WO2024012640A1 - Brake system for motor vehicles - Google Patents

Brake system for motor vehicles Download PDF

Info

Publication number
WO2024012640A1
WO2024012640A1 PCT/DE2023/200136 DE2023200136W WO2024012640A1 WO 2024012640 A1 WO2024012640 A1 WO 2024012640A1 DE 2023200136 W DE2023200136 W DE 2023200136W WO 2024012640 A1 WO2024012640 A1 WO 2024012640A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake system
brake
wheel brakes
actuator
simulator
Prior art date
Application number
PCT/DE2023/200136
Other languages
German (de)
French (fr)
Inventor
Sirko SEIFERT
Jens TROSTORF
Original Assignee
Continental Automotive Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Technologies GmbH filed Critical Continental Automotive Technologies GmbH
Publication of WO2024012640A1 publication Critical patent/WO2024012640A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/266Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means
    • B60T8/267Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means for hybrid systems with different kind of brakes on different axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input

Definitions

  • the invention relates to a braking system for motor vehicles with wheel brakes, with a reservoir for brake fluid, an actuator, a pressure modulator and a simulator, the braking system comprising a primary braking system with the actuator and the pressure modulator, to which two hydraulic wheel brakes are hydraulically connected, and wherein the braking system comprises a dry secondary braking system with two further wheel brakes, and a control and regulation unit is provided for controlling the primary braking system.
  • Hydraulic braking systems act hydraulically on two circles, diagonally or in black and white division.
  • an actuator takes over this pressure position.
  • the driver enters a simulator, whereupon a brake pressure request is generated, which is then implemented by the actuator.
  • the brake pressure on the front and rear axles is equivalent.
  • a combined brake system for motor vehicles is known, with wheel brakes assigned to a rear axle of the vehicle, each actuated by an electromechanical actuator, and with a hydraulic brake system for the front axle of the vehicle, which has a single-circuit master brake cylinder that can be actuated by means of a brake pedal and hydraulically actuated wheel brakes connected to this and assigned to the front axle.
  • the hydraulic brake system for the front axle is designed as a brake-by-wire brake system with an electrically controllable pressure supply device.
  • a disadvantage of known brake systems is that the availability of the brake system depends, among other things, on the intact brake line. Detecting errors in the brake system requires complex functions that detect air and leaks and isolate the defective circuit. A successful Error detection results in reduced braking performance due to the error. There is no redundancy to compensate for the defective circuit. Hydraulic systems still have the disadvantage that the installation of lines and filling during production are complex. For production, solutions are therefore sought to avoid liquids and reduce processes and work steps. Both braking along the ideal braking force distribution and axle-by-axle blending for regenerative braking cannot be achieved with current systems without loss of efficiency or loss of comfort. The invention is based on the object of providing a reliable and robust braking system.
  • the brake-by-wire system (the primary brake system or simulator brake system) acting hydraulically on only one axle, preferably the front axle, whereby The control and regulation unit also controls the secondary braking system.
  • This subsystem preferably includes the brake actuation unit (pedal & master brake cylinder), the hydraulic block with control and regulation unit (ECU), the simulator and the actuator.
  • the brake-by-wire system serves as the primary braking system and is used as a master/host to control the secondary braking system.
  • the entire system is combined with an electric brake for the rear axle.
  • the entire system is therefore designed to be dual-circuit and redundant.
  • the fact that the open-loop and closed-loop control unit controls both the primary braking system and the secondary braking system means in particular that the open-loop and closed-loop control unit generates a braking torque requirement for the secondary braking system. It also means in particular that the braking torque request is transmitted directly to the wheel brakes or their actuators of the secondary braking system.
  • the actuator of the primary brake system is preferably an electro-hydraulic actuator.
  • the actuator of the primary brake system particularly preferably comprises an electrically controllable, hydraulic pressure source.
  • the primary brake system preferably comprises a master brake cylinder, which can be actuated by means of a brake pedal.
  • the pressure modulator preferably comprises at least one electrically actuable inlet valve for each of the connected hydraulic wheel brakes, which is arranged hydraulically between the actuator of the primary brake system on the one hand and the corresponding hydraulic wheel brake on the other.
  • the pressure modulator preferably comprises at least one electrically actuable inlet valve for each of the connected hydraulic wheel brakes, which is hydraulically connected between the actuator and the master brake cylinder of the primary brake system on the one hand and the corresponding hydraulic wheel brake on the other hand.
  • the primary braking system and the secondary braking system are powered by a common energy supply. Since the braking system forms an overall system with a common ECU, the subsystems (primary or secondary braking system) for the two axles do not have to have a separate / independent power supply, so that the construction and design are simplified.
  • no simulator valve is connected hydraulically between the simulator and the pressure modulator. In the event of an error, it is possible to achieve sufficient delay without having to disconnect the simulator. Common volumes for front axle calipers enable a higher volume absorption by the simulator while maintaining the same force. A longer pedal travel is then acceptable because the only limit is the force.
  • a simulator valve is hydraulically connected between the simulator and the pressure modulator.
  • One advantage of this variant is, for example, in the event of an error. If the actuator fails and the front axle can only be operated hydraulically by the driver without boosting, the simulator valve is closed. In this case, the driver can shift the volume directly into the wheel brake without filling the simulator, which results in a shorter pedal travel or better response in the event of an error. There is more volume available that can be moved into the wheel brake. Another advantage is that the space between the master brake cylinder, simulator and the respective wheel brake can be better separated, thereby achieving better results when checking the components hydraulically (self-tests; air/leakage).
  • a pressure switching valve is preferably connected between the actuator of the primary brake system and the pressure modulator. With the help of this valve, the actuator can be connected to the pressure modulator or the wheel brakes if necessary to build up pressure.
  • a driver isolation valve is advantageously connected between the master brake cylinder and the pressure modulator, through which the master brake cylinder can be hydraulically separated from the pressure modulator or the wheel brakes or connected to them as required.
  • the master cylinder In the normal brake-by-wire operating mode, the master cylinder is hydraulically isolated from the pressure modulator so that the driver moves brake fluid into the simulator. In a fallback level, the driver isolation valve is opened so that the driver can use muscle power to move brake fluid into the wheel brakes.
  • the two hydraulic wheel brakes are designed as front wheel brakes.
  • the primary hydraulic braking system brakes on the front axle, so that braking can still be carried out at the front even in the fallback level.
  • the pressure modulator advantageously comprises an inlet valve and an outlet valve for each connected hydraulic wheel brake.
  • the outlet valve is particularly preferably arranged between the corresponding hydraulic wheel brake and the reservoir.
  • the outlet valve is advantageously designed to be electrically actuated.
  • the wheel brakes of the secondary braking system are preferably designed as electromechanical wheel brakes.
  • the wheel brakes of the secondary braking system are electric drum brakes, wheel hub motors, or electric motors that act on the rear axle.
  • the hydraulic primary system should be able to work flexibly with different dry systems or be integrated into the system with them.
