WO2024014220A1 - 半導体処理液、被処理物の処理方法、電子デバイスの製造方法 - Google Patents

半導体処理液、被処理物の処理方法、電子デバイスの製造方法 Download PDF

Info

Publication number
WO2024014220A1
WO2024014220A1 PCT/JP2023/022080 JP2023022080W WO2024014220A1 WO 2024014220 A1 WO2024014220 A1 WO 2024014220A1 JP 2023022080 W JP2023022080 W JP 2023022080W WO 2024014220 A1 WO2024014220 A1 WO 2024014220A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
semiconductor processing
processing liquid
compound
acid
Prior art date
Application number
PCT/JP2023/022080
Other languages
English (en)
French (fr)
Inventor
新平 山田
哲也 上村
篤史 水谷
悠太 滋野井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024014220A1 publication Critical patent/WO2024014220A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/08Liquid soap, e.g. for dispensers; capsuled
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a semiconductor processing solution, a method for processing a processed object, and a method for manufacturing an electronic device.
  • Semiconductor elements such as CCDs (Charge-Coupled Devices) and memories are manufactured by forming fine electronic circuit patterns on a substrate using photolithography technology.
  • semiconductor devices are manufactured by forming a resist film on a laminate having a metal film as a wiring material, an etching stop layer, and an interlayer insulating layer on a substrate, and performing a photolithography process and an etching process. be done.
  • polishing slurry containing polishing fine particles e.g., silica, alumina, etc.
  • a mechanical polishing (CMP) process may be performed.
  • processing liquid used in the manufacturing process of semiconductor elements will also be referred to as a "semiconductor processing liquid.”
  • Patent Document 1 describes (A) a specific compound, (B) adenine, purine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, and derivatives thereof.
  • a processing liquid for a semiconductor device substrate having a pH of 8 or more is disclosed, which contains at least one compound selected from the group consisting of (C) a pH adjuster, and (D) water.
  • the performance required of the treatment liquid is that when the treatment liquid is applied to an object containing a specific metal (specifically, at least one metal selected from the group consisting of Cu and Co), It has excellent corrosion resistance against metals, and has the ability to prevent defects from remaining on the surface of the treated object after treatment.
  • a specific metal specifically, at least one metal selected from the group consisting of Cu and Co
  • Patent Document 1 When the present inventors studied the characteristics of the treatment liquid specifically disclosed in Patent Document 1, it was found that the treatment liquid and an object containing at least one metal selected from the group consisting of Cu and Co. It has been found that there is a problem in which defects remain on the surface of the object to be treated after contact and further water washing.
  • the present invention provides excellent corrosion resistance against the metal when brought into contact with a workpiece containing at least one metal selected from the group consisting of Cu and Co, and further improves the corrosion resistance of the workpiece after the contact. It is an object of the present invention to provide a treatment liquid in which defects are unlikely to remain on the surface of an object to be treated after water washing. Another object of the present invention is to provide a method for treating an object to be treated using the above treatment liquid, and a method for manufacturing an electronic device.
  • At least one purine compound selected from the group consisting of purines and purine derivatives At least one specific compound selected from the group consisting of organic sulfonic acid compounds having 10 or less carbon atoms, sulfuric acid, and salts thereof; including water; A semiconductor processing liquid having a pH of over 7.0.
  • the above-mentioned specific compound is at least one selected from the group consisting of sulfuric acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and salts thereof.
  • the semiconductor processing liquid according to [1], comprising: [3] The content of the specific compound described in [1] or [2] is 0.1 to 40.0% by mass based on the total mass of the components excluding the solvent in the semiconductor processing liquid. semiconductor processing liquid. [4] The semiconductor processing liquid according to any one of [1] to [3], wherein the mass ratio of the content of the specific compound to the content of the purine compound is 0.01 to 100.0. [5] The semiconductor processing liquid according to any one of [1] to [4], wherein the specific compound has a pKa of 2.0 or less. [6] The semiconductor processing liquid according to any one of [1] to [5], further comprising an amine compound.
  • the semiconductor processing liquid according to [6], wherein the amine compound includes at least one selected from the group consisting of a quaternary ammonium compound and a tertiary amine compound.
  • the semiconductor processing liquid according to any one of [6] to [9] which contains two or more of the above amine compounds.
  • the semiconductor processing liquid according to any one of [1] to [10] which has a pH of 9.0 to 14.0.
  • the purine compound includes at least one selected from the group consisting of adenine, xanthine, guanine, adenosine, hypoxanthine, and benzyladenine, according to any one of [1] to [11].
  • semiconductor processing liquid [13] The semiconductor processing liquid according to any one of [1] to [12], which is used as a cleaning liquid.
  • the semiconductor processing liquid according to any one of [1] to [13] which is used for a target object subjected to a chemical mechanical polishing process.
  • the semiconductor processing liquid according to any one of [1] to [14] which is used for an object containing at least one metal selected from the group consisting of Cu and Co.
  • a method for treating an object to be treated which includes a step of bringing the object into contact with a treatment liquid.
  • a method for manufacturing an electronic device comprising the method for treating a workpiece according to [17].
  • the workpiece when brought into contact with a workpiece containing at least one metal selected from the group consisting of Cu and Co, the workpiece has excellent corrosion resistance against the metal, and after the contact, the workpiece It is possible to provide a treatment liquid in which defects are unlikely to remain on the surface of the object to be treated after washing with water. Further, according to the present invention, it is possible to provide a method for treating an object to be treated using the above-mentioned treatment liquid, and a method for manufacturing an electronic device.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ ” as lower and upper limits.
  • the “content” of the component means the total content of those two or more types of components.
  • the total mass of components in the treatment liquid excluding the solvent means the total mass of all components contained in the treatment liquid other than solvents such as water and organic solvents.
  • substituents, etc. when there are multiple substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by specific symbols, or when multiple substituents, etc. are specified at the same time, each substituent, etc. This means that they may be the same or different from each other. This also applies to the definition of the number of substituents, etc.
  • the direction of bonding of the divalent groups described herein is not limited unless otherwise specified.
  • Y in the compound represented by the formula "X-Y-Z" is -COO-
  • Y may be -CO-O- or -O-CO- Good too.
  • the above compound may be "X-CO-O-Z" or "X-O-CO-Z".
  • ppm means “parts-per-million (10 -6 )" and “ppb” means “parts-per-billion (10 -9 )”.
  • weight average molecular weight means a weight average molecular weight in terms of polyethylene glycol measured by GPC (gel permeation chromatography).
  • the semiconductor processing liquid of the present invention comprises at least one purine compound selected from the group consisting of purines and purine derivatives, and an organic sulfonic acid compound having 10 or less carbon atoms. , and at least one specific compound selected from the group consisting of sulfuric acid and water, and has a pH of over 7.0.
  • the treatment liquid having the above structure can solve the problems of the present invention is not necessarily clear, but the present inventors speculate as follows. Note that the following speculation does not limit the mechanism by which the effect is obtained. In other words, even cases where effects are obtained by mechanisms other than those described below are included within the scope of the present invention.
  • the treatment liquid has a pH of over 7.0, it has excellent ability to remove residues.
  • the purine compound in the treatment liquid interacts with a predetermined metal contained in the target object, thereby exhibiting excellent corrosion resistance against the predetermined metal.
  • the purine compound may remain on the surface of the object to be treated after treatment and may cause an increase in the number of defects.
  • the specific compound interacts with the purine compound that remains on the object to be treated after the treatment liquid and the object are brought into contact, and as a result, water is added to the object to be treated. It is thought that when cleaning is performed, defects derived from purine compounds can be efficiently removed from the surface of the object to be treated. As a result, it is presumed that it has excellent corrosion resistance against certain metals, and that defects are less likely to remain on the surface of the treated object after treatment.
  • the property that defects are less likely to remain on the surface of the workpiece after contacting the treatment liquid with the workpiece and further washing the workpiece with water is also referred to as "defect removability”.
  • the fact that at least one of the anticorrosion property and the defect removal property is better is also referred to as “the effect of the present invention is better.”
  • the treatment liquid contains at least one purine compound selected from the group consisting of purines and purine derivatives.
  • the purine compound preferably contains at least one selected from the group consisting of compounds represented by formulas (A1) to (A4), and the compound represented by formula (A1) and formulas (A4) to It is more preferable to include at least one selected from the group consisting of compounds represented by (A7), including a compound represented by formula (A1), a compound represented by formula (A5), and R 12 - It is more preferable to include at least one selected from the group consisting of compounds represented by formula (A4) in which at least one of R 14 is a hydrogen atom, R 1 is an amino group, and R 3 is a hydrogen atom. and a compound represented by formula (A4) in which at least one of R 12 to R 14 is a hydrogen atom. is particularly preferred.
  • R 1 to R 3 each independently represent a hydrogen atom, an alkyl group that may have a substituent, an amino group that may have a substituent, a thiol group, a hydroxy group, Represents a halogen atom, a sugar group that may have a substituent, or a polyoxyalkylene group-containing group that may have a substituent.
  • the alkyl group may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 5, even more preferably 1 to 3.
  • sugar group examples include groups obtained by removing one hydroxy group from a sugar selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, and groups obtained by removing one hydroxy group from monosaccharides. is preferred.
  • monosaccharides include pentose, triose, tetrose, hexose, and heptose, such as ribose, deoxyribose, arabinose, and xylose, with pentose being preferred, and ribose, deoxyribose, arabinose, or xylose being more preferred.
  • ribose or deoxyribose is more preferable.
  • disaccharides include sucrose, lactose, maltose, trehalose, turanose, and cellobiose.
  • polysaccharides include glycogen, starch, and cellulose.
  • the above-mentioned saccharide may be either chain-like or cyclic, and cyclic is preferable.
  • the cyclic saccharides include furanose rings and pyranose rings.
  • the polyoxyalkylene group-containing group which may have a substituent means a group containing a polyoxyalkylene group which may have a substituent as a part of the group.
  • Examples of the polyoxyalkylene group constituting the polyoxyalkylene group-containing group include a polyoxyethylene group, a polyoxypropylene group, and a polyoxybutylene group, with a polyoxyethylene group being preferred.
  • Examples of the substituents of the alkyl group, amino group, sugar group, and polyoxyalkylene group-containing group include alkyl groups, aryl groups, and hydrocarbon groups such as benzyl groups; fluorine atoms, chlorine atoms and halogen atoms such as bromine atoms; alkoxy groups; hydroxy groups; alkoxycarbonyl groups such as methoxycarbonyl groups and ethoxycarbonyl groups; acyl groups such as acetyl groups, propionyl groups, and benzoyl groups; cyano groups; Examples include nitro group.
  • R 1 is preferably a hydrogen atom or an amino group which may have a substituent, more preferably an amino group which may have a substituent.
  • Another preferred embodiment of R 1 is an alkyl group that may have a substituent, a thiol group, a hydroxy group, a halogen atom, a sugar group that may have a substituent, or an alkyl group that may have a substituent.
  • a polyoxyalkylene group-containing group which may be a polyoxyalkylene group is preferred.
  • R 2 is preferably a hydrogen atom or an alkyl group which may have a substituent, and more preferably a hydrogen atom.
  • R3 is preferably a hydrogen atom, an alkyl group that may have a substituent, or a sugar group that may have a substituent, and a hydrogen atom or a sugar group that may have a substituent. is more preferable, and a hydrogen atom is even more preferable.
  • R 4 to R 8 each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted amino group, a thiol group, a hydroxy group, a halogen atom, or a substituent. It represents a sugar group that may have a sugar group or a polyoxyalkylene group-containing group that may have a substituent.
  • R 4 to R 8 examples include the embodiments of each group represented by R 1 to R 3 in the above formula (A1).
  • R 4 to R 5 are preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R 6 is preferably a hydrogen atom, an alkyl group that may have a substituent, or an amino group that may have a substituent, and a hydrogen atom or an amino group that may have a substituent. is more preferable.
  • R 7 is preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R 8 is preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R 9 to R 11 each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted amino group, a thiol group, a hydroxy group, Represents a halogen atom, a sugar group that may have a substituent, or a polyoxyalkylene group-containing group that may have a substituent.
  • R 9 is preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R10 is preferably a hydrogen atom, an alkyl group that may have a substituent, or an amino group that may have a substituent, and a hydrogen atom or an amino group that may have a substituent. is more preferred, and an amino group which may have a substituent is even more preferred.
  • R 11 is preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R 12 to R 14 each independently represent a hydrogen atom, an alkyl group that may have a substituent, an amino group that may have a substituent, a thiol group, a hydroxy group, Represents a halogen atom, a sugar group that may have a substituent, or a polyoxyalkylene group-containing group that may have a substituent.
  • R 12 is preferably a hydrogen atom or an alkyl group which may have a substituent, and more preferably a hydrogen atom.
  • Another preferred embodiment of R12 is an alkyl group that may have a substituent, an amino group that may have a substituent, a thiol group, a hydroxy group, a halogen atom, or an alkyl group that may have a substituent.
  • a group containing a sugar group or a polyoxyalkylene group which may have a substituent is preferable.
  • R 13 is preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R 14 is preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom. It is preferable that at least one of R 12 to R 14 is a hydrogen atom.
  • R 15 to R 17 each independently represent a hydrogen atom, an optionally substituted alkyl group, an optionally substituted amino group, a thiol group, a hydroxy group, Represents a halogen atom, a sugar group that may have a substituent, or a polyoxyalkylene group-containing group that may have a substituent.
  • R 15 to R 17 examples include the embodiments of each group represented by R 1 to R 3 in the above formula (A1).
  • R 15 is preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R16 is preferably a hydrogen atom, an alkyl group that may have a substituent, or an amino group that may have a substituent, and a hydrogen atom or an amino group that may have a substituent. is more preferable, and a hydrogen atom is even more preferable.
  • R16 is a hydrogen atom, an alkyl group that may have a substituent, a thiol group, a hydroxy group, a halogen atom, a sugar group that may have a substituent, or a substituent.
  • a polyoxyalkylene group-containing group which may have a polyoxyalkylene group is preferred.
  • R 17 is preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R 18 to R 20 each independently represent a hydrogen atom, an alkyl group that may have a substituent, an amino group that may have a substituent, a thiol group, a hydroxy group, Represents a halogen atom, a sugar group that may have a substituent, or a polyoxyalkylene group-containing group that may have a substituent.
  • R 18 to R 20 examples include the embodiments of each group represented by R 1 to R 3 in the above formula (A1).
  • R 18 to R 20 are preferably a hydrogen atom or an alkyl group that may have a substituent, and more preferably a hydrogen atom.
  • R 21 to R 24 each independently represent a hydrogen atom, an alkyl group that may have a substituent, an amino group that may have a substituent, a thiol group, a hydroxy group, Represents a halogen atom, a sugar group that may have a substituent, or a polyoxyalkylene group-containing group that may have a substituent.
  • R 21 to R 24 examples include the embodiments of each group represented by R 1 to R 3 in the above formula (A1).
  • R 21 to R 24 are preferably a hydrogen atom or an alkyl group which may have a substituent, and more preferably a hydrogen atom.
  • purine compounds include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, adenosine, enprophylline, theophylline, xanthosine, 7-methylxanthosine, 7-methylxanthine, eritadenine, 3 -Methyladenine, 3-methylxanthine, 1,7-dimethylxanthine, 1-methylxanthine, 1,3-dipropyl-7-methylxanthine, 3,7-dihydro-7-methyl-1H-purine-2,6- Dione, 1,7-dipropyl-3-methylxanthine, 1-methyl-3,7-dipropylxanthine, 1,3-dipropyl-7-methyl-8-dicyclopropylmethylxanthine, 1,3-dibutyl-7 -(2-oxopropyl)xanthine, 1-butyl
  • purine compounds include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, isoguanine, adenosine, enprophyllin, xanthosine, 7-methylxanthosine, 7-methylxanthine, theophylline, eritadenine, paraxanthine, It preferably contains at least one selected from the group consisting of benzyladenine, 3-methyladenine, 3-methylxanthine, 1,7-dimethylxanthine, and 1-methylxanthine, and adenine, guanine, hypoxanthine, and xanthine. , adenosine, and benzyladenine, and particularly preferably at least one selected from the group consisting of adenine and xanthine.
  • the purine compounds may be used alone or in combination of two or more.
  • the content of the purine compound is preferably 0.00005 to 0.25% by mass, more preferably 0.0001 to 0.01% by mass, based on the total mass of the treatment liquid. , 0.0001 to 0.008% by mass is more preferred, and 0.0002 to 0.003% by mass is particularly preferred.
  • the content of the purine compound is preferably 0.01 to 30.0% by mass, and 0.05 to 20% by mass, based on the total mass of the components excluding the solvent in the treatment liquid. 0.0% by mass is more preferred, and 0.1 to 10.0% by mass is even more preferred.
  • the treatment liquid contains a specific compound.
  • the specific compound is at least one compound selected from the group consisting of organic sulfonic acid compounds having 10 or less carbon atoms, sulfuric acid, and salts thereof.
  • the organic sulfonic acid compound having 10 or less carbon atoms is an organic compound having a sulfonic acid group.
  • the number of sulfonic acid groups possessed by the organic sulfonic acid compound having 10 or less carbon atoms is not particularly limited, and is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.
  • the number of carbon atoms contained in the organic sulfonic acid compound is 10 or less, preferably 8 or less, and more preferably 7 or less in terms of the effect of the present invention being more excellent.
  • the lower limit is not particularly limited, but is 1 or more.
  • the salt of an organic sulfonic acid compound having 10 or less carbon atoms means a compound in which the hydrogen ion of the sulfonic acid group in the organic sulfonic acid compound is replaced with another cation (an inorganic cation or an organic cation).
  • the inorganic cation include cations of alkali metals (eg, lithium, sodium, potassium, etc.), ammonium (NH 4 + ), and the like.
  • Examples of organic cations include tetraalkylammonium ions.
  • a compound represented by formula (B) is preferable.
  • X-(SO 3 H) n formula (B)
  • n represents 1 or 2, and when n is 1, X represents an alkyl group that may have a substituent or an aryl group that may have a substituent. , when n is 2, X represents an alkylene group which may have a substituent or an arylene group which may have a substituent.
  • an alkyl group that may have a substituent an aryl group that may have a substituent, an alkylene group that may have a substituent, and an arylene that may have a substituent
  • the number of carbon atoms in each group is 10 or less.
  • the optionally substituted alkyl group represented by X may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkyl group which may have a substituent is 10 or less, preferably 1 to 8, more preferably 1 to 7, and still more preferably 1 to 3.
  • the number of carbon atoms in the alkyl group that may have a substituent mentioned above means the number of carbon atoms in the alkyl group itself when the alkyl group has no substituent; In this case, it means the number of carbon atoms contained in the entire alkyl group having substituents.
  • an alkyl group when an alkyl group has a carboxy group as a substituent, it means that the total number of carbon atoms in the carboxy group and the number of carbon atoms in the alkyl group is 10 or less.
  • substituent that the alkyl group has include an aryl group, a hydroxy group, a carboxy group, an amino group, and a halogen atom.
  • the aryl group which may have a substituent represented by X may have either a monocyclic structure or a polycyclic structure, and a phenyl group which may have a substituent is preferable.
  • the number of carbon atoms in the aryl group which may have a substituent is 10 or less, preferably 6 to 10, more preferably 6 to 8, and even more preferably 6 to 7.
  • the number of carbon atoms in the aryl group that may have a substituent mentioned above means the number of carbon atoms in the aryl group itself when the aryl group has no substituent; In this case, it means the number of carbon atoms contained in the entire aryl group having a substituent.
  • an aryl group has an alkyl group as a substituent, it means that the total number of carbon atoms in the alkyl group and the number of carbon atoms in the aryl group is 10 or less.
  • the substituent that the aryl group has include an alkyl group, a hydroxy group, a carboxy group, an amino group, and a halogen atom.
  • the optionally substituted alkylene group represented by X may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkylene group which may have a substituent is 10 or less, preferably 1 to 8, more preferably 1 to 7, and still more preferably 1 to 3.
  • the number of carbon atoms of the alkylene group which may have a substituent mentioned above means the number of carbon atoms of the alkylene group itself when the alkylene group has no substituent; In this case, it means the number of carbon atoms contained in the entire alkylene group having substituents.
  • an alkylene group when an alkylene group has a carboxy group as a substituent, it means that the total number of carbon atoms in the carboxy group and the number of carbon atoms in the alkylene group is 10 or less.
  • substituent that the alkylene group has include an aryl group, a hydroxy group, a carboxy group, an amino group, and a halogen atom.
  • the arylene group represented by X which may have a substituent may be either monocyclic or polycyclic.
  • the carbon number of the arylene group which may have a substituent is 10 or less, preferably 6 to 10, more preferably 6 to 8, and even more preferably 6 to 7.
  • the number of carbon atoms of the arylene group which may have a substituent mentioned above means the number of carbon atoms of the arylene group itself when the arylene group has no substituent; In this case, it means the number of carbon atoms contained in the entire arylene group having substituents.
  • the arylene group has an alkyl group as a substituent, it means that the total number of carbon atoms in the alkyl group and the number of carbon atoms in the arylene group is 10 or less.
  • the substituent that the arylene group has include an alkyl group, a hydroxy group, a carboxy group, an amino group, and a halogen atom.
  • an unsubstituted alkyl group or a phenyl group which may have an alkyl group is preferable.
  • the number of carbon atoms in the unsubstituted alkyl group is 10 or less, preferably 1 to 8, more preferably 1 to 7, and even more preferably 1 to 3.
  • the number of carbon atoms in the aryl group which may have an alkyl group is 10 or less, preferably 6 to 10, more preferably 6 to 8, and even more preferably 6 to 7.
  • the carbon number of the phenyl group which may have an alkyl group mentioned above means the carbon number of the phenyl group itself when the phenyl group does not have an alkyl group, and the carbon number of the phenyl group itself which may have an alkyl group. In this case, it means the number of carbon atoms contained in the entire phenyl group having an alkyl group.
  • the compound represented by formula (B) is para-toluenesulfonic acid
  • n is 1
  • X corresponds to a phenyl group having a methyl group
  • the number of carbon atoms in X is calculated to be 7.
  • X is preferably an unsubstituted alkylene group, since the effects of the present invention are more excellent.
  • the number of carbon atoms in the unsubstituted alkylene group is 10 or less.
  • Sulfuric acid is a compound represented by H 2 SO 4 .
  • a salt of sulfuric acid (sulfate) is an inorganic compound containing sulfate ion (SO 4 2- ).
  • Specific compounds include, for example, sulfuric acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid, camphorsulfonic acid, and salts thereof.
  • sulfuric acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, or salts thereof are preferred, and sulfuric acid, methanesulfonic acid, or paratoluenesulfonic acid is more preferred. preferable.
  • the pKa of the specific compound is preferably -10.0 to 2.0, more preferably -7.0 to 1.0, even more preferably -6.0 to -0.5.
  • the above pKa is a value calculated using "ACD/Pka DB Ver8.0" (ACD/Labs, manufactured by Advanced Chemistry Development).
  • ACD/Labs manufactured by Advanced Chemistry Development.
  • the smallest pKa value is within the above range.
  • the specific compounds may be used alone or in combination of two or more.
  • the content of the specific compound is preferably 0.0001 to 0.50% by mass, more preferably 0.0001 to 0.015% by mass, based on the total mass of the treatment liquid. , 0.001 to 0.01% by mass is more preferable.
  • the content of the specific compound is preferably 0.1 to 40.0% by mass, and 0.5 to 20% by mass, based on the total mass of the components in the treatment liquid excluding the solvent. 0.0% by mass is more preferred, and 0.8 to 15.0% by mass is even more preferred.
