WO2024014897A1 - 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 - Google Patents

음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2024014897A1
WO2024014897A1 PCT/KR2023/010017 KR2023010017W WO2024014897A1 WO 2024014897 A1 WO2024014897 A1 WO 2024014897A1 KR 2023010017 W KR2023010017 W KR 2023010017W WO 2024014897 A1 WO2024014897 A1 WO 2024014897A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
silicon
anode
less
Prior art date
Application number
PCT/KR2023/010017
Other languages
English (en)
French (fr)
Inventor
김도현
김동혁
이용주
전현민
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230090551A external-priority patent/KR20240009896A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024014897A1 publication Critical patent/WO2024014897A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to a negative electrode active material, a method of manufacturing the negative electrode active material, a negative electrode composition, a negative electrode for a lithium secondary battery including the same, and a lithium secondary battery including the negative electrode.
  • lithium secondary batteries with high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and are widely used.
  • an electrode for such a high-capacity lithium secondary battery research is being actively conducted on methods for manufacturing a high-density electrode with a higher energy density per unit volume.
  • a secondary battery consists of an anode, a cathode, an electrolyte, and a separator.
  • the negative electrode includes a negative electrode active material that inserts and desorbs lithium ions from the positive electrode, and silicon-based particles with a large discharge capacity may be used as the negative electrode active material.
  • silicon-based compounds such as Si/C or SiOx, which have a capacity more than 10 times greater than graphite-based materials, as anode active materials.
  • silicon-based compounds which are high-capacity materials
  • the capacity is large compared to conventionally used graphite, but there is a problem in that the volume expands rapidly during the charging process and the conductive path is cut off, deteriorating battery characteristics.
  • the volume expansion itself is suppressed, such as a method of controlling the driving potential, a method of additionally coating a thin film on the active material layer, and a method of controlling the particle size of the silicon-based compound.
  • Various methods are being discussed to prevent the conductive path from being disconnected or to prevent the conductive path from being disconnected, but these methods have limitations in application because they can reduce battery performance, so the negative electrode battery still has a high content of silicon-based compounds. There are limits to commercialization of manufacturing.
  • the average particle size (D50) and crystal grains of the silicon-based active material can be adjusted to a certain range, and by adjusting the grains to a certain range, lithium It was confirmed that during the insertion/detachment reaction, the reaction occurred uniformly and the stress on the silicon-based active material was reduced.
  • This application relates to a negative electrode active material that can solve the above-mentioned problems, a method of manufacturing the negative electrode active material, a negative electrode composition, a negative electrode for a lithium secondary battery containing the same, and a lithium secondary battery including the negative electrode.
  • a method for manufacturing the following negative electrode active material is provided.
  • a negative electrode active material according to the present application; cathode conductive material; and a negative electrode binder.
  • a negative electrode current collector layer in another embodiment, a negative electrode current collector layer; and a negative electrode active material layer provided on one or both sides of the negative electrode current collector layer, wherein the negative electrode active material layer includes the negative electrode composition or a cured product thereof according to the present application.
  • the anode A negative electrode for a lithium secondary battery according to the present application;
  • a separator provided between the anode and the cathode; It provides a lithium secondary battery including; and an electrolyte.
  • the anode active material according to an embodiment of the present invention unlike the existing pulverization method, it is produced by controlling the reaction conditions of a chemical method of reacting silane gas and acid, and accordingly, the average particle size (D50) is within a certain range. ) and grain size.
  • the main feature is that it contains more than 70 parts by weight, that is, Pure Si active material, and solves the problem of volume expansion due to charging and discharging by adjusting the average particle diameter (D50) and crystal grain size within a certain range. .
  • the negative electrode active material according to the present application is characterized by controlling the average particle diameter (D50) and grain size of the silicon-based active material.
  • D50 average particle diameter
  • the resistance for lithium ions to move through the pores in the electrode decreases.
  • the average particle diameter increases, lithium ions are unable to penetrate into the particle interior, causing a non-uniform lithium reaction within the active material, leading to a decrease in lifespan characteristics.
  • the average particle diameter (D50) of the silicon-based active material is adjusted to the above range for the negative electrode active material, so that the lithium ion migration resistance of the electrode is not large and the reaction within the particles can occur uniformly.
  • the grain size of the corresponding silicon-based particles is adjusted as described above so that the grain boundaries are distributed widely, so that when lithium ions are inserted, they are distributed more evenly, thereby eliminating the problem that occurs when lithium ions are inserted into silicon particles. It can reduce stress, thereby alleviating breakage of particles. As a result, it has characteristics that can further improve the lifetime stability of the cathode.
  • Figure 1 shows an enlarged view of a silicon-based active material according to an exemplary embodiment of the present application.
  • Figure 2 is a diagram showing the manufacturing process of the silicon active material according to Example 1 of the present application.
  • Figure 3 is a diagram showing the manufacturing process of the silicon active material according to Comparative Example 1 of the present application.
  • Figure 4 is a diagram showing a stacked structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application.
  • Figure 5 is a diagram showing a stacked structure of a lithium secondary battery according to an exemplary embodiment of the present application.
  • Figure 6 is a diagram showing a method for calculating grain size.
  • 'p to q' means a range of 'p to q or less.
  • specific surface area is measured by the BET method, and is specifically calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mino II from BEL Japan. That is, in the present application, the BET specific surface area may mean the specific surface area measured by the above measurement method.
  • Dn refers to particle size distribution and refers to the particle size at the n% point of the cumulative distribution of particle numbers according to particle size.
  • D50 is the particle size (average particle diameter) at 50% of the cumulative distribution of particle numbers according to particle size
  • D90 is the particle size at 90% of the cumulative distribution of particle numbers according to particle size
  • D10 is the cumulative particle number according to particle size. This is the particle size at 10% of the distribution.
  • the average particle diameter can be measured using a laser diffraction method.
  • a commercially available laser diffraction particle size measuring device for example, Microtrac S3500
  • the difference in diffraction patterns according to particle size is measured when the particles pass through the laser beam, thereby distributing the particle size. Calculate .
  • the particle size or particle size may mean the average diameter or representative diameter of each grain forming the metal powder.
  • a polymer contains a certain monomer as a monomer unit means that the monomer participates in a polymerization reaction and is included as a repeating unit in the polymer.
  • this is interpreted the same as saying that the polymer contains a monomer as a monomer unit.
  • 'polymer' is understood to be used in a broad sense including copolymers, unless specified as 'homopolymer'.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are determined by using monodisperse polystyrene polymers (standard samples) of various degrees of polymerization commercially available for molecular weight measurement as standard materials, and using gel permeation chromatography (Gel Permeation). This is the polystyrene equivalent molecular weight measured by chromatography (GPC).
  • molecular weight means weight average molecular weight unless otherwise specified.
  • the main feature is that it contains more than 70 parts by weight, that is, Pure Si active material, and solves the problem of volume expansion due to charging and discharging by adjusting the average particle diameter (D50) and crystal grain size within a certain range. .
  • Figure 1 shows an enlarged view of a silicon-based active material according to an exemplary embodiment of the present application.
  • the silicon-based active material 1 is composed of a plurality of crystal structures 2, and at this time, it can be confirmed that the crystal structure has a grain distribution of 1 nm or more and 200 nm or less. Additionally, the space between the crystal structures can be defined as a grain boundary. Additionally, crystal structure can generally be expressed in terms of crystal grains.
  • pure silicon (Si) particles can be used as a silicon-based active material.
  • the silicon-based active material may contain metal impurities, and in this case, the impurity is a metal that can generally be included in the silicon-based active material, and specifically includes 0.1 part by weight or less based on 100 parts by weight of the silicon-based active material. can do.
  • the silicon-based active material is used as the negative electrode active material to improve capacity performance, but in order to solve the above problems, the average particle size (D50) and crystal grains of the silicon-based active material itself are adjusted rather than adjusting the composition of the conductive material and binder.
  • the existing problem was solved by adjusting the size.
  • the crystal grain size of the silicon-based active material may be 200 nm or less.
  • the crystal grain size of the silicon-based active material is 200 nm or less, preferably 130 nm or less, more preferably 110 nm or less, even more preferably 100 nm or less, specifically 95 nm or less, more specifically It may be 91 nm or less.
  • the crystal grain size of the silicon-based active material may be in the range of 1 nm or more, preferably 3 nm or more.
  • the silicon-based active material has the above-described grain size, and the grain size of the silicon-based active material can be adjusted by changing the process conditions in the manufacturing process, which will be described later.
  • the grain boundaries are distributed widely by satisfying the above range, so that when lithium ions are inserted, they enter uniformly, thereby reducing the stress applied when lithium ions are inserted into silicon particles, thereby alleviating particle cracking. can do.
  • it has characteristics that can improve the lifetime stability of the cathode.
  • the grain size exceeds the above range, the grain boundaries within the grain are narrowly distributed. In this case, lithium ions within the grain are inserted unevenly, and the stress resulting from the ion insertion is large, resulting in particle breakage.
  • the silicon-based active material includes a crystal structure having a grain distribution of 1 nm or more and 200 nm or less, and the area ratio of the crystal structure is 5% or less based on the total area of the silicon-based active material. provides.
  • the area ratio of the crystal structure based on the total area of the silicon-based active material may be 5% or less, 3% or less, and may be 0.1% or more.
  • the silicon-based active material according to the present application has a crystal grain size of 200 nm or less, so that the size of one crystal structure is small and can satisfy the above area ratio. Accordingly, the distribution of grain boundaries may be broadened, and thus the above-mentioned effect may appear.
  • a negative electrode active material is provided in which the number of crystal structures included in the silicon-based active material is 20 or more.
  • the number of crystal structures included in the silicon-based active material may refer to the number of each crystal structure in FIG. 1. That is, the silicon-based active material itself may be composed of multiple crystal structures, and in this case, the number of crystal structures may be 20 or more.
  • the number of crystal structures included in the silicon-based active material may be 20 or more, 30 or more, or 35 or more, and may satisfy the range of 60 or less and 50 or less.
  • the strength of the silicon-based active material itself has an appropriate range and can provide flexibility when included in the electrode. It also has the characteristic of efficiently suppressing volume expansion.
  • a crystal grain refers to a crystal particle that is a collection of irregular shapes of microscopic size in a metal or material, and the grain size may refer to the diameter of the observed crystal grain particle. That is, in the present application, the crystal grain size refers to the size of a domain sharing the same crystal direction within the particle, and has a different concept from the size of the particle size or particle diameter, which expresses the size of the material.
  • the grain size can be calculated as a FWHM (Full Width at Half Maximum) value through XRD analysis.
  • FWHM Full Width at Half Maximum
  • the remaining values except L are measured through XRD analysis of the silicon-based active material, and the grain size can be measured through the Debey-Scherrer equation, which shows that FWHM and grain size are inversely proportional.
  • the Debey-Scherrer equation is as shown in Equation 1-1 below.
  • L is the grain size
  • K is a constant
  • is the bragg angle
  • is the wavelength of the X-ray.
  • the shape of the crystal grains is diverse and can be measured three-dimensionally, and the size of the grains can generally be measured by the commonly used circle method and diameter measurement method, but is not limited thereto.
  • the diameter measurement method can be measured by drawing 5-10 balanced lines with a length of L mm on a microscope photo of the target particle, counting the number of grains z on the lines, and averaging them. At this time, only what goes in is counted and what is put on is excluded. If the number of lines is P and the magnification is V, the average particle diameter can be calculated using the following equation 1-2.
  • the circle method is a method of drawing a circle of a certain diameter on a microscope photo of a target particle and then calculating the average area of the grains based on the number of grains inside the circle and the number of grains on the boundary line, calculated using the following equation 1-3. It can be.
  • Equation 1-3 Fm is the average particle area, Fk is the measured area on the photograph, z is the number of particles inside the circle, n is the number of particles caught in the arc, and V is the magnification of the microscope.
  • the silicon-based active material may include silicon-based particles having a particle size distribution of 0.01 ⁇ m or more and 30 ⁇ m or less.
  • the silicon-based active material includes silicon-based particles having a particle size distribution of 0.01 ⁇ m or more and 30 ⁇ m or less means that it contains a large number of individual silicon-based particles having a particle size within the above range, and the number of silicon-based particles included is not limited. .
  • the particle size may be expressed as its diameter, but even if it has a shape other than a sphere, the particle size can be measured compared to the spherical case, and is generally measured individually in the art. The particle size of silicon-based particles can be measured.
  • the average particle diameter (D50 particle size) of the silicon-based active material of the present invention is 1 ⁇ m or more and 9 ⁇ m or less, and may be specifically 2 ⁇ m to 8 ⁇ m, and more specifically 3 ⁇ m to 8 ⁇ m.
