WO2024014412A1 - Cermet sintered body, cermet tool and cutting tool - Google Patents

Cermet sintered body, cermet tool and cutting tool Download PDF

Info

Publication number
WO2024014412A1
WO2024014412A1 PCT/JP2023/025287 JP2023025287W WO2024014412A1 WO 2024014412 A1 WO2024014412 A1 WO 2024014412A1 JP 2023025287 W JP2023025287 W JP 2023025287W WO 2024014412 A1 WO2024014412 A1 WO 2024014412A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard phase
area
sample
cermet
region
Prior art date
Application number
PCT/JP2023/025287
Other languages
French (fr)
Japanese (ja)
Inventor
涼馬 野見山
綾乃 根岸
勇一郎 熊
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024014412A1 publication Critical patent/WO2024014412A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/16Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides

Definitions

  • the present disclosure relates to a cermet sintered body, a cermet tool, and a cutting tool.
  • Cermet sintered bodies containing titanium (Ti) as the main component are widely used as substrates for parts that require wear resistance, sliding properties, and chipping resistance, such as cutting tools, wear-resistant parts, and sliding parts. ing.
  • a cermet sintered body includes a first hard phase mainly composed of TiCN and a composite carbonitride solid solution of Ti and at least one metal of Groups 4, 5, and 6 of the periodic table. 2 hard phases, and a binder phase containing at least one of Co and Ni and W.
  • the average particle diameter d 2in of the second hard phase in the internal region and the average particle diameter d 2sf of the second hard phase in the surface region are both 0.35 ⁇ m or more and 0.6 ⁇ m or less.
  • the intensity ⁇ 1 in the surface region and the intensity ⁇ 2 in the internal region are both 2300 MPa or more, and the intensity ratio of ⁇ 1 to ⁇ 2 ( ⁇ 1/ ⁇ 2) is 0.8 or more.
  • FIG. 1 is a perspective view showing an example of a cermet tool according to an embodiment.
  • FIG. 2 is a side sectional view showing an example of the cermet tool according to the embodiment.
  • FIG. 3 is a copy of a scanning electron micrograph of a cross section of a cermet sintered body.
  • FIG. 4 is a front view showing an example of the cutting tool according to the embodiment.
  • FIG. 5 shows sample No. 1, which is a comparative example. 1 and sample No. 1 which is an example. 3 is a graph showing the anti-resistance strength in the surface area and the internal area for No. 3.
  • FIG. 6 shows sample No. 1, which is a comparative example. 1 and sample No. 1 which is an example. 3 is a graph showing the thermal shock strength of No. 3.
  • FIG. 1 is a perspective view showing an example of a cermet tool according to an embodiment.
  • FIG. 2 is a side sectional view showing an example of the cermet tool according to the embodiment.
  • FIG. 3 is a copy of a scanning electron micrograph of a cross section of a cermet sintered body.
  • the cermet tool 1 As shown in FIGS. 1 and 2, the cermet tool 1 according to the embodiment includes a base body 2 and a coating layer 3.
  • the base 2 has, for example, a hexahedral shape in which the top and bottom surfaces (the surfaces intersecting the Z-axis shown in FIG. 1) are parallelograms.
  • the cutting edge has a first surface and a second surface connected to the first surface.
  • the first surface is, for example, the upper surface of the base 2.
  • the second surface is, for example, a side surface of the base body 2.
  • the first surface functions as a "rake surface” that scoops up chips generated by cutting
  • the second surface functions as a "relief surface.”
  • a cutting blade is located on at least a portion of the ridgeline where the first surface and the second surface intersect, and the cermet tool 1 cuts the workpiece by applying the cutting blade to the workpiece.
  • a through hole 21 that vertically penetrates the base 2 may be located in the center of the base 2.
  • a screw 75 for attaching the cermet tool 1 to a holder 70, which will be described later, is inserted into the through hole 21 (see FIG. 4).
  • the base body 2 is made of a cermet sintered body.
  • the cermet sintered body contains Ti (titanium) and W (tungsten), and also contains at least one of Co (cobalt) and Ni (nickel).
  • the base body 2 which is a cermet sintered body, contains a hard phase 5 and a bonding phase 6.
  • the substrate 2 is formed by solid solution of TiCN and at least a portion of carbides, nitrides, and carbonitrides of at least one metal of Groups 4, 5, and 6 of the periodic table other than Ti.
  • a hard phase 5 is bonded with a bonding phase 6.
  • the bonded phase 6 contains W and at least one of Co and Ni.
  • the first hard phase is a hard phase containing TiCN as a main component.
  • main component refers to, for example, 55% by mass or more when the entire hard phase of the constituent components is 100% by mass.
  • the first hard phase contains 80% by weight or more of Ti as metal components, and 1% or more by weight of W and one or more metals from Groups 4, 5, and 6 of the periodic table. Contains less than %. Moreover, the first hard phase contains Co and/or Ni as the remainder.
  • the second hard phase is a hard phase made of a composite carbonitride solid solution of Ti and at least one metal of Groups 4, 5, and 6 of the periodic table. Specifically, the second hard phase contains Ti in a total amount of 30% or more and 70% by weight, W and one or more metals from Groups 4, 5, and 6 of the periodic table in a total amount of 70% or more and 30% by weight. % or less, and the total amount of binder phase metals such as Co and/or Ni is 0% or more and 3% or less by weight.
  • the first hard phase 5a is relatively smaller than the second hard phase 5b.
  • the second hard phase 5b is observed to be black, and the second hard phase 5b is relatively grayer than the first hard phase 5a.
  • the second hard phase 5b also includes a double cored structure in which the first hard phase 5a is the core and the second hard phase 5b is the peripheral part. Note that it is not necessary that all the second hard phases 5b have a cored structure.
  • a region centered at a depth of 10 ⁇ m from the surface of the base 2 is defined as the base 2, in other words, the surface region of the cermet sintered body.
  • the width of the surface region in the depth direction of the base body 2 may be, for example, 20 ⁇ m.
  • a region centered at an arbitrary position 0.4 mm or more deep from the surface of the base 2 is defined as an internal region of the base 2.
  • the width of the internal region in the depth direction of the base body 2 may be, for example, 20 ⁇ m.
  • the average particle diameter d 2in of the second hard phase 5b in the internal region and the average particle diameter d 2sf of the second hard phase 5b in the surface region are both 0.35 ⁇ m or more and 0.6 ⁇ m. It is as follows. Further, the area ratio S 2in of the second hard phase 5b to the entire hard phase in the internal region and the area ratio S 2sf of the second hard phase 5b to the entire hard phase in the surface area are both 50 area % or more and 80 area %. It is as follows.
  • the intensity ⁇ 1 in the surface region and the intensity ⁇ 2 in the inner region are both 2300 MPa or more, and the intensity ratio ( ⁇ 1/ ⁇ 2) of the intensity ⁇ 1 in the surface region to the intensity ⁇ 2 in the inner region is 0.8 That's all.
  • the average particle diameter d 1in of the first hard phase 5a in the internal region and the average particle diameter d 1sf of the first hard phase 5a in the surface region are both 0.25 ⁇ m or more and 0.35 ⁇ m. It may be the following. Further, the average particle diameter d 1in of the first hard phase 5a in the internal region and the average particle diameter d 1sf of the first hard phase 5a in the surface region may both be 0.25 ⁇ m or more and 0.3 ⁇ m or less. .
  • the area ratio S 1in of the first hard phase 5a to the entire hard phase in the internal region and the area ratio S 1sf of the first hard phase 5a to the entire hard phase in the surface area are both 20 area % or more and 35 area %. It may be the following.
  • the average grain size d 1sf and area ratio S 1sf of the first hard phase 5a in the surface region are the same as the average grain size d 1in and area ratio S 1in of the first hard phase 5a in the inner region.
  • the thermal shock resistance on the surface can be improved to the same extent as the thermal shock resistance on the inside.
  • the hardness H1 in the surface region and the hardness H2 in the internal region may both be 1450 HV or more.
  • of the difference between the hardness H1 in the surface region and the hardness H2 in the internal region may be 50 or less.
  • the hardness H1 in the surface region is approximately the same as the hardness H2 in the internal region, so that the thermal shock resistance at the surface can be increased to the same extent as the thermal shock resistance inside.
  • the coating layer 3 is coated on the base body 2 for the purpose of improving the wear resistance, heat resistance, etc. of the base body 2, for example.
  • FIG. 2 shows an example in which the coating layer 3 covers the entire surface of the base 2, the coating layer 3 does not necessarily need to cover the entire surface of the base 2.
  • the covering layer 3 only needs to be located on at least a portion of the surface of the base 2.
  • the coating layer 3 is located on the first surface, here the upper surface, of the base body 2, the first surface has high wear resistance and heat resistance.
  • the coating layer 3 is located on the second surface of the base body 2, in this case on the side surface, the second surface has high wear resistance and heat resistance.
  • the coating layer 3 is made of, for example, at least one metal element selected from Group 4, 5, and 6 elements of the periodic table, Al (aluminum), and Si (silicon), and C (carbon), N (nitrogen), and O. (oxygen). With such a configuration, the oxidation resistance of the coating layer 3 is improved. This further improves the wear resistance of the coating layer 3.
  • the covering layer 3 may be one layer.
  • the cermet tool 1 may have the coating layer 3 laminated in a layered manner, that is, two or more layers.
  • the average particle size (d 1in , d 2in , d 1sf , d 2sf ) and the area ratio (S 1in , S 2in , S 1sf , S 2sf ) can be determined, for example, by the following procedure.
  • a cross section of the cermet sintered body is photographed with a scanning electron microscope (SEM) at a magnification of 10,000 times to obtain a backscattered electron image.
  • a region including a position at a depth of 10 ⁇ m from the surface of the cermet sintered body is defined as a surface region, and a region including a position at a depth of 400 ⁇ m from the surface of the cermet sintered body is defined as an internal region.
  • draw a straight line with a length of 10 ⁇ m in the direction parallel to the surface of the cermet sintered body and calculate each phase from the length of the line segment that crosses the first hard phase and the length of the line segment that crosses the second hard phase.
  • the diameter, specifically the particle diameter and abundance ratio, specifically the area ratio may be determined.
  • the average particle diameter of the first hard phase may be calculated by dividing the total length of line segments that cross the first hard phase by the number of first hard phases that the line crosses.
  • the average particle diameter of the second hard phase may be calculated by dividing the total length of line segments that cross the second hard phase by the number of second hard phases that the line crosses.
  • the average particle size of the first hard phase and the second hard phase particles smaller than a specific value may be excluded from the target in order to avoid measurement variations. For example, if 0.1 ⁇ m is set as a specific value, and the first hard phase whose line segment is 0.1 ⁇ m or more is the first measurement target, the total length of the line segments in this first measurement target is the line The average particle size of the first hard phase may be calculated by dividing by the number of first measurement objects crossed by the first measurement target. Similarly, if the second hard phase whose line segment is 0.1 ⁇ m or more is the second measurement target, the total length of the line segments in this second measurement target is the number of second measurement targets crossed by the line. By dividing, the average particle size of the second hard phase may be calculated.
  • the length of the line segment that crosses the first hard phase when the sum of the length of the line segment that crosses the first hard phase and the total length of the line segment that crosses the second hard phase is taken as 100%.
  • the total ratio may be calculated as the area ratio of the first hard phase.
  • the length of the line segment that crosses the second hard phase when the sum of the lengths of the line segments that cross the first hard phase and the total length of the line segments that cross the second hard phase is taken as 100%.
  • the total ratio of the hard phase may be calculated as the area ratio of the second hard phase.
  • the bonded phase region is excluded.
  • the measurement may preferably be performed by measuring three visual fields and taking the average thereof. It can also be measured using a commercially available image analysis device.
  • TiCN powder is utilized.
  • This TiCN raw material powder may be one that is generally used in the production of cermets.
  • the TiCN raw material powder may have already undergone a pulverization process. Furthermore, if the TiCN raw material powder has not undergone a pulverization process, it may be pulverized using a rotary mill and media.
  • TiCN raw material powder having such dislocations, carbides of the metals mentioned above, and Co or Ni as the binder phase as raw materials.
  • a raw material powder of TiCN having dislocations may be used, and the binder phase components such as Co and Ni may be 14% by mass or more and 22% by mass or less.
  • the binder phase component is within the above range, the cermet that is the base has high toughness and high hardness.
  • the firing step may be, for example, the following steps.
