WO2024014576A1 - Antimicrobial film-coated substrate and manufacturing method therefor - Google Patents

Antimicrobial film-coated substrate and manufacturing method therefor Download PDF

Info

Publication number
WO2024014576A1
WO2024014576A1 PCT/KR2022/010294 KR2022010294W WO2024014576A1 WO 2024014576 A1 WO2024014576 A1 WO 2024014576A1 KR 2022010294 W KR2022010294 W KR 2022010294W WO 2024014576 A1 WO2024014576 A1 WO 2024014576A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
metal salt
substrate
concentration
metal
Prior art date
Application number
PCT/KR2022/010294
Other languages
French (fr)
Korean (ko)
Inventor
김병성
권혁
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2022/010294 priority Critical patent/WO2024014576A1/en
Publication of WO2024014576A1 publication Critical patent/WO2024014576A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides

Definitions

  • the present invention relates to antibacterial film coating. More specifically, the present invention relates to an antimicrobial coating substrate and a method of manufacturing the same.
  • plastic products require an antibacterial film coating because they can come into contact with human hands or be exposed to various environments.
  • the antibacterial mechanism requires direct contact with the strain, the antibacterial performance is actually driven only by a small number of antibacterial particles exposed to the surface.
  • the technical problem to be solved by the present invention is to provide an antibacterial film coating substrate that can directly form an antibacterial particle layer on the surface of a target substrate without using polymers, and a method for manufacturing the same.
  • the aim is to provide an antibacterial film coating substrate that can form an antibacterial film using a small amount of antibacterial particles and a method for manufacturing the same.
  • an antibacterial film coating substrate capable of forming an antibacterial film with high light transmittance and a method of manufacturing the same.
  • an antibacterial film coating substrate and a method of manufacturing the same that can maintain or increase the design freedom of parts to which the antibacterial film is applied.
  • the present invention provides a method for producing an antibacterial film coating substrate in which antibacterial particles are directly formed, comprising the steps of mixing a metal salt with a hydrophobic solvent to prepare a coating solution; Coating the coating solution on the surface of a plastic or polymer substrate; And it may include heat treating the coated plastic or polymer substrate to form an antibacterial particle layer on the surface of the plastic or polymer substrate.
  • the hydrophobic solvent may include at least one of ethanol, isopropanol, and methanol.
  • the plastic may be a thermoplastic plastic.
  • the metal salt may include at least one of a metal acetate-based material, a metal chloride-based material, and a metal nitrate-based material.
  • the metal may include copper (Cu).
  • the heat treatment process may cause an oxidation reaction and an aggregation reaction to fix the antibacterial particles to the surface of the plastic or polymer substrate.
  • the concentration of the metal salt may be 0.001 M (molar concentration) to 0.1 M.
  • the size of the antibacterial particles may increase.
  • the permeability of the antibacterial particle layer may increase.
  • the metal salt is copper(II) acetate (Cu(CH 3 COO) 2 ), copper(II) nitrate (Cu(NO 3 ) 2 ), and copper(I) chloride (CuCl 2 ). It can include either one.
  • the present invention includes at least one of a metal acetate-based material, a metal chloride-based material, and a metal nitrate-based material.
  • Preparing a coating solution by mixing a metal salt with an alcohol-based solvent; Coating the coating solution on the surface of a plastic or polymer substrate; And it may include heat treating the coated plastic or polymer substrate to form an antibacterial particle layer on the surface of the plastic or polymer substrate.
  • the present invention in the antibacterial film coating substrate, contains at least a metal acetate-based, metal chloride-based, and metal nitrate-based material. It is characterized in that a metal salt containing any one is formed directly on the surface through an oxidation reaction and an aggregation reaction.
  • high concentrations of antibacterial agents and polymers are not required to attach antibacterial particles to a desired substrate, and additional processes such as a stirring process are not required, so material costs and number of processes can be greatly reduced, In addition, the process time can be minimized.
  • a layer of antibacterial particles is formed on the surface of a thermoplastic or polymer substrate, enabling a rapid antibacterial reaction upon contact with bacteria, and has the advantage of maintaining surface antibacterial performance even with a low concentration of antibacterial particles. there is.
  • the antibacterial performance of the applied part can be improved by forming a layer of copper (I) oxide particles with excellent antibacterial performance directly on the surface of a plastic or polymer substrate without using a polymer.
  • raw material costs can be reduced because a small amount of antibacterial particles are used to form an antibacterial film.
  • transparency can be controlled by adjusting the concentration of the coating solution to form an antibacterial film, thereby maintaining or increasing the design freedom of applied parts.
  • FIG. 1 is a flowchart showing a method of manufacturing an antimicrobial film coated substrate according to an embodiment of the present invention.
  • Figure 2 is a graph showing the distribution of the diameter of antibacterial particles according to the concentration of metal salt in the method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
  • Figure 3 is an image showing antibacterial particles formed by a method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
  • Figures 4 and 5 are XPS graphs showing the formation of antibacterial particles by the method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
  • FIGS 6 and 7 are photographs showing the antibacterial performance of the antibacterial film coated substrate according to an embodiment of the present invention.
  • Figure 8 is a graph showing transparency depending on the concentration of the metal salt coating solution in the method of manufacturing an antimicrobial film coated substrate according to an embodiment of the present invention.
  • an element such as a layer, region or substrate is referred to as being “on” another component, it is to be understood that it may be present directly on the other element or that there may be intermediate elements in between. There will be.
  • FIG. 1 is a flowchart showing a method of manufacturing an antimicrobial film coated substrate according to an embodiment of the present invention.
  • the method for manufacturing an antimicrobial film-coated substrate includes preparing a metal salt-based coating solution (metal salt-based solution) (S10), using the coating solution prepared in this way to coat the surface of the substrate. It may include a step of coating (S20), and a step of heat treating the substrate coated with this coating solution (S30).
  • a metal salt-based coating solution metal salt-based solution
  • the coating solution can be prepared by mixing the metal salt with a hydrophobic solvent.
  • the hydrophobic solvent may include at least one of ethanol, isopropanol, and methanol.
  • embodiments of the present invention can be applied to various plastics and complex structures with hydrophobic properties by using an alcohol solution, which is a hydrophobic solvent.
  • the substrate onto which the coating liquid is coated may be a plastic or polymer substrate.
  • the plastic may be a thermoplastic such as polyethylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polystyrene, polypropylene, etc.
  • the polymer substrate may be a polymer film such as PE, PET, PMMA, etc.
  • the metal salt may include at least one of a metal acetate-based material, a metal chloride-based material, and a metal nitrate-based material.
  • the metal of the metal salt may include copper (Cu). That is, the metal salt may include any one of Copper(II) acetate (Cu(CH 3 COO) 2 ), Copper(II) nitrate (Cu(NO 3 ) 2 ), and Copper(I) chloride (CuCl 2 ). there is.
  • Such metal salts containing copper are easily oxidized during low-temperature heat treatment and can form antibacterial particles on the surface of the substrate.
  • Metal salts of such materials can be mixed with an alcohol-based solvent to produce a coating solution.
  • This coating solution can be coated on the surface of a plastic or polymer substrate using coating methods such as spray coating, dip coating, and spin coating.
  • a layer of antibacterial particles can be formed on the surface of the plastic or polymer substrate.
  • This heat treatment process can cause oxidation and aggregation reactions to fix antibacterial particles to the surface of a plastic or polymer substrate.
  • metal salts can act as antibacterial particles.
  • metal oxide which is an antibacterial material
  • the aggregated antibacterial particles are fixed to the surface of the thermoplastic plastic or polymer substrate using a surface melting phenomenon. You can.
  • the heat treatment process is possible at low temperatures.
  • antibacterial particles can be generated on the surface of thermoplastic or polymer substrates at low temperatures using various heat treatment methods such as plasma and heat resistance wire. Additionally, this heat treatment process can strengthen the bond between the antibacterial particles and the substrate surface.
  • the antibacterial mechanism requires direct contact with the strain, the antibacterial performance is actually driven only by a small number of antibacterial particles exposed to the surface.
  • antibacterial particles were randomly mixed and coated on a substrate, but the actual antibacterial performance depended only on the particles exposed to the surface, with the rest remaining embedded in the polymer.
  • high concentrations of antibacterial agents and polymers are not required to attach antibacterial particles to a desired substrate, and additional processes such as a stirring process are not required, so material costs and number of processes can be greatly reduced, In addition, the process time can be minimized.
  • a layer of antibacterial particles is formed on the surface of a thermoplastic or polymer substrate, enabling a rapid antibacterial reaction upon contact with bacteria, and has the advantage of maintaining surface antibacterial performance even with a low concentration of antibacterial particles. there is.
  • the antibacterial performance of the applied part can be improved by forming a layer of copper (I) oxide particles with excellent antibacterial performance directly on the surface of a plastic or polymer substrate without using a polymer.
  • raw material costs can be reduced because a small amount of antibacterial particles are used to form an antibacterial film.
  • transparency can be controlled by adjusting the concentration of the coating solution to form an antibacterial film, thereby maintaining or increasing the design freedom of applied parts.
  • Figure 2 is a graph showing the distribution of the diameter of antibacterial particles according to the concentration of metal salt in the method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
  • a metal salt-based coating solution (metal salt-based solution) coated on a thermoplastic or polymer substrate can be prepared by mixing a metal salt and a hydrophobic solvent (alcohol-based solution).
  • the hydrophobic solvent may include at least one of ethanol, isopropanol, and methanol.
  • the metal salt includes any one of Copper(II) acetate (Cu(CH 3 COO) 2 ), Copper(II) nitrate (Cu(NO 3 ) 2 ), and Copper(I) chloride (CuCl 2 ). can do. Accordingly, a graph is shown for the case where Cu 2 O antibacterial particles are formed on the surface of a thermoplastic or polymer substrate.
  • Figure 2 shows the size (diameter) of antibacterial particles according to the concentration of the coating solution, that is, the concentration of the metal salt, when copper is included as the metal salt.
  • the size of the antibacterial particles formed on the surface of the thermoplastic or polymer substrate may vary depending on the concentration of the metal salt.
  • the size of these antibacterial particles can be controlled by adjusting the concentration of the metal salt-based solution (coating solution).
  • the concentration of the metal salt can be adjusted from 0.001 M (molar concentration) to 0.1 M. Accordingly, for example, the size of antibacterial particles formed on the surface of a thermoplastic or polymer substrate can be controlled between approximately 0.3 ⁇ m and 5.3 ⁇ m.
  • Figure 2 shows a tendency for the size of antibacterial particles to increase as the concentration of metal salt increases.
  • a material comprising at least one of metal acetate-based, metal chloride-based, and metal nitrate-based materials
  • An antibacterial film coating substrate in which a metal salt is formed directly on the surface through oxidation reaction and aggregation reaction can be manufactured.
  • the Cu 2 O particle layer can be formed directly on the surface of a thermoplastic or polymer substrate.
  • Figure 3 is an image showing antibacterial particles formed by a method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
  • the size and density of antibacterial particles formed on the surface of the thermoplastic or polymer substrate change by adjusting the concentration of the metal salt coating solution.
  • Figure 3(A) shows an image of antibacterial particles when the concentration of the metal salt, that is, the concentration of the metal salt-based solution (coating solution) is 0.001 M (molar concentration).
  • the upper right is an enlarged image, and it can be seen that this image shows the same tendency as the graph shown in FIG. 2.
  • Figure 3(B) shows an image of antibacterial particles when the concentration of the metal salt, that is, the concentration of the metal salt-based solution (coating solution) is 0.05 M (molar concentration).
  • concentration of the metal salt-based solution that is, the concentration of the metal salt-based solution (coating solution) is 0.05 M (molar concentration).
  • Figure 3(C) shows an image of antibacterial particles when the concentration of the metal salt, that is, the concentration of the metal salt-based solution (coating solution) is 0.1 M (molar concentration).
  • concentration of the metal salt that is, the concentration of the metal salt-based solution (coating solution) is 0.1 M (molar concentration).
  • FIG. 3 also shows an image for the case where the metal salt contains copper. That is, the metal salt includes any one of Copper(II) acetate (Cu(CH 3 COO) 2 ), Copper(II) nitrate (Cu(NO 3 ) 2 ), and Copper(I) chloride (CuCl 2 ). An image is shown when 2O antibacterial particles are formed.
  • the size and density of antibacterial particles may increase.
  • the size and density of antibacterial particles can be controlled by adjusting the concentration of the metal salt-based solution (coating solution).
  • Figures 4 and 5 are XPS graphs showing the formation of antibacterial particles by the method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
  • Figure 4 shows an XPS (X-ray Photoelectron Spectroscopy) graph of antibacterial particles formed according to an example of the present invention.
  • the metal salt includes any one of Copper(II) acetate (Cu(CH 3 COO) 2 ), Copper(II) nitrate (Cu(NO 3 ) 2 ), and Copper(I) chloride (CuCl 2 ).
  • An XPS graph is shown when 2 O antibacterial particles are formed on plastic or substrate.
  • Figure 5 is a reference graph, an XPS graph showing the chemical structure of Cu.
  • FIGS 6 and 7 are photographs showing the antibacterial performance of the antibacterial film coated substrate according to an embodiment of the present invention.
  • Figures 6 and 7 each show the antibacterial performance when Cu 2 O antibacterial particles are formed on a thermoplastic or polymer substrate by comparison with the control group.
  • Figure 6 shows the antibacterial performance by Staphylococcus aureus.
  • the antibacterial film coated substrate (b) according to an embodiment of the present invention has excellent antibacterial performance against Staphylococcus aureus.
  • Figure 7 shows the antibacterial performance by E. coli.
  • the antibacterial film coated substrate (b) Compared to the control group (a), which is not coated with an antibacterial film, it can be seen that the antibacterial film coated substrate (b) according to an embodiment of the present invention has excellent antibacterial performance against E. coli.
  • Table 1 shows the results of a certified test report showing the antibacterial performance of the Cu 2 O antibacterial particle layer coated on the plastic surface according to an embodiment of the present invention.
  • the testing agency for this test is the Korea Research Institute of Analytical Testing (KATR), and the test standard is JIS Z201. Additionally, the tested sample was a plastic specimen coated with 0.001 M antibacterial particles.
  • Test Items Test result Control Sample Staphylococcus aureus Bacterial count after 24 hours 4.9 ⁇ 10 6 ⁇ 10 Staphylococcus aureus Antibacterial activity value (log) 5.7 Bacteriostatic reduction rate (%) 99.9 Concentration of inoculant solution 8.0 ⁇ 10 5 CFU/mL Escherichia coli Bacterial count after 24 hours 1.9 ⁇ 10 7 ⁇ 10 E. coli Antibacterial activity value (log) 6.3 Bacteriostatic reduction rate (%) 99.9 Concentration of inoculant solution 4.0 ⁇ 10 5 CFU/mL
  • Figure 8 is a graph showing transparency depending on the concentration of the metal salt coating solution in the method of manufacturing an antimicrobial film coated substrate according to an embodiment of the present invention.
  • the size and density of antibacterial particles formed on the surface of a thermoplastic or polymer substrate can be controlled by controlling the concentration of the metal salt coating solution.
  • the concentration of the metal salt coating solution can be adjusted.
  • the transmittance is approximately uniform depending on the wavelength when the concentration of the metal salt coating solution is 0.001 M and 0.05 M.
  • the transmittance to short-wavelength light may be partially reduced.
  • the transmittance increases slightly depending on the wavelength, but shows generally uniform transmittance.
  • the transmittance according to the concentration of the metal salt coating solution shows data measured based on light with a wavelength of 550 nm, which has the highest visibility in the visible light region.
  • the transparency is 90.82%, and when the concentration of the metal salt coating solution is 0.05 M, the transparency slightly decreases to 90.14%.
  • the concentration of the metal salt coating solution is 0.1 M, the transparency decreases to 82.91%. That is, as the concentration of metal salt decreases, the permeability of the antibacterial particle layer may increase.
  • the permeability of the antibacterial particle layer formed by the metal salt coating solution can be controlled by controlling the concentration of the metal salt coating solution.
  • an antibacterial film coating substrate that can be applied to plastic products or polymer substrates and a method for manufacturing the same can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to an antimicrobial film coating. More specifically, the present invention relates to an antimicrobial film-coated substrate and a manufacturing method therefor. The method of the present invention for manufacturing an antimicrobial film-coated substrate, in which antimicrobial particles are directly formed, comprises the steps of: preparing a coating solution by mixing a metal salt with a hydrophobic solvent; coating the surface of a plastic or polymer substrate with the coating solution; and heat-treating the coated plastic or polymer substrate to form an antimicrobial particle layer on the surface of the plastic or polymer substrate.