  • the mass ratio of the content of the specific compound to the content of the purine compound is preferably from 0.01 to 100.0. , 0.5 to 50.0 are more preferable, 0.5 to 20.0 are even more preferable, and 1.0 to 10.0 are particularly preferable.
  • the ratio of the total content of organic sulfonic acid having 8 or less carbon atoms and sulfuric acid to the total mass of the specific compound is preferably 50 to 100% by mass, more preferably 60 to 100% by mass. Preferably, 80 to 100% by mass is more preferable.
  • the treatment liquid contains water.
  • the water contained in the treatment liquid is not particularly limited, but distilled water, deionized (DI) water, pure water, or ultrapure water is preferable in that it does not affect the target object. Pure water or ultrapure water is more preferred.
  • the water content may be the remainder of the components that can be included in the treatment liquid.
  • the water content is preferably 1.0% by mass or more, more preferably 30.0% by mass or more, even more preferably 60.0% by mass or more, and 80.0% by mass or more based on the total mass of the treatment liquid. is particularly preferred.
  • the upper limit is preferably 99.99% by mass or less, more preferably 99.96% by mass or less, even more preferably 99.0% by mass or less, particularly preferably 97.0% by mass or less, based on the total mass of the treatment liquid. .
  • the treatment liquid may contain other components other than the above-mentioned components (purine compound, specific compound, and water). The other components will be explained in detail below.
  • the treatment liquid may contain an amine compound.
  • amine compounds include primary amine compounds having a primary amino group (-NH 2 ) in the molecule, secondary amine compounds having a secondary amino group (>NH) in the molecule, and secondary amine compounds having a secondary amino group (>NH) in the molecule.
  • examples include tertiary amine compounds having a tertiary amino group (>N-), quaternary ammonium compounds having a quaternary ammonium cation in the molecule, and salts thereof.
  • amine compound is a compound different from the purine compounds mentioned above, and purine compounds are not included in the amine compounds. These amine compounds can also function as pH adjusters.
  • the amine compound may have two or more groups selected from the group consisting of a primary amino group to a tertiary amino group, and a quaternary ammonium base. That is, the amine compound may be a diamine compound or a triamine compound.
  • the amine compound may have a substituent other than a primary amino group to a tertiary amino group and a quaternary ammonium base. Examples of the substituent include a hydroxy group.
  • the treatment liquid may contain an amine compound that may have a hydroxy group. It is preferable that the amine compound contains two or more nitrogen atoms in order to obtain better effects of the present invention.
  • the amine compound contains at least one compound selected from the group consisting of a tertiary amine compound and a quaternary ammonium compound, the effects of the present invention are more excellent.
  • the molecular weight of the compound selected from the group consisting of compounds is preferably 90 to 500, more preferably 100 to 300, even more preferably 110 to 200.
  • the amine compound preferably contains at least one compound selected from the group consisting of quaternary ammonium compounds and tertiary amine compounds, and more preferably contains a tertiary amine compound.
  • the quaternary ammonium compound is preferably a compound having a quaternary ammonium cation formed by substituting four hydrocarbon groups (preferably alkyl groups) on a nitrogen atom.
  • a quaternary ammonium compound is a compound having a quaternary ammonium cation, such as alkylpyridinium, in which the nitrogen atom in the pyridine ring is bonded to a substituent (hydrocarbon group such as an alkyl group or an aryl group, etc.). You can.
  • Examples of the quaternary ammonium compound include quaternary ammonium hydroxide, quaternary ammonium acetate, and quaternary ammonium carbonate.
  • quaternary ammonium compound a compound represented by formula (C) is preferred.
  • R 25 to R 28 each independently represent a hydrocarbon group which may have a substituent.
  • Y ⁇ represents an anion.
  • R 25 to R 28 each independently represent a hydrocarbon group which may have a substituent.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 20, more preferably 1 to 10, even more preferably 1 to 5.
  • the hydrocarbon group include an alkyl group that may have a substituent, an alkenyl group that may have a substituent, an alkynyl group that may have a substituent, and an alkynyl group that may have a substituent.
  • Examples include an aryl group which may have a substituent, and a combination thereof, and an alkyl group which may have a substituent is preferred.
  • substituents on the hydrocarbon group include halogen atoms such as fluorine, chlorine, and bromine; alkoxy; hydroxy; alkoxycarbonyl, such as methoxycarbonyl and ethoxycarbonyl; acetyl
  • substituents on the hydrocarbon group include halogen atoms such as fluorine, chlorine, and bromine; alkoxy; hydroxy; alkoxycarbonyl, such as methoxycarbonyl and ethoxycarbonyl; acetyl
  • substituents on the hydrocarbon group include halogen atoms such as fluorine, chlorine, and bromine; alkoxy; hydroxy; alkoxycarbonyl, such as methoxycarbonyl and ethoxycarbonyl; acetyl
  • acyl groups such as a propionyl group, a propionyl group, and a benzoyl group; a cyano group; and a nitro group, with a hydroxy group being preferred.
  • the alkyl group, alkenyl group, and alkynyl group may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkyl group, alkenyl group, and alkynyl group is preferably 1 to 20, more preferably 1 to 10, even more preferably 1 to 5, and particularly preferably 1 to 3.
  • Examples of the substituent that the alkyl group, the alkenyl group, and the alkynyl have include the substituents that the hydrocarbon group has.
  • the alkyl group is preferably an unsubstituted alkyl group or a hydroxyalkyl group, more preferably a methyl group, an ethyl group, a propyl group, a butyl group, or a 2-hydroxyethyl group, and a methyl group, an ethyl group, or a 2-hydroxyethyl group.
  • -Hydroxyethyl group is more preferred.
  • the above aryl group may be monocyclic or polycyclic.
  • the number of carbon atoms in the aryl group is preferably 6 to 20, more preferably 6 to 10, even more preferably 6 to 8.
  • Examples of the substituent that the aryl group has include a halogen atom such as a chlorine atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a nitro group, Examples include a thiol group and a dioxiran-yl group, preferably a halogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and still more preferably an alkyl group having 1 to 3 carbon atoms.
  • the number of substituents in the aryl group is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.
  • Examples of the aryl group include benzyl group, phenyl group, naphthyl group, anthryl group, phenanthryl group, indenyl group, acenaphthenyl group, fluorenyl group, and pyrenyl group, with benzyl group or phenyl group being preferred, and benzyl group is more preferable.
  • R 25 to R 28 represent the same group.
  • R 25 to R 27 represent a 2-hydroxyethyl group and R 28 represents a methyl group.
  • the compound represented by formula (C) preferably does not contain a tetramethylammonium salt. That is, it is preferable that the amine compound does not include a tetramethylammonium salt.
  • Y ⁇ represents an anion.
  • anions include acid anions such as carboxylate ions, phosphate ions, phosphonate ions, and nitrate ions, and hydroxide ions, with hydroxide ions being preferred.
  • quaternary ammonium compounds include tris(2-hydroxyethyl)methylammonium hydroxide (THEMAH), dimethylbis(2-hydroxyethyl)ammonium hydroxide, tetramethylammonium hydroxide (TMAH), and ethyltrimethylammonium hydroxide.
  • TEMAH tris(2-hydroxyethyl)methylammonium hydroxide
  • TMAH tetramethylammonium hydroxide
  • ethyltrimethylammonium hydroxide examples include tris(2-hydroxyethyl)methylammonium hydroxide (THEMAH), dimethylbis(2-hydroxyethyl)ammonium hydroxide, tetramethylammonium hydroxide (TMAH), and ethyltrimethylammonium hydroxide.
  • ETMAH trimethylethylammonium hydroxide
  • TMEAH dimethyldiethylammonium hydroxide
  • MTEAH methyltriethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • TPAH tetrapropylammonium hydroxide
  • TBAH tetra Butylammonium hydroxide
  • MTEAH methyltriethylammonium hydroxide
  • TEAH
  • a tertiary amine compound is a compound having at least one tertiary amino group in its molecule.
  • the tertiary amine compound may have two or more tertiary amino groups in the molecule, and preferably has two to three tertiary amino groups.
  • the tertiary amine compound may have a hydroxy group as a substituent.
  • tertiary amino compound having a hydroxy group examples include N-methyldiethanolamine (MDEA), 2-(dimethylamino)ethanol (DMAE), 2-(diethylamino)ethanol, N-ethyldiethanolamine (EDEA), and 2-(dimethylamino)ethanol (DMAE).
  • MDEA N-methyldiethanolamine
  • DMAE 2-(dimethylamino)ethanol
  • EDEA N-ethyldiethanolamine
  • DMAE 2-(dimethylamino)ethanol
  • DMAMP Dimethylamino-2-methyl-1-propanol
  • 2-(dibutylamino)ethanol 2-[2-(dimethylamino)ethoxy]ethanol, 2-[2-(diethylamino)ethoxy]ethanol, triethanolamine , and N-butyldiethanolamine (BDEA), with DMAE, EDEA, 2-(diethylamino)ethanol, or DMAMP being preferred, and DMAMP being more preferred.
  • Examples of tertiary amino compounds having no hydroxy group include alkyl amines such as trimethylamine and triethylamine, 1-methylpiperazine, 1-(2-hydroxyethyl)piperazine (HEP), 1,4-dimethylpiperazine, 1, Alkylene diamines such as 4-diazabicyclo[2.2.2]octane (DABCO) and 1,3-bis(dimethylamino)butane, and 1,3-bis(dimethylamino)butane, N,N,N',
  • Examples include polyalkyl polyamines such as N'-tetramethyl-1,3-propanediamine and N,N,N',N'',N'-pentamethyldiethylenetriamine (PMDETA); Polyamines are preferred, and polyalkylpolyamines are more preferred. Among these, PMDETA is preferred as the polyalkyl polyamine.
  • DMAE tertiary amine compound
  • EDEA 2-diethylaminoethanol
  • DMAMP 2-diethylaminoethanol
  • PMDETA 2-diethylaminoethanol
  • DMAMP or PMDETA is more preferable.
  • amine compounds include primary amine compounds and secondary amine compounds.
  • a primary amine compound and a secondary amine compound are compounds each having at least one primary amino group and one secondary amino group in the molecule.
  • Other amine compounds may have a hydroxy group as a substituent.
  • Other amine compounds having a hydroxy group include, for example, monoethanolamine (MEA), uracil, 2-amino-2-methyl-1-propanol (AMP), and N-methyl-2-amino-2-methyl-propanol.
  • MAMP 2-(2-aminoethylamino)ethanol
  • AAE 2-(2-aminoethylamino)ethanol
  • 3-amino-1-propanol 1-amino-2-propanol
  • N,N'-bis(2-hydroxyethyl)ethylenediamine trishydroxy Methylaminomethane
  • DEGA diethylene glycolamine
  • AEE 2-(aminoethoxy)ethanol
  • N-methylethanolamine 2-(ethylamino)ethanol
  • 2-[(hydroxymethyl)amino]ethanol 2-(propyl)
  • Examples include amino) ethanol, diethanolamine, N-butylethanolamine, and N-cyclohexylethanolamine, with AMP, MAMP, or diethanolamine being preferred, and AMP or MAMP being more preferred.
  • amine compounds having no hydroxy group include, for example, piperazine, 2,5-dimethylpiperazine, ethylenediamine (EDA), 1,3-propanediamine (PDA), 1,2-propanediamine, 1,3- Examples include alkylene diamines such as butanediamine and 1,4-butanediamine, and polyalkylpolyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine, with polyalkylpolyamines being preferred.
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • tetraethylenepentamine tetraethylenepentamine
  • the amine compounds may be used alone or in combination of two or more. In order to obtain better effects of the present invention, it is preferable to use two or more amine compounds in combination. When using two or more types of amine compounds in combination, it is preferable that at least one type of amine compound is a tertiary amine compound. In order to achieve better effects of the present invention, the content of the amine compound is preferably 0.001 to 50% by mass, more preferably 0.005 to 20% by mass, and 0.01% by mass based on the total mass of the treatment liquid. More preferably 10% by mass.
  • the content of the amine compound is preferably 30.0 to 99.5% by mass, and 50.0 to 98% by mass, based on the total mass of the components excluding the solvent in the treatment liquid. 0% by mass is more preferred, and 65.0 to 97.0% by mass is even more preferred.
  • the mass ratio of the content of the specific compound to the content of the amine compound is preferably 0.001 to 2.0, It is more preferably from 0.01 to 0.40, and even more preferably from 0.02 to 0.20.
  • the mass ratio of the amine compound content to the purine compound content is preferably 0.1 to 1000.0, 7.5 to 750.0 is more preferable, and 20.0 to 150.0 is even more preferable.
  • the treatment liquid may contain a pH adjuster to adjust and maintain the pH of the treatment liquid.
  • the pH adjuster is a basic compound and an acidic compound that are different from the above-mentioned compounds (purine compounds, specific compounds, amine compounds, etc.) that may be contained in the treatment liquid. However, it is permissible to adjust the pH of the treatment liquid by adjusting the amount of each of the components added.
  • a basic compound is a compound that exhibits alkalinity (pH greater than 7.0) in an aqueous solution.
  • Examples of the basic compound include basic inorganic compounds.
  • Examples of the basic inorganic compound include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides.
  • An acidic compound is a compound that exhibits acidity (pH less than 7.0) in an aqueous solution.
  • acidic compounds include acidic inorganic compounds.
  • acidic inorganic compounds include hydrochloric acid, nitric acid, nitrous acid, and boric acid.
  • the treatment liquid does not contain ammonia (NH 3 ), since the effects of the present invention are more excellent.
  • the content of the pH adjuster can be selected depending on the type and amount of components other than the pH adjuster and the desired pH of the treatment liquid.
  • the content of the pH adjuster is preferably 0.01 to 10% by mass, more preferably 0.1 to 8% by mass, based on the total mass of the treatment liquid.
  • the treatment liquid contains at least one component selected from the group consisting of a surfactant, an organic solvent, an organic acid, a polymer, a polyhydroxy compound with a molecular weight of 500 or more, and an oxidizing agent. Good too.
  • a surfactant an organic solvent, an organic acid, a polymer, a polyhydroxy compound with a molecular weight of 500 or more, and an oxidizing agent.
  • an organic acid an organic acid
  • a polymer a polyhydroxy compound with a molecular weight of 500 or more
  • an oxidizing agent Good too.
  • the other components will be explained below.
  • the surfactant is not particularly limited as long as it is a compound having a hydrophilic group and a hydrophobic group (lipophilic group) in one molecule, and examples thereof include nonionic surfactants and anionic surfactants. .
  • Surfactants often have at least one hydrophobic group selected from the group consisting of aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and combinations thereof.
  • the total carbon number of the surfactant is preferably 16 to 100.
  • nonionic surfactants examples include ester type nonionic surfactants, ether type nonionic surfactants, ester ether type nonionic surfactants, and alkanolamine type nonionic surfactants. Type nonionic surfactants are preferred.
  • nonionic surfactant for example, compounds exemplified in paragraph [0126] of International Publication No. 2022/044893 can also be used, and the contents thereof are incorporated herein.
  • anionic surfactants include phosphate ester surfactants having a phosphate group, phosphonic acid surfactants having a phosphonic acid group, and carboxylic acid surfactants having a carboxy group. It will be done.
  • anionic surfactant for example, compounds exemplified in paragraphs [0118] and [0122] of International Publication No. 2022/044893 can also be cited, and the contents of these are incorporated herein.
  • the surfactants may be used alone or in combination of two or more.
  • the content of the surfactant is preferably 0.001 to 8.0% by mass, more preferably 0.005 to 5.0% by mass, based on the total mass of the treatment liquid. , 0.01 to 3.0% by mass is more preferable.
  • the content of the surfactant is preferably 0.01 to 50.0% by mass, and 0.1 to 45% by mass, based on the total mass of the components excluding the solvent in the processing liquid. 0% by mass is more preferred, and 1.0 to 20.0% by mass is even more preferred.
  • Organic solvent examples include known organic solvents, such as alcohol solvents, glycol solvents, glycol ether solvents, and ketone solvents.
  • the organic solvent is preferably miscible with water in any ratio.
  • alcoholic solvents examples include methanol, ethanol, propanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, and tert-butyl alcohol.
  • glycol solvents examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, and tetraethylene glycol.
  • glycol ether solvent examples include glycol monoether.
  • glycol monoether examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol.
  • Monobutyl ether triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, 1-methoxy-2-propanol, 2-methoxy-1-propanol, 1-ethoxy-2-propanol, 2-ethoxy- 1-propanol, propylene glycol mono-n-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene Examples include glycol monobenzyl ether and diethylene glycol monobenzyl ether.
  • ketone solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • the organic solvents may be used alone or in combination of two or more.
  • the content of the organic solvent is preferably 0.01 to 15.0% by mass, more preferably 0.05 to 10.0% by mass, and 0.1 to 5.0% by mass based on the total mass of the treatment liquid. is even more preferable.
  • Organic acids include carboxylic acids such as aliphatic carboxylic acids and aromatic carboxylic acids, and phosphonic acids.
  • the organic acid may be in the form of a salt.
  • Examples of the above salts include inorganic salts.
  • Examples of aliphatic carboxylic acids include succinic acid, tartaric acid, maleic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, formic acid, citric acid, malic acid, glycolic acid, gluconic acid, Examples include ptonic acid and lactic acid.
  • Examples of aromatic carboxylic acids include phenyl lactic acid, hydroxyphenyl lactic acid, phenyl succinic acid, phthalic acid, isophthalic acid, terephthalic acid, gallic acid, trimellitic acid, mellitic acid, and cinnamic acid.
  • Examples of the phosphonic acid include compounds described in paragraphs [0026] to [0036] of International Publication No. 2018/020878, and compounds described in paragraphs [0031] to [0046] of International Publication No. 2018/030006. ((co)polymer), the contents of which are incorporated herein.
  • the content of the organic acid is preferably 0.0001 to 5.00% by mass, more preferably 0.0005 to 3.00% by mass, and 0.001 to 1.00% by mass based on the total mass of the treatment liquid. is even more preferable.
  • the content of the organic acid is preferably 0.1 to 50.0% by mass, more preferably 1.0 to 30.0% by mass, based on the total mass of the components excluding the solvent in the treatment liquid.3. More preferably 0 to 10.0% by mass.
  • Polymer examples include water-soluble polymers.
  • Water-soluble polymer refers to a compound in which two or more structural units are connected in a linear or networked manner through covalent bonds, and the mass of which dissolves in 100 g of water at 20°C is 0.1 g or more. means.
  • water-soluble polymers include polyacrylic acid, polymethacrylic acid, polymaleic acid, polyvinylsulfonic acid, polyallylsulfonic acid, polystyrenesulfonic acid, and salts thereof; styrene, ⁇ -methylstyrene, and/or 4- Copolymers of monomers such as methylstyrene and acid monomers such as (meth)acrylic acid and/or maleic acid, and salts thereof; aromas made by condensing benzenesulfonic acid and/or naphthalenesulfonic acid with formalin Polymers having structural units having group hydrocarbon groups, and salts thereof; polyglycerin; polyvinyl alcohol, polyoxyethylene, polyvinylpyrrolidone, polyvinylpyridine, polyacrylamide, polyvinylformamide, polyethyleneimine, polyvinyloxazoline, polyvinylimidazole, and vinyl-based synthetic polymers such as polyallylamine; modified products of natural
  • the polymer for example, the water-soluble polymers described in paragraphs [0043] to [0047] of JP-A-2016-171294 can also be used, and the contents of these are incorporated herein.
  • the molecular weight of the polymer (weight average molecular weight if it has a molecular weight distribution) is preferably 300 or more, more preferably more than 600, even more preferably 1000 or more, particularly preferably more than 1000, and most preferably 2000 or more.
  • the upper limit is preferably 1,500,000 or less, more preferably 1,000,000 or less.
  • the content of the polymer is preferably 0.0001 to 5.00% by mass, more preferably 0.0005 to 3.00% by mass, and 0.001 to 1.00% by mass based on the total mass of the treatment liquid. is even more preferable.
  • the content of the polymer is preferably 0.1 to 50.0% by mass, more preferably 1.0 to 30.0% by mass, based on the total mass of the components excluding the solvent in the treatment liquid.3. More preferably 0 to 10.0% by mass.
  • oxidizing agent examples include peroxides, persulfides (eg, monopersulfides and dipersulfides), percarbonates, acids thereof, and salts thereof.
  • examples of the oxidizing agent include perboric acid, perborate salts, cerium compounds, and ferricyanides (potassium ferricyanide, etc.).
  • the content of the oxidizing agent is preferably 0.01 to 10.0% by mass, more preferably 0.05 to 5.0% by mass, and 0.1 to 3.0% by mass based on the total mass of the treatment liquid. is even more preferable.
  • the content of the oxidizing agent is preferably 0.1 to 50.0% by mass, more preferably 1.0 to 30.0% by mass, based on the total mass of the components excluding the solvent in the treatment liquid.3. More preferably 0 to 10.0% by mass.
  • the treatment liquid may contain a halide, it is preferable that the treatment liquid substantially not contain a halide (particularly an inorganic halide) in order to obtain better effects of the present invention.
  • a halide is a compound containing one or more halogen elements, and examples of the halogen elements include one or more selected from the group consisting of fluorine, chlorine, bromine, and iodine. Examples of halides include fluoride, chloride, bromide, and iodide. Examples of the fluoride include NH 4 F, HF, H 2 SiF 6 , H 2 TiF 6 , H 2 ZrF 6 , HPF 6 , and HBF 4 .
  • substantially free of halides means that the content of halides is 0.01% by mass or less, preferably 0.001% by mass or less, and 0.01% by mass or less, preferably 0.001% by mass or less, based on the total mass of the treatment liquid. 0001% by mass or less is more preferable. The lower limit is 0% by mass.
  • the content of various components that may be included in the above treatment liquid can be determined by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and liquid chromatography-mass spectrometry (LC-MS). ometry) method, Alternatively, it can be measured by a known method such as ion-exchange chromatography (IC).
  • GC-MS gas chromatography-mass spectrometry
  • LC-MS liquid chromatography-mass spectrometry
  • LC-MS liquid chromatography-mass spectrometry
  • LC-MS liquid chromatography-mass spectrometry
  • the treatment liquid is basic and has a pH of over 7.0.
  • the pH of the treatment liquid is preferably 9.0 to 14.0, more preferably 10.0 to 13.5, and even more preferably 10.5 to 13.0.
  • the pH of the treatment liquid can be measured using a known pH meter in accordance with JIS Z8802-1984.
  • the pH measurement temperature is 25°C.
  • Metal content The content (in terms of ion concentration) of metals (for example, metal elements such as Fe, Co, Na, Cu, Mg, Mn, Li, Al, Cr, Ni, Zn, Sn, and Ag) contained as impurities in the processing solution. (measured) is preferably at most 5 ppm by mass, more preferably at most 1 ppm by mass. In the production of cutting-edge semiconductor devices, it is expected that even higher purity processing liquids will be required, so the metal content should be lower than 1 ppm by mass, that is, on the order of ppb by mass or less. More preferably, it is 100 mass ppb or less, particularly preferably less than 10 mass ppb, and most preferably less than 10 mass ppb. The lower limit is preferably 0.
  • Methods for reducing metal content include, for example, purification treatments such as distillation and filtration using ion exchange resins or filters at the stage of raw materials used when manufacturing the treatment liquid or at the stage after the manufacture of the treatment liquid.
  • purification treatments such as distillation and filtration using ion exchange resins or filters at the stage of raw materials used when manufacturing the treatment liquid or at the stage after the manufacture of the treatment liquid.
  • One example is to do the following.
  • Another method for reducing the metal content is to use a container that contains less impurities, which will be described later, as a container for storing raw materials or manufactured processing liquids.
  • Another possibility is to line the inner walls of the pipes with fluororesin to prevent metal components from eluting from the pipes during production of the processing liquid.
  • Coarse particles refers to particles whose diameter (particle size) is 0.03 ⁇ m or more when the shape of the particles is considered to be spherical.
  • Coarse particles contained in the processing liquid include particles such as dust, organic solids, and inorganic solids contained as impurities in the raw materials, as well as dust, dirt, and particles brought in as contaminants during the preparation of the processing liquid. This includes particles such as organic solids and inorganic solids that ultimately exist as particles without being dissolved in the processing liquid.
  • the content of coarse particles in the treatment liquid is preferably 10,000 or less, more preferably 5,000 or less per 1 mL of the treatment liquid.
  • the lower limit is preferably 0 or more, more preferably 0.01 or more per mL of treatment liquid.
  • the content of coarse particles present in the treatment liquid can be measured in the liquid phase using a commercially available measurement device using a light scattering particle-in-liquid measurement method using a laser as a light source. Examples of methods for removing coarse particles include purification treatment such as filtering, which will be described later.
  • the treatment liquid can be produced by a known method. The method for producing the treatment liquid will be described in detail below.
  • the treatment liquid can be produced, for example, by mixing the above components.
  • a method for preparing the treatment liquid for example, a purine compound, a specific compound, and optional components as needed are sequentially added to a container containing purified pure water, and then stirred to mix.
  • An example of this method is to prepare the treatment liquid by adding a pH adjuster accordingly to adjust the pH of the mixed liquid.
  • a pH adjuster accordingly to adjust the pH of the mixed liquid.
  • water and each component to a container they may be added all at once or may be added in multiple portions.
  • stirrer As the stirring device and stirring method used for preparing the treatment liquid, a device known as a stirrer or a dispersion machine may be used.
  • the stirrer include an industrial mixer, a portable stirrer, a mechanical stirrer, and a magnetic stirrer.
  • the disperser include an industrial disperser, a homogenizer, an ultrasonic disperser, and a bead mill.
  • the mixing of each component in the process of preparing the treatment liquid, the purification treatment described below, and the storage of the produced treatment liquid are preferably carried out at 40°C or lower, more preferably at 30°C or lower. Moreover, as a lower limit, 5 degreeC or more is preferable, and 10 degreeC or more is more preferable.
  • ⁇ Purification treatment> It is preferable that one or more of the raw materials for preparing the treatment liquid be subjected to a purification treatment in advance.