  • (a) Step of raising the temperature from room temperature to 1100°C in vacuum (b) Holding the temperature at 1100°C in vacuum for 1 to 2.5 hours (c) Injecting N2 gas into the firing furnace at 1100°C and changing the pressure inside the firing furnace to pressure P1, which is 5 Pa, and then increasing the temperature from 1100°C to temperature T1 of 1150 to 1300°C at a heating rate r1 of 0.1 to 2°C/min (d ) Holding at temperature T1 for 0.5 to 2 hours (e) At temperature T1, change the pressure in the firing furnace to pressure P2, which is 300 to 2000 Pa higher than pressure P1, and then change from temperature T1 to 1300 to 2000 Pa.
  • temperature T3 Specifically, after 0.25 hours have passed, the pressure in the firing furnace is gradually reduced from P3 to 5 Pa while applying the pressure in the firing furnace for 0.25 hours. Thereafter, the pressure is maintained at 5 Pa for 0.5 hours.
  • the cermet sintered body of the present disclosure can be produced by firing a molded body having the above-described composition in the above-described firing process.
  • the coating layer 3 may be a so-called hard film, and may be formed by, for example, a PVD method or a CVD method.
  • the coating film may be a single layer or a laminated film.
  • FIG. 4 is a front view showing an example of the cutting tool according to the embodiment.
  • the cutting tool 100 includes a cermet tool 1 and a holder 70 for fixing the cermet tool 1.
  • the holder 70 is a rod-shaped member that extends from the first end toward the second end.
  • the first end is the top end in FIG. 4, and the second end is the bottom end in FIG.
  • the holder 70 is made of steel or cast iron, for example. In particular, it is preferable to use steel with high toughness among these members.
  • the holder 70 has a pocket 73 at the first end.
  • the pocket 73 is a portion on which the cermet tool 1 is mounted, and has a seating surface that intersects with the rotational direction of the workpiece and a restraining side surface that is inclined with respect to the seating surface.
  • the seating surface is provided with a screw hole into which a screw 75, which will be described later, is screwed.
  • the cermet tool 1 is located in the pocket 73 of the holder 70 and is attached to the holder 70 by a screw 75. That is, the screw 75 is inserted into the through hole 21 of the cermet tool 1, and the tip of the screw 75 is inserted into a screw hole formed in the seating surface of the pocket 73, so that the screw portions are screwed together. Thereby, the cermet tool 1 is attached to the holder 70 so that the cutting edge portion protrudes outward from the holder 70.
  • a cutting tool used for so-called turning is exemplified.
  • turning processing include inner diameter processing, outer diameter processing, and grooving.
  • the cutting tool is not limited to one used for turning.
  • the cermet tool 1 may be used as a cutting tool used for milling.
  • cutting tools used in milling include milling cutters such as flat milling cutters, face milling cutters, side milling cutters, and groove milling cutters, and end mills such as single-flute end mills, multi-flute end mills, tapered blade end mills, and ball end mills. .
  • Sample No. which is a cermet sintered body. 3 and no. No. 4 was manufactured using the manufacturing method described above.
  • Sample No. 3 and no. 4 is an example of the present disclosure.
  • sample No. 1 and no. 2 is a conventional cermet sintered body and is a comparative example.
  • Sample No. The average particle size of the first hard phase in Sample No. 1 was 0.22 ⁇ m in the surface region and 0.31 ⁇ m in the internal region.
  • Sample No. The average particle size of the first hard phase in No. 2 was 0.29 ⁇ m in the inner region.
  • Sample No. The average particle size of the first hard phase in Sample No. 3 was 0.29 ⁇ m in the surface region and 0.3 ⁇ m in the internal region.
  • Sample No. The average particle size of the first hard phase in Sample No. 4 was 0.26 ⁇ m in the surface region and 0.34 ⁇ m in the internal region.
  • Sample No. The area ratio of the first hard phase in Sample No. 1 was 12 area % in the surface area and 36.8 area % in the internal area.
  • Sample No. The area ratio of the first hard phase in No. 2 was 0 area % in the surface area and 4.3 area % in the internal area.
  • Sample No. The area ratio of the first hard phase in Sample No. 3 was 28.7 area % in the surface area and 30.1 area % in the internal area.
  • Sample No. The area ratio of the first hard phase in Sample No. 4 was 19 area % in the surface area and 51 area % in the internal area.
  • the ratio of the average particle size of the first hard phase in the surface area to the average particle size of the first hard phase in the internal area is as follows: Sample No. 1 is 0.7, sample No. 3 is 0.95, sample No. 4 was 0.76. The ratio is determined by surface average particle size/internal average particle size.
  • Sample No. The average particle size of the second hard phase in Sample No. 1 was 0.95 ⁇ m in the surface region and 0.48 ⁇ m in the internal region.
  • Sample No. The average particle size of the second hard phase in Sample No. 2 was 0.91 ⁇ m in the surface region and 0.85 ⁇ m in the internal region.
  • Sample No. The average particle size of the second hard phase in Sample No. 3 was 0.41 ⁇ m in the surface region and 0.51 ⁇ m in the internal region.
  • Sample No. The average particle size of the second hard phase in Sample No. 4 was 0.36 ⁇ m in the surface region and 0.58 ⁇ m in the internal region.
  • Sample No. The area ratio of the second hard phase in Sample No. 1 was 88 area % in the surface area and 63.2 area % in the internal area.
  • Sample No. The area ratio of the second hard phase in No. 2 was 100 area % in the surface area and 95.7 area % in the internal area.
  • Sample No. The area ratio of the second hard phase in No. 3 was 71.3 area % in the surface area and 69.9 area % in the internal area.
  • Sample No. The area ratio of the second hard phase in No. 4 was 81 area % in the surface area and 49 area % in the internal area.
  • the ratio of the average particle size of the second hard phase in the surface area to the average particle size of the second hard phase in the internal area is as follows: Sample No. 1 is 1.98, sample no. 2 is 1.07, sample No. 3 is 0.8, sample No. 4 was 0.62.
  • the average particle diameter of the entire hard phase including the first hard phase and the second hard phase is that of sample No.
  • Sample No. 1 was 0.64 ⁇ m in the surface region, 0.39 ⁇ m in the internal region, and sample No. Sample No. 2 was 0.91 ⁇ m in the surface region and 0.85 ⁇ m in the internal region.
  • Sample No. 3 was 0.36 ⁇ m in the surface region and 0.42 ⁇ m in the internal region.
  • 4 was 0.34 ⁇ m in the surface area and 0.46 ⁇ m in the internal area.
  • sample No. which is an example. 3 the area ratio S 2in of the second hard phase to the entire hard phase in the internal region and the area ratio S 2sf of the second hard phase to the entire hard phase in the surface area are both 50 area % or more and 80 area % or less. It is.
  • sample No. which is an example. 3 the area ratio S 1in of the first hard phase to the entire hard phase in the internal region and the area ratio S 1sf of the first hard phase to the entire hard phase in the surface area are both 20 area % or more and 35 area % or less. It is.
  • sample No. 3 and no. Sample No. 4 is a comparative example. 1, No. It can be seen that the second hard phase in the surface region is finer than that in Sample No. 2. After that, sample No. which is an example. 3 and no. Sample No. 4 is a comparative example. 1, No. It can be seen that compared to No. 2, the difference in particle size between the hard phase between the surface region and the internal region, specifically, the first hard phase and the second hard phase, is small.
  • thermal conductivity may be determined in accordance with JIS R 1611.
  • Young's modulus may be determined in accordance with ISO14577.
  • the coefficient of thermal expansion may be determined in accordance with JIS R 1618.
  • the hardness may be determined in accordance with JIS R 1610.
  • the anti-destructive strength may be determined in accordance with JIS R 1601.
  • a strength test piece was prepared as described below and used for the bending strength test of the surface region and internal region. Each surface of a rectangular parallelepiped sintered body of an internal strength test piece (dimensions: 4 mm * 5 mm * 40 mm) was ground by 0.5 mm.
  • a surface strength test piece (dimensions: 4 mm * 5 mm * 40 mm) was ground by 0.5 to 1 mm from each surface of the rectangular parallelepiped except for the tension surface. Furthermore, in order to have the same shape as the tool surface, the tension surface of each strength test piece was blasted and polished by several ⁇ m to 10 ⁇ m to produce a test piece of 3 mm * 4 mm * 40 mm.
  • thermal shock strength (R 1c ) was calculated from the obtained thermal conductivity ( ⁇ ), Young's modulus (E), thermal expansion coefficient ( ⁇ ), and anti-destructive strength ( ⁇ ).
  • ⁇ HV20 shown in Table 2 is the absolute value
  • HV20 means hardness when measured with a test force of 20 kgf.
  • the anti-destructive strength ⁇ 1 in the surface region was 2449 MPa
  • the anti-destructive strength ⁇ 2 in the internal region was 2512 MPa.
  • the strength ratio ( ⁇ 1/ ⁇ 2) of anti-analytical strength ⁇ 1 to anti-analytical strength ⁇ 2 was 0.97. Note that the anti-destructive strength ⁇ 1 is the surface strength, and the anti-destructive strength ⁇ 2 is the internal strength.
  • sample No. which is an example.
  • the anti-destructive strength ⁇ 1 in the surface region was 2450 MPa
  • the anti-destructive strength ⁇ 2 in the internal region was 2350 MPa
  • the strength ratio ( ⁇ 1/ ⁇ 2) of anti-analytical strength ⁇ 1 to anti-analytical strength ⁇ 2 was 1.04.
  • sample No. which is an example. 3 and no. 4 the anti-resistance strength ⁇ 1 in the surface region and the anti-resistance strength ⁇ 2 in the internal region are both 2300 MPa or more, and the strength ratio ( ⁇ 1/ ⁇ 2) of the anti-resistance strength ⁇ 1 to the anti-resistance strength ⁇ 2 is: It is 0.8 or more. From this result, sample No. which is an example. 3 and no. It can be seen that in No. 4, the strength in the inner region is relatively high, and the strength in the surface region is also as high as the strength in the inner region.
  • sample No. which is an example.
  • the hardness H1 in the surface region was 1531 HV20
  • the hardness H2 in the internal region was 1495 HV20
  • ⁇ HV20 was 36HV.
  • the hardness H1 in the surface region and the hardness H2 in the internal region are both 1450 HV or more, and the absolute value of the difference between the hardness H1 and the hardness H2
  • sample No. which is an example.
  • the hardness H1 in the surface region was 1560HV20
  • the hardness H2 in the internal region was 1450HV20
  • ⁇ HV20 was 110HV.
  • sample No. which is an example. No. 3 had a thermal shock strength of 9783 in the surface region and a thermal shock strength of 10105 in the internal region.
  • sample No. which is an example. No. 4 had a thermal shock strength of 9795 in the surface region and a thermal shock strength of 9549 in the internal region.
  • sample No., which is a comparative example. No. 1 had a thermal shock strength of 5922 in the surface region and a thermal shock strength of 10309 in the internal region.
  • sample No. 1, which is a comparative example. No. 2 had a thermal shock strength of 7970 in the surface region and a thermal shock strength of 8274 in the internal region. In this way, sample No. which is an example. 3 and no.
  • Sample No. 4 is a comparative example. 1 and no. It can be seen that the thermal shock strength in the surface region is improved compared to No. 2.
  • FIG. 5 shows sample No. 1, which is a comparative example. 1 and sample No. 1 which is an example. 3 is a graph showing the anti-resistance strength in the surface area and the internal area for No. 3.
  • the vertical axis represents the strength ratio when the anti-destructive strength in the internal region is taken as 100%.
  • FIG. 6 shows sample No. 6, which is a comparative example. 1 and sample No. 1 which is an example. 3 is a graph showing the thermal shock strength of No. 3.
  • sample No. The vertical axis shows the strength ratio when the thermal shock strength in the surface area of No. 1 is taken as 100%.
  • sample No. 1 which is an example, Sample No. 3 is a comparative example. It can be seen that the difference between the anti-destructive strength in the surface region and the anti-destructive strength in the internal region is small compared to No. 1.
  • sample No. 1 which is an example, Sample No. 3 is a comparative example. It can be seen that the thermal shock strength in the surface region is improved compared to No. 1.
  • sample No. which is an example. Sample No. 3 is a comparative example. It can be seen that the thermal shock strength in the surface area is approximately 1.65 times higher than that of No. 1.
  • the cermet sintered body according to the embodiment has a first hard phase (as an example, the first hard phase 5a) containing TiCN as a main component, and A bond containing a second hard phase (for example, second hard phase 5b) that is a composite carbonitride solid solution of at least one of Group 5 and 6 metals and Ti, at least one of Co and Ni, and W. phase (as an example, a bonded phase 6).
  • the average particle diameter d 2in of the second hard phase in the internal region and the average particle diameter d 2sf of the second hard phase in the surface region are both 0.35 ⁇ m or more and 0.6 ⁇ m or less.
  • the intensity ⁇ 1 in the surface region and the intensity ⁇ 2 in the internal region are both 2300 MPa or more, and the intensity ratio of ⁇ 1 to ⁇ 2 ( ⁇ 1/ ⁇ 2) is 0.8 or more.
  • the thermal shock resistance on the surface can be improved.
  • a cermet tool according to the present disclosure includes, for example, a rod-shaped main body having a rotating shaft and extending from a first end to a second end, a cutting blade located at the first end of the main body, and a second end of the main body from the cutting blade. It may have a groove extending spirally toward the side.
  • the use of the cermet sintered body according to the present disclosure is not limited to tools.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