  • the actuator is advantageously designed as a linear actuator with a motor and a rotation-translation gear coupled therein.
  • the rotation-translation gear is advantageously designed as a ball screw drive (KGT).
  • the invention relates to a braking system for motor vehicles with wheel brakes, with a reservoir for brake fluid, an actuator, a pressure modulator and a simulator, the braking system comprising a primary braking system with the actuator and the pressure modulator, to which two hydraulic wheel brakes are hydraulically connected are, and wherein the braking system comprises a dry secondary braking system with two further wheel brakes, a control and regulation unit being provided for controlling the primary braking system, with no simulator valve being connected hydraulically between the simulator and the pressure modulator.
  • the open-loop and closed-loop control unit advantageously controls both the primary braking system and the secondary braking system.
  • the primary braking system and the secondary braking system are advantageously powered by a common energy supply.
  • valves which are necessary for the second brake circuit, are eliminated, which enables a reduction in parts, an increase in cycle times in production and a reduction in costs.
  • Monitoring and testing routines can be simplified. Less complexity in the braking system enables costs to be reduced.
  • the braking system can be combined with various electrical braking systems. Only one master cylinder is necessary instead of a tandem master brake cylinder (THZ); the simulator valve can be omitted if the volume intake of the front axle is low.
  • the actuator can be made smaller because only one circuit needs to be supplied. Axle-by-axle blinding is possible for vehicles capable of recuperation. Braking along the optimal braking force distribution is possible.
  • a diagnostic valve and a simulator valve are not necessary.
  • the elimination of valves results in cost advantages. This also reduces the complexity of the system by simplifying the necessary monitoring as well as the hydraulic services and self-tests. This also results in lower power consumption of the system.
  • the braking system has redundancy because the front and rear axles can be controlled separately. In ferry operations, braking along the optimal braking force distribution offers stability advantages right up to the limit.
  • FIG. 1 shows a braking system with a primary braking system and a secondary braking system in a preferred embodiment
  • FIG. 2 a primary brake system in a first operating state
  • FIG. 3 a primary brake system in a second operating state
  • FIG. 4 a primary braking system in a preferred embodiment
  • FIG. 5 a braking system with a primary braking system and a secondary braking system in a preferred embodiment.
  • brake system 2 shown, which is a primary
  • the Primary braking system 6 is designed as a hydraulic braking system with two hydraulic wheel brakes 14, 18.
  • the two wheel brakes 14, 18 are front wheel brakes in this case.
  • the secondary brake system 10 is designed as a dry or electromechanical brake system with two electromechanical wheel brakes 22, 26.
  • the wheel brakes 22, 26 are designed as electromechanical wheel brakes (EMB).
  • the primary brake system 6 includes a control and regulation unit 30, which builds up pressure in the two hydraulic wheel brakes 14, 18 based on a braking request or a braking request 36 (e.g. by means of an electrically actuated, hydraulic actuator) and a braking torque request 40 to the secondary brake system 10 or delay request transmitted.
  • the primary brake system 6 directly controls the brake actuator(s) of the electromechanical wheel brakes 22, 26 of the secondary brake system, so that the secondary brake system 10 has no further or separate control and regulation unit.
  • the primary brake system 6 is shown in a first preferred embodiment in the de-energized state.
  • the primary brake system 6 is designed as a hydraulic brake system and in particular a single-circuit simulator brake system. It includes a pedal unit 44 with a brake pedal 46, a reservoir 48 for brake fluid and a hydraulic block 52.
  • the hydraulic block 52 contains a master brake cylinder 56, a simulator 60 and (linear) actuator 64.
  • the master brake cylinder 56 only has one pressure chamber, since that primary brake system 6 only includes a hydraulic circuit.
  • the actuator 64 has a motor 66, with the help of which a pressure piston 68 is displaced into a hydraulic pressure chamber 108, and a motor position sensor 80, in particular designed redundantly, which is designed in particular as a rotation angle sensor.
  • the motor 66 is designed as an electric motor.
  • a rotational Translation gear 76 is provided, which is designed in particular as a ball screw drive (KGT).
  • the hydraulic block 52 comprises a pressure modulator 50 with four wheel valves, namely an inlet valve 70, 74 and an outlet valve 78, 82 for each wheel brake 14, 18.
  • the inlet valves 70, 74 are as normally open valves and the outlet valves 78, 82 as de-energized closed valves.
  • the primary brake system 6 furthermore has an optional, in particular normally closed, simulator valve 86, which hydraulically isolates the simulator 60 from the master brake cylinder 56, and an in particular normally open driver isolation valve 90, which hydraulically isolates the driver, i.e. H. which hydraulically isolates the driver-operated master brake cylinder 56 from the wheel brakes 14, 18, as well as a pressure switching valve 94, which hydraulically isolates the (linear) actuator 64 from the system, in particular from the wheel brakes 14, 18.
  • a system pressure sensor 100 the system pressure, i.e. H. the pressure in the pressure chamber 108 of the actuator 64 or the master brake cylinder pressure is measured.
  • a simulator pressure sensor 104 the pressure in a pressure chamber of the simulator 60 is measured.
  • the pedal unit 44 has a pedal sensor 110, in particular of redundant design, which is designed as a pedal travel sensor. With the help of the signals from the pedal sensor 110 and/or the simulator pressure sensor 104, the open-loop and closed-loop control unit 30 determines a braking request or a braking request 36 and accordingly controls the actuator 64 with a target braking torque corresponding to the braking request. The actuator 64 actively builds up pressure in the wheel brakes 14, 18 based on this braking request.
  • the control and regulation unit 30 further generates from the braking request or the braking request 36, which is shown in FIG. 1 described braking torque requirement 40.
  • FIG. 3 is the primary braking system 6 according to FIG. 2 shown in the energized state. If the driver presses the brake pedal 46, the control and regulation unit 30 closes the driver isolation valve 90. The driver enters brake fluid into the simulator 60 through the open simulator valve 86. A resulting pressure request is implemented by the actuator 64 by introducing volume into the respective wheel brake 14, 18 through the opened pressure switching valve 94.
  • the open-loop and closed-loop control unit 30 determines a braking request or a braking request 36 and accordingly controls the actuator 64 with a target braking torque corresponding to the braking request.
  • the actuator 64 actively builds up pressure in the wheel brakes 14, 18 based on this braking request.
  • FIG. 4 shows the primary brake system 6 in a further preferred embodiment.
  • the simulator valve (reference number 86 in FIGS. 2 and 3) is omitted since the volume of the master brake cylinder (HZ) 56 is sufficient for the front axle or the wheel brakes 14, 18 of the front axle. This is relevant for a hydraulic fallback level (RFE). If an error occurs that degrades the pressure actuator (LAC) or actuator 64, the driver must decelerate the vehicle hydraulically using the pedal 46.
  • LAC pressure actuator
  • the fluid volume in the master cylinder 56 is sufficient in the hydraulic fallback level to supply both the simulator 60 and the wheel brakes 14, 18 on the front axle with the volume necessary for the prescribed deceleration.
  • Both brake circuits or braked axles or the primary brake system 6 and the secondary brake system 10 are independent of each other by system definition. This means that the failure of the actuator 64 has an impact on the braking ability or availability of the rear axle, which is provided by the secondary braking system 10 is braked, no effect.
  • the delay request 40 can still be made and implemented.
  • FIG. 5 represents the brake system 2 in a fallback level in which the actuator 64 has failed and the driver brakes hydraulically by pedaling with muscle power, so that a hydraulic pressure buildup 114 takes place in the wheel brakes 14, 18 without the actuator 64.
  • the functioning of the brake system 2, that the control and regulation unit 30 also controls the secondary brake system 10, also takes place in the fallback level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