  • the purification treatment include known methods such as distillation, ion exchange, and filtration.
  • the degree of purification it is preferable to purify the raw material until the purity is 99% by mass or more, and more preferably until the purity of the raw material is 99.9% by mass or more.
  • the upper limit is preferably 99.9999% by mass or less.
  • the purification treatment method examples include a method of passing the raw material through an ion exchange resin or an RO membrane (Reverse Osmosis Membrane), distillation of the raw material, and filtering described below.
  • the purification process may be performed by combining a plurality of the above purification methods. For example, after performing primary purification on raw materials by passing the liquid through an RO membrane, secondary purification is performed by passing the liquid through a purification device consisting of a cation exchange resin, an anion exchange resin, or a mixed bed ion exchange resin. You may. Further, the purification treatment may be performed multiple times.
  • the filter used for filtering is not particularly limited as long as it has been conventionally used for filtration purposes.
  • fluororesins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), polyamide resins such as nylon, and polyolefin resins (high density or ultra-high molecular weight).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • polyamide resins such as nylon
  • polyolefin resins high density or ultra-high molecular weight
  • the processing liquid (including the diluted processing liquid described below) can be stored, transported, and used by being filled in any container as long as corrosivity and the like are not a problem.
  • the container for semiconductor applications, it is preferable to use a container that has a high degree of cleanliness inside the container and suppresses the elution of impurities from the inner wall of the accommodating part of the container into each liquid.
  • containers include various containers commercially available as containers for semiconductor processing liquids, such as the "Clean Bottle” series manufactured by Aicello Chemical Co., Ltd. and the “Pure Bottle” manufactured by Kodama Resin Industries. Not limited to these.
  • containers illustrated in paragraphs [0121] to [0124] of International Publication No. 2022/004217 can also be used, and the contents of these are incorporated herein.
  • the inside of these containers be cleaned before filling with the processing liquid.
  • the liquid used for cleaning preferably has a reduced amount of metal impurities in the liquid.
  • the treatment liquid may be bottled in a container such as a gallon bottle or a coated bottle, and then transported and stored.
  • the inside of the container may be replaced with an inert gas (nitrogen, argon, etc.) with a purity of 99.99995% by volume or more. Particularly preferred is a gas with a low water content.
  • the temperature may be at room temperature, or the temperature may be controlled within the range of -20°C to 20°C to prevent deterioration.
  • the production of the treatment liquid, the handling including opening and cleaning of the container, filling of the treatment liquid, processing analysis, and measurement are all performed in a clean room.
  • the clean room meets 14644-1 clean room standards. It preferably satisfies any of ISO (International Organization for Standardization) Class 1, ISO Class 2, ISO Class 3, and ISO Class 4, more preferably satisfies ISO Class 1 or ISO Class 2, and satisfies ISO Class 1. It is even more preferable.
  • ISO International Organization for Standardization
  • the treatment liquid may be subjected to a dilution step of diluting with a diluent such as water, and then used as a diluted treatment liquid (diluted treatment liquid) to treat the object.
  • a diluent such as water
  • the diluted treatment liquid is also one form of the treatment liquid of the present invention as long as it satisfies the requirements of the present invention.
  • a purification treatment on the diluent used in the dilution step in advance. Further, it is more preferable to perform a purification treatment on the diluted solution obtained in the dilution step.
  • the purification treatment include ion component reduction treatment using an ion exchange resin or RO membrane, etc., and foreign matter removal using filtering, which are described as purification treatment for the above-mentioned treatment liquid, and any one of these treatments may be performed. is preferred.
  • the dilution rate of the treatment liquid in the dilution process may be adjusted as appropriate depending on the type and content of each component and the object to be treated.
  • the mass ratio or volume ratio (volume ratio at 23° C.) is preferably 10 to 10,000 times, more preferably 20 to 3,000 times, and even more preferably 50 to 1,000 times. Further, it is preferable that the treatment liquid is diluted with water in terms of better defect removal properties.
  • the change in pH before and after dilution (the difference between the pH of the treatment liquid before dilution and the pH of the diluted treatment liquid) is preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.5 or less. It is preferable that the pH of the treatment liquid before dilution and the pH of the diluted treatment liquid are each in the above preferred embodiment.
  • a specific method for diluting the treatment liquid may be carried out in accordance with the process of preparing the treatment liquid described above.
  • the stirring device and stirring method used in the dilution step the known stirring device mentioned in the above-mentioned treatment liquid preparation step may be used.
  • the treatment liquid of the present invention can be used for various materials used in semiconductor manufacturing.
  • the object to be treated with the treatment liquid of the present invention will be described in detail.
  • the above treatment liquid can be used, for example, to treat insulating films, resists, antireflection films, etching residues, ashing residues, and the like existing on a substrate.
  • the processing liquid is preferably used as a cleaning liquid, and more preferably used in a cleaning process for cleaning an object (particularly a semiconductor substrate) that has been subjected to a CMP process.
  • the treatment liquid when using the treatment liquid, it may be used as a diluted treatment liquid obtained by diluting the treatment liquid.
  • Examples of objects to be treated with the treatment liquid include objects containing metal, and preferably semiconductor substrates containing metal.
  • the semiconductor substrate may include metal on any of the front and back surfaces, side surfaces, inside grooves, etc. of the semiconductor substrate, for example.
  • the semiconductor substrate has metal, it includes not only the case where the metal is directly on the surface of the semiconductor substrate but also the case where the metal is on the semiconductor substrate via another layer.
  • metals examples include copper (Cu), cobalt (Co), ruthenium (Ru), aluminum (Al), tungsten (W), titanium (Ti), tantalum (Ta), chromium (Cr), and hafnium (Hf). , osmium (Os), platinum (Pt), nickel (Ni), manganese (Mn), iron (Fe), zirconium (Zr), molybdenum (Mo), palladium (Pd), lanthanum (La), and iridium ( At least one metal M selected from the group consisting of Ir) is mentioned, with Cu or Co being preferred. That is, the target object is preferably a target object containing at least one metal selected from the group consisting of Cu and Co.
  • the metal may be any substance containing a metal (metal atom), and examples thereof include a simple substance of metal M and an alloy containing metal M.
  • the object to be treated with the treatment liquid may include, for example, a semiconductor substrate, a metal wiring film, a barrier metal, and an insulating film.
  • Wafers constituting the semiconductor substrate include, for example, silicon (Si) wafers, silicon carbide (SiC) wafers, wafers made of silicon-based materials such as silicon-containing resin wafers (glass epoxy wafers), and gallium phosphide (GaP) wafers. ) wafers, gallium arsenide (GaAs) wafers, and indium phosphide (InP) wafers.
  • Examples of silicon wafers include n-type silicon wafers doped with pentavalent atoms (e.g., phosphorus (P), arsenic (As), and antimony (Sb), etc.), and silicon wafers doped with trivalent atoms.
  • Examples include p-type silicon wafers doped with atoms (eg, boron (B), gallium (Ga), etc.).
  • Examples of the silicon of the silicon wafer include amorphous silicon, single crystal silicon, polycrystalline silicon, and polysilicon.
  • wafers made of silicon-based materials such as silicon wafers, silicon carbide wafers, and resin-based wafers containing silicon (glass epoxy wafers) are preferred.
  • the insulating film examples include silicon oxide films (e.g., silicon dioxide (SiO 2 ) films, tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) films (TEOS films), etc.), silicon nitride films (e.g., silicon nitride films), etc. (Si 3 N 4 ) and silicon nitride carbide (SiNC)), and low dielectric constant (Low-k) films (such as carbon-doped silicon oxide (SiOC) films and silicon carbide (SiC) films). , a low dielectric constant (Low-k) film is preferred.
  • silicon oxide films e.g., silicon dioxide (SiO 2 ) films, tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) films (TEOS films), etc.
  • silicon nitride films e.g., silicon nitride films
  • Si 3 N 4 silicon nitride carb
  • the metal wiring film a copper-containing film, a cobalt-containing film, and a ruthenium-containing film are preferable.
  • the copper-containing film include a wiring film made only of metallic copper (copper wiring film) and a wiring film made of an alloy made of metallic copper and another metal (copper alloy wiring film).
  • the copper alloy wiring film include a wiring film made of an alloy made of copper and one or more metals selected from Al, Ti, Cr, Mn, Ta, and W.
  • copper-aluminum alloy wiring film CuAl alloy wiring film
  • copper-titanium alloy wiring film CuTi alloy wiring film
  • copper-chromium alloy wiring film CuCr alloy wiring film
  • copper-manganese alloy wiring film CuMn alloy wiring film
  • copper-tantalum alloy wiring film CuTa alloy wiring film
  • copper-tungsten alloy wiring film CuW alloy wiring film
  • cobalt-containing film examples include a metal film made of only metal cobalt (cobalt metal film) and an alloy metal film made of metal cobalt and another metal (cobalt alloy metal film).
  • cobalt alloy metal film examples include metal films made of alloys made of cobalt and one or more metals selected from Ti, Cr, Fe, Ni, Mo, Pd, Ta, and W.
  • cobalt-titanium alloy metal film (CoTi alloy metal film), cobalt-chromium alloy metal film (CoCr alloy metal film), cobalt-iron alloy metal film (CoFe alloy metal film), cobalt-nickel alloy metal film film (CoNi alloy metal film), cobalt-molybdenum alloy metal film (CoMo alloy metal film), cobalt-palladium alloy metal film (CoPd alloy metal film), cobalt-tantalum alloy metal film (CoTa alloy metal film), and cobalt - Tungsten alloy metal film (CoW alloy metal film).
  • the treatment liquid is useful for substrates having cobalt-containing films.
  • cobalt-containing films a cobalt metal film is often used as a wiring film, and a cobalt alloy metal film is often used as a barrier metal.
  • ruthenium-containing film examples include a metal film made of only metal ruthenium (ruthenium metal film) and an alloy metal film made of metal ruthenium and another metal (ruthenium alloy metal film). Ruthenium-containing films are often used as barrier metals.
  • a method for forming an insulating film for example, a wafer constituting a semiconductor substrate is heat-treated in the presence of oxygen gas to form a silicon oxide film, and then silane and ammonia gas is introduced to form a chemical
  • a method of forming a silicon nitride film by a chemical vapor deposition (CVD) method is exemplified.
  • a method for forming a copper-containing film, a cobalt-containing film, and a ruthenium-containing film for example, a circuit is formed on a wafer having the above-mentioned insulating film by a known method such as resist, and then plating and CVD are performed. Examples include a method of forming a copper-containing film, a cobalt-containing film, and a ruthenium-containing film by the method described above.
  • the object to be used for cleaning the treatment liquid is preferably a CMP-treated object (especially a semiconductor substrate), and the CMP-treated object is selected from the group consisting of Cu and Co.
  • a target object containing at least one kind of metal is more preferable.
  • CMP processing for example, polishes the surface of a semiconductor substrate having a metal wiring film, barrier metal, and insulating film by a combined action of chemical action and mechanical polishing using a polishing slurry containing polishing fine particles (abrasive grains). This is a flattening process.
  • metal impurities metal residue
  • the abrasive grains used in CMP processing for example, silica and alumina, etc.
  • Impurities such as may remain.
  • organic impurities derived from the CMP processing liquid used during the CMP processing may remain. These impurities can, for example, cause short circuits between wiring lines and deteriorate the electrical characteristics of the semiconductor substrate, so semiconductor substrates that have been subjected to CMP processing must undergo cleaning treatment to remove these impurities from the surface. Served.
  • the object (particularly a semiconductor substrate) to which the treatment liquid is used for cleaning may be subjected to CMP treatment and then buffing treatment.
  • Buffing is a process that uses a polishing pad to reduce impurities on the surface of a semiconductor substrate. Specifically, the surface of a semiconductor substrate subjected to CMP processing is brought into contact with a polishing pad, and the semiconductor substrate and polishing pad are caused to slide relative to each other while a buffing composition is supplied to the contact portion. As a result, impurities on the surface of the semiconductor substrate are removed by the frictional force of the polishing pad and the chemical action of the buffing composition.
  • any known buffing composition can be used as appropriate depending on the type of semiconductor substrate and the type and amount of impurities to be removed.
  • Components contained in the buffing composition include, for example, water-soluble polymers such as polyvinyl alcohol, water as a dispersion medium, and acids such as nitric acid.
  • a treatment liquid as the buffing composition.
  • the polishing device and polishing conditions used in the buffing process can be appropriately selected from known devices and conditions depending on the type of semiconductor substrate, the object to be removed, and the like. Examples of the buffing treatment include the treatments described in paragraphs [0085] to [0088] of International Publication No. 2017/169539, the contents of which are incorporated herein.
  • the treatment liquid can be used by a known method. The method of using the treatment liquid will be described in detail below.
  • Examples of the method for using the treatment liquid include a method for treating an object that includes a step of bringing the object into contact with the treatment liquid.
  • the process of bringing the object into contact with the treatment liquid will also be referred to as a "contact process.”
  • the method of bringing the object into contact with the treatment liquid is not particularly limited, and examples thereof include immersing the object in the treatment liquid in a tank, spraying the treatment liquid onto the object, and the like. Examples include a method of flowing a treatment liquid onto an object, and a combination thereof.
  • the above method may be selected as appropriate depending on the purpose. Further, the above method may appropriately adopt a method commonly used in this field.
  • scrub cleaning involves physically contacting a cleaning member such as a brush with the surface of an object to remove residue while supplying processing liquid, and spin cleaning, which drips processing liquid while rotating the object. (dropping) formula etc. may be used.
  • a cleaning member such as a brush
  • spin cleaning which drips processing liquid while rotating the object. (dropping) formula etc.
  • the contact between the object and the treatment liquid in the contact step may be carried out only once, or may be carried out two or more times. When performing the test two or more times, the same method may be repeated or different methods may be combined.
  • the method for the contact step may be either a single wafer method or a batch method.
  • the single-wafer method generally refers to a method in which objects are processed one by one
  • the batch method generally refers to a method in which a plurality of objects are processed simultaneously.
  • the temperature of the treatment liquid is not particularly limited as long as it is a temperature normally used in this field. Generally, cleaning is performed at room temperature (approximately 25° C.), but the temperature can be arbitrarily selected in order to improve defect removal performance and suppress damage resistance to members.
  • the temperature of the treatment liquid is preferably 10 to 60°C, more preferably 15 to 50°C.
  • the contact time between the object and the treatment liquid can be changed as appropriate depending on the type and content of each component contained in the treatment liquid, and the object and purpose of the treatment liquid. Practically, the time is preferably 10 to 120 seconds, more preferably 20 to 90 seconds, and even more preferably 30 to 60 seconds.
  • the supply amount (supply rate) of the treatment liquid is preferably 50 to 5000 mL/min, more preferably 500 to 2000 mL/min.
  • a mechanical stirring method may be used to further enhance the cleaning ability of the treatment liquid.
  • Mechanical stirring methods include, for example, a method of circulating the treatment liquid over the object, a method of flowing or spraying the treatment liquid over the object, and a method of stirring the treatment liquid with ultrasonic or megasonic waves. Can be mentioned.
  • a step of bringing the object to be treated into contact with water (hereinafter also referred to as a "rinsing step") may be performed.
  • the rinsing step By performing the rinsing step, the object to be treated obtained in the contacting step can be washed with water, and the defects derived from the purine compound described above can be efficiently removed.
  • the rinsing step is performed continuously after the contacting step.
  • the rinsing step may be performed using the mechanical stirring method described above.
  • the method of bringing the treatment liquid into contact with the object can be similarly applied.
  • the contact time between the object to be treated and water can be changed as appropriate depending on the type and content of each component contained in the treatment liquid, and the object and purpose of the treatment liquid. Practically, the time is preferably 10 to 120 seconds, more preferably 20 to 90 seconds, and even more preferably 30 to 60 seconds.
  • a drying step for drying the object to be processed may be performed after the rinsing step.
  • the drying method include a spin drying method, a method of passing a drying gas over the object to be processed, a method of heating the substrate with a heating means such as a hot plate and an infrared lamp, and any combination of these methods. Can be mentioned.
  • the method for treating the object described above can be suitably applied to the manufacturing process of electronic devices.
  • the above processing methods may be performed in combination before or after other steps performed on the substrate.
  • the above treatment method may be incorporated into other steps while implementing the above treatment method, or may be implemented by incorporating the above treatment method into other steps.
  • Other processes include, for example, processes for forming structures such as metal wiring, gate structures, source structures, drain structures, insulating films, ferromagnetic layers, and nonmagnetic layers (e.g., layer formation, etching, chemical mechanical polishing, and metamorphosis, etc.), a resist formation process, an exposure process and a removal process, a heat treatment process, a cleaning process, and an inspection process.
  • the above processing method can be used at any stage during the back end process (BEOL: Back end of the line), middle process (MOL: Middle of the line), or front end process (FEOL: Front end of the line). go It is preferable to perform this in a front-end process or a middle process.
  • the pH of the treatment solution was measured at 25° C. using a pH meter (manufactured by Horiba, Model "F-74") in accordance with JIS Z8802-1984. Furthermore, in manufacturing the processing solutions of Examples and Comparative Examples, handling of containers, preparation of processing solutions, filling, storage, and analytical measurements were all carried out in a clean room meeting ISO class 2 or lower.
  • [Purine compound] ⁇ Adenine (corresponds to the compound represented by formula (A1)) ⁇ Xanthine (corresponds to the compound represented by formula (A4)) ⁇ Hypoxanthine (corresponds to the compound represented by formula (A5)) ⁇ Guanine (corresponds to the compound represented by formula (A5)) ⁇ Adenosine (corresponds to the compound represented by formula (A1)) ⁇ Caffeine (corresponds to the compound represented by formula (A4)) ⁇ Benzyladenine (corresponds to the compound represented by formula (A1))
  • the remaining components (remainder) that are not specified as components of the treatment liquid in the table are ultrapure water and a pH adjuster.
  • Example 1 [Production of processing liquid] Next, a method for producing a treatment liquid will be described using Example 1 as an example. Adenine, sulfuric acid, and DMAMP were respectively added to ultrapure water so that the final treatment solution had the composition shown in the table below, and the resulting mixed solution was thoroughly stirred. Further, a pH adjuster (potassium hydroxide) was added as necessary so that the treatment liquid had the pH shown in the table below, and the mixture was sufficiently stirred to obtain the treatment liquid of Example 1.
  • a pH adjuster potassium hydroxide
  • Example 1 According to the manufacturing method of Example 1, treatment liquids of each Example or each Comparative Example having the compositions shown in the table below were manufactured.
  • Corrosion resistance against Cu and Co was evaluated using the treatment liquid produced by the above method.
  • a 2 ⁇ 2 cm Cu or Co wafer was prepared.
  • the above-mentioned wafer was placed in a container filled with the processing solution of each Example or each Comparative Example, and immersion treatment was performed at room temperature (25° C.) for 30 minutes. Thereafter, the film thickness of the obtained wafer was measured using VR250 (manufactured by Kokusai Electric Semiconductor Service Co., Ltd.), and the etching rate ( ⁇ /min) was determined from the difference in film thickness before and after the immersion treatment.
  • the anticorrosion properties of the treatment liquids were evaluated according to the following evaluation criteria. The lower the etching rate, the better the corrosion resistance. A: Less than 0.4 ⁇ /min B: 0.4 ⁇ /min or more and less than 0.6 ⁇ /min C: 0.6 ⁇ /min or more and less than 0.8 ⁇ /min D: 0.8 ⁇ /min or more
  • defect removal performance was evaluated when cleaning a semiconductor substrate subjected to CMP processing.
  • FREX300S-II polishing device, manufactured by Ebara Corporation
  • polishing liquid 1 was used as the polishing liquid
  • the in-plane average value of the polishing pressure was 105 hPa
  • the polishing liquid supply rate was 200 mL/min
  • the polishing time was 30 seconds.
  • a wafer (12 inches in diameter) having a Cu film or a Co film on the surface was polished under the following conditions.
  • polishing liquid 2 As the polishing liquid, the above polishing process was performed under the conditions that the in-plane average value of the polishing pressure was 70 hPa, the polishing liquid supply rate was 200 mL/min, and the polishing time was 60 seconds. Polished the wafer. The resulting CMP-treated wafer was scrubbed for 1 minute using a sample of the processing solution adjusted to room temperature (23° C.), washed for 30 seconds using DI water, and then dried.
  • the compositions of the polishing liquid 1 and the polishing liquid 2 are as follows.
  • Polishing liquid 1 (pH 7.0) ⁇ Colloidal silica (PL3, manufactured by Fuso Chemical Industry Co., Ltd.) 0.1% by mass ⁇ Glycine 1.0% by mass ⁇ 3-amino-1,2,4-triazole 0.2% by mass ⁇ Benzotriazole (BTA) 30 mass ppm ⁇ Hydrogen peroxide 1.0% by mass ⁇ pH adjuster (ammonia and nitric acid) ⁇ Water remainder Polishing liquid 2 (pH 10.5) ⁇ Colloidal silica (PL3, manufactured by Fuso Chemical Industry Co., Ltd.) 6.0% by mass ⁇ Citric acid 1.0% by mass ⁇ Alkyl alkoxylate surfactant 100 mass ppm ⁇ BTA 0.2% by mass ⁇ Hydrogen peroxide 1.0% by mass ⁇ pH adjuster (potassium hydroxide and nitric acid) ⁇ Water remainder
  • the number of detected signal intensities corresponding to defects with a length of more than 0.1 ⁇ m was measured on the polished surface of the obtained wafer. Thereby, the number of defects based on the residue on the polished surface of the wafer was determined.
  • the defect removability of the treatment liquid was evaluated using the following evaluation criteria. The smaller the number of defects detected on the polished surface of the wafer, the better the defect removal performance.
  • the "Content (mass %)” column indicates the content (mass %) of each component relative to the total mass of the treatment liquid.
  • the “solid content concentration (mass %)” column indicates the content (mass %) of each component relative to the total mass of the components excluding the solvent in the treatment liquid.
  • the numerical value in the "(B)/(A)” column is the mass ratio of the specific compound content (B) to the purine compound content (A) (specific compound content (B)/purine compound content (B)). content (A)).
  • the numerical value in the "(B)/(C)" column is the mass ratio of the specific compound content (B) to the amine compound content (C) (specific compound content (B)/amine compound content (B)/amine compound content (C)). content (C)).
  • the values in the pH column indicate the pH of the treatment liquid at 25° C. as measured by the above pH meter.
  • the treatment liquid of the present invention has excellent anticorrosion properties against Cu and Co, and that defects are unlikely to remain on the surface of the treated object after washing the treated object containing Cu or Co with water.
  • the purine compound contains at least one selected from the group consisting of adenine, xanthine, hypoxanthine, guanine, adenosine, and benzyladenine, the anticorrosion property is more excellent. It was confirmed that when at least one selected from the group consisting of adenine and xanthine was included, the defect removability was more excellent.
  • Example 50 Furthermore, the treatment liquid described in Example 50 was diluted to a mass ratio of 50 times using ultrapure water as a diluent. When the obtained diluted treatment liquid was used to perform the same evaluation according to the evaluation procedure described above, the same evaluation results as in Example 50 were obtained.
  • the resulting buffed wafer was scrubbed for 1 minute using the treatment solution used in Example 1 adjusted to room temperature (23°C), washed for 30 seconds using DI water, and then dried. . Thereafter, the number of defects based on the residue on the polished surface of the wafer was determined according to the procedure described in the evaluation of defect removability in Evaluation 1, and the same evaluation results as in Example 1 were obtained.
  • the treatment liquids used in Examples 2 to 50 were used instead of the treatment liquid used in Example 1 above, evaluation results similar to those of each example shown in Tables 1 to 3 above were obtained.
  • Ta Furthermore, when a diluted treatment liquid obtained by diluting the treatment liquid used in Example 50 to a mass ratio of 50 times was used instead of the treatment liquid used in Example 1, the same evaluation results as in Example 50 were obtained. It was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Abstract