  • the average particle diameter is within the above range, the specific surface area of the particles is within an appropriate range, and the viscosity of the anode slurry is within an appropriate range. Accordingly, dispersion of the particles constituting the cathode slurry becomes smooth.
  • the size of the silicon-based active material is greater than the above lower limit, the contact area between the silicon particles and the conductive material is excellent due to the composite of the conductive material and the binder in the negative electrode slurry, and the possibility of the conductive network being maintained increases, increasing the capacity. Retention rate increases. Meanwhile, when the average particle diameter satisfies the above range, excessively large silicon particles are excluded to form a smooth surface of the cathode, thereby preventing current density unevenness during charging and discharging.
  • a negative electrode active material wherein the crystal grain size of the silicon-based active material is 1 nm to 200 nm, and the average particle diameter (D50) of the silicon-based active material is 3 ⁇ m to 8 ⁇ m.
  • the negative electrode active material according to the present application is characterized by controlling the average particle diameter (D50) and grain size of the silicon-based active material.
  • D50 average particle diameter
  • grain size the average particle diameter of the silicon-based active material.
  • the negative electrode active material secures lifespan characteristics by adjusting the average particle diameter (D50) of the silicon-based active material to the above range, and at the same time, adjusts the grain size of the corresponding silicon-based particles as described above.
  • D50 average particle diameter
  • the silicon-based active material generally has a characteristic BET surface area.
  • the BET surface area of the silicon-based active material is preferably 0.01 to 150 m 2 /g, more preferably 0.1 to 100 m 2 /g, particularly preferably 0.2 to 80 m 2 /g, most preferably 0.2 to 18 m 2 /g. It is g. BET surface area is measured according to DIN 66131 (using nitrogen).
  • the silicon-based active material may exist, for example, in a crystalline or amorphous form, and is preferably not porous.
  • the silicon particles are preferably spherical or fragment-shaped particles. Alternatively but less preferably, the silicon particles may also have a fibrous structure or be present in the form of a silicon-comprising film or coating.
  • the silicon-based active material may have a non-spherical shape and its sphericity is, for example, 0.9 or less, for example, 0.7 to 0.9, for example, 0.8 to 0.9, for example, 0.85 to 0.9. am.
  • the circularity is determined by the following formula 1-A, where A is the area and P is the boundary line.
  • the negative electrode active material cathode conductive material; and a negative electrode binder.
  • a negative electrode composition in which the negative electrode active material is 40 parts by weight or more based on 100 parts by weight of the negative electrode composition.
  • the negative electrode active material is contained in an amount of 40 parts by weight or more, preferably 60 parts by weight or more, more preferably 65 parts by weight or more, and even more preferably 70 parts by weight or more based on 100 parts by weight of the negative electrode composition. It may contain 95 parts by weight or less, preferably 90 parts by weight or less, and more preferably 85 parts by weight or less.
  • the negative electrode composition according to the present application uses a negative electrode active material that satisfies a specific grain size that can control the volume expansion rate during the charging and discharging process even when a negative electrode active material with a significantly high capacity is used within the above range. It does not degrade performance and has excellent output characteristics during charging and discharging.
  • the negative conductive material may include one or more selected from the group consisting of a point-shaped conductive material, a planar conductive material, and a linear conductive material.
  • the point-shaped conductive material refers to a point-shaped or spherical conductive material that can be used to improve conductivity in the cathode and has conductivity without causing chemical change.
  • the dot-shaped conductive material is natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, channel black, Parness black, lamp black, thermal black, conductive fiber, fluorocarbon, aluminum powder, nickel powder, zinc oxide, It may be at least one selected from the group consisting of potassium titanate, titanium oxide, and polyphenylene derivatives, and preferably may include carbon black in terms of realizing high conductivity and excellent dispersibility.
  • the point-shaped conductive material may have a BET specific surface area of 40 m 2 /g or more and 70 m 2 /g or less, preferably 45 m 2 /g or more and 65 m 2 /g or less, more preferably 50 m 2 /g. It may be more than /g and less than 60m 2 /g.
  • the point-shaped conductive material may satisfy a functional group content (Volatile matter) of 0.01% or more and 1% or less, preferably 0.01% or more and 0.3% or less, and more preferably 0.01% or more and 0.1% or less. there is.
  • a functional group content Volatile matter
  • the functional group content of the dot-shaped conductive material satisfies the above range, functional groups exist on the surface of the dot-shaped conductive material, so that when water is used as a solvent, the dot-shaped conductive material can be smoothly dispersed in the solvent.
  • the functional group content of the point-shaped conductive material can be lowered, which has an excellent effect in improving dispersibility.
  • it is characterized in that it includes a point-shaped conductive material having a functional group content in the above range along with a silicon-based active material.
  • the content of the functional group can be adjusted according to the degree of heat treatment of the point-type conductive material. there is.
  • the particle diameter of the point-shaped conductive material may be 10 nm to 100 nm, preferably 20 nm to 90 nm, and more preferably 20 nm to 60 nm.
  • the conductive material may include a planar conductive material.
  • the planar conductive material may serve to improve conductivity by increasing surface contact between silicon particles within the cathode and at the same time suppress disconnection of the conductive path due to volume expansion.
  • the planar conductive material may be expressed as a plate-shaped conductive material or a bulk-type conductive material.
  • the planar conductive material may include at least one selected from the group consisting of plate-shaped graphite, graphene, graphene oxide, and graphite flakes, and may preferably be plate-shaped graphite.
  • the average particle diameter (D50) of the planar conductive material may be 2 ⁇ m to 7 ⁇ m, specifically 3 ⁇ m to 6 ⁇ m, and more specifically 3.5 ⁇ m to 5 ⁇ m. .
  • D50 average particle diameter
  • the planar conductive material is a high specific surface area planar conductive material having a high BET specific surface area; Alternatively, a low specific surface area planar conductive material can be used.
  • the planar conductive material includes a high specific surface area planar conductive material;
  • a planar conductive material with a low specific surface area can be used without limitation, but in particular, the planar conductive material according to the present application can be affected to some extent by dispersion on electrode performance, so it is possible to use a planar conductive material with a low specific surface area that does not cause problems with dispersion. This may be particularly desirable.
  • the planar conductive material may have a BET specific surface area of 1 m 2 /g or more.
  • the planar conductive material may have a BET specific surface area of 1 m 2 /g or more and 500 m 2 /g or less, preferably 5 m 2 /g or more and 300 m 2 /g or less, more preferably 5 m 2 /g. It may be more than g and less than 250m 2 /g.
  • planar conductive material includes a high specific surface area planar conductive material; Alternatively, a low specific surface area planar conductive material can be used.
  • the planar conductive material is a high specific surface area planar conductive material, and has a BET specific surface area of 50 m 2 /g or more and 500 m 2 /g or less, preferably 80 m 2 /g or more and 300 m 2 /g or less, more preferably In other words, it can satisfy the range of 100m 2 /g or more and 300m 2 /g or less.
  • the planar conductive material is a low specific surface area planar conductive material, and the BET specific surface area is 1 m 2 /g or more and 40 m 2 /g or less, preferably 5 m 2 /g or more and 30 m 2 /g or less, more preferably In other words, it can satisfy the range of 5m 2 /g or more and 25m 2 /g or less.
  • Other conductive materials may include linear conductive materials such as carbon nanotubes.
  • the carbon nanotubes may be bundled carbon nanotubes.
  • the bundled carbon nanotubes may include a plurality of carbon nanotube units.
  • the 'bundle type' herein refers to a bundle in which a plurality of carbon nanotube units are arranged side by side or entangled in substantially the same orientation with the longitudinal axis of the carbon nanotube units, unless otherwise specified. It refers to a secondary shape in the form of a bundle or rope.
  • the carbon nanotube unit has a graphite sheet in the form of a cylinder with a nano-sized diameter and an sp2 bond structure.
  • the characteristics of a conductor or semiconductor can be displayed depending on the angle and structure at which the graphite surface is rolled.
  • the bundled carbon nanotubes can be uniformly dispersed when manufacturing a cathode, and can smoothly form a conductive network within the cathode, improving the conductivity of the cathode.
  • a negative electrode composition in which the negative electrode conductive material is contained in an amount of 20 parts by weight or less based on 100 parts by weight of the negative electrode composition.
  • the anode conductive material may be 20 parts by weight or less, 17 parts by weight or less, 15 parts by weight or less, and 3 or more parts by weight, or more than 5 parts by weight, based on 100 parts by weight of the anode composition.
  • the cathode conductive material according to the present application has a completely separate configuration from the anode conductive material applied to the anode.
  • the anode conductive material according to the present application serves to hold the contact point between silicon-based active materials whose volume expansion of the electrode is very large due to charging and discharging.
  • the anode conductive material acts as a buffer when rolled and retains some conductivity. It has a role in providing , and its composition and role are completely different from the cathode conductive material of the present invention.
  • the negative electrode conductive material according to the present application is applied to a silicon-based active material and has a completely different structure from the conductive material applied to the graphite-based active material.
  • the conductive material used in the electrode having a graphite-based active material has the property of improving output characteristics and providing some conductivity simply because it has smaller particles compared to the active material, and is different from the anode conductive material applied together with the silicon-based active material as in the present invention.
  • the composition and roles are completely different.
  • the planar conductive material used as the above-described negative electrode conductive material has a different structure and role from the carbon-based active material generally used as the negative electrode active material.
  • the carbon-based active material used as a negative electrode active material may be artificial graphite or natural graphite, and refers to a material that is processed into a spherical or dot-shaped shape to facilitate storage and release of lithium ions.
  • the planar conductive material used as a negative electrode conductive material is a material that has a plane or plate shape and can be expressed as plate-shaped graphite.
  • it is a material included to maintain a conductive path within the negative electrode active material layer, and refers to a material that does not play a role in storing and releasing lithium, but rather secures a conductive path in a planar shape inside the negative electrode active material layer.
  • the use of plate-shaped graphite as a conductive material means that it is processed into a planar or plate-shaped shape and used as a material that secures a conductive path rather than storing or releasing lithium.
  • the negative electrode active material included has high capacity characteristics for storing and releasing lithium, and plays a role in storing and releasing all lithium ions transferred from the positive electrode.
  • the use of a carbon-based active material as an active material means that it is processed into a point-shaped or spherical shape and used as a material that plays a role in storing or releasing lithium.
  • artificial graphite or natural graphite which is a carbon-based active material, is in the form of points and can satisfy a BET specific surface area of 0.1 m 2 /g or more and 4.5 m 2 /g or less.
  • plate-shaped graphite which is a planar conductive material, is in the form of a planar surface and may have a BET specific surface area of 5 m 2 /g or more.
  • the negative electrode binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, Polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • EPDM propylene-diene monomer
  • SBR styrene butadiene rubber
  • fluororubber poly acrylic acid
  • materials whose hydrogen is replaced with Li, Na, or Ca etc. It may include at least one of the following, and may also include various copolymers thereof.
  • the negative electrode binder serves to hold the active material and the conductive material to prevent distortion and structural deformation of the negative electrode structure in the volume expansion and relaxation of the silicon-based active material. If the above role is satisfied, the negative electrode binder serves as a general Any binder can be applied, specifically, a water-based binder can be used, and more specifically, a PAM-based binder can be used.
  • the anode binder may be 30 parts by weight or less, preferably 25 parts by weight or less, more preferably 20 parts by weight or less, and 5 or more parts by weight, 10 parts by weight, based on 100 parts by weight of the anode composition. It can be more than wealth.
  • An exemplary embodiment of the present application includes depositing a silicon-based active material on a substrate by chemically reacting silane gas; and obtaining a silicon-based active material deposited on the substrate, wherein the crystal grain size of the silicon-based active material is 200 nm or less, and the average particle diameter (D50) of the silicon-based active material is 1 ⁇ m or more and 9 ⁇ m or less.
  • a method for manufacturing a negative electrode active material is provided.
  • the method of manufacturing the anode active material may further include forming silane gas by reacting silicon with a purity of 99% or more with an acid.
  • the silicon with a purity of 99% or more is It can be expressed as MG-Silicon (Metallurgical grade Si).
  • the silane gas may include one or more gases selected from monosilane, dichlorosilane, and trichlorosilane, and may specifically be trichlorosilane gas.
  • the step of depositing a silicon-based active material on a substrate by chemically reacting the silane gas may be performed under pressure conditions of 10 Pa to 150 Pa. Due to this low pressure, the silicon growth rate is reduced, which can lead to the formation of small crystal grains.
  • the step may be performed at a temperature of 100°C or higher, specifically 500°C or higher, preferably 800°C or higher, more preferably 800°C to 1300°C, or 800°C to 1100°C. This is a lower temperature than the existing gas atomizing method, which heats above 1600°C to melt Si.
  • MG-silicon which is a lump of silicon, was manufactured by crushing it using physical force, and when manufactured in this way, the grain size generally exceeds the 200 nm range.
  • a silicon-based active material is simply manufactured using a conventional method, there is a disadvantage in that the grain size cannot be controlled, making it difficult to secure the lifetime stability of the anode.