The invention relates to a brake system (2) for motor vehicles, comprising wheel brakes (16, 18; 22, 26), a reservoir (48) for brake fluid, an actuator (64), a pressure modulator (50) and a simulator (60), wherein the brake system (2) comprises a primary brake system (6) including the actuator (64) and the pressure modulator (50), to which two hydraulic wheel brakes (14, 18) are hydraulically connected, wherein the brake system (2) comprises a dry secondary brake system (10) having two further wheel brakes (22, 26), and wherein an open- and closed-loop control unit (30) is provided to control the primary brake system (6) and the open- and closed-loop control unit (30) controls the primary brake system (6) and the secondary brake system (10).

Description

Beschreibung Description
Bremssystem für Kraftfahrzeuge Braking system for motor vehicles
Die Erfindung betrifft ein Bremssystem für Kraftfahrzeuge mit Radbremsen, mit einem Reservoir für Bremsflüssigkeit, einem Aktuator, einem Druckmodulator und einem Simulator, wobei das Bremssystem ein primäres Bremssystem mit dem Aktuator und dem Druckmodulator umfasst, an welchem zwei hydraulische Radbremsen hydraulisch angeschlossen sind, und wobei das Bremssystem ein trockenes sekundäres Bremssystem mit zwei weiteren Radbremsen umfasst, und wobei eine Steuer- und Regeleinheit zur Ansteuerung des primären Bremssystems vorgesehen ist. The invention relates to a braking system for motor vehicles with wheel brakes, with a reservoir for brake fluid, an actuator, a pressure modulator and a simulator, the braking system comprising a primary braking system with the actuator and the pressure modulator, to which two hydraulic wheel brakes are hydraulically connected, and wherein the braking system comprises a dry secondary braking system with two further wheel brakes, and a control and regulation unit is provided for controlling the primary braking system.
Hydraulische Bremssysteme wirken hydraulisch auf zwei Kreise, diagonal oder in schwarz-weiß-Aufteilung. Bei einem Brake-by-wire-System übernimmt ein Aktuator diese Druckstellung. Der Fahrer tritt in einen Simulator ein, worauf eine Bremsdruckanforderung generiert wird, welche dann vom Aktuator umgesetzt wird. Der Bremsdruck an Vorder- und Hinterachse ist dabei äquivalent. Hydraulic braking systems act hydraulically on two circles, diagonally or in black and white division. In a brake-by-wire system, an actuator takes over this pressure position. The driver enters a simulator, whereupon a brake pressure request is generated, which is then implemented by the actuator. The brake pressure on the front and rear axles is equivalent.
Aus der DE 10 2012 217 825 A1 ist eine kombinierte Bremsanlage für Kraftfahrzeuge bekannt, mit einer Hinterachse des Fahrzeugs zugeordneten, durch jeweils einen elektromechanischen Aktuator betätigbaren Radbremsen sowie mit einer hydraulischen Bremsanlage für die Vorderachse des Fahrzeugs, welche einen mittels eines Bremspedals betätigbaren, einkreisigen Hauptbremszylinder und an diesen angeschlossene, der Vorderachse zugeordnete, hydraulisch betätigbare Radbremsen umfasst. Die hydraulische Bremsanlage für die Vorderachse ist als eine Brake-by-wire-Bremsanlage mit einer elektrisch steuerbaren Druckbereitstellungseinrichtung ausgeführt. From DE 10 2012 217 825 A1 a combined brake system for motor vehicles is known, with wheel brakes assigned to a rear axle of the vehicle, each actuated by an electromechanical actuator, and with a hydraulic brake system for the front axle of the vehicle, which has a single-circuit master brake cylinder that can be actuated by means of a brake pedal and hydraulically actuated wheel brakes connected to this and assigned to the front axle. The hydraulic brake system for the front axle is designed as a brake-by-wire brake system with an electrically controllable pressure supply device.
Nachteilig bei bekannten Bremssystemen ist, dass die Verfügbarkeit des Bremssystems u.a. von der intakten Bremsleitung abhängt. Für die Erkennung von Fehlern am Bremssystem sind aufwändige Funktionen notwendig, welche Luft und Leckagen erkennen und den defekten Kreis isolieren. Eine erfolgreiche Fehlererkennung hat eine fehlerbedingte verminderte Bremsleistung zur Folge. Eine Redundanz ist hierbei nicht vorhanden, um den defekten Kreis zu kompensieren. Hydraulische Systeme haben weiterhin den Nachteil, dass die Installation von Leitungen und das Befüllen bei der Produktion aufwändig sind. Für die Produktion wird daher nach Lösungen gestrebt, um Flüssigkeiten zu vermeiden und Prozesse bzw. Arbeitsschritte zu reduzieren. Sowohl das Bremsen entlang der idealen Bremskraftverteilung als auch ein achsweises Blending für rekuperatives Bremsen ist mit aktuellen Systemen nicht ohne Effizienzverluste oder Komforteinbußen realisierbar. Der Erfindung liegt die Aufgabe zugrunde, ein zuverlässiges und robustes Bremssystem bereitzustellen. Insbesondere sollen bei geringerem Anteil hydraulischer Komponenten eine hohe Verfügbarkeit (hinsichtlich Erstfehlerausfälle des Gesamtsystems) dargestellt und zugleich die Komplexität hinsichtlich des hydraulischen Anteils des Systems reduziert werden. Weiterhin sollen mit Hilfe eines hybriden Systems die Vorteile von hydraulischen Systemen mit denen von elektromechanischen Systemen kombiniert werden. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Steuer- und Regeleinheit sowohl das primäre Bremssystem als auch das sekundäre Bremssystem ansteuert. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. Die Erfindung geht von der Überlegung aus, dass ein Bremssystem möglichst zuverlässig und robust ausgelegt sein sollte und gleichzeitig gut in eine Fahrzeugumgebung integrierbar sein sollte. Wie nunmehr erkannt wurde, lassen sich diese Anforderungen erfüllen, indem das Brake-by-wire-System (das primäre Bremssystem bzw. Simulatorbremssystem) hydraulisch nur auf eine Achse, bevorzugt die Vorderachse, wirkt, wobei dessen Steuer- und Regeleinheit aber auch das sekundäre Bremssystem ansteuert. Dieses Teilsystem umfasst bevorzugt die Bremsbetätigungseinheit (Pedal & Hauptbremszylinder), den Hydraulikblock mit Steuer- und Regeleinheit (ECU), den Simulator und den Aktuator. A disadvantage of known brake systems is that the availability of the brake system depends, among other things, on the intact brake line. Detecting errors in the brake system requires complex functions that detect air and leaks and isolate the defective circuit. A successful Error detection results in reduced braking performance due to the error. There is no redundancy to compensate for the defective circuit. Hydraulic systems still have the disadvantage that the installation of lines and filling during production are complex. For production, solutions are therefore sought to avoid liquids and reduce processes and work steps. Both braking along the ideal braking force distribution and axle-by-axle blending for regenerative braking cannot be achieved with current systems without loss of efficiency or loss of comfort. The invention is based on the object of providing a reliable and robust braking system. In particular, with a smaller proportion of hydraulic components, a high level of availability (in terms of initial failure of the entire system) should be achieved and at the same time the complexity with regard to the hydraulic part of the system should be reduced. Furthermore, with the help of a hybrid system, the advantages of hydraulic systems are to be combined with those of electromechanical systems. This object is achieved according to the invention in that the open-loop and closed-loop control unit controls both the primary braking system and the secondary braking system. Advantageous embodiments of the invention are the subject of the subclaims. The invention is based on the idea that a braking system should be designed to be as reliable and robust as possible and at the same time should be easy to integrate into a vehicle environment. As has now been recognized, these requirements can be met by the brake-by-wire system (the primary brake system or simulator brake system) acting hydraulically on only one axle, preferably the front axle, whereby The control and regulation unit also controls the secondary braking system. This subsystem preferably includes the brake actuation unit (pedal & master brake cylinder), the hydraulic block with control and regulation unit (ECU), the simulator and the actuator.