本発明は、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物と接触させた際に上記金属に対する防食性に優れ、かつ、上記接触後に更に被処理物の水洗浄を実施した後に、被処理物表面に欠陥が残存しにくい半導体処理液、並びに、被処理物の処理方法、及び、電子デバイスの製造方法を提供することを課題とする。本発明の半導体処理液は、プリン、及び、プリン誘導体からなる群から選択される少なくとも1種のプリン化合物と、炭素数10以下の有機スルホン酸化合物、硫酸、及び、これらの塩からなる群から選択される少なくとも1種の特定化合物と、水と、を含み、pHが7.0超である。

Description

半導体処理液、被処理物の処理方法、電子デバイスの製造方法
 本発明は、半導体処理液、被処理物の処理方法、及び、電子デバイスの製造方法に関する。
 CCD(Charge-Coupled Device)及びメモリ等の半導体素子は、フォトリソグラフィー技術を用いて、基板上に微細な電子回路パターンを形成して製造される。例えば、基板上に、配線材料となる金属膜、エッチング停止層、及び、層間絶縁層を有する積層体上にレジスト膜を形成し、フォトリソグラフィー工程及びエッチング工程を実施することにより、半導体素子が製造される。
 また、半導体素子の製造工程において、金属配線膜、バリアメタル、及び、絶縁膜等を有する半導体基板表面を、研磨微粒子(例えば、シリカ、アルミナ等)を含む研磨スラリーを用いて平坦化する、化学機械研磨(CMP:Chemical Mechanical Polishing)処理を実施することがある。
 上記のような半導体素子の製造工程において、処理液を用いて基板上の不要な金属含有物、レジスト、及び、残渣物等を除去する方法が一般的に使用されている。以下、このように半導体素子の製造工程に用いられる処理液を、「半導体処理液」ともいう。
 上記のような処理液として、例えば、特許文献1には、(A)特定化合物、(B)アデニン、プリン、グアニン、ヒポキサンチン、キサンチン、テオブロミン、カフェイン、尿酸、イソグアニン、及び、これらの誘導体からなる群から選択される少なくとも1種の化合物、(C)pH調整剤、並びに、(D)水を含有する、pHが8以上の半導体デバイス用基板の処理液が開示されている。
特開2016-086094号公報
 処理液に求められる性能として、特定の金属(具体的には、Cu及びCoからなる群から選択される少なくとも1種の金属)を含む被対象物に対して処理液を適用した際、上記特定の金属に対する防食性に優れ、かつ、処理後の被処理物表面に欠陥が残存しにくい性能がある。
 本発明者らが上記特許文献1に具体的に開示された処理液の特性について検討したところ、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物と処理液とを接触させ、更に水洗浄を実施した後に、被処理物表面に欠陥が残存する問題があることを知見した。
 そこで、本発明は、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物と接触させた際に上記金属に対する防食性に優れ、かつ、上記接触後に更に被処理物の水洗浄を実施した後に、被処理物表面に欠陥が残存しにくい処理液を提供することを課題とする。
 また、本発明は、上記処理液を用いた被処理物の処理方法、及び、電子デバイスの製造方法を提供することも課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、以下の構成により課題を解決することができることを見出した。
 〔1〕 プリン、及び、プリン誘導体からなる群から選択される少なくとも1種のプリン化合物と、
 炭素数10以下の有機スルホン酸化合物、硫酸、及び、これらの塩からなる群から選択される少なくとも1種の特定化合物と、
 水と、を含み、
 pHが7.0超である、半導体処理液。
 〔2〕 上記特定化合物が、硫酸、メタンスルホン酸、エタンスルホン酸、1,2-エタンジスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、及び、これらの塩からなる群から選択される少なくとも1種を含む、〔1〕に記載の半導体処理液。
 〔3〕 上記特定化合物の含有量が、上記半導体処理液中の溶媒を除いた成分の合計質量に対して、0.1~40.0質量%である、〔1〕又は〔2〕に記載の半導体処理液。
 〔4〕 上記プリン化合物の含有量に対する、上記特定化合物の含有量の質量比が0.01~100.0である、〔1〕~〔3〕のいずれか1つに記載の半導体処理液。
 〔5〕 上記特定化合物のpKaが2.0以下である、〔1〕~〔4〕のいずれか1つに記載の半導体処理液。
 〔6〕 更に、アミン化合物を含む、〔1〕~〔5〕のいずれか1つに記載の半導体処理液。
 〔7〕 上記アミン化合物が、第4級アンモニウム化合物、及び、第3級アミン化合物からなる群から選択される少なくとも1種を含む、〔6〕に記載の半導体処理液。
 〔8〕 上記アミン化合物が、第3級アミン化合物である、〔6〕又は〔7〕に記載の半導体処理液。
 〔9〕 上記アミン化合物が、2つ以上の窒素原子を有する、〔6〕~〔8〕のいずれか1つに記載の半導体処理液。
 〔10〕 上記アミン化合物を、2種以上含む、〔6〕~〔9〕のいずれか1つに記載の半導体処理液。
 〔11〕 pHが9.0~14.0である、〔1〕~〔10〕のいずれか1つに記載の半導体処理液。
 〔12〕 上記プリン化合物が、アデニン、キサンチン、グアニン、アデノシン、ヒポキサンチン、及び、ベンジルアデニンからなる群から選択される少なくとも1種を含む、〔1〕~〔11〕のいずれか1つに記載の半導体処理液。
 〔13〕 洗浄液として用いられる、〔1〕~〔12〕のいずれか1つに記載の半導体処理液。
 〔14〕 化学機械研磨処理が施された被対象物に対して用いられる、〔1〕~〔13〕のいずれか1つに記載の半導体処理液。
 〔15〕 Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物に対して用いられる、〔1〕~〔14〕のいずれか1つに記載の半導体処理液。
 〔16〕 化学機械研磨処理が施された、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物に対して用いられる、〔1〕~〔15〕のいずれか1つに記載の半導体処理液。
 〔17〕 化学機械研磨処理が施された、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物と、〔1〕~〔16〕のいずれか1つに記載の半導体処理液とを接触させる工程を有する、被処理物の処理方法。
 〔18〕 〔17〕に記載の被処理物の処理方法を有する、電子デバイスの製造方法。
 本発明によれば、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物と接触させた際に、上記金属に対する防食性に優れ、かつ、上記接触後に更に被処理物の水洗浄を実施した後に、被処理物表面に欠陥が残存しにくい処理液を提供できる。
 また、本発明によれば、上記処理液を用いた被処理物の処理方法、及び、電子デバイスの製造方法も提供できる。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
 本明細書において、「処理液中の溶媒を除いた成分の合計質量」とは、水及び有機溶媒等の溶媒以外の処理液に含まれる全ての成分の合計質量を意味する。
 本明細書において、特定の符号で表示された置換基及び連結基等(以下、置換基等という)が複数あるとき、又は、複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
 本明細書において表記される2価の基の結合方向は、特に断らない限り制限されない。例えば、「X-Y-Z」なる式で表される化合物中の、Yが-COO-である場合、Yは、-CO-O-であってもよく、-O-CO-であってもよい。また、上記化合物は「X-CO-O-Z」であってもよく「X-O-CO-Z」であってもよい。
 本明細書において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味する。
 本明細書において、「重量平均分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量のことを意味する。
[処理液]
 以下、本発明の半導体処理液に含まれる各成分について詳述する。
 本発明の半導体処理液(以下、単に「処理液」ともいう。)は、プリン、及び、プリン誘導体からなる群から選択される少なくとも1種のプリン化合物と、炭素数10以下の有機スルホン酸化合物、及び、硫酸からなる群から選択される少なくとも1種の特定化合物と、水と、を含み、pHが7.0超を示す。
 上記構成を有する処理液が本発明の課題を解決できる理由は必ずしも明らかではないが、本発明者らは以下のとおり推測する。
 なお、下記推測により、効果が得られる機序が制限されるものではない。換言すれば、下記以外の機序により効果が得られる場合でも、本発明の範囲に含まれる。
 処理液は、pHが7.0超を示すことで、残渣物の除去性に優れる。また、処理液中のプリン化合物が被対象物に含まれる所定の金属と相互作用することで、所定の金属に対する優れた防食性を示す。一方、上記プリン化合物は、処理後に被処理物表面に残存し、欠陥数を増加させる原因ともなり得る。処理液が更に所定の特定化合物を含むことによって、処理液と被対象物とを接触させた後に被処理物上に残存するプリン化合物と、特定化合物とが相互作用する結果、被処理物に水洗浄を施した際、被処理物表面からプリン化合物由来の欠陥が効率的に除去できると考えられる。その結果、所定の金属に対する防食性に優れ、かつ、処理後の被処理物表面に欠陥が残存しにくい、と推測している。
 以下、本明細書において、処理液と被対象物とを接触させ、更に、被処理物に水洗浄を実施した後に被処理物表面に欠陥が残存しにくい特性を「欠陥除去性」ともいう。また、防食性及び欠陥除去性の少なくとも一方がより優れることを、「本発明の効果がより優れる」ともいう。
〔プリン化合物〕
 処理液は、プリン、及び、プリン誘導体からなる群から選択される少なくとも1種のプリン化合物を含む。
 プリン化合物は、式(A1)~(A4)で表される化合物からなる群から選択される少なくとも1種を含むことが好ましく、式(A1)で表される化合物、及び、式(A4)~(A7)で表される化合物からなる群から選択される少なくとも1種を含むことがより好ましく、式(A1)で表される化合物、式(A5)で表される化合物、及び、R12~R14のうち少なくとも1つが水素原子である式(A4)で表される化合物からなる群から選択される少なくとも1種を含むことが更に好ましく、Rがアミノ基であり、Rが水素原子である式(A1)で表される化合物、及び、R12~R14のうち少なくとも1つが水素原子である式(A4)で表される化合物からなる群から選択される少なくとも1種を含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(A1)中、R~Rは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基を表す。
 上記アルキル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。
 上記アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3が更に好ましい。
 上記糖基としては、例えば、単糖類、二糖類、及び、多糖類からなる群から選択される糖類からヒドロキシ基を1つ除いた基が挙げられ、単糖類からヒドロキシ基を1つ除いた基が好ましい。
 単糖類としては、例えば、リボース、デオキシリボース、アラビノース、及び、キシロース等のペントース、トリオース、テトロース、ヘキソース、並びに、ヘプトースが挙げられ、ペントースが好ましく、リボース、デオキシリボース、アラビノース、又は、キシロースがより好ましく、リボース又はデオキシリボースが更に好ましい。
 二糖類としては、例えば、スクロース、ラクトース、マルトース、トレハロース、ツラノース、及び、セロビオースが挙げられる。
 多糖類としては、例えば、グリコーゲン、デンプン、及び、セルロースが挙げられる。
 上記糖類は、鎖状及び環状のいずれであってもよく、環状が好ましい。
 上記環状の糖類としては、例えば、フラノース環及びピラノース環が挙げられる。
 置換基を有していてもよいポリオキシアルキレン基含有基は、基の一部に、置換基を有していてもよいポリオキシアルキレン基を含む基を意味する。
 上記ポリオキシアルキレン基含有基を構成するポリオキシアルキレン基としては、例えば、ポリオキシエチレン基、ポリオキシプロピレン基、及び、ポリオキシブチレン基が挙げられ、ポリオキシエチレン基が好ましい。
 上記アルキル基、上記アミノ基、上記糖基、及び、上記ポリオキシアルキレン基含有基が有する置換基としては、例えば、アルキル基、アリール基、及び、ベンジル基等の炭化水素基;フッ素原子、塩素原子、及び、臭素原子等のハロゲン原子;アルコキシ基;ヒドロキシ基;メトキシカルボニル基、及び、エトキシカルボニル基等のアルコキシカルボニル基;アセチル基、プロピオニル基、及び、ベンゾイル基等のアシル基;シアノ基;ニトロ基が挙げられる。
 Rとしては、水素原子又は置換基を有していてもよいアミノ基が好ましく、置換基を有していてもよいアミノ基がより好ましい。
 Rの別の好適態様としては、置換基を有していてもよいアルキル基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基が好ましい。
 Rとしては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 Rとしては、水素原子、置換基を有していてもよいアルキル基、又は、置換基を有していてもよい糖基が好ましく、水素原子又は置換基を有していてもよい糖基がより好ましく、水素原子が更に好ましい。
 式(A2)中、Lは、-CR=N-又は-C(=O)-NR-を表す。Lは、-N=CH-又は-NR-C(=O)-を表す。R~Rは、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基を表す。
 R~Rで表される各基の態様としては、例えば、上記式(A1)中のR~Rで表される各基の態様が挙げられる。
 R~Rとしては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 Rとしては、水素原子、置換基を有していてもよいアルキル基、又は、置換基を有していてもよいアミノ基が好ましく、水素原子又は置換基を有していてもよいアミノ基がより好ましい。
 Rとしては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 Lとしては、-N=CH-が好ましい。
 Rとしては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 式(A3)中、R~R11は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基を表す。
 R~R11で表される各基の態様としては、例えば、上記式(A1)中のR~Rで表される各基の態様が挙げられる。
 Rとしては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 R10としては、水素原子、置換基を有していてもよいアルキル基、又は、置換基を有していてもよいアミノ基が好ましく、水素原子又は置換基を有していてもよいアミノ基がより好ましく、置換基を有していてもよいアミノ基が更に好ましい。
 R11としては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 式(A4)中、R12~R14は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基を表す。
 R12~R14で表される各基の態様としては、例えば、上記式(A1)中のR~Rで表される各基の態様が挙げられる。
 R12としては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 R12の別の好適態様としては、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基が好ましい。
 R13としては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 R14としては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 R12~R14のうち、少なくとも1つが水素原子であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(A5)中、R15~R17は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基を表す。
 R15~R17で表される各基の態様としては、例えば、上記式(A1)中のR~Rで表される各基の態様が挙げられる。
 R15としては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 R16としては、水素原子、置換基を有していてもよいアルキル基、又は、置換基を有していてもよいアミノ基が好ましく、水素原子又は置換基を有していてもよいアミノ基がより好ましく、水素原子が更に好ましい。
 R16の別の好適態様としては、水素原子、置換基を有していてもよいアルキル基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基が好ましい。
 R17としては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 式(A6)中、R18~R20は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基を表す。
 R18~R20で表される各基の態様としては、例えば、上記式(A1)中のR~Rで表される各基の態様が挙げられる。
 R18~R20としては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 式(A7)中、R21~R24は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアミノ基、チオール基、ヒドロキシ基、ハロゲン原子、置換基を有していてもよい糖基、又は、置換基を有していてもよいポリオキシアルキレン基含有基を表す。
 R21~R24で表される各基の態様としては、例えば、上記式(A1)中のR~Rで表される各基の態様が挙げられる。
 R21~R24としては、水素原子又は置換基を有していてもよいアルキル基が好ましく、水素原子がより好ましい。
 プリン化合物としては、例えば、プリン、アデニン、グアニン、ヒポキサンチン、キサンチン、テオブロミン、カフェイン、尿酸、イソグアニン、アデノシン、エンプロフィリン、テオフィリン、キサントシン、7-メチルキサントシン、7-メチルキサンチン、エリタデニン、3-メチルアデニン、3-メチルキサンチン、1,7-ジメチルキサンチン、1-メチルキサンチン、1,3-ジプロピル-7-メチルキサンチン、3,7-ジヒドロ-7-メチル-1H-プリン-2,6-ジオン、1,7-ジプロピル-3-メチルキサンチン、1-メチル-3,7-ジプロピルキサンチン、1,3-ジプロピル-7-メチル-8-ジシクロプロピルメチルキサンチン、1,3-ジブチル-7-(2-オキソプロピル)キサンチン、1-ブチル-3,7-ジメチルキサンチン、3,7-ジメチル-1-プロピルキサンチン、メルカプトプリン、2-アミノプリン、6-アミノプリン、6-ベンジルアミノプリン(ベンジルアデニン)、ネララビン、ビダラビン、2,6-ジクロロプリン、アシクロビル、N6-ベンゾイルアデノシン、trans-ゼアチン、エンテカビル、バラシクロビル、アバカビル、2’-デオキシグアノシン、イノシン酸二ナトリウム、ガンシクロビル、グアノシン5’-一リン酸二ナトリウム、O-シクロヘキシルメチルグアニン、N2-イソブチリル-2’-デオキシグアノシン、β-ニコチンアミドアデニンジヌクレオチドリン酸、6-クロロ-9-(テトラヒドロピラン-2-イル)プリン、クロファラビン、キネチン、7-(2,3-ジヒドロキシプロピル)テオフィリン、6-メルカプトプリン、プロキシフィリン、2,6-ジアミノプリン、2’,3’-ジデオキシイノシン、テオフィリン-7-酢酸、2-クロロアデニン、2-アミノ-6-クロロプリン、8-ブロモ-3-メチルキサンチン、2-フルオロアデニン、ペンシクロビル、9-(2-ヒドロキシエチル)アデニン、7-(2-クロロエチル)テオフィリン、2-アミノ-6-ヨードプリン、2-チオキサンチン、2-アミノ-6-メトキシプリン、N-アセチルグアニン、アデホビルジピボキシル、8-クロロテオフィリン、6-メトキシプリン、1-(3-クロロプロピル)テオブロミン、6-(ジメチルアミノ)プリン、及び、イノシンが挙げられる。
 なかでも、プリン化合物は、プリン、アデニン、グアニン、ヒポキサンチン、キサンチン、テオブロミン、カフェイン、イソグアニン、アデノシン、エンプロフィリン、キサントシン、7-メチルキサントシン、7-メチルキサンチン、テオフィリン、エリタデニン、パラキサンチン、ベンジルアデニン、3-メチルアデニン、3-メチルキサンチン、1,7-ジメチルキサンチン、及び、1-メチルキサンチンからなる群から選択される少なくとも1種を含むことが好ましく、アデニン、グアニン、ヒポキサンチン、キサンチン、アデノシン、及び、ベンジルアデニンからなる群から選択される少なくとも1種を含むことが更に好ましく、アデニン及びキサンチンからなる群から選択される少なくとも1種を含むことが特に好ましい。
 プリン化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の効果がより優れる点から、プリン化合物の含有量は、処理液の全質量に対して、0.00005~0.25質量%が好ましく、0.0001~0.01質量%がより好ましく、0.0001~0.008質量%が更に好ましく、0.0002~0.003質量が特に好ましい。
 本発明の効果がより優れる点から、プリン化合物の含有量は、処理液中の溶媒を除いた成分の合計質量に対して、0.01~30.0質量%が好ましく、0.05~20.0質量%がより好ましく、0.1~10.0質量%が更に好ましい。
〔特定化合物〕
 処理液は、特定化合物を含む。
 特定化合物は、炭素数10以下の有機スルホン酸化合物、硫酸、及び、これらの塩からなる群から選択される少なくとも1種の化合物である。
 炭素数10以下の有機スルホン酸化合物は、スルホン酸基を有する有機化合物である。
 炭素数10以下の有機スルホン酸化合物が有するスルホン酸基の数は特に制限されず、1~5が好ましく、1~3がより好ましく、1が更に好ましい。