  • the method of manufacturing the anode active material according to the present application involves gasifying silane as described above and then depositing it on a substrate through a chemical reaction, thereby forming silicon particles, and specifically changing the temperature and pressure conditions within the process. As a result, it was possible to obtain a silicon-based active material that satisfies the grain size according to the present application.
  • a negative electrode current collector layer comprising the negative electrode composition or a cured product thereof according to the present application formed on one or both sides of the negative electrode current collector layer.
  • Figure 4 is a diagram showing a stacked structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application.
  • the negative electrode 100 for a lithium secondary battery includes the negative electrode active material layer 20 on one side of the negative electrode current collector layer 10, and Figure 4 shows that the negative electrode active material layer is formed on one side, but the negative electrode collector layer 10 has a negative electrode active material layer 20. It can be included on both sides of the entire floor.
  • the negative electrode for a lithium secondary battery may be formed by applying and drying a negative electrode slurry containing the negative electrode composition on one or both sides of a negative electrode current collector layer.
  • the cathode slurry includes the cathode composition described above; and a slurry solvent.
  • the solid content of the anode slurry may satisfy 5% or more and 40% or less.
  • the solid content of the anode slurry may be within the range of 5% to 40%, preferably 7% to 35%, and more preferably 10% to 30%.
  • the solid content of the negative electrode slurry may mean the content of the negative electrode composition contained in the negative electrode slurry, and may mean the content of the negative electrode composition based on 100 parts by weight of the negative electrode slurry.
  • the viscosity is appropriate when forming the negative electrode active material layer, thereby minimizing particle agglomeration of the negative electrode composition, thereby enabling efficient formation of the negative electrode active material layer.
  • the slurry solvent can be used without limitation as long as it can dissolve the negative electrode composition, and specifically, water or NMP can be used.
  • the negative electrode current collector layer generally has a thickness of 1 ⁇ m to 100 ⁇ m.
  • This negative electrode current collector layer is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel. Surface treatment of carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the bonding power of the negative electrode active material can be strengthened by forming fine irregularities on the surface, and it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • a negative electrode for a lithium secondary battery wherein the negative electrode current collector layer has a thickness of 1 ⁇ m or more and 100 ⁇ m or less, and the negative electrode active material layer has a thickness of 5 ⁇ m or more and 500 ⁇ m or less.
  • the thickness may vary depending on the type and purpose of the cathode used and is not limited to this.
  • the porosity of the negative electrode active material layer may satisfy a range of 10% to 60%.
  • the porosity of the negative electrode active material layer may be within the range of 10% to 60%, preferably 20% to 50%, and more preferably 30% to 45%.
  • the porosity includes the silicon-based active material included in the negative electrode active material layer; conductive material; and varies depending on the composition and content of the binder, especially the silicon-based active material according to the present application; and a conductive material of a specific composition and content satisfies the above range, and thus the electrode is characterized by having an appropriate range of electrical conductivity and resistance.
  • an anode In an exemplary embodiment of the present application, an anode; A negative electrode for a lithium secondary battery according to the present application; A separator provided between the anode and the cathode; It provides a lithium secondary battery including; and an electrolyte.
  • Figure 5 is a diagram showing a stacked structure of a lithium secondary battery according to an exemplary embodiment of the present application.
  • a negative electrode 100 for a lithium secondary battery including a negative electrode active material layer 20 can be confirmed on one side of the negative electrode current collector layer 10, and a positive electrode active material layer 40 on one side of the positive electrode current collector layer 50.
  • a positive electrode 200 for a lithium secondary battery can be confirmed, indicating that the negative electrode 100 for a lithium secondary battery and the positive electrode 200 for a lithium secondary battery are formed in a stacked structure with a separator 30 in between.
  • the secondary battery according to an exemplary embodiment of the present specification may particularly include the above-described negative electrode for a lithium secondary battery.
  • the secondary battery may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, detailed description will be omitted.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and may include a positive electrode active material layer containing the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon on the surface of aluminum or stainless steel. , surface treated with nickel, titanium, silver, etc. can be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the positive electrode active material may be a commonly used positive electrode active material.
  • the positive electrode active material is a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium iron oxide such as LiFe 3 O 4 ; Lithium manganese oxide with the formula Li 1+c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , etc.; lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Chemical formula LiNi 1-c2 M c2 O 2 (where M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, and satisfies 0.01 ⁇ c2 ⁇ 0.3).
  • LiMn 2-c3 M c3 O 2 (where M is at least one selected from the group consisting of Co, Ni, Fe, Cr, Zn and Ta, and satisfies 0.01 ⁇ c3 ⁇ 0.1) or Li 2 Mn 3 MO lithium manganese composite oxide represented by 8 (where M is at least one selected from the group consisting of Fe, Co, Ni, Cu and Zn);
  • Examples include LiMn 2 O 4 in which part of Li in the chemical formula is replaced with an alkaline earth metal ion, but it is not limited to these.
  • the anode may be Li-metal.
  • the positive electrode active material layer may include the positive electrode active material described above, a positive conductive material, and a positive electrode binder.
  • the anode conductive material is used to provide conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change and has electronic conductivity in the battery being constructed.
  • Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, etc., of which one type alone or a mixture of two or more types may be used.
  • the positive electrode binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC). ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber. (SBR), fluorine rubber, or various copolymers thereof, and one type of these may be used alone or a mixture of two or more types may be used.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene flu
  • the separator separates the cathode from the anode and provides a passage for lithium ions. It can be used without particular restrictions as long as it is normally used as a separator in secondary batteries. In particular, it has low resistance to ion movement in the electrolyte and has an electrolyte moisture capacity. Excellent is desirable.
  • porous polymer films for example, porous polymer films made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these. A laminated structure of two or more layers may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, etc.
  • a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • the electrolytes include, but are not limited to, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, and 1,2-dimethyl.
  • Triesters trimethoxy methane, dioxoran derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, methyl pyropionate, propionic acid.
  • Aprotic organic solvents such as ethyl may be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • cyclic carbonates are high-viscosity organic solvents and have a high dielectric constant, so they can be preferably used because they easily dissociate lithium salts.
  • These cyclic carbonates include dimethyl carbonate and diethyl carbonate. If linear carbonates of the same low viscosity and low dielectric constant are mixed and used in an appropriate ratio, an electrolyte with high electrical conductivity can be made and can be used more preferably.
  • the metal salt may be a lithium salt, and the lithium salt is a material that is easily soluble in the non-aqueous electrolyte.
  • anions of the lithium salt include F - , Cl - , I - , NO 3 - , N(CN ) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trifluoroethylene for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may be further included.
  • One embodiment of the present invention provides a battery module including the secondary battery as a unit cell and a battery pack including the same. Since the battery module and battery pack include the secondary battery with high capacity, high rate characteristics, and cycle characteristics, they are medium-to-large devices selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems. It can be used as a power source.
  • FIG. 2 is a diagram showing the manufacturing process of the silicon active material according to Example 1 of the present application. Specifically, a silicon lump of MG-Si was gasified with silane, and then a silicon-based active material was formed through chemical reaction and deposition on a substrate. At this time, the remainder is carried out by controlling the process conditions (selection of conditions to control the grain size in Table 1 below within the range of temperature conditions 800°C to 1100°C and pressure conditions 10pa to 150pa, and control of grain size by controlling temperature and pressure conditions). The grain size of the silicon-based active material of Examples 2 to 8 and Comparative Examples 2 to 7 could be controlled, and the results are shown in Table 1.
  • Figure 3 is a diagram showing the manufacturing process of the silicon active material according to Comparative Examples 1 and 8 of the present application. Specifically, the MG-Si silicon lump was pulverized using physical force, and the crystal grain size of the silicon-based active material at this time was as shown in Table 1.
  • the average particle diameter (D50) of the silicon-based active material can be adjusted by varying the synthesis time of the silicon-based active material and the process time during the classification process, and in particular, by removing large particles or small particle areas during the classification process. It was manufactured to satisfy D50 in Table 1.
  • a negative electrode slurry was prepared by adding polyacrylamide as a negative electrode active material, conductive material, and binder containing the silicon-based active material of Table 1 to distilled water as a solvent for forming negative electrode slurry at a weight ratio of 80:10:10 (solid content concentration: 28% by weight) ).
  • the conductive material was carbon black (specific surface area: 45 m2/g, diameter: 30-50 nm).
  • the conductive material, binder, and water were dispersed at 2500 rpm for 30 min using a homomixer, and then the silicon-based active material was added and dispersed at 2500 rpm for 30 min to produce a negative electrode slurry.
  • the negative electrode slurry was coated at a loading amount of 227 mg/50 cm 2 on the cross section of a copper current collector (thickness: 15 ⁇ m) as a negative electrode current collector layer, rolled, and dried in a vacuum oven at 130°C for 10 hours.
  • a negative electrode active material layer (thickness: 23 ⁇ m) was formed and used as a negative electrode (negative electrode thickness: 38 ⁇ m, negative electrode porosity 40.0%).
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 (average particle diameter (D50): 15 ⁇ m) as the positive electrode active material, carbon black (product name: Super C65, manufacturer: Timcal) as the conductive material, and polyvinylidene fluoride (PVdF) as the binder.
  • a positive electrode slurry was prepared by adding N-methyl-2-pyrrolidone (NMP) as a solvent for forming positive electrode slurry at a weight ratio of :1.5:1.5 (solid concentration: 78% by weight).
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was coated at a loading amount of 537 mg/25 cm 2 on both sides of an aluminum current collector (thickness: 12 ⁇ m), rolled, and dried in a vacuum oven at 130°C for 10 hours to form a positive electrode.
  • An active material layer (thickness: 65 ⁇ m) was formed to prepare a positive electrode (anode thickness: 77 ⁇ m, porosity 26%).
  • a lithium secondary battery was manufactured by interposing a polyethylene separator between the positive electrode and the negative electrode of the examples and comparative examples and injecting electrolyte.
  • the electrolyte is made by adding 3% by weight of vinylene carbonate based on the total weight of the electrolyte to an organic solvent mixed with fluoroethylene carbonate (FEC) and diethyl carbonate (DMC) at a volume ratio of 10:90, and LiPF as a lithium salt. 6 was added at a concentration of 1M.
  • FEC fluoroethylene carbonate
  • DMC diethyl carbonate
  • the lifespan of the secondary battery containing the negative electrode manufactured in the above Examples and Comparative Examples was evaluated using an electrochemical charger and discharger, and the capacity maintenance rate was evaluated. In-situ cycle testing was conducted on the secondary battery at 4.2-3.0V 1C/0.5C, and the capacity maintenance rate was maintained by charging/discharging (4.2-3.0V) at 0.33C/0.33C every 50 cycles. Measured.
  • Life maintenance rate (%) ⁇ (discharge capacity in Nth cycle)/(discharge capacity in first cycle) ⁇ ⁇ 100
  • Example 1 42 6.21 91
  • Example 2 53 6.21 90
  • Example 3 62 6.21 89
  • Example 4 91 6.21 86
  • Example 5 150 4.52 85
  • Example 6 200 5.06 84
  • Example 7 16 5.17 90
  • Example 8 One 3.02 85 Comparative Example 1 212 5.76 82 Comparative Example 2 42 10 80 Comparative Example 3 150 10 76 Comparative Example 4 200 10 70 Comparative Example 5 42 0.8 63 Comparative Example 6 150 0.8 61 Comparative Example 7 200 0.8 60 Comparative Example 8 212 11 80
  • the average particle diameter (D50) of the silicon-based active material is not large and the characteristics that allow intra-particle reactions to occur uniformly are secured, while at the same time, the crystal grain size of the corresponding silicon-based particles is maintained.
  • D50 average particle diameter
  • Comparative Examples 2 to 7 are compared with Examples, it can be confirmed that lifespan performance is different in a specific range of particle sizes.
  • the particle size is large, as in Comparative Examples 2 to 4, lithium does not sufficiently penetrate into the active material, resulting in relatively high stress on the surface of the active material, resulting in cracking of the active material, resulting in a decrease in life performance.
  • the particle size is small as in Comparative Examples 5 to 7, it can be confirmed that the lifespan performance is reduced as the lithium ion movement resistance increases due to the increase in the lithium movement path during electrode manufacturing, resulting in a decrease in lifespan performance.
  • Example 1 Grain (nm) D50 ( ⁇ m) Resistance increase rate after 200 cycles (%) (3.0 ⁇ 4.2 V range 1C/0.5C)
  • Example 1 42 6.21 5
  • Example 2 53 6.21 7
  • Example 3 62 6.21 8
  • Example 4 91 6.21 10
  • Example 5 150 4.52 12
  • Example 6 200 5.06 16
  • Example 7 16 5.17 9
  • Example 8 One 3.02 14 Comparative Example 1 212 5.76 20 Comparative Example 2 42 10 37 Comparative Example 3 150 10 46 Comparative Example 4 200 10 52 Comparative Example 5 42 0.8 75 Comparative Example 6 150 0.8 80 Comparative Example 7 200 0.8 83 Comparative Example 8 212 11 23
  • Comparative Examples 2 to 7 are compared with Examples, it can be confirmed that lifespan performance is different in a specific range of particle sizes. It was confirmed that when the particle size was large, as in Comparative Examples 2 to 4, lithium did not sufficiently penetrate into the active material, resulting in relatively high stress on the surface of the active material, resulting in an increase in resistance due to the formation of a side reaction layer. In addition, it was confirmed that when the particle size was small as in Comparative Examples 5 to 7, the lithium ion transfer resistance increased due to an increase in the lithium transfer path during electrode manufacturing.

