WO2024013560A1 - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
WO2024013560A1
WO2024013560A1 PCT/IB2023/000405 IB2023000405W WO2024013560A1 WO 2024013560 A1 WO2024013560 A1 WO 2024013560A1 IB 2023000405 W IB2023000405 W IB 2023000405W WO 2024013560 A1 WO2024013560 A1 WO 2024013560A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
solid
electrolyte
region
porous sheet
Prior art date
Application number
PCT/IB2023/000405
Other languages
French (fr)
Japanese (ja)
Inventor
博基 田口
和史 大谷
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Publication of WO2024013560A1 publication Critical patent/WO2024013560A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state battery.
  • An all-solid-state battery is a secondary battery made of solid materials including an electrolyte layer.
  • a positive electrode and a negative electrode are provided with a solid electrolyte layer sandwiched therebetween.
  • charging and discharging are generally performed by moving lithium ions between a positive electrode and a negative electrode.
  • an all-solid-state battery one having a structure in which a solid electrolyte is supported on a porous sheet is known. By supporting a solid electrolyte on a porous sheet, a thin but self-supporting electrolyte layer can be obtained.
  • Patent Document 1 JP2021-533542A.
  • Patent Document 1 discloses that a laminated structure is prepared by sequentially laminating a first protective layer, a first solid electrolyte material in the form of a film, a porous base material, a second solid electrolyte material in the form of a film, and a second protective layer.
  • a method for manufacturing a solid electrolyte membrane for an all-solid-state battery which includes a step of removing a protective layer and a second protective layer, and pressurization is performed by a roll press method.
  • This solid electrolyte membrane is a composite of a porous polymer material such as non-woven fabric and a solid electrolyte material, so it has excellent strength and can be manufactured in a thin film type of 70 ⁇ m or less, allowing the energy of the battery to be This is advantageous for improving density.
  • lithium may be excessively deposited at the end of the negative electrode during charging.
  • an object of the present invention is to provide an all-solid-state battery that can prevent cracking and chipping of the structure on the negative electrode side and prevent excessive precipitation of lithium at the negative end.
  • the all-solid-state battery according to the present invention includes a porous sheet having an electrolyte region supporting a solid electrolyte, and a positive electrode layer laminated on one surface of the porous sheet so as to be in contact with the porous sheet. and a negative electrode structure layer laminated on the other surface of the porous sheet so as to be in contact with the porous sheet.
  • the outer shape of the positive electrode layer and the outer shape of the negative electrode structure layer are the same when viewed along the stacking direction.
  • the electrolyte region expands in shape from the positive electrode layer side toward the negative electrode structure layer side.
  • the end A of the electrolyte region at the interface between the negative electrode structure layer and the electrolyte region is located inside the end of the negative electrode structure layer when viewed along the stacking direction.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery according to a first embodiment.
  • FIG. 2 is a schematic diagram showing an all-solid-state battery according to a reference example.
  • FIG. 3 is a schematic cross-sectional view showing an all-solid-state battery according to the second embodiment.
  • FIG. 4 is a schematic cross-sectional view showing an all-solid-state battery according to a third embodiment.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery 1 according to a first embodiment.
  • This all-solid-state battery 1 is a secondary battery that is charged and discharged by moving lithium ions between a positive electrode and a negative electrode.
  • the all-solid-state battery 1 includes a porous sheet 2, a positive electrode layer 3, a negative electrode structure layer 4, a positive electrode current collector 5, and a negative electrode current collector 6. These are laminated in this order: positive electrode current collector 5, positive electrode layer 3, porous sheet 2, negative electrode structure layer 4, and negative electrode current collector 6.
  • the porous sheet 2 is provided with an electrolyte region 7 in which a solid electrolyte is supported.
  • the electrolyte layer can be handled as a self-supporting membrane even if it is thin.
  • the electrolyte region 7 is provided in the center of the porous sheet 2.
  • the outer periphery of the porous sheet 2 is a region where no solid electrolyte is supported (non-supported region 8).
  • the positive electrode layer 3 is provided on one surface of the porous sheet 2 in contact with the porous sheet 2.
  • the negative electrode structure layer 4 is provided on the other surface of the porous sheet 2 in contact with the porous sheet 2 .
  • the positive electrode layer 3 and the negative electrode structure layer 4 are arranged so as to sandwich the electrolyte region 7 in the stacking direction.
  • the positive electrode layer 3 is a layer that functions as an electrode, and is configured to release lithium ions during charging and occlude lithium during discharging.
  • the negative electrode structure layer 4 is defined as a layer provided on the negative electrode side of the porous sheet 2 in contact with the porous sheet 2.
  • the negative electrode structure layer 4 may be the electrode (negative electrode) itself that serves as a place where battery reactions proceed during charging and discharging, but it does not need to be the negative electrode itself.
  • the negative electrode layer may be formed directly on the electrolyte layer.
  • the negative electrode layer itself corresponds to the negative electrode structure layer 4 in this embodiment.
  • the structure formed directly on the negative electrode side of the electrolyte layer is sometimes a "negative electrode protective layer.”
  • the negative electrode protective layer has a structure employed in, for example, "all-deposition type” batteries.
  • a "all-precipitation type” all-solid-state battery means that in a fully discharged state, there is no lithium as a negative electrode active material on the negative electrode side, and upon charging, lithium ions move from the positive electrode side to the negative electrode side and are deposited on the negative electrode current collector. This is a battery configured to deposit metallic lithium. In such a battery, if metallic lithium deposited during charging comes into contact with the electrolyte layer, the electrolyte layer may be damaged.
  • a negative electrode protective layer is sometimes provided in contact with the electrolyte layer.
  • the negative electrode protective layer itself may not function as an electrode, but since the layer formed directly on the electrolyte layer is the negative electrode protective layer, the negative electrode protective layer is the negative electrode structure in this embodiment. Corresponds to layer 4.
  • the positive electrode current collector 5 and the negative electrode current collector 6 are provided outside the positive electrode layer 3 and the negative electrode structure layer 4, respectively.
  • the positive electrode current collector 5 and the negative electrode current collector 6 are provided to electrically connect the all-solid-state battery 1 to the outside.
  • the outer shape (outline) of the negative electrode structure layer 4 when viewed along the stacking direction is aligned with that of the positive electrode layer 3. That is, the positive electrode layer 3 and the negative electrode structure layer 4 have the same shape when viewed along the stacking direction, and are arranged so that their outer peripheral edges coincide with each other.
  • the electrolyte region 7 expands so that its outer shape expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side. Specifically, the electrolyte region 7 expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side so that the end surface becomes tapered.
  • the end A of the electrolyte region 7 at the interface between the negative electrode structure layer 4 and the electrolyte region 7 is located inside the end of the negative electrode structure layer 4 when viewed along the stacking direction. positioned.
  • FIG. 2 is a schematic diagram showing an all-solid-state battery according to a reference example, and is a diagram showing the state during roll pressing.
  • the outer shape of the negative electrode is often made larger than the outer shape of the positive electrode when viewed along the stacking direction.
  • the porous sheet 2 usually has flexibility. Therefore, at the ends of the negative electrode structure layer 4, the load during roll pressing is intensively applied to the negative electrode structure layer 4, and cracks and chips are likely to occur.
  • the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are the same. Therefore, during roll pressing, the load is less likely to be concentrated on the ends of the negative electrode structure layer 4, and cracking or chipping of the negative electrode structure layer 4 can be prevented.
  • the outer shape of the negative electrode structure layer 4 is aligned with the outer shape of the positive electrode layer 3, the end of the negative electrode and the end of the positive electrode will be aligned, and lithium will precipitate at the end of the negative electrode during charging. It becomes easier.
  • the electrolyte region 7 expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side so that its outer shape expands. Therefore, at the end, the amount of lithium ions conducted from the positive electrode side to the negative electrode side during charging is dispersed, and concentrated precipitation of lithium is prevented.
  • the end A of the electrolyte region 7 is located inside the end of the negative electrode structure layer 4 . Therefore, also from this point of view, lithium becomes difficult to precipitate at the end of the negative electrode.
  • the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are “aligned” when viewed along the stacking direction.
  • aligned means that the outer shapes are “substantially” aligned with each other. That is, it is sufficient that the external shapes are aligned to such an extent that no cracks or chips occur in the negative electrode structure layer 4 during manufacturing.
  • the area of the positive electrode layer 3 is taken as 100%
  • the area of the negative electrode structure layer 4 is 90 to 100%
  • a region of 85% or more of the area of the positive electrode layer 3 is the negative electrode structure layer 4. If they overlap, it can be said that the external shapes are substantially the same.
  • the area of the negative electrode structure layer 4 is 95 to 100%, and 90% or more of the area of the positive electrode layer 3 overlaps with the negative electrode structure layer 4. ing. More preferably, when the area of the positive electrode layer 3 is taken as 100%, the area of the negative electrode structure layer 4 is 98 to 100%, and 95% or more of the area of the positive electrode layer 3 is covered by the negative electrode structure layer 4. overlapping. More preferably, 100% of the area of the positive electrode layer 3 overlaps with the negative electrode structure layer 4.
  • the end of the electrolyte region 7 at the interface between the positive electrode layer 3 and the electrolyte region 7 is defined as an end B, the end when viewed along the stacking direction.