Description

항균막 코팅 기재 및 그 제조 방법Antibacterial film coating substrate and method of manufacturing the same
본 발명은 항균막 코팅에 관한 것이다. 보다 구체적으로, 본 발명은 항균막 코팅 기재 및 그 제조 방법에 관한 것이다.The present invention relates to antibacterial film coating. More specifically, the present invention relates to an antimicrobial coating substrate and a method of manufacturing the same.
일반적으로 플라스틱 제품은 사람의 손에 접촉하거나 다양한 환경에 노출될 수 있으므로 항균막 코팅이 요구된다.In general, plastic products require an antibacterial film coating because they can come into contact with human hands or be exposed to various environments.
통상적인 항균 코팅은 항균 입자를 별도로 합성 후, 원하는 기재와의 부착을 위해 폴리머와 혼합하여 코팅하는 방식으로 진행되어 왔다. 따라서, 항균 코팅을 위하여 원재료 합성, 교반, 코팅 및 열처리와 같은 과정이 필요하고, 각 공정 단계에서의 공정 시간 증가와 고농도의 항균제가 필요한 등의 한계점이 있다.Conventional antibacterial coating has been carried out by separately synthesizing antibacterial particles and coating them by mixing them with a polymer for adhesion to the desired substrate. Therefore, processes such as raw material synthesis, stirring, coating, and heat treatment are required for antibacterial coating, and there are limitations such as increased processing time at each process step and the need for high concentrations of antibacterial agents.
또한, 항균 메커니즘상 균주와의 직접적인 접촉이 필요하기 때문에 사실상 표면에 노출되어 있는 소수의 항균 입자들로만 항균 성능이 구동된다.In addition, because the antibacterial mechanism requires direct contact with the strain, the antibacterial performance is actually driven only by a small number of antibacterial particles exposed to the surface.
결국, 항균 성능 구현을 위해서 폴리머와 혼합시 고농도의 항균 입자가 필요하기 때문에 폴리머 내 항균 입자 분포의 제어가 불가능하다. 더욱이, 원재료비 상승 이외에 제품 투명도 감소, 항균 성능의 불균일성 등으로 부품 적용이 제한되는 문제점이 있다.Ultimately, since a high concentration of antibacterial particles is required when mixed with a polymer to implement antibacterial performance, it is impossible to control the distribution of antibacterial particles within the polymer. Moreover, in addition to the increase in raw material costs, there are problems that limit application to parts due to reduced product transparency and uneven antibacterial performance.
따라서, 이와 같은 문제점을 해결할 방안이 요구된다.Therefore, a method to solve this problem is required.
본 발명의 해결하고자 하는 기술적 과제는 항균 입자 층을 폴리머 사용 없이 대상 기재 표면에 직접 형성할 수 있는 항균막 코팅 기재 및 그 제조 방법을 제공하고자 한다.The technical problem to be solved by the present invention is to provide an antibacterial film coating substrate that can directly form an antibacterial particle layer on the surface of a target substrate without using polymers, and a method for manufacturing the same.
또한, 적은 양의 항균 입자를 사용하여 항균막을 형성할 수 있는 항균막 코팅 기재 및 그 제조 방법을 제공하고자 한다.In addition, the aim is to provide an antibacterial film coating substrate that can form an antibacterial film using a small amount of antibacterial particles and a method for manufacturing the same.
또한, 높은 광 투과도를 가지는 항균막을 형성할 수 있는 항균막 코팅 기재 및 그 제조 방법을 제공하고자 한다.In addition, it is intended to provide an antibacterial film coating substrate capable of forming an antibacterial film with high light transmittance and a method of manufacturing the same.
또한, 항균막이 적용되는 부품의 디자인 자유도가 유지되거나 상승할 수 있는 항균막 코팅 기재 및 그 제조 방법을 제공하고자 한다.In addition, it is intended to provide an antibacterial film coating substrate and a method of manufacturing the same that can maintain or increase the design freedom of parts to which the antibacterial film is applied.
상기 목적을 달성하기 위한 제1관점으로서, 본 발명은, 항균 입자가 직접 형성되는 항균막 코팅 기재의 제조 방법에 있어서, 금속염을 소수성 용매와 혼합하여 코팅액 제조하는 단계; 플라스틱 또는 폴리머 기재의 표면에 상기 코팅액을 코팅하는 단계; 및 상기 코팅된 플라스틱 또는 폴리머 기재를 열처리하여 상기 플라스틱 또는 폴리머 기재 표면에 항균 입자 층을 형성하는 단계를 포함할 수 있다.As a first aspect for achieving the above object, the present invention provides a method for producing an antibacterial film coating substrate in which antibacterial particles are directly formed, comprising the steps of mixing a metal salt with a hydrophobic solvent to prepare a coating solution; Coating the coating solution on the surface of a plastic or polymer substrate; And it may include heat treating the coated plastic or polymer substrate to form an antibacterial particle layer on the surface of the plastic or polymer substrate.
예시적인 실시예로서, 상기 소수성 용매는 에탄올(Ethanol), 이소프로페놀(Isopropanol), 및 메탄올(Methanol) 중 적어도 어느 하나를 포함할 수 있다.As an exemplary embodiment, the hydrophobic solvent may include at least one of ethanol, isopropanol, and methanol.
예시적인 실시예로서, 상기 플라스틱은 열가소성 플라스틱일 수 있다.As an exemplary embodiment, the plastic may be a thermoplastic plastic.
예시적인 실시예로서, 상기 금속염은, 금속 아세트산염(metal acetate)계 물질, 금속 염화염(metal chloride)계 물질, 그리고 금속 질산염(metal nitrate)계 물질 중 적어도 어느 하나를 포함할 수 있다.As an exemplary embodiment, the metal salt may include at least one of a metal acetate-based material, a metal chloride-based material, and a metal nitrate-based material.
예시적인 실시예로서, 상기 금속은 구리(Cu)를 포함할 수 있다.As an exemplary embodiment, the metal may include copper (Cu).
예시적인 실시예로서, 상기 열처리 과정은, 산화 반응 및 응집 반응을 유발시켜 상기 항균 입자들을 상기 플라스틱 또는 폴리머 기재의 표면에 고정시킬 수 있다.As an exemplary embodiment, the heat treatment process may cause an oxidation reaction and an aggregation reaction to fix the antibacterial particles to the surface of the plastic or polymer substrate.
예시적인 실시예로서, 상기 금속염의 농도는 0.001 M(몰농도) 내지 0.1 M일 수 있다.As an exemplary embodiment, the concentration of the metal salt may be 0.001 M (molar concentration) to 0.1 M.
예시적인 실시예로서, 상기 금속염의 농도가 커질수록 상기 항균 입자의 크기가 커질 수 있다.As an exemplary embodiment, as the concentration of the metal salt increases, the size of the antibacterial particles may increase.
예시적인 실시예로서, 상기 금속염의 농도가 감소할수록 상기 항균 입자 층의 투과도가 증가할 수 있다.As an exemplary embodiment, as the concentration of the metal salt decreases, the permeability of the antibacterial particle layer may increase.
예시적인 실시예로서, 상기 금속염은, Copper(II) acetate (Cu(CH3COO)2), Copper(II) nitrate (Cu(NO3)2), 및 Copper(I) chloride (CuCl2) 중 어느 하나를 포함할 수 있다.As an exemplary embodiment, the metal salt is copper(II) acetate (Cu(CH 3 COO) 2 ), copper(II) nitrate (Cu(NO 3 ) 2 ), and copper(I) chloride (CuCl 2 ). It can include either one.
상기 목적을 달성하기 위한 제2관점으로서, 본 발명은, 금속 아세트산염(metal acetate)계 물질, 금속 염화염(metal chloride)계 물질, 그리고 금속 질산염(metal nitrate)계 물질 중 적어도 어느 하나를 포함하는 금속염을 알코올계 용매와 혼합하여 코팅액을 제조하는 단계; 플라스틱 또는 폴리머 기재의 표면에 상기 코팅액을 코팅하는 단계; 및 상기 코팅된 플라스틱 또는 폴리머 기재를 열처리하여 상기 플라스틱 또는 폴리머 기재 표면에 항균 입자 층을 형성하는 단계를 포함할 수 있다.As a second aspect for achieving the above object, the present invention includes at least one of a metal acetate-based material, a metal chloride-based material, and a metal nitrate-based material. Preparing a coating solution by mixing a metal salt with an alcohol-based solvent; Coating the coating solution on the surface of a plastic or polymer substrate; And it may include heat treating the coated plastic or polymer substrate to form an antibacterial particle layer on the surface of the plastic or polymer substrate.
상기 목적을 달성하기 위한 제3관점으로서, 본 발명은, 항균막 코팅 기재에 있어서, 금속 아세트산염(metal acetate)계, 금속 염화염(metal chloride)계 그리고 금속 질산염(metal nitrate)계 물질 중 적어도 어느 하나를 포함하는 금속염이 산화 반응 및 응집 반응을 통하여 표면에 직접 형성된 것을 특징으로 한다.As a third aspect to achieve the above object, the present invention, in the antibacterial film coating substrate, contains at least a metal acetate-based, metal chloride-based, and metal nitrate-based material. It is characterized in that a metal salt containing any one is formed directly on the surface through an oxidation reaction and an aggregation reaction.
본 발명의 일 실시예에 따르면, 다음과 같은 효과가 있다.According to one embodiment of the present invention, the following effects are achieved.