Abstract

본 출원은 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것으로, 실란 가스와 산을 반응시키는 화학적 방법의 반응 조건을 제어하여 일정 범위의 실리콘계 활물질의 평균 입경(D50) 및 결정립 크기를 만족하는 것을 특징으로 한다.

Description

음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
본 출원은 2022년 07월 13일에 한국특허청에 제출된 한국 특허 출원 제10-2022-0086337호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다. 또, 이 같은 고용량 리튬 이차 전지용 전극으로서, 단위 체적 당 에너지 밀도가 더 높은 고밀도 전극을 제조하기 위한 방법에 대해 연구가 활발히 진행되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 입자가 사용될 수 있다.
특히 최근 고 밀도 에너지 전지에 대한 수요에 따라, 음극 활물질로서, 흑연계 소재 대비 용량이 10배 이상 큰 Si/C나 SiOx와 같은 실리콘계 화합물을 함께 사용하여 용량을 늘리는 방법에 대한 연구가 활발히 진행되고 있지만, 고용량 소재인 실리콘계 화합물의 경우, 기존에 사용되는 흑연과 비교할 때, 용량이 크지만, 충전 과정에서 급격하게 부피가 팽창하여 도전 경로를 단절시켜 전지 특성을 저하시키는 문제점이 있다.
이에, 실리콘계 화합물을 음극 활물질로서 사용할 때의 문제점을 해소하기 위하여 구동 전위를 조절시키는 방안, 추가적으로 활물질층 상에 박막을 더 코팅하는 방법, 실리콘계 화합물의 입경을 조절하는 방법과 같은 부피 팽창 자체를 억제시키는 방안 혹은 도전 경로가 단절되는 것을 방지하기 위한 다양한 방안 등이 논의되고 있지만, 상기 방안들의 경우, 되려 전지의 성능을 저하시킬 수 있으므로, 적용에 한계가 있어, 여전히 실리콘계 화합물의 함량이 높은 음극 전지 제조의 상용화에는 한계가 있다.
따라서, 용량 성능 향상을 위하여 실리콘계 활물질을 음극 활물질로 사용하는 경우에도, 실리콘계 화합물 부피 팽창에 따라 도전 경로가 훼손되는 것을 방지할 수 있는 실리콘계 활물질 자체에 대한 연구가 필요하다.
<선행기술문헌>
일본 공개특허공보 제2009-080971호
기존 분쇄식 가공법이 아닌 화학적 가공법에 따라 실리콘계 활물질을 제작하는 경우, 실리콘계 활물질의 평균 입경(D50) 및 결정립을 일정 범위로 조절할 수 있음을 연구를 통하여 알게 되었고, 일정 범위로 결정립을 조절함에 따라 리튬의 삽입/탈리 반응 시, 균일하게 반응이 일어나며 실리콘계 활물질이 받는 응력을 감소시킴을 확인하였다.
본 출원은 전술한 문제점을 해결할 수 있는 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.
본 명세서의 일 실시상태는 결정립 크기가 200nm 이하인 실리콘계 활물질을 포함하고, 상기 실리콘계 활물질의 평균 입경(D50)은 1μm 이상 9μm 이하이며, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 활물질을 제공한다.
또 다른 일 실시상태에 있어서, 실란 가스를 화학적으로 반응시켜 기판에 실리콘계 활물질을 증착하는 단계; 및 상기 기판에 증착된 실리콘계 활물질을 수득하는 단계;를 포함하는 것인 음극 활물질의 제조 방법으로, 상기 실리콘계 활물질의 결정립 크기가 200 nm 이하이며, 상기 실리콘계 활물질의 평균 입경(D50)은 1μm 이상 9μm 이하인 음극 활물질의 제조 방법을 제공한다.
또 다른 일 실시상태에 있어서, 본 출원에 따른 음극 활물질; 음극 도전재; 및 음극 바인더를 포함하는 음극 조성물을 제공하고자 한다.
또 다른 일 실시상태에 있어서, 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 구비된 음극 활물질층을 포함하며, 상기 음극 활물질층은 본 출원에 따른 음극 조성물 또는 이의 경화물을 포함하는 것인 리튬 이차 전지용 음극을 제공하고자 한다.
마지막으로, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 일 실시상태에 따른 음극 활물질의 경우, 기존의 분쇄식 가공법과는 달리, 실란 가스와 산을 반응시키는 화학적 방법의 반응 조건을 제어하여 생성하는 것으로, 이에 따라 일정 범위의 평균 입경(D50) 및 결정립 크기를 만족하는 것을 특징으로 한다.
본 발명의 음극 활물질은 실리콘계 활물질로 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는, 즉 Pure Si 활물질을 가지면서 이에 따른 문제점인 충방전에 따른 부피 팽창의 문제를 평균 입경(D50) 및 결정립의 크기를 일정 범위로 조절하여 해결한 것을 주된 특징으로 한다.
특히 본 출원에 따른 음극 활물질은 실리콘계 활물질의 평균 입경(D50) 및 결정립 크기를 제어한 것을 특징으로 한다. 일반적으로 평균 입경이 큰 실리콘계 활물질을 사용하는 경우, 전극 내 기공에서 리튬 이온이 이동하는 저항이 감소한다. 하지만, 평균 입경이 커질수록 입자 내부까지 리튬 이온이 침투하지 못하여, 활물질 내 불균일한 리튬 반응이 발생함에 따라 수명특성이 떨어지는 문제가 있다. 이를 개선하기 위해 단순히 실리콘계 활물질의 평균 입경(D50)이 작은 활물질을 적용하는 경우, 입자 내부 영역 전체에서 반응이 균일하게 발생하나, 전극 내 리튬 이온 경로 확보가 어려워 저항이 증가하여 장기적인 수명성능의 감소 문제가 발생하였다.
본 출원에서는 상기와 같은 문제점을 인식하고, 음극 활물질은 실리콘계 활물질의 평균 입경(D50)을 상기의 범위로 조절하여 전극의 리튬 이온 이동 저항이 크지 않으며, 입자 내 반응이 균일하게 일어날 수 있는 특성을 확보함과 동시에, 해당 실리콘계 입자의 결정립 크기를 전술한 바와 같이 조절하여 결정립계(grain boundary)가 넓게 분포하도록 하여, 리튬 이온의 삽입 시, 더욱 균일하게 분포하게 되어 실리콘 입자 내 리튬 이온 삽입 시 발생하는 응력을 감소시킬 수 있고, 이에 따라 입자의 깨짐을 완화하여. 그 결과 음극의 수명 안정성을 더욱 개선할 수 있는 특징을 갖게 된다.
도 1은 본 출원의 일 실시상태에 따른 실리콘계 활물질의 확대도를 나타낸 것이다.
도 2는 본 출원의 실시예 1에 따른 실리콘 활물질의 제조 공정을 나타낸 도이다.
도 3은 본 출원의 비교예 1에 따른 실리콘 활물질의 제조 공정을 나타낸 도이다.
도 4는 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다.
도 5는 본 출원의 일 실시상태에 따른 리튬 이차 전지의 적층 구조를 나타낸 도이다.
도 6은 결정립 크기를 계산하는 방법을 나타낸 도이다.
<부호의 설명>
1: 실리콘계 활물질
2: 결정 조직
10: 음극 집전체층
20: 음극 활물질층
30: 분리막
40: 양극 활물질층
50: 양극 집전체층
100: 리튬 이차 전지용 음극
200: 리튬 이차 전지용 양극
A: 물리적 힘을 통한 분쇄 공정
B: 실란 가스화 후, 화학적 반응 공정
본 발명을 설명하기에 앞서, 우선 몇몇 용어를 정의한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서에 있어서, 'p 내지 q'는 'p 이상 q 이하'의 범위를 의미한다.
본 명세서에 있어서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출된 것이다. 즉 본 출원에 있어서 BET 비표면적은 상기 측정 방법으로 측정된 비표면적을 의미할 수 있다.
본 명세서에 있어서, "Dn"은 입도 분포를 의미하며, 입경에 따른 입자 개수 누적 분포의 n% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경(평균 입경)이며, D90은 입경에 따른 입자 개수 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 입자 개수 누적 분포의 10% 지점에서의 입경이다. 한편, 평균 입경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다.
본 출원의 일 실시상태에 있어서, 입도 또는 입경은 금속 분말을 이루는 알갱이 하나하나의 평균 지름이나 대표 지름을 의미할 수 있다.
본 명세서에 있어서, 중합체가 어떤 단량체를 단량체 단위로 포함한다는 의미는 그 단량체가 중합 반응에 참여하여 중합체 내에서 반복 단위로서 포함되는 것을 의미한다. 본 명세서에 있어서, 중합체가 단량체를 포함한다고 할 때, 이는 중합체가 단량체를 단량체 단위로 포함한다는 것과 동일하게 해석되는 것이다.
본 명세서에 있어서, '중합체'라 함은 '단독 중합체'라고 명시되지 않는 한 공중합체를 포함한 광의의 의미로 사용된 것으로 이해한다.
본 명세서에 있어서, 중량 평균 분자량(Mw) 및 수평균 분자량(Mn)은 분자량 측정용으로 시판되고 있는 다양한 중합도의 단분산 폴리스티렌 중합체(표준 시료)를 표준물질로 하고, 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)에 의해 측정한 폴리스티렌 환산 분자량이다. 본 명세서에 있어서, 분자량이란 특별한 기재가 없는 한 중량 평균 분자량을 의미한다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하의 설명에 한정되지 않는다.
본 명세서의 일 실시상태는 결정립 크기가 200nm 이하인 실리콘계 활물질을 포함하고, 상기 실리콘계 활물질의 평균 입경(D50)은 1μm 이상 9μm 이하이며, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 활물질을 제공한다.
본 발명의 음극 활물질은 실리콘계 활물질로 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는, 즉 Pure Si 활물질을 가지면서 이에 따른 문제점인 충방전에 따른 부피 팽창의 문제를 평균 입경(D50)및 결정립의 크기를 일정 범위로 조절하여 해결한 것을 주된 특징으로 한다.
도 1은 본 출원의 일 실시상태에 따른 실리콘계 활물질의 확대도를 나타낸 것이다. 구체적으로 실리콘계 활물질(1)은 다수의 결정 조직(2)으로 이루어지며, 이 때, 결정 조직이 1 nm 이상 200 nm 이하의 결정립 분포를 갖게 되는 것을 확인할 수 있다. 또한 결정 조직과 결정 조직 사이의 공간을 결정립계(grain boundary)로 정의할 수 있다. 또한, 일반적으로 결정 조직은 결정립으로 표현될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 SiOx (x=0)를 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상, 바람직하게는 80 중량부 이상, 더욱 바람직하게는 90 중량부 이상을 포함할 수 있으며, 100 중량부 이하, 바람직하게는 99 중량부 이하, 더욱 비람직하게는 95 중량부 이하를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 특히 순수 실리콘(Si) 입자를 실리콘계 활물질로서 사용할 수 있다. 순수 실리콘(Si) 입자를 실리콘계 활물질로 사용한다는 것은 상기와 같이 실리콘계 활물질을 전체 100 중량부를 기준으로 하였을 때, 다른 입자 또는 원소와 결합되지 않은 순수의 Si 입자(SiOx (x=0))를 상기 범위로 포함하는 것을 의미할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 실리콘계 활물질 100 중량부 기준 SiOx (x=0)를 100 중량부 갖는 실리콘계 입자로 이루어질 수 있다.
일 실시상태에 따르면, 상기 SiOx (x=0)의 결정립 크기가 200 nm 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 금속 불순물을 포함할 수 있으며, 이 때 불순물은 실리콘계 활물질에 일반적으로 포함될 수 있는 금속으로, 구체적으로 실리콘계 활물질 100 중량부 기준 0.1 중량부 이하를 포함할 수 있다.
실리콘계 활물질의 경우, 기존에 사용되는 흑연계 활물질과 비교할 때, 용량이 현저히 높아 이를 적용하려는 시도가 높아지고 있지만, 충방전 과정에서 부피 팽창율이 높아, 흑연계 활물질에 미량을 혼합하여 사용하는 경우 등에 그치고 있다.
따라서, 본 발명의 경우, 용량 성능 향상을 위하여 실리콘계 활물질만을 음극 활물질로서 사용하면서도, 상기와 같은 문제점을 해소하기 위하여, 도전재 및 바인더의 조성을 조절하기보다 실리콘계 활물질 자체의 평균 입경(D50)및 결정립 크기 조절을 통하여 기존의 문제점을 해결하였다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질의 결정립 크기가 200 nm 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질의 결정립 크기가 200 nm 이하, 바람직하게는 130 nm 이하, 더욱 바람직하게는 110 nm 이하, 더더욱 바람직하게는 100 nm 이하, 구체적으로 95 nm 이하, 더 구체적으로 91 nm 이하일 수 있다. 상기 실리콘계 활물질의 결정립 크기가 1 nm 이상, 바람직하게는 3 nm 이상의 범위를 가질 수 있다.