 上記有機スルホン酸化合物に含まれる炭素数は10以下であり、本発明の効果がより優れる点で、8以下が好ましく、7以下がより好ましい。下限は特に制限されないが、1以上である。
 炭素数10以下の有機スルホン酸化合物の塩とは、上記有機スルホン酸化合物中のスルホン酸基の水素イオンが他のカチオン(無機カチオン又は有機カチオン)で置換されてなる化合物を意味する。無機カチオンとしては、例えば、アルカリ金属(例えば、リチウム、ナトリウム、カリウム等)の各カチオン、又は、アンモニウム(NH )等が挙げられる。有機カチオンとしては、例えば、テトラアルキルアンモニウムイオンが挙げられる。
 炭素数10以下の有機スルホン酸化合物としては、式(B)で表される化合物が好ましい。
 X-(SOH)  式(B)
 式(B)中、nは1又は2を表し、nが1の場合、Xは、置換基を有していてもよいアルキル基、又は、置換基を有していてもよいアリール基を表し、nが2の場合、Xは置換基を有していてもよいアルキレン基、又は、置換基を有していてもよいアリーレン基を表す。ただし、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキレン基、及び、置換基を有していてもよいアリーレン基の炭素数は、いずれも10以下である。
 Xで表される置換基を有していてもよいアルキル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。
 上記置換基を有していてもよいアルキル基の炭素数は、10以下であり、1~8が好ましく、1~7がより好ましく、1~3が更に好ましい。なお、上記置換基を有していてもよいアルキル基の炭素数とは、アルキル基が置換基を有さない場合には、アルキル基自体の炭素数を意味し、アルキル基が置換基を有する場合には、置換基を有するアルキル基全体に含まれる炭素数を意味する。例えば、アルキル基がカルボキシ基を置換基として有する場合、カルボキシ基の炭素数と、アルキル基の炭素数との合計が10以下であることを意味する。
 上記アルキル基が有する置換基としては、例えば、アリール基、ヒドロキシ基、カルボキシ基、アミノ基、及び、ハロゲン原子が挙げられる。
 Xで表される置換基を有していてもよいアリール基は、単環構造及び多環構造のいずれであってもよく、置換基を有していてもよいフェニル基が好ましい。
 上記置換基を有していてもよいアリール基の炭素数は、10以下であり、6~10が好ましく、6~8がより好ましく、6~7が更に好ましい。なお、上記置換基を有していてもよいアリール基の炭素数とは、アリール基が置換基を有さない場合には、アリール基自体の炭素数を意味し、アリール基が置換基を有する場合には、置換基を有するアリール基全体に含まれる炭素数を意味する。例えば、アリール基がアルキル基を置換基として有する場合、アルキル基の炭素数と、アリール基の炭素数との合計が10以下であることを意味する。
 上記アリール基が有する置換基としては、例えば、アルキル基、ヒドロキシ基、カルボキシ基、アミノ基、及び、ハロゲン原子が挙げられる。
 Xで表される置換基を有していてもよいアルキレン基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。
 上記置換基を有していてもよいアルキレン基の炭素数は、10以下であり、1~8が好ましく、1~7がより好ましく、1~3が更に好ましい。なお、上記置換基を有していてもよいアルキレン基の炭素数とは、アルキレン基が置換基を有さない場合には、アルキレン基自体の炭素数を意味し、アルキレン基が置換基を有する場合には、置換基を有するアルキレン基全体に含まれる炭素数を意味する。例えば、アルキレン基がカルボキシ基を置換基として有する場合、カルボキシ基の炭素数と、アルキレン基の炭素数との合計が10以下であることを意味する。
 上記アルキレン基が有する置換基としては、例えば、アリール基、ヒドロキシ基、カルボキシ基、アミノ基、及び、ハロゲン原子が挙げられる。
 Xで表される置換基を有していてもよいアリーレン基は、単環及び多環のいずれであってもよい。
 上記置換基を有していてもよいアリーレン基の炭素数は、10以下であり、6~10が好ましく、6~8がより好ましく、6~7が更に好ましい。なお、上記置換基を有していてもよいアリーレン基の炭素数とは、アリーレン基が置換基を有さない場合には、アリーレン基自体の炭素数を意味し、アリーレン基が置換基を有する場合には、置換基を有するアリーレン基全体に含まれる炭素数を意味する。例えば、アリーレン基がアルキル基を置換基として有する場合、アルキル基の炭素数と、アリーレン基の炭素数との合計が10以下であることを意味する。
 上記アリーレン基が有する置換基としては、例えば、アルキル基、ヒドロキシ基、カルボキシ基、アミノ基、及び、ハロゲン原子が挙げられる。
 nが1である場合、本発明の効果がより優れる点で、Xとしては、無置換のアルキル基、又は、アルキル基を有していてもよいフェニル基が好ましい。ただし、上記無置換のアルキル基の炭素数は10以下であり、1~8が好ましく、1~7がより好ましく、1~3が更に好ましい。上記アルキル基を有していてもよいアリール基の炭素数は10以下であり、6~10が好ましく、6~8がより好ましく、6~7が更に好ましい。なお、上記アルキル基を有していてもよいフェニル基の炭素数とは、フェニル基がアルキル基を有さない場合には、フェニル基自体の炭素数を意味し、フェニル基がアルキル基を有する場合には、アルキル基を有するフェニル基全体に含まれる炭素数を意味する。例えば、式(B)で表される化合物がパラトルエンスルホン酸である場合、nは1であり、Xはメチル基を有するフェニル基に該当し、Xの炭素数は7と計算される。
 nが2である場合、本発明の効果がより優れる点で、Xとしては、無置換のアルキレン基が好ましい。ただし、上記無置換のアルキレン基の炭素数は10以下である。
 硫酸は、HSOで表される化合物である。
 硫酸の塩(硫酸塩)とは、硫酸イオン(SO 2-)を含む無機化合物である。
 特定化合物としては、例えば、硫酸、メタンスルホン酸、エタンスルホン酸、1,2-エタンジスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸、カンファースルホン酸、及び、これらの塩が挙げられ、硫酸、メタンスルホン酸、エタンスルホン酸、1,2-エタンジスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、又は、これらの塩が好ましく、硫酸、メタンスルホン酸、又は、パラトルエンスルホン酸がより好ましい。
 特定化合物のpKaは、-10.0~2.0が好ましく、-7.0~1.0がより好ましく、-6.0~-0.5が更に好ましい。
 上記のpKaは、「ACD/Pka DB Ver8.0」(ACD/Labs,Advanced Chemistry Development社製)を用いて算出される値である。
 なお、特定化合物が2つ以上のpKaを有する場合、最も小さい値のpKaが上記範囲内であればよい。
 特定化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の効果がより優れる点から、特定化合物の含有量は、処理液の全質量に対して、0.0001~0.50質量%が好ましく、0.0001~0.015質量%がより好ましく、0.001~0.01質量%が更に好ましい。
 本発明の効果がより優れる点から、特定化合物の含有量は、処理液中の溶媒を除いた成分の合計質量に対して、0.1~40.0質量%が好ましく、0.5~20.0質量%がより好ましく、0.8~15.0質量%が更に好ましい。
 本発明の効果がより優れる点から、上記プリン化合物の含有量に対する、特定化合物の含有量の質量比(特定化合物の含有量/プリン化合物の含有量)は、0.01~100.0が好ましく、0.5~50.0がより好ましく、0.5~20.0が更に好ましく、1.0~10.0が特に好ましい。
 本発明の効果がより優れる点から、特定化合物の全質量に対する、炭素数8以下の有機スルホン酸及び硫酸の合計含有量の割合は、50~100質量%が好ましく、60~100質量%がより好ましく、80~100質量%が更に好ましい。
〔水〕
 処理液は、水を含む。
 処理液に含まれる水は、特に制限されないが、被対象物に対して影響を及ぼさない点で、蒸留水、脱イオン(DI:De Ionize)水、純水、又は、超純水が好ましく、純水又は超純水がより好ましい。
 水の含有量は、処理液に含まれ得る成分の残部であればよい。
 水の含有量は、処理液の全質量に対して、1.0質量%以上が好ましく、30.0質量%以上がより好ましく、60.0質量%以上が更に好ましく、80.0質量%以上が特に好ましい。上限は、処理液の全質量に対して、99.99質量%以下が好ましく、99.96質量%以下がより好ましく、99.0質量%以下が更に好ましく、97.0質量%以下が特に好ましい。
 処理液は、上述した成分(プリン化合物、特定化合物、及び、水)以外の他の成分を含んでいてもよい。
 以下、他の成分について詳述する。
〔アミン化合物〕
 処理液は、アミン化合物を含んでいてもよい。
 アミン化合物としては、分子内に第1級アミノ基(-NH)を有する第1級アミン化合物、分子内に第2級アミノ基(>NH)を有する第2級アミン化合物、分子内に第3級アミノ基(>N-)を有する第3級アミン化合物、分子内に第4級アンモニウムカチオンを有する第4級アンモニウム化合物、及び、これらの塩が挙げられる。なお、異なる級数のアミノ基を有する場合、最も級数の高いアミン化合物に分類する。
 アミン化合物は、上述したプリン化合物とは異なる化合物であり、プリン化合物はアミン化合物には含まれない。
 また、これらのアミン化合物は、pH調整剤としても機能し得る。
 アミン化合物は、第1級アミノ基~第3級アミノ基、及び、第4級アンモニウム塩基からなる群から選択される基を2つ以上有していてもよい。つまり、アミン化合物は、ジアミン化合物、及び、トリアミン化合物であってもよい。
 アミン化合物は、第1級アミノ基~第3級アミノ基、及び、第4級アンモニウム塩基以外の置換基を有していてもよい。置換基としては、例えば、ヒドロキシ基が挙げられる。例えば、処理液は、ヒドロキシ基を有していてもよいアミン化合物を含んでいてもよい。
 本発明の効果がより優れる点で、アミン化合物は、窒素原子を2つ以上含むことが好ましい。
 アミン化合物が、第3級アミン化合物及び第4級アンモニウム化合物からなる群から選択される少なくとも1種の化合物を含む場合、本発明の効果がより優れる点で、第3級アミン及び第4級アンモニウム化合物からなる群から選択される化合物の分子量は、90~500が好ましく、100~300がより好ましく、110~200が更に好ましい。
 アミン化合物は、第4級アンモニウム化合物及び第3級アミン化合物からなる群から選択される少なくとも1種の化合物を含むことが好ましく、第3級アミン化合物を含むことがより好ましい。
<第4級アンモニウム化合物>
 第4級アンモニウム化合物は、窒素原子に4つの炭化水素基(好ましくはアルキル基)が置換してなる第4級アンモニウムカチオンを有する化合物が好ましい。また、第4級アンモニウム化合物は、アルキルピリジニウムのように、ピリジン環における窒素原子が置換基(アルキル基又はアリール基のような炭化水素基等)と結合した第4級アンモニウムカチオンを有する化合物であってもよい。
 第4級アンモニウム化合物としては、例えば、第4級アンモニウム水酸化物、第4級アンモニウムの酢酸塩、及び、第4級アンモニウムの炭酸塩が挙げられる。
 第4級アンモニウム化合物としては、式(C)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(C)中、R25~R28は、それぞれ独立に、置換基を有していてもよい炭化水素基を表す。Yは、アニオンを表す。
 R25~R28は、それぞれ独立に、置換基を有していてもよい炭化水素基を表す。
 上記炭化水素基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましい。
 上記炭化水素基としては、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、及び、これらを組み合わせた基が挙げられ、置換基を有していてもよいアルキル基が好ましい。
 上記炭化水素基が有する置換基としては、例えば、フッ素原子、塩素原子、及び、臭素原子等のハロゲン原子;アルコキシ基;ヒドロキシ基;メトキシカルボニル基、及び、エトキシカルボニル基等のアルコキシカルボニル基;アセチル基、プロピオニル基、及び、ベンゾイル基等のアシル基;シアノ基;ニトロ基が挙げられ、ヒドロキシ基が好ましい。
 上記炭化水素基が有する置換基の数は、1~3が好ましく、1がより好ましい。
 上記アルキル基、上記アルケニル基、及び、上記アルキニル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。上記アルキル基、上記アルケニル基、及び、上記アルキニル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~5が更に好ましく、1~3が特に好ましい。
 上記アルキル基、上記アルケニル基、及び、上記アルキニルが有する置換基としては、上記炭化水素基が有する置換基が挙げられる。
 上記アルキル基としては、無置換のアルキル基又はヒドロキシアルキル基が好ましく、メチル基、エチル基、プロピル基、ブチル基、又は、2-ヒドロキシエチル基がより好ましく、メチル基、エチル基、又は、2-ヒドロキシエチル基が更に好ましい。
 上記アリール基は、単環及び多環のいずれであってもよい。
 上記アリール基の炭素数は、6~20が好ましく、6~10がより好ましく、6~8が更に好ましい。
 上記アリール基が有する置換基としては、例えば、塩素原子等のハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数3~10のシクロアルコキシ基、ニトロ基、チオール基、及び、ジオキシラン-イル基が挙げられ、ハロゲン原子又は炭素数1~10のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~3のアルキル基が更に好ましい。
 上記アリール基が有する置換基の数は、1~5が好ましく、1~3がより好ましく、1が更に好ましい。
 上記アリール基としては、例えば、ベンジル基、フェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、アセナフテニル基、フルオレニル基、及び、ピレニル基が挙げられ、ベンジル基又はフェニル基が好ましく、ベンジル基がより好ましい。
 R25~R28のうち3つが同一の基を表すことが好ましい。例えば、R25~R27が2-ヒドロキシエチル基を表し、R28がメチル基を表すことが好ましい。
 ただし、本発明の効果がより優れる点で、全てのR25~R28がメチル基である場合を除くことが好ましい。換言すると、式(C)で表される化合物には、テトラメチルアンモニウム塩は含まれないことが好ましい。つまり、アミン化合物として、テトラメチルアンモニウム塩は含まれないことが好ましい。
 Yは、アニオンを表す。
 アニオンとしては、例えば、カルボン酸イオン、リン酸イオン、ホスホン酸イオン、及び、硝酸イオン等の酸アニオン、並びに、水酸化物イオンが挙げられ、水酸化物イオンが好ましい。
 第4級アンモニウム化合物としては、例えば、トリス(2-ヒドロキシエチル)メチルアンモニウムヒドロキシド(THEMAH)、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド(TMAH)、エチルトリメチルアンモニウムヒドロキシド(ETMAH)、トリメチルエチルアンモニウムヒドロキシド(TMEAH)、ジメチルジエチルアンモニウムヒドロキシド(DMDEAH)、メチルトリエチルアンモニウムヒドロキシド(MTEAH)、テトラエチルアンモニウムヒドロキシド(TEAH)、テトラプロピルアンモニウムヒドロキシド(TPAH)、テトラブチルアンモニウムヒドロキシド(TBAH)、2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド(コリン)、ビス(2-ヒドロキシエチル)ジメチルアンモニウムヒドロキシド、トリ(2-ヒドロキシエチル)メチルアンモニウムヒドロキシド、テトラ(2-ヒドロキシエチル)アンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド(BTMAH)、及び、セチルトリメチルアンモニウムヒドロキシドが挙げられ、THEMAH、ETMAH、コリン、又は、TEAHが好ましい。
<第3級アミン化合物>
 第3級アミン化合物は、分子内に少なくとも1つの第3級アミノ基を有する化合物である。
 第3級アミン化合物は、分子内に2つ以上の第3級アミノ基を有していてもよく、2~3つの第3級アミノ基を有することが好ましい。
 第3級アミン化合物は、置換基としてヒドロキシ基を有していてもよい。
 ヒドロキシ基を有する第3級アミノ化合物としては、例えば、N-メチルジエタノールアミン(MDEA)、2-(ジメチルアミノ)エタノール(DMAE)、2-(ジエチルアミノ)エタノール、N-エチルジエタノールアミン(EDEA)、2-ジメチルアミノ-2-メチル-1-プロパノール(DMAMP)、2-(ジブチルアミノ)エタノール、2-[2-(ジメチルアミノ)エトキシ]エタノール、2-[2-(ジエチルアミノ)エトキシ]エタノール、トリエタノールアミン、及び、N-ブチルジエタノールアミン(BDEA)が挙げられ、DMAE、EDEA、2-(ジエチルアミノ)エタノール、又は、DMAMPが好ましく、DMAMPがより好ましい。
 ヒドロキシ基を有しない第3級アミノ化合物としては、例えば、トリメチルアミン及びトリエチルアミン等のアルキルアミン、1-メチルピペラジン、1-(2-ヒドロキシエチル)ピペラジン(HEP)、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)及び1,3-ビス(ジメチルアミノ)ブタン等のアルキレンジアミン、並びに、1,3-ビス(ジメチルアミノ)ブタン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン、及び、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン(PMDETA)等のポリアルキルポリアミンが挙げられ、アルキレンジアミン又はポリアルキルポリアミンが好ましく、ポリアルキルポリアミンがより好ましい。
 なかでも、ポリアルキルポリアミンとしては、PMDETAが好ましい。
 第3級アミン化合物としては、DMAE、EDEA、2-ジエチルアミノエタノール、DMAMP、又は、PMDETAが好ましく、DMAMP又はPMDETAがより好ましい。
<その他のアミン化合物>
 その他のアミン化合物としては、第1級アミン化合物及び第2級アミン化合物が挙げられる。
 第1級アミン化合物及び第2級アミン化合物は、それぞれ、分子内に少なくとも1つの第1級アミノ基及び第2級アミノ基を有する化合物である。
 その他のアミン化合物は、置換基としてヒドロキシ基を有していてもよい。
 ヒドロキシ基を有するその他のアミン化合物としては、例えば、モノエタノールアミン(MEA)、ウラシル、2-アミノ-2-メチル-1-プロパノール(AMP)、N-メチル-2-アミノ-2-メチル-プロパノール(MAMP)、2-(2-アミノエチルアミノ)エタノール(AAE)、3-アミノ-1-プロパノール、1-アミノ-2-プロパノール、N,N’-ビス(2-ヒドロキシエチル)エチレンジアミン、トリスヒドロキシメチルアミノメタン、ジエチレングリコールアミン(DEGA)、2-(アミノエトキシ)エタノール(AEE)、N-メチルエタノールアミン、2-(エチルアミノ)エタノール、2-[(ヒドロキシメチル)アミノ]エタノール、2-(プロピルアミノ)エタノール、ジエタノールアミン、N-ブチルエタノールアミン、及び、N-シクロヘキシルエタノールアミンが挙げられ、AMP、MAMP、又は、ジエタノールアミンが好ましく、AMP、又は、MAMPがより好ましい。
 ヒドロキシ基を有さないその他のアミン化合物としては、例えば、ピペラジン、2,5-ジメチルピペラジン、エチレンジアミン(EDA)、1,3-プロパンジアミン(PDA)、1,2-プロパンジアミン、1,3-ブタンジアミン、及び、1,4-ブタンジアミン等のアルキレンジアミン、並びに、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、及び、テトラエチレンペンタミン等のポリアルキルポリアミンが挙げられ、ポリアルキルポリアミンが好ましい。
 アミン化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。本発明の効果がより優れる点から、アミン化合物は、2種以上を組み合わせて用いることが好ましい。
 アミン化合物を2種以上組み合わせて用いる場合、少なくとも1種のアミン化合物が、第3級アミン化合物であることが好ましい。
 本発明の効果がより優れる点から、アミン化合物の含有量は、処理液の全質量に対して、0.001~50質量%が好ましく、0.005~20質量%がより好ましく、0.01~10質量%が更に好ましい。
 本発明の効果がより優れる点から、アミン化合物の含有量は、処理液中の溶媒を除いた成分の合計質量に対して、30.0~99.5質量%が好ましく、50.0~98.0質量%がより好ましく、65.0~97.0質量%が更に好ましい。
 本発明の効果がより優れる点から、アミン化合物の含有量に対する、特定化合物の含有量の質量比(特定化合物の含有量/アミン化合物の含有量)は、0.001~2.0が好ましく、0.01~0.40がより好ましく、0.02~0.20が更に好ましい。
 本発明の効果がより優れる点から、プリン化合物の含有量に対する、アミン化合物の含有量の質量比(アミン化合物の含有量/プリン化合物の含有量)は、0.1~1000.0が好ましく、7.5~750.0がより好ましく、20.0~150.0が更に好ましい。
〔pH調整剤〕
 処理液は、処理液のpHを調整及び維持するために、pH調整剤を含んでいてもよい。
 pH調整剤は、処理液に含まれ得る上記化合物(プリン化合物、特定化合物、及び、アミン化合物等)とは異なる、塩基性化合物及び酸性化合物である。ただし、上記各成分の添加量を調整することで、処理液のpHを調整させることは許容される。
 塩基性化合物とは、水溶液中でアルカリ性(pHが7.0超)を示す化合物である。
 塩基性化合物としては、塩基性無機化合物が挙げられる。
 塩基性無機化合物としては、例えば、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、並びに、アルカリ土類金属水酸化物が挙げられる。
 酸性化合物とは、水溶液中で酸性(pHが7.0未満)を示す化合物である。
 酸性化合物としては、酸性無機化合物が挙げられる。
 酸性無機化合物としては、例えば、塩酸、硝酸、亜硝酸、及び、ホウ酸が挙げられる。