Das Brake-by-wire-System dient als primäres Bremssystem und wird als Master / Host für die Ansteuerung des sekundären Bremssystems verwendet. Das Gesamtsystem wird mit einer elektrischen Bremse für die Hinterachse kombiniert. Somit ist das Gesamtsystem zweikreisig und redundant ausgelegt. The brake-by-wire system serves as the primary braking system and is used as a master/host to control the secondary braking system. The entire system is combined with an electric brake for the rear axle. The entire system is therefore designed to be dual-circuit and redundant.
Dass die Steuer- und Regeleinheit sowohl das primäre Bremssystem als auch das sekundäre Bremssystem ansteuert, bedeutet insbesondere, dass die Steuer- und Regeleinheit eine Bremsmomentforderung für das sekundäre Bremssystem erzeugt. Es bedeutet weiterhin insbesondere, dass die Bremsmomentanforderung direkt an die Radbremsen bzw. deren Aktuatoren des sekundären Bremssystems übermittelt wird. The fact that the open-loop and closed-loop control unit controls both the primary braking system and the secondary braking system means in particular that the open-loop and closed-loop control unit generates a braking torque requirement for the secondary braking system. It also means in particular that the braking torque request is transmitted directly to the wheel brakes or their actuators of the secondary braking system.
Bevorzugt ist der Aktuator des primären Bremssystems ein elektrohydraulischer Aktuator. Besonders bevorzugt umfasst der Aktuator des primären Bremssystems eine elektrische ansteuerbare, hydraulische Druckquelle. The actuator of the primary brake system is preferably an electro-hydraulic actuator. The actuator of the primary brake system particularly preferably comprises an electrically controllable, hydraulic pressure source.
Bevorzugt umfasst das primäre Bremssystem einen Hauptbremszylinder, welcher mittels eines Bremspedals betätigbar ist. The primary brake system preferably comprises a master brake cylinder, which can be actuated by means of a brake pedal.
Bevorzugt umfasst der Druckmodulator für jede der angeschlossenen hydraulischen Radbremsen zumindest ein elektrisch betätigbares Einlassventil, welches hydraulisch zwischen dem Aktuator des primären Bremssystems einerseits sowie der entsprechenden hydraulischen Radbremse andererseits angeordnet ist. The pressure modulator preferably comprises at least one electrically actuable inlet valve for each of the connected hydraulic wheel brakes, which is arranged hydraulically between the actuator of the primary brake system on the one hand and the corresponding hydraulic wheel brake on the other.
Bevorzugt umfasst der Druckmodulator für jede der angeschlossenen hydraulischen Radbremsen zumindest ein elektrisch betätigbares Einlassventil, welches hydraulisch zwischen dem Aktuator und dem Hauptbremszylinder des primären Bremssystems einerseits sowie der entsprechenden hydraulischen Radbremse andererseits angeordnet ist. The pressure modulator preferably comprises at least one electrically actuable inlet valve for each of the connected hydraulic wheel brakes, which is hydraulically connected between the actuator and the master brake cylinder of the primary brake system on the one hand and the corresponding hydraulic wheel brake on the other hand.
In einer vorteilhaften Ausführungsform werden das primäre Bremssystem und das sekundäre Bremssystem von einer gemeinsamen Energieversorgung gespeist. Da das Bremssystem ein Gesamtsystem mit einer gemeinsamem ECU bildet, müssen die Teilsysteme (primäres bzw. sekundäres Bremssystem) für die beiden Achsen keine getrennte / voneinander unabhängige Energieversorgung haben, sodass die Konstruktion und die Auslegung vereinfacht werden. In an advantageous embodiment, the primary braking system and the secondary braking system are powered by a common energy supply. Since the braking system forms an overall system with a common ECU, the subsystems (primary or secondary braking system) for the two axles do not have to have a separate / independent power supply, so that the construction and design are simplified.
In einer ersten bevorzugten Ausführungsform ist hydraulisch zwischen Simulator und Druckmodulator kein Simulatorventil geschaltet. Im Fehlerfall ist es möglich, eine ausreichende Verzögerung zu erreichen, ohne dass der Simulator abgeklemmt werden muss. Gängige Volumen für Vorderachssättel ermöglichen eine höhere Volumenaufnahme durch den Simulator bei gleichbleibender Kraft. Ein längerer Pedalweg ist dann hinnehmbar, da nur die Kraft als Grenze vorgegeben ist. In a first preferred embodiment, no simulator valve is connected hydraulically between the simulator and the pressure modulator. In the event of an error, it is possible to achieve sufficient delay without having to disconnect the simulator. Common volumes for front axle calipers enable a higher volume absorption by the simulator while maintaining the same force. A longer pedal travel is then acceptable because the only limit is the force.
In einer alternativen bevorzugten Ausführungsform ist hydraulisch zwischen Simulator und Druckmodulator ein Simulatorventil geschaltet. Ein Vorteil dieser Variante liegt beispielsweise im Fehlerfall vor. Wenn der Aktuator ausfällt und die Vorderachse nur noch unverstärkt hydraulisch durch den Fahrer betätigt werden kann, ist das Simulatorventil geschlossen. In diesem Fall kann der Fahrer das Volumen direkt in die Radbremse verschieben, ohne den Simulator zu befüllen, was in einem kürzeren Pedalweg bzw. besserem Ansprechverhalten im Fehlerfall resultiert. Es steht mehr Volumen zur Verfügung, welches in die Radbremse verschoben werden kann. Ein weiterer Vorteil ist, dass der Raum zwischen Hauptbremszylinder, Simulator, und jeweiliger Radbremse besser abgetrennt kann und dadurch bessere Resultate bei der hydraulischen Überprüfung der Komponenten erzielt werden (Selbsttests; Luft/Leckage). Zwischen Aktuator des primären Bremssystems und Druckmodulator ist bevorzugt ein Druckschaltventil geschaltet. Mit Hilfe dieses Ventils kann der Aktuator zum Druckaufbau bedarfsweise mit dem Druckmodulator bzw. den Radbremsen verbunden werden. In an alternative preferred embodiment, a simulator valve is hydraulically connected between the simulator and the pressure modulator. One advantage of this variant is, for example, in the event of an error. If the actuator fails and the front axle can only be operated hydraulically by the driver without boosting, the simulator valve is closed. In this case, the driver can shift the volume directly into the wheel brake without filling the simulator, which results in a shorter pedal travel or better response in the event of an error. There is more volume available that can be moved into the wheel brake. Another advantage is that the space between the master brake cylinder, simulator and the respective wheel brake can be better separated, thereby achieving better results when checking the components hydraulically (self-tests; air/leakage). A pressure switching valve is preferably connected between the actuator of the primary brake system and the pressure modulator. With the help of this valve, the actuator can be connected to the pressure modulator or the wheel brakes if necessary to build up pressure.