  • the distance D between the portion A and the end portion B is at least three times the thickness t of the porous sheet 2 in the electrolyte region 7.
  • the number of units in the all-solid-state battery 1 may be plural.
  • the all-solid-state battery 1 may be provided as an assembled battery having a configuration in which a plurality of stacked units are electrically connected.
  • porous sheet The material constituting the porous sheet 2 is not particularly limited as long as it can support the solid electrolyte.
  • a porous material having communicating pores can support a solid electrolyte.
  • porous materials having communicating holes include nonwoven fabrics, porous separators, and sheets in which communicating holes are formed by lithography processing.
  • the nonwoven fabric for example, polyester nonwoven fabric, polyethylene nonwoven fabric, cellulose fiber nonwoven fabric, etc. can be used.
  • the thickness of the porous sheet 2 is not particularly limited.
  • the thickness of the porous sheet 2 is 5 to 100 ⁇ m, preferably 10 to 60 ⁇ m.
  • the method for supporting the solid electrolyte on the porous sheet 2 is also not particularly limited.
  • the solid electrolyte can be supported by preparing a slurry containing a solid electrolyte, applying the prepared slurry to the porous sheet 2, and drying it.
  • the method for producing the electrolyte region 7 having a tapered end surface is also not particularly limited. For example, while moving the nozzle on the porous sheet 2, slurry is supplied from the nozzle to the porous sheet 2. At this time, by moving the nozzle while changing the amount of slurry supplied in the region that is scheduled to become the end of the electrolyte region 7, the electrolyte region 7 having a tapered end surface can be obtained.
  • the content of the solid electrolyte in the electrolyte region 7 of the porous sheet 2 is not particularly limited, but is, for example, 25% by mass or more and 99% by mass or less.
  • the content of the solid electrolyte is 25% by mass or more, the electrolyte region 7 sufficiently functions as an electrolyte layer of a secondary battery.
  • the content of the solid electrolyte is 99% by mass or less, the flexibility of the porous sheet 2 is sufficiently maintained, and the porous sheet 2 is less likely to be damaged during roll pressing or the like.
  • the solid electrolyte supported in the electrolyte region 7 may be any solid electrolyte as long as it is solid and functions as an electrolyte.
  • a sulfide solid electrolyte, an oxide solid electrolyte, etc. can be used as the solid electrolyte.
  • the solid electrolyte is a sulfide solid electrolyte.
  • the sulfide solid electrolyte include LPS-based (eg, argyrodite (Li 6 PS 5 Cl)) and LGPS-based (eg, Li 10 GeP 2 S 12 ) materials.
  • the positive electrode layer 3 may be formed of a material that can release lithium ions during charging and occlude lithium ions during discharging.
  • the positive electrode layer 3 is formed of, for example, a material containing a resin binder and a positive electrode active material dispersed in the resin binder.
  • the positive electrode active material for example, lithium metal composite oxide or the like can be used.
  • lithium metal composite oxides include layered rock salt type compounds such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and Li(Ni-Mn-Co)O 2 , LiMn 2 O 4 , and LiNi 0.5
  • lithium metal composite oxides include layered rock salt type compounds such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and Li(Ni-Mn-Co)O 2 , LiMn 2 O 4 , and LiNi 0.5
  • spinel-type compounds such as Mn 1.5 O 4
  • olivine-type compounds such as LiFePO 4 and LiMnPO 4
  • Si-containing compounds such as Li 2 FeSiO 4 and Li 2 MnSiO 4 .
  • Li 4 Ti 5 O 12 or the like can also be used.
  • the thickness of the positive electrode layer 3 is not particularly limited, but is, for example, 10 to 500 ⁇ m, preferably 50 to 200 ⁇ m.
  • the negative electrode structure layer 4 may be a negative electrode layer, a negative electrode protective layer, or the like.
  • the thickness of the negative electrode structure layer 4 is, for example, 1 to 100 ⁇ m, preferably 5 to 80 ⁇ m.
  • the negative electrode layer may be any layer that is configured to occlude lithium (or deposit lithium) during charging and release lithium ions during discharging.
  • the negative electrode layer can be formed from a material containing a resin binder and a negative electrode active material dispersed in the resin binder.
  • the negative electrode active material for example, lithium metal, silicon material (silicon), tin material, compounds containing silicon or tin (oxides, nitrides, alloys with other metals), and carbon materials (graphite, etc.) are used. be able to.
  • the negative electrode protective layer may be any layer that can protect the electrolyte region 7 from lithium metal deposited on the negative electrode side.
  • the negative electrode protective layer a layer containing one or more materials selected from the group consisting of carbon materials such as graphite and metal materials such as silver can be used.
  • a layer containing one or more materials selected from the group consisting of carbon materials such as graphite and metal materials such as silver can be used.
  • such a material may also function as an electrode that inserts and releases lithium ions.
  • lithium halides lithium fluoride (LiF), lithium chloride (LiCl), lithium bromide (LiBr), lithium iodide (LiI)), lithium ion conductive polymer, Li-M-O (M is one or more metal elements selected from the group consisting of Mg, Au, Al, Sn, and Zn); and Li-Ba-TiO 3 composite oxide. At least one selected from the group consisting of: All of these materials are particularly stable with respect to reductive decomposition upon contact with lithium metal, and therefore are preferable from the viewpoint of protecting the electrolyte layer.
  • the negative electrode protective layer may have a structure in which these materials are dispersed in a resin binder.
  • the thickness of the negative electrode protective layer is, for example, 1 to 100 ⁇ m, preferably 5 to 80 ⁇ m.
  • the positive electrode current collector 5 and the negative electrode current collector 6 are provided to electrically connect the all-solid-state battery 1 to an external device.
  • the positive electrode current collector 5 and the negative electrode current collector 6 are each formed of a conductive thin film.
  • the method for manufacturing the all-solid-state battery 1 according to this embodiment is not particularly limited.
  • the all-solid-state battery 1 can be manufactured using a method as described below.
  • a slurry containing a positive electrode active material is prepared. Then, the prepared slurry is applied onto the positive electrode current collector 5 and dried. Thereby, a positive electrode current collector 5 on which a positive electrode layer 3 is formed is obtained.
  • a slurry containing a solid electrolyte is partially applied to a porous sheet having communicating holes and dried. Thereby, a porous sheet 2 having an electrolyte region 7 and a non-supporting region 8 is obtained.
  • a slurry of the material constituting the negative electrode structure layer 4 is prepared, and the prepared slurry is applied onto the negative electrode current collector 6. After application, let dry. As a result, a negative electrode current collector 6 on which a negative electrode structure layer 4 is formed is obtained.
  • the positive electrode current collector 5 on which the positive electrode layer 3 is formed, the porous sheet 2 on which the electrolyte region 7 is formed, and the negative electrode current collector 6 on which the negative electrode structure layer 4 is formed are arranged to overlap. Then, pressure is applied using a roll press to obtain a laminate. At this time, as described above, in this embodiment, the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are aligned, so that cracking or chipping of the negative electrode structure layer 4 is prevented.
  • a plurality of the above-mentioned laminates are stacked as necessary. Furthermore, a positive electrode tab and a negative electrode tab are connected to the positive electrode current collector 5 and the negative electrode current collector 6, respectively. Furthermore, the laminate is housed in a laminate film made of aluminum or the like, and vacuum sealed. As a result, an all-solid-state battery 1 is obtained.
  • the all-solid-state battery 1 includes a porous sheet 2 having an electrolyte region 7 supporting a solid electrolyte, and a porous sheet 2 laminated on one surface of the porous sheet 2 so as to be in contact with the porous sheet 2. It has a positive electrode layer 3 and a negative electrode structure layer 4 laminated on the other surface of the porous sheet 2 so as to be in contact with the porous sheet 2.
  • the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are the same when viewed along the stacking direction.
  • the electrolyte region 7 expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side so that its outer shape expands.
  • An end A of the electrolyte region 7 at the interface between the negative electrode structure layer 4 and the electrolyte region 7 is located inside the end of the negative electrode structure layer 4 when viewed along the stacking direction. According to such a configuration, since the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are aligned, damage to the negative electrode structure layer 4 during pressurization such as roll pressing is prevented. Furthermore, since the electrolyte region 7 has a shape that expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side, the amount of lithium ion conduction at the negative end portion is dispersed, and excessive lithium at the end portion is dispersed. Precipitation is prevented. Furthermore, since the end of the electrolyte region 7 on the negative electrode side (end A) is located inside the end of the negative electrode structure layer 4, lithium is prevented from being deposited on the end surface of the negative electrode.
  • the content of the solid electrolyte in the electrolyte region 7 is 25% by mass or more and 99% by mass or less. According to such a configuration, the electrolyte region 7 can sufficiently function as an electrolyte of the secondary battery. Moreover, the flexibility of the porous sheet 2 is also maintained.
  • the distance between the end A and the end B when viewed along the stacking direction is defined as an end B
  • the distance D is three times or more the thickness t of the porous sheet in the electrolyte region 7.
  • FIG. 3 is a schematic cross-sectional view showing the all-solid-state battery 1 according to the present embodiment.
  • the structure of the non-supporting region 8 in the porous sheet 2 is devised.
  • the non-carrying area 8 is provided with a communicating area 12 and a non-communicating area 11.