먼저, 본 발명의 실시예에 따르면, 적은 양의 항균 입자로도 보다 우수한 성능을 구현할 수 있다.First, according to an embodiment of the present invention, superior performance can be achieved even with a small amount of antibacterial particles.
따라서, 본 발명의 실시예에 의하면 보다 효율적인 항균 입자 코팅이 가능한 장점이 있다.Therefore, according to the embodiment of the present invention, there is an advantage in that more efficient antibacterial particle coating is possible.
또한, 본 발명의 실시예에 의하면, 항균 입자를 원하는 기재로 부착하기 위해 고농도의 항균제, 폴리머가 요구되지 않고, 교반 공정과 같은 추가 공정이 필요 없기 때문에 재료비 및 공정 횟수가 크게 감소할 수 있고, 아울러, 공정 시간을 최소화할 수 있다.In addition, according to embodiments of the present invention, high concentrations of antibacterial agents and polymers are not required to attach antibacterial particles to a desired substrate, and additional processes such as a stirring process are not required, so material costs and number of processes can be greatly reduced, In addition, the process time can be minimized.
또한, 본 발명의 실시예에 의하면, 항균 입자 층이 열가소성 플라스틱 또는 폴리머 기재의 표면에 형성되어 있어 균주와 접촉시 빠른 항균 반응이 가능하며, 저농도의 항균 입자로도 표면 항균 성능 유지가 가능한 장점이 있다.In addition, according to an embodiment of the present invention, a layer of antibacterial particles is formed on the surface of a thermoplastic or polymer substrate, enabling a rapid antibacterial reaction upon contact with bacteria, and has the advantage of maintaining surface antibacterial performance even with a low concentration of antibacterial particles. there is.
이와 같이, 본 발명의 실시에에 의하면, 뛰어난 항균 성능을 가진 산화 구리(I) 입자층을 폴리머의 사용 없이 플라스틱 또는 폴리머 기재의 표면에 직접 형성시켜 적용되는 부품의 항균 성능을 향상 시킬 수 있다.In this way, according to the practice of the present invention, the antibacterial performance of the applied part can be improved by forming a layer of copper (I) oxide particles with excellent antibacterial performance directly on the surface of a plastic or polymer substrate without using a polymer.
이에 따라, 항균막을 형성하기 위해 적은 양의 항균 입자를 사용하므로 원재료비를 감소시킬 수 있다. Accordingly, raw material costs can be reduced because a small amount of antibacterial particles are used to form an antibacterial film.
또한, 항균막을 형성하기 위한 코팅액의 농도를 조절함으로써 투명성을 제어할 수 있어, 적용되는 부품의 디자인 자유도를 유지 또는 상승시킬 수 있다.In addition, transparency can be controlled by adjusting the concentration of the coating solution to form an antibacterial film, thereby maintaining or increasing the design freedom of applied parts.
나아가, 본 발명의 실시예에 따르면, 여기에서 언급하지 않은 추가적인 기술적 효과들도 있다. 당업자는 명세서 및 도면의 전취지를 통해 이해할 수 있다.Furthermore, according to embodiments of the present invention, there are additional technical effects not mentioned here. Those skilled in the art can understand the entire contents of the specification and drawings.
도 1은 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법을 나타내는 순서도이다.1 is a flowchart showing a method of manufacturing an antimicrobial film coated substrate according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법에서 금속염의 농도에 따른 항균 입자의 직경의 분포를 나타내는 그래프이다.Figure 2 is a graph showing the distribution of the diameter of antibacterial particles according to the concentration of metal salt in the method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법에 의하여 형성되는 항균 입자를 나타내는 이미지이다.Figure 3 is an image showing antibacterial particles formed by a method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법에 의한 항균 입자의 형성을 나타내는 XPS 그래프이다.Figures 4 and 5 are XPS graphs showing the formation of antibacterial particles by the method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
도 6 및 도 7은 본 발명의 일 실시예에 따른 항균막 코팅 기재의 항균 성능을 나타내는 사진이다.Figures 6 and 7 are photographs showing the antibacterial performance of the antibacterial film coated substrate according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법에서 금속염 코팅액의 농도에 따른 투명도를 나타내는 그래프이다.Figure 8 is a graph showing transparency depending on the concentration of the metal salt coating solution in the method of manufacturing an antimicrobial film coated substrate according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. Hereinafter, embodiments disclosed in the present specification will be described in detail with reference to the attached drawings. However, identical or similar components will be assigned the same reference numbers regardless of reference numerals, and duplicate descriptions thereof will be omitted. The suffixes “module” and “part” for components used in the following description are given or used interchangeably only for the ease of preparing the specification, and do not have distinct meanings or roles in themselves.
또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.Additionally, in describing the embodiments disclosed in this specification, if it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed descriptions will be omitted. In addition, it should be noted that the attached drawings are only for easy understanding of the embodiments disclosed in this specification, and should not be construed as limiting the technical idea disclosed in this specification by the attached drawings.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.Furthermore, although each drawing is described for convenience of explanation, it is within the scope of the present invention for a person skilled in the art to implement another embodiment by combining at least two or more drawings.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다. Additionally, when an element such as a layer, region or substrate is referred to as being “on” another component, it is to be understood that it may be present directly on the other element or that there may be intermediate elements in between. There will be.
도 1은 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법을 나타내는 순서도이다.1 is a flowchart showing a method of manufacturing an antimicrobial film coated substrate according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법은 금속염 기반의 코팅액(금속염 기반 용액)을 제조하는 단계(S10), 이와 같이 제조된 코팅액을 이용하여 기재의 표면에 코팅하는 단계(S20), 및 이러한 코팅액으로 코팅된 기재를 열처리하는 단계(S30)를 포함할 수 있다.Referring to FIG. 1, the method for manufacturing an antimicrobial film-coated substrate according to an embodiment of the present invention includes preparing a metal salt-based coating solution (metal salt-based solution) (S10), using the coating solution prepared in this way to coat the surface of the substrate. It may include a step of coating (S20), and a step of heat treating the substrate coated with this coating solution (S30).
금속염 기반의 코팅액(금속염 기반 용액)을 제조하는 단계(S10)는 금속염을 소수성 용매와 혼합하여 코팅액 제조할 수 있다.In the step (S10) of preparing a metal salt-based coating solution (metal salt-based solution), the coating solution can be prepared by mixing the metal salt with a hydrophobic solvent.
여기서, 소수성 용매는 에탄올(Ethanol), 이소프로페놀(Isopropanol), 및 메탄올(Methanol) 중 적어도 어느 하나를 포함할 수 있다.Here, the hydrophobic solvent may include at least one of ethanol, isopropanol, and methanol.
이와 같이, 소수성 용매인 알코올 용액을 사용하여 소수성 물성을 가진 다양한 플라스틱 및 복잡한 구조에 본 발명의 실시예를 적용할 수 있다.In this way, embodiments of the present invention can be applied to various plastics and complex structures with hydrophobic properties by using an alcohol solution, which is a hydrophobic solvent.
코팅액이 코팅되는 기재는 플라스틱 또는 폴리머 기재일 수 있다. 일례로, 플라스틱은 폴리에틸렌, 폴리 에틸렌 테레프탈레이트, 폴리염화비닐, 폴리염화비닐리덴, 폴리스티렌, 폴리프로필렌 등과 같은 열가소성 플라스틱일 수 있다.The substrate onto which the coating liquid is coated may be a plastic or polymer substrate. For example, the plastic may be a thermoplastic such as polyethylene, polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polystyrene, polypropylene, etc.
또한, 폴리머 기재는 PE, PET, PMMA 등과 같은 폴리머 필름일 수 있다.Additionally, the polymer substrate may be a polymer film such as PE, PET, PMMA, etc.
