B为具有固态电解质包覆石墨的复合材料。
图2为本申请实施例1固态电池的示意图。
图2中各个标记如下:
1负极;2固态电解质层;3正极。
实施发明的最佳方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本申请首先提供了一种复合材料,包括内核和设置在所述内核表面的包覆层;
所述内核包含石墨;
所述包覆层的材料包括固态电解质。
本申请利用固态电解质对石墨进行包覆,从而可以提高固态电解质与石墨表面的接触性能,有效的将固态电解质“浸润”到石墨中,进而有利于活性材料容量的发挥。
进一步的,为了提高电解质在电极中浸润性,同时避免石墨粒径过大或过小导致接触不充分,从而影响界面处的锂离子传输,所述石墨的粒径Dv50可包括2~8μm;
所述包覆层的厚度可包括50~150nm,具体可包括50nm、125nm、130nm、150nm。
固态电解质包括硫化物固态电解质、聚合物固态电解质、卤化物固态电解质、金属氧化物固态电解质中的一种或多种。其中卤化物固态电解质包括Li 3InCl 6、Li 3YCl 6、Li 3TbCl 6、Li 3ErCl 6;金属氧化物固态电解质包括LiAlO 2、Li 2ZrO 3、Li 4Ti 5O 12。由于硫化物固态电解质具有优良的电导率,因此本申请采用硫化物固态电解质作为包覆材料。
进一步的,为了促进电子的传输,且无需使用铜箔作为集流体,以降低负极制备固态电池的重量,同时节约成本,硫化物固态电解质可包括Li 6PS 5Cl、Li 3PS 4、70Li 2S·30P 2S 5、Li 10GeP 2S 12、Li 11Si 2P 1S 12
下述实施例中,制备所述Li 6PS 5Cl按照如下方法:将原料Li 2S、P 2S 5和LiCl根据摩尔比进行500-600rpm/min球磨,然后高温500~600℃烧结,即合成Li 6PS 5Cl;
制备所述Li 3PS 4按照如下方法:将原料Li 2S、P 2S 5和LiCl根据摩尔比进行500-600rpm/min球磨,然后高温300~450℃烧结,即合成Li 3PS 4
制备所述70Li 2S·30P 2S 5按照如下方法:将原料Li 2S、P 2S 5根据7:3的摩尔比进行500-600rpm/min球磨,然后高温200~350℃烧结,即合成70Li 2S·30P 2S 5
制备所述Li 11Si 2P 1S 12按照如下方法:将原料Li 2S、P 2S 5、SiS 2根据摩尔比进行500rp-600m/min球磨,然后高温400~600℃烧结,合成得到所述Li 11Si 2P 1S 12
制备所述Li 10GeP 2S 12,按照如下方法:将原料Li 2S、P 2S 5、GeS 2根据摩尔比进行500-600rpm/min球磨,然后高温400~600℃烧结,合成得到所述Li 11Si 2P 1S 12
进一步地,为了使柔性的负极与固态电解质层更有效的接触,优选以下石墨的形状和包覆形式,所述石墨的形状为粒状、磷片状、片状和块状中的至少一种;
所述固态电解质在所述石墨表面以面包覆和/或点包覆的形式存在。
上述的复合材料中,所述固态电解质包覆的石墨的质量百分含量为85%~95%,硫化物固态电解质的质量百分含量为5~15%。
为了制备上述的复合材料,按照包括如下步骤进行:
将所述固态电解质加入到无水乙醇中,得到第一混合溶液;
将所述石墨加入所述第一混合溶液中,进行超声分散处理,得到第二混合溶液;