  • the non-communicating region 11 is a region where both sides of the porous sheet 2 in the thickness direction are not communicating with each other.
  • the non-communicating region 11 is provided at a position surrounding the electrolyte region 7 and is continuous with the electrolyte region 7 .
  • the non-communicating region 11 can be formed, for example, by blocking the communicating holes in the porous sheet 2 having communicating holes. For example, by arranging a covering material on the upper surface and/or lower surface of the porous sheet 2, the communicating holes can be closed and the non-communicating region 11 can be formed.
  • a covering material tape materials such as polyimide films, coating agents, inorganic particle materials, etc. can be used.
  • the communicating holes can be closed by heating a portion of the porous sheet 2 to melt it.
  • the communicating holes of the porous sheet 2 can be filled with a resin material or the like to close the communicating holes.
  • the communication region 12 is a region where both sides of the porous sheet 2 in the thickness direction are in communication.
  • the communication region 12 may or may not exist.
  • the entire non-carrying region 8 may be the non-communicating region 11 .
  • FIG. 4 is a schematic cross-sectional view showing the all-solid-state battery 1 according to this embodiment.
  • the shape of the end face of the electrolyte region 7 is changed from the previously described embodiments. Specifically, the electrolyte region 7 expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side so that the end surface has a step-like shape.
  • the electrolyte region 7 having a stepped end face can be obtained, for example, by the method described below. First, a plurality of porous sheet elements are prepared. A layer of solid electrolyte is then disposed on each porous sheet element. In this case, layers of solid electrolyte of different sizes are arranged on different porous sheet elements. Then, these are stacked in order of the size of the solid electrolyte layer. The obtained laminate is integrated by pressing or the like. As a result, the solid electrolyte enters each porous sheet element, and it is possible to obtain a porous sheet 2 provided with an electrolyte region 7 having a step-like end surface as a whole.

Abstract

The present invention provides an all-solid-state battery including: a porous sheet with an electrolyte region; and a negative electrode structure layer and a positive electrode layer stacked to be in contact with the porous sheet. The outlines of the positive electrode layer and the negative electrode structure layer are aligned. The electrolyte region broadens proceeding from the positive electrode layer side toward the negative electrode structure layer side. At the interface between the negative electrode structure layer and the electrolyte region, the edges of the electrolyte region are located farther inward than the edges of the negative electrode structure layer.

Description

全固体電池All solid state battery
 本発明は、全固体電池に関する。 The present invention relates to an all-solid-state battery.
 全固体電池は、電解質層を含めて固体の材料により構成される二次電池である。全固体電池では、固体電解質層を挟むように、正極と負極とが設けられる。全固体電池では、一般に、正極と負極との間でリチウムイオンが移動することにより、充放電が行われる。このような全固体電池として、固体電解質が多孔質シートに担持された構成を有するものが知られている。多孔質シートに固体電解質を担持させることにより、薄くても自立した電解質層を得ることができる。 An all-solid-state battery is a secondary battery made of solid materials including an electrolyte layer. In an all-solid-state battery, a positive electrode and a negative electrode are provided with a solid electrolyte layer sandwiched therebetween. In an all-solid-state battery, charging and discharging are generally performed by moving lithium ions between a positive electrode and a negative electrode. As such an all-solid-state battery, one having a structure in which a solid electrolyte is supported on a porous sheet is known. By supporting a solid electrolyte on a porous sheet, a thin but self-supporting electrolyte layer can be obtained.
 上記に関連する技術が、例えば、特許文献1(JP2021−533542号A)に記載されている。特許文献1には、第1保護層、フィルム状の第1固体電解質材料、多孔性基材、フィルム状の第2固体電解質材料、第2保護層を順次に積層して積層構造体を用意する段階と、この積層構造体を加圧して第1固体電解質材料及び第2固体電解質材料を多孔性基材の内部に押し込み、多孔性基材の気孔を固体電解質材料で充填させる段階と、第1保護層及び第2保護層を除去する段階と、を含み、加圧はロールプレス方法で行われる、全固体電池用固体電解質膜の製造方法が記載されている。この固体電解質膜は、不織布などの多孔質の高分子材料と固体電解質材料とが複合化しているため、優れた強度を有しながらも70μm以下の薄膜型で製造することができ、電池のエネルギー密度の向上に有利である。 A technique related to the above is described, for example, in Patent Document 1 (JP2021-533542A). Patent Document 1 discloses that a laminated structure is prepared by sequentially laminating a first protective layer, a first solid electrolyte material in the form of a film, a porous base material, a second solid electrolyte material in the form of a film, and a second protective layer. a step of pressurizing the laminated structure to force the first solid electrolyte material and the second solid electrolyte material into the porous base material to fill the pores of the porous base material with the solid electrolyte material; A method for manufacturing a solid electrolyte membrane for an all-solid-state battery is described, which includes a step of removing a protective layer and a second protective layer, and pressurization is performed by a roll press method. This solid electrolyte membrane is a composite of a porous polymer material such as non-woven fabric and a solid electrolyte material, so it has excellent strength and can be manufactured in a thin film type of 70 μm or less, allowing the energy of the battery to be This is advantageous for improving density.
 ところで、全固体電池では、充電時に負極の端部においてリチウムが過剰に析出してしまうことがある。 By the way, in all-solid-state batteries, lithium may be excessively deposited at the end of the negative electrode during charging.
 負極端部におけるリチウムの過剰な析出を防ぐために、負極の面積を正極に比べて大きくすることが考えられる。しかしながら、全固体電池は、通常、所望の電池機能を発現させるために、製造時に強い力で加圧される。加圧は、例えばロールプレスにより行われる。負極の面積が正極に比べて大きいと、加圧時に負極側の端部に荷重が集中し、負極側の構造に割れや欠けが生じる場合がある。従って、加圧時の割れや欠けを防いだ上で、負極端部におけるリチウムの過剰な析出を防ぐことは、難しかった。 In order to prevent excessive precipitation of lithium at the negative end, it is conceivable to make the area of the negative electrode larger than that of the positive electrode. However, all-solid-state batteries are usually pressurized with strong force during manufacture in order to develop desired battery functions. Pressurization is performed, for example, by a roll press. If the area of the negative electrode is larger than that of the positive electrode, the load will be concentrated on the end of the negative electrode during pressurization, which may cause cracks or chips in the structure of the negative electrode. Therefore, it has been difficult to prevent excessive precipitation of lithium at the negative end while preventing cracking and chipping during pressurization.
 そこで、本発明の目的は、負極側の構造の割れや欠けを防ぐことができ、かつ、負極端部におけるリチウムの過剰な析出を防ぐことのできる全固体電池を提供することにある。 Therefore, an object of the present invention is to provide an all-solid-state battery that can prevent cracking and chipping of the structure on the negative electrode side and prevent excessive precipitation of lithium at the negative end.
 一態様において、本発明に係る全固体電池は、固体電解質が担持された電解質領域を有する多孔質シートと、多孔質シートの一方の面上に、多孔質シートに接するように積層された正極層と、多孔質シートの他方の面上に、多孔質シートに接するように積層された負極構造層とを有している。正極層の外形と負極構造層の外形とは、積層方向に沿って見た場合に揃っている。電解質領域は、正極層側から負極構造層側に向かって、外形が拡大するように広がっている。負極構造層と電解質領域との界面における電解質領域の端部Aは、積層方向に沿って見た場合に、負極構造層の端部よりも内側に位置している。 In one embodiment, the all-solid-state battery according to the present invention includes a porous sheet having an electrolyte region supporting a solid electrolyte, and a positive electrode layer laminated on one surface of the porous sheet so as to be in contact with the porous sheet. and a negative electrode structure layer laminated on the other surface of the porous sheet so as to be in contact with the porous sheet. The outer shape of the positive electrode layer and the outer shape of the negative electrode structure layer are the same when viewed along the stacking direction. The electrolyte region expands in shape from the positive electrode layer side toward the negative electrode structure layer side. The end A of the electrolyte region at the interface between the negative electrode structure layer and the electrolyte region is located inside the end of the negative electrode structure layer when viewed along the stacking direction.
図1は、第1の実施形態に係る全固体電池を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery according to a first embodiment. 図2は、参考例に係る全固体電池を示す模式図である。FIG. 2 is a schematic diagram showing an all-solid-state battery according to a reference example. 図3は、第2の実施形態に係る全固体電池を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an all-solid-state battery according to the second embodiment. 図4は、第3の実施形態に係る全固体電池を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an all-solid-state battery according to a third embodiment.
 以下に、図面を参照しつつ、本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1の実施形態
 図1は、第1の実施形態に係る全固体電池1を示す概略断面図である。この全固体電池1は、正極と負極との間でリチウムイオンが移動することにより充放電が行われる二次電池である。
First Embodiment FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery 1 according to a first embodiment. This all-solid-state battery 1 is a secondary battery that is charged and discharged by moving lithium ions between a positive electrode and a negative electrode.