Zwischen Hauptbremszylinder und Druckmodulator ist vorteilhafterweise ein Fahrertrennventil geschaltet ist, durch welches der Hauptbremszylinder von dem Druckmodulator bzw. den Radbremsen bedarfsgerecht hydraulisch getrennt bzw. mit ihnen verbunden werden kann. In der Normalbetriebsart Brake-by-wire wird der Hauptbremszylinder hydraulisch vom Druckmodulator getrennt, sodass der Fahrer Bremsflüssigkeit in den Simulator verschiebt. In einer Rückfallebene wird das Fahrertrennventil geöffnet, sodass der Fahrer durch Muskelkraft Bremsflüssigkeit in die Radbremsen verschieben kann. A driver isolation valve is advantageously connected between the master brake cylinder and the pressure modulator, through which the master brake cylinder can be hydraulically separated from the pressure modulator or the wheel brakes or connected to them as required. In the normal brake-by-wire operating mode, the master cylinder is hydraulically isolated from the pressure modulator so that the driver moves brake fluid into the simulator. In a fallback level, the driver isolation valve is opened so that the driver can use muscle power to move brake fluid into the wheel brakes.
In einer bevorzugten Ausführungsform des Bremssystems sind die zwei hydraulischen Radbremsen als Vorderradbremsen ausgebildet. Das primäre hydraulische Bremssystem bremst somit auf der Vorderachse, sodass auch in der Rückfallebene noch vorne gebremst werden kann. In a preferred embodiment of the braking system, the two hydraulic wheel brakes are designed as front wheel brakes. The primary hydraulic braking system brakes on the front axle, so that braking can still be carried out at the front even in the fallback level.
Der Druckmodulator umfasst vorteilhafterweise je angeschlossener hydraulischer Radbremse ein Einlassventil und ein Auslassventil. Auf diese Weise können in bekannter Weise radindividuelle Bremsdrücke eingestellt werden. Das Auslassventil ist besonders bevorzugt jeweils zwischen der entsprechenden hydraulischen Radbremse und dem Reservoir angeordnet. Das Auslassventil ist vorteilhafterweise elektrisch betätigbar ausgeführt. The pressure modulator advantageously comprises an inlet valve and an outlet valve for each connected hydraulic wheel brake. In this way, wheel-specific brake pressures can be set in a known manner. The outlet valve is particularly preferably arranged between the corresponding hydraulic wheel brake and the reservoir. The outlet valve is advantageously designed to be electrically actuated.
Bevorzugt sind die Radbremsen des sekundären Bremssystems als elektromechanische Radbremsen ausgebildet. In weiteren bevorzugten Varianten sind die Radbremsen des sekundären Bremssystems elektrische Trommelbremsen, Radnabenmotoren, bzw. Elektromotoren, welche auf die Hinterachse wirken. Das hydraulische Primärsystem soll flexibel mit unterschiedlichen trocknen Systemen arbeiten können bzw. mit diesen zusammen im System integrierbar sein. Vorteilhafterweise ist der Aktuator als Linearaktuator mit einem Motor und einem darin gekoppelten Rotations-Translationsgetriebe ausgebildet. Das Rotations- Translationsgetriebe ist vorteilhafterweise als Kugelgewindetrieb (KGT) ausgebildet. The wheel brakes of the secondary braking system are preferably designed as electromechanical wheel brakes. In further preferred variants, the wheel brakes of the secondary braking system are electric drum brakes, wheel hub motors, or electric motors that act on the rear axle. The hydraulic primary system should be able to work flexibly with different dry systems or be integrated into the system with them. The actuator is advantageously designed as a linear actuator with a motor and a rotation-translation gear coupled therein. The rotation-translation gear is advantageously designed as a ball screw drive (KGT).
In einer weiteren Variante betrifft die Erfindung ein Bremssystem für Kraftfahrzeuge mit Radbremsen, mit einem Reservoir für Bremsflüssigkeit, einem Aktuator, einem Druckmodulator und einem Simulator, wobei das Bremssystem ein primäres Bremssystem mit dem Aktuator und dem Druckmodulator umfasst, an welchem zwei hydraulische Radbremsen hydraulisch angeschlossen sind, und wobei das Bremssystem ein trockenes sekundäres Bremssystem mit zwei weiteren Radbremsen umfasst, wobei eine Steuer- und Regeleinheit zur Ansteuerung des primären Bremssystems vorgesehen ist, wobei hydraulisch zwischen Simulator und Druckmodulator kein Simulatorventil geschaltet. In a further variant, the invention relates to a braking system for motor vehicles with wheel brakes, with a reservoir for brake fluid, an actuator, a pressure modulator and a simulator, the braking system comprising a primary braking system with the actuator and the pressure modulator, to which two hydraulic wheel brakes are hydraulically connected are, and wherein the braking system comprises a dry secondary braking system with two further wheel brakes, a control and regulation unit being provided for controlling the primary braking system, with no simulator valve being connected hydraulically between the simulator and the pressure modulator.
Vorteilhafterweise steuert die Steuer- und Regeleinheit sowohl das primäre Bremssystem als auch das sekundäre Bremssystem an. The open-loop and closed-loop control unit advantageously controls both the primary braking system and the secondary braking system.
Das primäre Bremssystem und das sekundäre Bremssystem werden vorteilhafterweise von einer gemeinsamen Energieversorgung gespeist. The primary braking system and the secondary braking system are advantageously powered by a common energy supply.
Die Vorteile der Erfindung liegen insbesondere darin, dass Ventile, welche für den zweiten Bremskreis notwendig sind, entfallen, wodurch eine Teilereduktion, eine Taktzeiterhöhung bei der Produktion und eine Kostenreduktion ermöglicht werden. Überwachungen und Prüfroutinen können vereinfacht werden. Durch weniger Komplexität des Bremssystems wird eine Kostenreduktion ermöglicht. The advantages of the invention are, in particular, that valves, which are necessary for the second brake circuit, are eliminated, which enables a reduction in parts, an increase in cycle times in production and a reduction in costs. Monitoring and testing routines can be simplified. Less complexity in the braking system enables costs to be reduced.
Das Bremssystem ist kombinierbar mir verschiedenen elektrischen Bremssystemen. Es ist nur ein Hauptzylinder notwendig anstelle eines Tandemhauptbremszylinders (THZ), das Simulatorventil kann bei geringer Volumenaufnahme der Vorderachse entfallen. Der Aktuator kann kleiner ausgelegt werden, da nur ein Kreis versorgt werden muss. Ein achsweises Blenden ist für rekuperationsfähige Fahrzeuge möglich. Bremsungen entlang der optimalen Bremskraftverteilung sind möglich. The braking system can be combined with various electrical braking systems. Only one master cylinder is necessary instead of a tandem master brake cylinder (THZ); the simulator valve can be omitted if the volume intake of the front axle is low. The actuator can be made smaller because only one circuit needs to be supplied. Axle-by-axle blinding is possible for vehicles capable of recuperation. Braking along the optimal braking force distribution is possible.
Ein Diagnoseventil und auch ein Simulatorventil sind nicht notwendig. Der Wegfall der Ventile resultiert in Kostenvorteilen. Zudem wird dadurch die Komplexität des Systems reduziert, da die notwendigen Überwachungen vereinfacht werden sowie die hydraulischen Services und Selbsttest. Weiterhin resultiert daraus eine geringere Stromaufnahme des Systems. A diagnostic valve and a simulator valve are not necessary. The elimination of valves results in cost advantages. This also reduces the complexity of the system by simplifying the necessary monitoring as well as the hydraulic services and self-tests. This also results in lower power consumption of the system.
Das Bremssystem weist eine Redundanz auf, da Vorder- und Hinterachse getrennt ansteuerbar sind. Im Fährbetrieb bietet das Bremsen entlang der optimalen Bremskraftverteilung Stabilitätsvorteile bis in den Grenzbereich. The braking system has redundancy because the front and rear axles can be controlled separately. In ferry operations, braking along the optimal braking force distribution offers stability advantages right up to the limit.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen in stark schematisierter Darstellung: An exemplary embodiment of the invention is explained in more detail with reference to a drawing. It shows in a highly schematic representation:
FIG. 1 ein Bremssystem mit einem primären Bremssystem und einem sekundären Bremssystem in einer bevorzugten Ausführungsform; FIG. 1 shows a braking system with a primary braking system and a secondary braking system in a preferred embodiment;
FIG. 2 ein primäres Bremssystem in einem ersten Betriebszustand; FIG. 2 a primary brake system in a first operating state;
FIG. 3 ein primäres Bremssystem in einem zweiten Betriebszustand; FIG. 3 a primary brake system in a second operating state;
FIG. 4 ein primäres Bremssystem in einer bevorzugten Ausführungsform; und FIG. 4 a primary braking system in a preferred embodiment; and
FIG. 5 ein Bremssystem mit einem primären Bremssystem und einem sekundären Bremssystem in einer bevorzugten Ausführungsform. FIG. 5 a braking system with a primary braking system and a secondary braking system in a preferred embodiment.
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen. The same parts are given the same reference numbers in all figures.
Ein in FIG. 1 dargestelltes Bremssystem 2 dargestellt, welches ein primäresA in FIG. 1 shown brake system 2 shown, which is a primary
Bremssystem 6 (PBS) und ein sekundäres Bremssystem 10 (SBS) umfasst. Das primäre Bremssystem 6 ist als hydraulisches Bremssystem mit zwei hydraulischen Radbremsen 14, 18 ausgebildet. Die beiden Radbremsen 14, 18 sind vorliegend Vorderradbremsen. Das sekundäre Bremssystem 10 ist als trockenes bzw. elektromechanisches Bremssystem mit zwei elektromechanischen Radbremsen 22, 26 ausgebildet. Die Radbremsen 22, 26 sind als elektromechanische Radbremsen (EMB) ausgebildet. Braking system 6 (PBS) and a secondary braking system 10 (SBS). The Primary braking system 6 is designed as a hydraulic braking system with two hydraulic wheel brakes 14, 18. The two wheel brakes 14, 18 are front wheel brakes in this case. The secondary brake system 10 is designed as a dry or electromechanical brake system with two electromechanical wheel brakes 22, 26. The wheel brakes 22, 26 are designed as electromechanical wheel brakes (EMB).
Das primäre Bremssystem 6 umfasst eine Steuer- und Regeleinheit 30, die aufgrund eines Bremswunsches bzw. einer Bremsanforderung 36 in den beiden hydraulischen Radbremsen 14, 18 Druck aufbaut (z.B. mittels eines elektrisch betätigbaren, hydraulischen Aktuators) und an das sekundäre Bremssystem 10 eine Bremsmomentanforderung 40 bzw. Verzögerungsanforderung übermittelt. Das primäre Bremssystem 6 steuert dabei den oder die Bremsaktuatoren der elektromechanischen Radbremsen 22, 26 des sekundären Bremssystems direkt an, sodass das sekundäre Bremssystem 10 keine weitere bzw. separate Steuer- und Regeleinheit aufweist. The primary brake system 6 includes a control and regulation unit 30, which builds up pressure in the two hydraulic wheel brakes 14, 18 based on a braking request or a braking request 36 (e.g. by means of an electrically actuated, hydraulic actuator) and a braking torque request 40 to the secondary brake system 10 or delay request transmitted. The primary brake system 6 directly controls the brake actuator(s) of the electromechanical wheel brakes 22, 26 of the secondary brake system, so that the secondary brake system 10 has no further or separate control and regulation unit.
In FIG. 2 ist das primäre Bremssystem 6 in einer ersten bevorzugten Ausführung im stromlosen Zustand dargestellt. Das primäre Bremssystem 6 ist als hydraulisches Bremssystem und insbesondere einkreisiges Simulatorbremssystem ausgebildet. Es umfasst eine Pedaleinheit 44 mit einem Bremspedal 46, ein Reservoir 48 für Bremsflüssigkeit und einen Hydraulikblock 52. Der Hydraulikblock 52 beinhaltet einen Hauptbremszylinder 56, einen Simulator 60 und (Linear-)Aktuator 64. Der Hauptbremszylinder 56 weist nur eine Druckkammer auf, da das primäre Bremssystem 6 nur einen hydraulischen Kreis umfasst. In FIG. 2, the primary brake system 6 is shown in a first preferred embodiment in the de-energized state. The primary brake system 6 is designed as a hydraulic brake system and in particular a single-circuit simulator brake system. It includes a pedal unit 44 with a brake pedal 46, a reservoir 48 for brake fluid and a hydraulic block 52. The hydraulic block 52 contains a master brake cylinder 56, a simulator 60 and (linear) actuator 64. The master brake cylinder 56 only has one pressure chamber, since that primary brake system 6 only includes a hydraulic circuit.
Der Aktuator 64 weist einen Motor 66 auf, mit dessen Hilfe ein Druckkolben 68 in eine hydraulische Druckkammer 108 verschoben wird, sowie einen, insbesondere redundant ausgebildeten, Motorpositionssensor 80, der insbesondere als Drehwinkelsensor ausgebildet ist. Der Motor 66 ist als Elektromotor ausgebildet. Zur Übersetzung der rotatorischen Bewegung des Rotors des Motors in eine translatorische Bewegung des Druckkolbens 68 ist ein Rotations- Translationsgetriebe 76 vorgesehen, welches insbesondere als Kugelgewindetrieb (KGT) ausgebildet ist. The actuator 64 has a motor 66, with the help of which a pressure piston 68 is displaced into a hydraulic pressure chamber 108, and a motor position sensor 80, in particular designed redundantly, which is designed in particular as a rotation angle sensor. The motor 66 is designed as an electric motor. To translate the rotational movement of the rotor of the motor into a translational movement of the pressure piston 68, a rotational Translation gear 76 is provided, which is designed in particular as a ball screw drive (KGT).
Weiterhin umfasst der Hydraulikblock 52 einen Druckmodulator 50 mit vier Radventilen, nämlich je Radbremse 14, 18 jeweils ein Einlassventil 70, 74 und ein Auslassventil 78, 82. Die Einlassventile 70, 74 sind dabei als stromlos offene Ventile und die Auslassventile 78, 82 als stromlos geschlossene Ventile ausgeführt. Furthermore, the hydraulic block 52 comprises a pressure modulator 50 with four wheel valves, namely an inlet valve 70, 74 and an outlet valve 78, 82 for each wheel brake 14, 18. The inlet valves 70, 74 are as normally open valves and the outlet valves 78, 82 as de-energized closed valves.
Das primäre Bremssystem 6 weist weiterhin ein optionales, insbesondere stromlos geschlossenes Simulatorventil 86 auf, welches den Simulator 60 von dem Hauptbremszylinder 56 hydraulisch abtrennt und ein insbesondere stromlos offenes Fahrertrennventil 90, welches den Fahrer hydraulisch abtrennt, d. h. welches den vom Fahrer betätigten Hauptbremszylinder 56 hydraulisch von den Radbremsen 14, 18 abtrennt, sowie ein Druckschaltventil 94, welches den (Linear- )Aktuator 64 vom System, insbesondere von den Radbremsen 14, 18, hydraulisch abtrennt. Mit Hilfe eines Systemdrucksensors 100 wird der Systemdruck, d. h. der Druck in der Druckkammer 108 des Aktuators 64 oder der Hauptbremszylinderdruck gemessen. Mit Hilfe eines Simulatordrucksensors 104 wird der Druck in einer Druckkammer des Simulators 60 gemessen. The primary brake system 6 furthermore has an optional, in particular normally closed, simulator valve 86, which hydraulically isolates the simulator 60 from the master brake cylinder 56, and an in particular normally open driver isolation valve 90, which hydraulically isolates the driver, i.e. H. which hydraulically isolates the driver-operated master brake cylinder 56 from the wheel brakes 14, 18, as well as a pressure switching valve 94, which hydraulically isolates the (linear) actuator 64 from the system, in particular from the wheel brakes 14, 18. With the help of a system pressure sensor 100, the system pressure, i.e. H. the pressure in the pressure chamber 108 of the actuator 64 or the master brake cylinder pressure is measured. With the help of a simulator pressure sensor 104, the pressure in a pressure chamber of the simulator 60 is measured.