 本発明の効果がより優れる点で、処理液は、アンモニア(NH)を含まないことが好ましい。
 pH調整剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 pH調整剤の含有量は、pH調整剤以外の成分の種類及び量、並びに、目的とする処理液のpHに応じて選択できる。例えば、pH調整剤の含有量は、処理液の全質量に対して、処理液の全質量に対して、0.01~10質量%が好ましく、0.1~8質量%がより好ましい。
〔その他の成分〕
 処理液は、上記化合物以外に、界面活性剤、有機溶媒、有機酸、重合体、分子量500以上のポリヒドロキシ化合物、及び、酸化剤からなる群から選択される少なくとも1種の成分を含んでいてもよい。
 以下、その他の成分について説明する。
<界面活性剤>
 界面活性剤としては、1分子中に、親水基と、疎水基(親油基)とを有する化合物であれば特に制限されず、例えば、ノニオン性界面活性剤及びアニオン性界面活性剤が挙げられる。
 界面活性剤は、脂肪族炭化水素基、芳香族炭化水素基、及び、これらの組み合わせた基からなる群から選択される少なくとも1つの疎水基を有する場合が多い。
 界面活性剤全体の炭素数は、16~100が好ましい。
 ノニオン性界面活性剤としては、例えば、エステル型ノニオン性界面活性剤、エーテル型ノニオン性界面活性剤、エステルエーテル型ノニオン性界面活性剤、及び、アルカノールアミン型ノニオン性界面活性剤が挙げられ、エーテル型ノニオン性界面活性剤が好ましい。
 ノニオン性界面活性剤としては、例えば、国際公開第2022/044893号の段落[0126]に例示される化合物も援用でき、これらの内容は本明細書に組み込まれる。
 アニオン性界面活性剤としては、例えば、リン酸エステル基を有するリン酸エステル系界面活性剤、ホスホン酸基を有するホスホン酸系界面活性剤、及び、カルボキシ基を有するカルボン酸系界面活性剤が挙げられる。
 アニオン界面活性剤としては、例えば、国際公開第2022/044893号の段落[0118]及び[0122]に例示される化合物も援用でき、これらの内容は本明細書に組み込まれる。
 界面活性剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 処理液の性能が優れる点から、界面活性剤の含有量は、処理液の全質量に対して、0.001~8.0質量%が好ましく、0.005~5.0質量%がより好ましく、0.01~3.0質量%が更に好ましい。
 処理液の性能が優れる点から、界面活性剤の含有量は、処理液中の溶媒を除いた成分の合計質量に対して、0.01~50.0質量%が好ましく、0.1~45.0質量%がより好ましく、1.0~20.0質量%が更に好ましい。
<有機溶媒>
 有機溶媒としては、公知の有機溶媒が挙げられ、例えば、アルコール系溶媒、グリコール系溶媒、グリコールエーテル系溶媒、及び、ケトン系溶媒が挙げられる。
 有機溶媒は、水と任意の比率で混和することが好ましい。
 アルコール系溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、及び、tert-ブチルアルコールが挙げられる。
 グリコール系溶媒としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、及び、テトラエチレングリコールが挙げられる。
 グリコールエーテル系溶媒としては、例えば、グリコールモノエーテルが挙げられる。
 グリコールモノエーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-プロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、2-メトキシ-1-プロパノール、1-エトキシ-2-プロパノール、2-エトキシ-1-プロパノール、プロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノベンジルエーテル、及び、ジエチレングリコールモノベンジルエーテルが挙げられる。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及び、シクロヘキサノンが挙げられる。
 有機溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 有機溶媒の含有量は、処理液の全質量に対して、0.01~15.0質量%が好ましく、0.05~10.0質量%がより好ましく、0.1~5.0質量%が更に好ましい。
<有機酸>
 有機酸としては、例えば、脂肪族カルボン酸及び芳香族カルボン酸等のカルボン酸、並びに、ホスホン酸が挙げられる。
 有機酸は、塩の形態であってもよい。上記塩としては、例えば、無機塩が挙げられる。
 脂肪族カルボン酸としては、例えば、コハク酸、酒石酸、マレイン酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、セバシン酸、ギ酸、クエン酸、リンゴ酸、グリコール酸、グルコン酸、へプトン酸、及び、乳酸が挙げられる。
 芳香族カルボン酸としては、例えば、フェニル乳酸、ヒドロキシフェニル乳酸、フェニルコハク酸、フタル酸、イソフタル酸、テレフタル酸、没食子酸、トリメリット酸、メリト酸、及び、ケイ皮酸が挙げられる。
 ホスホン酸としては、例えば、国際公開第2018/020878号の段落[0026]~[0036]に記載の化合物、及び、国際公開第2018/030006号の段落[0031]~[0046]に記載の化合物((共)重合体)が援用でき、これらの内容は本明細書に組み込まれる。
 有機酸は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 有機酸の含有量は、処理液の全質量に対して、0.0001~5.00質量%が好ましく、0.0005~3.00質量%がより好ましく、0.001~1.00質量%が更に好ましい。
 有機酸の含有量は、処理液中の溶媒を除いた成分の合計質量に対して、0.1~50.0質量%が好ましく、1.0~30.0質量%がより好ましく、3.0~10.0質量%が更に好ましい。
<重合体>
 重合体としては、水溶性重合体が挙げられる。
 「水溶性重合体」とは、2以上の構成単位が線状又は網目状に共有結合を介して連なった化合物であって、20℃の水100gに溶解する質量が0.1g以上である化合物を意味する。
 水溶性重合体としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリスチレンスルホン酸、及び、これらの塩;スチレン、α-メチルスチレン及び/又は4-メチルスチレン等のモノマーと、(メタ)アクリル酸及び/又はマレイン酸等の酸モノマーとの共重合体、並びに、これらの塩;ベンゼンスルホン酸及び/又はナフタレンスルホン酸等をホルマリンで縮合させた芳香族炭化水素基を有する構成単位を有する重合体、並びに、これらの塩;ポリグリセリン;ポリビニルアルコール、ポリオキシエチレン、ポリビニルピロリドン、ポリビニルピリジン、ポリアクリルアミド、ポリビニルホルムアミド、ポリエチレンイミン、ポリビニルオキサゾリン、ポリビニルイミダゾール、及び、ポリアリルアミン等のビニル系合成ポリマー;ヒドロキシエチルセルロース、カルボキシメチルセルロース、及び、加工澱粉等の天然多糖類の変性物が挙げられる。
 重合体としては、例えば、特開2016-171294号公報の段落[0043]~[0047]に記載の水溶性重合体も援用でき、これらの内容は本明細書に組み込まれる。
 重合体の分子量(分子量分布を有する場合は重量平均分子量)は、300以上が好ましく、600超がより好ましく、1000以上が更に好ましく、1000超が特に好ましく、2000以上が最も好ましい。上限は、1500000以下が好ましく、1000000以下がより好ましい。
 重合体は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 重合体の含有量は、処理液の全質量に対して、0.0001~5.00質量%が好ましく、0.0005~3.00質量%がより好ましく、0.001~1.00質量%が更に好ましい。
 重合体の含有量は、処理液中の溶媒を除いた成分の合計質量に対して、0.1~50.0質量%が好ましく、1.0~30.0質量%がより好ましく、3.0~10.0質量%が更に好ましい。
<分子量500以上のポリヒドロキシ化合物>
 上記ポリヒドロキシ化合物としては、国際公開第2022/014287号の段落[0101]及び[0102]に例示される化合物等が援用でき、これらの内容は本明細書に組み込まれる。
<酸化剤>
 酸化剤としては、例えば、過酸化物、過硫化物(例えば、モノ過硫化物及びジ過硫化物)、及び、過炭酸塩、これらの酸、並びに、これらの塩が挙げられる。
 酸化剤としては、例えば、過ホウ酸、過ホウ酸塩、セリウム化合物、及び、フェリシアン化物(フェリシアン化カリウム等)が挙げられる。
 酸化剤の含有量は、処理液の全質量に対して、0.01~10.0質量%が好ましく、0.05~5.0質量%がより好ましく、0.1~3.0質量%が更に好ましい。
 酸化剤の含有量は、処理液中の溶媒を除いた成分の合計質量に対して、0.1~50.0質量%が好ましく、1.0~30.0質量%がより好ましく、3.0~10.0質量%が更に好ましい。
<ハロゲン化物>
 処理液は、ハロゲン化物を含んでいてもよいが、本発明の効果がより優れる点で、処理液は、ハロゲン化物(特に、無機ハロゲン化物)を実質的に含まないことが好ましい。
 ハロゲン化物とは、1種以上のハロゲン元素を含む化合物であり、ハロゲン元素としては、例えば、フッ素、塩素、臭素、及びヨウ素からなる群より選ばれる1種又は2種以上が挙げられる。ハロゲン化物としては、フッ化物、塩化物、臭化物、及び、ヨウ化物が挙げられる。
 フッ化物としては、例えば、NHF、HF、HSiF、HTiF、HZrF、HPF、及び、HBFが挙げられる。
 ハロゲン化物を実質的に含まないとは、ハロゲン化物の含有量が、処理液の全質量に対して、0.01質量%以下であることをいい、0.001質量%以下が好ましく、0.0001質量%以下がより好ましい。下限としては、0質量%が挙げられる。
 上記処理液に含まれ得る各種成分の含有量は、ガスクロマトグラフィー質量分析(GC-MS:Gas Chromatography-Mass Spectrometry)法、液体クロマトグラフィー質量分析(LC-MS:Liquid Chromatography-Mass Spectrometry)法、及び、イオン交換クロマトグラフィー(IC:Ion-exchange Chromatography)法等の公知の方法によって測定できる。
〔処理液の物性〕
 以下、処理液の性状を詳述する。
<pH>
 処理液は、塩基性であって、pHは7.0超を示す。
 本発明の効果がより優れる点から、処理液のpHは、9.0~14.0が好ましく、10.0~13.5がより好ましく、10.5~13.0が更に好ましい。
 なお、処理液のpHは、公知のpHメーターを用いて、JIS Z8802-1984に準拠した方法により測定できる。pHの測定温度は25℃とする。
<金属含有量>
 処理液中に不純物として含まれる金属(例えば、Fe、Co、Na、Cu、Mg、Mn、Li、Al、Cr、Ni、Zn、Sn、及び、Agの金属元素)の含有量(イオン濃度として測定される)は、いずれも5質量ppm以下であることが好ましく、1質量ppm以下であることがより好ましい。最先端の半導体素子の製造においては、更に高純度の処理液が求められることが想定されることから、その金属含有量が1質量ppmよりも低い値、つまり、質量ppbオーダー以下であることが更に好ましく、100質量ppb以下であることが特に好ましく、10質量ppb未満であることが最も好ましい。下限としては、0が好ましい。
 金属含有量の低減方法としては、例えば、処理液を製造する際に使用する原材料の段階、又は、処理液の製造後の段階において、蒸留及びイオン交換樹脂又はフィルタを用いたろ過等の精製処理を行うことが挙げられる。
 他の金属含有量の低減方法としては、原材料又は製造された処理液を収容する容器として、後述する不純物の溶出が少ない容器を用いることが挙げられる。また、処理液の製造時に配管等から金属成分が溶出しないように、配管内壁にフッ素樹脂のライニングを施すことも挙げられる。
<粗大粒子>
 処理液は、粗大粒子を含んでいてもよいが、その含有量が低いことが好ましい。
 粗大粒子とは、粒子の形状を球体とみなした場合における直径(粒径)が0.03μm以上である粒子を意味する。
 処理液に含まれる粗大粒子は、原料に不純物として含まれる塵、埃、有機固形物、及び、無機固形物等の粒子、並びに、処理液の調液中に汚染物として持ち込まれる塵、埃、有機固形物、及び、無機固形物等の粒子であって、最終的に処理液中で溶解せずに粒子として存在するものが該当する。
 処理液における粗大粒子の含有量としては、粒径0.1μm以上の粒子の含有量が、処理液1mLあたり10000個以下であることが好ましく、5000個以下であることがより好ましい。下限は、処理液1mLあたり0個以上が好ましく、0.01個以上がより好ましい。
 処理液中に存在する粗大粒子の含有量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して液相で測定できる。
 粗大粒子の除去方法としては、例えば、後述するフィルタリング等の精製処理が挙げられる。
[製造方法]
 処理液は、公知の方法により製造できる。以下、処理液の製造方法について詳述する。
〔調液工程〕
 処理液は、例えば、上記各成分を混合することにより製造できる。
 処理液の調液方法としては、例えば、精製した純水を入れた容器に、プリン化合物及び特定化合物と、必要に応じて任意成分とを順次添加した後、撹拌して混合するとともに、必要に応じてpH調整剤を添加して混合液のpHを調整することにより、処理液を調液する方法が挙げられる。また、水及び各成分を容器に添加する場合、一括して添加してもよいし、複数回にわたって分割して添加してもよい。
 処理液の調液に使用する撹拌装置及び撹拌方法は、撹拌機又は分散機として公知の装置を使用すればよい。撹拌機としては、例えば、工業用ミキサー、可搬型撹拌器、メカニカルスターラー、及び、マグネチックスターラーが挙げられる。分散機としては、例えば、工業用分散器、ホモジナイザー、超音波分散器、及び、ビーズミルが挙げられる。
 処理液の調液工程における各成分の混合及び後述する精製処理、並びに、製造された処理液の保管は、40℃以下で行うことが好ましく、30℃以下で行うことがより好ましい。また、下限としては、5℃以上が好ましく、10℃以上がより好ましい。上記の温度範囲で処理液の調液、処理及び/又は保管を行うことにより、長期間安定に性能を維持できる。
<精製処理>
 処理液を調液するための原料のいずれか1種以上に対して、事前に精製処理を行うことが好ましい。精製処理としては、例えば、蒸留、イオン交換、及び、ろ過(フィルタリング)等の公知の方法が挙げられる。
 精製の程度は、原料の純度が99質量%以上となるまで精製することが好ましく、原料の純度が99.9質量%以上となるまで精製することがより好ましい。上限としては、99.9999質量%以下が好ましい。
 精製処理の方法としては、例えば、原料をイオン交換樹脂又はRO膜(Reverse Osmosis Membrane)等に通液する方法、原料の蒸留、及び、後述するフィルタリングが挙げられる。
 精製処理として、上記精製方法を複数組み合わせて実施してもよい。例えば、原料に対して、RO膜に通液する1次精製を行った後、カチオン交換樹脂、アニオン交換樹脂、又は、混床型イオン交換樹脂からなる精製装置に通液する2次精製を実施してもよい。
 また、精製処理は、複数回実施してもよい。
 フィルタリングに用いるフィルタとしては、従来からろ過用途等に用いられているものであれば特に制限されない。例えば、ポリテトラフルオロエチレン(PTFE)及びテトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、並びに、ポリエチレン及びポリプロピレン(PP)等のポリオレフィン樹脂(高密度又は超高分子量を含む)からなるフィルタが挙げられる。これらの材料のなかでもポリエチレン、ポリプロピレン(高密度ポリプロピレンを含む)、フッ素樹脂(PTFE及びPFAを含む)、及び、ポリアミド系樹脂(ナイロンを含む)からなる群から選択される材料が好ましく、フッ素樹脂のフィルタがより好ましい。これらの材料により形成されたフィルタを用いて原料のろ過を行うことで、欠陥の原因となりやすい極性の高い異物を効果的に除去できる。
<容器>
 処理液(後述する希釈処理液の態様を含む)は、腐食性等が問題とならない限り、任意の容器に充填して保管、運搬及び使用できる。
 容器としては、半導体用途向けに、容器内のクリーン度が高く、容器の収容部の内壁から各液への不純物の溶出が抑制された容器が好ましい。そのような容器としては、半導体処理液用容器として市販されている各種容器が挙げられ、例えば、アイセロ化学社製の「クリーンボトル」シリーズ及びコダマ樹脂工業製の「ピュアボトル」等が挙げられ、これらに制限されない。
 また、容器としては、国際公開第2022/004217号の段落[0121]~[0124]に例示される容器も援用でき、これらの内容は本明細書に組み込まれる。
 これらの容器は、処理液を充填する前にその内部が洗浄されることが好ましい。洗浄に使用される液体は、その液中における金属不純物量が低減されていることが好ましい。処理液は、製造後にガロン瓶又はコート瓶等の容器にボトリングし、輸送、保管されてもよい。
 保管における処理液中の成分の変化を防ぐ目的で、容器内を純度99.99995体積%以上の不活性ガス(窒素又はアルゴン等)で置換しておいてもよい。特に含水率が少ないガスが好ましい。また、輸送及び保管に際しては、常温であってもよく、変質を防ぐため、-20℃から20℃の範囲に温度制御してもよい。
<クリーンルーム>
 処理液の製造、容器の開封及び洗浄、処理液の充填等を含めた取り扱い、処理分析、並びに、測定は、全てクリーンルームで行うことが好ましい。クリーンルームは、14644-1クリーンルーム基準を満たすことが好ましい。ISO(国際標準化機構)クラス1、ISOクラス2、ISOクラス3、及び、ISOクラス4のいずれかを満たすことが好ましく、ISOクラス1又はISOクラス2を満たすことがより好ましく、ISOクラス1を満たすことが更に好ましい。
〔希釈工程〕
 上記処理液は、水等の希釈剤を用いて希釈する希釈工程を経た後、希釈された処理液(希釈処理液)として被対象物の処理に供されてもよい。
 なお、希釈処理液も、本発明の要件を満たす限り、本発明の処理液の一形態である。
 希釈工程に用いる希釈液に対しては、事前に精製処理を行うことが好ましい。また、希釈工程により得られた希釈処理液に対して、精製処理を行うことがより好ましい。
 精製処理としては、上記処理液に対する精製処理として記載した、イオン交換樹脂又はRO膜等を用いたイオン成分低減処理及びフィルタリングを用いた異物除去が挙げられ、これらのうちいずれかの処理を行うことが好ましい。
 希釈工程における処理液の希釈率は、各成分の種類及び含有量、並びに、処理対象である被対象物に応じて適宜調整すればよいが、希釈前の処理液に対する希釈処理液の比率(希釈倍率)は、質量比又は体積比(23℃における体積比)で10~10000倍が好ましく、20~3000倍がより好ましく、50~1000倍が更に好ましい。
 また、欠陥除去性により優れる点で、処理液は水で希釈されることが好ましい。
 希釈前後におけるpHの変化(希釈前の処理液のpHと希釈処理液のpHとの差分)は、2.0以下が好ましく、1.8以下がより好ましく、1.5以下が更に好ましい。
 希釈前の処理液のpH及び希釈処理液のpHは、それぞれ、上記好適態様であることが好ましい。
 処理液を希釈する希釈工程の具体的方法は、上記の処理液の調液工程に準じて行えばよい。希釈工程で使用する撹拌装置及び撹拌方法もまた、上記の処理液の調液工程において挙げた公知の撹拌装置を用いて行えばよい。
[使用用途]
 本発明の処理液は、半導体の製造において使用される各種材料に対して使用できる。以下、本発明の処理液の被対象物について詳述する。
 上記処理液は、例えば、基板上に存在する絶縁膜、レジスト、反射防止膜、エッチング残渣物、及び、アッシング残渣物等の処理に使用できる。上記処理液は、洗浄液として用いられることが好ましく、CMP処理が施された被対象物(特に、半導体基板)を洗浄する洗浄工程に使用されることがより好ましい。
 上述したとおり、処理液を用いる際には、処理液を希釈して得られる希釈処理液として用いてもよい。
〔被対象物〕
 処理液の被対象物としては、例えば、金属を有する被対象物が挙げられ、金属を有する半導体基板が好ましい。
 なお、半導体基板が金属を有する場合、例えば、半導体基板の表裏、側面、及び、溝内等のいずれに金属を有していてもよい。また、半導体基板が金属を有する場合、半導体基板の表面上に直接金属がある場合のみならず、半導体基板上に他の層を介して金属がある場合も含む。
 金属としては、例えば、銅(Cu)、コバルト(Co)、ルテニウム(Ru)、アルミニウム(Al)、タングステン(W)、チタン(Ti)、タンタル(Ta)、クロム(Cr)、ハフニウム(Hf)、オスミウム(Os)、白金(Pt)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、ジルコニウム(Zr)、モリブデン(Mo)、パラジウム(Pd)、ランタン(La)、及び、イリジウム(Ir)からなる群から選択される少なくとも1種の金属Mが挙げられ、Cu又はCoが好ましい。
 つまり、被対象物としては、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物が好ましい。
 金属は、金属(金属原子)を含む物質であればよく、例えば、金属Mの単体、及び、金属Mを含む合金が挙げられる。
 処理液の被対象物は、例えば、半導体基板、金属配線膜、バリアメタル、及び、絶縁膜を有していてもよい。
 半導体基板を構成するウエハとしては、例えば、シリコン(Si)ウエハ、シリコンカーバイド(SiC)ウエハ、及び、シリコンを含む樹脂系ウエハ(ガラスエポキシウエハ)等のシリコン系材料からなるウエハ、ガリウムリン(GaP)ウエハ、ガリウムヒ素(GaAs)ウエハ、並びに、インジウムリン(InP)ウエハが挙げられる。
 シリコンウエハとしては、例えば、シリコンウエハに5価の原子(例えば、リン(P)、ヒ素(As)、及び、アンチモン(Sb)等)をドープしたn型シリコンウエハ、並びに、シリコンウエハに3価の原子(例えば、ホウ素(B)及びガリウム(Ga)等)をドープしたp型シリコンウエハが挙げられる。シリコンウエハのシリコンとしては、例えば、アモルファスシリコン、単結晶シリコン、多結晶シリコン、及び、ポリシリコンが挙げられる。
 なかでも、シリコンウエハ、シリコンカーバイドウエハ、及び、シリコンを含む樹脂系ウエハ(ガラスエポキシウエハ)等のシリコン系材料からなるウエハが好ましい。