 図1に示されるように、全固体電池1は、多孔質シート2と、正極層3と、負極構造層4と、正極集電体5と、負極集電体6とを有している。これらは、正極集電体5、正極層3、多孔質シート2、負極構造層4、及び負極集電体6の順に積層されている。 As shown in FIG. 1, the all-solid-state battery 1 includes a porous sheet 2, a positive electrode layer 3, a negative electrode structure layer 4, a positive electrode current collector 5, and a negative electrode current collector 6. These are laminated in this order: positive electrode current collector 5, positive electrode layer 3, porous sheet 2, negative electrode structure layer 4, and negative electrode current collector 6.
 多孔質シート2には、固体電解質が担持された電解質領域7が設けられている。固体電解質を多孔質シート2に担持させることにより、電解質層を、薄くても自立した膜として取り扱うことができる。なお、電解質領域7は、多孔質シート2の中央部に設けられている。多孔質シート2の外周部は、固体電解質が担持されていない領域(非担持領域8)になっている。 The porous sheet 2 is provided with an electrolyte region 7 in which a solid electrolyte is supported. By supporting the solid electrolyte on the porous sheet 2, the electrolyte layer can be handled as a self-supporting membrane even if it is thin. Note that the electrolyte region 7 is provided in the center of the porous sheet 2. The outer periphery of the porous sheet 2 is a region where no solid electrolyte is supported (non-supported region 8).
 正極層3は、多孔質シート2の一方の面上に、多孔質シート2に接して設けられている。負極構造層4は、多孔質シート2の他方の面上に、多孔質シート2に接して設けられている。正極層3及び負極構造層4は、積層方向において電解質領域7を挟むように配置されている。 The positive electrode layer 3 is provided on one surface of the porous sheet 2 in contact with the porous sheet 2. The negative electrode structure layer 4 is provided on the other surface of the porous sheet 2 in contact with the porous sheet 2 . The positive electrode layer 3 and the negative electrode structure layer 4 are arranged so as to sandwich the electrolyte region 7 in the stacking direction.
 正極層3は、電極として機能する層であり、充電時にリチウムイオンを放出し、放電時にリチウムを吸蔵するように構成されている。 The positive electrode layer 3 is a layer that functions as an electrode, and is configured to release lithium ions during charging and occlude lithium during discharging.
 一方、負極構造層4は、多孔質シート2の負極側に、多孔質シート2に接して設けられた層として定義される。負極構造層4は、充放電時に電池反応が進行する場となる電極(負極)そのものであってもよいが、負極そのものではなくてもよい。 On the other hand, the negative electrode structure layer 4 is defined as a layer provided on the negative electrode side of the porous sheet 2 in contact with the porous sheet 2. The negative electrode structure layer 4 may be the electrode (negative electrode) itself that serves as a place where battery reactions proceed during charging and discharging, but it does not need to be the negative electrode itself.
 例えば、全固体電池においては、負極層が、電解質層上に直接形成される場合がある。このような構成を有する全固体電池の場合、負極層そのものが、本実施形態における負極構造層4に相当する。 For example, in an all-solid-state battery, the negative electrode layer may be formed directly on the electrolyte layer. In the case of an all-solid-state battery having such a configuration, the negative electrode layer itself corresponds to the negative electrode structure layer 4 in this embodiment.
 一方で、全固体電池の中には、電解質層の負極側に直接形成される構造が、「負極保護層」である場合もある。負極保護層は、例えば「全析出型」の電池において採用される構造である。「全析出型」の全固体電池とは、完全放電状態では負極側に負極活物質としてのリチウムが存在せず、充電により正極側から負極側にリチウムイオンが移動し、負極集電体上に金属リチウムが析出するように構成された電池である。このような電池において、充電時に析出する金属リチウムが電解質層に接触すると、電解質層が損傷する場合がある。そこで、損傷防止のため、電解質層に接するように、負極保護層が設けられる場合がある。このような全固体電池においては、負極保護層自体は電極として機能しない場合もあるが、電解質層上に直接形成される層は負極保護層であるので、負極保護層が本実施形態における負極構造層4に相当する。 On the other hand, in some all-solid-state batteries, the structure formed directly on the negative electrode side of the electrolyte layer is sometimes a "negative electrode protective layer." The negative electrode protective layer has a structure employed in, for example, "all-deposition type" batteries. A "all-precipitation type" all-solid-state battery means that in a fully discharged state, there is no lithium as a negative electrode active material on the negative electrode side, and upon charging, lithium ions move from the positive electrode side to the negative electrode side and are deposited on the negative electrode current collector. This is a battery configured to deposit metallic lithium. In such a battery, if metallic lithium deposited during charging comes into contact with the electrolyte layer, the electrolyte layer may be damaged. Therefore, in order to prevent damage, a negative electrode protective layer is sometimes provided in contact with the electrolyte layer. In such an all-solid-state battery, the negative electrode protective layer itself may not function as an electrode, but since the layer formed directly on the electrolyte layer is the negative electrode protective layer, the negative electrode protective layer is the negative electrode structure in this embodiment. Corresponds to layer 4.
 正極集電体5及び負極集電体6は、それぞれ、正極層3及び負極構造層4の外側に設けられている。正極集電体5及び負極集電体6は、全固体電池1を外部に電気的に接続するために設けられている。 The positive electrode current collector 5 and the negative electrode current collector 6 are provided outside the positive electrode layer 3 and the negative electrode structure layer 4, respectively. The positive electrode current collector 5 and the negative electrode current collector 6 are provided to electrically connect the all-solid-state battery 1 to the outside.
 ここで、本実施形態においては、積層方向に沿って見た場合における負極構造層4の外形(輪郭)が、正極層3のそれに揃っている。すなわち、正極層3と負極構造層4とは、積層方向に沿って見た場合に同一の形状を有しており、その外周端同士が一致するように配置されている。 Here, in this embodiment, the outer shape (outline) of the negative electrode structure layer 4 when viewed along the stacking direction is aligned with that of the positive electrode layer 3. That is, the positive electrode layer 3 and the negative electrode structure layer 4 have the same shape when viewed along the stacking direction, and are arranged so that their outer peripheral edges coincide with each other.
 加えて、本実施形態においては、電解質領域7が、正極層3側から負極構造層4側に向かって外形が拡大するように、広がっている。具体的には、電解質領域7は、正極層3側から負極構造層4側に向かって、端面がテーパ状になるように広がっている。 In addition, in this embodiment, the electrolyte region 7 expands so that its outer shape expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side. Specifically, the electrolyte region 7 expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side so that the end surface becomes tapered.
 更に、本実施形態においては、負極構造層4と電解質領域7との界面における電解質領域7の端部Aが、積層方向に沿って見た場合に、負極構造層4の端部よりも内側に位置している。 Furthermore, in this embodiment, the end A of the electrolyte region 7 at the interface between the negative electrode structure layer 4 and the electrolyte region 7 is located inside the end of the negative electrode structure layer 4 when viewed along the stacking direction. positioned.
 上述のような構成を採用することにより、負極構造層4の割れや欠けを防ぐことができるとともに、端部におけるリチウムの過剰な析出を防ぐことができる。以下に、この点について、参考例を参照しつつ説明する。 By adopting the above configuration, it is possible to prevent the negative electrode structure layer 4 from cracking or chipping, and also to prevent excessive precipitation of lithium at the end portions. This point will be explained below with reference to reference examples.
 図2は、参考例に係る全固体電池を示す模式図であり、ロールプレス時の様子を示す図である。一般的な全固体電池では、端部におけるリチウムの過剰な析出を防ぐために、積層方向に沿って見た場合に、正極の外形よりも、負極の外形を大きくすることが多い。その結果、図2に示す全固体電池のように、電解質領域7の負極側に設けられた構造(すなわち負極構造層4)の端部が、正極層3の端部よりも側方に突き出るような構成になる。ここで、多孔質シート2は通常柔軟性を有している。従って、負極構造層4の端部においては、ロールプレス時の荷重が負極構造層4に集中的に加わることとなり、割れや欠けが発生しやすい。 FIG. 2 is a schematic diagram showing an all-solid-state battery according to a reference example, and is a diagram showing the state during roll pressing. In general all-solid-state batteries, in order to prevent excessive precipitation of lithium at the ends, the outer shape of the negative electrode is often made larger than the outer shape of the positive electrode when viewed along the stacking direction. As a result, as in the all-solid-state battery shown in FIG. It becomes a composition. Here, the porous sheet 2 usually has flexibility. Therefore, at the ends of the negative electrode structure layer 4, the load during roll pressing is intensively applied to the negative electrode structure layer 4, and cracks and chips are likely to occur.
 これに対して、本実施形態では、上述のように、正極層3の外形と負極構造層4の外形が揃っている。従って、ロールプレス時に負極構造層4の端部に荷重が集中し難くなり、負極構造層4の割れや欠けが防止できる。 On the other hand, in this embodiment, as described above, the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are the same. Therefore, during roll pressing, the load is less likely to be concentrated on the ends of the negative electrode structure layer 4, and cracking or chipping of the negative electrode structure layer 4 can be prevented.
 その一方で、負極構造層4の外形が正極層3の外形に揃っていると、負極の端部と正極の端部の位置が揃うことになり、充電時に負極の端部にリチウムが析出しやすくなる。 On the other hand, if the outer shape of the negative electrode structure layer 4 is aligned with the outer shape of the positive electrode layer 3, the end of the negative electrode and the end of the positive electrode will be aligned, and lithium will precipitate at the end of the negative electrode during charging. It becomes easier.