将所述第二混合溶液在70~85℃进行加热,蒸干无水乙醇,得到所述复合材料。
每0.1克所述硫化物固态电解质与每1~20ml所述无水乙醇混合。
本申请还提供了一种负极,所述负极包括粘接剂、导电剂、第一固态电解质以及上述的复合材料。在本申请中,第一固态电解质的种类和固态电解质的种类相同。
所述负极具体由如下质量百分含量的组分制成,以负极质量的总量为100%计:
复合材料占85%~95%;
粘结剂占0.5%~2%;
导电剂占3%~10%;第一固态电解质占1~8%。
本申请还提供了上述负极的制备方法,包括如下步骤:1)将所述复合材料、所述粘结剂、所述导电剂、所述第一固态电解质按照比例进行球磨混合,得到球磨后的混合原料;
2)对所述球磨后的混合原料进行辊压,即得到所述负极。
上述的制备方法中,步骤1)中所述球磨的转速可为200-350rpm/min,球磨时间可为30-60min;
为了提供足够的剪切力使粘结剂纤维化,所述球磨在氧化锆球磨罐中采用直径可为2~10mm的氧化锆球进行;
在步骤2)中为了得到所需的负极的厚度,通过控制辊压机的上辊与下辊之间的间距实现,所述辊压机的上辊与下辊之间的间距可为100μm~300μm;
为了使制备的负极支撑性能更好,优化以下辊压的参数实现,辊速可为1-3m/min。
本申请还提供了一种固态电池,包括正极、固态电解质层和上述负极。其中固态电解质层中包含有第二固态电解质,第二固态电解质和第一固态电解质以及包覆层中的固态电解质种类相同。
在另一实施例中,包覆层中的固态电解质、负极中的第一固态电解质和固态电解质层中的第二固态电解质具有不同颗粒Dv50和不同比表面积,其中,颗粒Dv50由大到小依次为固态电解质层中的第二固态电解质、包覆层中的固态电解质、负极中的第一固态电解质。负极中的第一固态电解质的颗粒为纳米级,其Dv50为5~35nm,其比表面积为200~350m 2/g;第二固态电解质的颗粒Dv50为8~15μm,比表面积为12~28m 2/g;包覆层中的固态电解质的颗粒为纳米级,其Dv50为50~150nm,比表面积为80~130m 2/g。负极中的第一固态电解质的颗粒Dv50最小,其可以有效填充在复合材料之间,提高负极的锂离子传导和电子传导性能。固态电解质层中的第二固态电解质作为锂离子传输的场所,若第二固态电解质的Dv50过大,则引起锂离子扩散路径过长,而若其Dv50过小,则容易引起副反应的发生,都不利于电池性能的发挥。
本申请还提供了一种用电设备,该用电设备包括上述的固态电池,其中固态电池作为用电设备的供电电源。
下面结合实施例和附图对本申请作详细描述。
实施例1
1、复合材料的制备:
(1)将0.415g Li 6PS 5Cl(简称为LPSC)分散在50mL无水乙醇中,形成第一混合溶液;
(2)将4.585g Dv50为4μm的石墨分散在第一混合溶液中,超声分散处理1h,形成第二混合溶液;
(3)将第二混合溶液进行80℃真空干燥,蒸干无水乙醇,获得Li 6PS 5Cl包覆石墨(LPSC@Gr)的复合材料,其中复合材料中石墨含量占91.7%,Li 6PS 5Cl含量占8.3%,包覆层的厚度为120nm。
2、负极的制备:
(1)将以上制得的复合材料、粘结剂(PTFE)、导电剂(石墨烯)、LPSC按照比例90:1:4:5共5g进行称量,将称量好的原料放入氧化锆球磨罐 中,然后再加入50g直径为10mm的氧化锆球进行球磨,其中球磨转速为200rpm/min,球磨时间30min。