상기 실리콘계 활물질은 상기의 결정립 크기를 갖는 것으로, 후술하는 제조 공정상의 공정 조건을 변화하여 실리콘계 활물질의 결정립 크기를 조절할 수 있다. 이 때 상기 범위를 만족하여 결정립계(grain boundary)가 넓게 분포하도록 하여, 리튬 이온의 삽입 시, 균일하게 들어가게 되어 실리콘 입자 내 리튬 이온 삽입시 걸리는 응력을 감소시킬 수 있고, 이에 따라 입자의 깨짐을 완화할 수 있다. 그 결과 음극의 수명 안정성을 개선할 수 있는 특징을 갖게 된다. 결정립 크기가 상기 범위를 초과하는 경우 입자 내 결정립계가 좁게 분포하게 되고, 이 경우, 입자내 리튬 이온이 불균일하게 삽입되어, 이온 삽입에 따른 응력이 커 입자 깨짐현상이 발생하게 된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 1 nm 이상 200 nm 이하의 결정립 분포를 갖는 결정 조직을 포함하며, 상기 실리콘계 활물질 전체 면적 기준 상기 결정 조직의 면적 비율이 5% 이하인 것인 음극 활물질을 제공한다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질 전체 면적 기준 상기 결정 조직의 면적 비율이 5% 이하, 3% 이하일 수 있으며, 0.1% 이상일 수 있다.
즉, 본 출원에 따른 실리콘계 활물질은 결정립 크기가 200 nm 이하를 갖는 것으로, 결정 조직 하나의 크기가 작게 형성되고 상기의 면적 비율을 만족할 수 있다. 이에 따라 결정립계(grain boundary)의 분포가 넓어질 수 있고, 이에 따라 전술한 효과가 나타날 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질에 포함되는 결정 조직의 개수가 20개 이상인 것인 음극 활물질을 제공한다.
실리콘계 활물질에 포함되는 결정 조직의 개수는 도 1에서 각각의 결정 조직의 개수를 의미할 수 있다. 즉 실리콘계 활물질 자체가 다수의 결정 조직으로 이루어질 수 있으며, 이 때 결정 조직의 개수가 20 개 이상을 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질에 포함되는 결정 조직의 개수가 20개 이상, 30개 이상, 35개 이상일 수 있으며, 60개 이하, 50개 이하의 범위를 만족할 수 있다.
즉, 전술한 바와 같이 실리콘계 활물질이 결정립 크기가 상기 범위를 만족하며, 또한 결정 조직의 개수가 상기 범위를 만족하는 경우 실리콘계 활물질 자체의 강도가 적절한 범위를 갖게 되어 전극 내 포함될 때 유연성을 부여할 수 있으며, 또한 부피 팽창을 효율적으로 억제할 수 있는 특징을 갖게 된다.
본 출원에 있어서, 결정립은 금속 또는 재료에 있어, 현미경적인 크기의 불규칙한 형상의 집합으로 되어 있는 결정입자를 의미하며, 상기 결정립 크기는 관찰된 결정립 입자의 지름을 의미할 수 있다. 즉 본 출원에 있어서, 결정립 크기는 입자내에 동일 결정방향을 공유하는 도메인(domain)의 크기를 의미하는 것으로, 물질의 사이즈(size)를 표현하는 입도 또는 입경의 크기와는 상이한 개념을 갖는다.
본 출원의 일 실시상태에 있어서, 결정립 크기는 XRD 분석을 통하여 FWHM(Full Width at Half Maximum)값으로 계산할 수 있다. 구체적으로 도 6에서 결정립 크기를 계산하는 방법을 알 수 있다. 도 6에서 L을 제외한 나머지 값은 실리콘계 활물질의 XRD 분석을 통하여 측정하고, Debey-Scherrer 식을 통하여 FWHM과 결정립 크기는 반비례의 관계에 있다는 것을 통하여 결정립 크기를 측정할 수 있다. 이 때 Debey-Scherrer 식은 하기 식 1-1과 같다.
[식 1-1]
FWHM=(Kλ) / (LCOSθ)
상기 식 1-1에 있어서,
L은 결정립 크기를, K는 상수이며, θ는 bragg angle이고, λ는 X-ray의 파장을 의미한다.
또한, 상기 결정립의 형상은 다양하여 3차원적으로 측정할 수 있으며, 일반적으로 결정립의 크기는 일반적으로 사용되는 서클법, 직경측정법으로 측정할 수 있으나, 이에 한정되지 않는다.
상기 직경측정법은 대상이되는 입자의 현미경 사진 상에 선 1개의 길이가 L mm인 5-10개의 평형선을 긋고 선상의 결정립수 z를 세어 평균하여 측정할 수 있다. 이때 전부 들어가는 것만 세고 걸치는 것은 제외한다. 선의 수를 P, 배율을 V라 하면 평균 입자직경은 하기 식 1-2로 계산할 수 있다.
[식 1-2]
Dm = (L*P*103)/(zV) (um)
또한, 상기 서클법은 대상이되는 입자의 현미경 사진 상에 정해진 직경의 원을 그린 후 원안에 들어가는 결정립의 수와 경계선에 걸리는 결정립의 수로 결정립의 평균면적을 구하는 방법으로 하기 식 1-3로 계산될 수 있다.
[식 1-3]
Fm = (Fk * 106) / ((0.67n + z) V2) (um2)
상기 식 1-3에 있어서, Fm 은 평균 입자면적, Fk 는 사진 위의 측정면적, z는 원 내부에 들어가는 입자 수, n은 원호에 걸리는 입자 수, 및 V는 현미경의 배율을 각각 의미한다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 0.01μm 이상 30μm 이하의 입도 분포를 가지는 실리콘계 입자를 포함할 수 있다.
상기 실리콘계 활물질이 0.01μm 이상 30μm 이하의 입도 분포를 갖는 실리콘계 입자를 포함한다는 것은, 상기 범위 내의 입도를 갖는 개별의 실리콘계 입자를 다수로 포함한다는 것을 의미하며, 포함되는 실리콘계 입자의 개수는 제한되지 않는다.
상기 실리콘계 입자의 입도는 구형인 경우, 그 지름으로 표시될 수 있지만, 구형이 아닌 다른 모양인 경우에도 상기 구형인 경우와 대비하여 입도를 측정할 수 있으며, 일반적으로 당업계에서 측정하는 방법으로 개별 실리콘계 입자의 입도를 측정할 수 있다.
한편, 본원 발명의 상기 실리콘계 활물질의 평균 입경(D50 입도)은 1μm 이상 9μm 이하이며, 구체적으로 2㎛ 내지 8㎛일 수 있고, 보다 구체적으로 3㎛ 내지 8㎛일 수 있다. 상기 평균 입경이 상기 범위에 포함되는 경우, 입자의 비표면적이 적합한 범위로 포함하여, 음극 슬러리의 점도가 적정 범위로 형성 된다. 이에 따라, 음극 슬러리를 구성하는 입자들의 분산이 원활하게 된다. 또한, 실리콘계 활물질의 크기가 상기 하한값의 범위 이상의 값을 갖는 것으로, 음극 슬러리 내에서 도전재와 바인더로 이루어진 복합체에 의해 실리콘 입자, 도전재들의 접촉 면적이 우수하여, 도전 네트워크가 지속될 가능성이 높아져서 용량 유지율이 증가된다. 한편, 상기 평균 입경이 상기 범위를 만족하는 경우, 지나치게 큰 실리콘 입자들이 배제되어 음극의 표면이 매끄럽게 형성되며, 이에 따라 충방전 시 전류 밀도 불균일 현상을 방지할 수 있다.
본 출원에 있어서, 상기 실리콘계 활물질의 결정립 크기가 1nm 이상 200nm 이하이고, 상기 실리콘계 활물질의 평균 입경(D50)은 3μm 이상 8μm 이하인 것인 음극 활물질을 제공한다.
특히 본 출원에 따른 음극 활물질은 실리콘계 활물질의 평균 입경(D50) 및 결정립 크기를 제어한 것을 특징으로 한다. 일반적으로 평균 입경이 큰 실리콘계 활물질을 사용하는 경우 리튬 이온의 경로 확보가 용이한 것으로 알려져있다. 하지만, 평균 입경이 커질수록 음극 집전체층과의 접착력이 저하되고 이에 따라 수명특성이 급격히 떨어지는 문제가 발생하였다. 이에 따라 단순히 실리콘계 활물질의 평균 입경(D50)이 작은 활물질을 적용하는 경우, 수명 성능은 확보되나 리튬 이온 경로 확보가 어려워 저항이 증가하는 문제가 발생하였다.
본 출원에서는 상기와 같은 문제점을 인식하고, 음극 활물질은 실리콘계 활물질의 평균 입경(D50)을 상기의 범위로 조절하여 수명 특성을 확보함과 동시에, 해당 실리콘계 입자의 결정립 크기를 전술한 바와 같이 조절하여 결정립계(grain boundary)가 넓게 분포하도록 하여, 리튬 이온의 삽입 시, 균일하게 들어가게 되어 실리콘 입자 내 리튬 이온 삽입시 걸리는 응력을 감소시킬 수 있고, 이에 따라 입자의 깨짐을 완화하여. 그 결과 음극의 수명 안정성을 더욱 개선할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 일반적으로 특징적인 BET 표면적을 갖는다. 실리콘계 활물질의 BET 표면적은 바람직하게는 0.01 내지 150 m2/g, 더욱 바람직하게는 0.1 내지 100m2/g, 특히 바람직하게는 0.2 내지 80 m2/g, 가장 바람직하게는 0.2 내지 18 m2/g이다. BET 표면적은 (질소를 사용하여) DIN 66131에 따라 측정된다.
본 출원의 일 실시상태에 있어서, 실리콘계 활물질은 예컨대 결정 또는 비정질 형태로 존재할 수 있으며, 바람직하게는 다공성이 아니다. 규소 입자는 바람직하게는 구형 또는 파편형 입자이다. 대안으로서 그러나 덜 바람직하게는, 규소 입자는 또한 섬유 구조를 가지거나 또는 규소 포함 필름 또는 코팅의 형태로 존재할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 비구형 형태를 가질 수 있고 그 구형도는 예를 들어 0.9 이하, 예를 들어 0.7 내지 0.9, 예를 들어 0.8 내지 0.9, 예를 들어 0.85 내지 0.9이다.
본 출원에 있어서, 상기 구형도(circularity)는 하기 식 1-A로 결정되며, A는 면적이고, P는 경계선이다.
[식 1-A]
4πA/P2
본 출원의 일 실시상태에 있어서, 상기 음극 활물질; 음극 도전재; 및 음극 바인더를 포함하는 음극 조성물을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 음극 활물질은 상기 음극 조성물 100 중량부 기준 40 중량부 이상인 것인 음극 조성물을 제공한다.
또 다른 일 실시상태에 있어서, 상기 음극 활물질은 상기 음극 조성물 100 중량부 기준 40 중량부 이상, 바람직하게는 60 중량부 이상, 더욱 바람직하게는 65 중량부 이상, 더더욱 바람직하게는 70 중량부 이상을 포함할 수 있으며, 95 중량부 이하, 바람직하게는 90 중량부 이하, 더욱 바람직하게는 85 중량부 이하일 수 있다.
본 출원에 따른 음극 조성물은 용량이 현저히 높은 음극 활물질을 상기 범위로 사용하여도 충방전 과정에서 부피 팽창율을 잡아줄 수 있는 특정 결정립 크기를 만족하는 음극 활물질을 사용하여, 상기 범위를 포함하여도 음극의 성능을 저하시키지 않으며 충전 및 방전에서의 출력 특성이 우수한 특징을 갖게 된다.
종래에는 음극 활물질로서 흑연계 화합물만을 사용하는 것이 일반적이었으나, 최근에는 고용량 전지에 대한 수요가 높아짐에 따라, 용량을 높이기 위하여 실리콘계 활물질을 혼합하여 사용하려는 시도가 늘어나고 있다. 다만, 실리콘계 활물질의 경우, 상기와 같이 실리콘계 활물질 자체의 특성을 조절한다고 하더라도, 충/방전 과정에서 부피가 급격하게 팽창하여, 음극 활물질 층 내에 형성된 도전 경로를 훼손시키는 문제가 일부 발생될 수 있다.
따라서, 본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 점형 도전재, 면형 도전재 및 선형 도전재로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 음극에 도전성을 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가지는 점형 또는 구형 형태의 도전재를 의미한다. 구체적으로 상기 점형 도전재는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 플루오로카본, 알루미늄 분말, 니켈 분말, 산화아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 바람직하게는 높은 도전성을 구현하며, 분산성이 우수하다는 측면에서 카본 블랙을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 BET 비표면적이 40m2/g 이상 70m2/g 이하일 수 있으며, 바람직하게는 45m2/g 이상 65m2/g 이하, 더욱 바람직하게는 50m2/g 이상 60m2/g 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 작용기 함량(Volatile matter)이 0.01% 이상 1% 이하, 바람직하게는 0.01% 이상 0.3% 이하, 더욱 바람직하게는 0.01% 이상 0.1% 이하를 만족할 수 있다.