예시적인 실시예로서, 금속염은, 금속 아세트산염(metal acetate)계 물질, 금속 염화염(metal chloride)계 물질, 그리고 금속 질산염(metal nitrate)계 물질 중 적어도 어느 하나를 포함할 수 있다.As an exemplary embodiment, the metal salt may include at least one of a metal acetate-based material, a metal chloride-based material, and a metal nitrate-based material.
예시적인 실시예로서, 금속염의 금속은 구리(Cu)를 포함할 수 있다. 즉, 금속염은 Copper(II) acetate (Cu(CH3COO)2), Copper(II) nitrate (Cu(NO3)2), 및 Copper(I) chloride (CuCl2) 중 어느 하나를 포함할 수 있다.As an exemplary embodiment, the metal of the metal salt may include copper (Cu). That is, the metal salt may include any one of Copper(II) acetate (Cu(CH 3 COO) 2 ), Copper(II) nitrate (Cu(NO 3 ) 2 ), and Copper(I) chloride (CuCl 2 ). there is.
이러한 구리를 포함하는 금속염은 저온 열처리에 쉽게 산화가 발생되어 기재의 표면 상에서 항균 입자화될 수 있다.Such metal salts containing copper are easily oxidized during low-temperature heat treatment and can form antibacterial particles on the surface of the substrate.
이와 같은 물질의 금속염은 알코올계 용매와 혼합되어 코팅액으로 제조될 수 있다. 이러한 코팅액은 스프레이 코팅, 딥 코팅, 스핀 코팅 등의 코팅 방법으로 플라스틱 또는 폴리머 기재 표면에 코팅될 수 있다.Metal salts of such materials can be mixed with an alcohol-based solvent to produce a coating solution. This coating solution can be coated on the surface of a plastic or polymer substrate using coating methods such as spray coating, dip coating, and spin coating.
한편, 코팅액으로 코팅된 기재를 열처리하는 단계(S30)에 의하여, 플라스틱 또는 폴리머 기재 표면에 항균 입자 층을 형성할 수 있다.Meanwhile, by heat-treating the substrate coated with the coating solution (S30), a layer of antibacterial particles can be formed on the surface of the plastic or polymer substrate.
이와 같은 열처리 과정은, 산화 반응 및 응집 반응을 유발시켜 항균 입자들을 플라스틱 또는 폴리머 기재의 표면에 고정시킬 수 있다. 즉, 금속염은 항균 입자로 작용할 수 있다.This heat treatment process can cause oxidation and aggregation reactions to fix antibacterial particles to the surface of a plastic or polymer substrate. In other words, metal salts can act as antibacterial particles.
이상과 같은 과정에 의하여, 열가소성 플라스틱 또는 폴리머 기재에 금속염을 코팅 후, 항균 소재인 금속 산화물 형성과 동시에 표면 용융(melting) 현상을 이용하여 응집된 항균 입자를 열가소성 플라스틱 또는 폴리머 기재의 표면에 고정시킬 수 있다.By the above process, after coating a metal salt on a thermoplastic plastic or polymer substrate, metal oxide, which is an antibacterial material, is formed and at the same time, the aggregated antibacterial particles are fixed to the surface of the thermoplastic plastic or polymer substrate using a surface melting phenomenon. You can.
열처리 과정은 저온에서 가능하다. 또한, 플라즈마, 열저항선 등 다양한 열처리 방식으로 저온에서 열가소성 플라스틱 또는 폴리머 기재의 표면에 항균 입자 생성될 수 있다. 또한, 이러한 열처리 과정에 의하여 항균 입자와 기재 표면 사이의 결합을 강화할 수 있다.The heat treatment process is possible at low temperatures. In addition, antibacterial particles can be generated on the surface of thermoplastic or polymer substrates at low temperatures using various heat treatment methods such as plasma and heat resistance wire. Additionally, this heat treatment process can strengthen the bond between the antibacterial particles and the substrate surface.
통상적인 항균 코팅은 항균 입자를 별도로 합성 후, 원하는 기재와의 부착을 위해 폴리머와 혼합하여 코팅하는 방식으로 진행되어 왔다. 따라서, 항균 코팅을 위하여 원재료 합성, 교반, 코팅 및 열처리와 같은 과정이 필요하고, 각 공정 단계에서의 공정 시간 증가와 고농도의 항균제가 필요한 등의 한계점이 있다.Conventional antibacterial coating has been carried out by separately synthesizing antibacterial particles and coating them by mixing them with a polymer for adhesion to the desired substrate. Therefore, processes such as raw material synthesis, stirring, coating, and heat treatment are required for antibacterial coating, and there are limitations such as increased processing time at each process step and the need for high concentrations of antibacterial agents.
또한, 항균 메커니즘상 균주와의 직접적인 접촉이 필요하기 때문에 사실상 표면에 노출되어 있는 소수의 항균 입자들로만 항균 성능이 구동된다.In addition, because the antibacterial mechanism requires direct contact with the strain, the antibacterial performance is actually driven only by a small number of antibacterial particles exposed to the surface.
따라서, 항균 성능 구현을 위해서 폴리머와 혼합시 고농도의 항균 입자가 필요하기 때문에 폴리머 내 항균 입자 분포의 제어가 불가능하다. 더욱이, 원재료비 상승 이외에 제품 투명도 감소, 항균 성능의 불균일성 등으로 부품 적용이 제한되는 문제점이 있다.Therefore, in order to implement antibacterial performance, a high concentration of antibacterial particles is required when mixed with a polymer, making it impossible to control the distribution of antibacterial particles within the polymer. Moreover, in addition to the increase in raw material costs, there are problems that limit application to parts due to reduced product transparency and uneven antibacterial performance.
그러나, 이와 같은 본 발명의 실시예에 의하면, 적은 양의 항균 입자로도 보다 우수한 성능을 구현할 수 있다.However, according to this embodiment of the present invention, superior performance can be achieved even with a small amount of antibacterial particles.
일례로, 종래에는 항균 입자들을 무작위로 혼합하여 기재 상에 코팅했지만, 실제 항균 성능은 표면에 노출된 입자에만 의존하였고 나머지는 폴리머 안에 내재되어 있는 상태이다.For example, in the past, antibacterial particles were randomly mixed and coated on a substrate, but the actual antibacterial performance depended only on the particles exposed to the surface, with the rest remaining embedded in the polymer.
따라서, 본 발명의 실시예에 의하면 보다 효율적인 항균 입자 코팅이 가능한 장점이 있다.Therefore, according to the embodiment of the present invention, there is an advantage in that more efficient antibacterial particle coating is possible.
또한, 본 발명의 실시예에 의하면, 항균 입자를 원하는 기재로 부착하기 위해 고농도의 항균제, 폴리머가 요구되지 않고, 교반 공정과 같은 추가 공정이 필요 없기 때문에 재료비 및 공정 횟수가 크게 감소할 수 있고, 아울러, 공정 시간을 최소화할 수 있다.In addition, according to embodiments of the present invention, high concentrations of antibacterial agents and polymers are not required to attach antibacterial particles to a desired substrate, and additional processes such as a stirring process are not required, so material costs and number of processes can be greatly reduced, In addition, the process time can be minimized.
또한, 본 발명의 실시예에 의하면, 항균 입자 층이 열가소성 플라스틱 또는 폴리머 기재의 표면에 형성되어 있어 균주와 접촉시 빠른 항균 반응이 가능하며, 저농도의 항균 입자로도 표면 항균 성능 유지가 가능한 장점이 있다.In addition, according to an embodiment of the present invention, a layer of antibacterial particles is formed on the surface of a thermoplastic or polymer substrate, enabling a rapid antibacterial reaction upon contact with bacteria, and has the advantage of maintaining surface antibacterial performance even with a low concentration of antibacterial particles. there is.
이와 같이, 본 발명의 실시에에 의하면, 뛰어난 항균 성능을 가진 산화 구리(I) 입자층을 폴리머의 사용 없이 플라스틱 또는 폴리머 기재의 표면에 직접 형성시켜 적용되는 부품의 항균 성능을 향상 시킬 수 있다.In this way, according to the practice of the present invention, the antibacterial performance of the applied part can be improved by forming a layer of copper (I) oxide particles with excellent antibacterial performance directly on the surface of a plastic or polymer substrate without using a polymer.
이에 따라, 항균막을 형성하기 위해 적은 양의 항균 입자를 사용하므로 원재료비를 감소시킬 수 있다. 또한, 항균막을 형성하기 위한 코팅액의 농도를 조절함으로써 투명성을 제어할 수 있어, 적용되는 부품의 디자인 자유도를 유지 또는 상승시킬 수 있다.Accordingly, raw material costs can be reduced because a small amount of antibacterial particles are used to form an antibacterial film. In addition, transparency can be controlled by adjusting the concentration of the coating solution to form an antibacterial film, thereby maintaining or increasing the design freedom of applied parts.
도 2는 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법에서 금속염의 농도에 따른 항균 입자의 직경의 분포를 나타내는 그래프이다.Figure 2 is a graph showing the distribution of the diameter of antibacterial particles according to the concentration of metal salt in the method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