(2)球磨后的原料利用辊压机进行辊压,调整上辊与下辊之间的间距为100μm,调整辊速为1m/min,经过裁剪冷压,获得厚度为100μm的负极。
3、固态电池的制备
(1)固态电解质片的制备
将硫化物固态电解质(LPSC)置于模具中,通过施加压力10MPa,制备成厚度为100μm、直径为10mm的固态电解质片。
(2)正极的制备
在手套箱中,按照质量比70:30称取正极材料LNO@NCM622与硫化物固态电解质(LPSC),研磨混合均匀,其中LNO@NCM622指的是LiNbO 3包覆LiNi 2Co 2Mn 2O 2,且在正极材料中LiNbO 3的包覆量为0.5%~1%。称取混合后的物料20mg置于直径10mm的固态电池模具中,施加10MPa的压力,得到正极压片,侧放置直径10mm的涂炭铝箔圆片作为集流体,得到正极。
(3)固态电池的制备
将上述正极3、固态电解质片(即硫化物固态电解质层)2、负极1组装成固态电池(固态电池的结构参见图2)。
实施例2
与本申请实施例1相同,不同的是,复合材料的制备过程中,加入0.325g Li 6PS 5Cl和4.675g石墨,制备得到的复合材料中石墨含量占93.5%,Li 6PS 5Cl的含量占6.5%,包覆层的厚度为85nm。
实施例3、
与本申请实施例1相同,不同的是,复合材料的制备过程中,加入0.25g Li 6PS 5Cl和4.75g石墨,制备得到的复合材料中石墨含量占95%,Li 6PS 5Cl的含量占5%,包覆层的厚度为50nm。
实施例4、
与本申请实施例1相同,不同的是,复合材料的制备过程中,加入0.375g Li 6PS 5Cl和4.625g石墨,制备得到的复合材料中石墨含量占92.5%,Li 6PS 5Cl的含量占7.5%,包覆层的厚度为100nm。
实施例5、
与本申请实施例1相同,不同的是,复合材料的制备过程中,加入0.75g Li 6PS 5Cl和4.25g石墨,制备得到的复合材料中石墨含量占85%,Li 6PS 5Cl的含量占15%,包覆层的厚度为150nm。
实施例6
与本申请实施例1相同,不同的是,复合材料的制备过程中,石墨Dv50为2μm。
实施例7
与本申请实施例1相同,不同的是,复合材料的制备过程中,石墨Dv50为5μm。
实施例8
与本申请实施例1相同,不同的是,复合材料的制备过程中,石墨Dv50为6μm。
实施例9
与本申请实施例1相同,不同的是,复合材料的制备过程中,石墨Dv50为8μm。
实施例10
与本申请实施例1相同,不同的是,复合材料的制备过程中,石墨Dv50为1μm。
实施例11
与本申请实施例1相同,不同的是,复合材料的制备过程中,石墨Dv50为10μm。
实施例12
与本申请实施例1相同,不同的是,负极的制备中,调整上辊与下辊之间的间距为125μm,获得厚度为125μm的负极。
实施例13
与本申请实施例1相同,不同的是,负极的制备中,调整上辊与下辊之间的间距为200μm,获得厚度为200μm的负极。
实施例14
与本申请实施例1相同,不同的是,负极的制备中,调整上辊与下辊之间的间距为300μm,获得厚度为300μm的负极。
实施例15
与本申请实施例1相同,不同的是,负极的制备中,调整上辊与下辊之间的间距为75μm,获得厚度为75μm的负极。
实施例16
与本申请实施例1相同,不同的是,负极的制备中,调整上辊与下辊之间的间距为350μm,获得厚度为350μm的负极。
申请实施例17