특히 점형 도전재의 작용기 함량이 상기 범위를 만족하는 경우, 상기 점형 도전재의 표면에 존재하는 관능기가 존재하여, 물을 용매로 하는 경우에 있어서 상기 용매 내에 점형 도전재가 원활하게 분산될 수 있다. 특히, 본 발명에서는 특정 실리콘계 활물질을 사용함에 따라 상기 점형 도전재의 작용기 함량을 낮출 수 있는데, 이에 따라 분산성 개선에 탁월한 효과를 갖는다.
본 출원의 일 실시상태에 있어서, 실리콘계 활물질과 함께, 상기 범위의 작용기 함량을 가지는 점형 도전재를 포함하는 것을 특징으로 하는 것으로, 상기 작용기 함량의 조절은 점형 도전재를 열처리의 정도에 따라 조절할 수 있다.
본 출원의 일 실시상태에 있어어서, 상기 점형 도전재의 입경은 10nm 내지 100nm일 수 있으며, 바람직하게는 20nm 내지 90nm, 더욱 바람직하게는 20nm 내지 60nm일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 도전재는 면형 도전재를 포함할 수 있다.
상기 면형 도전재는 음극 내에서 실리콘 입자들 간의 면 접촉을 증가시켜 도전성을 개선하고, 동시에 부피 팽창에 따른 도전성 경로의 단절을 억제하는 역할할 수 있다. 상기 면형 도전재는 판상형 도전재 또는 벌크(bulk)형 도전재로 표현될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 판상형 흑연, 그래핀, 그래핀 옥사이드, 및 흑연 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 바람직하게는 판상형 흑연일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재의 평균 입경(D50)은 2㎛ 내지 7㎛일 수 있으며, 구체적으로 3㎛ 내지 6㎛일 수 있고, 보다 구체적으로 3.5㎛ 내지 5㎛일 수 있다. 상기 범위를 만족하는 경우, 충분한 입자 크기에 기하여, 음극 슬러리의 지나친 점도 상승을 야기하지 않으면서도 분산이 용이하다. 따라서, 동일한 장비와 시간을 사용하여 분산시킬 때 분산 효과가 뛰어나다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 높은 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재로 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 제한없이 사용할 수 있으나, 특히 본 출원에 따른 면형 도전재는 분산 영향을 전극 성능에서 어느 정도 영향을 받을 수 있어, 분산에 문제가 발생하지 않는 저비표면적 면형 도전재를 사용하는 것이 특히 바람직할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 1m2/g 이상일 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 1m2/g 이상 500m2/g 이하일 수 있으며, 바람직하게는 5m2/g 이상 300m2/g 이하, 더욱 바람직하게는 5m2/g 이상 250m2/g 이하일 수 있다.
본 출원에 따른 면형 도전재는 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 사용할 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 고비표면적 면형 도전재이며, BET 비표면적이 50m2/g 이상 500m2/g 이하, 바람직하게는 80m2/g 이상 300m2/g 이하, 더욱 바람직하게는 100m2/g 이상 300m2/g 이하의 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 저비표면적 면형 도전재이며, BET 비표면적이 1m2/g 이상 40m2/g 이하, 바람직하게는 5m2/g 이상 30m2/g 이하, 더욱 바람직하게는 5m2/g 이상 25m2/g 이하의 범위를 만족할 수 있다.
그 외 도전재로는 탄소나노튜브 등의 선형 도전재가 있을 수 있다. 탄소나노튜브는 번들형 탄소나노튜브일 수 있다. 상기 번들형 탄소나노튜브는 복수의 탄소나노튜브 단위체들을 포함할 수 있다. 구체적으로, 여기서 '번들형(bundle type)'이란, 달리 언급되지 않는 한, 복수 개의 탄소나노튜브 단위체가 탄소나노튜브 단위체 길이 방향의 축이 실질적으로 동일한 배향으로 나란하게 배열되거나 또는 뒤엉켜있는, 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다. 상기 탄소나노튜브 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 상기 번들형 탄소나노튜브는 인탱글형(entangled type) 탄소나노튜브에 비해 음극 제조 시 균일하게 분산될 수 있으며, 음극 내 도전성 네트워크를 원활하게 형성하여, 음극의 도전성이 개선될 수 있다.
본 출원에 있어서, 상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 20 중량부 이하인 것인 음극 조성물을 제공한다.
또 다른 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 20 중량부 이하, 17 중량부 이하, 15 중량부 이하일 수 있으며, 3 중량부 이상, 5 중량부 이상일 수 있다.
본 출원에 따른 음극 도전재는 양극에 적용되는 양극 도전재와는 전혀 별개의 구성을 갖는다. 즉 본 출원에 따른 음극 도전재의 경우 충전 및 방전에 의해서 전극의 부피 팽창이 매우 큰 실리콘계 활물질들 사이의 접점을 잡아주는 역할을 하는 것으로, 양극 도전재는 압연될 때 완충 역할의 버퍼 역할을 하면서 일부 도전성을 부여하는 역할로, 본원 발명의 음극 도전재와는 그 구성 및 역할이 전혀 상이하다.
또한, 본 출원에 따른 음극 도전재는 실리콘계 활물질에 적용되는 것으로, 흑연계 활물질에 적용되는 도전재와는 전혀 상이한 구성을 갖는다. 즉 흑연계 활물질을 갖는 전극에 사용되는 도전재는 단순히 활물질 대비 작은 입자를 갖기 때문에 출력 특성 향상과 일부의 도전성을 부여하는 특성을 갖는 것으로, 본원 발명과 같이 실리콘계 활물질과 함께 적용되는 음극 도전재와는 구성 및 역할이 전혀 상이하다.
본 출원의 일 실시상태에 있어서, 전술한 음극 도전재로 사용되는 면형 도전재는 일반적으로 음극 활물질로 사용되는 탄소계 활물질과 상이한 구조 및 역할을 갖는다. 구체적으로, 음극 활물질로 사용되는 탄소계 활물질은 인조 흑연 또는 천연 흑연일 수 있으며, 리튬 이온의 저장 및 방출을 용이하게 하기 위하여 구형 또는 점형의 형태로 가공하여 사용하는 물질을 의미한다.
반면, 음극 도전재로 사용되는 면형 도전재는 면 또는 판상의 형태를 갖는 물질로, 판상형 흑연으로 표현될 수 있다. 즉, 음극 활물질층 내에서 도전성 경로를 유지하기 위하여 포함되는 물질로 리튬의 저장 및 방출의 역할이 아닌 음극 활물질층 내부에서 면형태로 도전성 경로를 확보하기 위한 물질을 의미한다.
즉, 본 출원에 있어서, 판상형 흑연이 도전재로 사용되었다는 것은 면형 또는 판상형으로 가공되어 리튬을 저장 또는 방출의 역할이 아닌 도전성 경로를 확보하는 물질로 사용되었다는 것을 의미한다. 이 때, 함께 포함되는 음극 활물질은 리튬 저장 및 방출에 대한 용량 특성이 높으며, 양극으로부터 전달되는 모든 리튬 이온을 저장 및 방출할 수 있는 역할을 하게 된다.
반면, 본 출원에 있어서, 탄소계 활물질이 활물질로 사용되었다는 것은 점형 또는 구형으로 가공되어 리튬을 저장 또는 방출의 역할을 하는 물질로 사용되었다는 것을 의미한다.
즉, 본 출원의 일 실시상태에 있어서, 탄소계 활물질인 인조 흑연 또는 천연 흑연은 점형 형태로, BET 비표면적이 0.1m2/g 이상 4.5 m2/g 이하의 범위를 만족할 수 있다. 또한 면형 도전재인 판상형 흑연은 면 형태로 BET 비표면적이 5m2/g 이상일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
본 출원의 일 실시상태에 따른 음극 바인더는 실리콘계 활물질의 부피 팽창 및 완화에 있어, 음극 구조의 뒤틀림, 구조 변형을 방지하기 위해 활물질 및 도전재를 잡아주는 역할을 하는 것으로, 상기 역할을 만족하면 일반적인 바인더 모두를 적용할 수 있으며, 구체적으로 수계 바인더를 사용할 수 있고 더욱 구체적으로는 PAM계 바인더를 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 음극 조성물 100 중량부 기준 30 중량부 이하, 바람직하게는 25 중량부 이하, 더욱 바람직하게는 20 중량부 이하일 수 있으며, 5 중량부 이상, 10 중량부 이상일 수 있다.
본 출원의 일 실시상태는 실란 가스를 화학적으로 반응시켜 기판에 실리콘계 활물질을 증착하는 단계; 및 상기 기판에 증착된 실리콘계 활물질을 수득하는 단계를 포함하는 것인 음극 활물질의 제조 방법으로, 상기 실리콘계 활물질의 결정립 크기가 200 nm 이하이며, 상기 실리콘계 활물질의 평균 입경(D50)은 1μm 이상 9μm 이하인 음극 활물질의 제조 방법을 제공한다.
본 출원의 일 실시상태에 따르면, 상기 음극 활물질의 제조 방법은 순도 99% 이상인 실리콘을 산(acid)과 반응시켜 실란 가스를 형성하는 단계를 더 포함할 수 있다.이 때 순도 99% 이상인 실리콘은 MG-실리콘(Metallurgical grade Si)으로 표현할 수 있다.
일 예에 따르면, 상기 실란 가스는 모노실란, 디클로로 실란 및 트리클로로 실란 중에서 선택되는 1종이상의 가스를 포함할 수 있으며, 구체적으로 트리클로로 실란 가스일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실란 가스를 화학적으로 반응시켜 기판에 실리콘계 활물질을 증착하는 단계는 10 Pa 내지 150 Pa의 압력 조건에서 수행될 수 있다. 이와 같이 낮은 압력으로 인하여 실리콘 성장 속도가 감소되고, 이로 인하여 작은 결정립 형성을 이룰 수 있다. 상기 단계는 100℃ 이상, 구체적으로 500℃ 이상, 바람직하게는 800℃ 이상, 더욱 바람직하게는 800℃ 내지 1300℃, 800℃ 내지 1100℃의 온도 조건에서 수행될 수 있다. 이는 Si를 녹이기 위하여 1600℃ 이상으로 가열하는 기존 가스 아토마이징(gas atomizing) 방식보다 낮은 온도이다.
종래에는 실리콘 덩어리인 MG-실리콘을 물리적인 힘을 통해 분쇄하여 제작하였으며, 이와 같이 제조하는 경우 결정립의 크기가 일반적으로 200 nm 범위 초과값을 갖게 된다. 단순히 종래 방법으로 실리콘계 활물질을 제조하는 경우 결정립 크기를 제어하지 못하여 음극의 수명 안정성 확보가 어렵다는 단점이 있었다.
하지만, 본 출원에 따른 음극 활물질의 제조 방법은 상기와 같이 실란 가스화를 한 후, 화학적 반응을 통하여 기판에 증착하고, 이를 통하여 실리콘 입자를 형성할 수 있으며, 구체적으로 공정 내 온도 및 압력 조건을 변형하여 본 출원에 따른 결정립 크기를 만족하는 실리콘계 활물질을 얻을 수 있었다.
본 출원의 일 실시상태에 있어서, 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 형성된 본 출원에 따른 음극 조성물 또는 이의 경화물을 포함하는 음극 활물질층;을 포함하는 리튬 이차 전지용 음극을 제공한다.
도 4는 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(10)의 일면에 음극 활물질층(20)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 도 4는 음극 활물질층이 일면에 형성된 것을 나타내나, 음극 집전체층의 양면에 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 리튬 이차 전지용 음극은 음극 집전체층의 일면 또는 양면에 상기 음극 조성물을 포함하는 음극 슬러리를 도포 및 건조하여 형성될 수 있다.
이 때 상기 음극 슬러리는 전술한 음극 조성물; 및 슬러리 용매;를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 슬러리의 고형분 함량은 5% 이상 40% 이하를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 슬러리의 고형분 함량은 5% 이상 40% 이하, 바람직하게는 7% 이상 35%이하, 더욱 바람직하게는 10% 이상 30% 이하의 범위를 만족할 수 있다.
상기 음극 슬러리의 고형분 함량이라는 것은 상기 음극 슬러리 내에 포함되는 음극 조성물의 함량을 의미할 수 있으며, 음극 슬러리 100 중량부를 기준으로 상기 음극 조성물의 함량을 의미할 수 있다.