Die Pedaleinheit 44 weist einen, insbesondere redundant ausgebildeten Pedalsensor 110 auf, der als Pedalwegsensor ausgebildet ist. Mit Hilfe der Signale des Pedalsensors 110 und/oder des Simulatordrucksensors 104 bestimmt die Steuer- und Regeleinheit 30 einen Bremswunsch bzw. eine Bremsanforderung 36 und steuert entsprechend den Aktuator 64 mit einem dem Bremswunsch entsprechenden Sollbremsmoment an. Der Aktuator 64 baut aufgrund diese Bremswunsches aktiv Druck in den Radbremsen 14, 18 auf. The pedal unit 44 has a pedal sensor 110, in particular of redundant design, which is designed as a pedal travel sensor. With the help of the signals from the pedal sensor 110 and/or the simulator pressure sensor 104, the open-loop and closed-loop control unit 30 determines a braking request or a braking request 36 and accordingly controls the actuator 64 with a target braking torque corresponding to the braking request. The actuator 64 actively builds up pressure in the wheel brakes 14, 18 based on this braking request.
Die Steuer- und Regeleinheit 30 generiert weiterhin aus dem Bremswunsch bzw. der Bremsanforderung 36 die im Rahmen von FIG. 1 beschriebene Bremsmomentforderung 40. In FIG. 3 ist das primäre Bremssystem 6 gemäß FIG. 2 im bestromten Zustand dargestellt. Betätigt der Fahrer das Bremspedal 46, schließt die Steuer- und Regeleinheit 30 das Fahrertrennventil 90. Der Fahrer tritt durch das geöffnete Simulatorventil 86 Bremsflüssigkeit in den Simulator 60 ein. Eine resultierende Druckanforderung wird durch den Aktuator 64 umgesetzt, indem durch das geöffnete Druckschaltventil 94 Volumen in die jeweilige Radbremse 14, 18 eingebracht wird. Mit Hilfe der Signale des Pedalsensors 110 und/oder des Simulatordrucksensors 104 bestimmt die Steuer- und Regeleinheit 30 einen Bremswunsch bzw. eine Bremsanforderung 36 und steuert entsprechend den Aktuator 64 mit einem dem Bremswunsch entsprechenden Sollbremsmoment an. Der Aktuator 64 baut aufgrund dieses Bremswunsches aktiv Druck in den Radbremsen 14, 18 auf. The control and regulation unit 30 further generates from the braking request or the braking request 36, which is shown in FIG. 1 described braking torque requirement 40. In FIG. 3 is the primary braking system 6 according to FIG. 2 shown in the energized state. If the driver presses the brake pedal 46, the control and regulation unit 30 closes the driver isolation valve 90. The driver enters brake fluid into the simulator 60 through the open simulator valve 86. A resulting pressure request is implemented by the actuator 64 by introducing volume into the respective wheel brake 14, 18 through the opened pressure switching valve 94. With the help of the signals from the pedal sensor 110 and/or the simulator pressure sensor 104, the open-loop and closed-loop control unit 30 determines a braking request or a braking request 36 and accordingly controls the actuator 64 with a target braking torque corresponding to the braking request. The actuator 64 actively builds up pressure in the wheel brakes 14, 18 based on this braking request.
In FIG. 4 ist das primäre Bremssystem 6 in einer weiteren bevorzugten Ausführungsform dargestellt. Bei dieser Ausführungsform entfällt das Simulatorventil (Bezugszeichen 86 in den FIG. 2 und 3), da Volumen des Hauptbremszylinders (HZ) 56 für die Vorderachse bzw. die Radbremsen 14, 18 der Vorderachse ausreicht. Dies ist relevant ist das für eine hydraulische Rückfallebene (RFE). Tritt ein Fehler ein, welcher den Drucksteller (LAC) bzw. Aktuator 64 degradiert, muss der Fahrer das Fahrzeug über das Pedal 46 hydraulisch verzögern. In FIG. 4 shows the primary brake system 6 in a further preferred embodiment. In this embodiment, the simulator valve (reference number 86 in FIGS. 2 and 3) is omitted since the volume of the master brake cylinder (HZ) 56 is sufficient for the front axle or the wheel brakes 14, 18 of the front axle. This is relevant for a hydraulic fallback level (RFE). If an error occurs that degrades the pressure actuator (LAC) or actuator 64, the driver must decelerate the vehicle hydraulically using the pedal 46.
Die Vorderachse ist hydraulisch unverstärkt und muss konstruktiv so ausgelegt sein, dass mit einer Pedalkraft von F = 500 N eine Bremsleistung von 2,44 m/s2 erreicht werden kann. Das Flüssigkeitsvolumen im Hauptzylinder 56 reicht in der hydraulischen Rückfallebene aus, um sowohl den Simulator 60 als auch die Radbremsen 14, 18 an der Vorderachse mit dem für die vorgeschriebene Verzögerung notwendigen Volumen zu versorgen. The front axle is not hydraulically reinforced and must be designed in such a way that a braking performance of 2.44 m/s 2 can be achieved with a pedal force of F = 500 N. The fluid volume in the master cylinder 56 is sufficient in the hydraulic fallback level to supply both the simulator 60 and the wheel brakes 14, 18 on the front axle with the volume necessary for the prescribed deceleration.
Beide Bremskreise bzw. gebremste Achsen bzw. das primäre Bremssystem 6 und das sekundäre Bremssystem 10 sind per Systemdefinition voneinander unabhängig. Das heißt, der Ausfall des Aktuators 64 hat auf die Bremsfähigkeit bzw. Verfügbarkeit der Hinterachse, die von dem sekundären Bremssystem 10 gebremst wird, keine Auswirkung. Die Verzögerungsanforderung 40 kann weiterhin gestellt und umgesetzt werden. Dies ist in FIG. 5 dargestellt, welche das Bremssystem 2 in einer Rückfallebene darstellt, in welcher der Aktuator 64 ausgefallen ist und der Fahrer hydraulisch durch Pedalbetätigung mit Muskelkraft bremst, sodass ein hydraulischer Druckaufbau 114 in den Radbremsen 14, 18 ohne den Aktuator 64 erfolgt. Die Funktionsweise des Bremssystems 2, dass die Steuer- und Regeleinheit 30 auch das sekundäre Bremssystem 10 ansteuert, erfolgt aber auch in der Rückfallebene. Both brake circuits or braked axles or the primary brake system 6 and the secondary brake system 10 are independent of each other by system definition. This means that the failure of the actuator 64 has an impact on the braking ability or availability of the rear axle, which is provided by the secondary braking system 10 is braked, no effect. The delay request 40 can still be made and implemented. This is shown in FIG. 5, which represents the brake system 2 in a fallback level in which the actuator 64 has failed and the driver brakes hydraulically by pedaling with muscle power, so that a hydraulic pressure buildup 114 takes place in the wheel brakes 14, 18 without the actuator 64. The functioning of the brake system 2, that the control and regulation unit 30 also controls the secondary brake system 10, also takes place in the fallback level.
Bezugszeichenliste Reference symbol list
2 Bremssystem 2 braking system
6 primäres Bremssystem 6 primary braking system
10 sekundäres Bremssystem 10 secondary braking system
14 Radbremse 14 wheel brake
18 Radbremse 18 wheel brake
22 Radbremse 22 wheel brake
26 Radbremse 26 wheel brake
30 Steuer- und Regeleinheit 30 control and regulation unit
36 Bremsanforderung 36 Braking request
40 Bremsmomentforderung 40 Braking torque requirement
44 Pedaleinheit 44 pedal unit
46 Bremspedal 46 brake pedal
48 Reservoir 48 Reservoir
50 Druckmodulator 50 pressure modulator
52 Hydraulikblock 52 hydraulic block
56 Hauptbremszylinder 56 master cylinder
60 Simulator 60 simulators
64 Aktuator 64 actuator
66 Motor 66 engine
68 Druckkolben 68 pressure pistons
70 Einlassventil 70 inlet valve
74 Einlassventil 74 inlet valve
76 Rotations-T ranslationsgetriebe76 Rotary Translation Gears
78 Auslassventil 78 exhaust valve
80 Motorpositionssensor 80 Motor position sensor
82 Auslassventil 82 exhaust valve
86 Simulatorventil 86 simulator valve
90 Fahrertrennventil 90 Driver isolation valve
94 Druckschaltventil 94 pressure switching valve
100 Systemdrucksensor 104 Simulatordrucksensor100 system pressure sensor 104 Simulator pressure sensor
110 Pedalsensor 110 pedal sensor
114 hydraulischer Druckaufbau 114 hydraulic pressure build-up