A cermet sintered body according to the present disclosure comprises: a first hard phase mainly composed of TiCN; a second hard phase that is a composite carbonitride solid solution of Ti and at least one of the metals of Groups 4, 5, and 6 of the periodic table; and a binder phase containing W and at least one of Co and Ni. The average particle size of the second hard phase in an internal region and the average particle size of the second hard phase in a surface region are each 0.35-0.6 μm. The strength σ1 in the surface region and the strength σ2 in the internal region are each 2300 MPa or more, and the strength ratio of σ1 to σ2 is 0.8 or more.

Description

サーメット焼結体、サーメット工具および切削工具Cermet sintered bodies, cermet tools and cutting tools
 本開示は、サーメット焼結体、サーメット工具および切削工具に関する。 The present disclosure relates to a cermet sintered body, a cermet tool, and a cutting tool.
 切削工具や耐摩耗性部材、摺動部材等の耐摩耗性、摺動性、耐チッピング性を必要とする部材の基体として、チタン(Ti)を主成分とするサーメット焼結体が広く使われている。 Cermet sintered bodies containing titanium (Ti) as the main component are widely used as substrates for parts that require wear resistance, sliding properties, and chipping resistance, such as cutting tools, wear-resistant parts, and sliding parts. ing.
特許第3099834号公報Patent No. 3099834
 本開示の一態様によるサーメット焼結体は、TiCNを主成分とする第1硬質相と、周期表第4、5および6族金属の少なくとも1種とTiとの複合炭窒化物固溶体である第2硬質相と、CoおよびNiの少なくとも1種とWとを含有する結合相とを含む。内部領域における第2硬質相の平均粒径d2in、および、表面領域における第2硬質相の平均粒径d2sfは、いずれも0.35μm以上0.6μm以下である。表面領域における強度σ1、および、内部領域における強度σ2は、いずれも2300MPa以上であり、かつ、σ1のσ2に対する強度比率(σ1/σ2)は、0.8以上である。 A cermet sintered body according to one aspect of the present disclosure includes a first hard phase mainly composed of TiCN and a composite carbonitride solid solution of Ti and at least one metal of Groups 4, 5, and 6 of the periodic table. 2 hard phases, and a binder phase containing at least one of Co and Ni and W. The average particle diameter d 2in of the second hard phase in the internal region and the average particle diameter d 2sf of the second hard phase in the surface region are both 0.35 μm or more and 0.6 μm or less. The intensity σ1 in the surface region and the intensity σ2 in the internal region are both 2300 MPa or more, and the intensity ratio of σ1 to σ2 (σ1/σ2) is 0.8 or more.
図1は、実施形態に係るサーメット工具の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a cermet tool according to an embodiment. 図2は、実施形態に係るサーメット工具の一例を示す側断面図である。FIG. 2 is a side sectional view showing an example of the cermet tool according to the embodiment. 図3は、サーメット焼結体の断面部についての走査型電子顕微鏡写真の模写図である。FIG. 3 is a copy of a scanning electron micrograph of a cross section of a cermet sintered body. 図4は、実施形態に係る切削工具の一例を示す正面図である。FIG. 4 is a front view showing an example of the cutting tool according to the embodiment. 図5は、比較例である試料No.1と実施例である試料No.3についての、表面領域および内部領域における抗析強度を示すグラフである。FIG. 5 shows sample No. 1, which is a comparative example. 1 and sample No. 1 which is an example. 3 is a graph showing the anti-resistance strength in the surface area and the internal area for No. 3. 図6は、比較例である試料No.1と実施例である試料No.3の熱衝撃強度を示すグラフである。FIG. 6 shows sample No. 1, which is a comparative example. 1 and sample No. 1 which is an example. 3 is a graph showing the thermal shock strength of No. 3.
 以下に、本開示によるサーメット焼結体、サーメット工具および切削工具を実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。なお、この実施形態により本開示によるサーメット焼結体、サーメット工具および切削工具が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。 Hereinafter, embodiments (hereinafter referred to as "embodiments") for implementing a cermet sintered body, a cermet tool, and a cutting tool according to the present disclosure will be described in detail with reference to the drawings. Note that this embodiment does not limit the cermet sintered body, cermet tool, and cutting tool according to the present disclosure. Moreover, each embodiment can be combined as appropriate within the range that does not conflict with the processing contents. Further, in each of the embodiments below, the same parts are given the same reference numerals, and redundant explanations will be omitted.
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、例えば製造精度、設置精度などのずれを許容するものとする。 In addition, in the embodiments described below, expressions such as "constant", "orthogonal", "perpendicular", or "parallel" may be used, but these expressions strictly do not mean "constant", "orthogonal", "parallel", etc. They do not need to be "perpendicular" or "parallel". That is, each of the above expressions allows for deviations in manufacturing accuracy, installation accuracy, etc., for example.
 従来のサーメット焼結体には、表面における耐熱衝撃性を向上させるという点で更なる改善の余地がある。このため、表面における耐熱衝撃性が高いサーメット焼結体、サーメット工具および切削工具の提供が期待されている。 There is room for further improvement in conventional cermet sintered bodies in terms of improving the thermal shock resistance on the surface. Therefore, it is expected to provide a cermet sintered body, a cermet tool, and a cutting tool that have high thermal shock resistance on the surface.
<サーメット工具>
 図1は、実施形態に係るサーメット工具の一例を示す斜視図である。また、図2は、実施形態に係るサーメット工具の一例を示す側断面図である。図3は、サーメット焼結体の断面部についての走査型電子顕微鏡写真の模写図である。
<Cermet tools>
FIG. 1 is a perspective view showing an example of a cermet tool according to an embodiment. Moreover, FIG. 2 is a side sectional view showing an example of the cermet tool according to the embodiment. FIG. 3 is a copy of a scanning electron micrograph of a cross section of a cermet sintered body.
 図1および図2に示すように、実施形態に係るサーメット工具1は、基体2と、被覆層3とを有する。 As shown in FIGS. 1 and 2, the cermet tool 1 according to the embodiment includes a base body 2 and a coating layer 3.
 基体2は、たとえば、上面および下面(図1に示すZ軸と交わる面)の形状が平行四辺形である六面体形状を有する。 The base 2 has, for example, a hexahedral shape in which the top and bottom surfaces (the surfaces intersecting the Z-axis shown in FIG. 1) are parallelograms.
 基体2の1つのコーナー部は、切刃部として機能する。切刃部は、第1面と、第1面に連接する第2面とを有する。第1面は、たとえば基体2の上面である。第2面は、たとえば基体2の側面である。実施形態において、第1面は切削により生じた切屑をすくい取る「すくい面」として機能し、第2面は「逃げ面」として機能する。第1面と第2面とが交わる稜線の少なくとも一部には、切刃が位置しており、サーメット工具1は、かかる切刃を被削材に当てることによって被削材を切削する。 One corner of the base 2 functions as a cutting edge. The cutting edge has a first surface and a second surface connected to the first surface. The first surface is, for example, the upper surface of the base 2. The second surface is, for example, a side surface of the base body 2. In the embodiment, the first surface functions as a "rake surface" that scoops up chips generated by cutting, and the second surface functions as a "relief surface." A cutting blade is located on at least a portion of the ridgeline where the first surface and the second surface intersect, and the cermet tool 1 cuts the workpiece by applying the cutting blade to the workpiece.
 基体2の中央部には、基体2を上下に貫通する貫通孔21が位置していてもよい。この場合、貫通孔21には、後述するホルダ70にサーメット工具1を取り付けるためのネジ75が挿入される(図4参照)。 A through hole 21 that vertically penetrates the base 2 may be located in the center of the base 2. In this case, a screw 75 for attaching the cermet tool 1 to a holder 70, which will be described later, is inserted into the through hole 21 (see FIG. 4).
 基体2は、サーメット焼結体からなる。サーメット焼結体は、Ti(チタン)とW(タングステン)とを含有するとともに、Co(コバルト)およびNi(ニッケル)の少なくとも一方を含有する。 The base body 2 is made of a cermet sintered body. The cermet sintered body contains Ti (titanium) and W (tungsten), and also contains at least one of Co (cobalt) and Ni (nickel).
 図3に示すように、サーメット焼結体である基体2は、硬質相5と結合相6とを含有する。具体的には、基体2は、TiCNとTi以外の周期表第4、5および6族金属の少なくとも1種の金属の炭化物、窒化物および炭窒化物の少なくとも一部とが固溶してなる硬質相5を結合相6にて結合したものである。結合相6は、CoおよびNiの少なくとも1種とWとを含有する。 As shown in FIG. 3, the base body 2, which is a cermet sintered body, contains a hard phase 5 and a bonding phase 6. Specifically, the substrate 2 is formed by solid solution of TiCN and at least a portion of carbides, nitrides, and carbonitrides of at least one metal of Groups 4, 5, and 6 of the periodic table other than Ti. A hard phase 5 is bonded with a bonding phase 6. The bonded phase 6 contains W and at least one of Co and Ni.
 第1硬質相は、TiCNを主成分とする硬質相である。本開示において「主成分」とは、たとえば、構成する成分の硬質相全体を100質量%とした場合、55質量%以上のことである。 The first hard phase is a hard phase containing TiCN as a main component. In the present disclosure, the term "main component" refers to, for example, 55% by mass or more when the entire hard phase of the constituent components is 100% by mass.
 具体的には、第1硬質相は、金属成分としてTiを80重量%以上、Wと周期表第4、5および6族金属のうちの1種以上の金属の総量を1重量%以上15重量%以下含有する。また、第1硬質相は、残部としてCoおよび/またはNiを含有する。 Specifically, the first hard phase contains 80% by weight or more of Ti as metal components, and 1% or more by weight of W and one or more metals from Groups 4, 5, and 6 of the periodic table. Contains less than %. Moreover, the first hard phase contains Co and/or Ni as the remainder.
 第2硬質相は、周期表第4、5および6族金属の少なくとも1種とTiとの複合炭窒化物固溶体からなる硬質相である。具体的には、第2硬質相は、Tiを30重量%以上70重量%、Wと周期表第4、5および6族金属のうちの1種以上の金属を総量で70重量%以上30重量%以下、Coおよび/またはNiの結合相金属を総量で0重量%以上3重量%以下含有する。 The second hard phase is a hard phase made of a composite carbonitride solid solution of Ti and at least one metal of Groups 4, 5, and 6 of the periodic table. Specifically, the second hard phase contains Ti in a total amount of 30% or more and 70% by weight, W and one or more metals from Groups 4, 5, and 6 of the periodic table in a total amount of 70% or more and 30% by weight. % or less, and the total amount of binder phase metals such as Co and/or Ni is 0% or more and 3% or less by weight.
 図3に示すように、走査型電子顕微鏡(SEM)によって得られるサーメット任意断面の画像、具体的には、反射電子画像において、第1硬質相5aは、第2硬質相5bよりも相対的に黒色に観察され、第2硬質相5bは、第1硬質相5aよりも相対的に灰白色に観察される。第2硬質相5bは、第1硬質相5aを芯部とし、第2硬質相5bを周辺部とする2重有芯構造をなしているものも含む。なお、全ての第2硬質相5bが有芯構造をなしていることを要しない。 As shown in FIG. 3, in an image of an arbitrary cross section of a cermet obtained by a scanning electron microscope (SEM), specifically, in a backscattered electron image, the first hard phase 5a is relatively smaller than the second hard phase 5b. The second hard phase 5b is observed to be black, and the second hard phase 5b is relatively grayer than the first hard phase 5a. The second hard phase 5b also includes a double cored structure in which the first hard phase 5a is the core and the second hard phase 5b is the peripheral part. Note that it is not necessary that all the second hard phases 5b have a cored structure.
 ここで、基体2の表面から10μmを深さの位置を中心とする領域を基体2、言い換えれば、サーメット焼結体の表面領域と規定する。基体2の深さ方向における表面領域の幅は、たとえば20μmであってもよい。また、基体2の表面から0.4mm以上深い任意の位置を中心とする領域を基体2の内部領域と規定する。基体2の深さ方向における内部領域の幅は、たとえば、20μmであってもよい。 Here, a region centered at a depth of 10 μm from the surface of the base 2 is defined as the base 2, in other words, the surface region of the cermet sintered body. The width of the surface region in the depth direction of the base body 2 may be, for example, 20 μm. Further, a region centered at an arbitrary position 0.4 mm or more deep from the surface of the base 2 is defined as an internal region of the base 2. The width of the internal region in the depth direction of the base body 2 may be, for example, 20 μm.
 実施形態に係る基体2は、内部領域における第2硬質相5bの平均粒径d2in、および、表面領域における第2硬質相5bの平均粒径d2sfが、いずれも0.35μm以上0.6μm以下である。また、内部領域の硬質相全体に対する第2硬質相5bの面積比率S2in、および、表面領域の硬質相全体に対する第2硬質相5bの面積比率S2sfは、いずれも50面積%以上80面積%以下である。また、表面領域における強度σ1、および、内部領域における強度σ2は、いずれも2300MPa以上であり、かつ、表面領域における強度σ1の内部領域における強度σ2に対する強度比率(σ1/σ2)は、0.8以上である。 In the base body 2 according to the embodiment, the average particle diameter d 2in of the second hard phase 5b in the internal region and the average particle diameter d 2sf of the second hard phase 5b in the surface region are both 0.35 μm or more and 0.6 μm. It is as follows. Further, the area ratio S 2in of the second hard phase 5b to the entire hard phase in the internal region and the area ratio S 2sf of the second hard phase 5b to the entire hard phase in the surface area are both 50 area % or more and 80 area %. It is as follows. In addition, the intensity σ1 in the surface region and the intensity σ2 in the inner region are both 2300 MPa or more, and the intensity ratio (σ1/σ2) of the intensity σ1 in the surface region to the intensity σ2 in the inner region is 0.8 That's all.
 かかる構成によれば、サーメット焼結体の表面における強度を高めつつ、サーメット表面におけるヤング率の上昇を低減し、サーメットの表面における耐熱衝撃性を向上させることができる。特に、湿式断続切削等過酷な熱衝撃が発生するような条件においてもサーメットの耐摩耗性および耐欠損性を向上させることが可能である。 According to this configuration, it is possible to increase the strength on the surface of the cermet sintered body, reduce the increase in Young's modulus on the cermet surface, and improve the thermal shock resistance on the cermet surface. In particular, it is possible to improve the wear resistance and chipping resistance of the cermet even under conditions where severe thermal shock occurs, such as during wet interrupted cutting.