위에서 설명한 바와 같이, 열가소성 플라스틱 또는 폴리머 기재에 코팅되는 금속염 기반의 코팅액(금속염 기반 용액)은 금속염과 소수성 용매(알코올계 용액)와 혼합하여 제조할 수 있다.As described above, a metal salt-based coating solution (metal salt-based solution) coated on a thermoplastic or polymer substrate can be prepared by mixing a metal salt and a hydrophobic solvent (alcohol-based solution).
여기서, 소수성 용매는 에탄올(Ethanol), 이소프로페놀(Isopropanol), 및 메탄올(Methanol) 중 적어도 어느 하나를 포함할 수 있다.Here, the hydrophobic solvent may include at least one of ethanol, isopropanol, and methanol.
구체적인 일례로서, 금속염은 Copper(II) acetate (Cu(CH3COO)2), Copper(II) nitrate (Cu(NO3)2), 및 Copper(I) chloride (CuCl2) 중 어느 하나를 포함할 수 있다. 이에 따라, 열가소성 플라스틱 또는 폴리머 기재의 표면 상에는 Cu2O 항균 입자가 형성된 경우에 대한 그래프가 나타나 있다.As a specific example, the metal salt includes any one of Copper(II) acetate (Cu(CH 3 COO) 2 ), Copper(II) nitrate (Cu(NO 3 ) 2 ), and Copper(I) chloride (CuCl 2 ). can do. Accordingly, a graph is shown for the case where Cu 2 O antibacterial particles are formed on the surface of a thermoplastic or polymer substrate.
도 2는 이와 같이 금속염으로 구리를 포함하는 경우에 코팅액의 농도, 즉, 금속염의 농도에 따른 항균 입자의 크기(직경)를 나타내고 있다.Figure 2 shows the size (diameter) of antibacterial particles according to the concentration of the coating solution, that is, the concentration of the metal salt, when copper is included as the metal salt.
다시 말하면, 금속염의 농도에 따라, 열가소성 플라스틱 또는 폴리머 기재의 표면 상에 형성되는 항균 입자의 크기가 달라질 수 있다.In other words, depending on the concentration of the metal salt, the size of the antibacterial particles formed on the surface of the thermoplastic or polymer substrate may vary.
또한, 이러한 항균 입자의 크기는 금속염 기반 용액(코팅액)의 농도를 조절함으로써 제어가 가능함을 알 수 있다.In addition, it can be seen that the size of these antibacterial particles can be controlled by adjusting the concentration of the metal salt-based solution (coating solution).
도 2를 참조하면, 금속염의 농도는 0.001 M(몰농도)로부터 0.1 M으로 조절될 수 있다. 이에 따라, 일례로, 열가소성 플라스틱 또는 폴리머 기재의 표면 상에 형성되는 항균 입자의 크기는 대략 0.3 ㎛ 내지 5.3 ㎛ 사이에서 제어될 수 있다.Referring to FIG. 2, the concentration of the metal salt can be adjusted from 0.001 M (molar concentration) to 0.1 M. Accordingly, for example, the size of antibacterial particles formed on the surface of a thermoplastic or polymer substrate can be controlled between approximately 0.3 μm and 5.3 μm.
또한, 도 2는 금속염의 농도가 커질수록 항균 입자의 크기가 커지는 경향성을 나타내고 있다.Additionally, Figure 2 shows a tendency for the size of antibacterial particles to increase as the concentration of metal salt increases.
이와 같이, 도 2를 참조하면, 본 발명의 실시예에 의하여, 금속 아세트산염(metal acetate)계, 금속 염화염(metal chloride)계 그리고 금속 질산염(metal nitrate)계 물질 중 적어도 어느 하나를 포함하는 금속염이 산화 반응 및 응집 반응을 통하여 표면에 직접 형성된 항균막 코팅 기재가 제조될 수 있다.As such, referring to FIG. 2, according to an embodiment of the present invention, a material comprising at least one of metal acetate-based, metal chloride-based, and metal nitrate-based materials An antibacterial film coating substrate in which a metal salt is formed directly on the surface through oxidation reaction and aggregation reaction can be manufactured.
이러한 본 발명의 실시예에 의하면, Cu2O 입자층을 열가소성 플라스틱 또는 폴리머 기재의 표면에서 직접 형성할 수 있다.According to this embodiment of the present invention, the Cu 2 O particle layer can be formed directly on the surface of a thermoplastic or polymer substrate.
도 3은 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법에 의하여 형성되는 항균 입자를 나타내는 이미지이다.Figure 3 is an image showing antibacterial particles formed by a method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
도 3을 참조하면, 항균 입자의 크기 및 밀도의 변화를 FE-SEM(Field Emission Scanning Electron Microscope) 이미지로 나타내고 있다.Referring to Figure 3, changes in the size and density of antibacterial particles are shown in FE-SEM (Field Emission Scanning Electron Microscope) images.
이와 같이, 금속염 코팅액의 농도를 조절함으로써 열가소성 플라스틱 또는 폴리머 기재의 표면에 형성되는 항균 입자의 크기 및 밀도가 변화함을 알 수 있다.In this way, it can be seen that the size and density of antibacterial particles formed on the surface of the thermoplastic or polymer substrate change by adjusting the concentration of the metal salt coating solution.
도 3(A)는 금속염의 농도, 즉, 금속염 기반 용액(코팅액)의 농도가 0.001 M(몰농도)일 경우의 항균 입자의 이미지를 나타내고 있다. 우측 상단은 확대 이미지로서, 이러한 이미지는 도 2에서 나타낸 그래프와 동일한 경향성을 보임을 알 수 있다.Figure 3(A) shows an image of antibacterial particles when the concentration of the metal salt, that is, the concentration of the metal salt-based solution (coating solution) is 0.001 M (molar concentration). The upper right is an enlarged image, and it can be seen that this image shows the same tendency as the graph shown in FIG. 2.
또한, 도 3(B)는 금속염의 농도, 즉, 금속염 기반 용액(코팅액)의 농도가 0.05 M(몰농도)일 경우의 항균 입자의 이미지를 나타내고 있다. 이러한 도 3(B)의 경우는 금속염 기반 용액(코팅액)의 농도가 커짐에 따라 항균 입자의 크기가 도 3(A)의 경우보다 커짐을 알 수 있다.In addition, Figure 3(B) shows an image of antibacterial particles when the concentration of the metal salt, that is, the concentration of the metal salt-based solution (coating solution) is 0.05 M (molar concentration). In the case of Figure 3(B), it can be seen that as the concentration of the metal salt-based solution (coating solution) increases, the size of the antibacterial particles becomes larger than in the case of Figure 3(A).
도 3(C)는 금속염의 농도, 즉, 금속염 기반 용액(코팅액)의 농도가 0.1 M(몰농도)일 경우의 항균 입자의 이미지를 나타내고 있다. 도 3(B)의 경우와 마찬가지로, 도 3(C)의 경우는 금속염 기반 용액(코팅액)의 농도가 커짐에 따라 항균 입자의 크기가 도 3(B)의 경우보다 커짐을 나타내고 있다.Figure 3(C) shows an image of antibacterial particles when the concentration of the metal salt, that is, the concentration of the metal salt-based solution (coating solution) is 0.1 M (molar concentration). As in the case of FIG. 3(B), the case of FIG. 3(C) shows that as the concentration of the metal salt-based solution (coating solution) increases, the size of the antibacterial particles becomes larger than the case of FIG. 3(B).
이러한 도 3의 경우도 금속염이 구리를 포함하는 경우에 대한 이미지를 나타내고 있다. 즉, 금속염은 Copper(II) acetate (Cu(CH3COO)2), Copper(II) nitrate (Cu(NO3)2), 및 Copper(I) chloride (CuCl2) 중 어느 하나를 포함하여 Cu2O 항균 입자가 형성된 경우의 이미지가 나타나 있다.This case of FIG. 3 also shows an image for the case where the metal salt contains copper. That is, the metal salt includes any one of Copper(II) acetate (Cu(CH 3 COO) 2 ), Copper(II) nitrate (Cu(NO 3 ) 2 ), and Copper(I) chloride (CuCl 2 ). An image is shown when 2O antibacterial particles are formed.
이와 같이, 금속염 기반 용액(코팅액)의 농도가 커짐에 따라 항균 입자의 크기 및 밀도가 증가할 수 있다. 즉, 금속염 기반 용액(코팅액)의 농도를 조절함으로써 항균 입자의 크기 및 밀도를 제어할 수 있다.In this way, as the concentration of the metal salt-based solution (coating solution) increases, the size and density of antibacterial particles may increase. In other words, the size and density of antibacterial particles can be controlled by adjusting the concentration of the metal salt-based solution (coating solution).
도 4 및 도 5는 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법에 의한 항균 입자의 형성을 나타내는 XPS 그래프이다.Figures 4 and 5 are XPS graphs showing the formation of antibacterial particles by the method of manufacturing an antibacterial film coated substrate according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 의하여 형성된 항균 입자의 XPS(X-ray Photoelectron Spectroscopy) 그래프를 나타내고 있다.Figure 4 shows an XPS (X-ray Photoelectron Spectroscopy) graph of antibacterial particles formed according to an example of the present invention.
즉, 금속염은 Copper(II) acetate (Cu(CH3COO)2), Copper(II) nitrate (Cu(NO3)2), 및 Copper(I) chloride (CuCl2) 중 어느 하나를 포함하여 Cu2O 항균 입자가 플라스틱 또는 기재 상에 형성된 경우의 XPS 그래프가 나타나 있다.That is, the metal salt includes any one of Copper(II) acetate (Cu(CH 3 COO) 2 ), Copper(II) nitrate (Cu(NO 3 ) 2 ), and Copper(I) chloride (CuCl 2 ). An XPS graph is shown when 2 O antibacterial particles are formed on plastic or substrate.