Claims

Patentansprüche Patent claims
1. Bremssystem (2) für Kraftfahrzeuge mit Radbremsen (16, 18; 22, 26), mit einem Reservoir (48) für Bremsflüssigkeit, einem Aktuator (64), einem Druckmodulator (50) und einem Simulator (60), wobei das Bremssystem (2) ein primäres Bremssystem (6) mit dem Aktuator (64) und dem Druckmodulator (50) umfasst, an welchem zwei hydraulische Radbremsen (14, 18) hydraulisch angeschlossen sind, und wobei das Bremssystem (2) ein trockenes sekundäres Bremssystem (10) mit zwei weiteren Radbremsen (22, 26) umfasst, und wobei eine Steuer- und Regeleinheit (30) zur Ansteuerung des primären Bremssystems (6) vorgesehen ist, dadurch gekennzeichnet, dass die Steuer- und Regeleinheit (30) sowohl das primäre Bremssystem (6) als auch das sekundäre Bremssystem (10) ansteuert. 1. Brake system (2) for motor vehicles with wheel brakes (16, 18; 22, 26), with a reservoir (48) for brake fluid, an actuator (64), a pressure modulator (50) and a simulator (60), the brake system (2) a primary brake system (6) with the actuator (64) and the pressure modulator (50), to which two hydraulic wheel brakes (14, 18) are hydraulically connected, and wherein the brake system (2) has a dry secondary brake system (10 ) with two further wheel brakes (22, 26), and wherein a control and regulation unit (30) is provided for controlling the primary braking system (6), characterized in that the control and regulation unit (30) both the primary braking system ( 6) as well as the secondary braking system (10).
2. Bremssystem (2) nach Anspruch 1 , wobei das primäre Bremssystem (6) und das sekundäre Bremssystem (10) von einer gemeinsamen Energieversorgung gespeist werden. 2. Brake system (2) according to claim 1, wherein the primary brake system (6) and the secondary brake system (10) are powered by a common energy supply.
3. Bremssystem (2) nach Anspruch 1 oder 2, wobei hydraulisch zwischen Simulator (60) und Druckmodulator (30) kein Simulatorventil (86) geschaltet ist. 3. Brake system (2) according to claim 1 or 2, wherein no simulator valve (86) is connected hydraulically between the simulator (60) and the pressure modulator (30).
4. Bremssystem (2) nach Anspruch 1 oder 2, wobei hydraulisch zwischen Simulator (60) und Druckmodulator (30) ein Simulatorventil (86) geschaltet ist. 4. Brake system (2) according to claim 1 or 2, wherein a simulator valve (86) is connected hydraulically between the simulator (60) and the pressure modulator (30).
5. Bremssystem (2) nach einem der vorherigen Ansprüche, wobei zwischen Aktuator (64) und Druckmodulator (30) ein Druckschaltventil (94) geschaltet ist. 5. Brake system (2) according to one of the preceding claims, wherein a pressure switching valve (94) is connected between the actuator (64) and the pressure modulator (30).
6. Bremssystem (2) nach einem der vorherigen Ansprüche, wobei zwischen Hauptbremszylinder (56) und Druckmodulator (30) ein Fahrertrennventil (90) geschaltet ist. 6. Brake system (2) according to one of the preceding claims, wherein a driver isolation valve (90) is connected between the master brake cylinder (56) and the pressure modulator (30).
7. Bremssystem (2) nach einem der vorherigen Ansprüche, wobei die zwei hydraulischen Radbremsen (14, 18) als Vorderradbremsen ausgebildet sind. 7. Brake system (2) according to one of the preceding claims, wherein the two hydraulic wheel brakes (14, 18) are designed as front wheel brakes.
8. Bremssystem (2) nach einem der vorherigen Ansprüche, wobei der8. Brake system (2) according to one of the preceding claims, wherein the
Druckmodulator (30) je angeschlossener hydraulischer Radbremse (14, 18) ein Einlassventil (70, 74) und ein Auslassventil (78, 82) umfasst. Pressure modulator (30) comprises an inlet valve (70, 74) and an outlet valve (78, 82) for each connected hydraulic wheel brake (14, 18).
9. Bremssystem (2) nach einem der vorherigen Ansprüche, wobei die Radbremsen (22, 26) des sekundären Bremssystems (10) als elektromechanische Radbremsen ausgebildet sind. 9. Brake system (2) according to one of the preceding claims, wherein the wheel brakes (22, 26) of the secondary brake system (10) are designed as electromechanical wheel brakes.
10. Bremssystem (2) nach einem der vorherigen Ansprüche, wobei der Aktuator (64) als Linearaktuator mit einem Motor (66) und einem darin gekoppelten Rotations-Translationsgetriebe (76) ausgebildet ist. 10. Brake system (2) according to one of the preceding claims, wherein the actuator (64) is designed as a linear actuator with a motor (66) and a rotation-translation gear (76) coupled therein.
PCT/DE2023/200136 2022-07-12 2023-07-03 Brake system for motor vehicles WO2024012640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022207137.9A DE102022207137A1 (en) 2022-07-12 2022-07-12 Braking system for motor vehicles
DE102022207137.9 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024012640A1 true WO2024012640A1 (en) 2024-01-18

Family

ID=87312185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2023/200136 WO2024012640A1 (en) 2022-07-12 2023-07-03 Brake system for motor vehicles

Country Status (2)

Country Link
DE (1) DE102022207137A1 (en)
WO (1) WO2024012640A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135432A1 (en) * 2003-01-14 2004-07-15 Delphi Technologies Inc. Failsafe operation of a hybrid brake system for a vehicle
DE102012217825A1 (en) 2012-09-28 2014-04-03 Continental Teves Ag & Co. Ohg Combined brake system for vehicles as well as methods for their operation
DE102016223629A1 (en) * 2016-11-29 2018-05-30 Continental Teves Ag & Co. Ohg Brake system and method for operating a brake system
DE102018217753A1 (en) * 2018-04-10 2019-10-10 Hyundai Motor Company BRAKING SYSTEM FOR ONE VEHICLE
US20200108809A1 (en) * 2018-10-03 2020-04-09 Toyota Jidosha Kabushiki Kaisha Actuator controller and vehicle-installed system
DE102022201760A1 (en) * 2021-03-01 2022-09-01 ZF Active Safety US Inc. HYDRAULIC BRAKE BOOST

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135432A1 (en) * 2003-01-14 2004-07-15 Delphi Technologies Inc. Failsafe operation of a hybrid brake system for a vehicle
DE102012217825A1 (en) 2012-09-28 2014-04-03 Continental Teves Ag & Co. Ohg Combined brake system for vehicles as well as methods for their operation
DE102016223629A1 (en) * 2016-11-29 2018-05-30 Continental Teves Ag & Co. Ohg Brake system and method for operating a brake system
DE102018217753A1 (en) * 2018-04-10 2019-10-10 Hyundai Motor Company BRAKING SYSTEM FOR ONE VEHICLE
US20200108809A1 (en) * 2018-10-03 2020-04-09 Toyota Jidosha Kabushiki Kaisha Actuator controller and vehicle-installed system
DE102022201760A1 (en) * 2021-03-01 2022-09-01 ZF Active Safety US Inc. HYDRAULIC BRAKE BOOST

Also Published As

Publication number Publication date
DE102022207137A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
EP3898359B1 (en) Vehicle axle with electric drive and eletro-hydraulic brake and further modules like gearbox, torque vectoring and parking brake
EP3625095B1 (en) Brake system and method for operating a brake system
EP2822822B1 (en) Method for determining a pressure/volume characteristic curve of a wheel brake
EP3898357B1 (en) Redundant brake system with 2 pressure supplies for electric vehicle and vehicle with autonomous drive of the 3rd (had) to 5 (ad) level
EP3898358B1 (en) Redundant brake system with pressure supply for electric vehicle and vehicle with category 3 to 4 autonomous drive
DE102018208223A1 (en) Braking system with two pressure sources and method for operating a brake system with two pressure sources
WO2017144201A1 (en) Add-on module for an electrohydraulic brake assembly, and brake assembly system comprising an add-on module of said type
WO2014135446A2 (en) Brake actuation unit
DE102013223859A1 (en) Brake system for motor vehicles
WO2020165259A1 (en) Hydraulic system with at least two hydraulic circuits and at least two pressure supply devices
DE102019207056A1 (en) Brake system for a motor vehicle and method for operating the brake system
DE102018133218A1 (en) Redundant braking system with a pressure supply for e-vehicles and vehicles with autonomous driving from level 3 (HAD) to level 4 (FAD)
DE102018213594A1 (en) Actuator for a hydraulic brake system
DE102021205745A1 (en) Braking system for motor vehicles with an extended fallback level
WO2024012640A1 (en) Brake system for motor vehicles
WO2003033323A1 (en) Eletrohydraulic braking system for motor vehicles
WO2019097043A1 (en) Pressure supply arrangement, braking system, and associated operating method
WO2023227173A1 (en) Brake system for motor vehicles with a pressure supply device
WO2023222163A1 (en) Brake system for motor vehicles, having an actuator
DE102022205462A1 (en) Energy-saving operating mode
DE102022203381A1 (en) Method for circuit separation of a hydraulic brake system
DE102015217708A1 (en) Brake system for motor vehicles
DE102022210791A1 (en) Hydraulic unit of a vehicle braking system equipped with several wheel brake devices
WO2023232303A1 (en) Method for actuating a mechanism in a brake booster unit of a braking system and braking system
DE102022200657A1 (en) Process for controlling a brake-by-wire braking system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23741585

Country of ref document: EP

Kind code of ref document: A1