与本申请实施例5相同,不同的是,复合材料的制备中:硫化物固态电解质为Li 3PS 4(简称LPS),获得Li 3PS 4包覆的石墨(LPS@Gr)。
负极的制备步骤中:
步骤(2)调整上辊与下辊之间的间距为200μm,调整辊速为1m/min,获得厚度为200μm的负极。
在固态电池的制备步骤中:
不同之处为硫化物固态电解质为LPS。
实施例18
与本申请实施例1相同,不同的是,复合材料的制备步骤中:
0.5g硫化物固态电解质Li 10GeP 2S 12(简称LGPS);4.5g Dv50为10μm石墨,获得Li 10GeP 2S 12包覆的石墨(LGPS@Gr)(其石墨的质量百分含量为90%,LGPS的质量百分比含量为10%),其中LGPS层的厚度为125nm。
负极的制备步骤中:
步骤(2)调整上辊与下辊之间的间距为150μm,获得厚度为150μm的负极。
固态电池的制备步骤中:
不同之处为硫化物固态电解质为LGPS。
实施例19
与本申请实施例1相同,不同的是,硫化物固态电解质为70Li 2S·30P 2S 5
实施例20
与本申请实施例1相同,不同的是,硫化物固态电解质为Li 11Si 2P 1S 12
实施例21
1、复合材料的制备步骤:
(1)将0.75g硫化物固态电解质Li 6PS 5Cl分散在45mL N-甲基吡咯烷酮(NMP)中,形成第一混合溶液;
(2)将4.25g Dv50为5μm石墨分散在溶液A中,超声处理1h,形成第二混合溶液;
(3)将第二混合溶液进行80℃真空干燥,获得Li 6PS 5Cl包覆的石墨(LPSC@Gr)(其石墨的含量为85%,Li 6PS 5Cl的含量占15%),其中LPSC层的厚度为150nm。
2、负极的制备步骤:
与本申请实施例1相同,不同的是,步骤(1)中加入40g直径为10mm的氧化锆球进行球磨,其中球磨转速为200rpm/min,球磨时间30min。
步骤(2)调整上辊与下辊之间的间距为300μm,调整辊速为1m/min,获得厚度为300μm的负极。
实施例22
与本申请实施例1相同,不同的是,
1、复合材料的制备过程中,0.6g硫化物固态电解质Li 6PS 5Cl,4.4g Dv50为10μm的石墨,获得Li 6PS 5Cl包覆的石墨(LPSC@Gr),其中LPSC层的厚度为130nm。
2、负极的制备:
(1)加入40g直径为10mm的氧化锆球进行球磨。
(2)调整上辊与下辊之间的间距为150μm,调整辊速为1m/min,获得厚度为150μm的负极。
实施例23
1、复合材料的制备:将LiCl、InCl 3和石墨在水中分散均匀后,经过60℃加热搅拌蒸发掉水分,得到Li 3InCl 6包覆石墨的复合材料。其中复合材料的石墨Dv50为4μm,石墨含量占91.7%,Li 3InCl 6含量占8.3%,包覆层的厚度为120nm。
2、负极的制备与实施例1相同。
3、固态电池的制备:与实施例相同,不同的是固态电解质为Li 3InCl 6
实施例24
1、负极材料的制备,将质量比为1:2的Al 2O 3、Li 2CO 3经过球磨均匀混合 后,在真空管式炉中以800℃进行高温锻烧10h,冷却后得到LiAlO 2,将质量比为1:9的LiAlO 2、石墨均匀分散在无水乙醇中,蒸干无水乙醇获得负极材料前驱体,载真空管式炉中以400℃对负极材料前驱体进行烧结,获得LiAlO 2包覆石墨的负极材料。其中复合材料的石墨Dv50为4μm,石墨含量占91.7%,LiAlO 2含量占8.3%,包覆层的厚度为120nm。
2、负极的制备与实施例1相同。