 実施形態に係る基体2は、内部領域における第1硬質相5aの平均粒径d1in、および、表面領域における第1硬質相5aの平均粒径d1sfが、いずれも0.25μm以上0.35μm以下であってもよい。また、内部領域における第1硬質相5aの平均粒径d1in、および、表面領域における第1硬質相5aの平均粒径d1sfは、いずれも0.25μm以上0.3μm以下であってもよい。また、内部領域の硬質相全体に対する第1硬質相5aの面積比率S1in、および、表面領域の硬質相全体に対する第1硬質相5aの面積比率S1sfは、いずれも20面積%以上35面積%以下であってもよい。かかる構成を有する基体2は、表面領域における第1硬質相5aの平均粒径d1sfおよび面積比率S1sfが、内部領域における第1硬質相5aの平均粒径d1inおよび面積比率S1inと同程度であることから、表面における耐熱衝撃性を内部における耐熱衝撃性と同程度に高めることができる。 In the base body 2 according to the embodiment, the average particle diameter d 1in of the first hard phase 5a in the internal region and the average particle diameter d 1sf of the first hard phase 5a in the surface region are both 0.25 μm or more and 0.35 μm. It may be the following. Further, the average particle diameter d 1in of the first hard phase 5a in the internal region and the average particle diameter d 1sf of the first hard phase 5a in the surface region may both be 0.25 μm or more and 0.3 μm or less. . Further, the area ratio S 1in of the first hard phase 5a to the entire hard phase in the internal region and the area ratio S 1sf of the first hard phase 5a to the entire hard phase in the surface area are both 20 area % or more and 35 area %. It may be the following. In the base body 2 having such a configuration, the average grain size d 1sf and area ratio S 1sf of the first hard phase 5a in the surface region are the same as the average grain size d 1in and area ratio S 1in of the first hard phase 5a in the inner region. The thermal shock resistance on the surface can be improved to the same extent as the thermal shock resistance on the inside.
 実施形態に係る基体2は、表面領域における硬度H1、および、内部領域における硬度H2が、いずれも1450HV以上であってもよい。この場合、表面領域における硬度H1と内部領域における硬度H2の差の絶対値|H1-H2|は、50以下であってもよい。かかる構成を有する基体2は、表面領域における硬度H1が、内部領域における硬度H2と同程度であることから、表面における耐熱衝撃性を内部における耐熱衝撃性と同程度に高めることができる。 In the base body 2 according to the embodiment, the hardness H1 in the surface region and the hardness H2 in the internal region may both be 1450 HV or more. In this case, the absolute value |H1−H2| of the difference between the hardness H1 in the surface region and the hardness H2 in the internal region may be 50 or less. In the base body 2 having such a configuration, the hardness H1 in the surface region is approximately the same as the hardness H2 in the internal region, so that the thermal shock resistance at the surface can be increased to the same extent as the thermal shock resistance inside.
(被覆層3)
 被覆層3は、例えば、基体2の耐摩耗性、耐熱性等を向上させることを目的として基体2に被覆される。図2では、被覆層3が基体2の表面を全体的に覆っている場合の例を示しているが、被覆層3は、必ずしも基体2の表面の全体を覆うことを要しない。被覆層3は、基体2の表面の少なくとも一部に位置していればよい。被覆層3が基体2の第1面、ここでは上面に位置する場合、第1面の耐摩耗性、耐熱性が高い。被覆層3が基体2の第2面、ここでは側面に位置する場合、第2面の耐摩耗性、耐熱性が高い。
(Coating layer 3)
The coating layer 3 is coated on the base body 2 for the purpose of improving the wear resistance, heat resistance, etc. of the base body 2, for example. Although FIG. 2 shows an example in which the coating layer 3 covers the entire surface of the base 2, the coating layer 3 does not necessarily need to cover the entire surface of the base 2. The covering layer 3 only needs to be located on at least a portion of the surface of the base 2. When the coating layer 3 is located on the first surface, here the upper surface, of the base body 2, the first surface has high wear resistance and heat resistance. When the coating layer 3 is located on the second surface of the base body 2, in this case on the side surface, the second surface has high wear resistance and heat resistance.
 被覆層3は、たとえば、周期表の4、5および6族元素ならびにAl(アルミニウム)およびSi(珪素)から選択される少なくとも1種の金属元素と、C(炭素)、N(窒素)およびO(酸素)から選択される少なくとも1種の非金属元素とからなっていてもよい。かかる構成とした場合、被覆層3の耐酸化性が向上する。これにより、被覆層3の耐摩耗性がさらに向上する。被覆層3は、1層であってもよい。また、サーメット工具1は、層状に積層された、すなわち2層以上の被覆層3を有していてもよい。 The coating layer 3 is made of, for example, at least one metal element selected from Group 4, 5, and 6 elements of the periodic table, Al (aluminum), and Si (silicon), and C (carbon), N (nitrogen), and O. (oxygen). With such a configuration, the oxidation resistance of the coating layer 3 is improved. This further improves the wear resistance of the coating layer 3. The covering layer 3 may be one layer. Moreover, the cermet tool 1 may have the coating layer 3 laminated in a layered manner, that is, two or more layers.
(解析方法)
 上記平均粒径(d1in、d2in、d1sf、d2sf)および面積比率(S1in、S2in、S1sf、S2sf)は、たとえば以下の手順により求めることができる。
(analysis method)
The average particle size (d 1in , d 2in , d 1sf , d 2sf ) and the area ratio (S 1in , S 2in , S 1sf , S 2sf ) can be determined, for example, by the following procedure.
 走査型電子顕微鏡(SEM)にて10000倍でサーメット焼結体の断面を撮影して反射電子像を得る。サーメット焼結体の表面から10μmの深さの位置を含む領域を表面領域とし、サーメット焼結体の表面から400μmの深さの位置を含む領域を内部領域として定義する。それぞれの領域において、サーメット焼結体の表面と平行方向に長さ10μmの直線を引き、第1硬質相を横切る線分の長さと第2硬質相を横切る線分の長さとから、それぞれの相の直径、具体的には粒子径と存在割合、具体的には面積比率を求めてもよい。 A cross section of the cermet sintered body is photographed with a scanning electron microscope (SEM) at a magnification of 10,000 times to obtain a backscattered electron image. A region including a position at a depth of 10 μm from the surface of the cermet sintered body is defined as a surface region, and a region including a position at a depth of 400 μm from the surface of the cermet sintered body is defined as an internal region. In each region, draw a straight line with a length of 10 μm in the direction parallel to the surface of the cermet sintered body, and calculate each phase from the length of the line segment that crosses the first hard phase and the length of the line segment that crosses the second hard phase. The diameter, specifically the particle diameter and abundance ratio, specifically the area ratio may be determined.
 具体的には、第1硬質相を横切る線分の長さの合計を線が横切った第1硬質相の数で割った値を第1硬質相の平均粒径として算出してもよい。同様に、第2硬質相を横切る線分の長さの合計を線が横切った第2硬質相の数で割った値を第2硬質相の平均粒径として算出してもよい。 Specifically, the average particle diameter of the first hard phase may be calculated by dividing the total length of line segments that cross the first hard phase by the number of first hard phases that the line crosses. Similarly, the average particle diameter of the second hard phase may be calculated by dividing the total length of line segments that cross the second hard phase by the number of second hard phases that the line crosses.
 なお、第1硬質相及び第2硬質相の平均粒径を算出する際には、測定バラつきを避けるため、特定の値よりも小さいものを対象から除外してもよい。例えば、0.1μmを特定の値として設定し、上記の線分が0.1μm以上となる第1硬質相を第1測定対象として、この第1測定対象における線分の長さの合計を線が横切った第1測定対象の数で割ることによって、第1硬質相の平均粒径を算出してもよい。同様に、上記の線分が0.1μm以上となる第2硬質相を第2測定対象として、この第2測定対象における線分の長さの合計を線が横切った第2測定対象の数で割ることによって、第2硬質相の平均粒径を算出してもよい。 Note that when calculating the average particle size of the first hard phase and the second hard phase, particles smaller than a specific value may be excluded from the target in order to avoid measurement variations. For example, if 0.1 μm is set as a specific value, and the first hard phase whose line segment is 0.1 μm or more is the first measurement target, the total length of the line segments in this first measurement target is the line The average particle size of the first hard phase may be calculated by dividing by the number of first measurement objects crossed by the first measurement target. Similarly, if the second hard phase whose line segment is 0.1 μm or more is the second measurement target, the total length of the line segments in this second measurement target is the number of second measurement targets crossed by the line. By dividing, the average particle size of the second hard phase may be calculated.
 また、第1硬質相を横切る線分の長さの合計と第2硬質相を横切る線分の長さの合計との総和を100%とした場合における第1硬質相を横切る線分の長さの合計の割合を第1硬質相の面積比率として算出してもよい。同様に、第1硬質相を横切る線分の長さの合計と第2硬質相を横切る線分の長さの合計との総和を100%とした場合における第2硬質相を横切る線分の長さの合計の割合を第2硬質相の面積比率として算出してもよい。このとき、結合相の領域は除外する。また、測定は好ましくは3視野測定し、その平均をとっても良い。また、市販の画像解析装置を用いることによって測定することもできる。 Further, the length of the line segment that crosses the first hard phase when the sum of the length of the line segment that crosses the first hard phase and the total length of the line segment that crosses the second hard phase is taken as 100%. The total ratio may be calculated as the area ratio of the first hard phase. Similarly, the length of the line segment that crosses the second hard phase when the sum of the lengths of the line segments that cross the first hard phase and the total length of the line segments that cross the second hard phase is taken as 100%. The total ratio of the hard phase may be calculated as the area ratio of the second hard phase. At this time, the bonded phase region is excluded. Further, the measurement may preferably be performed by measuring three visual fields and taking the average thereof. It can also be measured using a commercially available image analysis device.
(製造方法)
 次に、サーメット焼結体である基体2の製造方法について説明する。
(Production method)
Next, a method for manufacturing the base body 2, which is a cermet sintered body, will be explained.
 本開示のサーメット焼結体の製造では、TiCN粉末を利用する。このTiCNの原料粉末は、一般的にサーメットの製造で用いられるものを用いてもよい。TiCNの原料粉末は、すでに、粉砕工程を経たものであってもよい。また、TiCNの原料粉末が粉砕工程を経たものでない場合には、回転ミルとメディアを用いて粉砕するとよい。 In manufacturing the cermet sintered body of the present disclosure, TiCN powder is utilized. This TiCN raw material powder may be one that is generally used in the production of cermets. The TiCN raw material powder may have already undergone a pulverization process. Furthermore, if the TiCN raw material powder has not undergone a pulverization process, it may be pulverized using a rotary mill and media.
 TiCNの原料粉末が粉砕工程を経ることで、TiCNの原料粉末の内部に転位が生じ、この転位がある位置にV、Nb、Ta、Cr、Mo、W、Co、Niのうちの1種以上の金属元素が移動する。 When the TiCN raw powder undergoes a pulverization process, dislocations occur inside the TiCN raw powder, and one or more of V, Nb, Ta, Cr, Mo, W, Co, and Ni are present at the positions where these dislocations exist. metal elements move.
 このような転位を有するTiCNの原料粉末と、上記金属の炭化物、結合相となるCoやNiを原料として用いるとよい。 It is preferable to use TiCN raw material powder having such dislocations, carbides of the metals mentioned above, and Co or Ni as the binder phase as raw materials.
 転位を有するTiCNの原料粉末を用い、CoやNiなどの結合相成分は14質量%以上22質量%以下としてもよい。結合相成分を上記の範囲とすると、基体であるサーメットは高い靭性と、高い硬度を有する。 A raw material powder of TiCN having dislocations may be used, and the binder phase components such as Co and Ni may be 14% by mass or more and 22% by mass or less. When the binder phase component is within the above range, the cermet that is the base has high toughness and high hardness.
 なお、V、Nb、Ta、Cr、Mo、Wを含有する成分として、それぞれの金属元素の炭化物を用いるとよい。 Note that as the components containing V, Nb, Ta, Cr, Mo, and W, carbides of the respective metal elements may be used.
 上述の組成を有する原材料を混合した後、焼成する。焼成工程は、例えば、以下の行程としてもよい。
(a)真空中にて室温から1100℃まで昇温する工程
(b)真空中にて1100℃にて1~2.5時間保持する工程
(c)1100℃にて焼成炉内にN2ガスを導入し、焼成炉内の圧力を5Paである圧力P1に変更し、その後1100℃から1150~1300℃の温度T1まで0.1~2℃/分の昇温速度r1で昇温する工程
(d)温度T1にて0.5~2時間保持する工程
(e)温度T1で、焼成炉内の圧力を圧力P1よりも高い300~2000Paである圧力P2に変更し、その後、温度T1から1300~1450℃である温度T2まで1~5℃/分の昇温速度r2で昇温する工程
(f)温度T2にて0.25~1.5時間保持する工程
(g)焼成炉内の圧力を圧力P2よりも低い、30~1000Paの圧力P3に変更し、その後、温度T2から1450~1600℃の温度T3まで2~10℃/分の昇温速度r3で昇温する工程
(h)温度T3にて1時間保持する工程
 具体的には、0.25時間経過後、焼成炉内の圧力を0.25時間かけながら圧力P3から5Paまで圧力を徐々に減圧する。その後、0.5時間圧力5Paで保持する。
(i)温度T3から100℃以下の温度T4まで10~50℃/分の降温速度r4降温しながら、10,000Pa~80,000Paの圧力P4のArガス雰囲気に変更する工程
After mixing the raw materials having the above-mentioned composition, they are fired. The firing step may be, for example, the following steps.
(a) Step of raising the temperature from room temperature to 1100°C in vacuum (b) Holding the temperature at 1100°C in vacuum for 1 to 2.5 hours (c) Injecting N2 gas into the firing furnace at 1100°C and changing the pressure inside the firing furnace to pressure P1, which is 5 Pa, and then increasing the temperature from 1100°C to temperature T1 of 1150 to 1300°C at a heating rate r1 of 0.1 to 2°C/min (d ) Holding at temperature T1 for 0.5 to 2 hours (e) At temperature T1, change the pressure in the firing furnace to pressure P2, which is 300 to 2000 Pa higher than pressure P1, and then change from temperature T1 to 1300 to 2000 Pa. A step of raising the temperature at a heating rate r2 of 1 to 5° C./min to a temperature T2 of 1450° C. (f) A step of holding the temperature T2 for 0.25 to 1.5 hours (g) A step of reducing the pressure in the firing furnace. Step (h) of changing the pressure P3 to 30 to 1000 Pa, which is lower than the pressure P2, and then increasing the temperature from the temperature T2 to the temperature T3 of 1450 to 1600 °C at a temperature increase rate r3 of 2 to 10 °C/min (h) temperature T3 Specifically, after 0.25 hours have passed, the pressure in the firing furnace is gradually reduced from P3 to 5 Pa while applying the pressure in the firing furnace for 0.25 hours. Thereafter, the pressure is maintained at 5 Pa for 0.5 hours.