 しかしながら、本実施形態では、電解質領域7が、正極層3側から負極構造層4側に向かって、外形が拡大するように広がっている。よって、端部においては、充電時に正極側から負極側に向かうリチウムイオンの伝導量が分散し、リチウムの集中的な析出が防止される。 However, in this embodiment, the electrolyte region 7 expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side so that its outer shape expands. Therefore, at the end, the amount of lithium ions conducted from the positive electrode side to the negative electrode side during charging is dispersed, and concentrated precipitation of lithium is prevented.
 また、本実施形態では、負極構造層4と電解質領域7との界面において、電解質領域7の端部Aが、負極構造層4の端部よりも内側に位置している。従って、この観点からも、負極の端部にリチウムが析出し難くなる。 Furthermore, in this embodiment, at the interface between the negative electrode structure layer 4 and the electrolyte region 7 , the end A of the electrolyte region 7 is located inside the end of the negative electrode structure layer 4 . Therefore, also from this point of view, lithium becomes difficult to precipitate at the end of the negative electrode.
 なお、本実施形態では、既述の通り、正極層3の外形と負極構造層4の外形とが、積層方向に沿って見た場合に「揃っている」。ここで、本発明でいう「揃っている」とは、外形同士が「実質的」に揃っていることをいう。すなわち、製造時に負極構造層4に割れや欠けが発生しない程度に、外形同士が揃っていればよい。具体的には、正極層3の面積を100%とした場合に、負極構造層4の面積が90~100%であり、かつ、正極層3の面積の85%以上の領域が負極構造層4に重なっていれば、外形同士が実質的に揃っているといえる。好ましくは、正極層3の面積を100%とした場合に、負極構造層4の面積は95~100%であり、かつ、正極層3の面積の90%以上の領域が負極構造層4に重なっている。より好ましくは、正極層3の面積を100%とした場合に、負極構造層4の面積は98~100%であり、かつ、正極層3の面積の95%以上の領域が負極構造層4に重なっている。さらに好ましくは、正極層3の面積の100%の領域が負極構造層4に重なっている。 Note that in this embodiment, as described above, the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are "aligned" when viewed along the stacking direction. Here, "aligned" as used in the present invention means that the outer shapes are "substantially" aligned with each other. That is, it is sufficient that the external shapes are aligned to such an extent that no cracks or chips occur in the negative electrode structure layer 4 during manufacturing. Specifically, when the area of the positive electrode layer 3 is taken as 100%, the area of the negative electrode structure layer 4 is 90 to 100%, and a region of 85% or more of the area of the positive electrode layer 3 is the negative electrode structure layer 4. If they overlap, it can be said that the external shapes are substantially the same. Preferably, when the area of the positive electrode layer 3 is taken as 100%, the area of the negative electrode structure layer 4 is 95 to 100%, and 90% or more of the area of the positive electrode layer 3 overlaps with the negative electrode structure layer 4. ing. More preferably, when the area of the positive electrode layer 3 is taken as 100%, the area of the negative electrode structure layer 4 is 98 to 100%, and 95% or more of the area of the positive electrode layer 3 is covered by the negative electrode structure layer 4. overlapping. More preferably, 100% of the area of the positive electrode layer 3 overlaps with the negative electrode structure layer 4.
 また、好ましい態様においては、図1に示されるように、正極層3と電解質領域7の界面における電解質領域7の端部を端部Bとした場合に、積層方向に沿って見た場合における端部Aと端部Bとの間の距離Dは、電解質領域7における多孔質シート2の厚さtの3倍以上である。このような構成によれば、負極側においてリチウムイオンを受け入れる部分の面積が十分に大きくなるから、負極端部におけるリチウムの析出量が十分に減少する。そのため、負極端部におけるリチウムの集中的な析出を防ぐことができ、短絡をより確実に防止できる。 In a preferred embodiment, as shown in FIG. 1, when the end of the electrolyte region 7 at the interface between the positive electrode layer 3 and the electrolyte region 7 is defined as an end B, the end when viewed along the stacking direction. The distance D between the portion A and the end portion B is at least three times the thickness t of the porous sheet 2 in the electrolyte region 7. According to such a configuration, the area of the portion that receives lithium ions on the negative electrode side becomes sufficiently large, so that the amount of lithium precipitated at the negative end portion is sufficiently reduced. Therefore, intensive precipitation of lithium at the negative end can be prevented, and short circuits can be more reliably prevented.
 また、本実施形態では、図1に示すように、多孔質シート2、正極層3、負極構造層4、負極集電体6、および正極集電体5からなる積層構造単位(以下、ユニットという)が単一の場合について説明した。しかし、全固体電池1におけるユニット数は、複数であってもよい。例えば、全固体電池1は、積層された複数のユニットを有し、複数のユニットが電気的に接続された構成を有する組電池として提供されてもよい。 In addition, in this embodiment, as shown in FIG. ) explained the case where there is a single one. However, the number of units in the all-solid-state battery 1 may be plural. For example, the all-solid-state battery 1 may be provided as an assembled battery having a configuration in which a plurality of stacked units are electrically connected.
 続いて、本実施形態に係る全固体電池1を構成する各部分の材質等について説明する。 Next, materials etc. of each part constituting the all-solid-state battery 1 according to this embodiment will be explained.
(多孔質シート)
 多孔質シート2を構成する材料は、固体電解質を担持することができるようなものであればよく、特に限定されない。例えば、連通孔を有する多孔質材料であれば、固体電解質を担持することができる。連通孔を有する多孔質材料としては、例えば、不織布、多孔質セパレータ、及びリソグラフィ加工により連通孔を形成したシート等が挙げられる。不織布としては、例えば、ポリエステル不織布、ポリエチレン不織布、およびセルロース繊維製の不織布等を用いることができる。
(porous sheet)
The material constituting the porous sheet 2 is not particularly limited as long as it can support the solid electrolyte. For example, a porous material having communicating pores can support a solid electrolyte. Examples of porous materials having communicating holes include nonwoven fabrics, porous separators, and sheets in which communicating holes are formed by lithography processing. As the nonwoven fabric, for example, polyester nonwoven fabric, polyethylene nonwoven fabric, cellulose fiber nonwoven fabric, etc. can be used.
 なお、多孔質シート2の厚みは特に限定されるものではない。例えば、多孔質シート2の厚みは、5~100μm、好ましくは10~60μmである。 Note that the thickness of the porous sheet 2 is not particularly limited. For example, the thickness of the porous sheet 2 is 5 to 100 μm, preferably 10 to 60 μm.
 多孔質シート2に固体電解質を担持させる方法も、特に限定されない。例えば、固体電解質を含むスラリーを調製し、調製したスラリーを多孔質シート2に塗布し、乾燥させることにより、固体電解質を担持させることができる。 The method for supporting the solid electrolyte on the porous sheet 2 is also not particularly limited. For example, the solid electrolyte can be supported by preparing a slurry containing a solid electrolyte, applying the prepared slurry to the porous sheet 2, and drying it.
 テーパ状の端面を有する電解質領域7の作製方法も、特に限定されない。例えば、多孔質シート2上でノズルを移動させつつ、ノズルからスラリーを多孔質シート2に供給する。この際、電解質領域7の端部になる予定の領域において、スラリーの供給量を変化させながらノズルを移動させることにより、テーパ状の端面を有する電解質領域7を得ることができる。 The method for producing the electrolyte region 7 having a tapered end surface is also not particularly limited. For example, while moving the nozzle on the porous sheet 2, slurry is supplied from the nozzle to the porous sheet 2. At this time, by moving the nozzle while changing the amount of slurry supplied in the region that is scheduled to become the end of the electrolyte region 7, the electrolyte region 7 having a tapered end surface can be obtained.
 なお、多孔質シート2の電解質領域7における固体電解質の含有量は、特に限定されないが、例えば25質量%以上99質量%以下である。固体電解質の含有量が25質量%以上であれば、電解質領域7が二次電池の電解質層として十分に機能する。一方、固体電解質の含有量が99質量%以下であれば、多孔質シート2の柔軟性が十分に維持され、ロールプレス時等において多孔質シート2が損傷し難くなる。 Note that the content of the solid electrolyte in the electrolyte region 7 of the porous sheet 2 is not particularly limited, but is, for example, 25% by mass or more and 99% by mass or less. When the content of the solid electrolyte is 25% by mass or more, the electrolyte region 7 sufficiently functions as an electrolyte layer of a secondary battery. On the other hand, if the content of the solid electrolyte is 99% by mass or less, the flexibility of the porous sheet 2 is sufficiently maintained, and the porous sheet 2 is less likely to be damaged during roll pressing or the like.
 電解質領域7に担持される固体電解質は、固体であり電解質として機能するものであればよい。例えば、固体電解質として、硫化物固体電解質及び酸化物固体電解質などを用いることができる。好ましくは、固体電解質は、硫化物固体電解質である。硫化物固体電解質としては、例えばLPS系(例えばアルジロダイト(LiPSCl))、およびLGPS系(例えばLi10GeP12)の材料が挙げられる。 The solid electrolyte supported in the electrolyte region 7 may be any solid electrolyte as long as it is solid and functions as an electrolyte. For example, a sulfide solid electrolyte, an oxide solid electrolyte, etc. can be used as the solid electrolyte. Preferably, the solid electrolyte is a sulfide solid electrolyte. Examples of the sulfide solid electrolyte include LPS-based (eg, argyrodite (Li 6 PS 5 Cl)) and LGPS-based (eg, Li 10 GeP 2 S 12 ) materials.