3、固态电池的制备:与实施例1相同,不同的是固态电解质为LiAlO 2
对比例1
与实施例1不同的是,负极材料制备过程中,将0.415g Li 6PS 5Cl和4.585g的石墨,替换为5g的石墨,制备得到不具有硫化物固态电解质包覆层的石墨负极材料。
将实施例1-24、对比例1所制备得到的复合材料和负极的相关参数记录在表1中,并将所制备得到的固态电池进行全电池性能测试,测试方法为:利用新威测试柜对固态电池进行倍率充电与倍率放电。电池测试倍率为0.1C,工作电压范围2.75-4.3V,循环100圈。
对上述固态电池测试数据进行汇总,得到表2。
表1
Figure PCTCN2022143338-appb-000001
Figure PCTCN2022143338-appb-000002
表2固态电池的性能测试结果
Figure PCTCN2022143338-appb-000003
通过对比表1中不同参数的考察,比较表2中固态电池的性能结果可知:
1、根据上述实施例1-24、对比例1的测试数据可见,与包覆有固态电解质 的复合材料相比,不进行固态电解质包覆的负极材料,其固态电池的测试性能显著下降,表现为首效仅为62.2%,100圈循环保持率仅为71.3,其原因是当不具有固态电解质包覆时,固态电池中的负极活性材料(石墨)无法与固态电解质充分接触,导致无法确保固态电解质很好地浸润到石墨材料中,从而极大地影响了负极活性材料的首效发挥,以及影响固态电池的循环稳定性。在本申请中,由于固态电解质作为锂离子传输的通道,所以当固态电解质和石墨的接触性能差时,会降低石墨的容量发挥,引起首效的下降,所以可以通过首效的大小体现固态电解质与石墨接触性能的好坏。
2、通过上述实施例1-5的测试数据可见,固态电解质的百分含量可以影响固态电池电化学性能,当固态电解质的含量为6.5~8.3%,固态电池的充放电首效在84.2~85.5%之间,100圈容量保持率在92.2~98.5%之间。申请
3、通过上述实施例1和实施例6-11中不同石墨Dv50数据考察可知,本申请实施例1、6-9与实施例10-11对比可知,复合材料中石墨的粒径Dv50可为2~8μm,其制备得到固态电池的性能优于实施例10-11制备的,由此可知石墨粒径过大或过小导致接触不充分,从而影响界面处的锂离子传输。
4、通过实施例1-22与实施例22-23的测试数据可见,采用硫化物固态电解质制成的固态电池,相对于采用卤化物固态电解质和氧化物固态电解质制成的电池,具有更优的电化学性能,原因在于硫化物固态电解质的电导率大于卤化物固态电解质和氧化物固态电解质。
工业应用
1、本申请复合材料用于制备负极,由于固态电解质是包覆在石墨表面,因此有利于固态电解质与石墨的充分接触,促进了负极活性材料(石墨)容量的发挥,从而提高电池的首效以及提升电池循环性能;其次,柔性的石墨负极与固态电解质层更有效的接触,降低了界面电阻,促进界面处的锂离子传输。
2、采用复合材料制备负极的方法利用粘结剂在高速剪切力作用下容易纤维化易于成膜,原料混合辊压即能形成微米级厚度的自支撑负极;制备方法简单,无需使用有毒溶剂形成负极,规避了有毒溶剂干燥与溶剂后处理的步骤,大大减少了负极制备的步骤,规避了负极制备过程中,有毒溶剂对环境与人的危害。
3、负极结构有利于离子与电子的传输,且无需使用铜箔作为集流体,用作固态电池的负极时,能降低固态电池的整体重量,节约成本。
Figure PCTCN2022143338-appb-000004