(i) Step of changing to an Ar gas atmosphere at a pressure P4 of 10,000 Pa to 80,000 Pa while lowering the temperature from temperature T3 to temperature T4 of 100°C or less at a cooling rate r4 of 10 to 50°C/min.
 前述の組成を有する成形体を、上記の焼成工程で焼成することにより、本開示のサーメット焼結体を作製することができる。 The cermet sintered body of the present disclosure can be produced by firing a molded body having the above-described composition in the above-described firing process.
 その後、必要に応じて被覆層3を設けてもよい。被覆層3は、いわゆる、硬質膜であればよく、例えば、PVD法やCVD法で形成するとよい。被覆膜は単層であってもよく、積層膜であってもよい。 Thereafter, a covering layer 3 may be provided as necessary. The coating layer 3 may be a so-called hard film, and may be formed by, for example, a PVD method or a CVD method. The coating film may be a single layer or a laminated film.
<切削工具>
 次に、上述したサーメット工具1を備えた切削工具の構成について図4を参照して説明する。図4は、実施形態に係る切削工具の一例を示す正面図である。
<Cutting tools>
Next, the configuration of a cutting tool including the cermet tool 1 described above will be described with reference to FIG. 4. FIG. 4 is a front view showing an example of the cutting tool according to the embodiment.
 図4に示すように、実施形態に係る切削工具100は、サーメット工具1と、サーメット工具1を固定するためのホルダ70とを有する。 As shown in FIG. 4, the cutting tool 100 according to the embodiment includes a cermet tool 1 and a holder 70 for fixing the cermet tool 1.
 ホルダ70は、第1端から第2端に向かって伸びる棒状の部材である。一例として、第1端は図4における上端であり、第2端は図7における下端である。ホルダ70は、たとえば、鋼、鋳鉄製である。特に、これらの部材の中で靱性の高い鋼が用いられることが好ましい。 The holder 70 is a rod-shaped member that extends from the first end toward the second end. As an example, the first end is the top end in FIG. 4, and the second end is the bottom end in FIG. The holder 70 is made of steel or cast iron, for example. In particular, it is preferable to use steel with high toughness among these members.
 ホルダ70は、第1端側の端部にポケット73を有する。ポケット73は、サーメット工具1が装着される部分であり、被削材の回転方向と交わる着座面と、着座面に対して傾斜する拘束側面とを有する。着座面には、後述するネジ75を螺合させるネジ孔が設けられている。 The holder 70 has a pocket 73 at the first end. The pocket 73 is a portion on which the cermet tool 1 is mounted, and has a seating surface that intersects with the rotational direction of the workpiece and a restraining side surface that is inclined with respect to the seating surface. The seating surface is provided with a screw hole into which a screw 75, which will be described later, is screwed.
 サーメット工具1は、ホルダ70のポケット73に位置し、ネジ75によってホルダ70に装着される。すなわち、サーメット工具1の貫通孔21にネジ75を挿入し、このネジ75の先端をポケット73の着座面に形成されたネジ孔に挿入してネジ部同士を螺合させる。これにより、サーメット工具1は、切刃部分がホルダ70から外方に突出するようにホルダ70に装着される。 The cermet tool 1 is located in the pocket 73 of the holder 70 and is attached to the holder 70 by a screw 75. That is, the screw 75 is inserted into the through hole 21 of the cermet tool 1, and the tip of the screw 75 is inserted into a screw hole formed in the seating surface of the pocket 73, so that the screw portions are screwed together. Thereby, the cermet tool 1 is attached to the holder 70 so that the cutting edge portion protrudes outward from the holder 70.
 実施形態においては、いわゆる旋削加工に用いられる切削工具を例示している。旋削加工としては、例えば、内径加工、外径加工及び溝入れ加工が挙げられる。なお、切削工具としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具にサーメット工具1を用いてもよい。転削加工に用いられる切削工具としては、たとえば、平フライス、正面フライス、側フライス、溝切りフライスなどフライス、1枚刃エンドミル、複数刃エンドミル、テーパ刃エンドミル、ボールエンドミルなどのエンドミルなどが挙げられる。 In the embodiment, a cutting tool used for so-called turning is exemplified. Examples of turning processing include inner diameter processing, outer diameter processing, and grooving. Note that the cutting tool is not limited to one used for turning. For example, the cermet tool 1 may be used as a cutting tool used for milling. Examples of cutting tools used in milling include milling cutters such as flat milling cutters, face milling cutters, side milling cutters, and groove milling cutters, and end mills such as single-flute end mills, multi-flute end mills, tapered blade end mills, and ball end mills. .
 以下、本開示の実施例を具体的に説明する。なお、本開示は以下に示す実施例に限定されるものではない。 Examples of the present disclosure will be specifically described below. Note that the present disclosure is not limited to the examples shown below.
 サーメット焼結体である試料No.3およびNo.4を上述した製造方法にて作製した。試料No.3およびNo.4は、本開示の実施例である。また、試料No.1およびNo.2は、従来のサーメット焼結体であり、比較例である。 Sample No. which is a cermet sintered body. 3 and no. No. 4 was manufactured using the manufacturing method described above. Sample No. 3 and no. 4 is an example of the present disclosure. In addition, sample No. 1 and no. 2 is a conventional cermet sintered body and is a comparative example.
 各試料No.1~No.4の表面領域および内部領域について、第1硬質相および第2硬質相の平均粒径および面積比率を上述した解析方法を用いて算出した。なお、この算出に際しては、測定対象の下限値を上述の通り0.1μmとした。その結果を表1に示す。 Each sample No. 1~No. Regarding the surface area and internal area of No. 4, the average particle diameter and area ratio of the first hard phase and the second hard phase were calculated using the analysis method described above. In this calculation, the lower limit of the measurement target was set to 0.1 μm as described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 試料No.1における第1硬質相の平均粒径は、表面領域において0.22μm、内部領域において0.31μmであった。試料No.2における第1硬質相の平均粒径は、内部領域において0.29μmであった。試料No.3における第1硬質相の平均粒径は、表面領域において0.29μm、内部領域において0.3μmであった。試料No.4における第1硬質相の平均粒径は、表面領域において0.26μm、内部領域において0.34μmであった。 Sample No. The average particle size of the first hard phase in Sample No. 1 was 0.22 μm in the surface region and 0.31 μm in the internal region. Sample No. The average particle size of the first hard phase in No. 2 was 0.29 μm in the inner region. Sample No. The average particle size of the first hard phase in Sample No. 3 was 0.29 μm in the surface region and 0.3 μm in the internal region. Sample No. The average particle size of the first hard phase in Sample No. 4 was 0.26 μm in the surface region and 0.34 μm in the internal region.
 試料No.1における第1硬質相の面積比率は、表面領域において12面積%、内部領域において36.8面積%であった。試料No.2における第1硬質相の面積比率は、表面領域において0面積%、内部領域において4.3面積%であった。試料No.3における第1硬質相の面積比率は、表面領域において28.7面積%、内部領域において30.1面積%であった。試料No.4における第1硬質相の面積比率は、表面領域において19面積%、内部領域において51面積%であった。 Sample No. The area ratio of the first hard phase in Sample No. 1 was 12 area % in the surface area and 36.8 area % in the internal area. Sample No. The area ratio of the first hard phase in No. 2 was 0 area % in the surface area and 4.3 area % in the internal area. Sample No. The area ratio of the first hard phase in Sample No. 3 was 28.7 area % in the surface area and 30.1 area % in the internal area. Sample No. The area ratio of the first hard phase in Sample No. 4 was 19 area % in the surface area and 51 area % in the internal area.
 内部領域における第1硬質相の平均粒径に対する表面領域における第1硬質相の平均粒径の比率は、試料No.1が0.7、試料No.3が0.95、試料No.4が0.76であった。比率は、表面平均粒径/内部平均粒径で求められる。 The ratio of the average particle size of the first hard phase in the surface area to the average particle size of the first hard phase in the internal area is as follows: Sample No. 1 is 0.7, sample No. 3 is 0.95, sample No. 4 was 0.76. The ratio is determined by surface average particle size/internal average particle size.
 試料No.1における第2硬質相の平均粒径は、表面領域において0.95μm、内部領域において0.48μmであった。試料No.2における第2硬質相の平均粒径は、表面領域において0.91μm、内部領域において0.85μmであった。試料No.3における第2硬質相の平均粒径は、表面領域において0.41μm、内部領域において0.51μmであった。試料No.4における第2硬質相の平均粒径は、表面領域において0.36μm、内部領域において0.58μmであった。 Sample No. The average particle size of the second hard phase in Sample No. 1 was 0.95 μm in the surface region and 0.48 μm in the internal region. Sample No. The average particle size of the second hard phase in Sample No. 2 was 0.91 μm in the surface region and 0.85 μm in the internal region. Sample No. The average particle size of the second hard phase in Sample No. 3 was 0.41 μm in the surface region and 0.51 μm in the internal region. Sample No. The average particle size of the second hard phase in Sample No. 4 was 0.36 μm in the surface region and 0.58 μm in the internal region.
 試料No.1における第2硬質相の面積比率は、表面領域において88面積%、内部領域において63.2面積%であった。試料No.2における第2硬質相の面積比率は、表面領域において100面積%、内部領域において95.7面積%であった。試料No.3における第2硬質相の面積比率は、表面領域において71.3面積%、内部領域において69.9面積%であった。試料No.4における第2硬質相の面積比率は、表面領域において81面積%、内部領域において49面積%であった。 Sample No. The area ratio of the second hard phase in Sample No. 1 was 88 area % in the surface area and 63.2 area % in the internal area. Sample No. The area ratio of the second hard phase in No. 2 was 100 area % in the surface area and 95.7 area % in the internal area. Sample No. The area ratio of the second hard phase in No. 3 was 71.3 area % in the surface area and 69.9 area % in the internal area. Sample No. The area ratio of the second hard phase in No. 4 was 81 area % in the surface area and 49 area % in the internal area.
 内部領域における第2硬質相の平均粒径に対する表面領域における第2硬質相の平均粒径の比率は、試料No.1が1.98、試料No.2が1.07、試料No.3が0.8、試料No.4が0.62であった。 The ratio of the average particle size of the second hard phase in the surface area to the average particle size of the second hard phase in the internal area is as follows: Sample No. 1 is 1.98, sample no. 2 is 1.07, sample No. 3 is 0.8, sample No. 4 was 0.62.
 また、第1硬質相および第2硬質相を合わせた硬質相全体の平均粒径は、試料No.1が、表面領域において0.64μm、内部領域において0.39μm、試料No.2が、表面領域において0.91μm、内部領域において0.85μm、試料No.3が、表面領域において0.36μm、内部領域において0.42μm、試料No.4が、表面領域において0.34μm、内部領域において0.46μmであった。 In addition, the average particle diameter of the entire hard phase including the first hard phase and the second hard phase is that of sample No. Sample No. 1 was 0.64 μm in the surface region, 0.39 μm in the internal region, and sample No. Sample No. 2 was 0.91 μm in the surface region and 0.85 μm in the internal region. Sample No. 3 was 0.36 μm in the surface region and 0.42 μm in the internal region. 4 was 0.34 μm in the surface area and 0.46 μm in the internal area.
 このように、実施例である試料No.3およびNo.4は、内部領域における第2硬質相の平均粒径d2in、および、表面領域における第2硬質相の平均粒径d2sfが、いずれも0.35μm以上0.6μm以下である。また、実施例である試料No.3は、内部領域の硬質相全体に対する第2硬質相の面積比率S2in、および、表面領域の硬質相全体に対する第2硬質相の面積比率S2sfが、いずれも50面積%以上80面積%以下である。 In this way, sample No. which is an example. 3 and no. In No. 4, the average particle diameter d 2in of the second hard phase in the internal region and the average particle diameter d 2sf of the second hard phase in the surface region are both 0.35 μm or more and 0.6 μm or less. In addition, sample No. which is an example. 3, the area ratio S 2in of the second hard phase to the entire hard phase in the internal region and the area ratio S 2sf of the second hard phase to the entire hard phase in the surface area are both 50 area % or more and 80 area % or less. It is.
 また、実施例である試料No.3およびNo.4は、内部領域における第1硬質相の平均粒径d1in、および、表面領域における第1硬質相の平均粒径d1sfが、いずれも0.25μm以上0.35μm以下である。また、実施例である試料No.3は、内部領域の硬質相全体に対する第1硬質相の面積比率S1in、および、表面領域の硬質相全体に対する第1硬質相の面積比率S1sfが、いずれも20面積%以上35面積%以下である。 In addition, sample No. which is an example. 3 and no. In No. 4, the average particle diameter d 1in of the first hard phase in the internal region and the average particle diameter d 1sf of the first hard phase in the surface region are both 0.25 μm or more and 0.35 μm or less. In addition, sample No. which is an example. 3, the area ratio S 1in of the first hard phase to the entire hard phase in the internal region and the area ratio S 1sf of the first hard phase to the entire hard phase in the surface area are both 20 area % or more and 35 area % or less. It is.
 これらの結果から、実施例である試料No.3およびNo.4は、比較例である試料No.1,No.2と比べて、表面領域における第2硬質相が微細化されていることがわかる。そのうえで、実施例である試料No.3およびNo.4は、比較例である試料No.1,No.2と比べて、表面領域および内部領域間における硬質相、具体的には、第1硬質相および第2硬質相の粒子径の差が小さいことがわかる。 From these results, sample No. 3 and no. Sample No. 4 is a comparative example. 1, No. It can be seen that the second hard phase in the surface region is finer than that in Sample No. 2. After that, sample No. which is an example. 3 and no. Sample No. 4 is a comparative example. 1, No. It can be seen that compared to No. 2, the difference in particle size between the hard phase between the surface region and the internal region, specifically, the first hard phase and the second hard phase, is small.