상기 음극 슬러리의 고형분 함량이 상기 범위를 만족하는 경우, 음극 활물질층 형성시 점도가 적당하여 음극 조성물의 입자 뭉침 현상을 최소화하여 음극 활물질층을 효율적으로 형성할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 슬러리 용매는 음극 조성물을 용해할 수 있으면, 제한없이 사용할 수 있으며, 구체적으로 물 또는 NMP를 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층은 일반적으로 1㎛ 내지 100㎛의 두께를 가진다. 이러한 음극 집전체층은, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며, 상기 음극 활물질층의 두께는 5μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극을 제공한다.
다만, 두께는 사용되는 음극의 종류 및 용도에 따라 다양하게 변형할 수 있으며 이에 한정되지 않는다.
본 출원의 일 실시상태에 있어서, 상기 음극 활물질층의 공극률은 10% 이상 60% 이하의 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 활물질층의 공극률은 10% 이상 60% 이하, 바람직하게는 20% 이상 50% 이하, 더욱 바람직하게는 30% 이상 45% 이하의 범위를 만족할 수 있다.
상기 공극률은 음극 활물질층에 포함되는 실리콘계 활물질; 도전재; 및 바인더의 조성 및 함량에 따라 변동되는 것으로, 특히 본 출원에 따른 실리콘계 활물질; 및 도전재를 특정 조성 및 함량부 포함함에 따라 상기 범위를 만족하는 것으로, 이에 따라 전극에 있어 전기 전도도 및 저항이 적절한 범위를 갖는 것을 특징으로 한다.
본 출원의 일 실시상태에 있어서, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
도 5는 본 출원의 일 실시상태에 따른 리튬 이차 전지의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(10)의 일면에 음극 활물질층(20)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 양극 집전체층(50)의 일면에 양극 활물질층(40)을 포함하는 리튬 이차 전지용 양극(200)을 확인할 수 있으며, 상기 리튬 이차 전지용 음극(100)과 리튬 이차 전지용 양극(200)이 분리막(30)을 사이에 두고 적층되는 구조로 형성됨을 나타낸다.
본 명세서의 일 실시상태에 따른 이차 전지는 특히 상술한 리튬 이차 전지용 음극을 포함할 수 있다. 구체적으로, 상기 이차 전지는 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명은 생략한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 일 실시상태는 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
<제조예>
<실시예 1 내지 8 및 비교예 2 내지 7의 음극 활물질 제조>
도 2는 본 출원의 실시예 1에 따른 실리콘 활물질의 제조 공정을 나타낸 도이다. 구체적으로 MG-Si인 실리콘 덩어리를 실란 가스화 시킨 후, 화학적 반응 후 기판에 증착을 통해 실리콘계 활물질을 형성하였다. 이 때 공정 조건 제어를 통해(온도조건 800℃ 내지 1100℃, 압력조건 10pa 내지 150pa 범위 내에서 하기 표 1의 결정립 크기를 조절하기 위한 조건 선택, 온도 및 압력 조건을 조절하여 결정립 크기 조절) 나머지 실시예 2 내지 8 및 비교예 2 내지 7의 실리콘계 활물질의 결정립 크기를 제어할 수 있었으며, 그 결과는 표 1에 나타내었다.
<비교예 1 및 8의 음극 활물질 제조>
도 3은 본 출원의 비교예 1 및 8에 따른 실리콘 활물질의 제조 공정을 나타낸 도이다. 구체적으로 MG-Si인 실리콘 덩어리를 물리적인 힘을 통해 분쇄하였고, 이 때의 실리콘계 활물질의 결정립 크기는 표 1과 같았다.
결정립 크기 (nm) D50 (μm)
실시예 1 42 6.21
실시예 2 53 6.21
실시예 3 62 6.21
실시예 4 91 6.21
실시예 5 150 4.52
실시예 6 200 5.06
실시예 7 16 5.17
실시예 8 1 3.02
비교예 1 212 5.76
비교예 2 42 10
비교예 3 150 10
비교예 4 200 10
비교예 5 42 0.8
비교예 6 150 0.8
비교예 7 200 0.8
비교예 8 212 11
상기 표 1에 있어서, 실리콘계 활물질의 평균 입경(D50)은 실리콘계 활물질의 합성 시간과 분급 과정에서의 공정 시간을 달리하여 조절할 수 있으며, 특히 분급 과정에서 입자가 큰 입자나 작은 입자 영역을 제거하여 상기 표 1의 D50을 만족하도록 제작하였다.
<음극의 제조>
상기 표 1의 실리콘계 활물질을 포함하는 음극 활물질, 도전재 및 바인더로서 폴리아크릴아마이드를 80:10:10의 중량비로 음극 슬러리 형성용 용매로서 증류수에 첨가하여 음극 슬러리를 제조하였다 (고형분 농도 28중량%).
구체적으로, 상기 도전재는 카본블랙 (비표면적: 45m2/g, 직경: 30~50nm)이었다.
구체적 믹싱 방법으로는 상기 도전재, 바인더와 물을 homo믹서를 이용하여 2500rpm, 30min 분산시켜 준 후 분산시킨 뒤, 상기 실리콘계 활물질을 첨가한 후 2500rpm, 30min을 분산시켜 음극 슬러리를 제작하였다.
음극 집전체층으로서 구리 집전체(두께: 15㎛)의 단면에 상기 음극 슬러리를 227mg/50cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 음극 활물질층(두께: 23㎛)을 형성하여, 이를 음극으로 하였다(음극의 두께: 38㎛, 음극의 공극률 40.0%).
<이차전지의 제조>
양극 활물질로서 LiNi0.6Co0.2Mn0.2O2(평균 입경(D50): 15㎛), 도전재로서 카본블랙 (제품명: Super C65, 제조사: Timcal), 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 97:1.5:1.5의 중량비로 양극 슬러리 형성용 용매로서 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리를 제조하였다(고형분 농도 78중량%).
양극 집전체로서 알루미늄 집전체(두께: 12㎛)의 양면에 상기 양극 슬러리를 537mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 양극 활물질층(두께: 65㎛)을 형성하여, 양극을 제조하였다 (양극의 두께: 77㎛, 공극률 26%).
상기 양극과 상기 실시예 및 비교예의 음극 사이에 폴리에틸렌 분리막을 개재하고 전해질을 주입하여 리튬 이차 전지를 제조하였다.
상기 전해질은 플루오로에틸렌 카보네이트(FEC), 디에틸 카보네이트(DMC)를 10:90의 부피비로 혼합한 유기 용매에 비닐렌 카보네이트를 전해질 전체 중량을 기준으로 3중량%로 첨가하고, 리튬염으로서 LiPF6을 1M 농도로 첨가한 것이었다.
<실험예>
실험예 1: 사이클 수명 데이터
상기 실시예 및 비교예에서 제조한 음극을 포함하는 이차전지에 대해 전기화학 충방전기를 이용하여 수명 평가를 진행하였고 용량 유지율을 평가하였다. 이차전지를 4.2-3.0V 1C/0.5C로 In-situ 사이클(cycle) 테스트를 진행하였고, 테스트시 50사이클(cycle) 마다 0.33C/0.33C 충/방전(4.2-3.0V)하여 용량 유지율을 측정하였다.
수명 유지율(%) = {(N번째 사이클에서의 방전 용량)/(첫 번째 사이클에서의 방전 용량)} Х 100
결정립(nm) D50 (μm) 200사이클 이후 수명유지율 (%)
실시예 1 42 6.21 91
실시예 2 53 6.21 90
실시예 3 62 6.21 89
실시예 4 91 6.21 86
실시예 5 150 4.52 85
실시예 6 200 5.06 84
실시예 7 16 5.17 90
실시예 8 1 3.02 85
비교예 1 212 5.76 82
비교예 2 42 10 80
비교예 3 150 10 76
비교예 4 200 10 70
비교예 5 42 0.8 63
비교예 6 150 0.8 61
비교예 7 200 0.8 60
비교예 8 212 11 80
표 2에서 확인할 수 있듯 실시예 1 내지 8 및 비교예 1 내지 8의 사이클에 따른 용량 유지율을 확인하였을 때, 비교예 1 내지 8의 용량 유지율이 실시예들 보다 떨어지거나 같은 것을 확인할 수 있었다. 이는 결정립의 크기 및 실리콘계 활물질의 평균 입경(D50)가 본원 발명에 따른 범위를 만족하는 실리콘계 활물질을 사용하는 경우 충방전시의 리튬의 삽입과 탈리 반응 시 균일하게 반응할 수 있게되며, 실리콘계 활물질이 받는 응력을 감소시켜 입자의 깨짐을 완화할 수 있고 이에 따라 전극의 수명 유지율을 향상시킨 결과에 해당한다.
즉, 실리콘계 활물질의 평균 입경(D50)을 상기의 범위로 조절하여 전극의 리튬 이온 이동 저항이 크지 않으며, 입자 내 반응이 균일하게 일어날 수 있는 특성을 확보함과 동시에, 해당 실리콘계 입자의 결정립 크기를 전술한 바와 같이 조절하여 결정립계(grain boundary)가 넓게 분포하도록 하여, 리튬 이온의 삽입 시, 더욱 균일하게 분포하게 되어 실리콘 입자 내 리튬 이온 삽입 시 발생하는 응력을 감소시킬 수 있고, 이에 따라 입자의 깨짐을 완화하여. 그 결과 음극의 수명 안정성을 더욱 개선할 수 있는 특징을 갖게 됨을 확인할 수 있었다.
실험예 1의 결과 상에 있어, 특정 결정립에서 일정 범위의 입경 크기를 가지는 실리콘계 활물질이 수명 성능에서 우위임을 확인할 수 있었다. 실시예와 비교예 1 및 8을 비교하는 경우, 결정립의 크기가 커짐에 따라 결정립계(grain boundary) 내 리튬 삽입 시 발생하는 응력이 증가하게 되어 활물질 깨짐이 발생으로 인한 수명 성능 감소가 발생한 것을 확인할 수 있다
비교예 2 내지 7을 실시예와 비교하였을 때, 특정 범위의 입경에서 수명 성능이 차이남을 확인할 수 있다. 비교예 2 내지 4와 같이 입경의 크기가 큰 경우 활물질 내로 리튬이 충분히 침투하지 못해 활물질 표면부에 상대적으로 많은 응력이 발생하여 활물질 깨짐이 발생함에 따른 수명 성능 감소가 발생한 것이다. 또한 비교예 5 내지 7과 같이 입경이 작을 시, 전극 제조에 있어 리튬 이동 경로 증가에 따른 리튬 이온 이동 저항이 높아짐에 따라 수명 성능의 감소가 발생하게되어 수명 성능 감소가 발생한 것을 확인할 수 있다.
즉, 결정립 크기와 D50의 영향으로 인해 본 출원과 같이 최적 범위 내 결정립 및 입도 범위(D50)를 가지는 실리콘계 활물질의 수명 성능이 우위임을 확인할 수 있었다.
실험예 2: 사이클 저항 증가율
상기 실험예 1에서 테스트시 50사이클(cycle) 마다 0.33C/0.33C 충/방전(4.2-3.0V)하여 용량 유지율을 측정한 후, SOC50에서 2.5C pulse로 방전하여 전항을 측정하여 저항 증가율을 비교 분석하였다.
상기 저항 증가율 측정 평가에 대하여, 각각 200cycle에서의 데이터를 계산하였으며 그 결과는 하기 표 3과 같았다.
결정립(nm) D50 (μm) 200사이클 이후 저항 증가율(%)
(3.0~4.2 V 범위 1C/0.5C)
실시예 1 42 6.21 5
실시예 2 53 6.21 7
실시예 3 62 6.21 8
실시예 4 91 6.21 10
실시예 5 150 4.52 12
실시예 6 200 5.06 16
실시예 7 16 5.17 9
실시예 8 1 3.02 14
비교예 1 212 5.76 20
비교예 2 42 10 37
비교예 3 150 10 46
비교예 4 200 10 52
비교예 5 42 0.8 75
비교예 6 150 0.8 80
비교예 7 200 0.8 83
비교예 8 212 11 23
표 3에서 확인할 수 있듯, 200 사이클 후 비교예 1 내지 8의 저항 증가율이 실시예들 보다 높음을 확인할 수 있었다.
상기 실험예 2의 결과에서 알 수 있듯, 본원 발명 실시예 1 내지 8의 경우 특정 결정립에서 일정 범위의 입경 크기를 가지는 실리콘계 활물질이 사이클 진행 이후, 가장 낮은 저항 증가를 보임을 확인할 수 있었다.
실시예와 비교예 1 및 8을 비교하는 경우, 결정립의 크기가 커짐에 따라 결정립계(grain boundary) 내 리튬 삽입 시 발생하는 응력이 증가하게 되어 활물질 깨짐이 발생함으로 인한 실리콘계 활물질이 전해질에 노출됨에 따른 부반응 발생으로 부반응 층이 쌓임에 따라 저항이 증가되는 것을 확인할 수 있었다.
비교예 2 내지 7을 실시예와 비교하였을 때, 특정 범위의 입경에서 수명 성능이 차이남을 확인할 수 있다. 비교예 2 내지 4와 같이 입경의 크기가 큰 경우 활물질 내로 리튬이 충분히 침투하지 못해 활물질 표면부에 상대적으로 많은 응력이 발생하여 부반응층 형성으로 인한 저항 증가가 발생함을 확인할 수 있었다. 또한 비교예 5 내지 7과 같이 입경이 작을 시, 전극 제조에 있어 리튬 이동 경로 증가에 따른 리튬 이온 이동 저항이 높아진 것을 확인할 수 있었다.
결국, 결정립 크기와 D50의 영향으로 인해 본 출원과 같이 최적 범위 내 결정립 및 입도 범위(D50)를 가지는 실리콘계 활물질의 저항 증가율이 우위임을 확인할 수 있었다.