 絶縁膜としては、例えば、シリコン酸化膜(例えば、二酸化ケイ素(SiO)膜及びオルトケイ酸テトラエチル(Si(OC)膜(TEOS膜)等)、シリコン窒化膜(例えば、窒化シリコン(Si)及び窒化炭化シリコン(SiNC)等)、並びに、低誘電率(Low-k)膜(例えば、炭素ドープ酸化ケイ素(SiOC)膜及びシリコンカーバイド(SiC)膜等)が挙げられ、低誘電率(Low-k)膜が好ましい。
 金属配線膜としては、銅含有膜、コバルト含有膜、及び、ルテニウム含有膜が好ましい。
 銅含有膜としては、例えば、金属銅のみからなる配線膜(銅配線膜)及び金属銅と他の金属とからなる合金製の配線膜(銅合金配線膜)が挙げられる。
 銅合金配線膜としては、Al、Ti、Cr、Mn、Ta、及び、Wから選ばれる1種以上の金属と銅とからなる合金製の配線膜が挙げられる。より具体的には、銅-アルミニウム合金配線膜(CuAl合金配線膜)、銅-チタン合金配線膜(CuTi合金配線膜)、銅-クロム合金配線膜(CuCr合金配線膜)、銅-マンガン合金配線膜(CuMn合金配線膜)、銅-タンタル合金配線膜(CuTa合金配線膜)、及び、銅-タングステン合金配線膜(CuW合金配線膜)が挙げられる。
 コバルト含有膜としては、例えば、金属コバルトのみからなる金属膜(コバルト金属膜)及び金属コバルトと他の金属とからなる合金製の金属膜(コバルト合金金属膜)が挙げられる。
 コバルト合金金属膜としては、Ti、Cr、Fe、Ni、Mo、Pd、Ta、及び、Wから選ばれる1種以上の金属とコバルトとからなる合金製の金属膜が挙げられる。より具体的には、コバルト-チタン合金金属膜(CoTi合金金属膜)、コバルト-クロム合金金属膜(CoCr合金金属膜)、コバルト-鉄合金金属膜(CoFe合金金属膜)、コバルト-ニッケル合金金属膜(CoNi合金金属膜)、コバルト-モリブデン合金金属膜(CoMo合金金属膜)、コバルト-パラジウム合金金属膜(CoPd合金金属膜)、コバルト-タンタル合金金属膜(CoTa合金金属膜)、及び、コバルト-タングステン合金金属膜(CoW合金金属膜)が挙げられる。
 処理液は、コバルト含有膜を有する基板に有用である。コバルト含有膜のうち、コバルト金属膜は配線膜として使用されることが多く、コバルト合金金属膜はバリアメタルとして使用されることが多い。
 ルテニウム含有膜としては、例えば、金属ルテニウムのみからなる金属膜(ルテニウム金属膜)及び金属ルテニウムと他の金属とからなる合金製の金属膜(ルテニウム合金金属膜)が挙げられる。ルテニウム含有膜は、バリアメタルとして使用されることが多い。
 半導体基板を構成するウエハ上に、上記の絶縁膜、銅含有膜、コバルト含有膜、及び、ルテニウム含有膜を形成する方法としては、通常この分野で行われる方法であれば特に制限はない。
 絶縁膜の形成方法としては、例えば、半導体基板を構成するウエハに対して、酸素ガス存在下で熱処理を行うことによりシリコン酸化膜を形成し、次いで、シラン及びアンモニアのガスを流入して、化学気相蒸着(CVD:Chemical Vapor Deposition)法によりシリコン窒化膜を形成する方法が挙げられる。
 銅含有膜、コバルト含有膜、及び、ルテニウム含有膜を形成する方法としては、例えば、上記の絶縁膜を有するウエハ上に、レジスト等の公知の方法で回路を形成し、次いで、鍍金及びCVD法等の方法により、銅含有膜、コバルト含有膜、及び、ルテニウム含有膜を形成する方法が挙げられる。
<CMP処理が施された被対象物>
 処理液を洗浄のために用いる際の対象物としては、CMP処理が施された被対象物(特に、半導体基板)が好ましく、CMP処理が施された、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物がより好ましい。
 CMP処理は、例えば、金属配線膜、バリアメタル、及び、絶縁膜を有する半導体基板の表面を、研磨微粒子(砥粒)を含む研磨スラリーを用いて、化学的作用と機械的研磨の複合作用で平坦化する処理である。
 CMP処理が施された被対象物の表面には、CMP処理で使用した砥粒(例えば、シリカ及びアルミナ等)、研磨された金属配線膜、及び、バリアメタルに由来する金属不純物(金属残渣)等の不純物が残存することがある。また、CMP処理の際に用いたCMP処理液に由来する有機不純物が残存する場合もある。これらの不純物は、例えば、配線間を短絡させ、半導体基板の電気的特性を劣化させるおそれがあるため、CMP処理が施された半導体基板は、これらの不純物を表面から除去するための洗浄処理に供される。
 CMP処理が施された被対象物の具体例としては、精密工学会誌 Vol.84、No.3、2018に記載のCMP処理が施された基板が挙げられるが、これに制限されるものではない。
<バフ研磨が施された被対象物>
 処理液を洗浄のために用いる際の対象物(特に、半導体基板)は、CMP処理が施された後、バフ研磨処理が施されていてもよい。
 バフ研磨処理は、研磨パッドを用いて半導体基板の表面における不純物を低減する処理である。具体的には、CMP処理が施された半導体基板の表面と研磨パッドとを接触させて、その接触部分にバフ研磨用組成物を供給しながら半導体基板と研磨パッドとを相対摺動させる。その結果、半導体基板の表面の不純物が、研磨パッドによる摩擦力及びバフ研磨用組成物による化学的作用によって除去される。
 バフ研磨用組成物としては、半導体基板の種類、並びに、除去対象とする不純物の種類及び量に応じて、公知のバフ研磨用組成物を適宜使用できる。バフ研磨用組成物に含まれる成分としては、例えば、ポリビニルアルコール等の水溶性ポリマー、分散媒としての水及び硝酸等の酸が挙げられる。
 また、バフ研磨処理の一実施形態としては、バフ研磨用組成物として、処理液を用いることも好ましい。
 バフ研磨処理において使用する研磨装置及び研磨条件等については、半導体基板の種類及び除去対象物等に応じて、公知の装置及び条件から適宜選択できる。バフ研磨処理としては、例えば、国際公開第2017/169539号の段落[0085]~[0088]に記載の処理が挙げられ、これらの内容は本明細書に組み込まれる。
[処理液の使用方法]
 処理液は、公知の方法により使用できる。以下、処理液の使用方法について詳述する。
〔処理工程〕
 処理液の使用方法としては、例えば、被対象物と処理液とを接触させる工程を含む被処理物の処理方法が挙げられる。以下、被対象物と処理液とを接触させる工程を、「接触工程」ともいう。
 被対象物と処理液とを接触させる方法としては、特に制限されず、例えば、タンクに入れた処理液中に被対象物を浸漬する方法、被対象物上に処理液を噴霧する方法、被対象物上に処理液を流す方法、及び、これらの組み合わせが挙げられる。上記方法は、目的に応じて適宜選択すればよい。
 また、上記方法は、通常この分野で行われる様式を適宜採用してもよい。例えば、処理液を供給しながらブラシ等の洗浄部材を被対象物の表面に物理的に接触させて残渣物等を除去するスクラブ洗浄、及び、被対象物を回転させながら処理液を滴下するスピン(滴下)式等であってもよい。浸漬式では、被対象物の表面に残存する不純物をより低減できる点で、処理液に浸漬された被対象物に対して超音波処理を施すことが好ましい。
 接触工程における被対象物と処理液との接触は、1回のみ実施してもよく、2回以上実施してもよい。2回以上実施する場合は、同じ方法を繰り返してもよいし、異なる方法を組み合わせてもよい。
 接触工程の方法としては、枚葉方式及びバッチ方式のいずれであってもよい。
 枚葉方式とは、一般的に被対象物を1枚ずつ処理する方式であり、バッチ方式とは、一般的に複数枚の被対象物を同時に処理する方式である。
 処理液の温度は、通常この分野で行われる温度であれば特に制限はない。一般的には室温(約25℃)で洗浄が行われるが、欠陥除去性の向上及び部材への対ダメージ性を抑えるために、温度は任意に選択できる。例えば、処理液の温度としては、10~60℃が好ましく、15~50℃がより好ましい。
 被対象物と処理液との接触時間は、処理液に含まれる各成分の種類及び含有量、並びに、処理液の使用対象及び目的に応じて適宜変更できる。実用的には、10~120秒が好ましく、20~90秒がより好ましく、30~60秒が更に好ましい。
 処理液の供給量(供給速度)としては、50~5000mL/分が好ましく、500~2000mL/分がより好ましい。
 接触工程において、処理液の洗浄能力をより増進するために、機械的撹拌方法を用いてもよい。
 機械的撹拌方法としては、例えば、被対象物上で処理液を循環させる方法、被対象物上で処理液を流過又は噴霧させる方法及び超音波又はメガソニックにて処理液を撹拌する方法が挙げられる。
〔リンス工程〕
 また、接触工程の後に、被処理物と水とを接触させる工程(以下、「リンス工程」ともいう。)を行ってもよい。リンス工程を実施することにより、接触工程で得られた被処理物を水で洗浄でき、上述したプリン化合物由来の欠陥を効率的に除去できる。
 リンス工程は、接触工程の後に連続して行われることが好ましい。リンス工程は、上記機械的撹拌方法を用いて行ってもよい。
 水を被処理物に接触させる方法としては、上記処理液を被対象物に接触させる方法を同様に適用できる。
 被処理物と水との接触時間は、処理液に含まれる各成分の種類及び含有量、並びに、処理液の使用対象及び目的に応じて適宜変更できる。実用的には、10~120秒が好ましく、20~90秒がより好ましく、30~60秒が更に好ましい。
 なお、上記リンス工程の後に、被処理物を乾燥させる乾燥工程を行ってもよい。
 乾燥方法としては、例えば、スピン乾燥法、被処理物上に乾性ガスを流過させる方法、ホットプレート及び赤外線ランプ等の加熱手段によって基板を加熱する方法、並びに、これらの任意の組み合わせた方法が挙げられる。
[電子デバイスの製造方法]
 上記被対象物の処理方法は、電子デバイスの製造工程に好適に適用できる。
 上記処理方法は、基板について行われるその他の工程の前又は後に組み合わせて実施してもよい。上記処理方法を実施する中にその他の工程に組み込んでもよいし、その他の工程の中に上記処理方法を組み込んで実施してもよい。
 その他の工程としては、例えば、金属配線、ゲート構造、ソース構造、ドレイン構造、絶縁膜、強磁性層、及び、非磁性層等の構造の形成工程(例えば、層形成、エッチング、化学機械研磨、及び、変成等)、レジストの形成工程、露光工程及び除去工程、熱処理工程、洗浄工程、並びに、検査工程が挙げられる。
 上記処理方法は、バックエンドプロセス(BEOL:Back end of the line)、ミドルプロセス(MOL:Middle of the line)、及び、フロントエンドプロセス(FEOL:Front end of the line)中のいずれの段階で行ってもよく、フロントエンドプロセス又はミドルプロセス中で行うことが好ましい。
 以下、実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
 以下の実施例において、処理液のpHは、pHメーター(堀場製作所社製、型式「F-74」)を用いて、JIS Z8802-1984に準拠して25℃において測定した。
 また、実施例及び比較例の処理液の製造にあたって、容器の取り扱い、処理液の調液、充填、保管及び分析測定は、全てISOクラス2以下を満たすレベルのクリーンルームで行った。
[処理液の原料]
 処理液を製造するために、以下の化合物を使用した。なお、実施例で使用した各種成分はいずれも、半導体グレードに分類されるもの又はそれに準ずる高純度グレードに分類されるものを使用した。
〔プリン化合物〕
・アデニン(式(A1)で表される化合物に該当)
・キサンチン(式(A4)で表される化合物に該当)
・ヒポキサンチン(式(A5)で表される化合物に該当)
・グアニン(式(A5)で表される化合物に該当)
・アデノシン(式(A1)で表される化合物に該当)
・カフェイン(式(A4)で表される化合物に該当)
・ベンジルアデニン(式(A1)で表される化合物に該当)
〔特定化合物〕
・硫酸(pKa=-3.2)
・パラトルエンスルホン酸(pKa=-0.4)
・メタンスルホン酸(pKa=-1.8)
・エタンスルホン酸(pKa=-1.8)
・1,2-エタンジスルホン酸(pKa=-0.7)
・ベンゼンスルホン酸(pKa=-0.6)
 なお、上記のpKaは「ACD/Pka DB Ver8.0」(ACD/Labs,Advanced Chemistry Development社製)を用いて算出された値である。
 特定化合物が複数のpKaを示す場合、上記では最も小さいpKaの値を示す。
〔アミン化合物〕
・DMAMP:2-(ジメチルアミノ)-2-メチル-1-プロパノール
・ETMAH:エチルトリメチルアンモニウムヒドロキシド
・THEMAH:トリス(2-ヒドロキシエチル)メチルアンモニウムヒドロキシド
・コリン:2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド
・TEAH:テトラエチルアンモニウムヒドロキシド
・PMDETA:N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン
・AMP:2-アミノ-2-メチル-1-プロパノール
・MAMP:N-メチル-2-アミノ-2-メチル-プロパノール
〔その他の化合物〕
・酢酸
・リン酸
・DBS:ドデシルベンゼンスルホン酸
・コハク酸
・酒石酸
・マレイン酸
・ポリアクリル酸(Mw=5,000)
・IPA:イソプロピルアルコール
・EGBE:エチレングリコールモノn-ブチルエーテル
 処理液において、表中に処理液の成分として明示された成分でない残りの成分(残部)は、超純水及びpH調整剤である。
[処理液の製造]
 次に、処理液の製造方法について、実施例1を例に説明する。
 超純水に、アデニン、硫酸、及び、DMAMPを、最終的に得られる処理液が下記表に記載の配合となるようにそれぞれ添加し、得られた混合液を十分に撹拌した。更に、処理液が下記表に記載のpHを示すよう、必要に応じてpH調整剤(水酸化カリウム)を添加し、十分に撹拌することにより、実施例1の処理液を得た。
 実施例1の製造方法に準じて、下記表に示す組成を有する各実施例又は各比較例の処理液を、それぞれ製造した。
[処理液の評価1:CMP後の半導体基板]
 得られた処理液について、防食性及び欠陥除去性を評価した。以下、評価方法について説明する。
〔防食性の評価〕
 上記の方法で製造した処理液を用いて、Cu及びCoに対する防食性を評価した。
 2×2cmのCu又はCoのウエハを準備した。
 上記ウエハを各実施例又は各比較例の処理液を満たした容器に入れ、室温(25℃)で30分間浸漬処理を行った。その後、VR250(国際電気セミコンダクターサービス社製)を用いて得られたウエハの膜厚を測定し、上記浸漬処理前後の膜厚差からエッチングレート(Å/min)を求めた。
 下記評価基準により処理液の防食性を評価した。エッチングレートが低いほど、防食性が優れる。
 A:0.4Å/min未満
 B:0.4Å/min以上0.6Å/min未満
 C:0.6Å/min以上0.8Å/min未満
 D:0.8Å/min以上
〔欠陥除去性の評価〕
 上記の方法で製造した処理液を用いて、CMP処理を施した半導体基板を洗浄した際の欠陥除去性を評価した。
 FREX300S-II(研磨装置、荏原製作所社製)を用いて、研磨液として研磨液1を使用し、研磨圧力の面内平均値が105hPa、研磨液供給速度が200mL/min、研磨時間が30秒間となる条件で、表面にCu膜又はCo膜を有するウエハ(直径12インチ)を研磨した。次に、研磨液として研磨液2を使用し、研磨圧力の面内平均値が70hPa、研磨液供給速度が200mL/min、研磨時間が60秒間となる条件で、上記の研磨処理が施されたウエハを研磨した。
 得られたCMP処理が施されたウエハを、室温(23℃)に調整した処理液のサンプルを用いて1分間スクラブ洗浄し、DI水を用いて30秒間洗浄後、乾燥処理した。
 なお、上記研磨液1及び研磨液2の組成は下記の通りである。
 研磨液1(pH7.0)
 ・コロイダルシリカ(PL3、扶桑化学工業社製) 0.1質量%
 ・グリシン                   1.0質量%
 ・3-アミノ-1,2,4-トリアゾール     0.2質量%
 ・ベンゾトリアゾール(BTA)          30質量ppm
 ・過酸化水素                  1.0質量%
 ・pH調整剤(アンモニア及び硝酸)
 ・水                      残部
 研磨液2(pH10.5)
 ・コロイダルシリカ(PL3、扶桑化学工業社製) 6.0質量%
 ・クエン酸                   1.0質量%
 ・アルキルアルコキシレート界面活性剤      100質量ppm
 ・BTA                    0.2質量%
 ・過酸化水素                  1.0質量%
 ・pH調整剤(水酸化カリウム及び硝酸)
 ・水                      残部
 次に、欠陥検出装置(AMAT社製、ComPlus-II)を用いて、得られたウエハの研磨面において、長さが0.1μm超である欠陥に対応する信号強度の検出数を計測した。これにより、ウエハの研磨面における残渣物に基づく欠陥数を求めた。
 下記評価基準により処理液の欠陥除去性を評価した。ウエハの研磨面において検出された欠陥数が少ないほど、欠陥除去性が優れる。
 A:ウエハあたりの欠陥数が200個未満
 B:ウエハあたりの欠陥数が200個以上、300個未満
 C:ウエハあたりの欠陥数が300個以上、500個未満
 D:ウエハあたりの欠陥数が500個以上
〔結果〕
 表中、「含有量(質量%)」欄は、処理液の全質量に対する各成分の含有量(質量%)を示す。
 表中、「固形分濃度(質量%)」欄は、処理液中の溶媒を除いた成分の合計質量に対する各成分の含有量(質量%)を示す。
 表中、「(B)/(A)」欄の数値は、プリン化合物の含有量(A)に対する特定化合物の含有量(B)の質量比(特定化合物の含有量(B)/プリン化合物の含有量(A))を示す。
 表中、「(B)/(C)」欄の数値は、アミン化合物の含有量(C)に対する特定化合物の含有量(B)の質量比(特定化合物の含有量(B)/アミン化合物の含有量(C))を示す。
 表中、pH欄の数値は、上記のpHメーターにより測定した処理液の25℃におけるpHを示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記表から、本発明の処理液は、Cu及びCoに対する防食性に優れ、かつ、Cu又はCoを含む被処理物の水洗浄後に、被処理物表面に欠陥が残存しにくいことが確認された。
 実施例1~7の比較から、プリン化合物が、アデニン、キサンチン、ヒポキサンチン、グアニン、アデノシン、及び、ベンジルアデニンからなる群から選択される少なくとも1種を含む場合、防食性がより優れることが確認され、アデニン及びキサンチンからなる群から選択される少なくとも1種を含む場合、欠陥除去性がより優れることが確認された。
 実施例1及び13~19の比較から、プリン化合物の含有量に対する、特定化合物の含有量の質量比((B)/(A))が、0.5~20.0である場合、防食性及び欠陥除去性がより優れ、1.0~10.0である場合、防食性及び欠陥除去性が更に優れることが確認された。
 実施例1及び20~22の比較から、プリン化合物の含有量が、処理液の全質量に対して、0.0001~0.008質量%である場合、欠陥除去性がより優れることが確認された。
 実施例1及び20~22の比較から、プリン化合物の含有量が、処理液中の溶媒を除いた成分の合計質量に対して、0.1~10.0質量%である場合、防食性及び欠陥除去性がより優れることが確認された。
 実施例1及び13~19の比較から、特定化合物の含有量が、処理液の全質量に対して、0.0001~0.015質量%である場合、防食性がより優れ、0.001~0.01質量%である場合、防食性及び欠陥除去性がより優れることが確認された。
 実施例1及び13~19の比較から、特定化合物の含有量が、処理液中の溶媒を除いた成分の合計質量に対して、に対して、0.5~20.0質量%である場合、防食性がより優れ、0.8~15.0質量%である場合、防食性及び欠陥除去性がより優れることが確認された。
 実施例16~19の比較から、pHが10.0~13.5である場合、欠陥除去性がより優れ、10.5~13.0である場合、防食性が更に優れることが確認された。
 実施例1及び13~22の比較から、アミン化合物の含有量に対する、特定化合物の含有量の質量比((B)/(C))が、0.01~0.40である場合、防食性がより優れることが確認された。また、アミン化合物の含有量に対する、特定化合物の含有量の質量比((B)/(C))が、0.02~0.20である場合、欠陥除去性がより優れることが確認された。
 実施例1~4及び31~37の比較から、アミン化合物を2種以上組み合わせて用いる場合、欠陥除去性がより優れることが確認された。
 実施例1、4及び34の比較から、プリン化合物を2種以上組み合わせて用いる場合、欠陥除去性がより優れることが確認された。
 実施例1、23~38、及び、41~43の結果から、処理液は、第3級アミン化合物及び第4級アンモニウム化合物からなる群から選択される少なくとも1種を含む場合、防食性及び欠陥除去性がより優れることが確認された。
 実施例1及び50の結果から、処理液の濃度が異なる場合であっても、本発明の効果が優れることが確認された。
 さらに、実施例50に記載の処理液を、超純水を希釈液として質量比50倍に希釈した。得られた希釈処理液を用いて、上記の評価手順に従って同様の評価を実施したところ、実施例50と同様の評価結果が得られた。
[処理液の評価2:バフ洗浄後の半導体基板]
 上記[処理液の評価1:CMP後の半導体基板]の〔欠陥除去性の評価〕に記載の手順に従って、表面にCu膜又はCo膜を有するウエハ(直径12インチ)を研磨した。
 上記CMP処理が施されたウエハの研磨面に対して、FREX300S-II(研磨装置、荏原製作所社製)を用いて下記条件でバフ洗浄を施した。
・ テ-ブル回転数:    80rpm
・ ヘッド回転数:     78rpm
・ 研磨圧力の面内平均値: 138hPa
・ 研磨パッド:      IC1400ロデール・ニッタ株式会社製
・ 洗浄液:        実施例1で使用した処理液
・ 洗浄液供給速度:    250mL/min
・ 研磨時間:       20秒間
 得られたバフ洗浄が施されたウエハを、室温(23℃)に調整した実施例1で使用した処理液を用いて1分間スクラブ洗浄し、DI水を用いて30秒間洗浄後、乾燥処理した。その後、評価1の欠陥除去性の評価に記載の手順に従って、ウエハの研磨面における残渣物に基づく欠陥数を求めたところ、実施例1と同様の評価結果が得られた。
 上記実施例1で使用した処理液の代わりに、実施例2~50で使用した処理液を用いた場合も、上述した表1~3に示す各実施例の結果と同様の評価結果が得られた。
 さらに、上記実施例1で使用した処理液の代わりに、実施例50で使用した処理液を質量比50倍に希釈した希釈処理液を用いた場合も、実施例50と同様の評価結果が得られた。