 試料No.1~No.4について、熱伝導率、ヤング率、熱膨張係数、硬度および抗析強度の測定を行った。結果を表2に示す。 Sample No. 1~No. Regarding No. 4, the thermal conductivity, Young's modulus, coefficient of thermal expansion, hardness, and anti-destructive strength were measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 なお、熱伝導率(λ)については、JIS R 1611に準拠して求めればよい。ヤング率(E)については、ISO14577に準拠して求めればよい。熱膨張係数(α)については、JIS R 1618に準拠して求めればよい。硬度については、JIS R 1610に準拠して求めればよい。抗析強度については、JIS R 1601に準拠して求めればよい。強度試験片については下記の様に作製し、表面領域と内部領域の抗折強度試験に用いた。内部強度試験片(寸法:4mm*5mm*40mm)の直方体の焼結体の各面を0.5mm研削除去した。表面強度試験片(寸法:4mm*5mm*40mm)の直方体の張力面を除く各面を0.5~1mm研削除去した。さらに、工具表面と同様の形態とするため、それぞれの強度試験片の張力面にブラスト処理を行い、数μm~10μm程度研磨し、3mm*4mm*40mmの試験片を作製した。 Note that the thermal conductivity (λ) may be determined in accordance with JIS R 1611. Young's modulus (E) may be determined in accordance with ISO14577. The coefficient of thermal expansion (α) may be determined in accordance with JIS R 1618. The hardness may be determined in accordance with JIS R 1610. The anti-destructive strength may be determined in accordance with JIS R 1601. A strength test piece was prepared as described below and used for the bending strength test of the surface region and internal region. Each surface of a rectangular parallelepiped sintered body of an internal strength test piece (dimensions: 4 mm * 5 mm * 40 mm) was ground by 0.5 mm. A surface strength test piece (dimensions: 4 mm * 5 mm * 40 mm) was ground by 0.5 to 1 mm from each surface of the rectangular parallelepiped except for the tension surface. Furthermore, in order to have the same shape as the tool surface, the tension surface of each strength test piece was blasted and polished by several μm to 10 μm to produce a test piece of 3 mm * 4 mm * 40 mm.
 また、得られた熱伝導率(λ)、ヤング率(E)、熱膨張係数(α)および抗析強度(σ)から熱衝撃強度(R1c)を算出した。熱衝撃強度R1cは、R1c=(λσ)/Eαの式により得られる。また、表2に示す「ΔHV20」は、表面領域における硬度H1と内部領域における硬度H2の差の絶対値|H1-H2|である。なお、「HV20」とは、試験力20kgfで測定した場合の硬度を意味する。 Further, the thermal shock strength (R 1c ) was calculated from the obtained thermal conductivity (λ), Young's modulus (E), thermal expansion coefficient (α), and anti-destructive strength (σ). Thermal shock strength R 1c is obtained by the formula R 1c = (λσ)/Eα. Further, "ΔHV20" shown in Table 2 is the absolute value |H1-H2| of the difference between the hardness H1 in the surface region and the hardness H2 in the internal region. In addition, "HV20" means hardness when measured with a test force of 20 kgf.
 実施例である試料No.3は、表面領域における抗析強度σ1が2449MPaであり、内部領域における抗析強度σ2が2512MPaであった。また、試料No.3は、抗析強度σ1の抗析強度σ2に対する強度比率(σ1/σ2)が、0.97であった。なお、抗析強度σ1は表面強度であり、抗析強度σ2は内部強度である。 Sample No. which is an example. In No. 3, the anti-destructive strength σ1 in the surface region was 2449 MPa, and the anti-destructive strength σ2 in the internal region was 2512 MPa. In addition, sample No. In No. 3, the strength ratio (σ1/σ2) of anti-analytical strength σ1 to anti-analytical strength σ2 was 0.97. Note that the anti-destructive strength σ1 is the surface strength, and the anti-destructive strength σ2 is the internal strength.
 また、実施例である試料No.4は、表面領域における抗析強度σ1が2450MPaであり、内部領域における抗析強度σ2が2350MPaであった。また、試料No.4は、抗析強度σ1の抗析強度σ2に対する強度比率(σ1/σ2)が、1.04であった。 In addition, sample No. which is an example. In No. 4, the anti-destructive strength σ1 in the surface region was 2450 MPa, and the anti-destructive strength σ2 in the internal region was 2350 MPa. In addition, sample No. In No. 4, the strength ratio (σ1/σ2) of anti-analytical strength σ1 to anti-analytical strength σ2 was 1.04.
 このように、実施例である試料No.3およびNo.4は、表面領域における抗析強度σ1、および、内部領域における抗析強度σ2が、いずれも2300MPa以上であり、かつ、抗析強度σ1の抗析強度σ2に対する強度比率(σ1/σ2)は、0.8以上である。この結果から、実施例である試料No.3およびNo.4は、内部領域における強度が比較的高く、かつ、表面領域における強度も内部領域における強度と同程度に高いことがわかる。 In this way, sample No. which is an example. 3 and no. 4, the anti-resistance strength σ1 in the surface region and the anti-resistance strength σ2 in the internal region are both 2300 MPa or more, and the strength ratio (σ1/σ2) of the anti-resistance strength σ1 to the anti-resistance strength σ2 is: It is 0.8 or more. From this result, sample No. which is an example. 3 and no. It can be seen that in No. 4, the strength in the inner region is relatively high, and the strength in the surface region is also as high as the strength in the inner region.
 また、実施例である試料No.3は、表面領域における硬度H1が、1531HV20であり、内部領域における硬度H2が、1495HV20であった。また、ΔHV20は、36HVであった。 In addition, sample No. which is an example. In No. 3, the hardness H1 in the surface region was 1531 HV20, and the hardness H2 in the internal region was 1495 HV20. Further, ΔHV20 was 36HV.
 このように、実施例である試料No.3は、表面領域における硬度H1、および、内部領域における硬度H2が、いずれも1450HV以上であり、硬度H1と硬度H2の差の絶対値|H1-H2|が、50以下である。この結果から、実施例である試料No.3は、表面領域における硬度が内部領域における硬度と同程度であることがわかる。 In this way, sample No. which is an example. In No. 3, the hardness H1 in the surface region and the hardness H2 in the internal region are both 1450 HV or more, and the absolute value of the difference between the hardness H1 and the hardness H2 |H1-H2| is 50 or less. From this result, sample No. which is an example. 3, it can be seen that the hardness in the surface region is comparable to the hardness in the internal region.
 なお、実施例である試料No.4は、表面領域における硬度H1が、1560HV20であり、内部領域における硬度H2が、1450HV20であった。また、ΔHV20は、110HVであった。 In addition, sample No. which is an example. In No. 4, the hardness H1 in the surface region was 1560HV20, and the hardness H2 in the internal region was 1450HV20. Further, ΔHV20 was 110HV.
 また、実施例である試料No.3は、表面領域における熱衝撃強度が9783であり、内部領域における熱衝撃強度が10105であった。また、実施例である試料No.4は、表面領域における熱衝撃強度が9795であり、内部領域における熱衝撃強度が9549であった。一方、比較例である試料No.1は、表面領域における熱衝撃強度が5922であり、内部領域における熱衝撃強度が10309であった。また、比較例である試料No.2は、表面領域における熱衝撃強度が7970であり、内部領域における熱衝撃強度が8274であった。このように、実施例である試料No.3およびNo.4は、比較例である試料No.1およびNo.2と比較して、表面領域における熱衝撃強度が向上していることがわかる。 In addition, sample No. which is an example. No. 3 had a thermal shock strength of 9783 in the surface region and a thermal shock strength of 10105 in the internal region. In addition, sample No. which is an example. No. 4 had a thermal shock strength of 9795 in the surface region and a thermal shock strength of 9549 in the internal region. On the other hand, sample No., which is a comparative example. No. 1 had a thermal shock strength of 5922 in the surface region and a thermal shock strength of 10309 in the internal region. In addition, sample No. 1, which is a comparative example. No. 2 had a thermal shock strength of 7970 in the surface region and a thermal shock strength of 8274 in the internal region. In this way, sample No. which is an example. 3 and no. Sample No. 4 is a comparative example. 1 and no. It can be seen that the thermal shock strength in the surface region is improved compared to No. 2.
 また、各試料No.1~No.4について耐欠損性試験を行った。耐欠損性試験の条件は、以下の通りである。 Also, each sample No. 1~No. A fracture resistance test was conducted on No. 4. The conditions for the fracture resistance test are as follows.
<耐欠損性試験(旋削加工)>
被削材:S45C(25mm幅の溝×4本)
切削速度:250m/min
送り:0.25mm/rev
切込み:0.5mm
切削状態:湿式
評価方法:欠損するまでの衝撃回数(回)
<Failure resistance test (turning)>
Work material: S45C (25mm width groove x 4)
Cutting speed: 250m/min
Feed: 0.25mm/rev
Depth of cut: 0.5mm
Cutting condition: Wet evaluation method: Number of impacts until breakage (times)
 表2に示すように、欠損するまでの衝撃回数は、比較例である試料No.1が8464回であり、試料No.2が9141回であったのに対し、実施例である試料No.3は、11040回、試料No.4は、10070回であった。この結果から、実施例である試料No.3およびNo.4は、比較例である試料No.1およびNo.2と比べて耐欠損性が向上していることがわかる。 As shown in Table 2, the number of impacts until breakage was the same for Sample No., which is a comparative example. 1 is 8464 times, and sample No. 2 was 9141 times, whereas Sample No. 2, which is an example, had 9141 times. 3 is sample No. 11,040 times. 4 was 10,070 times. From this result, sample No. which is an example. 3 and no. Sample No. 4 is a comparative example. 1 and no. It can be seen that the fracture resistance is improved compared to No. 2.
 図5は、比較例である試料No.1と実施例である試料No.3についての、表面領域および内部領域における抗析強度を示すグラフである。図5では、内部領域における抗析強度を100%とした場合の強度比を縦軸に示している。また、図6は、比較例である試料No.1と実施例である試料No.3の熱衝撃強度を示すグラフである。図6では、試料No.1の表面領域における熱衝撃強度を100%とした場合の強度比を縦軸に示している。 FIG. 5 shows sample No. 1, which is a comparative example. 1 and sample No. 1 which is an example. 3 is a graph showing the anti-resistance strength in the surface area and the internal area for No. 3. In FIG. 5, the vertical axis represents the strength ratio when the anti-destructive strength in the internal region is taken as 100%. Further, FIG. 6 shows sample No. 6, which is a comparative example. 1 and sample No. 1 which is an example. 3 is a graph showing the thermal shock strength of No. 3. In FIG. 6, sample No. The vertical axis shows the strength ratio when the thermal shock strength in the surface area of No. 1 is taken as 100%.
 図5に示すように、実施例である試料No.3は、比較例である試料No.1と比べて、表面領域における抗析強度と内部領域における抗析強度との差が小さいことがわかる。また、図6に示すように、実施例である試料No.3は、比較例である試料No.1と比べて、表面領域における熱衝撃強度が向上していることがわかる。具体的には、実施例である試料No.3は、比較例である試料No.1と比べて、表面領域における熱衝撃強度がおよそ1.65倍高くなっていることがわかる。 As shown in FIG. 5, sample No. 1, which is an example, Sample No. 3 is a comparative example. It can be seen that the difference between the anti-destructive strength in the surface region and the anti-destructive strength in the internal region is small compared to No. 1. In addition, as shown in FIG. 6, sample No. 1, which is an example, Sample No. 3 is a comparative example. It can be seen that the thermal shock strength in the surface region is improved compared to No. 1. Specifically, sample No. which is an example. Sample No. 3 is a comparative example. It can be seen that the thermal shock strength in the surface area is approximately 1.65 times higher than that of No. 1.
 上述してきたように、実施形態に係るサーメット焼結体(一例として、基体2)は、TiCNを主成分とする第1硬質相(一例として、第1硬質相5a)と、周期表第4、5および6族金属の少なくとも1種とTiとの複合炭窒化物固溶体である第2硬質相(一例として、第2硬質相5b)と、CoおよびNiの少なくとも1種とWとを含有する結合相(一例として、結合相6)とを含む。内部領域における第2硬質相の平均粒径d2in、および、表面領域における第2硬質相の平均粒径d2sfは、いずれも0.35μm以上0.6μm以下である。表面領域における強度σ1、および、内部領域における強度σ2は、いずれも2300MPa以上であり、かつ、σ1のσ2に対する強度比率(σ1/σ2)は、0.8以上である。 As described above, the cermet sintered body according to the embodiment (as an example, the base body 2) has a first hard phase (as an example, the first hard phase 5a) containing TiCN as a main component, and A bond containing a second hard phase (for example, second hard phase 5b) that is a composite carbonitride solid solution of at least one of Group 5 and 6 metals and Ti, at least one of Co and Ni, and W. phase (as an example, a bonded phase 6). The average particle diameter d 2in of the second hard phase in the internal region and the average particle diameter d 2sf of the second hard phase in the surface region are both 0.35 μm or more and 0.6 μm or less. The intensity σ1 in the surface region and the intensity σ2 in the internal region are both 2300 MPa or more, and the intensity ratio of σ1 to σ2 (σ1/σ2) is 0.8 or more.
 したがって、実施形態に係るサーメット焼結体によれば、表面における耐熱衝撃性を向上させることができる。 Therefore, according to the cermet sintered body according to the embodiment, the thermal shock resistance on the surface can be improved.
 なお、図1に示したサーメット工具1の形状はあくまで一例であって、本開示によるサーメット工具の形状を限定するものではない。本開示によるサーメット工具は、たとえば、回転軸を有し、第1端から第2端にかけて延びる棒形状の本体と、本体の第1端に位置する切刃と、切刃から本体の第2端の側に向かって螺旋状に延びた溝とを有していてもよい。 Note that the shape of the cermet tool 1 shown in FIG. 1 is just an example, and does not limit the shape of the cermet tool according to the present disclosure. A cermet tool according to the present disclosure includes, for example, a rod-shaped main body having a rotating shaft and extending from a first end to a second end, a cutting blade located at the first end of the main body, and a second end of the main body from the cutting blade. It may have a groove extending spirally toward the side.
 また、ここでは、サーメット焼結体を工具として使用する場合の例について説明したが、本開示によるサーメット焼結体の用途は工具に限定されない。 Furthermore, although an example in which the cermet sintered body is used as a tool has been described here, the use of the cermet sintered body according to the present disclosure is not limited to tools.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily deduced by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
 1 サーメット工具
 2 基体
 3 被覆層
 5 硬質相
 5a 第1硬質相
 5b 第2硬質相
 6 結合相
 21 貫通孔
 70 ホルダ
 73 ポケット
 75 ネジ
 100 切削工具
1 Cermet tool 2 Base 3 Covering layer 5 Hard phase 5a First hard phase 5b Second hard phase 6 Bonding phase 21 Through hole 70 Holder 73 Pocket 75 Screw 100 Cutting tool