도 5는 참조 그래프로써, Cu의 화학구조를 나타내는 XPS 그래프이다.Figure 5 is a reference graph, an XPS graph showing the chemical structure of Cu.
도 4와 도 5를 비교하면 X-선에 의해 방출되는 광전자 검출을 통해 열가소성 플라스틱 또는 폴리머 기재의 표면에 Cu2O의 화학 결합이 이루어졌음을 확인할 수 있다. 또한, 항균 입자의 조성을 확인할 수 있다.Comparing Figures 4 and 5, it can be confirmed that Cu 2 O is chemically bonded to the surface of the thermoplastic or polymer substrate through detection of photoelectrons emitted by X-rays. Additionally, the composition of the antibacterial particles can be confirmed.
도 6 및 도 7은 본 발명의 일 실시예에 따른 항균막 코팅 기재의 항균 성능을 나타내는 사진이다.Figures 6 and 7 are photographs showing the antibacterial performance of the antibacterial film coated substrate according to an embodiment of the present invention.
도 6과 도 7은 각각 Cu2O 항균 입자가 열가소성 플라스틱 또는 폴리머 기재 상에 형성된 경우의 항균 성능을 대조군과의 대조에 의하여 나타내고 있다.Figures 6 and 7 each show the antibacterial performance when Cu 2 O antibacterial particles are formed on a thermoplastic or polymer substrate by comparison with the control group.
도 6은 황색포도상구균에 의한 항균 성능을 나타내고 있다.Figure 6 shows the antibacterial performance by Staphylococcus aureus.
항균막이 코팅되지 않은 대조군(a)과 비교하면, 본 발명의 일 실시예에 따른 항균막 코팅 기재(b)는 황색포도상구균에 대하여 뛰어난 항균 성능을 가짐을 알 수 있다.Compared to the control group (a), which is not coated with an antibacterial film, it can be seen that the antibacterial film coated substrate (b) according to an embodiment of the present invention has excellent antibacterial performance against Staphylococcus aureus.
도 7은 대장균에 의한 항균 성능을 나타내고 있다.Figure 7 shows the antibacterial performance by E. coli.
항균막이 코팅되지 않은 대조군(a)과 비교하면, 본 발명의 일 실시예에 따른 항균막 코팅 기재(b)는 대장균에 대하여 뛰어난 항균 성능을 가짐을 알 수 있다.Compared to the control group (a), which is not coated with an antibacterial film, it can be seen that the antibacterial film coated substrate (b) according to an embodiment of the present invention has excellent antibacterial performance against E. coli.
표 1은 본 발명의 일 실시예에 따라 플라스틱 표면에 코팅된 Cu2O 항균 입자 층에 의한 항균 성능을 보여주는 공인인증 시험 성적서 결과를 나타내고 있다.Table 1 shows the results of a certified test report showing the antibacterial performance of the Cu 2 O antibacterial particle layer coated on the plastic surface according to an embodiment of the present invention.
시험 성적서 결과에 의하면, 황색포도상구균 및 대장균에 대해 99.9%의 항균 성능을 가짐을 알 수 있다.According to the test report results, it can be seen that it has 99.9% antibacterial performance against Staphylococcus aureus and E. coli.
이러함 시험의 시험기관은 한국분석시험 연구원(KATR)이고, 시험규격은 JIS Z201이다. 또한, 시험이 이루어진 시료는 0.001 M의 항균 입자가 코팅된 플라스틱 시편이다.The testing agency for this test is the Korea Research Institute of Analytical Testing (KATR), and the test standard is JIS Z201. Additionally, the tested sample was a plastic specimen coated with 0.001 M antibacterial particles.
시험을 위한 시료의 처리 24 시간 전 배양액 0.4 mL을 시료 위에 올린 뒤 표준 필름을 덮음으로 준비되었다.24 hours before processing the sample for testing, 0.4 mL of culture medium was placed on the sample and then covered with a standard film.
시험항목Test Items 시험결과Test result
ControlControl SampleSample
Staphylococcus aureusStaphylococcus aureus 24시간 후 균수Bacterial count after 24 hours 4.9×106 4.9×10 6 <10<10
황색포도상구균Staphylococcus aureus 항균활성치(log)Antibacterial activity value (log) 5.75.7
정균감소율(%)Bacteriostatic reduction rate (%) 99.999.9
접종균액의 농도Concentration of inoculant solution 8.0×105 CFU/mL8.0×10 5 CFU/mL
Escherichia coliEscherichia coli 24시간 후 균수Bacterial count after 24 hours 1.9×107 1.9×10 7 <10<10
대장균E. coli 항균활성치(log)Antibacterial activity value (log) 6.36.3
정균감소율(%)Bacteriostatic reduction rate (%) 99.999.9
접종균액의 농도Concentration of inoculant solution 4.0×105 CFU/mL4.0×10 5 CFU/mL
도 8은 본 발명의 일 실시예에 따른 항균막 코팅 기재의 제조 방법에서 금속염 코팅액의 농도에 따른 투명도를 나타내는 그래프이다.Figure 8 is a graph showing transparency depending on the concentration of the metal salt coating solution in the method of manufacturing an antimicrobial film coated substrate according to an embodiment of the present invention.
위에서 설명한 바와 같이, 금속염 코팅액의 농도를 조절함으로써 열가소성 플라스틱 또는 폴리머 기재의 표면에 형성되는 항균 입자의 크기 및 밀도를 제어할 수 있다.As described above, the size and density of antibacterial particles formed on the surface of a thermoplastic or polymer substrate can be controlled by controlling the concentration of the metal salt coating solution.
또한, 금속염 코팅액의 농도를 조절함으로써 열가소성 플라스틱 또는 폴리머 기재의 표면에 형성되는 항균 입자 층에 의한 투과도를 조절할 수 있다.Additionally, by adjusting the concentration of the metal salt coating solution, the permeability of the antibacterial particle layer formed on the surface of the thermoplastic or polymer substrate can be adjusted.
도 8의 그래프를 참조하면, 금속염 코팅액의 농도가 0.001 M일 경우와 0.05 M일 경우에는 파장에 따라 투과도가 대략적으로 균일함을 알 수 있다.Referring to the graph of FIG. 8, it can be seen that the transmittance is approximately uniform depending on the wavelength when the concentration of the metal salt coating solution is 0.001 M and 0.05 M.
한편, 금속염 코팅액의 농도가 0.1 M인 경우에는 단파장 쪽의 광선에 대한 투과도가 일부 저하될 수 있음을 알 수 있다. 그러나 가시광선 영역에 대해서는 파장에 따라 소폭 상승하나, 대체로 균일한 투과도를 보임을 알 수 있다.On the other hand, it can be seen that when the concentration of the metal salt coating solution is 0.1 M, the transmittance to short-wavelength light may be partially reduced. However, in the visible light region, it can be seen that the transmittance increases slightly depending on the wavelength, but shows generally uniform transmittance.
도 8의 그래프 내부의 표를 참조하면, 금속염 코팅액의 농도에 따른 투과도가 가시광 영역의 시감도가 가장 큰 550 nm 파장의 광을 기준으로 측정한 데이터가 나타나 있다.Referring to the table inside the graph of FIG. 8, the transmittance according to the concentration of the metal salt coating solution shows data measured based on light with a wavelength of 550 nm, which has the highest visibility in the visible light region.
이와 같이, 550 nm 파장에 대해서, 금속염 코팅액의 농도가 0.001 M인 경우 투명도가 90.82%이고, 금속염 코팅액의 농도가 0.05 M인 경우 투명도가 90.14%로 소폭 감소함을 알 수 있다. 또한, 금속염 코팅액의 농도가 0.1 M인 경우 투명도가 82.91%로 감소함을 알 수 있다. 즉, 금속염의 농도가 감소할수록 항균 입자 층의 투과도가 증가할 수 있다.In this way, for a wavelength of 550 nm, when the concentration of the metal salt coating solution is 0.001 M, the transparency is 90.82%, and when the concentration of the metal salt coating solution is 0.05 M, the transparency slightly decreases to 90.14%. In addition, it can be seen that when the concentration of the metal salt coating solution is 0.1 M, the transparency decreases to 82.91%. That is, as the concentration of metal salt decreases, the permeability of the antibacterial particle layer may increase.
이와 같이, 금속염 코팅액의 농도를 조절함으로써 이러한 금속염 코팅액에 의하여 형성되는 항균 입자 층의 투과도를 제어할 수 있음을 알 수 있다.In this way, it can be seen that the permeability of the antibacterial particle layer formed by the metal salt coating solution can be controlled by controlling the concentration of the metal salt coating solution.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and various modifications and variations will be possible to those skilled in the art without departing from the essential characteristics of the present invention.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but rather to explain it, and the scope of the technical idea of the present invention is not limited by these embodiments.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The scope of protection of the present invention should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be construed as being included in the scope of rights of the present invention.
본 발명에 의하면 플라스틱 제품 또는 폴리머 기재에 적용할 수 있는 항균막 코팅 기재 및 그 제조 방법을 제공할 수 있다.According to the present invention, an antibacterial film coating substrate that can be applied to plastic products or polymer substrates and a method for manufacturing the same can be provided.