Claims (13)

  1. 결정립 크기가 200nm 이하인 실리콘계 활물질을 포함하고,
    상기 실리콘계 활물질의 평균 입경(D50)은 1μm 이상 9μm 이하이며,
    상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 활물질.
  2. 청구항 1에 있어서, 상기 SiOx (x=0)의 결정립 크기가 200 nm 이하인 것인 음극 활물질.
  3. 청구항 1에 있어서,
    상기 실리콘계 활물질은 1 nm 이상 200 nm 이하의 결정립 분포를 갖는 결정조직을 포함하는 것인 음극 활물질.
  4. 청구항 1에 있어서,
    상기 실리콘계 활물질의 결정립 크기가 1nm 이상 200nm 이하이고,
    상기 실리콘계 활물질의 평균 입경(D50)은 3μm 이상 8μm 이하인 것인 음극 활물질.
  5. 실란 가스를 화학적으로 반응시켜 기판에 실리콘계 활물질을 증착하는 단계; 및
    상기 기판에 증착된 실리콘계 활물질을 수득하는 단계;
    를 포함하는 것인 음극 활물질의 제조 방법으로,
    상기 실리콘계 활물질의 결정립 크기가 200 nm 이하이며,
    상기 실리콘계 활물질의 평균 입경(D50)은 1μm 이상 9μm 이하인 청구항 1 내지 4 중 어느 한 항에 따른 음극 활물질의 제조 방법.
  6. 청구항 5에 있어서,
    상기 실란 가스는 모노실란, 디클로로 실란 및 트리클로로 실란 중에서 선택되는 1종 이상의 가스를 포함하는 것인 음극 활물질의 제조 방법.
  7. 청구항 5에 있어서,
    상기 실란 가스를 화학적으로 반응시켜 기판에 실리콘계 활물질을 증착하는 단계는 10 Pa 내지 150 Pa의 압력 조건에서 수행되는 것인 음극 활물질의 제조 방법.
  8. 청구항 1 내지 4 중 어느 한 항에 따른 음극 활물질; 음극 도전재; 및 음극 바인더를 포함하는 음극 조성물.
  9. 청구항 8에 있어서,
    상기 음극 활물질은 상기 음극 조성물 100 중량부 기준 40 중량부 이상인 것인 음극 조성물.
  10. 청구항 8에 있어서,
    상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 20 중량부 이하인 것인 음극 조성물.
  11. 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 구비된 음극 활물질층을 포함하며,
    상기 음극 활물질층은 청구항 8에 따른 음극 조성물 또는 이의 경화물을 포함하는 것인 리튬 이차 전지용 음극.
  12. 청구항 11에 있어서,
    상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며,
    상기 음극 활물질층의 두께는 5μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극.
  13. 양극;
    청구항 11에 따른 리튬 이차 전지용 음극;
    상기 양극과 상기 음극 사이에 구비된 분리막; 및
    전해질;을 포함하는 리튬 이차 전지.
PCT/KR2023/010017 2022-07-13 2023-07-13 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 WO2024014897A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0086337 2022-07-13
KR20220086337 2022-07-13
KR1020230090551A KR20240009896A (ko) 2022-07-13 2023-07-12 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물,이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR10-2023-0090551 2023-07-12

Publications (1)

Publication Number Publication Date
WO2024014897A1 true WO2024014897A1 (ko) 2024-01-18

Family

ID=89537066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010017 WO2024014897A1 (ko) 2022-07-13 2023-07-13 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2024014897A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160065028A (ko) * 2014-11-28 2016-06-08 삼성전자주식회사 리튬이차전지용 음극 활물질 및 이를 포함하는 리튬이차전지
KR20170036637A (ko) * 2015-09-24 2017-04-03 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법
KR20170069163A (ko) * 2015-12-10 2017-06-20 주식회사 엘지화학 리튬 이차전지용 음극활물질의 제조 방법 및 이를 적용한 리튬 이차전지
KR20200080043A (ko) * 2018-12-26 2020-07-06 울산과학기술원 복합 음극활물질, 이의 제조 방법, 및 이를 포함한 음극을 구비한 리튬 이차 전지
KR20200132976A (ko) * 2019-01-24 2020-11-25 둥관 카이진 뉴 에너지 테크놀로지 코퍼레이션 리미티드 규소 탄소 복합 재료 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160065028A (ko) * 2014-11-28 2016-06-08 삼성전자주식회사 리튬이차전지용 음극 활물질 및 이를 포함하는 리튬이차전지
KR20170036637A (ko) * 2015-09-24 2017-04-03 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법
KR20170069163A (ko) * 2015-12-10 2017-06-20 주식회사 엘지화학 리튬 이차전지용 음극활물질의 제조 방법 및 이를 적용한 리튬 이차전지
KR20200080043A (ko) * 2018-12-26 2020-07-06 울산과학기술원 복합 음극활물질, 이의 제조 방법, 및 이를 포함한 음극을 구비한 리튬 이차 전지
KR20200132976A (ko) * 2019-01-24 2020-11-25 둥관 카이진 뉴 에너지 테크놀로지 코퍼레이션 리미티드 규소 탄소 복합 재료 및 그 제조 방법

Similar Documents

Publication Publication Date Title
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2023059015A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023113464A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2024014897A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024029924A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024049239A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024049235A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023121257A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2024063554A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지
WO2024049233A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023085691A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023182852A1 (ko) 음극 조성물, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024054019A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023055215A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2024085708A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023249446A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2023059151A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2024054016A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2023059016A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2023249444A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023249445A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2023182701A1 (ko) 음극 슬러리, 음극 슬러리의 제조 방법, 음극 슬러리를 포함하는 리튬 이차 전지용 음극 및 리튬 이차 전지용 음극의 제조 방법
WO2023068601A1 (ko) 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 리튬 이차 전지용 음극의 제조 방법
WO2023214844A1 (ko) 전극 조립체의 제조 방법, 전극 조립체 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839988

Country of ref document: EP

Kind code of ref document: A1