Claims (1)

  1. 一种用电设备,其特征在于,包括权利要求9所述的固态电池,所述固态电池作为所述用电设备的供电电源。
PCT/CN2022/143338 2022-07-22 2022-12-29 复合材料及其制备方法、固态电池以及用电设备 WO2024016604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210866469.8 2022-07-22
CN202210866469.8A CN115117434A (zh) 2022-07-22 2022-07-22 复合材料及其制备方法、固态电池以及用电设备

Publications (1)

Publication Number Publication Date
WO2024016604A1 true WO2024016604A1 (zh) 2024-01-25

Family

ID=83333569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143338 WO2024016604A1 (zh) 2022-07-22 2022-12-29 复合材料及其制备方法、固态电池以及用电设备

Country Status (2)

Country Link
CN (1) CN115117434A (zh)
WO (1) WO2024016604A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117434A (zh) * 2022-07-22 2022-09-27 欣旺达电子股份有限公司 复合材料及其制备方法、固态电池以及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665994A (zh) * 2016-07-29 2018-02-06 比亚迪股份有限公司 一种负极材料及其制备方法、负极和全固态锂离子电池
CN112310394A (zh) * 2019-07-26 2021-02-02 宝山钢铁股份有限公司 一种固态电解质包覆的电池负极材料及其制备方法
CN112467118A (zh) * 2020-11-30 2021-03-09 湖南中科星城石墨有限公司 一种石墨复合材料及其制备方法、锂电池负极
CN113540416A (zh) * 2021-07-08 2021-10-22 洛阳月星新能源科技有限公司 一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池
CN113764646A (zh) * 2021-09-15 2021-12-07 河北坤天新能源科技有限公司 一种高能量密度快充石墨复合材料及其制备方法
CN115117434A (zh) * 2022-07-22 2022-09-27 欣旺达电子股份有限公司 复合材料及其制备方法、固态电池以及用电设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014016907A1 (ja) * 2012-07-24 2014-01-30 トヨタ自動車株式会社 全固体電池
CN105489931A (zh) * 2015-12-24 2016-04-13 国联汽车动力电池研究院有限责任公司 硫化物电解质在制备全固态电池中的应用
CN107026257A (zh) * 2016-01-29 2017-08-08 比亚迪股份有限公司 一种全固态锂离子电池正极复合材料、正极材料、正极以及一种全固态锂离子电池
JP2019016484A (ja) * 2017-07-05 2019-01-31 日立造船株式会社 全固体電池用負極およびそれを備える全固体電池
KR102108136B1 (ko) * 2018-08-10 2020-05-07 한국생산기술연구원 고체 전해질을 적용한 전고체 리튬이차전지 및 그의 제조방법
JP2022029465A (ja) * 2018-12-05 2022-02-18 昭和電工株式会社 全固体リチウムイオン電池
CN115552664A (zh) * 2020-06-02 2022-12-30 松下知识产权经营株式会社 固体电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665994A (zh) * 2016-07-29 2018-02-06 比亚迪股份有限公司 一种负极材料及其制备方法、负极和全固态锂离子电池
CN112310394A (zh) * 2019-07-26 2021-02-02 宝山钢铁股份有限公司 一种固态电解质包覆的电池负极材料及其制备方法
CN112467118A (zh) * 2020-11-30 2021-03-09 湖南中科星城石墨有限公司 一种石墨复合材料及其制备方法、锂电池负极
CN113540416A (zh) * 2021-07-08 2021-10-22 洛阳月星新能源科技有限公司 一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池
CN113764646A (zh) * 2021-09-15 2021-12-07 河北坤天新能源科技有限公司 一种高能量密度快充石墨复合材料及其制备方法
CN115117434A (zh) * 2022-07-22 2022-09-27 欣旺达电子股份有限公司 复合材料及其制备方法、固态电池以及用电设备

Also Published As

Publication number Publication date
CN115117434A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN107394261B (zh) 锂金属电池用无机/有机复合薄膜固态电解质及其制备方法
JP2015072772A (ja) リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
CN112886011A (zh) 复合补锂膜及其制备方法和应用
CN111517374B (zh) 一种Fe7S8/C复合材料的制备方法
CN114050271B (zh) 一种具有核壳结构的正极活性材料及其制备方法以及包含它的全固态锂电池
CN102569726A (zh) 一种包覆有金属离子的锂离子电池负极材料制备方法
WO2023273726A1 (zh) 负极材料及其制备方法、锂离子电池
CN113725400B (zh) 预锂化硅碳负极片及其制备方法与应用
CN113097559B (zh) 一种卤化物固态电解质及其制备方法和应用、一种全固态锂离子电池
CN112086678A (zh) 一种固态电解质及其制备方法、以及固态电池
WO2023245960A1 (zh) 一种锂镁复合负极及其制备方法及制备的锂硫电池、全固态电池
WO2024016604A1 (zh) 复合材料及其制备方法、固态电池以及用电设备
CN113851609A (zh) 硅基负极极片及其制备方法、全固态锂离子电池
CN110550635B (zh) 一种新型的碳包覆硅氧负极材料的制备方法
CN113921755A (zh) 一种用于固态锂电池的复合固态正极及其制备方法
CN117497835A (zh) 固态电芯及其制备方法与固态电池
Hu et al. Graphene film with folds for a stable lithium metal anode
CN116247157A (zh) 一种干法制备全固态电池的方法和全固态电池
CN114824192A (zh) 一种复合正极材料、电池正极、锂电池及其应用
CN114141980A (zh) 一种固态锂硫电池正极及全固态锂硫电池
CN113782824A (zh) 一种硫化物电解质膜及其制备方法和应用
TW202239042A (zh) 鋰離子電池用矽碳複合材料、其製造方法及鋰離子電池用電極
Yang et al. Synthesis of Metal Oxides@ C (Metal= Ni, Fe) Based Prussian Blue Analogs as a High-performance Anode Material for Lithium-ion Battery
CA3132801A1 (en) Method for producing all-solid-state battery
CN114944488B (zh) 一种包覆型正极材料的制备方法及其制品和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951859

Country of ref document: EP

Kind code of ref document: A1