(正極層)
 正極層3は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸蔵することができる材料により形成されていればよい。正極層3は、例えば、樹脂バインダーと、樹脂バインダー中に分散した正極活物質とを含む材料により形成される。正極活物質としては、例えば、リチウム金属複合酸化物などを用いることができる。リチウム金属複合酸化物としては、例えば、LiCoO、LiMnO、LiNiO、LiVO、及びLi(Ni−Mn−Co)O等の層状岩塩型化合物、LiMn、及びLiNi0.5Mn1.5等のスピネル型化合物、LiFePO、及びLiMnPO等のオリビン型化合物、あるいは、LiFeSiO、及びLiMnSiO等のSi含有化合物等が挙げられる。また、LiTi12なども用いることができる。
(positive electrode layer)
The positive electrode layer 3 may be formed of a material that can release lithium ions during charging and occlude lithium ions during discharging. The positive electrode layer 3 is formed of, for example, a material containing a resin binder and a positive electrode active material dispersed in the resin binder. As the positive electrode active material, for example, lithium metal composite oxide or the like can be used. Examples of lithium metal composite oxides include layered rock salt type compounds such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and Li(Ni-Mn-Co)O 2 , LiMn 2 O 4 , and LiNi 0.5 Examples include spinel-type compounds such as Mn 1.5 O 4 , olivine-type compounds such as LiFePO 4 and LiMnPO 4 , and Si-containing compounds such as Li 2 FeSiO 4 and Li 2 MnSiO 4 . Furthermore, Li 4 Ti 5 O 12 or the like can also be used.
 正極層3の厚みは、特に限定されるものではないが、例えば10~500μm、好ましくは50~200μmである。 The thickness of the positive electrode layer 3 is not particularly limited, but is, for example, 10 to 500 μm, preferably 50 to 200 μm.
(負極構造層)
 負極構造層4は、既述の通り、負極層である場合もあれば、負極保護層などである場合もあり得る。負極構造層4の厚みは、例えば1~100μm、好ましくは5~80μmである。
(Negative electrode structure layer)
As described above, the negative electrode structure layer 4 may be a negative electrode layer, a negative electrode protective layer, or the like. The thickness of the negative electrode structure layer 4 is, for example, 1 to 100 μm, preferably 5 to 80 μm.
 負極層は、充電時にリチウムを吸蔵し(あるいはリチウムを析出させ)、放電時にリチウムイオンを放出することができるように構成された層であればよい。例えば、負極層は、樹脂バインダーと、樹脂バインダーに分散させた負極活物質とを含む材料により、形成することができる。負極活物質としては、例えば、リチウム金属、ケイ素材料(シリコン)、スズ材料、ケイ素やスズを含む化合物(酸化物、窒化物、他の金属との合金)、および炭素材料(グラファイト等)を用いることができる。 The negative electrode layer may be any layer that is configured to occlude lithium (or deposit lithium) during charging and release lithium ions during discharging. For example, the negative electrode layer can be formed from a material containing a resin binder and a negative electrode active material dispersed in the resin binder. As the negative electrode active material, for example, lithium metal, silicon material (silicon), tin material, compounds containing silicon or tin (oxides, nitrides, alloys with other metals), and carbon materials (graphite, etc.) are used. be able to.
 負極保護層は、負極側に析出するリチウム金属から電解質領域7を保護することができる層であればよい。 The negative electrode protective layer may be any layer that can protect the electrolyte region 7 from lithium metal deposited on the negative electrode side.
 例えば、負極保護層として、グラファイト等の炭素材料、及び銀等の金属材料からなる群から選択される1種または2種以上の材料を含有する層を用いることができる。このような材料は、負極保護層としての機能に加えて、リチウムイオンを吸蔵及び放出する電極としての機能をも果たす場合がある。 For example, as the negative electrode protective layer, a layer containing one or more materials selected from the group consisting of carbon materials such as graphite and metal materials such as silver can be used. In addition to the function as a negative electrode protective layer, such a material may also function as an electrode that inserts and releases lithium ions.
 あるいは、負極保護層として、ハロゲン化リチウム(フッ化リチウム(LiF)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI))、リチウムイオン伝導性ポリマー、Li−M−O(Mは、Mg、Au、Al、SnおよびZnからなる群より選ばれる1種または2種以上の金属元素である)で表される複合金属酸化物、ならびにLi−Ba−TiO複合酸化物からなる群から選択される少なくとも1種を挙げることもできる。これらの材料はいずれも、リチウム金属との接触による還元分解について特に安定であるから、電解質層を保護する観点から好ましい。なお、負極保護層は、これらの材料が樹脂バインダー中に分散した構成を有していてもよい。負極保護層の厚みは、例えば、1~100μm、好ましくは5~80μmである。 Alternatively, as a negative electrode protective layer, lithium halides (lithium fluoride (LiF), lithium chloride (LiCl), lithium bromide (LiBr), lithium iodide (LiI)), lithium ion conductive polymer, Li-M-O (M is one or more metal elements selected from the group consisting of Mg, Au, Al, Sn, and Zn); and Li-Ba-TiO 3 composite oxide. At least one selected from the group consisting of: All of these materials are particularly stable with respect to reductive decomposition upon contact with lithium metal, and therefore are preferable from the viewpoint of protecting the electrolyte layer. Note that the negative electrode protective layer may have a structure in which these materials are dispersed in a resin binder. The thickness of the negative electrode protective layer is, for example, 1 to 100 μm, preferably 5 to 80 μm.
(正極集電体及び負極集電体)
 正極集電体5及び負極集電体6は、全固体電池1を外部の装置の電気的に接続するために設けられている。正極集電体5及び負極集電体6は、それぞれ、導電性の薄膜により形成される。正極集電体5としては、例えばアルミニウム箔などを用いることができる。負極集電体6としては、例えば、ステンレス薄膜、及び銅薄膜などを用いることができる。
(Positive electrode current collector and negative electrode current collector)
The positive electrode current collector 5 and the negative electrode current collector 6 are provided to electrically connect the all-solid-state battery 1 to an external device. The positive electrode current collector 5 and the negative electrode current collector 6 are each formed of a conductive thin film. As the positive electrode current collector 5, for example, aluminum foil or the like can be used. As the negative electrode current collector 6, for example, a stainless steel thin film, a copper thin film, etc. can be used.
(製造方法)
 本実施形態に係る全固体電池1の製造方法は、特に限定されない。例えば次に説明するような方法を用いて、全固体電池1を製造することができる。
(Production method)
The method for manufacturing the all-solid-state battery 1 according to this embodiment is not particularly limited. For example, the all-solid-state battery 1 can be manufactured using a method as described below.
 まず、正極活物質を含むスラリーを調製する。そして、調製したスラリーを、正極集電体5上に塗布し、乾燥させる。これにより、正極層3が形成された正極集電体5を得る。 First, a slurry containing a positive electrode active material is prepared. Then, the prepared slurry is applied onto the positive electrode current collector 5 and dried. Thereby, a positive electrode current collector 5 on which a positive electrode layer 3 is formed is obtained.
 また、既述のように、連通孔を有する多孔質シートに、固体電解質を含むスラリーを部分的に塗布し、乾燥させる。これにより、電解質領域7および非担持領域8を有する多孔質シート2を得る。 Furthermore, as described above, a slurry containing a solid electrolyte is partially applied to a porous sheet having communicating holes and dried. Thereby, a porous sheet 2 having an electrolyte region 7 and a non-supporting region 8 is obtained.
 また、負極構造層4を構成する材料のスラリーを調製し、調製したスラリーを、負極集電体6上に塗布する。塗布後、乾燥させる。これにより、負極構造層4が形成された負極集電体6を得る。 Additionally, a slurry of the material constituting the negative electrode structure layer 4 is prepared, and the prepared slurry is applied onto the negative electrode current collector 6. After application, let dry. As a result, a negative electrode current collector 6 on which a negative electrode structure layer 4 is formed is obtained.
 その後、正極層3が形成された正極集電体5と、電解質領域7が形成された多孔質シート2と、負極構造層4が形成された負極集電体6とを重ねるように配置する。そして、ロールプレスにより加圧し、積層体を得る。この際、既述のように、本実施形態においては、正極層3の外形と負極構造層4の外形とが揃っているから、負極構造層4の割れや欠けが防止される。 Thereafter, the positive electrode current collector 5 on which the positive electrode layer 3 is formed, the porous sheet 2 on which the electrolyte region 7 is formed, and the negative electrode current collector 6 on which the negative electrode structure layer 4 is formed are arranged to overlap. Then, pressure is applied using a roll press to obtain a laminate. At this time, as described above, in this embodiment, the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are aligned, so that cracking or chipping of the negative electrode structure layer 4 is prevented.