Claims (18)

  1.  プリン、及び、プリン誘導体からなる群から選択される少なくとも1種のプリン化合物と、
     炭素数10以下の有機スルホン酸化合物、硫酸、及び、これらの塩からなる群から選択される少なくとも1種の特定化合物と、
     水と、を含み、
     pHが7.0超である、半導体処理液。
  2.  前記特定化合物が、硫酸、メタンスルホン酸、エタンスルホン酸、1,2-エタンジスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、及び、これらの塩からなる群から選択される少なくとも1種を含む、請求項1に記載の半導体処理液。
  3.  前記特定化合物の含有量が、前記半導体処理液中の溶媒を除いた成分の合計質量に対して、0.1~40.0質量%である、請求項1に記載の半導体処理液。
  4.  前記プリン化合物の含有量に対する、前記特定化合物の含有量の質量比が0.01~100.0である、請求項1に記載の半導体処理液。
  5.  前記特定化合物のpKaが2.0以下である、請求項1に記載の半導体処理液。
  6.  更に、アミン化合物を含む、請求項1に記載の半導体処理液。
  7.  前記アミン化合物が、第4級アンモニウム化合物、及び、第3級アミン化合物からなる群から選択される少なくとも1種を含む、請求項6に記載の半導体処理液。
  8.  前記アミン化合物が、第3級アミン化合物である、請求項6に記載の半導体処理液。
  9.  前記アミン化合物が、2つ以上の窒素原子を有する、請求項6に記載の半導体処理液。
  10.  前記アミン化合物を、2種以上含む、請求項6に記載の半導体処理液。
  11.  pHが9.0~14.0である、請求項1に記載の半導体処理液。
  12.  前記プリン化合物が、アデニン、キサンチン、グアニン、アデノシン、ヒポキサンチン、及び、ベンジルアデニンからなる群から選択される少なくとも1種を含む、請求項1に記載の半導体処理液。
  13.  洗浄液として用いられる、請求項1に記載の半導体処理液。
  14.  化学機械研磨処理が施された被対象物に対して用いられる、請求項1に記載の半導体処理液。
  15.  Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物に対して用いられる、請求項1に記載の半導体処理液。
  16.  化学機械研磨処理が施された、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物に対して用いられる、請求項1に記載の半導体処理液。
  17.  化学機械研磨処理が施された、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物と、請求項1~16のいずれか1項に記載の半導体処理液とを接触させる工程を有する、被処理物の処理方法。
  18.  請求項17に記載の被処理物の処理方法を有する、電子デバイスの製造方法。
PCT/JP2023/022080 2022-07-13 2023-06-14 半導体処理液、被処理物の処理方法、電子デバイスの製造方法 WO2024014220A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112421 2022-07-13
JP2022112421 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014220A1 true WO2024014220A1 (ja) 2024-01-18

Family

ID=89536409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022080 WO2024014220A1 (ja) 2022-07-13 2023-06-14 半導体処理液、被処理物の処理方法、電子デバイスの製造方法

Country Status (2)

Country Link
TW (1) TW202407087A (ja)
WO (1) WO2024014220A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138282A (ja) * 2007-05-17 2016-08-04 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Cmp後洗浄配合物用の新規な酸化防止剤
JP2018507540A (ja) * 2015-01-13 2018-03-15 キャボット マイクロエレクトロニクス コーポレイション 洗浄用組成物及びcmp後の半導体ウエハーの洗浄方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138282A (ja) * 2007-05-17 2016-08-04 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Cmp後洗浄配合物用の新規な酸化防止剤
JP2018507540A (ja) * 2015-01-13 2018-03-15 キャボット マイクロエレクトロニクス コーポレイション 洗浄用組成物及びcmp後の半導体ウエハーの洗浄方法

Also Published As

Publication number Publication date
TW202407087A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
US20240026254A1 (en) Cleaning liquid for semiconductor substrate
US20230099612A1 (en) Treatment liquid, chemical mechanical polishing method, and method for treating semiconductor substrate
US20220336209A1 (en) Cleaning method and cleaning liquid
TW201912776A (zh) 處理液、套組及基板的洗淨方法
US20240018442A1 (en) Cleaning liquid for semiconductor substrate and cleaning method for semiconductor substrate
WO2024014220A1 (ja) 半導体処理液、被処理物の処理方法、電子デバイスの製造方法
US20230065213A1 (en) Cleaning fluid and cleaning method
US20230145012A1 (en) Cleaning liquid for semiconductor substrate
WO2024014224A1 (ja) 半導体処理液、被処理物の処理方法、電子デバイスの製造方法
WO2024122300A1 (ja) 処理液、被処理物の洗浄方法、電子デバイスの製造方法
WO2023176708A1 (ja) 洗浄組成物、半導体基板の洗浄方法
JP7340614B2 (ja) 洗浄方法
US20220106499A1 (en) Polishing liquid and chemical mechanical polishing method
KR102605202B1 (ko) 세정 조성물, 반도체 기판의 세정 방법, 및, 반도체 소자의 제조 방법
WO2022255220A1 (ja) 処理液、半導体基板の洗浄方法、半導体素子の製造方法
WO2023182142A1 (ja) 組成物、半導体素子の製造方法、半導体基板の洗浄方法
CN114364779B (zh) 处理液、被处理物的处理方法
TW202311516A (zh) 半導體處理用組成物、被處理物的處理方法
WO2020255581A1 (ja) 研磨液、及び、化学的機械的研磨方法
JP2024018964A (ja) 処理液、被対象物の処理方法、及び、半導体デバイスの製造方法
US20230112048A1 (en) Chemical liquid and treatment method
TW202246476A (zh) 清洗液、半導體基板的清洗方法
WO2023162853A1 (ja) 半導体製造用組成物、被処理物の処理方法、半導体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839395

Country of ref document: EP

Kind code of ref document: A1