Claims (6)

  1.  サーメット焼結体であって、
     TiCNを主成分とする第1硬質相と、
     周期表第4、5および6族金属の少なくとも1種とTiとの複合炭窒化物固溶体である第2硬質相と、
     CoおよびNiの少なくとも1種とWとを含有する結合相と
     を含み、
     内部領域における第2硬質相の平均粒径d2in、および、表面領域における前記第2硬質相の平均粒径d2sfは、いずれも0.35μm以上0.6μm以下であり、
     前記表面領域における強度σ1、および、前記内部領域における強度σ2は、いずれも2300MPa以上であり、かつ、前記σ1の前記σ2に対する強度比率(σ1/σ2)は、0.8以上である、サーメット焼結体。
    A cermet sintered body,
    a first hard phase mainly composed of TiCN;
    a second hard phase that is a composite carbonitride solid solution of Ti and at least one metal of Groups 4, 5 and 6 of the periodic table;
    a binder phase containing at least one of Co and Ni and W;
    The average particle size d 2in of the second hard phase in the internal region and the average particle size d 2sf of the second hard phase in the surface area are both 0.35 μm or more and 0.6 μm or less,
    The strength σ1 in the surface region and the strength σ2 in the internal region are both 2300 MPa or more, and the strength ratio (σ1/σ2) of the σ1 to the σ2 is 0.8 or more. Concretion.
  2.  前記内部領域の硬質相全体に対する第2硬質相の面積比率S2in、および、前記表面領域の硬質相全体に対する第2硬質相の面積比率S2sfは、いずれも50面積%以上80面積%以下である、請求項1に記載のサーメット焼結体。 The area ratio S 2in of the second hard phase to the entire hard phase in the internal region and the area ratio S 2sf of the second hard phase to the entire hard phase in the surface area are both 50 area % or more and 80 area % or less. The cermet sintered body according to claim 1.
  3.  前記内部領域における前記第1硬質相の平均粒径d1in、および、前記表面領域における前記第1硬質相の平均粒径d1sfは、いずれも0.25μm以上0.35μm以下であり、
     前記内部領域の硬質相全体に対する前記第1硬質相の面積比率S1in、および、前記表面領域の硬質相全体に対する前記第1硬質相の面積比率S1sfは、いずれも20面積%以上35面積%以下である、請求項1に記載のサーメット焼結体。
    The average particle size d 1in of the first hard phase in the internal region and the average particle size d 1sf of the first hard phase in the surface area are both 0.25 μm or more and 0.35 μm or less,
    The area ratio S 1in of the first hard phase to the entire hard phase in the internal region and the area ratio S 1sf of the first hard phase to the entire hard phase in the surface area are both 20 area % or more and 35 area %. The cermet sintered body according to claim 1, which is as follows.
  4.  前記表面領域における硬度H1、および、前記内部領域における硬度H2は、いずれも1450HV以上であり、
     前記H1と前記H2の差の絶対値|H1-H2|は、50以下である、請求項1に記載のサーメット焼結体。
    The hardness H1 in the surface region and the hardness H2 in the internal region are both 1450 HV or more,
    The cermet sintered body according to claim 1, wherein the absolute value of the difference between the H1 and the H2 |H1−H2| is 50 or less.
  5.  請求項1~4のいずれか一つに記載のサーメット焼結体と、
     前記サーメット焼結体の表面の少なくとも一部に位置する、周期表第4、5および6族ならびにAlおよびSiから選択される少なくとも1種の金属元素と、C、NおよびOから選択される少なくとも1種の非金属元素とからなる1層または2層以上の被覆層と
     を備える、サーメット工具。
    The cermet sintered body according to any one of claims 1 to 4,
    At least one metal element selected from Groups 4, 5 and 6 of the periodic table, Al and Si, and at least one metal element selected from C, N and O, located on at least a part of the surface of the cermet sintered body. A cermet tool comprising one or more coating layers comprising one type of nonmetallic element.
  6.  第1端から第2端に向かって延び、前記第1端の側にポケットを有するホルダと、
     前記ポケットに位置する請求項5に記載のサーメット工具と、を備えた切削工具。
    a holder extending from a first end toward a second end and having a pocket on a side of the first end;
    A cutting tool comprising: the cermet tool according to claim 5 located in the pocket.
PCT/JP2023/025287 2022-07-11 2023-07-07 Cermet sintered body, cermet tool and cutting tool WO2024014412A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-111161 2022-07-11
JP2022111161 2022-07-11