Claims (20)

  1. 항균 입자가 직접 형성되는 항균막 코팅 기재의 제조 방법에 있어서,In the method of manufacturing an antibacterial film coating substrate in which antibacterial particles are directly formed,
    금속염을 소수성 용매와 혼합하여 코팅액 제조하는 단계;Preparing a coating solution by mixing a metal salt with a hydrophobic solvent;
    플라스틱 또는 폴리머 기재의 표면에 상기 코팅액을 코팅하는 단계; 및Coating the coating solution on the surface of a plastic or polymer substrate; and
    상기 코팅된 플라스틱 또는 폴리머 기재를 열처리하여 상기 플라스틱 또는 폴리머 기재 표면에 항균 입자 층을 형성하는 단계를 포함하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.A method of producing an antibacterial film coated substrate, comprising the step of heat treating the coated plastic or polymer substrate to form a layer of antibacterial particles on the surface of the plastic or polymer substrate.
  2. 제1항에 있어서, 상기 소수성 용매는 에탄올(Ethanol), 이소프로페놀(Isopropanol), 및 메탄올(Methanol) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 1, wherein the hydrophobic solvent includes at least one of ethanol, isopropanol, and methanol.
  3. 제1항에 있어서, 상기 플라스틱은 열가소성 플라스틱인 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 1, wherein the plastic is a thermoplastic plastic.
  4. 제1항에 있어서, 상기 금속염은,The method of claim 1, wherein the metal salt is:
    금속 아세트산염(metal acetate)계 물질, 금속 염화염(metal chloride)계 물질, 그리고 금속 질산염(metal nitrate)계 물질 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.A method of manufacturing an antibacterial film coating substrate comprising at least one of a metal acetate-based material, a metal chloride-based material, and a metal nitrate-based material.
  5. 제4항에 있어서, 상기 금속은 구리(Cu)를 포함하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 4, wherein the metal includes copper (Cu).
  6. 제1항에 있어서, 상기 열처리 과정은,The method of claim 1, wherein the heat treatment process is:
    산화 반응 및 응집 반응을 유발시켜 상기 항균 입자들을 상기 플라스틱 또는 폴리머 기재의 표면에 고정시키는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.A method for producing an antibacterial film coated substrate, characterized in that the antibacterial particles are fixed to the surface of the plastic or polymer substrate by inducing an oxidation reaction and an aggregation reaction.
  7. 제1항에 있어서, 상기 금속염의 농도는 0.001 M(몰농도) 내지 0.1 M인 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 1, wherein the concentration of the metal salt is 0.001 M (molar concentration) to 0.1 M.
  8. 제7항에 있어서, 상기 금속염의 농도가 커질수록 상기 항균 입자의 크기가 커지는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 7, wherein as the concentration of the metal salt increases, the size of the antibacterial particles increases.
  9. 제7항에 있어서, 상기 금속염의 농도가 감소할수록 상기 항균 입자 층의 투과도가 증가하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 7, wherein as the concentration of the metal salt decreases, the permeability of the antibacterial particle layer increases.
  10. 제1항에 있어서, 상기 금속염은, Copper(II) acetate (Cu(CH3COO)2), Copper(II) nitrate (Cu(NO3)2), 및 Copper(I) chloride (CuCl2) 중 어느 하나를 포함하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 1, wherein the metal salt is copper(II) acetate (Cu(CH 3 COO) 2 ), copper(II) nitrate (Cu(NO 3 ) 2 ), and copper(I) chloride (CuCl 2 ). A method of manufacturing an antibacterial film coating substrate comprising any one of the following.
  11. 금속 아세트산염(metal acetate)계 물질, 금속 염화염(metal chloride)계 물질, 그리고 금속 질산염(metal nitrate)계 물질 중 적어도 어느 하나를 포함하는 금속염을 알코올계 용매와 혼합하여 코팅액을 제조하는 단계; Preparing a coating solution by mixing a metal salt containing at least one of a metal acetate-based material, a metal chloride-based material, and a metal nitrate-based material with an alcohol-based solvent;
    플라스틱 또는 폴리머 기재의 표면에 상기 코팅액을 코팅하는 단계; 및Coating the coating solution on the surface of a plastic or polymer substrate; and
    상기 코팅된 플라스틱 또는 폴리머 기재를 열처리하여 상기 플라스틱 또는 폴리머 기재 표면에 항균 입자 층을 형성하는 단계를 포함하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.A method of producing an antibacterial film coated substrate, comprising the step of heat treating the coated plastic or polymer substrate to form a layer of antibacterial particles on the surface of the plastic or polymer substrate.
  12. 제11항에 있어서, 상기 열처리 과정은,The method of claim 11, wherein the heat treatment process is:
    산화 반응 및 응집 반응을 유발시켜 상기 항균 입자들을 상기 플라스틱 또는 폴리머 기재의 표면에 고정시키는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.A method for producing an antibacterial film coated substrate, characterized in that the antibacterial particles are fixed to the surface of the plastic or polymer substrate by inducing an oxidation reaction and an aggregation reaction.
  13. 제11항에 있어서, 상기 금속염의 농도는 0.001 M(몰농도) 내지 0.1 M인 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 11, wherein the concentration of the metal salt is 0.001 M (molar concentration) to 0.1 M.
  14. 제13항에 있어서, 상기 금속염의 농도가 커질수록 상기 항균 입자의 크기가 커지는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 13, wherein as the concentration of the metal salt increases, the size of the antibacterial particles increases.
  15. 제13항에 있어서, 상기 금속염의 농도가 감소할수록 상기 항균 입자 층의 투과도가 증가하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 13, wherein as the concentration of the metal salt decreases, the permeability of the antibacterial particle layer increases.
  16. 제11항에 있어서, 상기 금속염은, Copper(II) acetate (Cu(CH3COO)2), Copper(II) nitrate (Cu(NO3)2), 및 Copper(I) chloride (CuCl2) 중 어느 하나를 포함하는 것을 특징으로 하는 항균막 코팅 기재의 제조 방법.The method of claim 11, wherein the metal salt is copper(II) acetate (Cu(CH 3 COO) 2 ), copper(II) nitrate (Cu(NO 3 ) 2 ), and copper(I) chloride (CuCl 2 ). A method of manufacturing an antibacterial film coating substrate comprising any one of the following.
  17. 금속 아세트산염(metal acetate)계, 금속 염화염(metal chloride)계 그리고 금속 질산염(metal nitrate)계 물질 중 적어도 어느 하나를 포함하는 금속염이 산화 반응 및 응집 반응을 통하여 표면에 직접 형성된 것을 특징으로 하는 항균막 코팅 기재.Characterized in that a metal salt containing at least one of metal acetate-based, metal chloride-based, and metal nitrate-based materials is formed directly on the surface through oxidation reaction and agglutination reaction. Antibacterial film coating material.
  18. 제17항에 있어서, 상기 금속염의 농도는 0.001 M(몰농도) 내지 0.1 M인 것을 특징으로 하는 항균막 코팅 기재.The antibacterial film coating substrate of claim 17, wherein the concentration of the metal salt is 0.001 M (molar concentration) to 0.1 M.
  19. 제18항에 있어서, 상기 금속염의 농도가 커질수록 상기 항균 입자의 크기가 커지는 것을 특징으로 하는 항균막 코팅 기재.The antibacterial film coating substrate of claim 18, wherein as the concentration of the metal salt increases, the size of the antibacterial particles increases.
  20. 제17항에 있어서, 상기 금속염은, Copper(II) acetate (Cu(CH3COO)2), Copper(II) nitrate (Cu(NO3)2), 및 Copper(I) chloride (CuCl2) 중 어느 하나를 포함하는 것을 특징으로 하는 항균막 코팅 기재.The method of claim 17, wherein the metal salt is copper(II) acetate (Cu(CH 3 COO) 2 ), copper(II) nitrate (Cu(NO 3 ) 2 ), and copper(I) chloride (CuCl 2 ). An antimicrobial coating substrate comprising any one of the following:
PCT/KR2022/010294 2022-07-14 2022-07-14 Antimicrobial film-coated substrate and manufacturing method therefor WO2024014576A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/010294 WO2024014576A1 (en) 2022-07-14 2022-07-14 Antimicrobial film-coated substrate and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/010294 WO2024014576A1 (en) 2022-07-14 2022-07-14 Antimicrobial film-coated substrate and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2024014576A1 true WO2024014576A1 (en) 2024-01-18