 その後、必要に応じて、上述の積層体を複数枚重ねる。更に、正極集電体5及び負極集電体6に、それぞれ、正極タブ及び負極タブを接続する。更に、積層体をアルミ製等のラミネートフィルム内に収容し、真空封止する。これにより、全固体電池1が得られる。 Thereafter, a plurality of the above-mentioned laminates are stacked as necessary. Furthermore, a positive electrode tab and a negative electrode tab are connected to the positive electrode current collector 5 and the negative electrode current collector 6, respectively. Furthermore, the laminate is housed in a laminate film made of aluminum or the like, and vacuum sealed. As a result, an all-solid-state battery 1 is obtained.
 以上、第1の実施形態について説明した。なお、本実施形態に係る全固体電池1の主な構成と作用効果の関係を要約すると、以下の通りである。 The first embodiment has been described above. The relationship between the main configurations and the effects of the all-solid-state battery 1 according to this embodiment is summarized as follows.
 本実施形態に係る全固体電池1は、固体電解質が担持された電解質領域7を有する多孔質シート2と、多孔質シート2の一方の面上に、多孔質シート2に接するように積層された正極層3と、多孔質シート2の他方の面上に、多孔質シート2に接するように積層された負極構造層4とを有している。正極層3の外形と負極構造層4の外形とは、積層方向に沿って見た場合に揃っている。電解質領域7は、正極層3側から負極構造層4側に向かって、外形が拡大するように広がっている。負極構造層4と電解質領域7との界面における電解質領域7の端部Aは、積層方向に沿って見た場合に、負極構造層4の端部よりも内側に位置している。このような構成によれば、正極層3の外形と負極構造層4の外形とが揃っているから、ロールプレス等の加圧時における負極構造層4の損傷が防止される。また、電解質領域7が正極層3側から負極構造層4側に向かって広がるような形状を有しているから、負極端部におけるリチウムイオンの伝導量が分散し、端部におけるリチウムの過剰な析出が防止される。また、電解質領域7の負極側の端部(端部A)は、負極構造層4の端部よりも内側に位置しているから、負極の端面にリチウムが析出することが防止される。 The all-solid-state battery 1 according to the present embodiment includes a porous sheet 2 having an electrolyte region 7 supporting a solid electrolyte, and a porous sheet 2 laminated on one surface of the porous sheet 2 so as to be in contact with the porous sheet 2. It has a positive electrode layer 3 and a negative electrode structure layer 4 laminated on the other surface of the porous sheet 2 so as to be in contact with the porous sheet 2. The outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are the same when viewed along the stacking direction. The electrolyte region 7 expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side so that its outer shape expands. An end A of the electrolyte region 7 at the interface between the negative electrode structure layer 4 and the electrolyte region 7 is located inside the end of the negative electrode structure layer 4 when viewed along the stacking direction. According to such a configuration, since the outer shape of the positive electrode layer 3 and the outer shape of the negative electrode structure layer 4 are aligned, damage to the negative electrode structure layer 4 during pressurization such as roll pressing is prevented. Furthermore, since the electrolyte region 7 has a shape that expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side, the amount of lithium ion conduction at the negative end portion is dispersed, and excessive lithium at the end portion is dispersed. Precipitation is prevented. Furthermore, since the end of the electrolyte region 7 on the negative electrode side (end A) is located inside the end of the negative electrode structure layer 4, lithium is prevented from being deposited on the end surface of the negative electrode.
 好ましい一態様において、電解質領域7における固体電解質の含有量は、25質量%以上、99質量%以下である。このような構成によれば、電解質領域7が、二次電池の電解質としての機能を十分に果たすことができる。また、多孔質シート2の柔軟性も維持される。 In one preferred embodiment, the content of the solid electrolyte in the electrolyte region 7 is 25% by mass or more and 99% by mass or less. According to such a configuration, the electrolyte region 7 can sufficiently function as an electrolyte of the secondary battery. Moreover, the flexibility of the porous sheet 2 is also maintained.
 好ましい一態様において、正極層3と電解質領域7の界面における電解質領域7の端部を端部Bとしたときに、積層方向に沿って見た場合における端部Aと端部Bとの間の距離Dが、電解質領域7における多孔質シートの厚さtの3倍以上である。このような構成によれば、負極側においてリチウムイオンを受け入れる部分の面積が十分に広くなるから、端部におけるリチウムイオンの伝導量が十分に分散する。その結果、リチウムの集中的な析出をより確実に防ぐことが可能になる。 In a preferred embodiment, when the end of the electrolyte region 7 at the interface between the positive electrode layer 3 and the electrolyte region 7 is defined as an end B, the distance between the end A and the end B when viewed along the stacking direction is The distance D is three times or more the thickness t of the porous sheet in the electrolyte region 7. According to such a configuration, the area of the portion receiving lithium ions on the negative electrode side becomes sufficiently large, so that the amount of conduction of lithium ions at the end portions is sufficiently dispersed. As a result, intensive precipitation of lithium can be more reliably prevented.
第2の実施形態
 続いて、第2の実施形態について説明する。なお、第1の実施形態と同様の構成を採用することができる点については、詳細な説明を省略する。
Second Embodiment Next, a second embodiment will be described. Note that a detailed description of the point that the same configuration as the first embodiment can be adopted will be omitted.
 図3は、本実施形態に係る全固体電池1を示す概略断面図である。本実施形態では、多孔質シート2における非担持領域8の構成が工夫されている。具体的には、非担持領域8に、連通領域12と非連通領域11が設けられている。 FIG. 3 is a schematic cross-sectional view showing the all-solid-state battery 1 according to the present embodiment. In this embodiment, the structure of the non-supporting region 8 in the porous sheet 2 is devised. Specifically, the non-carrying area 8 is provided with a communicating area 12 and a non-communicating area 11.
 非連通領域11は、厚み方向における多孔質シート2の両側が連通していない領域である。非連通領域11は、電解質領域7を取り囲む位置に設けられ、電解質領域7に連続している。 The non-communicating region 11 is a region where both sides of the porous sheet 2 in the thickness direction are not communicating with each other. The non-communicating region 11 is provided at a position surrounding the electrolyte region 7 and is continuous with the electrolyte region 7 .
 本実施形態によれば、リチウムデンドライトによる正極と負極との短絡が、より確実に防止される。仮に、多孔質シート2において、電解質領域7の外側の領域に連通孔が存在していると、負極の端部から、連通孔を介して、電解質領域7の端部を回りこむようにリチウムデンドライトが成長する可能性がある。これに対して、本実施形態によれば、電解質領域7の外側に非連通領域11が設けられているから、電解質領域7の端部を回りこむようなリチウムデンドライトの成長が阻害される。 According to this embodiment, short circuit between the positive electrode and the negative electrode due to lithium dendrites is more reliably prevented. If the porous sheet 2 has communication holes in the area outside the electrolyte region 7, lithium dendrites would flow from the end of the negative electrode to the end of the electrolyte region 7 via the communication holes. It has the potential to grow. In contrast, according to the present embodiment, since the non-communicating region 11 is provided outside the electrolyte region 7, the growth of lithium dendrites that wrap around the end of the electrolyte region 7 is inhibited.
 なお、非連通領域11は、例えば、連通孔を有する多孔質シート2において、連通孔を塞ぐことにより形成することができる。例えば、多孔質シート2の上面及び/又は下面に、被覆材を配置することにより、連通孔を塞ぎ、非連通領域11を形成することができる。被覆材としては、ポリイミドフィルムなどのテープ材、コーティング剤、及び無機粒子材等を用いることができる。 Note that the non-communicating region 11 can be formed, for example, by blocking the communicating holes in the porous sheet 2 having communicating holes. For example, by arranging a covering material on the upper surface and/or lower surface of the porous sheet 2, the communicating holes can be closed and the non-communicating region 11 can be formed. As the covering material, tape materials such as polyimide films, coating agents, inorganic particle materials, etc. can be used.
 あるいは、多孔質シート2として、熱により溶融するような材質のものを選択した場合には、加熱により多孔質シート2の一部を熱溶融させることにより、連通孔を塞ぐことができる。 Alternatively, if the porous sheet 2 is made of a material that can be melted by heat, the communicating holes can be closed by heating a portion of the porous sheet 2 to melt it.
 あるいは、樹脂材料等を多孔質シート2の連通孔に充填することにより、連通孔を塞ぐこともできる。 Alternatively, the communicating holes of the porous sheet 2 can be filled with a resin material or the like to close the communicating holes.
 一方、連通領域12は、厚み方向における多孔質シート2の両側が連通した領域である。連通領域12は、存在していても、存在していなくてもよい。言い換えれば、非担持領域8の全域が非連通領域11であってもよい。 On the other hand, the communication region 12 is a region where both sides of the porous sheet 2 in the thickness direction are in communication. The communication region 12 may or may not exist. In other words, the entire non-carrying region 8 may be the non-communicating region 11 .
第3の実施形態
 続いて、第3の実施形態について説明する。なお、既述の実施形態と同様の構成を採用することができる点については、詳細な説明を省略する。
Third Embodiment Next, a third embodiment will be described. Note that a detailed description of the points that can employ the same configurations as those of the previously described embodiments will be omitted.
 図4は、本実施形態に係る全固体電池1を示す概略断面図である。本実施形態においては、既述の実施形態に対して、電解質領域7の端面の形状が変更されている。具体的には、電解質領域7は、正極層3側から負極構造層4側に向かって、端面が階段状になるように広がっている。 FIG. 4 is a schematic cross-sectional view showing the all-solid-state battery 1 according to this embodiment. In this embodiment, the shape of the end face of the electrolyte region 7 is changed from the previously described embodiments. Specifically, the electrolyte region 7 expands from the positive electrode layer 3 side toward the negative electrode structure layer 4 side so that the end surface has a step-like shape.