Publications (1)

Publication Number Publication Date
WO2024014412A1 true WO2024014412A1 (en) 2024-01-18

Family

ID=89536722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025287 WO2024014412A1 (en) 2022-07-11 2023-07-07 Cermet sintered body, cermet tool and cutting tool

Country Status (1)

Country Link
WO (1) WO2024014412A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111947A (en) * 2004-10-18 2006-04-27 Tungaloy Corp Ultra-fine particle of cermet
JP2016135906A (en) * 2015-01-16 2016-07-28 住友電気工業株式会社 Cermet, cutting tool and manufacturing method of cermet
WO2017179657A1 (en) * 2016-04-13 2017-10-19 京セラ株式会社 Cutting insert and cutting tool
JP2019025559A (en) * 2017-07-27 2019-02-21 京セラ株式会社 Coated tool, cutting tool, and manufacturing method of cutting workpiece
WO2022085649A1 (en) * 2020-10-21 2022-04-28 京セラ株式会社 Cermet insert and cutting tool comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111947A (en) * 2004-10-18 2006-04-27 Tungaloy Corp Ultra-fine particle of cermet
JP2016135906A (en) * 2015-01-16 2016-07-28 住友電気工業株式会社 Cermet, cutting tool and manufacturing method of cermet
WO2017179657A1 (en) * 2016-04-13 2017-10-19 京セラ株式会社 Cutting insert and cutting tool
JP2019025559A (en) * 2017-07-27 2019-02-21 京セラ株式会社 Coated tool, cutting tool, and manufacturing method of cutting workpiece
WO2022085649A1 (en) * 2020-10-21 2022-04-28 京セラ株式会社 Cermet insert and cutting tool comprising same

Similar Documents

Publication Publication Date Title
JP5308426B2 (en) Cemented carbide and cutting tools
TWI470088B (en) Hard alloy and cutting tools using it
KR101635488B1 (en) Cutting tool
EP1347076A1 (en) PVD-Coated cutting tool insert
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2014156447A1 (en) Surface-coated boron nitride sintered tool
WO2018070195A1 (en) Surface-coated cutting tool
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
WO2017146131A1 (en) Cutting insert
JP7111262B2 (en) Cutting tools
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5041222B2 (en) Surface coated cutting tool
WO2024014412A1 (en) Cermet sintered body, cermet tool and cutting tool
KR101302374B1 (en) Cemented carbide having good wear resistance and chipping resistance
KR101807629B1 (en) Cermet tool
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP6959578B2 (en) Surface coating cutting tool
JP4543373B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
JP2801484B2 (en) Cemented carbide for cutting tools
WO2023079937A1 (en) Cermet tool and cutting tool
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP7025693B2 (en) Surface covering cutting tool
JP7170965B2 (en) Cemented Carbide and Coated Cemented Carbide
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839584

Country of ref document: EP

Kind code of ref document: A1