Family

ID=89536894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010294 WO2024014576A1 (en) 2022-07-14 2022-07-14 Antimicrobial film-coated substrate and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2024014576A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235653A1 (en) * 2002-04-30 2003-12-25 Yu Chai-Mei Jimmy Method for preparing mesoporous TiO2 thin films with high photocatalytic and antibacterial activities
KR20150010819A (en) * 2013-07-18 2015-01-29 주식회사 엘지화학 coating composition for treating surface of solid substrate and method for treating surface of solid substrate using the same
KR101841970B1 (en) * 2017-06-16 2018-03-26 노승환 Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
KR102340958B1 (en) * 2013-12-18 2021-12-20 카스터스 테크놀로지스 디에이씨 A surface coating
KR20220019425A (en) * 2020-08-10 2022-02-17 주식회사 비지에프에코바이오 Antiviral biodegradable sheets and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235653A1 (en) * 2002-04-30 2003-12-25 Yu Chai-Mei Jimmy Method for preparing mesoporous TiO2 thin films with high photocatalytic and antibacterial activities
KR20150010819A (en) * 2013-07-18 2015-01-29 주식회사 엘지화학 coating composition for treating surface of solid substrate and method for treating surface of solid substrate using the same
KR102340958B1 (en) * 2013-12-18 2021-12-20 카스터스 테크놀로지스 디에이씨 A surface coating
KR101841970B1 (en) * 2017-06-16 2018-03-26 노승환 Method for producing ceramic composition for coating, ceramic composition by the method and coating mehtod using by it
KR20220019425A (en) * 2020-08-10 2022-02-17 주식회사 비지에프에코바이오 Antiviral biodegradable sheets and uses thereof

Similar Documents

Publication Publication Date Title
WO2014084480A1 (en) Multifunctional coating structure and method for forming the same
EP0758671B1 (en) Electrically conductive composition and elements containing solubilized polyaniline complex
WO2024014576A1 (en) Antimicrobial film-coated substrate and manufacturing method therefor
WO2020032519A1 (en) Method for preparing plasmonics implementation layer, and plasmonic antibacterial/sterilization filter using same
WO2017047980A1 (en) Photocatalyst functional nonwoven fabric, and method for producing same
WO2015099505A1 (en) Substrate treated with color development, and substrate color development treatment method for same
WO2019124855A1 (en) Thermoplastic resin composition and molded product manufactured therefrom
WO2022025416A1 (en) Thermoplastic resin composition and molded product produced therefrom
WO2021095990A1 (en) Ultralight release film
WO2017122985A1 (en) Method for preparing oxide thin film, oxide thin film, and electronic device manufactured therewith
WO2020189882A1 (en) Antistatic silicone release film
WO2012141535A2 (en) Inorganic semiconductor ink composition and inorganic semiconductor thin film manufactured by using same
WO2022035111A1 (en) Plasma-resistant glass, and method for manufacturing same
WO2022030876A1 (en) Heat reflective film and manufacturing method therefor
US5916719A (en) Composition of photoconductive layer for a color display panel
WO2017188532A1 (en) Electrochromic nanoparticles and method for producing same
WO2020213847A1 (en) Sic material and method for manufacturing same
WO2017159914A9 (en) Low-glass black polyimide transfer film and manufacturing method therefor
WO2023096022A1 (en) Vanadium oxide thin film and method for manufacturing same
US6696233B2 (en) Silver halide photographic photosensitive material having a polyethylene terephthalate film base support into which ultraviolet light absorber is kneaded
WO2019132385A1 (en) Thermoplastic resin composition and molded product manufactured therefrom
US20040238801A1 (en) Light-diffusing film and composition for the same
WO2022055042A1 (en) Ceramic member for semiconductor exposure equipment and method for manufacturing same
WO2023211184A1 (en) Antibacterial polymer composition comprising polymer compound obtained by graft polymerizing cationic monomer and fluorine-based acrylic monomer to fluorine-based copolymer
WO2023003359A1 (en) Metal nanowire having core-shell structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951231

Country of ref document: EP

Kind code of ref document: A1