 本実施形態のような構成を採用しても、既述の実施形態と同様に、負極側におけるリチウムイオンを受け入れる領域の面積が広くなるから、端部におけるリチウムの析出集中を防ぐことができる。 Even if a configuration like this embodiment is adopted, the area of the region that receives lithium ions on the negative electrode side becomes larger, so that precipitation concentration of lithium at the end can be prevented, as in the previously described embodiments.
 なお、階段状の端面を有する電解質領域7は、例えば、次に説明する方法により、得ることができる。まず、複数の多孔質シート要素を準備する。そして、それぞれの多孔質シート要素上に、固体電解質の層を配置する。この際に、異なる多孔質シート要素に、異なるサイズで固体電解質の層を配置する。そして、これらを、固体電解質の層のサイズの順に、積層する。得られた積層体をプレス等によって一体化する。これにより、各多孔質シート要素に固体電解質が入り込み、全体として階段状の端面を有する電解質領域7が設けられた多孔質シート2を得ることができる。 Note that the electrolyte region 7 having a stepped end face can be obtained, for example, by the method described below. First, a plurality of porous sheet elements are prepared. A layer of solid electrolyte is then disposed on each porous sheet element. In this case, layers of solid electrolyte of different sizes are arranged on different porous sheet elements. Then, these are stacked in order of the size of the solid electrolyte layer. The obtained laminate is integrated by pressing or the like. As a result, the solid electrolyte enters each porous sheet element, and it is possible to obtain a porous sheet 2 provided with an electrolyte region 7 having a step-like end surface as a whole.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments. do not have.
 本願は2022年7月13日に日本国特許庁に出願された特願2022−112193に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2022-112193 filed with the Japan Patent Office on July 13, 2022, and the entire contents of this application are incorporated herein by reference.

Claims (6)

  1.  固体電解質が担持された電解質領域を有する多孔質シートと、
     前記多孔質シートの一方の面上に、前記多孔質シートに接するように積層された正極層と、
     前記多孔質シートの他方の面上に、前記多孔質シートに接するように積層された負極構造層とを有し、
     前記正極層の外形と前記負極構造層の外形とは、積層方向に沿って見た場合に揃っており、
     前記電解質領域は、前記正極層側から前記負極構造層側に向かって、外形が拡大するように広がっており、
     前記負極構造層と前記電解質領域との界面における前記電解質領域の端部Aは、積層方向に沿って見た場合に、前記負極構造層の端部よりも内側に位置している、
    全固体電池。
    a porous sheet having an electrolyte region supporting a solid electrolyte;
    a positive electrode layer laminated on one surface of the porous sheet so as to be in contact with the porous sheet;
    a negative electrode structure layer laminated on the other surface of the porous sheet so as to be in contact with the porous sheet,
    The outer shape of the positive electrode layer and the outer shape of the negative electrode structure layer are the same when viewed along the stacking direction,
    The electrolyte region expands from the positive electrode layer side toward the negative electrode structure layer side so that its outer shape expands,
    An end portion A of the electrolyte region at the interface between the negative electrode structure layer and the electrolyte region is located inside the end portion of the negative electrode structure layer when viewed along the stacking direction.
    All-solid-state battery.
  2.  請求項1に記載の全固体電池であって、
     前記多孔質シートは、更に、前記固体電解質が担持されていない領域である非担持領域を有し、
     前記非担持領域は、厚み方向における前記多孔質シートの両側が連通していない非連通領域を有し、
     前記非連通領域は、前記電解質領域を取り囲む位置に設けられ、前記電解質領域に連続している、
    全固体電池。
    The all-solid-state battery according to claim 1,
    The porous sheet further has a non-supported region where the solid electrolyte is not supported,
    The non-supporting region has a non-communicating region in which both sides of the porous sheet in the thickness direction are not in communication with each other,
    The non-communicating region is provided at a position surrounding the electrolyte region and is continuous with the electrolyte region.
    All-solid-state battery.
  3.  請求項1又は2に記載の全固体電池であって、
     前記電解質領域は、前記正極層側から前記負極構造層側に向かって、端面が階段状になるように広がっている、
    全固体電池。
    The all-solid battery according to claim 1 or 2,
    The electrolyte region extends from the positive electrode layer side toward the negative electrode structure layer side so that the end surface has a step-like shape.
    All-solid-state battery.
  4.  請求項1又は2に記載の全固体電池であって、
     前記電解質領域は、前記正極層側から前記負極構造層側に向かって、端面がテーパ状になるように広がっている、
    全固体電池。
    The all-solid battery according to claim 1 or 2,
    The electrolyte region expands from the positive electrode layer side toward the negative electrode structure layer side so that the end surface has a tapered shape.
    All-solid-state battery.
  5.  請求項1又は2に記載の全固体電池であって、
     前記電解質領域における前記固体電解質の含有量は、25質量%以上、99質量%以下である、
    全固体電池。
    The all-solid battery according to claim 1 or 2,
    The content of the solid electrolyte in the electrolyte region is 25% by mass or more and 99% by mass or less,
    All-solid-state battery.
  6.  請求項1又は2に記載の全固体電池であって、
     前記正極層と前記電解質領域の界面における前記電解質領域の端部が端部Bと定義され、
     積層方向に沿って見た場合における前記端部Aと前記端部Bとの間の距離Dが、前記電解質領域における前記多孔質シートの厚さtの3倍以上である、
    全固体電池。
    The all-solid battery according to claim 1 or 2,
    An end of the electrolyte region at the interface between the positive electrode layer and the electrolyte region is defined as an end B,
    A distance D between the end A and the end B when viewed along the stacking direction is three times or more the thickness t of the porous sheet in the electrolyte region.
    All-solid-state battery.
PCT/IB2023/000405 2022-07-13 2023-07-06 All-solid-state battery WO2024013560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112193 2022-07-13
JP2022-112193 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024013560A1 true WO2024013560A1 (en) 2024-01-18

Family

ID=89536068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/000405 WO2024013560A1 (en) 2022-07-13 2023-07-06 All-solid-state battery

Country Status (1)

Country Link
WO (1) WO2024013560A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069775A (en) * 2013-09-27 2015-04-13 株式会社村田製作所 All-solid battery and method for manufacturing the same
JP2015153460A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Solid electrolyte sheet, all-solid lithium ion battery, and method of manufacturing solid electrolyte sheet
JP2017183120A (en) * 2016-03-31 2017-10-05 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
JP2021533542A (en) * 2018-12-21 2021-12-02 エルジー・ケム・リミテッド Solid electrolyte membrane, its manufacturing method and all-solid-state battery including it
JP2021534564A (en) * 2019-05-03 2021-12-09 エルジー・ケム・リミテッド Solid electrolyte membrane, its manufacturing method and all-solid-state battery including it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069775A (en) * 2013-09-27 2015-04-13 株式会社村田製作所 All-solid battery and method for manufacturing the same
JP2015153460A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Solid electrolyte sheet, all-solid lithium ion battery, and method of manufacturing solid electrolyte sheet
JP2017183120A (en) * 2016-03-31 2017-10-05 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
JP2021533542A (en) * 2018-12-21 2021-12-02 エルジー・ケム・リミテッド Solid electrolyte membrane, its manufacturing method and all-solid-state battery including it
JP2021534564A (en) * 2019-05-03 2021-12-09 エルジー・ケム・リミテッド Solid electrolyte membrane, its manufacturing method and all-solid-state battery including it

Similar Documents

Publication Publication Date Title
CN107305965B (en) Battery and battery manufacturing method
US10217988B2 (en) Secondary battery
US9634358B2 (en) Method for producing all-solid-state battery, and all-solid-state battery
JP5483877B2 (en) Laminate for Li battery consisting of separators and electrodes alternately stacked one above the other
JP5910164B2 (en) Nonaqueous electrolyte secondary battery
EP3032632B1 (en) Secondary battery and method for manufacturing same
JP4665930B2 (en) Anode and lithium ion secondary battery
WO2014010043A1 (en) All-solid-state battery, and production method therefor
JP2015504591A (en) Electrode assembly manufacturing method and electrode assembly manufactured using the same
JP2008251250A (en) Anode and lithium ion secondary battery
CN105283999A (en) Secondary battery and electrode production method
WO2018138977A1 (en) Stacked rechargeable battery, method for producing same, and device
US20240128450A1 (en) Battery
JP2020119633A (en) All-solid battery
WO2018180599A1 (en) Secondary battery
WO2024013560A1 (en) All-solid-state battery
JPWO2018100842A1 (en) Secondary battery
JP2002198016A (en) Thin secondary cell
US20190363402A1 (en) Secondary battery and method of manufacturing the same
US20190363368A1 (en) Battery
US11417868B2 (en) Manufacturing method for secondary battery
WO2024013532A1 (en) Secondary battery
JP7061588B2 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
WO2019189860A1 (en) Secondary battery and manufacturing method therefor
JP2024025573A (en) all solid state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839108

Country of ref document: EP

Kind code of ref document: A1